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Abstract

A combined neutron imaging and diffraction facility, IMAT (Imaging and Materials 

Science & Engineering) is developed at ISIS (Target Station 2).

One subject of this thesis was focused on the design and optimization of the 

imaging part of IMAT, using the Monte Carlo calculation software package McStas. 

Hence, the neutron guide dimensions, the effects of the gaps in the neutron guide on 

imaging detectors, gravitation effects in the neutron guide and also the influence of the 

pinhole size on the image were studied. All these investigations were made taking into 

account the most important design criteria: to maximise the neutron flux, to obtain a good 

energy resolution whilst retaining a large neutron bandwidth and a long flight path and to 

minimize the artefacts obtained in the neutron radiographies.

After a compromise between imaging, diffraction and engineering requirements 

had been reached, the results from simulations specific to the current IMAT design were 

studied: wavelength distribution, beam profiles at different points along the beamline, 

beam divergence, neutron intensity distribution and flux depending on the pinhole size and 

the wavelength bands. Moreover, generation of IMAT imaging data with a sample led to 

full tomographic simulations and modelling wavelength effects.

Another objective of the thesis was to study the complementarity between neutron 

imaging and neutron diffraction experiments. For this, a new instrument control concept 

that exploits tomography data to guide diffraction experiments on samples with complex 

structures and shapes named “tomography driven diffraction” (henceforth, TDD) was 

developed. The method has been proved to be viable using combinations of individual 

tomography and diffraction instruments: NEUTRA (PSI) and ENGIN-X (ISIS) for 

different samples drawn from the engineering and heritage sciences. On IMAT it will be 

possible to perform tomography, mark the measurement points and proceed to the 

diffraction measurements as one continuous process.
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1 Introduction

Neutrons form a highly penetrating radiation, passing through matter without damaging or 

structurally modifying it, a property that makes them the ideal tool for many kinds of 

complementary material investigations.

Among the experimental techniques which are using neutrons one should 

enumerate: neutron activation analysis related to the capture of neutrons and applied for 

isotope and element analysis [1-3], neutron imaging techniques [4] based on the capture 

and scattering of neutrons which provide information about the inner structure and, 

indirectly, about the composition of a sample due to the fact that different materials 

attenuate neutrons to a greater or lesser extent or neutron scattering experiments. Neutron 

diffraction [5] is one of the scattering methods offering data about a sample on the atomic 

level, such as the atomic arrangement within the sample or magnetic structure of the 

material. The combination of neutron imaging and neutron diffraction will enable a more 

complete characterization of a sample in a combined analysis. The neutron imaging data 

will help to improve and guide the diffraction measurements. Vice-versa, the diffraction 

data will give a structural interpretation of the imaging data. Combining imaging and 

diffraction measurements on one beamline will allow new types of experiments to be 

carried out, otherwise not possible with any other presently available single instruments 

(e.g. ENGIN-X at ISIS [6] for diffraction experiments or NEUTRA at PSI [7] for imaging 

applications).

The IMAT instrument at ISIS [8], which is one of the main subjects of this thesis, 

will be 'the very first thermal and cold pulsed neutron imaging and diffraction facility for 

materials science, materials processing and engineering studies. IMAT will be the first 

neutron imaging instrument in the UK and the first facility at a pulsed neutron spallation
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source. Others imaging facilities at the spallation sources are in the design process 

(VENUS at the SNS, Oak Ridge, USA [9] and ERNIS at J-PARC, Japan [10]).

In addition to the conventional neutron radiography, tomography and diffraction 

applications IMAT will be able to combine these techniques so that, for example, imaging 

information can be used to steer diffraction measurements. Further, because IMAT is being 

built at a pulsed source, it will be able to perform energy selective imaging applications, 

which offer improved contrasts between different materials and in the future, the 

possibility of tomographic strain measurements. Some pilot studies on the energy-selective 

imaging at a pulsed source were already been done at the ENGIN-X instrument ([11], 

[12]).

Combining different analysis techniques on one beamline imposes design 

constraints on the individual parts of the instrument which have to be solved without 

compromising the future instrument applications. Imaging applications require a large 

beam (in order of many cm2) and highest possible neutron flux. Diffraction applications 

require a small beam (in order of mm2) and a good spectral resolution. The choice of a 

coupled moderator ensures a high thermal and cold neutron flux for imaging and for rapid 

diffraction analysis. For a good diffraction resolution a long-flight path is required and this 

could be achieved by using of a neutron guide. Therefore, a supermirror neutron guide is 

required to combine imaging and diffraction modes at the same sample position. On the 

other hand, for neutron imaging the neutron beam profile at the sample position has to be 

homogeneous in space and time and the open beam images should be symmetric and 

smoothly varying. This requirement is at odds with the use of a neutron guide which causes 

geometrical artefacts and wavelength-dependent divergences. In order to minimise these 

effects and to maximize the neutron flux on the sample for imaging and diffraction 

experiments the neutron guide needs to be optimized.

The instrument optimization and evaluation can be done using Monte Carlo 

simulations. For this purpose a free simulation package software, McStas [13] was used for



reproducing the realistic neutron scattering instrument by assembling different virtual 

components into a computer model of the instrument.

To exploit the complementarity between the neutron tomography and neutron 

diffraction a new method, Tomography Driven Diffraction (TDD) [14], was developed. 

TDD allows a complete investigation of the object by 2D or 3D imaging where the 

characteristics of the whole sample are revealed, in the sense of dimensions, shape, internal 

defects or density and then uses these data to focus the diffraction analysis on particular 

components of the object for determining compositions, strain and texture.

TDD was demonstrated to be viable using combinations of individual tomography 

and diffraction instruments such as NEUTRA (PSI) and ENGIN-X (ISIS). Different 

structurally and complex samples drawn from engineering and heritage sciences were used 

for the experiments. Because the TDD method is ideally suitable on the coupled imaging- 

diffraction instruments, one future development is to apply this technique on the IMAT 

instrument. On such an instrument it will be possible to perform the tomography, mark the 

measurement points and proceed to the diffraction measurements as one continuous 

process.

The chapters of this dissertation are organised as follows: Chapter 2 provides an 

overview of the neutron sources and instrumentations, notions and techniques met in the 

neutron imaging and diffraction fields. Then, a summary of the instrument design methods 

and simulation packages used for designing an instrument is presented. Chapter 3 reports 

investigations into IMAT components, relevant to its performance as an imaging 

instrument based on the McStas modelling approach. The results were combined with 

similar investigations into the diffraction case (performed elsewhere and not part of this 

thesis) leading to the design considerations for the combined imaging and diffraction 

instrument, IMAT. Based on the preliminary results of Chapter 3 there were investigated in 

Chapter 4 particular aspects of the neutron beam relevant to future white beam or energy- 

selective imaging applications and performance of the complete IMAT imaging



instrument. Chapter 5 deals with the TDD method for exploiting the complementarity 

between the neutron tomography and neutron diffraction and illustrates its application to 

the samples selected from different fields (engineering and archaeometry). Chapter 6 

discusses the final conclusions and points out future research lines.

In addition to the chapters, there are three appendixes containing additional 

information:

Appendix 1: presents the C++ code for the calculation of the projection of the image onto 

the moderator, reflection angle and number of neutron reflectivities in the neutron guide 

Appendix 2: offers the IMAT imaging instrument model in McStas (the initial stage, used 

in the simulations from Chapter 3 of the thesis).

Appendix 3: displays the IMAT imaging instrument model in McStas (the last stage, used 

in the simulations from Chapter 4 of the thesis).
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2 Neutron imaging and diffraction -  a general overview

Neutron and X-rays are two types of radiation which can be used as complementary, non

destructive probes for material investigations over a wide range of length scales from 

centimetres to the size of the atoms [15].

2.1 Neutron properties and applications

Neutrons and X-ray photons are quite different in their natures: for example, the neutron 

has a mass and its energy depends on its velocity. On the other hand, the X-ray photon has 

no mass but is characterised by its wavelength. In the following sections we will review 

some aspects concerning the neutrons characteristics and their applications.

2.1.1 Neutron characteristics

The neutron was reported for the first time in 1932 by the English physicist James 

Chadwick. Only the hydrogen nucleus has no neutron; all other atoms have one or more 

neutrons in their nuclei. The neutron has no net electric charge; it is a spin 1 /2  particle 

with a mass (mn) slightly larger than that of a proton,

mn =1 .675xl0-27£g.

The magnetic moment of the neutron (ju) is negative

// = -9 .6491xl0-27 (JT'1) 

which means that the neutron has a tendency to align antiparallel to a magnetic field rather 

than parallel to the field. The non-zero magnetic moment of the neutron enables neutrons 

to be used to explore microscopic magnetic structures [16] and study magnetic fluctuations



[17], and thus the study of magnetic properties of materials using neutrons is significant in 

the neutron scattering and imaging field.

The concepts of quantum physics tell us that particles have wave-like and particle

like properties via the principle known as wave-particle duality. Neutrons are subject to 

this principle as described by the de Broglie relationship:

h I? h2 n m— = mv; E = ------   (2.1.1)
X 2mX2

where X is wavelength measured in Angstrom (lA = 10-10m); E  is energy which is

measured in Joules (J) or electron volts ( e V ) where leV  = 1.602xl0-19 / ;  m = mass; v =

velocity; h = 6.6261xl0-34 Js is the Planck constant.

Depending on their kinetic energy neutrons may be classified as follows:

Table 2.1.1: Classification o f  neutrons according to their energy1 ([18]).
Wavelength, A (A) Energy range Velocity, v (m/s)

Ultra-Cold >500 <300neV <8

Cold 26.1-2.6 0.12meV-12meV 152-1515

Thermal 2.6-0.9 12meV-100meV 1515-4374

Epithermal 0.9-0.28 100meV-1eV 4374-13.8x10J

Intermediate 0.28-0.01 1 eV-0.8MeV 13.8x10a-39.56x104

Fast <0.01 >0.8MeV >39.56x104

While bound neutrons in stable nuclei are stable, free neutrons are unstable and 

they undergo radioactive beta decay into a proton, an electron and an electron antineutrino 

[5]. The time taken by neutrons in neutron scattering experiments to travel from source to 

the detector is considerably less than the time taken for half of the neutrons to decay (i.e.

1 The classification of the neutrons is arbitrary and can vary in different contexts.



“half-life”) of Zj/2 = r ln 2  = 614sec where r  = 886±lsec is the “lifetime” of the neutron 

(i.e. the time after which the number of neutrons is reduced to 11 e) [19].

Neutron interaction with matter and neutron cross-section

Neutron and X-ray radiations interact differently with materials. While a neutron of a 

particular wavelength interacts with the nucleus itself, an X-ray photon interacts primarily 

with the electrons surrounding the atomic nucleus. Due to their properties the neutrons 

easily pass through atoms, and so they form a highly penetrating radiation, interacting with 

matter through collisions with atomic nuclei.

The interaction between neutrons and matter is described by a numeric quantity 

known as the neutron cross section, which depends on the material properties and the

24 2neutron energy. The unit of the cross section is the barn (lbam=10’ cm ) and it has the 

dimension of the cross-sectional area of a chemical element towards an incoming neutron 

interacting with the material (i.e., analogous to the target size). For a compound (a material 

made up of a number of elements) the individual cross sections need to be summed over 

each element. The measure of the effective interaction area for a neutron with a single 

nucleus is defined by the microscopic cross section {&). The units of the microscopic cross

2 1 section are m . The macroscopic cross section E (cm" ) defines the probability of

interaction between a neutron and bulk material and has the formula E = A<7, where

a
N (cm ) is the nuclear number density (i.e., the number of nuclei per unit volume) and is

P 23defined as N = —An with A the atomic weight, An =6.02x10 the Avogadro number
A

and p  the density.
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The interaction of neutrons with matter can lead to the one of the following 

situations: scattering, absorption or transmission (Figure 2.1.1).

Scattered
neutron

Transmitted 
neutron beam

Incident
neutron
beam Absorb id neutron

Figure 2.1.1: The interaction o f neutrons with matter.

When a neutron is scattered by a nucleus, its speed and direction may be changed 

but the nucleus is left with the same number of protons and neutrons which it had before 

the interaction. There are two types of scattering events: elastic and inelastic. When the 

energy of the total system (in our case, the neutron and nucleus it collides with) is 

conserved, i.e. it is the same before and after the collision there was elastic scattering. 

Moreover, each type of scattering has a coherent and incoherent part (i.e. elastic coherent 

scattering, inelastic coherent, elastic incoherent and inelastic incoherent). A coherent event 

is one where the scattering may be considered as occuring at a number of centres 

simultaneously (e.g. nuclei in a lattice) such that the scattered waves interfere as described 

by Bragg’s law. The incoherent scattering does not involve inference of neutron waves 

from different scattering centres, but results from scattering on individual atoms giving 

information about them.



Instead of being scattered by a nucleus, the neutron may be absorbed or captured. 

In this case, the nucleus internal structure is rearranged and one or more gamma rays is 

released (Figure 2.1.1).

Transmitted neutrons pass through the sample, without changing their direction. 

The overall intensity (relative to the incident neutron beam) is reduced depending on the 

thickness and density of the material through which the neutron beam is passed.

The total microscopic cross section can be written as <7t = <7scatterjng +  ̂ absorption

and the total macroscopic cross section as X = Scattering +  ̂ absorption- The macroscopic 

cross section is also known as the attenuation coefficient jn.

ZJ>
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W#0.1 Th
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d  Tltermal neatrorts 0.025 eV •  Cold neutrons 0.005 cV X-rays (125 keV)

Figure 2.1.2: The mass attenuation coefficient fo r  neutrons and X-rays is plotted as 
function o f atomic number [20].

Neutrons and X-rays are considered to be complementary probes. For example if 

X-rays are less sensitive to light atoms, neutrons are particularly sensitive to hydrogen (the 

lightest atom). From Figure 2.1.2 we can see that the mass attenuation coefficients (i.e. the 

attenuation coefficient divided by the density of the target material, which represents a



measure of the probability for a reaction between a neutron, with a specific velocity, and 

the target material) increases, for X-rays, with atomic number. On the other hand, the 

neutron attenuation is more selective and depends on the nuclear characteristics as well as 

the neutron energy.

(a) (b)

Figure 2.1.3: X-ray radiography (a) and neutron radiography (b) o f a camera. While the 
X-rays visualise the metallic parts o f the object, the neutrons have a greater 
penetration depth revealing the inside plastic parts (with a high hydrogen 
content) o f the camera [21 ].

For example, neutrons have a lower interaction with metals than do X-rays, leading to a 

relatively high penetration depth through these materials as shown in Figure 2.1.3.

2.1.2 Neutrons in material sciences

Neutrons are used for investigations in many fields related to industrial, engineering or 

scientific research as it will be exemplified throughout this thesis.

The complementarity of neutron and X-rays investigations has encouraged the 

option of making both available within one site, such as the Paul Scherrer Institute in 

Switzerland [18] (with Swiss Light Source, SLS [22] and Swiss spallation neutron source, 

SINQ [23]), The Harwell Science and Innovation Campus in Oxfordshire, UK [24] (with 

synchrotron science facility, Diamond Light Source [25] and neutron pulsed source, ISIS
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[26]) and The European Photon & Neutron Science Campus in Grenoble, France [27] (with 

ESRF (Synchrotron Radiation Facility) [28] and the steady-state neutron source Institute 

Laue-Langevin [29]).

There are two basic groups of neutron experiments which allow different insights 

into the structure of materials: neutron imaging and neutron scattering. Whereas neutron 

imaging provides information about the inner structure and composition of a sample, based 

on the fact that different materials attenuate neutrons to a greater or lesser extent, the 

neutron scattering experiments offer data about a sample on the atomic level, such as the 

atomic motion, arrangement of atoms within the sample or magnetic structure of the 

material.

Neutron instruments are usually dedicated for a certain scattering or imaging 

approach, including diffractometers (e.g., ENGIN-X at ISIS [6]) providing structural 

determinations of the samples by elastic scattering, or spectrometers (e.g., TOSCA at ISIS 

[30]) giving information about atomic motions by inelastic scattering.

Scattering methods are successfully applied in fields such as engineering (in-depth 

determination of residual stresses in industrial components) [31], biology (in order to study 

the structure and dynamics of molecules and membranes), in medicine [32], or in 

geosciences (for examination of structure and compositions of rocks [33] and fossils [34]). 

The archaeological domain is another application field for neutrons where they allow non

destructive testing of archaeological artefacts and museum objects [35]. For instance, 

within the archaeological domain it could be possible to identify phase composition of 

objects or the crystal structures of the phases. Such data may be used to provide 

information about important aspects of such objects, including manufacturing methods and 

authenticity [36].
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The disadvantages of using neutrons

Because of the weakly scattering nature of neutrons large samples may be required in order 

to produce sufficient signal. Also, neutron sources are generally characterized by relatively 

low fluxes when compared to, for example, synchrotron X-ray sources (radiation obtained 

by accelerating bunches of electrons at relativistic energies). For this reason they may have 

limited use in investigations of very rapid time-dependent processes. Among the financial 

disadvantages we can count the high construction cost of the neutron sources. Moreover, 

neutron scattering experiments are quite time consuming often taking several days. They 

are also expensive and take place at large-scale facilities with typical running costs of 

thousands of pounds per instrument per day.

2.2 Neutron production

The production of neutrons which are suitable for imaging or diffraction experimentation is 

a complex and expensive procedure. As well as the technical challenge of producing the 

neutrons there are certain sensitive aspects that need to be thoroughly considered in terms 

of biological protection and safety measures.

2.2.1 Neutron sources

Two methods are commonly used for generating neutrons for research purposes: ‘fission’ 

(in research reactors) or ‘spallation’ (in accelerator-driven spallation neutron sources). The 

common goals of neutron sources are to produce the highest possible neutron flux 

(expressed in number of neutrons/cm2/second) and neutrons in the suitable energy range 

for certain applications (see Table 2.1.1).
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2.2.1.1 Research (steady state) reactor sources

In reactors, fission takes place when a heavy nucleus such as Uranium-235 (U-235) is hit 

by a neutron which breaks it into two fission fragments, at the same time discharging two 

or three fast neutrons (Figure 2.2.1).

This process is illustrated by, for example, the equation [37]:

292u  + l\n^> 29 2 U -» ^ B a  + ^ K r + 3 ^  + 177 MeV (2.2.1)

where qu indicates neutrons produced by nuclear fission and 177 MeV is the energy 

released in this nuclear fission reaction.

Neutron 
with thermal 

energy

O  Proton 

Q  Neutron 

Slow neutron

Figure 2.2.1: Nuclear fission process [37].

The fission reaction becomes self-sustaining considering the fact that one of the 

three free neutrons causes further fission in another U-235 generating a chain reaction. The 

remaining neutrons are either absorbed by materials that do not fission or escape from the 

system. The escaped neutrons will form the source of slow neutrons (after moderation) 

used for scattering experiments.

Nucleus
U-235

Neutron Fission 
product

Neutron

n ° Neutrons
O

Fission
product

Fission Chain reaction
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2.2.1.2 Neutron spallation (pulsed) sources

Neutrons can also be produced by the spallation process (Figure 2.2.2) in which high- 

energy particles (e.g. protons of energies from 100 MeV up to several GeV) collide with a 

target of dense and high-mass number material such as uranium, tungsten, tantalum or 

mercury. The spallation reaction is described by the following steps:

1. an internal nucleon cascade within the excited target nucleus;

2 . an inter-nuclear cascade when high-energy particles including neutrons are ejected 

and absorbed by other nuclei;

3. de-excitation of the various target nuclei followed by the evaporation of many 

lower-energy neutrons and a variety of nucleons, photons and neutrinos;

Again, the escaped neutrons from these processes form the source of neutrons used for 

scattering and imaging experiments.

Internuclear
cascadeIntranuclear

cascade
Target
nucleus

Incident
particle

>150
MeV

High-energy
fission

Evaporation or 
de-excitation

O  Proton 

0  Neutron Nuclear
reactions

Figure 2.2.2: Spallation process [37].
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Spallation neutron sources use a high energy proton beam which can be produced in one of 

following types of accelerator:

• Linear accelerator (linac) -  is a high current and a high-repetition rate accelerator 

which directs the proton beam onto a target where neutrons are produced through 

spallation reactions.

At the end of the linac is placed a proton storage ring in order to compress the long 

pulses (1ms) into short pulses (lps) and to extend the time between pulses necessary for 

neutron scattering experiments. This kind of linac is used at the SNS at Oak Ridge, USA 

[38].

Another alternative is to use the long pulse (~2 ms) from the linac directly on the 

target, without the presence of a storage ring. The extra neutrons generated in this case can 

be used by specific instrumentation. The European Spallation Source is an example of the 

application of this method [37].

• Cyclotrons -  these produce a continuous beam of energetic protons (590MeV) and 

generate a steady current of neutrons via a spallation reaction. The SENQ source at the Paul 

Scherrer Institute, Switzerland is an example of this approach [39].

• The synchrotron approach has a lower energy linac and a rapid cycling synchrotron. 

The synchrotron is basically a doughnut shaped vacuum tank with a large radius (e.g. 26m 

at ISIS) surrounded by a ring of magnets. The H" ion beam produced in the linac passes 

through a thin alumina foil; the foil strips two electrons from the ions producing protons. 

These protons are injected into the synchrotron where they are accelerated to lGeV or 

higher and then extracted into a single turn onto the target. The pulse length is about lps. 

This process repeats 10-60 times every second. The ISIS facility is a synchrotron-based 

spallation source [40].

The main advantage of the synchrotron over the linear accelerator is that the

particles are going around many times, getting multiple kicks of energy every time around.

From the financial point of view we can assert the building costs for the linear accelerators
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are much lower than for the synchrotrons because they do not need magnets to drive 

particles in the ring [41].

2.2.2 Neutron moderators

Whether we are dealing with the steady-state reactors or spallation sources the “fast” 

neutrons produced by both of them have high energies of a few MeV. These neutrons must 

be moderated to obtain neutrons with energy and wavelength useful for scattering 

experiments.

2.2.2.1 Moderators in research reactors

The moderator is one of the main components of a research reactor. The moderator 

comprises of a material with a low atomic mass, such as light water, heavy water or 

graphite which does not absorb neutrons. The fast neutrons collide with the light nuclei 

from this substance and they are slowed down until they are in thermal equilibrium with 

the moderator. To control the neutron losses and to keep neutrons inside the reactor to give 

them a second chance to cause fission, the inner surface of the reactor core is surrounded 

by an external moderator which serves also as a reflecting material (reflector) with a low 

absorption of neutrons. In the area where the flux is maximum a beam tube is placed 

tangential to the reactor core (for minimising the background effects of the high fluxes of 

gamma rays generated by fission reaction or by decaying fission fragments) which extracts 

moderated neutrons from the reactor core.

The energy spectrum of the moderated neutrons obtained in a research reactor can 

be considered similar to the motion of atoms in an ideal gas and it has a statistical 

Maxwell-Boltzmann distribution determined by the temperature of the moderator:
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E =
2 m/T

= K b T (2.2.2)

where is Boltzmann’s constant, which is in fact a conversion factor between energy

and temperature units, and T is the moderator temperature.

In terms of the number of neutrons, the Maxwellian neutron distribution in the 

thermalized area is given by the relation ([42]):

E

n(E)=
v3/2

(2.2.3)
& K b T)‘

Based on equation (2.2.3), the wavelength distribution of the thermalized neutron flux [42] 

can be described as well by the Maxwellian distribution (Figure 2.2.3):

(KBT)2
E -E IK J  e B (2.2.4)

1.000

Moderator Temp
1500 K

300 K

f  0.100

3  0.010

4 6

Wavelength (A)

Figure 2.2.3: Flux distribution corresponding to the operating temperatures o f cold, 
thermal and hot moderators in reactors [43].

Depending on the moderator temperature we have the following classification of 

neutrons: cold (moderated at 30 K), thermal (moderated at 300 K) and hot neutrons 

(moderated at 1500 K) (see also Table 2.1.1). Most research reactors are designed for a
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moderator temperature 300-350 K corresponding to the middle curve in Figure 2.2.3. For 

some neutron experiments, such as small-angle scattering, there are used long-wavelength 

neutrons obtained from a cold source; these neutrons give a spectrum similar to the one 

shown in the right hand curve. For a shorter wavelength spectrum (i.e. higher energies) a 

hot source is employed.

2.2.2.2 Moderators in spallation neutron sources

The moderators on the pulsed sources have the main purpose to slow down the fast 

neutrons to the useful energies for scattering experiments. The under-moderated (partially 

moderated) neutrons created by the spallation sources are typically in the epi-thermal 

range. In addition, the moderators produce thermal or cold neutrons dependent on the 

moderator temperature. To provide a good coupling to the fast neutrons in the target, to 

maximise the neutron beam intensity and to maintain a narrow pulse, the moderators must 

be positioned closely to the primary source. Depending on the target size the moderator 

will have a different size and shape and this has implications on the neutron pulse shape. 

For pulsed neutron sources, the time spent by the neutrons in the moderator broadens the 

pulse. To obtain a very narrow pulse it is required to have a thin moderator (to reduce the 

time spent by the neutrons in the moderator) which yields a decrease in the time-integrated 

neutron flux and also in the peak intensity.

By controlling the temperature of the moderator, for example filled with liquid 

hydrogen or liquid methane, it is possible to slow down the fast neutrons to speeds 

corresponding to the desired wavelength range. The neutrons after moderation have a 

Maxwellian distribution at low energies and 1 IE  distribution at high energies depending 

on the temperature of the moderator (Figure 2.2.4).
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Figure 2.2.4: Maxwellian neutron thermalization distributions fo r  ISIS moderator 
temperatures o f20, 100 and 300 K  [44]. The colder moderator has a higher 
neutron flux fo r  a given energy interval AE in the area where the spectrum 
has a maximum.

The neutrons that missed the moderator can be reflected into the moderator using a 

reflector that surrounds the target and moderator. Moreover, to the neutrons that were 

moderated or partially moderated in the moderator and leave the moderation into a 

direction different from the instrument port give a chance to be reflected back into the 

moderator and further to be slowed down. These neutrons have then the opportunity to 

leave the moderator in the direction of the beam port. The reflector materials used, such as 

Be, D2O, C or Ni, must have a minimal absorption, a large scattering cross section and low 

atomic mass. Introducing a reflector causes the pulse to broaden since the neutrons can 

spend a longer time in the reflector before going to the moderator. In that case, to control 

the width of the moderated pulse, cut off long tails in the neutron pulses and keeping the 

high peak intensity a decoupling material (sheets of Gd or Cd), surrounding the whole 

moderator vessel, separates the moderator from the surroundings (reflector). This is true 

for slow neutrons because Gd and Cd are transparent for epithermal and fast neutrons. A 

decoupled moderator can have additionally a poisoning foil inside the moderator container
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which has the function of limiting the depth of the moderator viewed by the instrument 

port. Also, the foil has an additional sharpening effect on the pulse shape.

Intensity

X=2k
decoupled

coupled

time
0 100 200 300

Figure 2.2.5: The pulse shape diagram after moderation fo r a spallation pulsed source.
The pulse width depends on the moderator type and the energy used. The 
decoupled moderator produces a more narrow pulse than a coupled 
moderator at the cost o f flux [44].

If there is no barrier for neutron transport between reflector and moderator, the moderator 

is considered fully coupled. So, the reflected neutrons can return to the moderator and 

hence a coupled moderator will generally produce a flux several times that of a decoupled 

moderator, but at the cost of a broader pulse (Figure 2.2.5), since neutrons can spend 

longer time in the reflector and the moderator before going out from the moderator.

2.2.3 Examples of neutron sources

Some of the reactor sources optimized for neutron scattering applications are:

Institute Laue-Langevin (ILL - Grenoble, France) built in 1972 ([45], [46]), FRM-II in 

Munich, Germany [47], BENSC (The Berlin Neutron Scattering Centre) in Germany [48], 

JRR3 at the Japan Atomic Energy Agency [49], OPAL at the Australian Nuclear Science
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and Technology Organisation [50], HANARO at the Korea Atomic Energy Research 

Institute [51] and CARR at CIAE (China) [52]. All the reactors (except, ILL) are medium

sized research reactor sources (power 10-20 MW).

As already mentioned in the paragraph 2.2.1.2, spallation sources can be 

continuous or pulsed.

> Continuous spallation source

The only continuous spallation source is at the Paul Scherrer Institute, SINQ, Switzerland 

[23].

> Pulsed spallation sources

• Short-pulse spallation source

These sources are at ISIS (Oxfordshire, UK) ([53], [26]), LANSCE (Los Alamos Neutron 

Science Center, USA) ([54]), SNS (Oak Ridge, Tennessee, USA) ([55]) and J-PARC 

(Tokaimura, Japan) ([56]).

• Long-pulse spallation sources

An example is the ESS (European Spallation Source) ([57]) in Lund, Sweden, a project in 

development including 17 European Partner Countries. The ESS is scheduled to produce 

first neutron beams in 2019.

An important difference between long-pulse sources and short-pulse sources comes 

from the time required to generate the neutron pulse. Hence, if the time required to 

generate the pulse is significantly shorter than the moderation time of the neutrons, then 

the source can be classified as a short-pulse source; when this time is comparable or 

greater than the moderation time the source is a long-pulse source.

The spallation sources and research reactors (steady state sources) are 

complementary, each of them being optimized for different types of experiment (see 

section 2.4.1). Whilst, the neutron reactors provide the maximum neutron fluxes that are 

available at the current stage the spallation sources have not yet attained the neutron flux 

limit from the research reactors.
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Time-of-flight method

Fundamental to the time-of-flight method is the pulsed nature of the beam. Each pulse 

obtained in the spallation process contains a wide range of wavelengths (energies), and the 

beam is known as “polychromatic” or “white-beam”.

50 Hz
20msProton

pulse
injection

20milliseconds0 seconds

<r ->
Time (T)

Figure 2.2.6: Schematic description ofTime-of-Flight method adapted from [58].

The neutron energy (and hence its wavelength) can be determined from the distance it has 

travelled to the detector position (L) and the travel time (T) taken to do so and is given by 

equation (2.2.5), as follows:

,2
E = ™ { F \ ;  1 = * * -  

2 l r J  mL (2.2.5)

For long flight paths it is possible to have frame overlap between one pulse and the next. 

This problem can be solved by using disc choppers to reduce the range of wavelengths in 

the neutron pulse (see section 3.5.1).
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Because the IMAT instrument is developed at the ISIS neutron pulsed source we 

will explore below the main characteristics of this source.

The ISIS neutron pulsed source

The ISIS accelerator starts with the ion source creating negatively charged hydrogen ions 

made up of two electrons and one proton. The ions are accelerated from 35 keV to 665 keV 

in the first accelerator, called the Radio Frequency Quadrupole (RFQ), which focuses them 

into the second accelerator, the linac (70 MeV). The ions are then transported into the third 

accelerator, the synchrotron (800 MeV) (Figure 2.2.7). From the synchrotron two bunches 

of protons (of 800 MeV) are extracted which are guided by magnets along an evacuated 

beamline to the target stations. The average beam current is about 200 pA (2.9xlO13 

protons per pulse). Initially (1984) at ISIS one Target Station (TS-1) was built which 

operates at 50 Hz. This target was made, in the early years, from uranium, but now is made 

from tantalum coated tungsten. More recently (2003), a second Target Station (TS-2), also 

using a tantalum coated tungsten target, was built in order to allow new instruments to be 

added. On TS-1 40 proton pulses per second (thermal power 148 kW) are sent to obtain 

almost 15-20 neutrons/proton, i.e. 4 x l0 14 neutrons/pulse. On target 2 the proton beam is 

operated with a frequency of 10 Hz, i.e. 10 proton pulses per second (thermal power 36 

kW). With this frequency and the moderators used Target 2 is optimized to provide cold 

neutrons. One pulse from five generated by the synchrotron ISIS is directed to TS-2.
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Figure 2.2.7. Schematic diagram o f ISIS accelerators and targets [59].

TS-1 is surrounded by a beryllium reflector and four moderators are placed close to the 

target: the first two are water moderators at ambient temperatures, providing thermal 

neutrons and narrow pulse widths, the third moderator material is liquid methane at 100 K 

providing cold neutrons and a narrow pulse width, and the last is a liquid hydrogen 

moderator at 20 K offering cold neutrons with high intensity and wide pulse width.

The design of the 2nd Target Station was optimized for long wavelength neutrons 

and allows the moderators to be positioned very close to the target, leading to an important 

gain in moderated neutron flux. In that case, the low power of the proton beam required
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appropriate design of target and moderator for the optimization of long neutron wavelength 

production which should be more efficient than those on TS-1 [60]. TS-2 produces 

neutrons of two pulse shape categories: one of wide pulse with full width at half-maximum 

height no larger than about 500 ps generated by a coupled moderator, and the other a pulse 

shape decoupled moderator at 30-50 ps.

The coupled moderator is a composite liquid hydrogen (L-H2) 22 K -  solid methane 

(S-CH4) 26 K moderator without a decoupler or poisoning layer, generating a long- 

wavelength flux with broad pulse shapes from both faces. The (S-CH4) 26 K decoupled 

moderator has two faces with solid-methane, one giving a narrow pulse shape but much 

cooler neutrons similar to the liquid methane moderator and the other a broader pulse 

shape (also, much cooler) similar to the hydrogen moderator.

2.3 Neutron imaging

In this thesis we are concerned with both imaging and diffraction based neutron 

investigations and moreover, with the modelling of the imaging part of the IMAT 

instrument. Therefore, in the following sections, we briefly review both these techniques. 

We begin by looking at the fundamentals of neutron imaging.

2.3.1 Fundamentals

Exploiting neutron properties such as deep penetration into a sample, hydrogen detection, 

and the ability to interact with external magnetic fields via the neutron’s magnetic moment, 

various techniques of neutron imaging have been developed over the last few decades. The 

term neutron radiography was used to describe the direct production of images by 

transmitting a neutron beam through a sample onto a detector. Later, this method was
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extended to neutron tomography, where, by rotating the sample in the neutron beam at an 

angular range from 0° to 180° (or even 360°, depending on the beam divergence and the 

sample size) and taking neutron radiographies of the sample, a complete three dimensional 

representation of the object can be reconstructed. From a mathematical point of view, 

tomography is defined by this reconstruction of a three-dimensional object from its 

projections.

There are three types of the beam geometries used to obtain sample projections: 

parallel beam, fan beam and cone beam (Figure 2.3.1).

Cone beams are produced naturally since the radiation is emanated equally in all directions 

from a source point. In fan beam geometry the rays at a given projection angle diverge and 

they have a fan aspect. If we take a small portion of a cone beam far from the source (at 

large distance) we can approximate that all rays are almost parallel, so we have a parallel 

beam. For cone and fan beam geometries the images are magnified allowing to identify 

various features, but with the cost of distortions. Whereas the fan and cone beams require a

rotation of the object for measurement of at least 180° + a  where a  is the angle of the fan 

or the cone, for the parallel beam it is required sample’s rotation of 180°, since any 

projection of the object P#(t) (see section 2.3.3.1) will be an exact mirror image of the

projection Pq+i%o° (0- Hence, the number of projections necessary for sample

Figure 2.3.1: Parallel beam, fan beam and cone beam geometry [61 ].
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reconstruction in the parallel beam is less in principle, leading to a shorter exposure time. 

In practice, sample rotations of 360° are often applied to avoid varying blurring conditions 

for different parts of a sample (see below).

Whilst the fan beam and cone beam geometries are applied at the point sources (X- 

ray tubes and linear accelerators), the parallel beam (exhaustively presented in [62]) is 

specific to the synchrotron radiation and neutron beamlines.

2.3.2 Neutron radiography

The basic principle of neutron radiography (NR) is that a neutron beam passing through a 

sample is attenuated. The detector registers the fraction of the initial beam intensity that 

remains after it has been transmitted by each point in the object. Neutron radiography is 

found to be very useful for thick samples with high-density components which can be 

impenetrable to X-rays.

The relationship between the incident intensity (7q) and the transmitted intensity 

(I) of the neutron beam is given by the exponential attenuation law:

where // is the attenuation coefficient along the path of the neutron through the sample 

and depends on the selected material and its density (see section 2 .1.1) and t is the 

sample’s thickness along this path. The inverse of fi is called the mean free path of the 

neutrons in the material.

The ratio between the transmitted and incident neutron beam is called transmission:

Hence, depending on the sample thickness the incident intensity is affected by an 

exponential decrease.

(2.3.1)

Tr = —  = e~fU
h

(2.3.2)
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The geometry of neutron radiography

A schematic neutron radiography system involves four main components: neutron source, 

collimator, object and detector. For neutron radiography purposes the neutrons used are 

thermal or cold because most materials provide a higher attenuation for low energy 

neutrons. For this reason, the neutrons generated from a source which are too fast to be 

helpful for radiographic experiments are thermalized in the moderator. Because the 

moderator scatters the neutrons in all directions a collimator system ([63], [64]) is required 

to form the moderated neutrons into a useful neutron beam in order to reduce the 

propagation direction of the radiation and to obtain a well defined image of the sample. 

The beam intensity emanated by a neutron source decreases at a specific distance r ,

inversely proportional to the distance from the source, according to the inverse square
r 2

law. Many of the neutron radiography facilities are using, currently, the pinhole geometry 

[65] for neutron beam collimation. The pinhole, placed close to the neutron source, is a 

small aperture with a circular shape (with a diameter D) in order to obtain a symmetric 

image (see section 3.6).

Image quality from neutron radiography

The quality of a radiographic image collected over a finite measurement time depends on 

several parameters. The most important are:

n p u t r n n c
• The incident neutron flux d> = —  ------- ;

cm xsec

• The beam divergence L/D, as expressed by the ratio of the pinhole-sample distance (L) 

and the pinhole diameter (D).

• Detector characteristics such as resolution.

• The distance of the sample from the detector (1).

• Any motion of the sample during the experiment or other physical issues.
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The divergence of the neutron beam at the sample position is defined by the ratio L I  D :

D 1
tan a  = — = -----------------------------  (2.3.3)

L L ID

where a  is the divergence angle, L is the distance between pinhole and object and D  is 

the opening (diameter) of the aperture (Figure 2.3.2a).

detector

Figure 2.3.2: The geometry o f the system, and thus the quality o f the radiography, can be 
controlled by varying the size o f the pinhole (D), changing the distance 
between sample and pinhole (L) or the distance object-detector (I). The 
point A selected in the object is enlarged up to an area with the diameter (d)

on the detector as d = —-—.
L I D
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For each radiographic set-up, the ratio L ID  must be adapted to certain conditions 

including the neutron flux, spatial resolution of the detector, and size of the sample. If the 

distance L is constant, a larger collimation ratio L ID  will produce a sharper image, but, 

unfortunately at the cost of a lower neutron flux (Figure 2.3.2b). Inversely, a smaller L ! D 

conducts to a larger beam size (gaining in the neutron flux) and more divergent, producing 

a “blurred” image (Figure 2.3.2a). The point A (selected arbitrarily from within the 

sample) is blurred up to geometrical resolution,

In addition to the blurring effect the image size is magnified (enlarged) with the

point-to-point image, a longer L distance is required, despite the lower neutron flux (Figure 

2.3.2c).

Moreover, the object needs to be placed close to the detector to reduce the sample 

blur edges to zero. If the object is moved away by the detector, the object is magnified onto 

the detector, so the blur of the edges will appear.

If on neutron radiography station neutron optical devices such as neutron guides are 

used to transport the neutrons to the sample they can influence the beam divergence and 

beam cross section. This issue will be discussed in detail in Chapter 3 and Chapter 4.

To eliminate or minimise the inhomogeneities of the images obtained due to the 

spatial variations in intensity caused by the beam onto the radiography or due to the noise 

generated by the camera system one uses the normalization procedure. At the same energy 

range and exposure time, images are taken with and without the sample present in the 

beam. The image taken with the sample in the beam is then divided by the “open beam 

image” (without sample), with the result that variations due to beam inhomogeneity are 

removed.

(2.3.4)

magnification factor M  = ------ . To minimise the magnification effect and to realize a
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2.3.3 Neutron tomography

The step from neutron radiography to neutron tomography may seem small but is quite 

significant. It consists in the creation of three-dimensional sample information from 

multiple projections from different directions, as produced by rotating the sample in small 

angular steps through 180° or 360°.

2.3.3.1 Mathematics of neutron tomography

The theory of tomographic reconstruction using parallel beam is detailed in [62]. Here it 

will be given only a summary.

Tomography is performed in two major steps:

• data acquisition (recording of projections)

• image reconstruction from projections

A three-dimensional map of the attenuation coefficients of the sample can be reconstructed 

using a computed tomography method presented in [62] from a set of transmission images 

of the sample rotated by different angles (Figure 2.3.3).

The volume coordinate system is (x, y, z) defined by the neutron beam in y- 

direction. The coordinate system (t , s, z ) is attached to the sample after its rotation around 

the z- axis by the angle 6. The object may be considered as divided into thin slices parallel 

to the (x, y) plane. Each slice is a two-dimensional function f ( x ,  y) which describes the 

position-dependent attenuation coefficient ju(x, y). The slices are scanned at the different 

angles (0) from 0° to 180°, with equal angle steps and their projections, P$(t), are 

measured. After a rotation, the equation of the ray line in the s direction is

x c o s0 + y s in 0  = r (2.3.5)

The transmitted intensity of the rays follows the Lambert-Beers attenuation law

31



J  / i(x,y)ds
I0 (t) = Io(t)e (2.3.6)

as generalisation of equation (2.3.1).

The projection P0(t) is defined as

P0 (t) = In = f ju(x,y)ds
pith

(2.3.7)

Depending on the new reference system, the relation (2.3.7) can be reformulated such that:

replace from this point forward the function ju(x, y ) with the general function f ( x ,  y).

The collection of all projections P0 (t) of f ( x , y )  is called the Radon 

transformation of f ( x ,  y). The acquisition of data from medical imaging involves a similar 

process of projecting the beam through a sample and the data is described in a similar way 

to equation (2.3.7) of Radon transformation [66]. The plots of Radon transformations as a 

function of angles is known as sinogram due to its characteristic sinusoid shape (in 

practice, sinogram is usually a 2D data obtained after stacking together all projections 

taken for different angles).

oo oo

(2.3.8)
—oo —oo

where S(x) is the Dirac delta function (it selects the path of the line integral) [62]. We
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projection Pg(t)

xcos# + ysm O  = t

Figure 2.3.3: The sample f ( x ,  y) is rotated and a slice is scanned in the plane (x, y); the 
line integral is measured as its projection Pp(t).

A two-dimensional image is reconstructed from the projections Pp(t) using the Fourier 

Slice Theorem:

ID  Fourier transform o f a projection taken at angle 0 equals the central radial 

slice at angle 6 o f the 2D Fourier transform o f the original object.

Schematically, this can be rewritten as:
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> Pe(t)
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Figure 2.3.4: The Fourier Slice theorem representation. F(u,v) is the 2D Fourier

Giving the projection data F(u,v) and applying the 2D inverse Fourier transform we can 

estimate the object, i.e. f ( x ,  y ) (Figure 2.3.4).

From a mathematical point of view we can summarize the Fourier Slice Theorem as 

follows:

• We will define first the 2D Fourier transform of the function f ( x ,  y) as:

For a particular situation 6 — 0 (i.e. v = 0) when the coordinate system (x, y) coincides 

with (w,v), equation (2.3.9) is reformulated such as:

transform o f the function f ( x ,  y) where u = wcos 6 and v = wsin 6.

OO o o

F ( « . V ) =  J  J  f i x ^ e - W ^ d x d y (2.3.9)
—oo —oo

where u = wcos 0  and v = wsin 6.

• For a specific angle 0  the ID Fourier transform of the projection Pg(t) is

oo

S*(w)= J  Pg{t)e-2* iw‘dt (2.3.10)
—OO

oo oo

F(u,0) = J  J  f ( x , y ) e  2muxdxdy (2.3.11)

The integral from relation (2.3.11) can be split into two parts:

-2 7U iux (2.3.12)
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where the term in the square bracket represents the equation of a projection along a line, 

P0 = q ( x ) .  In that case, equation (2.3.12) becomes:

oo
F(u,0 )=  J  Pg=0(x)e~2ttiuxdx (2.3.13)

—OO

From (2.3.10) and (2.3.13) we get the relationship between the ID Fourier transformation 

of the projection Pq=q(x) and the 2D Fourier transform of the object:

F(u,0) = Se=0(u) (2.3.14)

Relation (2.3.14) is the simplest form of the Fourier Slice Theorem where the result does

not dependent on the orientation between the sample and the coordinate system. For

rotation of the coordinate system by an angle 6, Figure 2.3.5 illustrates the link between 

the Fourier transform of a projection and the Fourier transform of the sample.

ID Fourier Transform

r -

Frequency
domain

Space
domain

2D Fourier Transform

Figure 2.3.5: The link between the Fourier transform o f a projection and Fourier 
transform o f the object [62].
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The ID Fourier transformation of each P q { x )  gives a slice of the 2D Fourier 

transformation F{u,v) which can be estimated completely if there are sufficient 

projections obtained for different 6  angles. The function f ( x , y )  is calculated by 

inversing the 2D Fourier transformation of F(u,v) as follows:

The function f ( x ,  y) is written using the inverse Fourier transformation of F(u,v) 

in rectangular coordinate as:

Due to the numerical reasons, the previous algorithm is implemented by the filtered back- 

projection [62] which is the one employed in this thesis. This is derived from the Fourier 

Slice Theorem as follows:

Using polar coordinates the relation (2.3.15) is written as:

oo oo

f ( x , y ) =  j  j  F ( u , v ) ^ m+^ d u d v (2.3.15)
—OO —oo

f ( x , y )  = j  J  F(w, 0)e iT U iw t w\dwd6 (2.3.16)
0 —1oo

or,

’27riwt\w\dw d6 (2.3.17)
0  1_— OO

according to the relation (2.3.14).

Notating the bracket term with

oo

Qe {t)= J  S0 {w) e27riwt\w\dw (2.3.18)

(called also “filtered projection”) we have:

(2.3.19)
0
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The relation (2.3.19) represents a filtering operation where the filtering function or ramp 

filter  (or, response function in Fourier space) in the frequency space (u,v) is |w|. The

reconstruction of the f ( x , y ) is obtained by summing Qg(t) over all angles 0. The main

role of the filter is to suppress or amplify specific frequencies. It was demonstrated [67] 

that the image obtained using a filter function has a better resolution, a homogeneity 

density and reproduces a uniform and correct dimension of the sample measured. One of 

the preferred filters when the image contains a lot of noise is the Shepp-Logan filter to 

attenuate the high frequency image information.

Another important aspect is described by the number of projections required. If this 

is too small then we have insufficient data to reconstruct the sample. For determining the 

number of projections required we know from the Fourier Slice Theorem that the Fourier 

transform of each projection is a slice of 2D Fourier transform of the object. The sampling 

points in the frequency domain are equally distanced on radial lines (which represents the

projections) with a sampling interval Acor where N  is the number of sampling

points in the projection (i.e. the number of pixels across the width of the image) and T  is 

the projection sampling interval (i.e. the pixel width).
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F(u,v)

Figure 2.3.6: The frequency domain with the sampling points equally spaced on radial 
lines.

The highest frequency is given through the Nyquist Theorem [62], by the relation 

£0max where 0)max is the radius of the disk (see Figure 2.3.6). The largest interval

between two consecutive sampling points will be Acoa = O)maxA 0  where A0  is the

angular spacing between projections. For ensuring sufficient sampling, the angular and 

radial intervals at all points in the frequency space must be of the same order 

(Ao)a -  Acor). From this equality results the relation between the angular spacing between

projections and number of sampling points, A* = 1 .  Finally, we can conclude that for a

high quality image the number of projections required over 180° rotation is

Jt 7rN
n p ^ = T o = ~  ( 2 3 ' 2 0 )
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2.3.3.2 Dedicated software for tomographic reconstruction

The reconstruction of the sample projections into a 2D slices of the object can be done 

using a number of commercial or freeware codes including Octopus software [68], which 

implements the filtered backprojection algorithm, and is written on the LabView platform 

[69]. When the reconstruction is finished and slices have been obtained, the volume data 

can be imported into a 3D volume rendering software such as VgStudio Max 2.1 [70] 

where the volumetric object is generated by the stack of image slices. VgStudio uses three 

dimensional arrays of “volumetric pixels”, named voxels (a volume element representing a 

value on a regular grid in a three dimensional space). By assigning to each voxel a colour 

(depending on its grey value) the three-dimensional object is rendered (made visible).

2.3.4 Other neutron imaging techniques

During recent years new techniques have been conceived by taking into account the fact 

that attenuation coefficients depend on the neutron energy (wavelength), neutron spin and 

magnetic moment. The following paragraphs will report the essential aspects of these 

methods.

2.3.4.1 Energy selective neutron imaging

Most neutron imaging facilities still use “white beams” of thermal or cold neutrons with 

energies extending down to few meV [71]. In the classical neutron transmission technique 

the attenuation coefficients are integrated over all energies in the neutron spectrum [72]. 

For this reason, the energy dependent features are mostly lost in the averaged data.
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Bragg edges

Neutrons with wavelengths larger than the Bragg cut-off of the polycrystalline material 

analysed cannot interfere coherently causing the attenuation coefficient to drop 

significantly since the Bragg equation for a certain set of atomic planes is no longer 

fulfilled. In a plot of transmitted intensity against wavelength, this behaviour produces a 

discontinuity known as a Bragg edge as shown in Figure 2.3.7.

P ^ Y
(111)£  0.4

(311) (220)

(200)£  0.2

3 4 51 2
Neutron wavelength (A)

Figure 2.3.7: The transmission intensity spectrum o f an (fee) iron sample shows Bragg 
edges at certain neutron wavelengths [11].

The position of /I = 2dmax corresponding to the lattice planes with the largest 

spacing dmax is called the Bragg cut-off. For many materials the Bragg cut-off 

corresponds to thermal or cold neutron wavelengths of about 4 A (Table 2.3.1).

Table 2.3.1: The Bragg cut-offs o f several engineering materials [73].
Metal Al

(fee)

Be

(hep)

Mg

(hep)

Fe

(fee)

Fe

(bcc)

Ni

(fee)

Pb

(fee)

Cu

(fee)

Mo

(bcc)

A(A) 4.67 3.957 5.62 4.169 4.053 4.066 5.72 4.174 4.44

Different crystalline materials show Bragg-edges (characterized by their position, height 

and slope) in their neutron cross sections. For that reason, Bragg edges will be used to 

show and point out the spatial variation of the attenuation in a material. This can be done 

by selecting narrow bands of the neutron energy (one below and one above a Bragg edge).
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For each selected energy band a radiography of the sample is taken. Each image is 

normalized (in same manner as in the white-beam radiography) to remove variations 

caused by the beam inhomogeneity, revealing the varying contrast between different areas 

on the sample (Figure 2.3.8).

(a) (b) (c) (d)

Figure 2.3.8: Radiographies taken o f a piece o f stainless steel weld at three different 
wavelengths (a) 3.4 A, (b) 3.6 A and (c) 4 A. (d) Represents a white beam 
image o f the sample [74].

The energy selective radiography technique can be extended to tomography when 

the reconstructed (horizontal) slices for tomography experiments are performed for a given 

wavelength or a set of wavelengths. The advantage of the energy-selective tomography is 

that it gives information about the crystallographic structures and compositions [75]. It 

should be noted however that energy-selective tomographies require a very high flux to 

have a sufficient number of neutrons in the wavelength bins.

Three main options for the practical energy selection of neutrons could be 

considered:

1. At continuous neutron sources (e.g. SINQ facility, PSI) it is realised using a rotating 

turbine device (i.e., neutron velocity selector) acquiring images at different rotation speeds 

for obtaining contrast variation [76];

2. At other continuous sources energy selection may be achieved using monochromator 

crystals [77];

3. At pulsed facilities, the energies are selected via time-of-flight measurements [12].
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Whilst the first two methods give a limited energy resolution (from 5% to 15% in 

AX / X) [74] and whilst only one wavelength band can be used at a time, the third 

possibility from pulsed sources allows the full spectrum to be used in principle, if a 

suitable detector with a multiple wavelength band selection is available. In this case TOF 

has the advantage that each pulse contains the full thermalized neutron spectrum, and so a 

large number of Bragg edges can be observed in a single measurement. The energy 

resolution for TOF measurements is usually better than 1%.

In addition other phenomenon related to crystallographic structure such as strain 

and texture can be investigated using Bragg edge features [11].

2.3.4.2 Phase contrast imaging

Whilst the standard neutron imaging techniques are based on the attenuation of the neutron 

beam, by absorption and scattering, the technique of phase contrast imaging, introduced in 

1980 by Baruchel et al. [78], is based on the fact that not only the transmitted beam 

contributes to the image, but also the refracted beam. Consequently, the sample interferes 

with the phase of the wave field and induces a phase shift.

When the attenuation is very small, detection of the phase shift can provide a good 

image contrast. To get the phase contrast using neutrons it is necessary to use a good 

collimation (with a pinhole with a very small diameter and a large distance between 

pinhole and object, i.e. high L/D) and increase the distance between the sample and 

detector as required. If the distance is too short then we will only have absorption contrast. 

On the other hand the distance should not be too long either, in order to detect the intensity 

variations along the edges and interfaces of the sample (Figure 2.3.9).
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Figure 2.3.9: Set-up o f phase contrast imaging experiment on NEUTRA (PSI) [79]. Due to

The comparison of images obtained with a monochromatic beam [80], one using standard 

neutron radiography and another using the phase contrast imaging method, illustrates the 

edge-enhancement effect in phase contrast imaging (Figure 2.3.10). The edge-enhancement 

reveals in detail the sample contours. The phase contrast imaging can be applied in weakly 

absorbing objects where transmission does not provide sufficient contrast.

Figure 2.3.10: Comparison between standard neutron radiography and phase contrast 
radiography [80] o f a yellow jacket wasp. A higher clarity fo r  finest 
features (e.g. antenna, legs) is revealed through phase contrast imaging.

the different refractive index in the sample and the surrounding medium 
there is a phase shift between the waves transmitted through the object and 
surrounding. Phase interference effects at edges o f  the phase object enhance 
absorption contrast.
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Discussions on the optical magnification determined by the pinhole size, the distance 

between pinhole-sample and sample-detector which improves the spatial resolution in the 

phase-contrast imaging experiments are well developed in [81].

Phase contrast radiography was initiated in the year 2000 at the National Institute 

for Standards and Technology (USA) using a pinhole [80, 82], and based on this phase 

contrast tomography was developed [83], where a series of projection images produced for 

different phase contrasts are recorded and integrated in the reconstruction computer 

tomography algorithms. This technique was successfully applied on the NEUTRA 

instrument at SINQ (PSI) which uses thermal neutrons [84].

2.3.4.3 Real time radiography

Another non-destructive imaging technique is real time radiography (RTR) or time- 

resolved radiography, based on producing an image electronically and having very short 

exposure times. The process [85, 86] can be visualized by registering as many images at a 

sufficiently high frame rate for the sample with 1:1 time scale observation. With the help 

of positioning equipment, the object can be rotated or tilted so the inspected area can be 

analysed in a few seconds. This method is viable if we have a good neutron flux and a high 

contrast medium for the sample. It can be applied to dynamic events or static objects for a 

rapid examination [4]. Dynamic imaging of a repetitive process (such as in the automotive 

engineering sector for seeing how the oil flows in the machine) uses a synchronization 

between the process and detector known as stroboscopic imaging.
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2.3.4.4 Neutron resonance transmission imaging

The neutron resonance transmission imaging (NRTI) [87] is a fast, non-destructive 

technique offering element-sensitive imaging possibility with the help of epithermal 

neutrons. The bulk technique NRTI was initiated at the neutron time-of-flight facility 

GELINA (IRMM) [88] and set up on the beamline INES (ISIS, UK) as an imaging 

technique as a part of the ANCIENT CHARM project [89]. The main component of the 

set-up is the 2D-neutron position sensitive transmission detector used to obtain a 

transmission spectrum by a measurement of the flight time of epithermal neutrons passing 

through a sample. NRTI is based on the fact that in the epithermal and fast energy range 

the neutron cross sections exhibit sharp dips, so-called resonances, which occur at neutron 

energies specific to each nuclide. The positions and intensities of the selected neutron 

resonances in the transmission TOF spectra are used to construct images of different 

elements. One main advantage of this method is the high penetration of the neutrons in the 

bulk of the sample allowing study of the homogeneity of the object and also identifying 

elements and their location in the sample.

2.3.4.5 Polarized neutron imaging

The polarized neutron imaging technique is mentioned here for completeness and because 

it is conceivable that this technique may be applied on IMAT in the future. Polarized 

neutron imaging [90] is used to explore the macroscopic magnetic phenomena inside solid 

materials and is, for example, applied at the cold neutron radiography instrument, 

CONRAD [91] at the Hahn-Meitner Institute, Berlin.

It is known that the neutron has a magnetic moment which is antiparallel to the 

internal angular momentum of the neutron described by the spin S with the quantum
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number s = 1/2 . Due to their spin neutrons are very sensitive to the magnetic fields. 

Hence, if neutrons are first polarized, after interaction with the magnetic field inside and 

around a sample the final spin orientation can be analysed with respect to the initial state.

Combining radiography and tomography techniques with magnetic neutron 

properties has applications in the field of condensed matter, bulk magnetism or electrical 

current distribution in conductors [92-94] and also in quantification of the trapped 

magnetic flux in a bulk superconductor [90].

2.3.5 Types of neutron imaging detectors

As neutrons are neutral non-ionizing particles, they cannot be detected, as X-rays are for 

example, through a direct detection process. They need an indirect detection process which 

can be capture, fission or collision. Initially, neutron radiography used films for recording 

images (as in X-rays radiography), but coupled to a highly absorbing conversion material 

(e.g. Gadolinium, Li-6 etc) because neutrons do not excite directly due to their neutral 

charge. Even if with this technique a good spatial resolution was obtained, a new detection 

system was required for improvement other performances such as the time resolution, 

dynamic range and quantitative information from the images [95]. In the early 90’s, the 

film techniques were replaced by digital detectors (based on a pixel matrix) which are 

more sensitive enabling short exposure times (order of seconds) and are also more flexible 

for use in experiments than films.

Main aspects considered the developing specific types of detector are: high spatial 

and temporal resolution, the energy dependent absorption rate, the image quality (high 

signal-to-noise ratio) of neutron radiographies, large detector area and high detector 

efficiency. Other performance parameters are: fast read-out of data, high linearity and wide 

dynamic range. For a higher spatial resolution it is preferred that the detector should have a
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small pixel size and moreover, the neutron image obtained should have many pixels in 

both directions (horizontal and vertical). The spatial resolution is determined by the 

detector and is influenced, also by the beam properties (e.g. the L/D ratio). For exploiting a 

higher temporal resolution and for improvement in the image quality a large number of 

neutrons is required. Unfortunately, the neutron beam intensity is often the limiting factor 

to fully exploit small spatial and temporal pixel sizes. The temporal resolution is the 

exposure time (how fast an image can be produced in the sensitive area after applying 

neutrons for measurement and converted into the detectable signal) defined by the detector 

efficiency. Different detection systems are in use at existing neutron imaging beamlines or 

are under development. There is a particular request for time resolving systems to develop 

energy selective measurements at higher performance at the pulsed spallation sources. The 

most important types of neutron detectors [74, 96] used are:

• Photographic film detectors -  X-ray film combined with neutron converter foils. The 

converter, made for example of Gd, converts neutrons to gamma radiation which blackens 

the film pixel. The detector has the advantage of being a compact detector assembly. 

Because this system requires a mechanism to open and close the incident beam to define 

the exposure time, and required replacement of the film and the converter, it is hardly used 

for radiography experiments nowadays. The detector is not suitable for tomography, and 

not suitable for TOF measurements.

• Imaging plates -  contain gadolinium as neutron absorber to convert neutron to 

gamma radiation which excites the so-called “storage phosphor” atoms (e.g. Eu doped 

BaFBr). The neutron exposure can produce a latent image on the image plate which then 

can be read out by a laser. Image plates are very useful for high resolution neutron 

radiography (a resolution better than 0.1 mm) and a high dynamic range. Because they 

need to be manually inserted into a reader or eraser system, tomography measurements 

cannot be done. Energy selection via the TOF method is not possible.
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• Flat panel detectors -  indirect conversion detector such as amorphous silicon in 

which arrays of photodiodes are integrated and coated with a neutron scintillator. The 

photodiode array converts the light photons into electric charge. This type of detector [97] 

is suited for neutron imaging of dynamic processes and acquiring neutron tomography 

images in a very short time. Another indirect detector is the CMOS flat panel made from a 

crystalline substrate and where each pixel can be addresses individually because each pixel 

has its own electronic amplifier and digitizer. In principle these detectors are suitable for 

TOF measurements.

• Track-etch foils -  a plastic foil coated with Li-borate that uses charged particle 

products of neutron capture to record tracks in the plastic foil. It is advantageous to high- 

resolution radiography, but unsuited for neutron tomography due to the long exposure, 

development and scanning time. The detector is unsuited for TOF measurements.

• Gas electron multiplication (GEM) [98] are micro-patterned gas detectors, consisting 

of a thin composite sheet (an insulating polymer foil) coated with metal layers on both 

sides and etched with a high-density regular matrix of open channels (i.e., holes with 

micrometers diameters). The gas in the detector may contain a mixture of He/CF4 where 

the helium-3 is used to capture neutrons and convert them into 3H and proton particles 

which ionise gas atoms. A voltage is applied between the two conducting sides, leading to 

a high dipole field created in the channels. Each channel acts as an individual counter. By 

the ionization process, the electrons released on one side of the foil are drifted into the 

channels and multiplied in an avalanche before emerging on the other side of the foil. The 

amplified charge could be let drift in the second GEM foil for a further amplification or 

can be detected on a patterned electrode [99]. The advantage of this detector is the 

potential large viewable area (almost of 50x50 cm2) and a high counting rate capability (up 

to 108 n/cm2/s). It has a moderate spatial resolution of 0.5-1 mm. Based on the previous 

principle there was developed recently, other neutron imaging detectors such as THGEM
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[100] for fan-beam transmission tomography applications. GEM detectors are suited for 

tomography and TOF measurements.

• Electronic camera (CCD-charged coupled device) -  is the most common type of 

imaging system with applicability in white-beam radiography, neutron tomography and 

energy-selective imaging [95]. Because the neutrons are not directly detected (as light in 

the standard camera) it needs to use nuclear reactions for converting the neutrons into 

charged particles and therefore to produce a measurable quantitative (countable) electrical 

signal. The most common approach in digital neutron imaging is the conversion of the 

neutrons into visible light by a converter (for example ZnS/LiF or gadolinium oxide 

scintillators). This light is then recorded with a CCD camera via a light-optical system 

consisting of a 45-degree mirror and a lens system. A detailed description of this type of 

camera will be presented in Section 3.7.1.

• With a MCP (microchannel plate) pixel detector developed by Space Science 

Department, Berkeley, USA [101] the conversion of neutrons into secondary particles is 

achieved by doping the first MCP with boron or gadolinium. The secondary particles 

generate electrons in the walls of the micro-channels. The neutrons are converted into 

electrons without light generation and subsequently the electrons are multiplied and 

registered for each individual pixel. The pixel camera it is fully TOF capable and hence 

can provide full TOF spectra for every pixel. The combination of both spatial and time 

information obtained from TOF measurements enables energy selective imaging 

applications. We will reiterate a description of the pixel detector and its applications as 

related to this thesis in section 3.7.2.
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2.3.6 Applications of neutron imaging

Neutron imaging techniques have a wide range of applications covering biology, 

palaeontology, archaeology, cultural heritage, material science, medicine, engineering 

(including non-destructive testing of industrial components) and physics. A detailed review 

of applications of neutron imaging can be found in [4, 102, 103]. For example, the high 

sensitivity of neutrons to hydrogen and their high penetration into bulk materials allows 

neutron imaging to measure humidity transport in soil or water transport in plants [104]; or 

to monitor the water distribution within a working fuel cell non-invasively penetrating the 

exterior holding plates easily [105, 106]; or to investigate fuel and oil sediments in engine 

components [107, 108]. Neutron imaging techniques are widely used in cultural heritage 

science [109-111], an area of application that this thesis will return to.

2.4 Neutron diffraction

Neutron diffraction is an elastic scattering technique providing information about the 

structural properties of matter on the atomic or lattice level. This approach can be applied 

to study gases, liquids, solids (crystals) or amorphous materials.

2.4.1 Theory

The Bragg team (father and son) was awarded the Nobel Prize in physics in 1915 for their 

work in determining crystal structures (starting with NaCl, ZnS and diamond). Although 

Bragg's law [112] (see equation 2.4.1) was used to explain the interference pattern of X- 

rays scattered by crystals, diffraction has been further developed to study the structure of
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various states of matter with many different beams, including ions, electrons, neutrons, and 

protons. The requirement for diffraction with these types of radiation is that the wavelength 

is of the same order of magnitude as the atomic or molecular distances. Bragg’s equation 

states that constructive interference occurs when the path length difference associated with 

reflections from adjacent crystal planes (Figure 2.4.1) is equal to the wavelength:

A = 2d sin 0 (2.4.1)

Knowing the wavelength A, the angle between the incident and diffracted beam 

directions 2 0 , we can calculate the distances between the planes, d, and determine the 

dimensions and symmetry of the unit cell. The d-spacing and angles are functions of the 

lattice plane indices K = Qikl) (see Figure 2.4.1).

Scattering vector
diffracted beam

incident beam

dhkl

diffracting planes

Figure 2.4.1: Illustration o f Bragg diffraction from a set o f lattice planes (hkl).

Neutron diffraction is an elastic scattering method where the scattered neutrons have more 

or less same energies (or wavelengths) as the incident neutrons. If ki and k /  are the initial

and final wave vectors (in elastic scattering, k i = k f ) the scattering vector Q (

.  , , sxn ^
Q = k f  - k i )  could be written in scalar mode as Q = sin0 = ----------- , where A is the

A
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wavelength. This relation (equivalent to the Bragg equation 2.4.1, with Q = — ) suggests
d

that there are two different ways to conduct an experiment in the Bragg scattering mode. 

One mode is known as angle-dispersive, when neutrons of a single, narrow wavelength 

band (monochromatic) are incident upon the sample and the scattered intensity is measured 

as function of 6. In the second mode (energy-dispersive) the scattered intensity is 

measured as a function of wavelength at a fixed 6  angle. Both ways will be summarized 

below.

Neutron diffraction can be applied to study different structural aspects such as: 

phase and structure [35], texture [113], microstructure and residual stress [114].

For a neutron diffraction measurement one needs a neutron source, a 

monochromator for wavelength selection, a sample and a detector or a multidetector 

system (for increasing the rate of collecting data as in modem instmments, e.g. D20 at ILL 

[115]).

Angle-dispersive diffraction at research reactors

To define the necessary neutron wavelength for diffraction experiments conducted at 

research reactors, the white neutron beam is monochromated to a chosen wavelength X by 

Bragg reflection from a monochromator crystal. After that, the neutrons selected irradiate 

the sample and they are Bragg scattered in the direction of 26 angle to the incoming ray 

(Figure 2.4.2). The diffraction pattern is measured by changing the scattering angle of the 

detector (20).
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Figure 2.4.2: Schematic representation o f diffraction in angle dispersive mode at the 
reactor sources [116].

The intensity of the diffracted beam is plotted (Figure 2.4.3) as a function of the scattering 

angle and the result shows a series of diffraction peaks whose positions along the 6  axis 

are determined by the Bragg equation (2.4.1). Each Bragg peak represents neutrons that 

have been scattered from a particular set of planes in the crystalline lattice.
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Figure 2.4.3: A powder diffraction pattern recorded in angle-dispersive mode fo r  
X = 2 3 1 A  at Chalk River Laboratories, Canada fo r  Pr2Ta20?Cl2 sample 
The plot shows a series o f diffraction peaks whose positions along the 6 axis 
are determined by the Bragg equation (2.4.1).
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Diffraction at pulsed sources
In the case of pulsed sources, the neutron beam is polychromatic and the time-of-flight 

method is applied to select the energies of the incident neutron beam, facilitating the 

measurement of different d-spacings at a fixed scattering angle 26  (Figure 2.4.4).

Moderator
Detector

Sample

Figure 2.4.4: Schematic representation o f diffraction in energy-dispersive mode at a 
pulsed source [116].

As discussed in paragraph 2.2.3, the TOF method is based on the De Broglie

relationship which states that the neutron wavelength is inversely proportional to its

velocity. So long-wavelength neutrons are slower to arrive at the sample and in 

consequence at the detector than the faster short-wavelength neutrons. Measuring the time 

of arrival of a neutron at the detector and knowing its flight path we can calculate its 

velocity and therefore its wavelength (energy) using the formula:

A = — , (2.4.2)
m L

where L  is the total neutron’s flight path (source-sample distance + sample-detector 

distance) measured in metres and T  is the time-of-flight measured in ps.

Combining the formula (2.4.2) with Bragg’s equation we obtain a relationship 

between T and d-spacing:

T = 2daLsin6, (2.4.3)

where the constant a is equal to 252.78.
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From equation (2.4.3) we can calculate the d-spacing:

T
d =

2aLsin0
(2.4.4)

£O
a

0 ,6 0,8

d- spacing (A)

Figure 2.4.5: A powder diffraction pattern recorded at a spallation source [117] (fat 
garnet measured at the Neutron Powder Diffractometer at LANSCE). The 
intensity is plotted as a function o f d-spacing between atomic planes. Also, 
the intensity could be plotted as function o f neutron time o f flight or the 
neutron wavelength (c f equation 2.4.4).

In TOF experiments, when the neutron beam irradiates a crystalline solid, the detectors are 

positioned after scattering at a fixed angle 26  and a diffraction pattern is recorded. The 

time-of-flight of the neutrons, T , issuing from a single pulse is directly proportional to 

their wavelength and the diffraction pattern is a plot of the neutron intensity as a function 

of t or neutron wavelength X or d-spacing (Figure 2.4.5).
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The resolution of a time-of-flight diffractometer

The instrumental resolution of a diffractometer, is a measure of the spread in the
d

Bragg reflection for a given d-spacing. It is knowledge is very important for establishing 

the diffractometer quality and for carrying out high-resolution applications such as strain 

scanning. The sources of this uncertainty include:

• the time flight path uncertainty A T ;

• the angular uncertainty (of the scattering angle) (A (9), a consequence of the neutron 

beam divergence at the detector as the neutrons pass from moderator to the sample and 

from sample to the detector;

• the flight path uncertainty AL (the error in the neutrons flight path) generated by the 

finite sample size or detector size and the moderator thickness.

Differentiating the relation (2.4.4) ([118]) with respect to each variable L, T  and 

6  we obtain a link between the resolution of a TOF diffractometer and the time uncertainty 

(AT),  flight path uncertainty (AL) and angular uncertainty (Ad):

A  highest d-spacing resolution can be achieved minimising the term —  (using a long
L

flight path L) and (maximising time-of-flight values) and by positioning the detector

at a high scattering angle (for example, the backscattering case when 26 = 180°) for which 

cot(0 ) is zero.

+ (cot#A 0) (2.4.5)

AL

Rietveld refinement

After the diffraction pattern is generated refinement programs are used to fit the neutron 

data. The Rietveld refinement, a powder diffraction fitting method, was initially invented



for use with constant wavelength neutron beams by Hugo Rietveld [119] and later it was 

extended to X-ray diffraction and time-of-flight neutron diffraction. The variation of count 

rates with time-of-flight (or angle) is dependent on a numbers of parameters such as: 

multiplicity and structure factor, peak shape parameters and lattice parameters. Using these 

parameters as fitting parameters, the theoretical profile is fitted by least squares 

minimisation to the entire experimental profile considering all diffraction peaks. Lattice 

parameters, atom positions and weight fractions can be determined in this way. Another 

choice of fitting is the Pawley analysis [120] where the calculated intensities of the peaks 

are not constrained by the theoretical model, but intensities are permitted to be fitted 

independently with only the peak positions constrained to give the unit cell parameters 

required for strain measurements.

The steps for calculated diffraction pattern from the Rietveld refinement are:

1. To calculate the intensity at each point in the diffraction pattern based on the formula

where Yic is the total count rate at point i in the diffraction pattern, Yib is the background 

count rate at point i, is the value of normalised peak profile function at point i for 

reflection k, Ik is the Bragg intensity of reflection k  and k = /q to &2 are the reflections 

contributing intensity to point i\

2. The Bragg intensity of the reflection K, I K , is proportional to the square of the structure 

factor of that reflection [121]:

j

where Wj is the Debye-Waller factor, Nj site occupancy and bj the scattering length. 

The Debye-Waller factor, known also as temperature factor, represents the attenuation of

[121]:

K
(2.4.6)

■Wj 2m{hxj +kyj +lZj) (2.4.7)
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coherent neutron scattering caused by thermal motion of atoms. The site occupancy is a 

number of atom type j  per unit cell. The summation j  is over all atoms in the unit cell 

which are at positions x, y, z.

3. The Rietveld algorithm minimizes the residual function by a least squares algorithm:

Y , wi\Yio ~ Yic f  (2.4.8)
i

where wj is the weight assigned to the profile observation at point i and Yio is the 

observed count rate at the point i.

4. The scale factor S is included to scale the calculated pattern to the observed pattern.

2.4.2 Neutron strain scanning measurements

One important application of the neutron diffraction method, which is particularly relevant 

to this thesis, is the measurement of the stress in the engineering components.

Neutron diffraction has been already used to address highly complex engineering 

issues. One relevant application is the non-destructive measurement technique of neutron 

strain scanning (NSS). Strain measurements were initiated and developed at the Harwell 

Laboratory, UK in the early 1980s [122] and then at the ILL (France). This method arose 

from the desire to investigate the residual stresses [123, 124] inside poly crystalline 

engineering samples. Residual stresses are generated by the misfits (thermal or elastic) 

between different regions within the sample caused, for example, by welding, turning, 

grinding or heat treatment operations [125].

The principle of NSS relies on the Bragg equation (2.4.1) that establishes the 

relationship between the interplanar lattice spacing d  in the sampled region. This region 

nominated as the “gauge volume” is determined by the intersection of the incident and 

diffracted beams, and its size is defined by optical devices (slits and collimators) (Figure
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2.4.6). To be sure that the both orthogonal Q-vectors and strain components are measured

the detectors are placed at 20 = 90°. In this case the gauge volume is approximately 

rectangular. When the slits have same size for height and width, the gauge volume is 

approximately cuboidal. Because the gauge volume is fixed in space, the strain variation 

across the sample can be investigated using a translation or rotation table on which the 

specimen is mounted.

Incident beam

Beam defining 
V slits

Radial collimator

'  \  Sampli
Sample \ .  /
table N /

Detector 
Bank 2 Detector

Bankl;e volume

Figure 2.4.6: Schematics o f data collection on the ENGIN-X TOF diffraction instrument
[114].

The strain is calculated from the lattice parameter measured in the direction of the 

scattering vector perpendicular to the diffracted planes within the gauge volume (Figure

2 7t
2.4.6) with the magnitude of the wavevector specified by k = — . For a fixed scattering

2

angle 0  the strain is defined as:

_  dhkl ~ d0,hkl _  Adhkl _ hkl _  Athkl n  a 0\£hkl ~ --------------------------------------------  (2.4.9)
“ 0 ,hkl d0 ,hkl *0,hkl *0 M l
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where d^Ml  ^ e  stress-free lattice spacing for peak hkl, ?o,MZ ^ e  stress-free time-of- 

flight and Aq m i the stress free wavelength.

In its complete notation the strain £*/.- can be written as £^ =
r £ n  £ n  £13

e2\ £22 £23

k£31 e32 £33)

, where the

diagonal elements represent normal strains on planes normal to the direction of the chosen 

axes and the other elements are shear strains between the axes.

In general six measurements are required at each measurement point to fully 

determine the strain tensor in an isotropic material, however if the principal strain 

components are identified and measured, the strain tensor reduces to a diagonal matrix and 

is fully characterised by the three measured strains.

The stress tensor is related to the strain tensor through Hooke’s elasticity law:

a ij=-------[£ij+-——  (£\ i + £ 2 2  + £3 3 )] (2.4.10)
J 1+ v  1 — 2v

where E  is the elastic constant of the material and V the Poisson’s ratio.

The diffraction pattern contains only the neutrons which are scattered from within 

the gauge volume. The data extracted can be used for either a single peak fitting or full 

pattern analysis through the Rietveld method [119].

A dedicated instrument for strain scanning measurements in the engineering field is 

ENGIN-X at ISIS [6]. The high strain resolution (<50ps) and the sampling volumes (1- 

1000mm3) which may be measured make ENGIN-X one of the worlds leading strain 

scanning diffractometers. The ENGIN-X instrument will be used in the neutron diffraction 

experiments presented in Chapter 5.
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2.4.3 Phase and structure analysis

Among the practical applications of the TOF neutron diffraction method (when a full 

diffraction spectrum is obtained from a single measurement) we can highlight the 

determination of structural aspects of a material such as phase composition and 

crystallographic structure. A diffraction measurement provides data about phase and about 

the structure of this phase. A crystallographic phase is characterized by a crystal structure 

that is given by the crystal symmetry (space group), unit cell dimensions, and the atom 

positions in the unit cell. Information about the microstructures and material treatment can 

be deduced from the shape and intensities of diffraction peaks in the spectra. The phase 

analysis employs determination of the quantities of different phase components in a 

mixture of phases. A description of the quantitative phase analysis based on the Rietveld 

method is developed in [126]. Briefly we can say that the quantitative phase information is 

obtained assuming that the weight fraction Wp from the p  -  th phase in a mixture is given

by the normalized product of the Rietveld scale factor Sp with M p ,Vp and Z p :

S pZ pM  pVp
W „ = p p  p p , (2.4.11)

p  ̂SjZfMjVf
i

where M  is the mass of a formula unit, Z is the number of formula units per unit cell2, V

the unit cell volume and the summation represents the sum over all phases.
i

The phase analysis can be applied in geology for study of rock compositions or in 

cultural heritage science to determine the crystallographic parameters and phase content of 

a material. An accurate determination of phase compositions and crystal structures of 

materials requires diffractometers with a good resolution and good flux.

2 The unit cell is the smallest physical unit of a crystal’s structure and by repeating translations-symmetry 
operations the crystal is generated. The unit cell may contain several units of atoms. The number of formula 
units per unit cell is the integer number Z.
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2.4.4 Software used in neutron diffraction measurements

From TOF neutron diffraction experiments each detector records spectra covering a wide 

d-range spacing. The spectra intensities are dependent on the wavelength range, flight path, 

collimation geometry and d-spacings of the Bragg peaks. From each spectrum we can 

extract information about: lattice parameters (using peak positions); crystal structure; 

texture or phase composition (from peak intensities); microstructure (from peak shape); or 

internal stress from the deviations from the ideal (stress-free) peak positions. These 

calculations are based on a least squares approach, the Rietveld refinement method [119], 

to refine a theoretical line profile (calculated from a known or assumed crystal structure) 

until it matches the measured profile.

The General Structure Analysis System (GSAS) is one of the software packages 

used for diffraction pattern analysis, developed by Larson and Von Dreele [127] and 

written in Fortran. B.H. Toby [128] elaborated a graphical user interface EXPGUI for 

GSAS.

Other programs based on Rietveld analysis include Fullprof [16], used for magnetic 

scattering experiments, and MAUD [129] dedicated to texture analysis studies from 

diffraction data.

2.5 Instrument design methods

The design of neutron scattering instruments involves a long and expensive process. 

Various design tools were available first for modelling the performance of synchrotron 

beamlines and afterwards they were developed for neutron stations. During the last two 

decades these tools have evolved quickly allowing beamline designers to predict the 

performance of new beamline concepts.
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2.5.1 Monte Carlo method

To produce optimal neutron instrument configurations on the neutron sources simple 

analytical calculations there were used, initially. More complicated analytical calculations 

(e.g. acceptance diagrams [130]) and Monte-Carlo modelling were elaborated to maximize 

the data rate and to improve the data quality.

The Monte Carlo method (known as “random sampling” or “statistical simulation”) 

is a sampling technique employing random numbers and probability statistics and is used 

for solving complex problems that cannot be modelled by deterministic methods. Monte 

Carlo simulation packages are not used only for the evaluation of the instrument 

performance, but also for designing neutron experiments, experimental results analysis, 

estimation of complex effects like absorption, multiple scattering, geometry, resolution, for 

comparing virtual experiments with real ones and also for training new users of the neutron 

scattering instruments.

The Monte-Carlo approach was created by J. von Neumann, N. Metropolis and

S.Ulam [131] and it was named after the Monte Carlo Casino (allusion to Ulam’s “hobby” 

of gambling). The method was implemented for the first time in the Manhattan Project to 

estimate the neutron diffusion in fissionable materials by solving the equations which 

describe interactions between hundreds of atoms.

General principles

The Monte Carlo simulation method first defines a domain of possible inputs (e.g. an 

interval[a,b]), then randomly generates inputs (X i,X 2 ,...,X n) from the domain [a,b\

according to certain probability distributions. The method then uses the inputs to perform 

certain computational calculations before collecting the results of the individual 

computations into the final result.
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An example of the Monte Carlo simulation is the calculation of a definite integral (

b
|  f { x ) d x ) when this cannot be solved analytically. A numerical approach is to evaluate the 
a

function f ( x )  at a uniformly sampled interval a < x < b  with n values and summing all 

these values:

1 n 1  ̂
lim -  ]T /(* ;)  = ------- f f ( x ) dx  (2.5.1)

n - > o o «  b - a  J
l~L a

a<x:<b

An alternative to this method (with intervals) is the estimation of the function at random 

values and summing up all these values. In this case, the equation (2.5.1) will be the Monte 

Carlo approximation for the integral.

Monte Carlo simulations of neutron scattering instruments

In the context of instrument design, the purpose of the Monte Carlo simulation is to 

reproduce a realistic neutron scattering instrument by assembling different virtual 

components into a computer model of the instrument. Virtual neutrons are then generated 

and their interaction with the instrument recorded. The neutrons used in such simulations 

may have a state defined by (r ,v, s , t ,p)  where r is the position vector, v is the velocity 

vector, s the spin vector (considered in the polarization experiments), t is the travel time 

(important for time-of-flight experiments) and the neutron weight, p  (which is either 1, if 

the neutron is present after it interacts with each component from the virtual instrument or 

it has been absorbed or scattered, or 0  if the neutron is lost in his travelling process). 

Actually, the neutrons are simulated in rays by which we mean the neutron trajectory (i.e. 

position r as a function of time t) and p  has a typical initial value of thousands or 

millions neutrons per second when the ray is generated by the source. When the ray 

reaches the detector (on the final destination) p  may be only a fraction of a neutron per

64



second. Each random state of a neutron is generated according to a probability distribution 

defined by the type of neutron source. All neutron states are recorded by the detectors and 

analyzed as in a real experiment. For this reason, Monte Carlo simulation of a neutron 

scattering instrument can be considered as a virtual experiment.

2.5.2 Simulation packages: McStas, VITESS, IDEAS

In recent years the field of neutron ray-tracing simulations for scattering projects has 

developed significantly. The start was given by the neutron transport code MCNP [132] 

and for scattering purposes by the NISP package [133]. After 1990, new free Monte Carlo 

simulation packages including McStas (Monte Carlo Simulation of Triple-Axis 

Spectrometer) [134], VITESS (Virtual Instrumentation Tool for ESS) [135] or IDEAS 

(Instrument Design and Experiment Assessment Suite) [136] were elaborated to develop 

the virtual experiments [13] when the scientists were interested in building or upgrading an 

instrument. The answer to the question “What is a virtual experiment?” [13] can be 

summarized in the next steps:

• create a model for a complete instrument including details about the components;

• the description of the instrument should be as close as possible to the real instrument;

• the virtual instrument can be controlled like a real instrument.

While the VITESS package is specially designed for the simulation of future instruments at 

the European Spallation Source, McStas ([134], [137]) developed by Risp National 

Laboratory and The Institute Laue Langevin (ILL) is an alternative because it can be 

applied for all types of neutron scattering instruments and materials and has other features 

such as: a large component library, multiple output formats, user support and parallel 

computing. Also, it is freely available [138]. In [139] a comparative study is presented 

after using various simulation packages including McStas, VITESS and IDEAS on the 

same instrument (Triple-Axis Spectrometer from the beamline H8 of the High Flux Beam

65



Reactor at Brookhaven National Laboratory). The results obtained are in good overall 

agreement.

Throughout this thesis the McStas package was used for the IMAT instrument 

optimization. McStas is based on a Meta Language and is designed for modelling neutron 

scattering instruments such as diffractometers, spectrometers, reflectometers or small-angle 

scattering instruments. In McStas, all instruments or components are written by users and 

are automatically translated into practical simulation codes in ANSI-C [140]. A complete 

installation of McStas package requires: a C-compiler (e.g., Dev-CPP sub-package [141]), 

for graphic output and user interface Perl or Perl-Tk [142] or Matlab [143], Scilab [144], 

PgPlot [145]. All these can be installed from the source code following the usual 

procedures. The McStas software package also permits parallel computing, i.e. each 

simulation can be processed by a different number of CPUs for decreasing the simulation 

time. GridMP platform provided by ISIS, UK [146] was used frequently for Monte Carlo 

simulations along this research. The Grid works in two basic modes: parameter scan mode 

(when a bat file with many small runs is taken and each smaller run is executed on a 

distributed machine) and one large scan (when one large simulation, e.g. 1010 neutrons is 

broken into smaller chunks and these chunks are executed in parallel over many machines. 

After that, the results are then merged together and the result is same as in one large 

simulation, but in far less time).

The current McStas version 1.12c [138] can be run on different operating systems 

(Windows XP, Vista, Windows7, Linux or Mac OSX). It actually includes a library which 

contains around 110 components and 70 instruments and can be updated with new modules 

by the users.

What does an instrument look like in McStas?

An instrument in McStas (written as a text file) is described as a set of components with

physical (for example, in the case of the sample component, defining the d-spacing value)
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and geometrical properties (e.g. the distance from source to sample etc).

The virtual instrument consists of a source component which generates each 

neutron (randomly) after which the particle is propagated through the different instrument 

components (such as guide, pinholes or detectors). These components influence the 

neutron’s characteristics such as: position, velocity, direction, time and where relevant 

spin. When neutrons encounter an optical component, they may be transmitted, absorbed, 

scattered or reflected. To monitor and record several parameters of interest, like the 

wavelength, or the Cartesian components of the wave vector or the energy of the neutrons 

some virtual monitors and detectors may be placed along the path of neutrons. Beside that, 

the intensity of the neutron beam and the statistical errors associated with the events and 

the number of counts can be recorded by monitors, at different positions in the instrument 

(see Appendix 2). In the current version of McStas software applied during this research, 

the effect of the gravity was not taken into account by the components used in the 

modelled instrument; only in Section 3.4.3.5 a study of gravitational effect in the neutron 

guide is presented.

67



3 The IMAT instrument (imaging case)

This chapter reports investigations into IMAT components, relevant to its performance as 

an imaging instrument. Based on the McStas modelling approach different components 

such as neutron guide and pinhole were investigated. Moreover, effects of the beam on the 

neutron imaging detectors were evaluated. The results were combined with similar 

investigations into the diffraction case (performed elsewhere and not part of this thesis) 

leading to the design considerations for the combined imaging and diffraction instrument, 

IMAT.

3.1 The ISIS neutron facility

Entering its fourth decade of existence, ISIS, the pulsed spallation neutron and muon 

source at the Rutherford Appleton Laboratory in Oxfordshire, UK, has made significant 

contributions to the neutron scattering research in different fields including physics, 

chemistry, materials sciences, engineering, biology, archaeology and geology.

3.1.1 Overview of existing neutron imaging and diffraction facilities at 

the ISIS

ISIS is a pulsed neutron facility (see section 2.2.3) which comprises two target stations

(Figure 3.1.1): TS-1 operating since 1984 and presently with 24 neutron instruments and

TS-2 project built from 2003 with a capacity for 18 instruments, seven of them being

already fully operational since 2009. Each one of the instruments is optimised for different

types of measurements, providing diverse and complementary information. A suite of

diffraction instruments such as GEM, POLARIS, HRPD and ENGIN-X (on TS-1) and
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WISH (on TS-2) are designed to provide phase and structure analysis, texture analysis, 

microstructure analysis and residual stress analysis.
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Figure 3.1.1: The instrument layout o f the ISIS neutron spallation source [26].
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The particular project, ENGIN-X [6 ], which we refer to later in this thesis, is used 

for strain and stress analysis of engineering components and materials as well as, for 

example, archaeological objects and geological materials.

Instruments dedicated to imaging experiments are not currently available at ISIS 

(some pioneering Bragg edges measurements have been performed on ENGIN-X [11]). 

But a neutron imaging and diffraction instrument IMAT (the investigation of our research) 

will be built during a second phase of the TS-2 project at the ISIS facility.

3.1.2 The need for IMAT

The neutron imaging facilities have to serve numerous users worldwide whether they are 

under operation at research reactors or continuous spallation sources. Presently no neutron 

imaging instrument exists at a pulsed neutron source (which would enable them to take 

advantage of the timing structure), but few are in the design stage (e.g. IMAT at ISIS, UK 

[147], VENUS at the SNS, Oak Ridge, USA [9], and ERNIS at J-PARC, Japan [10]). 

IMAT will be a thermal and cold neutron facility, combining imaging and diffraction 

applications. It will be built on the ISIS second target station, a low-power pulsed 

spallation source of approximately 50 kW and operated at 10 Hz. The combination of 

imaging and diffraction techniques on one beamline will allow new types of experiments 

to be carried out, otherwise not possible with any other presently available single 

instruments (e.g. ENGIN-X at ISIS or NEUTRA at PSI). In addition to the standard 

neutron radiography and neutron tomography, IMAT will also allow for energy selective 

imaging applications, such as high-resolution Bragg-edge transmission imaging, taking 

advantage of the TOF method at a pulsed source. A novel neutron counting detector (with 

high-spatial and high-temporal resolution) based on microchannel plates (MCP) developed 

by Space Science Department, Berkeley, USA [148] is currently envisaged as IMAT 

Bragg edge imaging detector.
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The combination of both spatial and time information on IMAT enables texture 

mapping and strain analyses, as well as studies of phase compositions and phase 

transitions. IMAT will have sufficient orientation coverage for effective texture analysis 

and the simultaneous analysis (in a short data acquisition time) of internal stress and 

texture analysis will be a unique and key capability of this beamline. IMAT can be easily 

switched from imaging to diffraction mode, making it convenient to use the radiographies 

to guide diffraction measurements (see Chapter 5).

3.2 IMAT overview and the design process

IMAT will be placed on the Second Target Station (TS-2) situated on the west side (W5) 

of the low power target [60]. One of five proton pulses produced by the ISIS synchrotron is 

directed into the TS-2 along a new proton beamline. The target and moderators on TS-2 are 

designed and optimized to obtain long wavelength neutrons. Details about the IMAT 

moderator are offered in paragraph 3.3.

Initially there were two options for EM AT taken in consideration:

• Two separate beamlines, each one optimised for its particular purpose (imaging and 

diffraction);

• One beamline which will operates in interchangeable modes, either imaging or 

diffraction.

Technically, the first option is more convenient to be implemented and it allows 

optimisation of the two separate applications more easily. The second option of combining 

imaging and diffraction on one beamline is more challenging; it requires a neutron guide to 

be used for obtaining a good time resolution for diffraction and energy-selective imaging.

The use of a neutron guide is unusual for an imaging instrument, and thus neutron 

optics features need to be optimized, in order to maximize the neutron flux on the sample
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for imaging and diffraction experiments and to minimise geometrical artefacts in the “open 

beam” image at the sample position. From the initial performance requirements as given by 

the science case [147] it was obtained that the incident energy spectrum and timing 

resolution requirements for both modes are similar, which is an imperative condition for a 

combined instrument on the same moderator. Another important aspect favourable to the 

second beamline option is that IMAT can switch from imaging to diffraction (i.e. 

interchange from a large beam of 200x200 mm2 for imaging to a minimum beam of lx l  

mm2 for diffraction) by simply moving the aperture selector to an open position and 

adjusting the beam jaws to the desired gauge size) without removing the sample. This 

allows a complete investigation of the sample by 2D or 3D imaging followed by a detailed 

diffraction map analysis of the interested regions guided by the tomography data.

These advantages led to the decision of constructing the IMAT instrument on a 

single beamline with imaging and diffraction combined.

3.2.1 The design parameters

While the imaging mode of IMAT will use a wide beam emanating from a pinhole to study 

extended object in a single data acquisition or in a scanning mode, the diffraction process 

of IMAT will offer an alternative to the ENGIN-X instrument and it will provide greater 

solid angle detector coverage to evaluate texture, phase compositions and strain orientation 

distributions in a shorter data acquisition time.

The IMAT main components are: the moderator, the guide, the choppers, a pinhole 

selector, slits, jaws, imaging detectors and diffraction detectors. A basic instrument 

description is represented in Figure 3.2.1 and it is detailed below.
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Figure 3.2.1: A schematic layout o f the main IMAT components [147].

The scientific specifications of the IMAT instrument are in accordance with the 

performance of the ISIS TS-2 station. In order to maximize the neutron flux on the sample 

position, IMAT is placed on coupled, L-H2/S-CH4 moderator (see section 3.3). A square, 

straight supermirror neutron guide (see section 3.4.1) transports the neutrons from the 

moderator to the pinhole selector (see section 3.6.1) position. The long flight path of 56 m, 

from the moderator to the sample position, ensures good time-of-flight and energy 

resolution while preserving a large neutron wavelength bandwidth. Three choppers (see 

section 3.5.1) will be placed into gaps of the neutron guide: one TO chopper serving as a 

fast neutron and gamma radiation filter and two double disk-choppers defining the 

wavelength band to prevent the frame-overlap of neutrons between successive neutron 

pulses. With a set of beamline “jaws” (beam delimiters) and one set of slits just in front of 

the sample, the beam size at the sample position can be adjusted. Two imaging cameras 

will be available: a gated CCD camera (see section 3.7.1) and a time-of-flight capable 

high-resolution pixel detector (see section 3.7.2). Two detector banks at 90° have a 

particular relevance for strain analysis, for simultaneously measuring two orthogonal strain 

components. Radial collimators will be installed between sample and each detector bank in 

order to define a diffracting gauge volume for a given beam size.
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This thesis was focused on the imaging part of the IMAT instrument. So, through 

the parameters optimized we can enumerate the neutron guide (length, cross section and 

wavelength dependent effects), the distances between instrument components, the effects 

of the guide gaps and the pinhole size on the radiographies. Moreover, the homogeneity of 

the flux distribution, the average neutron flux and the peak neutron flux on the imaging 

detector were studied. All these investigations were made taking into account the most 

important design criteria: to maximise the neutron flux, to obtain a good energy resolution 

whilst retaining a large neutron bandwidth and a long flight path and on the other hand, to 

find the optimal beam profile on the sample position.

Initial, given design specifications for the imaging part of the instrument can be 

summarised as follow:

• the actual wavelength-dependent flux distribution (flux spectrum) on a given 

moderator;

• moderator face size 11x11 cm2;

• moderator-guide entrance distance of 1.7 m (the closest possible distance achieved on

TS-2);

• an adjustable pinhole aperture with five opening diameters 5, 10, 20, 40 and 80 mm 

situated at the guide exit;

• a flight path from the pinhole to the sample position of 10 m providing a good 

collimation ratio (L/D=2000, 1000, 500, 250, 125) and a small vertical and horizontal 

divergence (up to 0.2°);

• moreover, a maximum field of view of 20x20 cm for radiography and

tomography measurements, as well as for many energy-selective applications was another

parameter defined.
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3.2.2 Modelling approach -  choice of McStas

The building and the improvement of a neutron scattering instrument is a comprehensive 

process. As a result of several European universities and research institutes’ collaboration, 

a neutron scattering ray-tracing simulation tool, McStas (see section 2.5) was developed 

for both types of sources: continuous or pulsed. McStas has a large library with many 

components and instruments. The evaluation of the neutron performances of both modes of 

the IMAT instrument (imaging and diffraction) has been performed based on Monte Carlo 

calculations using McStas software packages [134]. A complete IMAT instrument was 

modelled in McStas software calling each main component and translates the instrument 

metafile into C- code and then compiled into an executable.

In a real neutron instrument detectors and monitors have different roles. While 

detectors count the neutrons with as high an efficiency as possible, absorbing a part of 

them in the process, monitors measure the intensity of the incoming beam and they are 

almost transparent interacting only with 0.1-1% of the neutrons passing through. In McStas 

simulations every neutron ray is detected without absorbing or disturbing any of its 

parameters. Because of that both detectors and monitors in McStas function in the same 

way and they are called altogether “monitors” in the simulations presented below.

A number of 1010 neutrons generated in the wavelength range 0.1-10 A were 

typically used in the simulations for the IMAT imaging instrument. This number was 

chosen based on the computing time considerations.

The default McStas coordinate system used in the simulations in this thesis is as 

follows (Appendix 2):

• z is the direction of neutron propagation. In our case, the IMAT moderator face is 

positioned at (x, y, z) = (0,0,0);

• x  is the horizontal direction (left and right);
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• y is the vertical direction (up and down);

A number of monitor components are available for use in McStas and in addition to 

the real detectors measurements (space and time) they are sensitive to any neutron 

properties such as direction, energy or divergence. We have applied three types of 

monitors for the IMAT simulations to find out information on, for instance peak intensities 

and average intensity of the neutron beam, and on the shape of the wavelength distribution 

or the beam divergence as function of wavelength. All monitors used in modelled IMAT 

instrument are aligned towards the transmitted beam, one exception being in Section 4.2.3 

where the beam divergence on different points on the camera was studied.

• PSD (position sensitive detector): counts where in the detector a neutron is incident, 

investigates the properties of the neutron beam in terms of divergence and intensity. It is 

used to display a 2D image of the beam cross section in the (x, y) plane. Each pixel has a 

colour corresponding to its intensity (blue colour for lower intensity; red colour for higher 

intensity). The input parameters are the number of pixels per columns (n x ) and per rows 

(ny) and the boundaries of detector opening (xmin, xmax, ymin, ymax) with 

units in meters. The output from this monitor is reported in the P S D . dat file and it shows 

the total integrated intensity across the surface of the monitor, the error of the integrated 

intensity and the x, y values (with meters as units) of the centre of the beam cross section.

COMPONENT PSDdet = PSD_monitor(nx = 100, ny = 100, 
filename = "PSD.dat",xmin =-0.1, xmax =0.1, 
ymin = -0.1, ymax =0.1)

• Lambda monitor (wavelength sensitive monitor): a rectangular monitor in the (x, y) 

plane and it is sensitive to the incident neutron wavelength. The wavelength histogram is 

divided in nchan (number of channels) bins. The monitor captures the transmitted neutron
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intensity inside the wavelength channels. Only the neutrons with the wavelength between 

l_min and l_max are detected and the monitor’s output is a wavelength spectrum.

COMPONENT lmon = L_monitor(
nchan = 1000, filename = "lmon.dat", xmin = -.10, 
xmax =.10, ymin = -.10, ymax = .10,
Lmin = l_min, Lmax = l_max)

• Divergence-lambda monitor (divergence-wavelength sensitive monitor): sensitive to 

both the horizontal divergence and the wavelength. The input data are the dimension of the 

monitor (measured in meters), l_min and l_max to define the wavelength window,

o
measured in A and the filename. The monitor’s output is the neutron intensity as a function 

of the divergence and neutron wavelength. The initial code from McStas for this monitor 

was modified as discussed in Section 4.2.3.

COMPONENT Divlambda = DivLambda_monitor( 
filename = "divl", xmin = -0.10, xmax = 0.10, 
ymin = -0.10, ymax = 0.10, lambda_0=l_min, 
lambda_l=l_max)

The other McStas components used in IMAT imaging modelled instrument such as 

moderator, or neutron guide will be defined later in this chapter. We now present results of 

modelling studies of IMAT components, commencing with the moderator and moving 

sequentially along the beamline.
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3.3 IMAT moderator

Details about moderators and in particular, the moderator from TS-2, were given in 

Chapter 2, Section 2.2.3. Here we intend to present more specific aspects of the IMAT 

moderator, its comparison with the ENGIN-X moderator and the corresponding McStas 

code used in IMAT imaging modelling.

While ENGIN-X is a dedicated diffraction instrument, IMAT will combine both 

imaging and diffraction, so it has different expectations in terms of neutron flux and pulse 

shape. Imaging and in-situ diffraction applications require highest possible primary 

neutron flux which necessitates the choice of a coupled moderator, at the expense of 

resolution. This assessment will be demonstrated below by comparing the ENGIN-X 

decoupled moderator with the IMAT coupled moderator.

100

-«— IMAT 
o -  ENGIN-X

c
5  5 0 -
CO

wavelength: 3 A

C/3
c
oo

600 800200 4000

Time [microsec]

Figure 3.3.1: The simulated pulse neutron shape fo r 3A fo r different moderators (coupled 
and decoupled). While the coupled IMAT moderator has a higher intensity 
than the decoupled ENGIN-X moderator, the “sharp” ENGIN-X moderator 
pulse allows a better temporal resolution than the coupled moderator.
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ENGIN-X is placed on the port S6 on TS-1 and is using a decoupled, poisoned 

methane moderator (110 K) combining the narrow pulse width (“sharp” pulse) with 

relatively high neutron flux over a 1-3 A wavelength range relevant to most engineering 

materials. The imaging applications of the IMAT instrument need a higher neutron flux 

and this can be achieved using a coupled moderator (20 K), though, unfortunately at the 

expense of energy resolution. Moreover, the quality of energy-selective imaging and the 

diffraction resolutions depends on the pulse width of the moderator.

Figure 3.3.1 displays two neutron pulse shapes (decoupled moderator used at

ENGIN-X from TS-1 and coupled moderator used at IMAT from TS-2) for a fixed

0
wavelength of 3 A indicating a higher intensity and a broader pulse for the coupled 

moderator. Whilst the cold, coupled moderator from IMAT is best for high-intensity 

applications, the ENGIN-X moderator is better for high resolution applications. The pulse 

shapes in Figure 3.3.1 are extracted from the respective McStas data of the ISIS 

moderators.
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Figure 3.3.2: Moderator pulse width (FWHM) and resolution (AT/T) as Junction o f 
wavelength.

The best imaging and diffraction energy resolution are limited by the pulse width of 

the moderator. Figure 3.3.2 presents the wavelength-pulse width (FWHM), as well as the 

energy resolution (AT I T )  at 56 m, i.e. at the position of the imaging detector. The long- 

wavelength FWHM is 700 psec which yields a resolution of AT I T  <1% for all

o
wavelengths, and < 0.8 % for wavelength up to 9 A, which is considered adequate for 

proposed scientific applications.
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Figure 3.3.3: IMAT spectrum at sample position (56 m). (a) flux compared to ENGIN-X;
(b) gain over ENGIN-X. The fu ll line fo r  ENGIN-X on the left image 
indicates the wavelength band fo r  25Hz running.

Figure 3.3.3 (a) shows the IMAT spectrum at the sample position compared to the ENGIN- 

X spectrum for 10 Hz and 25 Hz running, respectively. Figure 3.3.3 (b) displays the 

intensity gain of IMAT compared to ENGIN-X as function of wavelength which shows 

that there is a clear gain for IMAT of about 5 times in the medium wavelength range 3-5 A 

and of 10 times at longer wavelengths above 5 A. The thermalised IMAT flux has a peak at 

around kpeak=3 A ; the maximum single-frame wavelength value is about 6.7 A, just

above twice the value of Xpeak ’ which makes the IMAT wavelength band convenient for

efficient collection, i.e. peak wavelengths are not heavily over-counted and long 

wavelengths are not under-counted. The IMAT disk choppers will limit the wavelength 

band to 0.7-6.7 A thus preventing the frame overlap of successive ISIS neutron pulse at the 

detector position. By operating the choppers at 5 Hz instead the standard 10 Hz the 

wavelength range can be extended up to 14 A. The selection of wavelength-bands will be 

explored in Chapter 4.
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On ISIS TS-2 five beamlines W5-W9 separated by an angle of 13° (Figure 3.3.4) 

look at the same moderator filled with liquid hydrogen on one side and solid methane at 

the back of the hydrogen container.

Both parts of the moderator (liquid hydrogen and solid methane) are important to 

produce the characteristic beam flux of IMAT. The hydrogen moderator will determine the 

high-energy part of the spectrum, while the methane will determine the long-wavelength 

part of the IMAT spectrum. The pre-moderator [149] (met in the coupled moderator it is 

one layer which surrounds the moderator core to ensure thermalizing high energy neutrons 

which enters from reflector eliminating most of the heat load before the neutrons enter in 

the moderator) will be ambient water, not viewed by the IMAT instrument. The beryllium 

reflector will surround the target and the moderator and will scatter neutrons back into 

moderator.

E5 E4 E3 E2 El
Be reflector

Water
Premoderator

Methane 
(-75 mm thick)

Hydrogen 
(~60mm thick)

Figure 3.3.4: Different positions o f the coupled moderator on the west side o f TS-2.
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For the IMAT instrument there were available beam two ports W5 and W8 which satisfied 

the requirements for maximum integrated flux and for a broad neutron wavelength range 

with some restrictions on the flight paths however.

The performance of an imaging instrument for three instrument positions W5/L37, 

W5/L56 and W8/L40 on the coupled moderator on TS-2 was evaluated (see section 

3.4.3.1). The decision on the instrument position and length, and the choice of port for 

IMAT, was made based on arguments such as the instrument resolution, as well as more 

practical considerations of costs or the space available for the instrument.

McStas modelling of the TS-2 moderator

The ISIS moderator module employed in the Monte Carlo simulations was elaborated and 

provided by the ISIS TS-2 Target Development Team.

In the McStas IMAT instrument model we employed the ISIS moderator 

component as follows:

COMPONENT moderator = ISIS_moderator(
Face = "w5", EO = e_min, El = e_max, dist = 1.7,
xw = 0.11, yh = 0.11, modXsize = 0.11, modYsize = 0.11,
CAngle = 0, SAC=1) AT (0, 0, 0) ABSOLUTE

Where the neutrons are generated having a range of energies from EO to E l and pass 

through the moderator Face defined by the moderator size modXsize and modYsize 

(meters) and a focusing window (rectangle) with the dimensions xw, yh (meters), generally 

the same as the width and height of the next beam component. In reality, the focusing 

window of a moderator does not exist and it is used only to improve the efficiency of the 

simulations. The distance of the focusing window from the moderator face, dist, is a given 

parameter with a value of 1.7 m and represents the distance to the guide entrance. The 

CAngle variable, the angle from the centre line, is used to rotate the viewed direction of the
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moderator and reduces the effective solid angle of the moderator face; in this case is it 0 

radians. The solid angle correction (SAC) is 1. In all IMAT simulations the moderator was 

taken as a reference point for the positions of the other instrument components.

3.4 Optimising the neutron guide

One important component used to supply neutrons from the source to different instruments 

is the neutron guide. The theoretical development of neutron guides was initiated by 

Maier-Leibnitz and Springer [150] and guides were installed for the first time in 1971 at 

the ILL. A neutron guide is described by its geometry and its coating. Details about the 

neutron guide and results corresponding to the IMAT imaging instrument are presented in 

the following sections.

3.4.1 Characteristics of a neutron guide

Without a neutron guide one could not run experiments at long distances from the neutron 

source due to the neutron flux loss. Hence, the neutron guide is used to transport neutrons 

from the moderator to the sample thereby achieving higher neutron flux at the experiment 

site.

Guides are also used to improve the temporal resolution of pulsed source neutron 

instruments determined by the relative time uncertainty — , where At, for a given

wavelength, is given by the width of a pulse as shown in Figure 3.3.1 and t is the time-of-

flight of neutrons travelling from the source to the detector. Another purpose of the guides

is to split neutron beams in order to feed several instruments. An important role of the

neutron guide is also to reduce the background radiation constituted from gamma rays and

fast neutrons. For that reason, the neutron guides are often curved eliminating the direct
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view of the moderator (Figure 3.4.1). The gamma radiation travels in straight lines and 

goes through the walls of the guides into the shielding around the guide. In reality, a 

curved guide has the radius of curvature of several kilometres making the curvature to be 

imperceptible and so, the arc of the curve could be approximated with straight sections.

Thermal
neutrons

Incident
beam Fast neutrons and gamma radiation

Figure 3.4.1: Schematic representation o f a curved neutron guide. Fast neutrons and 
gamma rays pass straight through the walls o f the guide into the shielding.

The geometry of the neutron guide and the guide coating determine how many 

neutrons enter in the guide, how many of them are transmitted through the guide, and how 

many exit the guide and reach the sample. To avoid the escape of the non-reflected 

neutrons and gamma radiation and to keep the radiation levels in the experimental areas to 

a minimum, the guide system is shielded by neutron absorbing material (e.g. concrete, 

steel, borated wax).

Guide geometry types

Among the neutron guide geometries there are: straight, curved, rectangular, ballistic 

(when the guide cross section varies along its length to minimise transport losses within the 

guide), parabolic or elliptical (where the moderator is considered in the first focal point and 

the sample in the other focal point). The ballistic guide system comprises a linearly 

expanding section, followed by a straight guide who ends with a focussing “nose” which is



a linearly tapering section that narrows the beam onto the sample and has the advantages of 

the increasing number neutrons onto the sample and the decreasing divergence of the 

transmitted beam in the expanding section. At the nose part, the neutron intensity also 

decreases while divergence increases following Liouville’s theorem [151]. The parabolic 

guide system is, in fact, an improvement of the ballistic guide system where the expanding 

section and focussing “nose” are both parabolic and ideally makes the beam parallel. Later, 

in this section it will be explained via Monte Carlo calculations, why a straight rectangular 

guide is used on the IMAT instrument, instead of a curved guide as in the ENGIN-X case.

Guide coatings

The development of neutron guide coating is based on the fact that the refractive index (n) 

for neutrons is less than one for most materials and that the total internal reflection can 

arise at the interface between the vacuum and the material guide (refraction angle is zero, 

Figure 3.4.2). We know that the refractive index is defined by the relation:

cos#o
n =

COS
(3.4.1)

where Oq is the incidence angle and 6 2  is the refraction angle (Figure 3.4.2).

Refracted
beam

n<l (material)

n=l (vacuum)

Incident
beam

Reflected
beam

Figure 3.4.2: The neutron beam path from vacuum to medium (total reflection fo r
e0<ec).

Knowing that the neutron refractive index is given by [5]:
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(3.4.2)

where N  is the number of atoms per cm3 and b is the coherent scattering amplitude of the

bound atom we obtain:

N -b
K

(3.4.3)

where Ac is the critical wavelength for total reflection Gc.

Since natural nickel (Ni) is not very expensive and it has a large scattering length 

density (N-b)  and hence a large critical angle 9C, it is often used as a coating material.

Other coating material applied could be iron. Beryllium gives even a larger critical angle 

than Ni, but because it is toxic it is not recommended to be utilised.

Neutron guides are produced by companies such as SwissNeutronics [152] from 

Switzerland or Mirrotron Ltd [153] from Hungary and they are made of nickel-coated or 

supermirror-coated glass assembled as a rectangular cross-section as shown in Figure

Figure 3.4.3: Straight rectangular neutron guide section coated with supermirrors

3.4.3.

(m=3)for J-Parc fabricated by SwissNeutronics [ 152].
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Sections of guides are butt jointed inside a vacuum vessel to produce the guide. The 

practical performance of a neutron guide depends on the reflectivity of the surface. The 

reflectivity could be affected if there are surface undulations or porosity as this can 

increase the number of non-reflected neutrons. A polishing procedure can optimise the 

flatness of the surfaces.

In the literature, a guide coated with pure Ni is defined as an “m = l” mirror. For 

improving the efficiency of surface coatings (i.e. increasing the critical angle and hence the 

neutron flux and wavelength bandwidth) of neutron guides a supermirror technology [154- 

156] is applied consisting of an artificial multilayer made of thin layers of alternating

58materials of different thicknesses (such as Ni which has a scattering length 20% higher 

than natural Ni and titanium (Ti)), with a large contrast in scattering-length density. It was 

observed that Ni and Ti layers tend to interdiffuse and the interfaces can become rough and 

so for reducing these effects, C was added to Ni improving the neutron reflectivity 

characteristics of Ni-Ti supermirror depositions.

The combination of two adjacent layers in the reflection of neutrons can be 

explained using Bragg’s reflection from the lattice planes:

(3.4.4)

where X is the neutron wavelength and d  the distance between layers (Figure 3.4.4).

Figure 3.4.4: Bragg reflections from a supermirror coating [152].



In the case of a supermirror coating of a straight neutron guide the critical angle depends 

on the coating and neutron’s wavelength and is related to the equation:

o

6 C = ^ - x m X / i ,  (3.4.5)
A

where m defines the quality of the specific guide coating (ra=2 is a supermirror with 

double the critical angle of Ni etc). Typical multilayer can have m -2, 3 or 4 and most 

recently, even m=7 can be obtained.

3.4.2 The neutron guide on the IMAT instrument

The installation of neutron guide on accelerator sources requires more attention regarding 

its alignment and positioning. Because the moderators of spallation sources are relatively 

small the entrance of the neutron guide must be more carefully aligned and as close to the 

moderator as possible to ensure maximum illumination. In case of IMAT the guide starts 

as close as possible to the moderator in the shutter section and ends just upstream from the 

pinhole selector. The distance guide-exit to pinhole depends on the specific designs of 

guide, pinhole selector as well as the space reserved for filters and diffusers. The neutron 

guide should be evacuated to avoid intensity loss due to air scattering.

Since the IMAT instrument combines both imaging and diffraction measurements 

the design of the neutron guide is challenging especially in the context of the imaging 

function as we will see in this chapter.

Starting from the idea that the ENGIN-X instrument at ISIS is dedicated to 

diffraction measurements and uses a curved guide one should ask if it is possible or 

desirable to use this type of guide for IMAT.

To see the effect of a curved guide on the imaging functionality we tested the 

virtual IMAT imaging instrument using a curved guide with constant rectangular cross 

section, and variable radius of curvature. The other possibility considered was a simple
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straight and square guide. Both neutron guides had same length (42.8 m), the same cross 

sections (the same as the moderator, i.e. 0.11x0.11 m2). The curved guide was given by the 

slight curvature of 5720 m radius calculated according to equation:

1i?
R =  — —  ([157]) (3.4.6)

2 -Ax

where L is the guide length and Ax the guide deflection3.

For studying the neutron intensity distribution generated by the neutron guide a 

PSD monitor (with 20x20 cm2) was placed on the sample position. Simulations were 

performed using 1010 neutrons and the results are shown in Figure 3.4.5 below. The 

performance in terms of image homogeneity of the imaging instrument with a straight 

guide is evidently better than the instrument with a curved guide as illustrated in Figure 

3.4.5. While the open beam profile at the sample position using a straight rectangular guide 

is symmetric, the open beam radiography using the curved guide is asymmetric due to the 

effects of garland reflections [158]. The artefacts from the 2D image will be discussed later 

in this chapter.

-5 0 5
X position [cm]

Figure 3.4.5: Distribution o f the neutron intensity on the PSD monitor placed on the 
sample position (left: straight guide, right: curved guide).

3 The radius o f  curvature was introduced in such way to avoid direct line o f  sight betw een moderator and the
end o f  the guide. For this, w e  choose Ax greater than the moderator cross section 11x11 cm 2. It was
considered Ax o f  alm ost 16 cm  in agreem ent with the reference 147. K ockelm ann, W ., Oliver, E.C.,
Radaelli, P.G ., IMAT- An imaging and materials science & engineering facility  fo r  TS-II. 2007, ISIS Second
Target Station Project.

X position [cm]
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It is beyond the scope of this paragraph to describe all aspects of the decision taken for 

IMAT neutron guide which included technical details provided by the engineers or 

diffraction issues. However, the above demonstration was one of the arguments in favour 

of using a straight rectangular (square) neutron guide instead of a curved guide.

3.4.3 McStas modelling of the straight IMAT neutron guide

The neutron guide for the IMAT instrument consists of several sections with gaps 

between them for choppers or other components. In the preliminary Monte Carlo 

simulations these sections were neglected and the guide was considered straight, with a 

squared cross section, with no gaps. Due to engineering constraints the closest position to 

the moderator where the guide can start is 1.7 m. The guide is described in McStas by the 

following component:

COMPONENT myguide = Guide
wl = 0.11, hi = 0.11, w2 = 0.11, h2 = 0.11, 1 = 42.8, m = 3) 
AT (0, 0, 1.7) RELATIVE moderator

The guide component (Figure 3.4.6) runs parallel to the z axis and has a rectangular 

entrance with dimensions wl (width), hi (height) and exit with w2 (width), h i  (height). 

The parameter / represents the length of guide and m  defines the m-value of guide 

material.
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Figure 3.4.6: The geometry o f straight neutron guide.

The modelled IMAT imaging instrument in McStas is illustrated schematically by 

moderator-guide-pinhole-monitors configuration as shown in Figure 3.4.7 and based on the 

parameters offered in Section 3.2.1.

cdt-i<D
T3O

neutron guide

1.7m guide length

pinhole PSD

1.5m 10m

Figure 3.4.7: The IMAT imaging instrument components in McStas.

In the upcoming sections we present the results for investigations into the guide cross 

section, length of guide and optimum m value for the IMAT imaging instrument. It should 

be noted that the intensity values presented below were obtained by integrating over the 

wavelength range from 0.1 to 10 A and using 1010 neutrons.
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3.4.3.1 Flux comparison for port W5 and W8

Two beam ports on the hydrogen-methane moderator were considered for IMAT: W5 and 

W8 (see Figure 3.3.4). The difference between W5 and W8 is due to the different view the 

guide would have on each of these. While W8 has an angle of +26° on the moderator face, 

W5 has an angle of -13° onto the moderator face (see Figure 3.3.4). The dimensions of the 

moderator faces (vertical and horizontal), 0.11x0.11 m2, were established by the ISIS TS-2 

Target Development Team.

For analysing the neutron flux at the sample position using Monte Carlo 

simulations, two PSD monitors with dimensions 20x20 cm2 were placed along the IMAT 

imaging instrument: first (PSD1) after moderator at the distance of 0.0001 m and the 

second (PSD2) at the sample position, 10 m away from pinhole.

Three available positions for IMAT were considered in this preliminary stage:

• W5/L37: guide length 23.8 m; moderator - sample distance: 37 m

• W5/L56: guide length 42.8 m; moderator - sample distance: 56 m

• W8/L40: guide length 26.8 m; moderator - sample distance: 40 m

Other input parameters for the calculations were:

• Wavelength band: 0.1-10 A;

• Guide coating m=3;

• 1010 neutrons;

• Gravity neglected in the instrument and in the guide.

For the calculations below, the gap between guide exit and pinhole was set to a 

value of 1.5 m, calculated assuming that neutrons reflected in the guide section from 

guide length +1.5 cannot reach the pinhole and thus filling up the end of the guide and 

pinhole with a neutron guide should be ineffective. Also, this gap needs to allow for 

sufficient space for the pinhole selector, as well as shielding around the selector. In the
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final stage of the IMAT design process this gap was set to 0.3 m (see section 4.1.3), 

leaving sufficient space for filters between guide-exit and pinhole, and to slightly increase 

the neutron flux for the diffraction applications.

Table 3.4.1: The evaluation o f the neutron flux fo r  different instrument positions and 
different guide lengths fo r a pinhole radius o f 0 .0 1 m and a wavelength 

___________ range from 0.1 to 10 A.___________________ _________________________
Moderator/Flight path Flux on PSD1 

(neutrons/cm2/sec)

Flux on PSD2 

(neutrons/cm2/sec)

W5/L37 0.813E+10 1.312E+07

W5/L56 0.813E+10 1.211E+07

W8/L40 0.914E+10 1.428E+07

The results displayed in Table 3.4.1 indicate that the neutron flux measured on the 

PSD1 using W8 is almost 10% higher than the flux obtained using W5 due to the larger 

amount of moderator volume viewed by the instrument. In addition, we can observe that 

when using same port (in our case, W5) the guide’s length has a direct impact on the 

neutron flux value obtained on the sample position insofar as increasing the length of the 

neutron guide reduces the neutron flux.

In reality, factors relating to both imaging and diffraction modes needed to be 

considered and four rankings were considered [159] for the decision on the moderator 

choice and guide length: (i) imaging case, (ii) macrostrain analysis performance, (iii) 

access of user operation, and (iv) texture analysis. The average ratings from all four 

ranking criteria indicated that the best performance was obtained for W5/L56 which has 

the longest flight path, with an instrument position outside the experimental hall. The 

second-best performance was obtained for W8/L40 offering the highest neutron flux while 

W5/L37 obtained the worst ratings, due to the shorter flight path, limited available detector 

space, and due to constrained access to the instrument.
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The evaluation of the IMAT instrument positions identifies W5/L56 as the best 

option on TS-2 which combines the necessary analysis modes and which is complementary 

to ENGIN-X.

3.4.3.2 Removing artefacts -  guide cross section

The simulated data show artefacts (vertical and horizontal lines or stripes) in the neutron 

intensity distributions on the PSD monitor at the sample position (see Figure 3.4.5 for 

straight guide). Initially not much was known about the origin of these stripes. It was 

noticed that they were increasing in number and width depending on the neutron guide 

length and width. In order to investigate the origin of the artefacts and how they can be 

eliminated a simple optical model as shown in Figure 3.4.8 was chosen. From a selected 

point (B) on the detector the path of a neutron can be traced back to a point F on the 

moderator.

Based on a programming code written in C++ the number of neutron reflections in 

the guide was calculated and the coordinates of the point of origin (F) were determined 

(see Appendix 1) considering an infinitesimal pinhole and two-dimensional imaging 

instrument (Figure 3.4.8).

In parallel with the calculations using the C++ code we simulated in McStas the 

IMAT instrument with four guide lengths: 2.8 m, 23.8 m, 26.8 m and 42.8 m. The guide 

lengths 23.8 m, 26.8m and 42.8 m were taken from the Section 3.4.3.1 where different 

positions of the IMAT instrument were investigated. The guide length 2.8 m was selected 

arbitrarily to extend our investigation, not only for longer guides but also for shorter guide 

sections. 1010 neutrons were generated in the wavelength range 0.1-10 A and a small 

pinhole (radius 0.005 m) was considered.
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For the Monte Carlo simulations and C++ code the positions and distances between 

components were used as given in Figure 3.4.7.

moderator guide pinhole monitor

E.

F

Figure 3.4.8: Geometrical design o f the basic instrument model used in the C++ code. The 
blue line represents the neutron path traced backwards from the point B on 
the monitor to the point F  on the moderator. The red line is the moderator 
size (0.11x0.11 m2). The neutron exits from the guide with the reflection 
angle 6 .

In the McStas modelled instrument the PSD monitor was placed at 10 m after the pinhole 

and its dimensions were of 20x20 cm2 with 100x100 pixels. On the other hand, in the C++ 

code the half of the monitor size is determined by AB (considering the horizontal 

symmetry for this 2D instrument model). The position of B (length of AB) was varied from 

0 to 10 cm with a step of 0.001 m. For each value of AB the distance EF was calculated. 

Also, the reflection angle of the neutron originating from point F was determined.

In the following Figure 3.4.9 to Figure 3.4.12 the 2D neutron intensity distribution 

on the PSD monitor from McStas (left) and the calculated EF values and reflection angles 

depending on the guide length (right) from C++ code are plotted. Comparisons between 

the both plots are detailed as follows.

For the shorter guide (2.8 m) the intensity distribution on the PSD monitor does not 

exhibit artefacts. The neutron intensity drops off at the monitor edges (see left image in
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Figure 3.4.9). No stripes are on the PSD monitor. On the right plot in Figure 3.4.9 the 

neutron guide is indicated by two parallel green lines (one for 0.055 m and the other for - 

0.055 m). The calculated exit angle 0, of the neutron from the guide, ranges from 0° (for 

neutrons emanated from the moderator centre and going along the straight line) to almost 

0.6° (for neutrons which are arriving on the monitor edge). The pink line (Figure 3.4.9 

right) represents the plot of the calculated 0 values as function of the (AB) distance on the 

monitor. The guide is too short for neutrons arriving at the PSD to have been reflected in it.

The area where the neutron intensity is higher (red area on the PSD monitor) 

corresponds to the calculated EF as function of AB distance, from 0 to 0.055 m (the blue 

oblique line on the right plot) of Figure 3.4.9.
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The calculated EF intersects the guide and a small area (the small blue line with red 

dots in Figure 3.4.9 right) is larger than the moderator cross section, i.e. neutrons arriving 

at this part of the PSD would have originated from outside of the moderator. The width of 

the blue area (where the neutron intensity is lower) on the PSD is equal to the distance CD 

on the C++ plot, almost 0.7 cm. The moderator and guide cross section are the same size 

(11x11 cm2) and therefore it was concluded that these shadow lines are caused by the 

regions outside of the moderator while, for this simulation the red area is the higher 

intensity region due to neutrons passing straight without being reflected.

The problem became more interesting for longer guides. Repeating the same steps 

from above (in the simulations and the C++ code) but changing the neutron guide’s length, 

we got results presented in Figure 3.4.10, Figure 3.4.11 and Figure 3.4.12. The maximum 

reflection angle, almost 0.6°, is the same for all cases.

In the case of the 23.8 m guide some horizontal and vertical shadow blue lines (or 

stripes) are visible on the upper part of the PSD monitor (Figure 3.4.10 left). The stripes 

divide the PSD monitor distribution into 5 zones. Due to the symmetry of the image only 

the horizontal stripes are investigated. From C++ code calculations we determine the 

number of reflections in the neutron guide. Hence, the centre red area on the PSD monitor 

corresponds to the neutrons passing straight through without reflection; the upper red area 

(between line 1 and line 2) corresponds to the neutrons with one reflection and the last area 

(blue area between line 2 and the monitor edge) to the neutrons which have two reflections.

At the intersection between EF zigzag blue line and the guide two small triangles 

outside of the guide area are observed(Figure 3.4.10 right). These triangles are equivalent 

with the stripes on the PSD monitor and they are caused by the regions outside of the 

moderator. The distance from the peakl to the guide line -0.055 cm (Figure 3.4.10 right) is 

equal with the width of the first stripe (linel) on the PSD monitor (Figure 3.4.10 left), i.e. 

0.1 cm. The second stripe (line2) has the width same with the distance from the peak2 to 

the guide line 0.055 cm, i.e. 1.05cm.

99



Fi
gu

re
 

3.
4.

10
: 

Ev
al

ua
tio

n 
of 

ar
te

fa
ct

s 
fo

r 
the

 
ne

ut
ro

n 
gu

id
e 

len
gt

h 
23

.8
m

.

<D£
Co

T3J5
cdC

’5b

utijCd
e

C
cd

W)c
cd

C_o
<u
<du-

eo
I s
C <
o <d

^  N
c /5  t «

■4—*

Oh .ti
J* o 
F  £

.1 £ ti oo
X)•C oa 
tv £
=S “1

<u'•ti
C/3 " Cc -a
a  3)G

G  V50 O s- ti
1  §z e

_CD
CD
CCO

CD

CD
T 3

CD

LU

[aejBep] 0|6ue uoip0|)0j

[ u j d ]  uojjisod  x



For the guide length of 26.8 m the number of reflections is increasing to three 

proportionally to the number of artefacts (or stripes) on the PSD monitor (Figure 3.4.11). 

Repeating the above described procedure, the width of the stripes can be approximated to

0.2 cm, 0.9 cm and 1.6 cm corresponding to the peakl, peak2 and peak 3 from Figure

3.4.11 right.

The final case is the most important one, because the guide length 42.8 m was 

decided to be used for the IMAT instrument (see section 3.4.3.1). The horizontal shadow 

lines on the PSD monitor divide the monitor in 9 regions, but due to the image symmetry 

only the half upper part of the monitor will be considered (Figure 3.4.12 left). The stripes 

are named linel, line2, line3 and line4. Each of the regions defined by the lines has a 

correspondence in the neutron reflections: first region (with the highest intensity) has no 

reflection and it is correlated with the neutrons which are passing straight through the 

guide without reflections; the second region corresponds to the neutrons with one 

reflection in the guide etc. The maximum number of reflections is four. In the Figure

3.4.12 right each distance from the peaks to the guide line represents the widths of the 

artefacts from the PSD monitor. Hence, linel has the width of about 0.02 cm, line2 has a 

width of 0.52 cm, stripe3 has the width of 1.02 cm and last stripe has the width of 1.06 cm. 

As in the above cases, the stripes are determined by the PSD “seeing” regions outside of 

the moderator (see small triangles defined by the EF zigzag line and guide with peaks 1, 2, 

3 and 4 in Figure 3.4.12 right).
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Identifying the cause of the artefacts provided the possibility of removing them. The 

following actions were taken into consideration:

• to make moderator larger;

• maybe to reduce the distance between moderator and the guide entrance;

• to reduce the guide cross section compared to the moderator size;

While the first two suggestions are precluded due to technical and engineering constraints 

the last suggestion is more promising, especially as it was demonstrated that the reduction 

of the guide cross section enables a higher neutron flux (see section 3.4.3.3, imaging case).

3.4.3.3 Compromise with diffraction requirements

Since IMAT is an instrument dedicated both to imaging and diffraction experiments the 

optimization of guide dimensions depends on the diffraction case also. For a guide length 

of 42.8 m, in the imaging situation, the neutron flux decreases simultaneously with the 

increasing of guide cross section (Figure 3.4.13). Plotting the neutron flux for the 

diffraction mode [160] (and same guide length as in the imaging case, 42.8 m) we can see 

that the curve is ascending with increasing guide cross section. For a guide cross section of 

10x10 cm2, the imaging flux and diffraction flux drop 5% from their respective maximum 

values.
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Figure 3.4.13: Neutron flux normalised as a function o f the guide size cross-section fo r  
imaging and diffraction.

We have seen from the previous paragraph that if we increase the guide cross section up to 

the moderator height (11x11 cm ) the artefacts appear on the PSD. Also, there is an 

engineering fact we should mention here: for the W5 port a neutron guide cross section of 

more than 9.5x9.5 cm2 cannot be fitted into the available beam tube in the TS-2 target 

shielding. For 9.5x9.5 cm2 guide cross section, artefacts are not observed (for larger 

pinholes the artefacts are washed out due to the poorer resolution) for the standard 

“working” pinhole (R=0.01 m) so therefore we can choose 9.5x9.5 cm2 as the best value 

for neutron guide cross-section of IMAT instrument. Under these circumstances, imaging 

loses 2% and diffraction loses 8% of the best possible neutron flux for the respective mode. 

From this point forward this value for guide cross-section will be applied in all our 

simulations.
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3.4.3.4 Study of neutron flux for different guide m-values

One parameter which affects the critical angle and the neutron flux is the guide m-value. 

Basically, the neutron supermirror is characterized by its reflectivity via the m-value as 

described in Section 3.4.1. The guide performance was investigated for different m-values: 

1, 2, 3 and 4. A lambda monitor of size 20x20 cm2 was placed at 10m after pinhole to 

measure the neutron flux and the neutron intensity distribution as a function of wavelength. 

The simulations parameters remain unchanged and are same with the ones from the 

previous paragraphs. A pinhole with radius 0.01 m was selected.

As expected, the neutron flux on the sample position increases across the entire 

wavelength band used with increasing m-values. Compared to the standard Ni-coating 

(m =l) the most significant improvement is observed for m=2. The gain is due to the fact 

that, for a given reflection angle, a supermirror guide transports neutrons with shorter 

wavelengths than a conventional Ni mirror (m=l). The neutron flux increases by 71% from 

m=l to m=2 and by approximately 8% from m=2 to m=3 (Figure 3.4.14). For supermirrors 

with m=3 a large critical angle is obtained and also one achieves a good neutron flux useful 

for imaging experiments. m=4 gives the highest neutron flux with 1.3% more than for 

m=3, but financially speaking, m=4 is considerably more expensive than m=3 for a 

relatively small gain.
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Figure 3.4.14: The variation o f the neutron flux measured at the sample position fo r  
different guide m-value.

Higher m-values improve the performance of the supermirror guide, but only for shorter 

wavelengths below 3 A as shown in Figure 3.4.15.

m=1
m=2
m=3
m=4

£  10

W avelength [A]

Figure 3.4.15: Neutron intensity as function o f wavelength on the sample position fo r  
different m-values.
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For example, at 1 A the guide with m=3 gives with 84% more intensity than the guide with 

m=2. (This wavelength range near 1 A is particularly important for diffraction 

experiments.) For wavelength above 3 A neutrons are propagated without additional losses 

for all guide supermirrors guides and very little can be gained by using advanced coatings 

(e.g. m=4) in this wavelength band (our case, 3-10 A). In conclusion, it was decided to use 

a supermirror guide with m=3 due to its performance and less expensive costs.

3.4.3.5 Study of gravitational effects

The previous studies were made using a straight guide with the gravity parameter 

neglected. Here we would like to investigate if the gravity effect on the neutrons travelling 

through the instrument can be ignored. For this reason we compared two situations using 

the Guide_gravity component of McStas (version 1.12) which models a straight 

rectangular guide with gravitation handling. Firstly, a straight square guide with gravity

9
turned off (g = 0  m/s ) was considered. After that, a straight square guide with gravitation

9
norm switched on (g = -9.81 m/s ). It is known that the gravitation coefficient is a

constant value (g = -9.81 m/s ), but we performed simulations with an “exaggerated” and

2
“impossible” gravitation coefficient (g = -50  m/s ).
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Figure 3.4.16: Modelled instrument fo r  investigating the guide gravitational effect. Two 
neutron rays are drawn: (red) fo r  neutron ray passing straight through 
without supporting gravitation effect and (green) parabolic neutron ray 
affected by gravity.

The positions and sizes of instrument components are defined as given in Figure 

3.4.7 for the neutron guide of 42.8 m in length and m-value 3, with the exception of the 

position of the PSD monitor. For studying the gravitation effect on the neutron intensity 

distribution (Figure 3.4.16) and the neutron flux value, with non-zero gravity, the PSD was 

placed immediately after the guide exit (at a distance of 0.001 m from the exit).
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Figure 3.4.17: Profile plot o f the intensity distribution on the 20x20 cm2 PSD monitor.
One vertical row in the middle o f the detector was selected and plotted 
against the position on the monitor.
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It is observed that differences in the intensity profiles on the PSD monitor at the 

guide exit are negligible (Figure 3.4.17).

While for non-gravity and gravity the neutron flux is almost the same, a very slight 

difference of the neutron flux is noticed for “non-usual” gravitation factor (Table 3.4.2): 

Table 3.4.2: Variation o f the neutron flux depending on the gravity in the neutron guide.
Neutron flux for g=0 

(n/cm2/sec)

Neutron flux for g=-9.81 m/s* 

(n/cm2/sec)

Neutron flux for g=-50 m/s* 

(n/cm2/sec)

0.65937x10a 0.659368x109 0.65915x10s

For reasons of completeness the effect of gravity on neutron trajectories is added here. For 

different wavelengths (from 0.1 A to 10 A) neutrons were supposed to be generated by an 

infinitely small pinhole. After that the neutrons travel up to the sample position considering 

them under the influence of the gravitation effect.

0.1 A 2 A  5 A 6.5 A 10A

0.0

-0.5

-1.5E
E

- 2.0

-2.5

-3.0

-3.5
107 8 94 5 62 310

L[m]

Figure 3.4.18: The dropping distance (x) o f the neutrons under the influence o f gravity for  
different wavelengths and function o f flight path (L) from the pinhole to the 
monitor.
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Taking into account the neutron mass, the neutron’s wavelength, Planck’s constant, flight 

path distance and gravitation constant, the dropping distance of the neutrons affected by 

the gravity follows the formula:

y  =
8 f  L m X ^

h
(3.4.7)

\  n y

Figure 3.4.18 illustrated the formula (3.4.7). The dropping distance of the shorter 

wavelengths neutrons at the 10 m is less affected by gravity because of their higher speed.

o
For example, for 2 A the height difference is about 0.12 mm for 10 m flight path. For

o

longer wavelength, e.g. 10 A there can be a height difference of almost 3 mm for 10 m 

flight path.

Throughout this thesis the gravity effect in the instrument will be neglected, but 

from neutron radiography point of view it will be interesting in the future to study the 

effect of the gravity on the image blurring. Here it will not be presented a detailed 

investigation, only a preliminary study, as this issue will be a future work for IMAT 

instrument.

inhole sample

monitor

Figure 3.4.19: Gravitational effect on the image blurring due to the different neutron 
trajectories followed by higher and lower energy neutrons. The pinhole is 
considered infinitely small (notated with O).
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In Figure 3.4.19 three neutrons fligh path are represented: one neutron (black line) 

following a gravity free-path, one high energy neutron (red curve) and one low energy 

neutron (blue curve). In this instance we consider the effect in relation to a thin sample, so 

we are able to talk about neutrons passing through a point within the sample, rather than 

having a trajectory as neutrons would have through thicker sample. Neutrons trajectories 

passing through point A are arriving on the PSD monitor positions (E, B and C 

respectively). The result of these different trajectories passing through the same point is 

that the point A is blurred by amount BC = y \ - y 2 in the vertical direction. The distance

between the sample and the PSD monitor is an essential criteria for minimising the blurring 

effect caused by the gravity, i.e. the closer the sample is to the monitor, the less chance the 

neutron trajectories will have to diverge and the smaller will be the blurring.

Mathematical analysis

Under gravity, and ignoring air resistance, particles follow parabolic trajectories:

[ . g t2_y  = v0ts m a + —  (3 4 g)

x  — Vfttcos a

where, vq is the initial velocity of the particle, t is the motion time of the particle, g the

Earth’s gravitation acceleration and a  the projection angle (Figure 3.4.19).

Based on equations (3.4.8) we determined the distance BC as follows:

1. Firstly, knowing the distance x  (from the pinhole to the sample position), the position of 

point A (in the sample), A(x, p), where the both neutrons (which are under the gravity 

effect) with different wavelengths met and the velocities corresponding to each neutron

h h
based on the De-Broglie relation (2.1.1), i.e. vqi = —— and vq2 = ——» there are

m \  m/si

calculated the projections angles of the both neutrons using the derived formula:
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J vqi -  g 2x2 +2gPVqi — Vqi
tan a x =  — (3.4.9)

gx

2. Using the projection angles determined above, equations (3.4.8) and knowing the 

distance from the pinhole to the monitor (i.e.,L = x + l ) there are calculated the positions 

on the PSD monitor of both neutrons BD = y\ and CD = y2 :

j2
y1=Ltanar1 + 2 2 2vm cos ct\

U1 1 (3.4.10)
gl?

y2 = Ltan a 2 +— =------ r—
2 v0 2 c o s  a 2

Here, we do not intend to present more results (as this issue will be more developed in our 

future work) but one result where the blurring is more evident between one higher energy 

neutron, 3 A and one low energy neutron, 10 A, will be given. For this it was supposed the 

distance between the sample and PSD monitor of 1=0.25 m, the pinhole-sample distance 

x=10m and the point A(10m,0.02 m) in the sample. Following the equations (3.4.9) and 

(3.4.10) presented above we obtain that the long wavelength neutron (10 A) is projected 

with the angle cc2 ~ 0.132° and the distance on the monitor is CD — y2 = 20.42 mm. The

short wavelength neutron (3 A) is projected with the angle a\ =0.116° and the distance on 

the monitor is BD = y\=  20.493 mm. Therefore, the point A in the sample is blurred on the 

monitor by the value of 0.072 mm.

3.4.3.6 Neutron guide in the shutter

The first section of the neutron guide of IMAT is in the shutter. The shutter is made of cast 

iron with a rectangular hole in the middle for the neutrons. The shutter closes off the 

neutron beam or lets the beam to pass through down to the beamline. The open/close 

positions are controlled by the electrical limit switches. In the open position the hole from



the shutter aligns with the neutron beam flight path. Because of its weight the positioning 

of the shutter is not very accurate and the alignment accuracy is in the order of one 

millimetre. From the neutron imaging point of view the interest here was to compare the 

neutron intensity and the effect on the radiographies of the guide size in the shutter section, 

whether or not the guide in the shutter section was to be made bigger than the main guide 

such that in case of an offset of the shutter the neutron beam entering into the main guide 

section is not blocked. Three situations were considered: i) the shutter guide is larger than 

the rest of the guide, i.e. 11x11 cm2 for the shutter and 9.5 x9.5 cm2 for the main guide; ii)

9 9the shutter guide size is 10x10 cm with the main guide size 9.5x9.5 cm ; iii) the shutter 

and guide have same dimensions, 9.5x9.5 cm2. In the modelled instrument the shutter is 

perfectly aligned to the neutron beam; misalignment is not considered here. The pinhole 

radius used was 0.005 m. The neutron flight path from the moderator to the sample 

position was 56 m as in the previous sections, but the guide was divided into two parts with 

one small gap between these parts: one section (shutter section) with 2 m length and the 

other with almost 40.8 m length.

Two PSD monitors of sizes 20x20 cm2 and 100x100 pixels were placed on the 

instrument: one just after shutter at 0.001 m and the other on the sample position at 10 m 

after the pinhole.

The integrated neutron intensity calculated on the PSD monitor placed on the 

sample position is 1.22e+09 [n/sec] for the guide in the shutter having the same cross 

section as the main guide cross section (9.5x9.5 cm2). Increasing the guide size in the 

shutter section to 10x10 cm2 results in a drop of intensity by a noticeable 2.7% compared 

to the 9.5x9.5 cm2 shutter guide cross section having a value of 1.19e+09 [n/sec].
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Figure 3.4.20: Neutron intensity distribution on the PSD monitor placed 0.001 m after the 
shutter (left column). The red square in the middle represents the shutter 
projection with source illumination in the middle. Neutron intensity 
distribution on the PSD monitor placed at 10 m after pinhole (right 
column).

Regarding the performance of the instrument for imaging, making the shutter the same size 

or bigger as the main guide does not have a significant effect on the structure of the stripes 

in the open beam images. The neutron intensity distributions on the PSD monitors placed

on the sample position are presented in Figure 3.4.20.
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Although the intensity drop is measureable through simulations it was not 

considered sufficiently significant to guide the decision in the favour of one or another 

model of IMAT design. The final decision on the guide size in the shutter (10x10 cm2) was 

taken by the engineers, considering the costs and accuracies of the shutter installation.

3.5 Bandwidth selection with choppers

Once the neutrons are generated a single energy or an energy range has to be selected for a 

specific experiment. While the research reactors produce a continuous spectrum of neutron 

energies and the selection of a particular energy is made with the help of mechanical 

choppers or a rotating crystal monochromator, at the pulsed sources the selection of a 

specific neutron wavelength is achieved by time-of-flight methods. Because IMAT will be 

running at a pulsed source, the neutron’s energy will be calculated from its velocity using 

the TOF method. The purpose of the choppers on IMAT will be to eliminate the gamma 

and high-energy neutron background radiation (similar effect as with curved guide) or to 

prevent the overlap of slow neutrons of a previous pulse with the faster ones of the next 

pulse.

These kind of high speed rotating equipments are designed, developed and built by 

ISIS for over 20 years to suit for each instrument and scientific requirements. The choppers 

will be located at well-defined positions along the beamline, installed into gaps of the 

neutron guide. The choppers will be synchronized with the pulses of neutrons from the 

target. The purpose of our work is not to develop technical details on the choppers, but to 

investigate the effects of the gaps created in the guide for choppers onto the radiographies. 

However, the following section a brief introduction of how disk choppers work.
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3.5.1 Descriptions of neutron choppers

In the Section 2.2.3, a discussion on the time-of-flight method was provided. Frame 

overlap issue occurs for a sequence of pulses when fast neutrons from a later pulse catch 

up with slow neutrons from an earlier pulse. The problem can be eliminated by adding 

disk-choppers to the instrument and so, defining a shorter wavelength band for the 

measurements. By running the disk choppers at a lower frequency than the pulsed-source 

frequency, disk choppers can also be used to reject neutron pulses and define a wider time 

frame, thus using a wider wavelength band (at the expense of intensity). The necessary 

condition to be respected for avoiding the overlap issue is At = t2 - t i < t  where ^  and

is the maximum and respectively, minimum neutrons time-of-flight from the source to the 

detector for the slowest and fastest neutrons selected by the choppers and t is the period of 

the pulsed source, defining a “frame”. When there is no chopper in the system neutrons 

from two different pulses can interfere, but when the chopper system is on it cuts off the 

slow neutrons from the pulse and prevents them to arrive them in the next pulse. It should 

be noted that one chopper only is sufficient to separate neutrons from adjacent pulses. In 

order to avoid higher order frame overlap (e.g. neutrons from pulse-1 leaking into frame-3) 

more than one disk chopper is required.

IMAT requires two types of choppers: a TO-chopper to reduce the fast neutron and 

gamma background and two double-disc choppers (DD1 and DD2) to prevent frame 

overlap between successive pulses (Figure 3.5.1). These choppers will be located in the 

gaps in the neutron supermirror guide. The total gap size in the neutron guide needs to be 

strictly minimized (see section 3.5.2). Moreover, the neutron beam should not be 

interrupted by windows when entering or exiting the choppers sections in order to avoid 

the Bragg edges in the radiography data from the window material. For this reason, the
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choppers need to run in vacuum so that neutrons can travel unimpeded through the chopper

system.

TO chop] 
20Hz

[Double-disc 
chopper 10Hz

Figure 3.5.1: Proposed chopper design for IMAT; the beam is coming from the right 
passing first through a disc chopper (DD1) and then through the TO 
chopper.

A double disc choppers (Figure 3.5.2) has two counter-rotating disks, which in comparison 

to a single-disk chopper has shorter opening and closing times beneficial to make best use 

of the neutrons at the short- and long-wavelength edge of the wavelength band.
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Figure 3.5.2: Schematics o f counter-rotating double disc choppers.

The choppers will be at about 12m  and 20 m from the moderator to limit the wavelength 

band to 0.7-6.7 A (single frame mode) and thus preventing the frame overlap of successive 

ISIS neutron pulses at the detector position. By operating the choppers at 5 Hz instead 

(than the standard 10 Hz) the wavelength range can be extended to 14 A at the costs of 

about a factor 2 of a lower neutron flux.

Figure 3.5.3: ISIS neutron beam disk chopper. The gap in the (black) B4C ring is there to 
let neutrons pass through.
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The disk choppers will have a thickness of 4 mm A1 and 10 mm thick absorbing B4C 

material. The radius of the disk choppers will be 325 mm measured from the disc-centre to 

the beam-centre.

The IMAT TO chopper is synchronised with the neutron source in such a way that 

at the time when the neutrons are generated in the target a block of inconnel (Ni rich alloy) 

with 300 mm thickness blocks the beam path for fast neutrons and gamma radiation.

3.5.2 Effects of chopper gaps on the open beam images

Here we present the results from the simulations run to study the effects of the gap 

size on the radiography. How much of a gap for the choppers can we afford from the 

neutron intensity and image homogeneity point of view? Are the images affected by any 

additional artefacts?

Initially one gap was considered in the guide (at 17 m from the moderator) which 

splits the guide in two straight guides (Figure 3.5.4). The first guide has a length 15.3 m 

and the second has a length of L -  (15.3 m + gap size) where L is the total length of the 

guide considered, 42.8 m, with the gap size varying from 0 m to 1 m. Both guide sections 

have the same square cross section 9.5x9.5 cm2 with m = 3.

moderator
pinhole

PSD

<- -X -

1.7m 15.3m gap size guide2 1.5m 10m

Figure 3.5.4: Schematic diagram o f neutron guide with one gap. The size o f the PSD is 
20x20 cm2.
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The wavelength band was 0.1-10 A. The calculations were performed for two 

pinhole sizes: 5 mm and 20 mm for the smallest and typical aperture sizes envisaged for 

IMAT, respectively.

Table 3.5.1: Average neutron intensity at the sample position fo r  different gap sizes fo r
pinhole diameters 5 mm and 20 mm.

Gap

(m)

Guidel

(m)

Guide2

(m)

Intensity on the PSD 

monitor for pinhole 

diameter 0.005m  

(neutrons/sec)

Intensity on the PSD 

monitor for pinhole 

diameter 0.02m  

(neutrons/sec)

0 (no gap) 42.8m 3.25e+08 5.23e+09

0.2 15.3m 27.3m 3.19e+08 5.13e+09

0.4 15.3m 27.1m 3.12e+08 5.03e+09

0.6 15.3m 26.9m 3.06e+08 4.92e+09

0.8 15.3m 26.7m 2.99e+08 4.82e+09

1 15.3m 26.5m 2.94e+08 4.71 e+09

Table 3.5.1 shows that the intensity decreases as the gap size increases for both pinhole 

sizes. The corresponding intensity loss at the sample position with respect to the gapless 

model is illustrated in Figure 3.5.5.

102

100 Pinhole diameter= 0.005m

Pinhole diameter=0.02m

CO
COO
>.
COcd)
c

0.4 1 1.20 0.2 0.6 0.8
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Figure 3.5.5: The intensity percentage loss fo r  different gaps and two different pinholes.
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The intensity loss is approximately 1% for every 10 cm of a gap size. The intensity 

distribution on the PSD monitor (Figure 3.5.6, Figure 3.5.7) for different guide gaps shows 

artefacts (or stripes). These are much more visible for the smaller pinhole (5 mm diameter). 

Moreover, increasing the gap size leads to an increase in the widths and depths of the 

artefacts. Fine-line and weak artefacts are visible even when the guide does not have any 

gap and the pinhole is very small.

X position [cm]

No gaP

X position [cm]

Gap=0.2m

X position [cm]

Gap=0.4m
X position [cm]

Gap=0.6m

X position [cm]

Gap=0.8m
X position [cm]

Gap=lm
Figure 3.5.6: Intensity distribution on the sample position for pinhole diameter 20mm.
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X position [cm]

No gap

X position [cm]

Gap=0.4m

X position [cm]

Gap=lm
Figure 3.5.7: Intensity d istribu tion  on the sam ple p osition  f o r  p inhole d iam eter 5mm.

The simulations show that geometric artefacts (stripe patterns) clearly appear for gaps 

bigger than 0.2 m for minimum aperture size of 5mm and are not very pronounced for 

typical pinhole size of 20 mm if the total gap in the guide is less than 0.5 m. The intensity 

loss for such a gap is about 5% . IMAT will, in fact, have several gaps for the three 

choppers, for valves that are inserted to separate the guide vacuum into several sections,
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and for three beam monitors for beam diagnosis. The positions and sizes of the main gaps 

are as follows: gap of 10 cm at 11.8 m from the moderator centre for a gate valve, gap of 5 

cm at 12.2 m from the moderator for the first double-disc chopper, gap of 35 cm at 12.75 

m from the moderator for the TO chopper, and gap of 5 cm at 20.4 m for the second 

double-disk chopper. The total gap size is therefore about 55 cm. A more detailed 

description of IMAT choppers will be provided in Chapter 4.

3.6 Pinhole collimation performance

The variable spatial resolution necessary for the radiography/tomography mode is obtained 

with a collimation system, called the pinhole selector, consisting of a set of apertures.

3.6.1 Pinhole description

The IMAT imaging mode will use a wide beam emanating from a pinhole to study 

extended objects in a single acquisition, if the sample is smaller than the neutron camera 

area, or in a scanning mode, if the sample is bigger than the camera area. The pinhole 

neutron experiment is similar to the “classical” optical camera experiment in which the 

light passes through a pinhole creating an inverted image of the source [65]. It is not our 

intention to give too many technical design details on the pinhole selector system. We only 

would like to mention that for IMAT the pinhole will be machined into a 10 mm thick 

neutron-absorbing material sintered boron carbide which will have a layer of LiF polymer 

material on the incoming beam side. The latter material has the advantage of not producing 

gamma radiation on neutron capture. In the Monte Carlo simulations, the pinhole is 

considered perfectly circular (for achieving a symmetric and homogeneous image), totally 

absorbing and with no thickness. As mentioned in Section 2.3.2, the divergence
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(parallelism) of the neutron beam can be controlled by the L/D ratio, where L is the 

distance from pinhole to camera position and D is the aperture diameter. In turn, this L/D 

determines the achievable spatial resolution of the neutron image. Increasing of the 

aperture’s diameter D (i.e. low L/D) leads to gain of neutron flux while reducing the spatial 

resolution of the image.

In the preliminary IMAT design stage, an aperture selector was positioned at 1.5 m 

from the end of the neutron guide. At a distance of L=10 m from the detector screen was 

placed (Figure 3.6.1).

moderator
guide

Figure 3.6.1: The schematic design o f the IMAT imaging mode using the pinhole selector.
After the neutrons have exited the guide they pass through the circular 
pinhole o f diameter D, are attenuated by the sample and then captured by 
the detector.

The remote-controlled pinhole selector on IMAT instrument will offer a choice of 

five apertures (diameter of 5, 10, 20, 40, 80 mm) for defining different L/D ratios. 

Moreover, the pinhole selector will have one position with a large enough opening so that 

the 95x95 mm2 neutron beam passes through unobstructed for the diffraction mode.

In the following results from the McStas investigations of the pinhole performance 

are presented, for different pinhole sizes, variations of the neutron flux for different 

distances between pinhole and detector, and for the influence of the pinhole thickness on 

the neutron flux.

pinhole

D
sample-

detector
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3.6.2 Imaging performance for different pinholes size

Figure 3.6.2 shows the virtual instrument set-up in McStas using a moderator-guide- 

pinhole-PSD combination.

neutron guide pinhole . PSD monitor

< >
1

<  ►

1.7m 42.8m 1.5m 10m

Figure 3.6.2: Imaging set-up with the geometric blur illustration.

The PSD monitor with dimension 20x20 cm2 and 100x100 pixels was placed on the 

sample position at L=10 m distance from the pinhole. The image resolution or geometric 

blur relation d = l / ( L /  D)  is depending on L/D ratio and the distance between sample and 

scintillator screen I, settled in such manner as the sample will have sufficient space for 

rotation for tomography measurements (see section 2.3.3). A typical value for the distance 

between sample and monitor is about 10 cm.
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Table 3.6.1: Neutron flux on the PSD monitor depending on pinhole size, integrated fo r a 
wavelength range from 0.1 to 10 A. The spatial resolution is given fo r a 

____________ sample-PSD distance o f 10 cm.___________________ ___________________
Pinhole 

diameter (mm)
L/D Image resolution 

(mm)
Max neutron flux on 

the PSD monitor
(n/cm2/sec)

Total neutron flux on 
the PSD monitor 

(n/cm2/sec)
5 2000 0.05 1.86e+06 0.81e+06

10 1000 0.1 5.75e+06 0.33e+07

20 500 0.2 2.12e+07 1.31e+07

40 250 0.4 8.32e+07 0.52e+08

80 125 0.8 3.00e+08 1.94e+08

From the output data (for a defined L/D ratio) of the PSD monitor we can extract the 

integrated neutron intensity and calculate the total neutron flux (by dividing the total 

neutron intensity by the detector’s area of 400 cm2) corresponding to an average neutron 

flux on the PSD. Moreover the maximum neutron flux is evaluated by dividing the 

maximum neutron intensity to the pixel size (0.04 cm2). (Table 3.6.1)

Resolution [mm]
0.80 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.00E+09

1.00E+08

1.00E+07

o 1.00E+06

1.00E+05
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Pinhole diameter [m]

Figure 3.6.3: Neutron flux integrated over the entire monitor as function o f pinhole 
diameter and resolution. Note the log scale.
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Increasing the pinhole size (decreasing L/D) we gain a higher neutron flux and also the 

image blurring increases due to the increase of the beam divergence. A small pinhole 

considerably reduces the neutron flux (Figure 3.6.3). In section 4.2.4 this kind of 

investigation (pinhole size vs. neutron flux) will be developed for the both wavelength 

bands used by IMAT instrument (single-frame mode 0.7-7A and double-frame mode 2- 

14A).

The 2D distributions and ID profiles of the neutron intensity on the PSD monitor 

(Figure 3.6.4) for smaller pinholes are inhomogeneous indicating geometric stripe patterns. 

The square profile is determined by the image of the object, in our case the guide exit, 

which is produced with a “camera obscure” geometry (i.e. the smaller the pinhole, the 

better the image). As we saw above the primary cause of the geometric artefacts is that 

there are regions of the detector which look at points on the guide -  moderator system from 

which no neutrons emanate such as regions outside of the moderator and gaps in the 

neutron guide.

For a larger pinhole (diameter of 80 mm) the beam profile on the PSD monitor is 

different, i.e. more round due to the blurring effect which distorts the image of the object 

and the artefacts still exist but they are washed out. The beam profiles measured in both 

vertical and horizontal directions as a function of pinhole size show the symmetry of the 

intensity distribution and the positions of the peaks and depths of the artefacts across the 

PSD monitor.
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Figure 3.6.4: N eutron in tensity d istribu tion  f o r  P SD  m on itor f o r  different p in h o les  (left) 
and horizon ta l and  vertica l neutron beam  p rofile  (right).

The image artefacts can be corrected by pixel-by-pixel normalisation. It is expected that 

routine experiments on IMAT instrument will mostly use L/D ratio of 250 or 500.

3.6.3 The influence of the pinhole thickness on the neutron flux

For the above mentioned Monte Carlo simulations a pinhole with thickness 0 mm was 

used. In reality, the pinhole has a thickness and could be straight or tapered. We extended 

our research on the circular pinhole investigating the influence of the pinhole thickness on 

the intensity distribution on the PSD monitor (Figure 3.6.5).
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Pinhole thickness 
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Figure 3.6.5: Pinhole sketch.

Two pinhole radii 1 cm and 0.5 cm with thicknesses 0.1 cm, 1 cm and 4 cm were 

simulated. In McStas two parallel circular pinholes (with same size) made from an 

absorbing material (i.e. totally black for neutrons) and separated by a distance were used. 

Otherwise, the imaging set-up in McStas was same as in the previous paragraphs with 

distance pinhole-PSD monitor selected at 10 m.

2
Table 3.6.2: The neutron flux calculated on PSD monitor (20x20 cm ) depending on 

pinhole thickness. _______________________________
Pinhole thickness (cm) Neutron flux on PSD (neutrons/sec/cm*)

R=0.005m R=0.01m

0 0.3258e+07 1.3074e+07

0.1 0.3253e+07 1.307e+07

1 0.3226e+07 1.3008e+07

4 0.31357e+07 1.28057e+07

It is evident that the pinhole thickness does not have an important influence on the neutron 

flux value; however, a thin pinhole gives a slightly higher flux (see Table 3.6.2).
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Figure 3.6.6: Horizontal beam profile on the PSD monitor (left: R=0.005m; right: 
R=0.01m)

The neutron intensity distribution profiles (Figure 3.6.6) are almost same for all pinholes 

thicknesses. This confirms the previous statement that the pinhole thickness (up to 4 cm) 

does not influence significantly the radiography. In other words, a collimating effect for 

pinhole thicknesses up to 4 cm can be neglected.

3.7 Effects on neutron detectors

A neutron radiography/tomography experiment requires the placement of the object in the 

path of the neutron beam and the measurement of the “shadow” image of the sample as 

projection on a neutron detector.

For IMAT two detector systems are proposed offering a good spatial resolution and 

high detection efficiency as well as capabilities for energy-selective measurements: a 

charge-coupled device (CCD) [161] and the pixel camera [162]. In the next paragraphs we 

will offer a short overview of both systems.
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3.7.1 CCD camera

For the standard white-beam radiography/tomography as well as for energy-selective 

applications a charged-coupled device, CCD camera, is required. The basic principle of the 

CCD could be described as follows: the neutrons are converted into visible light by a 

converter called “scintillator” and then this light obtained is recorded with the camera or 

another optical device via a light-optical system. This camera system for the IMAT 

instrument is designed by ISIS in collaboration with CNR Messina, Italy [161]. The choice 

of the CCD camera has been made based on its obvious advantages. One is that the cooled 

CCD camera has a low intrinsic background (darkfields counts) and another convenience 

(very important for IMAT) is that the CCD camera can be “gated”, i.e. camera can be 

switched on and off using an external trigger signal. For IMAT, built on a pulsed neutron 

source, the proton pulse signal at the neutron generation (TO signal) is used as trigger 

signal. The camera has a light intensifier which can be switched on/off. The gating allows 

to switch the light intensifier on after a given time after TO (time-offset) and leave it active 

for a given time (time-window). In this way, a wavelength band is selected, and therefore 

energy selection is achieved.

neutrons
Camera control, 
computer, display

Entrance window 
and scintillator

lens CCD camera

Figure 3.7.1: Schematic view of CCD camera system.
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The maximum field-of-view for imaging is determined and limited by:

a) The operational space available at the sample position for sample movements and the 

other hardware such as the diffraction detectors installation;

b) The requirement to build a compact, transportable camera box;

c) The size of the useable portion of the beam at the sample position defined by pinhole 

and pinhole-camera distance.

For the distance of 10 m between pinhole and camera a reasonable field-of-view
(

(FOV) calculated is 20x20 cm2. Moreover, the IMAT CCD camera will have at least 

1000x1000 pixels per matrix, providing the highest spatial resolution of 0.05 mm for a 

field of view of 5x5 cm2 and >0.2 mm for the maximum FOV, 20x20 cm2. Another feature 

is that the camera box needs to be light-tight in order to prevent light entering the box and 

disturbing the collection of light from the scintillator.

Figure 3.7.1 presents a sketch of the CCD camera system. The entrance window is 

at the front of the camera box. The scintillator screen (e.g. ZnS/LiF) is screwed or glued 

onto the window (a similar system is used on NEUTRA). A thinner scintillator is preferred 

because it limits the spread of light in the scintillator and thus a blurring of the signal by 

the neutron scintillator is reduced. The mirror is mounted at 45 degrees to ensure that all 

optical paths from the scintillator to the CCD chip are the same. The CCD camera needs to 

be sufficiently far from the neutron beam to prevent a potential radiation damage of the 

CCD chip. In addition, the chip must be shielded against the scattered neutrons. The outer 

dimensions of the CCD camera system are 440x500x1400 mm3.

As an equivalent component to the CCD camera McStas uses the PSD monitor. It is 

assumed that the PSD monitor is a “perfect” detector, i.e. all neutrons impinging on the 

PSD are detected. Furthermore, the PSD monitor in McStas does not have any thickness 

and is defined as a square with dimensions selected by the users. In the modelling 

investigations we are interested only in the neutron flux values and not in the detector
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resolution. For this reason the PSD monitor employed in the simulations have 100x100 

pixels distributed along 20x20 cm2.

3.7.2 Pixel camera

An interesting feature of the TOF neutron transmission radiography is its capability to 

produce radiographic images for every energy in a broad neutron energy range, thus taking 

the advantage of using the full beam spectrum. This is in contrast to white beam 

radiography which averages over the energy range. IMAT will have a pixel camera (pixel 

array) that is “TOF capable” and hence can provide TOF transmission spectra for every 

pixel. The combination of both spatial and time information obtained from TOF spectra 

enables various studies including Bragg edge transmission imaging, texture mapping and 

mapping through measuring the spatially resolved parameters of Bragg edges: their 

heights, widths and positions. The IMAT pixel camera (also called, TOF pixellated Bragg 

edge detector) is based on microchannel plates (MCP) developed by Space Science 

Department, Berkeley, USA [101]. The MCP outer dimension is approximately 

200x200x100 mm3.

The MCP system converts neutrons into electrons without light generation and 

subsequently the electrons are multiplied and registered for each individual pixel. The 

pixel camera has already been successfully tested at ISIS on ENGIN-X [162]. A spatial 

resolution of 55 pm is obtained for maximum FOV of about 30x30 mm2 and its timing 

resolution is better than 1 ps.

From a McStas modelling point of view, MCP pixel camera can be represented by 

the PSD monitor, just like the CCD camera. Moreover, the lambda monitor emulated the 

TOF capability of the MCP pixel camera if we assume that we only have one pixel or we 

assume that we sum up all pixels of the MCP to obtain a neutron intensity spectrum as
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function of wavelength. In Section 4.3.3 the lambda monitor will be used in the modelling 

of energy-selective experiments as the real pixel camera does in one pixel.

3.7.3 The neutron intensity variations outside the detector area

The maximum camera area or maximum field of view (FOV) was specified as 20x20 cm2 

by the designers. Here we look at the drop of intensity outside the camera area in order to 

aid the design of the camera entrance window and position of components inside the 

camera box. It is desired to make the entrance window slightly bigger for minimizing 

unwanted neutron scattering on the camera materials. For investigating how large the 

entrance window should be and at what position from the centre the intensity drops off to 

10% or 1% we used McStas simulations incorporating a PSD monitor with a large size 

70x70 cm2 placed at the sample position, i.e. 10 m distance from the pinhole. In the 

schematic Figure 3.7.2 the entrance window for neutrons (yellow) corresponds to the 

bigger PSD monitor (70x70 cm2) in our simulations.

Camera box (green)

Entrance window for 
neutrons (yellow)

Scintillator screen (red) 
200x200 mm2

Intensity distribution on PSD 
monitor (McStas) for 

200x200 mm2

Figure 3.7.2: Schematic front view of camera box.
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The instrument settings will be same as used in the previously sections. 1010 neutrons were 

generated in the wavelength band 0.1-10 A for different pinholes diameter (0.01 m, 0.02 m 

and 0.04 m). We selected one horizontal row in the middle of the PSD and plotting the 

normalised neutron intensity versus position on the monitor, as displayed in Figure 3.7.3.
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Figure 3.7.3: The horizontal profile plot o f the PSD monitor fo r  different pinholes sizes.
The red lines mark out where the intensity drops for -20, +20 cm.

As shown in Figure 3.6.4 for a PSD monitor with size 20x20 cm2, the beam profile shape 

on the bigger PSD is similar for all pinholes sizes (exception being the artefacts which are 

more visible for the smaller pinholes). Moreover, the drop of intensity at the edges of the 

monitor is almost independent of the pinhole size. With respect to the centre of the PSD 

the intensity drops to about 50% for -9,+9 cm, 42% for -10,+10 cm, 10%, for -18,+18 cm, 

5% for -20,+20 cm monitor size and almost 2.5% for -25,+25 cm distances. From these 

results it is concluded that the beam intensity outside the scintillator screen is too high and 

needs to be reduced in order to avoid unwanted scattering of neutrons on camera box 

materials. This leads to the investigation of the effect of the beam jaws on the beam profile.
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3.7.4 Investigations the effects of jaws for the building of camera box

For imaging and diffraction beam defining beamline “jaws” (beam delimiters) will be used 

in order to set variable beam diameters/sizes, to control the divergence of the beam or to 

restrict the size of the beam for imaging to illuminate only part of a sample or the 

scintillation area of the camera.

Beamline jaws are made of a neutron absorbing material, for example boron 

carbide, B4C in resin. In theory two pairs of delimiters would suffice to collimate a beam. 

However, the edges of the jaws will mostly absorb neutrons but they will also partially 

scatter or transmit neutrons. The idea is to catch these scattered neutrons as effective as 

possible. Therefore five pairs of jaws are planed for IMAT, one pair serving for horizontal 

and vertical collimation at a given distance from the pinhole.

To investigate how effective the size of the beam can be limited to the camera area 

size 20x20 cm2 we set-up a model in McStas with five pairs of jaws (Figure 3.7.4).

pinhole

jaw sl jaws2 jaws3 jaws4 jaws5

PSD
monitor

Figure 3.7.4: System of jaws for IMAT imaging instrument.
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For this investigation two pinhole sizes were considered: fully open beam (pinhole radius 

is 0.05 m) when the instrument is prepared for diffraction experiments and the “standard” 

imaging pinhole with radius 0.01 m. For the two pinhole sizes and for the jaws positions 

suggested by the designers, the half openings of the rectangular jaws were calculated 

(Table 3.7.1).

The jaws were placed between pinhole and PSD monitor as follows:

lset of jaws positioned at 2 m after the pinhole

2nd set of jaws: 3 m after the pinhole

3rd set of jaws: 4 m after the pinhole

4th set of jaws: 5 m after the pinhole

5th set of jaws: 6 m from the pinhole.

The PSD monitor, as in the previous simulations, was positioned at 10 m after the pinhole.

Table 3.7.1: Aperture o f jaws fo r R=0.05m and R=0.01m.
Jaws aperture Fully open beam (R=0.05m) Circular beam (R=0.01m)

Jaws-1 0.06 0.028

Jaws-2 0.065 0.037

Jaws-3 0.07 0.046

Jaws-4 0.075 0.055

Jaws-5 0.08 0.064

Four Monte Carlo simulations have been performed using the instrument configuration as 

used in the previous sections. For two of the four simulations the five sets of jaws were 

added with dimensions given in Table 3.7.1. The PSD monitor with a large field of view 

70x70 cm2 and 100x100 pixels matrix was used in order to catch up all neutrons arriving 

at the sample position and with the purpose of observing the entire profile of the neutron 

beam, within and outside the scintillator area.
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Figure 3.7.5: Intensity profiles on the PSD monitor derived from the horizontal line 
selected in the middle o f the monitor.

The simulations with the jaws (Figure 3.7.5) show that we can use the jaws to effectively 

cut off the tails of the intensity profile. Cutting off the tails is very important as the 

intensity in the tails is still very high (could be in the range of 106 n/cm2/s, as much as on 

ENGIN-X instrument). The two curves for the model without jaws, and the two curves for 

the model with jaws are quite similar but not the same. To study the effectiveness of the 

jaws for limiting the neutron beam some analysis results are reported below:

With respect to the centre of the PSD monitor, the intensity drops to about 50% for 

-9.5, +9.5 cm, 10% for -16,+16 cm, 5%, for -17,+17 cm monitor size and almost 1% for - 

17.2,+17.2 cm distances for pinhole radius 0.01 m. For fully open beam the intensity drops 

to about 50% for -10.5, +10.5 cm, 10% for -15.2,+15.2 cm, 5%, for -16,+16 cm monitor 

size and almost 1% for -17.2,+17.2 cm distances.

It is concluded that the jaws can be used to effectively adjust the beam profile to the 

20x20 cm field-of-view as required.
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3.8 Summary

On IMAT instrument the neutron beam will be transported from the moderator to the 

pinhole selector by a square, straight supermirror guide providing a long flight path to 

achieve a good time-of-flight and energy resolution. The large cross section of the neutron 

guide, 9.5x9.5 cm2, and m=3 provides a sufficient flux at higher energies at reasonable 

costs and also a symmetric open beam field for neutron imaging. A broad-pulse coupled 

moderator (filled with liquid hydrogen on one side and solid methane on the other side) 

with a large viewable area 11x11 cm ensures a high thermal and cold neutron flux for 

imaging and diffraction analysis. A decision on the guide cross section size was taken after 

an extensive study of the performance parameters of the imaging beamline and after 

making compromises with diffraction requirements.

The neutron guide design includes gaps for choppers and other instrument 

components. The effects of these gaps on the radiographies and neutron flux distribution at 

the sample position were evaluated. Hence, geometric artefacts (stripe patterns) clearly 

appear for gaps bigger than 0.2 m for minimum aperture size of 5 mm and bigger than 0.5 

m for the standard aperture size of 20 mm. Also, the gaps reduce the neutron flux with 

almost 1% for every 10 cm gap. The requirement is that the gap sizes for components in 

the neutron guide need to be strictly minimized, which means for example that the chopper 

blades need to be as thin as possible.

Depending on the requirements of particular imaging experiments (for example do 

they require high neutron flux or high spatial resolution) the L/D ratio can be varied via 

different pinhole sizes, for a fixed distance L between pinhole and imaging detector. 

Increasing the pinhole size (so, decreasing L/D) the neutron flux is increased, but also the 

blurring due to the larger beam divergence.

141



It was not the purpose of this thesis to present technical or engineering details of the 

instrument components, but our results helped the engineers and designers to take some 

decisions on certain specifications for components. For example, to minimize unwanted 

neutron scattering by the CCD camera material beam profile calculations at the entrance 

window were determined.
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4 Generation of simulated IMAT imaging data

Based on the preliminary investigations of the IMAT imaging instrument presented in 

Chapter 3, particular aspects of the neutron beam relevant to future white beam or energy- 

selective imaging applications and performance of the complete instrument are 

investigated here.

4.1 Overview of the IMAT design

Firstly, in this section a summary of the current (at time of writing [8]) IMAT instrument 

design is presented. In the second part an overview of the staged development of the IMAT 

(staged due to funding and time constraints) is given, followed by a description of the 

IMAT imaging instrument as modelled in McStas.

4.1.1 Summary of the present IMAT design

The IMAT instrument will be built on a 56 m flight path (from the moderator to the sample

position) being optimized for high neutron flux for imaging and in-situ diffraction studies.

IMAT will be placed on port W5 on ISIS TS-2, which operates at 10 Hz. IMAT

will view the broad pulse coupled moderator, composite liquid hydrogen (L-H2) -  solid

methane (S-CH4), at an angle of 1° (horizontal) from the nominal W5 axis. This moderator

was chosen to ensure a high thermal and cold neutron flux for imaging and for rapid

diffraction analysis. The tilted view of the moderator is required to avoid physical

obstructions external to the target station.

A straight, square supermirror guide will start as close as possible to the moderator

centre at 1.7 m and will transport the neutrons to the pinhole selector position, thereby
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providing a long flight path to achieve the time resolution required for energy selective 

imaging and diffraction experiments. The total length of the neutron guide is about 44 m, 

with a cross section of the guide of 100x100 mm2 in the 2 m shutter section and a cross 

section of 95x95 mm2 for the main guide.

Pinhole selector
ChoppersDiffraction 0 . . .  ,. . . Radial collimator detectors

Moderator

44 m, m=3 supermirror guide
/

Imaging
detector

56 m 20 12 m 0 ms46 m

Figure 4.1.1: IMAT instrument schematic. The neutron beam is transported to the first 
sample position at 56 m.

From the pinhole selector the beam is guided in evacuated tubes up to the sample 

area. There will be two sample positions available. The main sample position is planned 

for a flight path of 56 m from the moderator centre (i.e. 10 m after pinhole) providing a 

large area for the installation of imaging cameras in transmission and of diffraction 

detectors (Figure 4.1.1). The neutron beam size at this sample position (56 m) will vary 

from 20x20 cm2 for imaging to a minimum of lx l  mm2 for diffraction applications. The 

second sample position 51 m from the moderator centre (not shown in Figure 4.1.1) 

(available at a later stage of the instrument development) will enable imaging experiments 

with higher intensity.

The neutron guide will have gaps for different instrument hardware components 

such as vacuum gate valves, choppers, neutron monitors etc, which, following the
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conclusions from Section 3.5.2, will be minimised due to their effects on the neutron 

radiographies. The most important such gaps are as follows: gate valve gap (0.1 m) at 11.8 

m from moderator centre; first double-disk chopper gap (0.05 m) situated at 12.2 m (see 

section 3.5.1); a chopper used for filtering fast neutrons and gamma rays, TO chopper, (see 

section 3.5.1) will be located in the further gap (0.35 m) at 12.75 m followed by a gap for 

the second double-disk chopper (0.05 m) at 20.4 m. The pair of double-disk choppers are 

used to prevent frame overlap and operate in two modes:

(1) a standard single-frame operation when the double-disk choppers will run with the 

source frequency of 10 Hz and the TO chopper will run at 20 Hz;

(2) a double-frame mode with a bandwidth of 12 A when the double-disk chopper will run 

at 5 Hz and the TO chopper will run at 10 Hz. For a square neutron beam of 95 mm side 

length, a standard double-disk radius of 325 mm and for 10 Hz running, the opening time 

is 2.7 ms. The double frame mode will be available via PC remote control.

The frequency of the source, chopper frequencies, positions and opening angles 

provide information on the wavelength band: the single frame operation gives a band of

0.7-7 A and the double-frame mode gives a band of about 2-14 A. These calculations 

indicate the wavelengths of neutrons passing through the chopper system (see blue lines in 

Figure 4.1.2) [163]. They also indicate if neutrons leak through the chopper system. 

Following these calculations an additional absorbing blade, a so-called tail-cutter, will be 

added to the TO chopper in order to prevent frame overlap (see section 2.2.3).
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Figure 4.1.2: Distance-Time diagram for standard chopper settings fo r the flight path o f 
56m; (a) bandwidth 6 A: DD1, DD2 at 10Hz, TO at 20Hz; (b) bandwidth 12 
A: DD1, DD2 at 5Hz, TO at 10Hz; The black horizontal bars indicate the 
time periods o f DD1, DD2, and tail cutter blades. The green bars indicate 
the position o f the TO chopper blade.

Detector position
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The remote-controlled pinhole selector will offer a choice of five apertures (D=0.08 

m, 0.04 m, 0.02 m, 0.01 m and 0.005 m) defining different L/D ratios (125, 250, 500, 1000 

and 2000) where L=10 m is the distance from pinhole selector to the imaging camera and 

D is the pinhole diameter. The pinhole selector will have also a large open position 

allowing the beam to pass through for diffraction experiments. With a set of beamline jaws

(see section 3.7.4) and one set of slits placed just in front of the sample the beam size at the

2 2 sample position can be adjusted from 200x200 mm for imaging to a minim of lx l  mm

for diffraction applications. The switching from imaging to diffraction experiments will be

made by modifying the pinhole size to the open beam position and adjusting the jaws to the

desired gauge volume size. Table 4.1.1 summarizes the IMAT beamline parameters and

expected performance parameters. Some of the performance parameters presented in Table

4.1.1 are the result of calculations that are described later in this chapter.

Table 4.1.1: Main IMAT instrument components and the expected performance 
____________ parameters [8] .____________________________________________________
General: Moderator L-H2 / S-CH4 (W5 port on TS-2)

Repetition rate 5, 10 Hz

Neutron guide m=3, straight, square
100x100 mm2 in 2 m long shutter section
95x95 mm2 for ~42 m guide

Choppers TO (20 Hz), 2 double-disk choppers (10 Hz)

Single frame bandwidth 0.68 - 6.8 A
Double frame bandwidth 2 -14 A
Flight path to sample 56 m

Imaging: L: Distance pinhole -  
sample
D: Aperture diameter

10 m
5, 10, 20, 40, 80 mm

L/D 2000, 1000, 500, 250,125

Best spatial resolution 50 pm

Max Field of View 200x200 mm2

Detector types Gated CCD camera
Max. Field of View: 200x200 mm2
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High-resolution (TOF) pixel detector 
Max. Field of View: 30 x 30 mm2

Diffraction Secondary flight path 2.0 m (at 2theta=90 degree)

Detector type Wavelength-shifting fibre coded ZnS/LiF
scintillation detectors at 2theta=20, 45, 90, 125, 
155 degrees

Detector coverage 4 steradian (1 sr at 90 degrees)

Minimum gauge volume 1 x 1 x 1  mm3

Two imaging cameras will be available: a gated CCD camera (see section 3.7.1) with a 

maximum field-of-view of 20x20 cm2 and a TOF capable high-resolution pixel detector 

(see section 3.7.2) with a field of view of 30x30 mm2. The two cameras are not used at the 

same time but can be used in turn. In addition, five highly pixellated diffraction detector 

arrays at different 20 scattering angles with a total solid angle coverage of 4sr will be 

installed for diffraction experiments. Two detector banks at 90 degrees have a particular 

relevance for strain analysis, allowing simultaneously measurement of two orthogonal 

strain components. Radial collimators will be installed between sample and each detector 

bank in order to define a diffraction (gauge) volume for a given beam size. Every 

collimator unit can be removed or exchanged for a different one; collimators with varying 

gauge sizes are being designed to provide ample space for samples and diffraction scans. 

For example, the available space between the collimator faces for a 2 mm gauge will be 

about 1 m.

4.1.2 The staged development of IMAT instrument

IMAT will be installed in two stages. Figure 4.1.3 shows the initial IMAT experimental 

area. The blockhouse will be inside the IMAT extension building. A user and computer
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cabin (“pod”) (not shown in Figure 4.1.3) will be situated on a balcony above the pinhole 

selector.

Figure 4.1.3: Artist's impression of the IMAT Day-1 blockhouse. The IMAT instrument 
will include: imaging cameras (CCD camera and Bragg edge detector), 
sample positioning system, and diffraction detectors with collimators at 90 
degrees. Note: radial collimators in front o f the 90 degree diffraction 
detectors are not in scale [8].

The IMAT instrument in the first stage will comprise the following components and 

features:

• Beam monitors for diagnostics and normalization;

• Pinhole selector for five apertures: range of L/D values from 125 to 2000; IMAT will be 

working mostly with L/D of 250 or 500.

• Fast experimental shutter for minimizing neutron exposure of samples when no data are 

collected;

• Adjustable jaws and slit system to vary the size of the incoming neutron beam;

• Heavy duty sample positioning system (SPS) (maximum: 1.5 t), including a tomography 

rotation stage (maximum: 50 Kg);

• Two imaging cameras and diffraction detectors with specifications as presented in the 

below table (Table 4.1.2). The CCD system is required for “standard” white-beam
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radiography and tomography experiments as well as for many energy-selective 

applications.

Table 4.1.2: The detectors for the stage 1 o f the IMAT instrument.
Imaging: Gated CCD camera:

Max Field of View (FOV) 
Best spatial resolution 
FOV: 200x200 mm2 
FOV: 100x100 mm2 
FOV: 80x80 mm2 
FOV: 50x50 mm2 
Timing resolution 
Camera box (retractable)

200x200 mm2

200 pm +above 
100 pm 
80 pm 
50 pm 
100 ps
400x500x1300 mm3

TOF pixellated Bragg edge detector (based on A. Tremsin 
-  MCP detector specification)

Max Field of View (FOV) 
Best spatial resolution 
Timing resolution 
Camera box (retractable)

30x30 mm2 
55 pm 
<1 ps
300x300x200 mm3

Estimated counting times:
White-beam radiography: 1 -60 s 
A-dependent radiography (CCD): 1-10 min per A-slice 
Full TOF spectrum MCP: 10 min-2 hours 
White-beam tomography: 2-6 hours

Diffraction: Two diffraction detector arrays at 90 degrees

Area coverage 
Pixel size 
d-spacing

1sr (4 m2)
4x100 mm2
0.5-4.8 A (for standard single-frame 
bandwidth)

Radial collimator sets (for the two 90 degrees banks)

Gauge volumes 1, 2, 5 mm3

The combination of both spatial and time information enables texture mapping and strain 

analyses, as well as studies of phase compositions and phase transitions. It should be 

emphasised that the three IMAT detector systems (two imaging cameras and diffraction 

detectors) will normally not be operated simultaneously since the corresponding modes 

need different beam sizes and sample orientations. The blockhouse design will need to take 

into account the different operational modes of the instrument allowing:
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• Switching-over between imaging to diffraction modes;

• Supporting of and reproducible positioning of imaging cameras; retraction and 

storage of imaging cameras during diffraction experiments;

• Crane access through an opening roof, for changing samples, sample environment 

and collimators;

• Positioning of samples of up to 1.5 t;

• Sample preparation and off-line testing area outside blockhouse.

For samples larger than the maximum field-of-view, full radiographies and tomographies 

can be collected in scanning mode and the data obtained merged, post-experiment, to 

obtain the full sample tomography.

In the Stage 2, further detectors at forward and backscattering angles will be installed, 

bringing the detector coverage to a total of 4 steradian (Figure 4.1.4). This will enable in- 

situ texture studies in combination with phase, structure, texture, strain and imaging 

analyses. The additional detectors will significantly extend the d-spacing range to 0.35-20 

A. Also, the extra angular coverage will permit in-situ texture analyses during tensile 

testing and/or temperature treatment for a single sample orientation.

m m
\ ' J

Figure 4.1.4: A r tis t’s im pression o f  the IM A T Stage-2  blockhouse. D iffraction  d e tec to rs  a t 
fo rw a rd  and backscattering  angles w ill be a d d ed  [8].
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The instrument in the 2nd stage comprises as extras to the Day-1 set-up:

• Four diffraction banks at off 90 degree positions;

• High pixellation within a bank, with a pixel angular range of about 5 degree;

• Radial collimators for diffraction gauge volumes of 5 and 10 mm in front of 

detectors;

• Additional radial collimators for the 90 degree banks (e.g. 4 mm and 10 mm). 

Future upgrade options

There are a number of possible upgrade options which could extend the capabilities and 

performance of the instrument. The IMAT instrument design has inbuilt flexibility for 

further future upgrades at a later stage; the blockhouse design provides ample space for 

operations and installations. The beam tubes and beam jaws between pinhole and sample 

are of modular design and can be easily removed or re-positioned. That is to say, the 

current engineering design does not preclude the future upgrade options:

• Filters: optional filters or diffusers could be inserted between end of guide and pinhole 

selector;

• Extended detector coverage: some of the detector banks could be extended to increase 

out-of-plane coverage;

• Second imaging position: adding an imaging camera at 5 m from the pinhole will be 

relatively straightforward. The intensity increased is about fourfold, at the expense of FOV 

which would be about 10x10 cm2. Such a station would increase the flexibility for imaging 

studies considerably, by trading field of view, resolution and intensity between the two 

sample positions;

• X-ray tube: if required a tube could be installed at the 5 m position, for complementary 

X-ray imaging;
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• Improved imaging resolution: the pinhole selector will be designed with a flexible 

cartridge system, i.e. pinhole sizes and materials can be changed at a later stage. The 

instrument will be sufficiently flexible to upgrade it with state-of-the art imaging cameras.

• Improved diffraction resolution: radial collimator modules for smaller gauge volumes 

can be added later if required and if flux levels allow this;

• Polariser for magnetic imaging: A polarizer could be installed upstream of the 

backscattering bank. The instrument setup and the achievable wavelength resolution do not 

exclude magnetic imaging applications at low magnetic fields.

4.1.3 Modelled IMAT imaging instrument in McStas

Based on the previous descriptions, IMAT was modelled in McStas (see Appendix 3) 

through the following components: moderator-guide-pinhole-jaws and monitors: position- 

sensitive-detector and lambda monitor (Figure 4.1.5). Specifically:

1. ISIS_moderator component: cross-section 110x110 mm2;

2. Rectangular guide:shutter section position 1.7 m, 2 m in length and cross section of 

100x100 mm2;

3. Rectangular neutron guide: 42 m length with cross section 95x95 mm2 sectioned by the 

gaps to give section lengths of: 8.05 m, 0.275 m, 0.5 m, 7.3 m and 25.275 m.
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shutter guide 5 pairs of jaws
section sections pinhole

1.7m 0.05m 0.1m 0.05m 0.35m 0.05m 0.3m 10m

Figure 4.1.5: Schematic outline o f the IMAT imaging instrument modelled in McStas.
Note: the rectangular black block represents the moderator and the 
rectangular blue blocks are the sections o f the neutron guide.

4. Pinhole: At 0.3 m after the guide exit the aperture selector with the circular pinhole is 

placed.

5. Jaws: The beam collimated by the pinhole is delimited by the five pairs of jaws (see 

section 3.7.4): first pair at 1.5 m after pinhole, second pair at 3 m, third pair at 4.5 m, the 

forth pair at 6 m and the last pair at 7 m. The opening size of each jaw was calculated 

given its position on the beamline and the pinhole diameter

6. Sample: The sample position was considered at 10 m after the pinhole. In Section 4.3 

there will be performed two sets of simulations: the one using the standard McStas 

polycrystalline sample (i.e. the vanadium sample component from McStas), which does not 

model wavelength dependent attenuation, and another set looking at wavelength dependent 

attenuation effects where it was used a polycrystalline specimen (i.e. iron bcc powder) 

described in McStas by the BraggEdge powder component.

The McStas IMAT model detailed above neglects some features and components of 

the real instrument as they were considered unimportant to the modelling process. These 

include: air in torpedo, aluminium windows, potential misalignment of the guide sections, 

0.03 m circular gaps in top section of the neutron guide for monitors, 0.01 m gap for two 

additional electronic gate valves, and filters in front of the aperture selector.
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The following sections present the results of simulations designed to explore the 

performance of IMAT as represented by this model.

4.2 Performance simulations of the present IMAT design

4.2.1 Wavelength distribution of the neutron flux

The wavelength spectrum dependency effects introduced by the instrument components 

such as neutron source, neutron guide, gaps or pinhole are particularly important for 

energy selective imaging. We had interests to investigate different aspects of the 

wavelength spectrum as it changes from the exit of the moderator through the instrument 

up to the sample position. Therefore lambda monitors of the same sizes (20x20 cm2) were 

placed at different positions in the McStas IMAT instrument (Figure 4.2.1): first monitor 

(lmonl) after moderator at 1.699 m, the others in the neutron guide gaps at: 3.749 m 

(lmon2), 11.899 m (lmon3), 12.224 m (lmon4), 13.074 m (lmon5), 20.424 m (lmon6); one 

at the guide exit, before the pinhole (lmon7) at 45.701 m and the last (lmon8) on the 

sample position at 56 m.

I
shutter
section

I

guide
sections

I I

5 pairs of jaws
pinhole I J J i -

lmonl lmon2 lmon3 lmon4 lmon5 lmon6 lmon7 lmon8

Figure 4.2.1: The IMAT diagram with lambda monitor positions along the instrument.
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1010 neutrons were generated in the standard operational mode 0.7-7 A (later, in the

double-frame mode 2-14 A) which were then collimated by a pinhole with a diameter of 40 

mm. The IMAT set-up in McStas was same with the one defined in Section 4.1.3.

x 10

(a)

Imorn
lmon2
lmon3
lmon4
lmon5
lmon6
lmon7
lmon8

2 3 4
Wavelength [A]

x 10

(b)

lmon5
lmon6
lmon7
lmon8

-  2

Wavelength [A]

Figure 4.2.2: The wavelength spectra along the beamline from the moderator to the 
sample position fo r the single-frame bandwidth 0.7-7 A (a) and from the 
lambda monitor 5 to the lambda monitor 8 (on the sample position) (b).
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Figure 4.2.3: The wavelength spectra along the beamline from the moderator to the 
sample position fo r the single-frame bandwidth 2-14 A (a) and from  the 
monitor 5 to the monitor 8 (on the sample position) (b).
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Figure 4.2.2 and Figure 4.2.3 show the distribution of the neutron intensity as a function of 

wavelength for the different positions along the instrument. {Note: Because the low 

visibility of the plots on Figure 4.2.2 a and Figure 4.2.3 a, two figures zooming into the 

monitors 5 to 8, i.e. Figure 4.2.2 b and Figure 4.2.3 b, were added). The maximum 

intensity of lmonl (placed in the gap between moderator and shutter section) drops by 

almost 78% on the lmon2 placed after the shutter section (Figure 4.2.1). With almost the 

same percentage the total neutron intensity (i.e. summed over the entire PSD) drops 

between lmonl and lmon2. At the moderator exit we have a mixture of shorter and longer 

wavelength neutrons, but in the neutron guide only the neutrons with wavelengths in the 

range 0 < X < Xcrit (where Xcrit represents the wavelength dependant the critical angle) are

travelling up to the lmon7 position. We can note that as the neutrons travel through the 

guide, some of them are reflected, (a part of which are transmitted through the guide walls 

and absorbed in the shielding) but that others proceed straight ahead passing through the 

guide, from moderator to guide exit, without being reflected. Increasing the flight path, the 

maximum neutron intensity (respectively, total neutron intensity) obviously decreases as 

explained above. Table 4.2.1 lists the maximum and total intensity for the different monitor 

positions.

Table 4.2.1: Maximum neutron intensity and total neutron intensity on X-monitors placed
along the beamline as described in Figure 4.2.1.

Monitor Maximum neutron intensity (n/s) Total neutron intensity (n/s)

Lmonl 5 .5 7 x 1 09 2 .8 2 x 1 0 12

Lmon2 1 .2 4 x 1 09 7 .1 5 x 1 0 11

Lmon3 6 .5 9 x 1 08 3 .7 2 x 1 0 11

Lmon4 6 .4 4 x 1 08 3 .6 2 x 1 0 11

Lmon5 6 .3 2 x 1 08 3 .5 4 x 1 0 11

Lmon6 5 .1 3 x 1 0 8 2 .8 4 x 1 0 11

Lmon7 3 .6 2 x 1 08 2.01 x 1 0 11

Lmon8 3 .6 6 x 1 0 7 1 .7 7 x 1 0 1°
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A further neutron intensity drop occurs after the pinhole. The maximum neutron intensity 

(respectively, total neutron intensity) decreases by almost 90% compared to the intensity at 

the guide exit, because only a small percentage of the neutrons pass through the pinhole 

and there is a drop of intensity due to the 10 m flight path. In the real instrument that has a 

pinhole with a finite thickness further neutrons would be absorbed or reflected inside the 

walls of the pinhole and therefore be removed from the beam.

Based on the previous explanations, a higher proportion of longer wavelength 

neutrons arrive at the guide exit leading to a shift of the neutron intensity peak from 2.8 A 

(after moderator) to 3.4 A (at guide exit) (Figure 4.2.4). After passing through the pinhole 

we have a higher proportion of shorter wavelength neutrons and in consequence, the 

neutron intensity peak is moves someway back to 3 A.

lmon l
lmon2
lmon3
lmon4
lmon5
lmon6
lmon7
lmon8

2 3 4 5
Wavelength [A]

Figure 4.2.4: The normalized neutron intensity distribution as function o f wavelength fo r  
different positions o f the lambda monitors in the instrument. The maximum 
intensity after moderator is obtained fo r wavelength 2.8 A.
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The same model was applied, using same number of neutrons, for the wavelength 

band 2-14 A at frequency 5 Hz (Figure 4.2.3). As for the previous case, the neutron 

intensity distributions, as a function of wavelength for different positions in the instrument 

were evaluated. The behaviour of the maximum neutron intensity (respectively, total 

neutron intensity) is the same with the previous from the single frame-bandwidth. Hence, 

the maximum neutron intensity (respectively, total neutron intensity) decreases and the 

maxima of the distributions shift with increasing beam flight path. The peak obtained at 

around 9 A in the double-frame bandwidth distribution is an artefact of the ISIS moderator 

McStas module.

The results presented in Figure 4.2.2, Figure 4.2.3 and Figure 4.2.4 are important as 

they help us to understand the evolution of the spectra up to the point of measurement.

Another important aspect is to investigate the wavelength distribution as a function 

of position on the camera placed at the sample position. This study will have an impact on 

the characteristics of images obtained by IMAT. In particular, we note that whereas reactor 

based imaging instruments will have a uniform, or nearly uniform, wavelength distribution 

across the beam, we may expect that, due to the guide characteristics, the distribution of 

wavelengths at the IMAT sample position is likely to be non-uniform. This fact may have 

implications for experimental methods and/or data processing as applied on IMAT and so 

requires investigation.

In order to analyse this aspect we added six small lambda monitors of size 1x2 cm2 

positioned as function of position on the camera placed to the IMAT McStas model as 

indicated in Figure 4.2.5. The camera is represented in McStas IMAT instrument by the 

PSD monitor of size 20x20 cm2.
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X position [cm]

Figure 4.2.5: P osition  o f  lam bda m onitors (shown aga in st the intensity d istribu tion  fo r  
reference) as a function  o f  position  on the cam era (re la tive  to the cam era  
cen tre) as fo llo w s: lm on l a t Om, lmon2 a t 0.02m , lm on3 a t 0 .04m , lm on4 at 
0.06m , lm on5 a t 0 .08m  and lm on6 a t 0.10m.

Lambda monitor 1 is placed in the centre of the PSD monitor followed by the other 5 

monitors. The centre of last lambda monitor (6) is at 0.10 m on X-axis (i.e. on the edge of 

the PSD monitor). This setup was used for experiments with wavelength bands, 0.7-7 A 

and 2-14 A.
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Figure 4.2.6: The wavelength distribution as function o f position on the PSD monitor 
placed at 10 m after the pinhole fo r wavelength band 0.7-7A (a) and 2-14A
(b).
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As shown in the Figure 4.2.6 the neutron intensity decreases as we move away 

from the centre of the beam along the X-axis position. The decrease is observed from the 

centre of the monitor corresponding to the higher energy neutrons, i.e. shorter wavelengths, 

towards the edge of the PSD monitor, i.e. lmon6. The wavelength spectrum shape on the 

monitors placed in the centre (x=0) or in the immediate vicinity (x=0.02 m) is similar with 

the one obtained on the monitor placed after the moderator (lmonl from Figure 4.2.2) 

because the centre of the PSD ‘sees’ both shorter and longer neutron wavelengths. 

Considering short wavelength neutrons which are passing straight through the guide there 

is a higher proportion centred in the middle of the PSD monitor. Moving along the X-axis 

of the monitor the short wavelength fraction drops off, and the long wavelength neutrons 

contribute even more to the spectrum. The maximum of the spectrum shifts to higher 

wavelengths as we move to the edge of the monitor.

4.2.2 Beam profiles: from pinhole to beam stop

Once neutrons are collimated by the pinhole, the beam is adjusted by the jaws and, after 

having passed through the sample and detector, is finally stopped by a “beam stop”. The 

role of the beam stop is to block the “unattenuated” portion of the beam, including the high 

energy neutrons and gamma radiation which have not been removed by the TO chopper. At 

the same time, the beamstop ensures that no unwanted neutrons and gamma radiation 

(generated in the beam tube) can reach the detectors.

In order to investigate the beam tube design, from the pinhole to the sample

position, and the size of the beam stop, the beam profiles along the flight path, from the

pinhole to the beamstop were analysed. For this study the IMAT instrument components in

McStas were set up as in the Section 4.1.3, eliminating the jaws and placing PSD monitors

on the jaws positions, i.e. at 1.5 m, 3 m, 4.5 m, 6 m and 7 m, plus the sample positions (one

at 5 m after pinhole and the other at 10 m after pinhole), and at 12.5 m, and the exit of the
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beamstop at 15 m from the pinhole. The PSD monitors used were larger with 80x80 cm2 

(and 100x100 pixels) to ensure the full beam was captured. 1010 neutrons were generated 

in both wavelength bands: 0.7-7 A and 2-14 A.

Pinhole PSD1 PSD2 PSD3 PSD4 PSD5 PSD6 PSD7 PSD8 PSD9

<-----> < -----X ------ X  X ------X -----X ---------- X ------- X ----->

1.5m 1.5m 1.5m 0.5m lm  lm  3m 2.5m 2.5m

Figure 4.2.7: Positions o f the PSD monitors (with 80x80 cm2 size) along the beam flight 
path from  the pinhole to the beamstop.

The simulations were performed using two pinhole sizes: 20 mm and 80 mm diameter. The 

total neutron flux is the same for all positions because the larger monitors used captured 

the entire neutron beam. However, the maximum neutron flux decreases because the 

neutrons are increasingly spreading out on each monitor as the flight path increases (Figure

4.2.8, Figure 4.2.9). Specifically, the position at 5 m from the pinhole has a high maximum 

neutron flux. This position, i.e. at 5 m, will be considered as an additional position for high 

intensity imaging experiments. The FWHM values are calculated according the later 

description from Figure 4.2.11.
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Figure 4.2.8: The maximum neutron flux and FWHM as a function o f (D  /  L) calculated 
fo r  the pinhole D= 0.02m. The flux is plotted in logarithmic scale.
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2Figure 4.2.9: The maximum neutron flux and FWHM as a function o f ( D / L )  calculated 
fo r  the pinhole D= 0.08m. The flux is plotted in logarithmic scale.
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The maximum neutron flux plotted in Figure 4.2.8 and Figure 4.2.9 (for each position of 

the monitor) was calculated by dividing the maximum neutron intensity by the 

corresponding pixel size (80x80 pm2).

The beam size at the detector position is defined by divergent beam and the 

distance L. As the pinhole aperture and distance between pinhole and sample define the 

spatial resolution of the instrument, so a small aperture diameter D combined with a long 

distance L enables a high spatial resolution. Hence, the ratio L/D should be as big as 

possible and the sample needs to be positioned as close as possible to the detector such that 

the image of the sample projected onto the detector could be considered to be created by a 

parallel-beam perpendicular onto the detector. For an imaging instrument with a neutron 

guide where no additional pinhole is used, the beam divergence at the end of the straight 

neutron guide and at the sample position is defined by the angle 6C (Section 3.4.1) of total

reflection of neutrons from the interior walls of the neutron guide. Moreover, the 

divergence is constant within the cross section of the guide. In that case the critical angle 

0C is proportional to the neutron wavelength and for the IMAT coated supermirror guide

we have 6C = 0.1° x Z x m  [61, 81]. Hence, if no pinhole is used the beam divergence

depends on the wavelength and an effective L/D ratio determines the quality of the 

projection. The IMAT spectrum at the end of the neutron guide is already known (see 

section 4.2.1), so L/D ratio (or the effective divergence) could be estimated from the 

wavelength at flux maximum (in our case, 3 A) in the centre of the detector through the 

formula, LI  D = l l tan(20c) yielding to aL/D=32 for 3 A and m=3.

In fact the IMAT imaging instrument has a pinhole placed after the guide and the 

non-zero divergence is given by the source extended, i.e. non-zero pinhole, as it is detailed 

in Section 4.2.3 of this thesis.

2
On the other hand, the maximum neutron flux is proportional with (D/L) ratio

(Figure 4.2.8 and Figure 4.2.9). To obtain a high signal to noise ratio in the projection a
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high neutron flux is required for each measurement. Therefore, the setup of the neutron 

radiography experiments is often a compromise between high spatial resolution and a high 

signal to noise ratio. From the figures we can conclude that the positioning of the monitor 

on a long flight path such as 15 m from the pinhole resulted in a reduction of the maximum 

neutron flux by almost 88% than that of the flight path of at 5 m and a reduction of the 

maximum neutron flux by almost 54% than of the flight path of at 10 m.

The beam profile data for all positions have been obtained selecting a horizontal 

central line through the PSD intensity distribution (Figure 4.2.10). Due to the symmetry of 

the guide and pinhole geometry, and in the absence of gravity, the beam profiles obtained 

selecting horizontal or vertical lines across the monitor are same.
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Figure 4.2.10: Normalized intensity profiles fo r  two different wavelengths bands 0.7-7 A 
(left column) and 2-14 A (right column) using a pinhole radius 0.01 m (first 
row) and pinhole radius 0.04 m (second row).
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The beam profiles represented in Figure 4.2.10 can be approximated by a Gaussian 

distribution (Figure 4.2.11). The neutron intensity distribution remains Gaussian at every 

point in the flight path from the pinhole to the beamstop due to the guide and the circular 

pinhole. An ideal profile shape of the neutron beam would be a flat plateau.

Figure 4.2.11: The circular pinhole o f diameter is 0.08 m produced a neutron beam with 
an approximated Gaussian profile. The FWHM is calculated fo r  each beam 
profile.

The width of the neutron beam is measured calculating the Full-Width at Half Maximum 

(FWHM) and represents a measure of the beam diameters at the detector position (Figure

4.2.8, Figure 4.2.9). The sample position 10 m has the advantage of a large viewable area 

with FWHM almost 20 cm confirming the camera field-of-view of 20x20 cm2. On the 

other hand, the beam tube could be designed as a tapered tube with entrance size next to 

the pinhole smaller than the exit size. A large imaging size of 30x30 cm2 will be allowed at 

the beamstop entrance.
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4.2.3 Beam divergence at sample position

The image quality of the neutron radiography depends on, among other things, the beam 

divergence, i.e. a greater divergence implies a greater blurring, as already mentioned in 

paragraph 2.3.2. Divergence causes blurring because in a divergent neutron beam neutrons 

travelling in a range of different directions can all pass through the same point in a sample, 

causing this point to be projected as an area of finite size on the camera. The key quantity 

of divergence is the angular range of neutron paths that can pass through a particular point. 

The divergence of a beam at a point is defined as the maximum angle formed between 

neutrons trajectories passing through that point (Figure 4.2.12).

Guide

Sample
position

Figure 4.2.12: In a divergent beam neutrons travelling in a range o f directions can all 
pass through a single point ‘P ’ in an object. The angular range is 
characterised by the angle 6, and is determined by two quantities, the 
diameter o f the pinhole ‘D ’ and the distance, L, between the pinhole and the 
point ‘P \

In the case where we have an infinitely small pinhole, the neutrons travelling in one 

direction can pass through the point ‘P’ obtaining an infinitely sharp (though unfortunately 

infinitely faint) image. In that case the divergence is zero and hence there is no blurring of 

the image.
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Considering the case where we have a beam with a range of neutron energies and 

an infinitely small pinhole we get a situation like that shown in Figure 4.2.13. Within the 

guide we have neutrons with lower energy (green) and neutrons with higher energy (red). 

The neutrons are travelling with trajectories that form an angle a  with the guide horizontal 

axis, in the range 0 < a < 6crit(X), where 6crit(X) represents the critical angle which

depends on the material of the neutron guide and the neutron wavelength. Using the 

previous definition of divergence we can say that within the guide the neutron beam shown 

in Figure 4.2.13 has a divergence and that the maximum angle formed between neutrons 

passing through a single point is 20crit(X) where dcrit (A,) is that associated with the lower

energy neutron (green) neutrons (as this is the maximum 8crit (A)). Once the beam has

passed through the infinitely small pinhole however, although the beam is spreading out, 

the divergence is zero. The beam has zero divergence after the pinhole because only one 

neutron trajectory passes through every point. The beam however spreads at an angle 

determined by the trajectories within the guide, which is in turn defined by 0crit (A) for 

each wavelength. Hence we get the lambda dependant distribution on the PSD monitor.

guide

iolepinJ

Figure 4.2.13: Infinitely small pinhole situation. Range o f neutron energies is represented: 
lower energy (green) and higher energy (red) and energy dependant 
divergence within guide. After pinhole the beam spreads, but has zero 
divergence.
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If the pinhole is open, as shown in Figure 4.2.14, the divergence beyond the pinhole is as 

well as within the guide.

guide

pinh<

Figure 4.2.14: Finite size pinhole situation. The beam beyond the pinhole is now 
divergent.

All above discussions of the divergence are in accordance with the definition based on the 

L/D ratio. A small pinhole (infinite L/D) ratio is the ideal case.

The standard divergence/wavelength monitor from McStas calculates the 

divergence as the angle between neutron trajectory and the horizontal axis and hence is 

only appropriate for monitors placed on the beam axis and it was, in fact, designed for 

calculating divergence of ‘parallel’ beams for diffraction. In order to calculate the correct 

divergence for IMAT in imaging mode, the divergence/wavelength monitor from McStas 

required slight modification. Thus, we need to subtract the angle formed between the line 

from the centre of the monitor and the centre of the pinhole (dashed red line) and the 

neutron trajectory (full red line), i.e. the bisector angle p -  shown on the figure below.
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Figure 4.2.15: McStas calculates the angle between the neutron trajectory and the axis o f 
the guide (black dashed line on figures), i.e. pi and P2. The correct 
divergence calculated fo r IMAT-imaging mode in McStas is represented by 
the angle f  formed between the line from the centre o f the monitor and the 
centre o f the pinhole (dashed red line) and the neutron trajectory (full red 
line).

It was of interest to calculate the divergence on the sample position as a function of 

position on the monitor in two cases: theoretical, calculated using the divergence formula 

(4.2.1) and measured, following McStas modelling.

The theoretical maximal divergence of a neutron going through the pinhole and 

arriving onto the different positions on the monitor placed at 10 m after the pinhole could 

be easily calculated by use of Figure 4.2.16, but independent of the wavelength.
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Guide

Figure 4.2.16: Theoretical calculations o f the maximal divergence as a function o f 
position on the camera (placed on the sample position). Pi, Po and P2 are 
different positions on the camera, which, in this instance is placed at the 
sample position.

Considering a pinhole with radius R (say 0.02 m), the monitor placed beyond the 

pinhole at L=10 m and the position on the monitor, h, where the neutron is arriving (in our 

case, 0.0, 0.02, 0.04, 0.06, 0.08 and 0.10 m) we can calculate the divergence on these 

positions on the monitor based on the formula:

2 RL
6  = atan —-----------   (4.2.1)

hz +Ll - R l

For each position the divergence angle varies very slightly and has the approximative value 

0.23°. Equation (4.2.1) could be approximated through the general equation of the

divergence, i.e. 6 = atan — independent of the neutron position on the monitor. These
L

theoretical results could be compared with the output from the modified 

divergence/wavelength monitor from McStas as described below.

The divergence/wavelength monitor code from McStas was modified to calculate 

the P  angle (where 6 = 2/3) following the description from Figure 4.2.15. Then, 

divergence/wavelength monitors were set-up at different points along X-axis. These 

monitors should be as small as possible (as the ideal was to measure divergence at a point) 

but they need to be big enough to obtain reasonable statistics in each one. Hence, they had
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2
50 channels distributed over their sizes, 1 x2 cm , and they had been positioned as smaller 

lambda monitors from Figure 4.2.5. The set-up IMAT imaging instrument in McStas was 

same as the one defined in paragraph 4.1.3. The pinhole radius was considered 0.02 m and 

101() neutrons were generated in the both wavelength bands.

(a)
Divlambda monitor: x=0

3 4 5
Wavelength [A]

(b)
Divlambda monitor: x=0

<  -0.2

10 12 14
Wavelength [A]

( C ) (d)
Divlambda monitor: x=0.04m Divlambda monitor: x=0.04m

<  -0.2

2 3 4 5
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<  -0.2

4 6 8 10 12 14
W avelength [A ]

(e) (f)
Divlambda monitor: x=0.10 Divlambda monitor: x=0.10

<  -0.2
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6  8 10 
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Figure 4.2.17: Neutron intensity distribution as function o f both divergence and 
wavelength fo r  position x - 0  (a, b), x-0 .04  m (c, d) and x=0.10 m (e, f). In 
white beam experiments the maximum divergence will be 0.28° in both 
frame bandwidths (0.7-7 A and 2-14 A) (g, h). For a short wavelength band 
the beam divergence is same fo r  all monitors positions while the neutron 
intensity drops o ff with almost 70% from the centre camera to its edge (i); 
Same angular distribution is obtained fo r a long wavelength band (j).

Each divergence/wavelength monitor output is a distribution of neutron intensity as a 

function of both divergence and wavelength (Figure 4.2.17 a, b, c, d, e, f). Summing all 

columns from the monitor output (0.7-7 A or 2-14 A) as shown in Figure 4.2.17 g, h we 

can retrieve useful information about the divergence on different positions on camera, 

appropriate to white-beam experiments with IMAT. The angular range could be 

approximate from -0.14° to 0.14° for all positions of the divergence/wavelength monitor. 

Selecting one short wavelength band (Figure 4.2.17 i) and one long wavelength band 

(Figure 4.2.17 j) and repeating the previous procedure (with summing columns from the
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monitor output for correspondent wavelength band) one should remark that the angular 

distribution is same, so the maximum beam divergence in energy selective measurements 

will be almost 0.28°. All intensity plots show noise mainly due to the low counting 

statistics plus larger dips which correspond to the previously observed artefacts caused by 

the instrument gaps. We need to mention that the maximal divergence values are read of 

the graphs by eye, so they are not very precise and for this reason they are compared with 

the calculated values.

4.2.4 Neutron intensity distribution and neutron flux at the sample 

position for different pinholes and wavelength bands 0.7-7A and 2-14 A

In general neutron imaging applications require a large beam (of the order of few cm2) and 

benefit from the highest possible neutron flux. Hence, IMAT in the imaging mode will use 

a wide neutron beam emanating from a pinhole to study extended objects in a single 

acquisition or in a scanning mode with a detector screen of 20x20 cm2.

In order to calculate the neutron flux at the sample position and study the white- 

beam intensity distributions on the imaging screen for different pinhole sizes with 

diameters of 0.005 m, 0.01 m, 0.02 m, 0.04 m and 0.08 m, a number of McStas simulations 

using “open beam” (no sample) and 1010 neutrons were performed based on the final 

IMAT design (with PSD monitor placed on the sample position) as described in section 

4.1.3. For each pinhole the corresponding jaws opening was calculated. Figure 4.2.18 

below shows that with the decreasing of pinhole size the intensity distributions on the 

imaging screen are more inhomogeneous, exhibiting geometric patterns. As it was 

demonstrated in paragraph 3.5.2, the main cause of the geometric artefacts is that there are 

regions of the detector which look at points on the guide or moderator system from which 

no neutrons emanate, such as chopper gaps or regions outside of the moderator.
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R = 0 .0 0 2 5 m

R = 0  0 0 5 m

Figure 4.2.18: Intensity d istribu tions on the im aging detec to r  fo r  f ive  d ifferen t p inholes  
w ith d iam eter o f  80, 40, 20, 10 and 5mm (left colum n). The co lo u red  m aps  
show  the neutron in tensity as a fu n ction  o f  horizontal and  vertica l position  
on a 2 0 x 2 0 c m  m onitor screen . F or each image, the h orizon ta l in tensity  
pro file  through the centre o f  the screen  (y = 0  mm) is d isp la yed  in the right 
column.
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For the lower L/D (larger pinhole) these stripes are present but are washed-out because by 

the increased pinhole size allows a range of neutron trajectories to reach each point on the 

detector (similar to the divergence argument), some of which will arrive from proper 

reflecting parts of the guide; this will tend to decrease the depth of the artefact, i.e. it will 

wash it out. Hence, the number of artefacts is higher for a small pinhole and with 

increasing the pinhole diameter the artefacts depths decrease (Figure 4.2.18). For a better 

visualization of the artifacts the profiles plots of the monitors were considered, by selecting 

one horizontal line through the centre of the monitor and plotting it as neutron intensity 

function depending on the monitor horizontal position parameter. The neutron intensity
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distribution on the PSD monitor is symmetrical, so may equivalently plot horizontal or 

vertical sections through the monitor.

The widths of the stripes are of the order of several millimetres (e.g. 10 mm) and 

the intensity drop between the area without stripe and one stripe, i.e. the artefact depth, can 

be of the order of 20% for a pinhole size of 20 mm diameter.

From each PSD monitor output we can extract useful values such as total neutron 

intensity and maximum neutron intensity. Knowing that 100x100 pixels are distributed on 

the PSD monitor with size 20x20 cm2, the total neutron flux (neutrons/cm2/seconds) was 

determined by dividing the total neutron intensity to the monitor size area and moreover, 

the maximum neutron flux was acquired after dividing the maximum neutron intensity to 

the pixel size (where 1 pixel has the dimension 0.2x0.2 cm2).

Converting the neutron intensity for each pixel into the neutron flux and then 

plotting the average of the neutron flux from all rows as a function of the horizontal 

monitor position one could investigate where the neutron flux drops off below 50%.

2-14A0.7-7A

\:
100100

 R=0.04m
 R=0.02m
 R=0.01m
 R-0.005m
 R=0.0025m

-10
-10 X position [cm]X position [cm]

Figure 4.2.19: Integrated neutron flux over the PSD monitor. The neutron flux  drops o ff 
below 50% fo r  all pinholes in the single-frame bandwidth (left image) and 
fo r  pinhole radius 0.0025m and 0.005m in the double-frame bandwidth 
(right image).
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Figure 4.2.19 shows the integrated neutron flux loss along the monitor position. One 

should remark that while, in the single-frame bandwidth, there is a drop-off below 50% of 

the neutron flux for all pinholes, for double-frame bandwidth 2-14 A there is a drop-off 

down 50% only for the smallest simulated pinhole (R=0.0025 m and R=0.005 m) 

corresponding to the monitor position at +9.3 cm. In Table 4.2.2 the total neutron flux, the 

maximum neutron flux for each pinhole and the selected wavelength bands, also the 

calculated FWHM of the neutron intensity distribution profiles are displayed.

Table 4.2.2; Results obtained for different pinholes and the used wavelength bands
Wavelength 

band (A)
Pinhole

size-

diameter

(m)

L/D FWHM

(cm)

Total

neutron

flux

(n/cm2/s)

Maximum 

neutron flux 

(n/cm2/s)

Divergence

(°)

0.7-7 0.005 2000 18.6 6.92x105 1.52x10b 0.0286

0.01 1000 18.6 2.78x106 5.14x106 0.0573

0.02 500 18.8 1.12x10/ 1.94x107 0.1146

0.04 250 19.15 4.44x107 7.15x107 0.2292

0.08 125 19.7 1.72x108 2.69x108 0.4584

2-14 0.005 2000 18.9 6.88x10b 1.50x106 0.0286

0.01 1000 18.9 2.77x106 4.63x10s 0.0573

0.02 500 >20 1.12x107 1.66x107 0.1146

0.04 250 >20 4.44x107 6.43x107 0.2292

0.08 125 >20 1.72x108 2.43x108 0.4584

Figure 4.2.20 and Figure 4.2.21 outline the maximum neutron flux, respectively 

variation of the integrated neutron flux, depending on the pinhole diameter.
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Figure 4.2.20: Maximum neutron flux calculated on the PSD monitor placed on the 
sample position fo r  different pinholes (0.005 m, 0.01 m, 0.02 m, 0.04 m and 
0.08 m. The maximum flux is plotted in log scale.
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Figure 4.2.21: Integrated neutron flux calculated on the PSD monitor placed on the 
sample position fo r  different pinholes (0.005 m, 0.01 m, 0.02 m, 0.04 m and 
0.08 m). The integrated flux is plotted using a log scale.
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The highest neutron flux is obtained for the largest pinhole with diameter of 0.08 m 

(i.e., L/D=125) which may be optimal for real-time experiments when fast processes are 

investigated. By decreasing the pinhole size down to 0.005 m the diameter (increasing 

respectively, L/D to 2000) the neutron flux decreases by almost 99%, being possible in 

future to develop high-resolution tomography applications on IMAT.

4.2.5 Neutron intensity profiles and neutron flux dependent on the 

wavelength bands

IMAT will go beyond the standard neutron radiography, taking advantage of the pulsed 

source for optimal energy discrimination. The energy-resolved imaging mode at IMAT 

will be based on the time-of-flight method and will measure 2D radiographies as function 

of wavelength providing new opportunities for resolving wavelengths. Among the 

opportunities offered by the energy-dependent imaging mode could be mentioned the 

ability to increase the contrast between two materials which can be achieved by the 

selection of suitable wavelengths or bands of wavelengths and by creating ratios of the 

radiographs, as detailed in paragraph 2.3.4.1. With a TOF capable imaging detector a 

multitude of radiographies at different wavelengths will be recorded simultaneously. The 

goals of this section are: to study the wavelength dependent neutron intensity profiles at 

the sample position , flux values and FWHM dependent on the wavelength bands, such as, 

1-2 A, 3-4 A, 6-7 A, and 13-14 A. Two pinhole diameters (0.02 m and 0.08 m) were 

considered here. The instrument was set-up in McStas as previously. One PSD monitor 

with 100x100 pixels distributed over 20x20 cm2 was placed on the sample position.

To investigate the neutron intensity distribution on the sample position and to 

compare the FWHMs for each wavelength band the intensity was integrated over the entire 

PSD monitor by summing all lines from the monitor output, dividing by the maximum
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intensity on the line obtained and then multiplying by 100. This step was repeated for all 

wavelength bands selected and both pinhole sizes. The plots of the integrated intensity 

normalized as function of monitor size are shown in Figure 4.2.22 and discussed below.
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Figure 4.2.22: Profile plots o f the integrated neutron intensity distributions fo r  different 
wavelength bands and pinholes o f radius=0.01 m (left) and radius=0.04 m 
(right).

If the pinhole size is fixed, the neutron flux is dependent on the wavelength band. This is 

shown in the results presented in Table 4.2.3 (the total neutron flux was calculated by 

dividing the total neutron intensity to the monitor size 20x20 cm2 and the maximum 

neutron flux by dividing the maximum intensity to the correspondent pixel size 2x2 mm ).

Table 4.2.3: Total neutron flux and maximum neutron flux fo r  different pinhole sizes and 
____________ different wavelength bands.__________________________________________

Pinhole radius 
(m)

Wavelength 
band (A)

FWHM
(cm)

Total neutron flux 
(n/cm2/s)

Maximum neutron 
flux (n/cm2/s)

0.01 1-2 11.8 0.81 x106 2.4x106

3-4 19.2 0.33x107 4.86x106

6-7 >20 0.64x106 0.82x106

13-14 >20 2.16x104 0.27x105

0.7-7 18.8 1.12x107 1.94x107

2-14 >20 1.12x107 1.66x107
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0.04 1-2 12.2 1.25x107 0.34x108

3-4 >20 0.51 x108 0.72x108

6-7 >20 1.01x107 0.12x108

13-14 >20 0.34x106 0.41 x106

0.7-7 19.7 1.72x108 2.7x108

2-14 >20 1.72x108 2.43x108

While the neutron flux (total and maximum) is higher for short neutrons wavelength (e.g.

0 °1-2 A) than foe long wavelength neutrons (e.g. 13-14 A), the low-energy neutrons have the

advantage of a large viewable area (more than 20 cm) (Figure 4.2.22). Hence, for long

wavelength neutrons (> 6 A) a large FWHM is available at the cost of a lower neutron flux.

In paragraph 4.2.1 we have remarked that the maximum neutron flux is obtained for

wavelengths around 3 A; this is accentuated through the results from Table 4.2.3 and

Figure 4.2.22 for bandwidth 3-4 A. An important feature for the collection of radiographies

is represented by the presence of artefacts. In the Figure 4.2.22 fewer artefacts are revealed

in the shorter wavelength distribution than in the long-wavelength band. Higher energetic

neutrons are less reflected by the neutron guide and they are more concentrated, i.e. have a

higher proportion in the monitor’s centre compared to neutrons of the same energies at the

edge of the 20x20 cm2 monitor, while the long wavelength neutrons (which are more

reflected by the neutron guide and have a higher divergence) are spread across the entire

monitor, so the artefacts are more visible in the radiography.

4.3 IMAT imaging applications

The ability of the IMAT instrument to perform imaging experiments, such as neutron 

radiography, neutron tomography or energy-selective measurements, is investigated in this 

section based on McStas modelling. As it is known the attenuation is generally wavelength 

dependent. In this chapter we perform simulations using two different sample models, one 

in which the attenuation is modelled as wavelength independent and one in which
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wavelength dependent attenuation is modelled. For these experiments, the IMAT 

instrument, as modelled in McStas, was defined as in Section 4.2.1 and Appendix 3, with 

changes regarding the size or positions of the monitors as follows: one PSD monitor with 

size of 20x20 cm2 and 1024x1024 pixels (which substitutes the CCD camera component in 

McStas) and one wavelength-sensitive monitor, i.e. lambda-monitor (to interpret the 

energy-selective measurements) with size, 20x20 cm , and 1000 channels will be inserted 

in the instrument model after the sample as specified below. A large collimation ratio 

L ID  is required to produce a sharper image. For this reason, a small pinhole with 

diameter of 5 mm was selected. As discussed in Section 4.2.4 in this situation a large 

number of artefacts are visible. These artefacts will be corrected and the image quality 

improved using flatfield correction. By recording the transmitted neutron beam through the 

sample and by recording the open beam intensity as well (without sample) and by dividing 

these two measured radiographies the transmission through the sample is calculated and 

the inhomogeneities of the beam and detector are eliminated; the transmission depends on 

the sample thickness and attenuation coefficient inside the sample, and it is equal 1 in the 

region without sample. This last statement is valid only for the wavelength independent 

attenuation model as we will see latter in this chapter.

4.3.1 Neutron radiography with IMAT imaging virtual instrument

A larger collimation ratio will produce a sharper image, but unfortunately at the cost of a 

lower neutron flux. Moreover, the computing limitations and the time consuming 

procedure (around 25 hours per simulation) restricts the number of neutrons and hence the 

quality of the image we could achieve in these simulations.

The sample geometry has been chosen to allow reasonable quality images to be 

obtained in a reasonable amount of time. Hence, an empty cylinder with height of 10 cm, 

outer radius of 4 cm and inner radius of 2 cm to fit with the monitor size was considered.
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To minimise the magnification effect a longer distance L=10 m (defined in the Stage-1 of 

the IMAT instrument development) between the pinhole and sample was set-up. Moreover, 

a PSD monitor will be placed behind the pinhole (for simulations both with the sample and 

for open beam measurements), very close to the sample position (sample position to 

monitor distance is 10 cm) to reduce the sample blur, due to the divergence, as far as 

possible.

As shown in Figure 4.3.1, two radiographies were collected using the PSD monitor: 

one for the open beam (a) and the other with the sample in the beam (b). The artefacts are 

clearly visible in both situations.

-6 - 4  -2 0  2 4 6

X position [cm]

(a)

-6 -4 -2 0  2  4  6

X position [cm]

(b)

Figure 4.3.1: (a) Open beam radiography; (b) Sample radiography.

As mentioned before each point from the sample is blurred up to geometrical resolution 

d  = —-— and in addition to the blurring effect the image size is magnified (enlarged) with
L ID

the magnification factor M  where L  is the pinhole-sample distance and I is the

sample-detector distance (see section 2.3.2). According to the previous formulas the 

geometrical resolution for our images is 0.1 mm and the magnification factor is 1.01. A
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comparison between the magnification factor calculated and the measured magnification 

will be given in the below section.

4.3.2 Neutron tomography with IMAT imaging virtual instrument

Based on the results obtained for the simulated neutron radiography with IMAT virtual 

instrument described above a neutron tomography data set was produced. Using the fact 

that the geometry of the sample is symmetric, 360 different two-dimensional projections of 

this specimen were taken (without sample rotation) and three open beam images for 

corrections using 1012 neutrons in the wavelength band 0.7-7 A.

Figure 4.3.2: Neutron radiography o f a cylinder after correction. The dark area in the 
radiography is associated with high attenuation while light area is 
associated with high transmission.

The direction of the neutron beam is perpendicular to the cylinder axis penetrating 

the whole depth of the sample. Figure 4.3.2 shows a radiography obtained after flat-field 

correction. Firstly, all projections from McStas are saved as tiff files and then imported 

into the Octopus software where the sample is reconstructed and thus slices are obtained. 

The procedure is entirely similar to that developed in the compilation of the data from a
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real neutron tomography experiment conducted, for example, at the NEUTRA imaging 

instrument at PSI (see Chapter 1).

Figure 4.3.3: Slice ob ta in ed  a fter applying  O ctopus softw are (left im age); 3D  volum e  
rendering o f  the cy lin der fro m  VgStudio (righ t image).

The tomography was then subsequently segmented and meshed using the commercial 

Volume Graphics software package VGStudio Max 2.0. The volumetric cylinder is 

generated (Figure 4.3.3), according to the description in Sections 2.3.3.1 and 2.3.3.2.

Using the caliper tool from VgStudio the sample reconstructed was measured and the outer 

diameter was found approximatively, 8.09 cm and cylinder height 10.11 cm. These values 

are comparable with the values obtained based on the calculated magnification factor, i.e. 

the outer diameter 8.08 cm and cylinder height 10.1 cm.

4.3.3 Preliminary investigation into wavelength dependent attenuation 

effects

While in the previous paragraphs we were more interested in the sample 

reconstruction using a simple wavelength independent attenuation model, in this section 

we model wavelength dependent effects using the virtual IMAT imaging instrument. The 

transmission spectrum of a neutron beam, in the cold or thermal energy range (as the
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IMAT instrument will run), through a polycrystalline specimen shows the Bragg edges 

related directly to the lattice spacing (see section 2.3.4.1). For this reason the sample in the 

instrument was changed, and a virtual specimen, iron (bcc) powder described in McStas as 

the BraggEdge_Powder component [164, 165] was selected. The module created in 

McStas [164] for this component was designed to simulate only transmission and no 

additional scattering events are modelled. It was preferred to use this component because it 

was already tested on ENGIN-X instrument at ISIS ([164], [166]). The iron (bcc) powder 

was selected because it has a high coherent cross section and its structure, body-centred 

cubic, produces several well separated Bragg edges and a low absorption coefficient. The 

sample geometry selected was a rectangular plate with same width and height 16 cm and 5 

cm thickness. The dimensions of the sample and its positioning on the instrument were 

chosen in such way that the artefacts will pass through the sample’s radiography (Figure 

4.3.4 a).

X position [cm] *  position [cm]

(a) (b)

Figure 4.3.4: (a) Sample’s radiography with visible artefacts passing through it. (b) Flat 
fielded image o f the sample.

The position of the sample and the instrument settings were as in the previous 

sections. It is not my intention here to discuss the Bragg edges of the iron powder sample 

in the time-of-flight transmission experiments. This is already extended in the literature 

[11, 164, 166].
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The energy-resolved imaging mode on IMAT will be based on the time-of-flight 

and measured 2D radiographies as a function of wavelength. With the TOF capable 

imaging detector (one that will measure full part or a large part of the IMAT frame of 0.1 

sec with sufficiently small histogramming bin-width or timing resolution) a multitude of 

radiographies at different wavelengths will be recorded simultaneously.

In the simulated IMAT instrument there are not yet developed the same capabilities 

of the TOF imaging detectors as that expected to be used on IMAT, a lambda-monitor was 

selected to stand for them. In this context the lambda monitor represents a time of flight 

detector with perfect time resolution.

Two simulations were done using the entire wavelength band 0.7-7 A one with 

sample and the other without sample. Figure 4.3.5 shows the simulated data for iron (bcc) 

powder sample compared to open beam image over the lambda-monitor.

X104
open beam  
sam ple thickness 5cm

2,5

8 .  1 .5 -

0.5

Wavelength [A]

Figure 4.3.5: The neutron transmission spectrum displaying characteristics Bragg edges 
from the (bcc) powder sample compared to open beam image a t the IMAT 
virtual instrument over the single frame bandwidth 0.7-7A.

Using the transmission formula (2.3.2) the transmission is calculated and the Bragg edge 

spectrum is plotted as function of wavelength (Figure 4.3.6).
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Figure 4.3.6: The ideal neutron transmission spectrum obtained using a lambda monitor 
and displaying characteristic Bragg edges from the (bcc) powder sample o f  
the IMAT virtual instrument over the single frame bandwidth 0.7-7A. Also 
shown are two narrow energy selected around the Bragg edge 4 A.

Beam hardening

A step forward from the above result is the study of the variations of attenuation 

coefficients, as calculated from tomography data, due to the wavelength distributions. In

the case of the monoenergetic beam, the Lambert-Beer law I  = Iqc~^1 is defined as a

linear relationship between the proportion of radiation absorbed and the path length 

through the material. In the case of a polychromatic beam this assertion is not valid 

because different wavelengths are absorbed differently. Generally, this effect is well 

known in the context of X-ray imaging and is called beam hardening and describes the fact 

that low energy X-rays, are more easily attenuated than higher energy X-rays [167]. This 

beam hardening effect is considered less important for neutrons, though it is still present. 

Here, it is not our intention to give a detailed description of this effect, only to make an 

introduction to a future investigation subject of IMAT instrument.
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Figure 4.3.7: The tapered sample used in the theoretical model.

A basic theoretical model was created using the previous sample (bcc iron powder), 

but changing its geometry because in the previous simulated radiography the beam 

hardening effects were not visible because the sample was parallel sided. Hence, a tapered 

sample with thickness varying from 1 mm up to 1.004 m was considered (Figure 4.3.7).

Two different narrow wavelengths bands were selected: one at the left of the Bragg 

edge, 3.7-3.9 A and the other at the right of the Bragg edge, i.e. 4.2-4.4 A (see Figure

4.3.6) with their corresponding intensities in the open beam image 701, and 7q2. For each

wavelength an attenuation coefficient was defined //j, and //2. Given the sample thickness

and the open beam intensities, the intensities for images with sample 1\ and 72 were

calculated using the Lambert-Beer law. As previously discussed (section 4.3.1) the flat 

field images are calculated by dividing the sample’s image to the open beam image. 

However, given the energy selective imaging capability of IMAT there are two approaches 

to flat-fielding that may be considered:
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1. White-beam: naively the flat-field image dividing the total image with sample by that 

without sample, taking no account of wavelength bands. In the case of our wavelength

model this gives FFtota[= /;+f  =e'^1 where p. is the effective attenuation coefficient.
m + m

1.6

l / l
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c
T3QJDOro
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><

-1 5 -10 -5 0 5 10 15
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Figure 4.3.8: Open beam profiles fo r  both wavelength bands selected and total open beam.
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Figure 4.3.9 : Image calculated fo r both wavelength bands selected and total image taking 
into account the sample thickness and attenuation coefficients.

2. Energy selective: An energy selective flat-fielding approach may be done for the 

individual wavelengths so that we may recover the individual wavelength dependent

attenuation coefficients, i.e. fl\ —
V7o i )

1.
; /* 2 = - y ln

(  T ^ f 2
V70 2 ;
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Figure 4.3.10: The attenuation coefficients fo r both selected wavelength bands and the 
effective attenuation calculated are plotted as position on the monitor. The 
effective attenuation coefficient (green line) depends on the sample 
thickness.

Calculating the effective attenuation coefficient from the white-beam approach, i.e.

//=-y/n(Ftoto/) and comparing it with the attenuation coefficients from the energy-selective

flat-fielding one should say that the effect of the beam hardening is visible for white-beam 

case for IMAT instrument (Figure 4.3.10) in a non-parallel sample.

4.4 Conclusions

IMAT will be placed on port W5 on ISIS TS-2, which operates at 10 Hz. IMAT will view 

the broad pulse coupled moderator, at an angle of 1° (horizontal) from the nominal W5 

axis. It will be built on a 56 m flight path from the moderator to the sample position. The 

total length of the straight, square supermirror neutron guide is about 44 m, with a cross 

section of the guide of 100x100 mm in the 2 m shutter section and a cross section of

194



95x95 mm2 for the main guide. Two positions for the sample will be available: the main 

position for a flight path of 56m from the moderator centre (i.e. 10 m after pinhole) 

enabling imaging and diffraction experiments and the 2nd sample position 51 m (i.e. 5 m 

after pinhole) for high intensity imaging experiments. The neutron guide will have gaps for 

different instrument hardware components such as vacuum gate valves, choppers or 

neutron monitors which need to be minimised. In the imaging mode, a remote-controlled 

pinhole selector will offer a choice of five apertures (D=0.08 m, 0.04 m, 0.02 m, 0.01 m 

and 0.005 m) defining different L/D ratios (125, 250, 500, 1000 and 2000) where L=10 m 

is the distance from pinhole selector to the imaging camera and D is the pinhole diameter. 

The pinhole selector will have also a large open position allowing the beam to pass through 

for diffraction experiments.

The performance simulations of the present IMAT design were investigated 

including: wavelength distribution of the neutron flux along the beamline from the 

moderator to the sample position and the wavelength distribution as a function of position 

on the camera placed at the sample position. Once the neutrons are passing through the 

pinhole the beam is adjusted by the jaws and after passing through the sample and detector 

they are stopped by the beam stop. In order to investigate the beam tube design, from the 

pinhole to the sample position, and the size of the beam stop, the beam profiles along the 

flight path, from the pinhole to the beamstop were analysed. On the other hand the image 

quality of the neutron radiography depends on the beam divergence. A study of the 

divergence at the sample position in two cases: theoretical, calculated using the divergence 

formula and measured, following McStas modelling, is presented. Results as FWHM, total 

neutron flux, maximum neutron flux and beam divergence depending on the wavelength 

band and collimation ratio are obtained. Moreover, taking the advantage of the pulsed 

source, the energy-dependant imaging mode will be developed on IMAT. The wavelength 

dependent neutron intensity profiles at the sample position, flux values and FWHM
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dependent on the wavelength bands, such as, 1-2 A, 3-4 A, 6-7 A, and 13-14 A are 

investigated.

In the last section of the chapter, the ability of IMAT to develop imaging 

applications is exploited, by using two kinds of sample: one sample applied in the neutron 

radiography and tomography experiments where wavelength is independent of the 

attenuation and the (bcc) powder sample used to model wavelength dependent effects in 

energy-selective imaging.

V

196



5 Combined imaging and diffraction techniques

While neutron tomography provides three-dimensional maps of attenuation coefficients, 

thereby giving the opportunity of visualising the inside of an object in a non-destructive 

manner, neutron diffraction methods provide information on the distance between 

crystallographic lattice planes at specific points which is used for neutron strain scanning.

The present chapter reports a method for exploiting this complementarity between 

neutron tomography and neutron diffraction and illustrates this method’s application to 

various samples from different fields.

5.1 Introduction

The complementarity of the tomography and diffraction methods was exploited and 

elaborated in a new technique entitled “Tomography Driven Diffraction” (TDD) [14]. 

TDD is an extension of methods developed for engineering strain scanning experiments, in 

which both the instrument and sample is used to plan and control diffraction measurements 

[168, 169]. At the beginning the method was produced using virtual sample models 

obtained by laser scanning the sample, but this approach has been found to have the 

following disadvantages:

• the laser scans give only the object shape and cannot be used to reveal internal features;

• the laser scanning approach often does not work well for some cultural heritage objects 

because the surfaces cannot be colour-sprayed to enhance the laser contrasts.

The advantage of the extension reported in this chapter, in which a tomography 

dataset replaces the laser data, is that the available information will now include the 

internal as well as external geometry.
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The TDD method is demonstrated in this chapter by the investigation of two 

different structurally and geometrically complex samples drawn from engineering and 

heritage sciences. The viability of the TDD approach was proved using combinations of 

individual tomography and diffraction instruments such as, in this case, NEUTRA (PSI) 

and ENGIN-X (ISIS). In the near future, the TDD could be applied on the combined 

imaging-diffraction instrument IMAT (ISIS).

5.2 Outline of the Tomography Driven Diffraction technique

In contrast to a tomography experiment, in which the characteristics of the whole sample 

are revealed, in terms of dimensions, shape, internal defects or density, a diffraction 

experiment for neutron strain scanning only measures over a small sampling volume of a 

few cubic millimetres (known as the gauge volume) (see section 2.4.2).

There are two difficulties associated with many diffraction experiments:

i) Identifying and marking the points of interest that we wish to measure;

ii) Controlling the diffraction instrument so that these points are brought to the instrument 

focus or gauge volume.

The answer to these difficulties can reside in the tomography diffraction 

complementarity of our method, as summarized by the following three steps:

• identify and mark for measurement the features of interest as revealed in the sample 

tomography;

• determine the position of these features in relation to the diffraction instrument focus;

• establish how to move the instrument to measure the features once we have 

information about the position of the sample.
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5.3 TDD for engineering samples

The residual stresses have important consequences on the performance of engineering 

components and can be measured with different direct methods [123]. Some of the 

methods can be either destructive (e.g. hole drilling [170, 171], slitting [172] or contour 

method [173, 174]) or non-destructive such as X-ray (laboratory or synchrotron) or neutron 

diffraction. As a particular situation, in welding, residual stresses are formed in the 

structure as the result of differential contractions, which occur as the weld metal solidifies 

and cools to ambient temperature [175].

Using neutron diffraction residual stresses can be measured non-destructively 

within the interior of the samples in small test volumes (down to l x l x l  mm3) and in thick 

specimens (up to few cm) [123].

5.3.1 Sample description

In order to demonstrate the potential contribution of TDD to the measurement of residual 

stress we have applied the method to the investigation of a component from a nuclear 

power station. In a complex pipe to pipe intersection, known as a bifurcation (Figure 5.3.1) 

in the boilers of the UK’s Advanced Gas Cooled Reactors (AGRs) a number of creep 

cracks have been found [176]. These creep cracks shorten the life of these components and 

residual stress is a possible contributing cause.
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Figure 5.3.1: Photograph o f completed bifurcation [176].

The purpose of the analysis was to accurately quantify the distribution and 

magnitude of residual stresses present in a mock-up bifurcation component after the 

fabrication cycle and so provide information on possible failure mechanisms allowing 

fabrication, durability and performance to be improved. The relevance of the selection of 

this sample for the demonstration of the TDD approach is that the geometry of the sample 

(Figure 5.3.2) is complex and the measurements points needed to be sited accurately in 

relation to both the external and internal geometry of fabrication welds. Without 

tomography data this would have been both difficult and time consuming.
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Figure 5.3.2: The geometry o f the bifurcation, finite element model and creep damage
[176].

The bifurcation material is AISI Type 316H stainless steel and the outline 

fabrication cycle is:

(a) cold bending of the platen-side tube; (b) cold swaging of the tailpipe transition stub; (c) 

cutting off the extrados of the bend and machining weld preps on the two parts; (d) 

welding (without prior heat treatment); (e) inspection by radiography prior to post weld 

treatment (PWHT); (f) joining to the rest of the secondary superheater stage platen; (g) a 

nominal solution heat treatment of the assembly as a whole; and (h) internal pressure proof 

test (27 MPa).

In this section the detailed results obtained from neutron diffraction experiment and 

finite element analysis will not be shown. Our mainly intention is to explain the TDD 

method for an engineering sample.

Preliminary step to the experiment

The first step of the process was to attach four (a minimum of three are required) 

identical steel spheres of 1 cm in diameter at different points on the surface of the sample 

(Figure 5.3.3). These are named “fiducial spheres” and the coordinates of the centres of
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these spheres are used as reference points at a later stage when accurate correspondence 

between the virtual and real laboratories needs to be established.

Figure 5.3.3: The ph otograph  o f  the sam ple w ith  fo u r  s tee l spheres a ttach ed  in d ica ted  by  
the red  arrow s.

5.3.2 Neutron imaging experimental description

The neutron tomography experiment on the bifurcation sample was performed at the 

NEUTRA station [7] at the Swiss neutron source SINQ of the Paul Scherrer Institute. The 

samples were placed on top of a rotary table at position 3 of the beamline (at the end of the 

beamline, at 13.131 m distance from the target station and 10.547 m distance from the 

aperture where we gain the best spatial resolution and a large field of view). On this 

position the beam diameter is 40 cm with collimation ration L/D=550. The approximate 

neutron flux on this position is 3x l06 [nxcm^sec^mA'1] [7]. The distance between the 

rotational axis and the scintillator screen was 11.5 cm. During a 360° rotation of the 

sample, 625 neutron radiographic projections of the sample were taken (Figure 5.3.4). The

202



detector system was based on a CCD camera (Andor 1024 [177]) with 1024x1024 pixels. 

This camera was equipped with a 50 mm Pentax objective and viewed a mirror which 

reflected the light generated by the incident neutrons in the scintillator screen. The 

recording time per image was 20 seconds at a proton current of 1.31 mA. The field of view 

was approximately 200x200 mm2.

Figure 5.3.4: Collecting tomography data, a) Mock up bifurcation mounted on the 
NEUTRA rotation stage in front o f the scintillator screen; b) Example 
radiography.

Virtual sample model

The reconstruction of the neutron data was achieved with tomography processing software 

developed at PSI used for reconstructing and viewing tomography data [178]. The 

corrections (flat-field and dark field) were applied to projections before calculating the 

object volume by the filtered back-projections algorithm (see section 2.3.3.1) included in 

the reconstructing software. The tomography was then subsequently segmented and 

meshed using the commercial Volume Graphics software package VGStudio Max 2.0 [70].
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From the segmented volume obtained in VGStudio we extracted a polygonal surface model 

of STL format (Figure 5.3.5).

Figure 5.3.5: Segm enting and m eshing the tom ography data, a) Segm ented tom ography, b) 
Surface o f  segm entation  m eshed and output as triangular S tandard  
L ithograph ic STL file .

The STL model was then imported into the virtual instrument software Strain Scanning 

Simulation Software (SScanSS) [168] which was developed as a collaboration between 

The Open University and ISIS for the purpose of supporting engineering strain scanning 

experiments. This software was designed to provide tools necessary for planning, 

optimizing and executing experiments. The approach allows the user to control the 

instrument by indicating the measurement points on the virtual sample, which until now 

has been obtained by scanning samples with precision laser scanners.
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5.3.3 Neutron diffraction application of TDD

In the upcoming paragraphs we present the tomography driven diffraction instrumental 

concept applied to the bifurcation sample.

5.3.3.1 The measurement points

The measurement points were selected on the sample in the areas where cracking had been 

observed: two areas on the crotch (crotch 1 -  5points and crotch2 -  5points) other two areas 

on the sample’s flank (flankl - 6points and flank2 - 6points) and the last region 

surrounding the sample, exactly on the ring weld, 16points (Figure 5.3.6). These points 

were defined graphically in SScanSS on sections generated by the intersection of a user 

defined plane with the 3D model.

crotch 1 crotch2

ring

Figure 5.3.6: Selecting measurement points, a) Generating section through virtual sample, 
b) Measurement points placed on section (red).
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5.3.3.2 The virtual instrument

SScanSS [179] allows the selection of a number of virtual diffraction instrument models 

corresponding to instruments in use at various facilities worldwide such as ENGIN-X 

(ISIS) [168], KOWARI (ANSTO) [180], NRSF2 (ORNL) [179] and VULCAN (SNS) 

[181]. This software helps scientists and users:

• To visualize the instrument features and to understand better the measurement process;

• To place and orientate a complex sample on the instrument;

• Automatically generate the machine control scripts required to make the measurements;

• To provide options for automatically optimizing other important experimental 

parameters such as the measurement counting time and collision prevention.

The experiments described in this chapter were performed using the ENGIN-X 

engineering strain scanner at ISIS in the UK, [6]. The ENGIN-X virtual instrument (Figure 

5.3.7) is loaded into SScanSS including 3D models of the components of the real 

instrument.

ENGIN-X uses two diffraction banks set at 90° to the incident beam, which allow 

simultaneous measurement of two strain components. Due to the complex geometry of the 

sample we also employed a triple axis goniometer [182] to allow for flexible sample 

positioning. At the start of the experiment, we mounted the sample on the goniometer, so 

that all three strain components would be accessible and could be measured at every 

measurement point (this was verified by simulation prior to the start of the experiment).
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GoniometerSample

Beam

Detector

Figure 5.3.7: The virtual EN G IN -X instrum ent. The virtual labora tory  com prisin g  the 
sam ple and  instrum ents m odels. SScanSS ca lcu la tes how  to m ove the 
position in g  system , com prising the trip le axis gon iom eter an d  the x, y , z, El 

table, so that the requ ired  strain  com ponents are m easured.

5.3.3.3 Initializing the virtual laboratory

The most important requirement before starting the experiment is to have accurate 

correspondence between virtual and real laboratories in terms of the position of the sample 

on the instrument. Having this in mind, the procedures followed are:

i) to find the positions of the fiducial points in the virtual sample coordinate system;

ii) to measure the coordinates of the centres of the spheres on the real sample on the real 

instrument using a coordinate measurement machine (CMM) or touch probe [183];

iii) to find the transformation matrix that maps the positions of the virtual fiducial points to 

the real ones and apply this transformation to the whole of the virtual sample. This matrix 

is calculated automatically in SScanSS using a least-squares procedure [169].

The last step is to bring the measurement points within the sample to the 

instrument’s focus. The instrument movements required to do this are calculated within the
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SScanSS virtual laboratory and then exported as a simple text fde which is read by 

OpenGenie [184], the ISIS control software [183].

5.3.4 Diffraction scans

The ENGIN-X instrument (Figure 5.3.8) has three pairs of incident slits. While the first 

two pairs are located along the incident beam path, within the neutron guide at the 

distances of 4 m and 1.5 m respectively from the sample position, the third slit-component 

(jaws3) has adjustable horizontal and vertical blades to control the height and width of the 

incident beam. These slits were each set to 2 mm, and as the gauge length defined by the 

collimator was also 2 mm the measurements were made with a 2x2x2 mm3 gauge volume. 

The wavelength range was between 0.56 and 3.1 A corresponding to a d  -spacing  range 

of 0.4 to 2.2 A. The stress-free lattice parameter was obtained from measurements 

made at the ends of the tubes away from any weld stress.

Figure 5.3.8: Sam ple m ounted on EN G IN -X fo r  diffraction m easurem ents.
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ENGIN-X is equipped with a software suite for full analysis of diffraction spectra. The 

diffraction patterns were fitted with a steel structure model using the GSAS analysis 

package for obtaining the lattice parameter [120]. Figure 5.3.9 illustrates a typical 

diffraction pattern recorded during this experiment, where the neutron intensity is plotted 

versus the lattice spacing d.
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d-spacing (A)

Figure 5.3.9: Diffraction spectrum obtained at ENGIN-X fo r one measurement point 
selected on the weld ring. The TOF data was analysed using Rietveld 
method.

From the lattice parameter for each measurement point (dx) and the measured stress-free 

reference lattice parameter for each detector bank (J0), the elastic strain along a 

direction ‘x’ (for example) was calculated using formula (2.4.9).

The strains £yy, measured in the three orthogonal directions (transverse,

longitudinal, through thickness) were combined with the appropriate elastic constants and 

used to calculate the stress, ov^, CTyy, <7^ in each direction using Hooke’s law given by

the relation (2.4.10), where the macroscopic values of material properties used were 

Young’s modulus E=168.2 GPa and Poisson’s ratio, v=0.294, respectively. The stress 

values obtained from these measurements provided information on the stress within this
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sample as well as assisting in the verification of finite element method predictions which 

are frequently used to predict residual stresses in complex components.

■ Longitudinal —o— T ran sv e rsa l T hrough  th ick n ess

80

at
0 -  20

-20

-40

-60

Points se lected  on flank2

Figure 5.3.10: Stress calculated fo r  the points selected on the flank 2 o f the bifurcation 
sample.

Figure 5.3.10 is an example of the plot of the stress values calculated from the neutron 

diffraction measurements for the points selected on one flank of the sample (see Figure

5.3.6) showing that in the mock-up bifurcation component, after the fabrication cycle, the 

residual stresses have been reduced.

For engineering the ability to guide residual strain diffraction measurements 

accurately in relation to internal features is a valuable new possibility and our technique 

was already successfully applied for other engineering samples, such as stresses adjacent to 

cavities within turbine blades measurements [185].
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5.4 TDD applied in archaeometry

Another challenge for the tomography driven diffraction method is study of archaeological 

and art-historical objects where the positions and coordinates of the internal features that 

may be of interest is often not known a-priori. The inside of the objects could be made 

visible using neutron tomography. Details about sample composition, production 

techniques of the objects interesting for archaeologists are not evaluated through neutron 

tomography alone. Using TDD, internal structures made visible by applying neutron 

imaging techniques can be readily identified and marked for further characterisation by 

neutron diffraction.

The first experiment was for testing the TDD method to see if this is suitable for 

studying compositional variations in an object. Based on this test, we did a second 

experiment on an art-historical sample obtaining useful and interesting results on its 

structure and compositions and not on residual stresses as in the engineering sample.

5.4.1 Description of samples

For the trial experiment we used a replica bronze statue (Figure 5.4.1 a) with 25 cm height 

which represents the large and complex objects often encountered in art history and 

archaeology [186]. It was one of the several replica statues produced at the Rijksmuseum 

Amsterdam in order to reconstruct Renaissance bronze casting technologies. For the 

replica statues, the lost wax casting Renaissance bronze technique [187] was applied, 

where the generic term bronze was used for copper alloys of which the exact composition 

is not always known. The lost wax casting process is described as follows [35]: a clay core 

that functions as the body of the sculpture is covered with a wax layer that forms the 

geometry and final appearance of the future sculpture. Through the wax, iron ‘core pins’
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are inserted into the clay body and left protruding. Around this wax layer, and attached to 

the pins, a clay layer is mounted that functions as a supporting outer mould. The wax is, by 

means of a connected wax funnel system, still in contact with open air. The complete 

construction is heated in a kiln and the wax melts out from between the two clay parts 

which remain connected and held in position by the iron core-pins. After the wax has 

completely disappeared molten metal can be cast through the same opening from which the 

wax melted out. After solidification of the metal the outer mould can be taken away. In 

most cases the iron core pins remain in the bronze after it has been cast and finished, 

however they can be concealed using finishing techniques.

(a) (b)

Figure 5.4.1: (a) R eplica  statue; (b) Striding N oblem an (R enaissance Bronze), c.1610, 
Rijksm useum  A m sterdam , Inv. B K -16083, H eight 35cm  [188].

The second object selected was the Striding Nobleman (Figure 5.4.1b), a 

Renaissance copper alloy statue. Initially, it was thought that the Nobleman statue is a 

work by the sculptor Hendrick de Keyser4, but after an examination using X-ray

4 H endrick de K eyser (1 5 65-1621) w as a Dutch sculptor and architect.
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radiography [189] a bar was observed inserted inside the back of the statue that de Keyser 

never used in his bronzes.

5.4.2 Measurements on replica statue

In this section we would like to emphasize the results obtained for a trial experiment using 

the replica bronze statue.

5.4.2.1 Preliminary steps

The fiducial points were provided by attaching a number of steel spheres (with 1 cm 

diameter) on the surface of the replica statue. The tomographic images of the sample were 

obtained at the NEUTRA instrument from PSI using same instrument settings. The virtual 

sample model was extracted as a meshed surface of segmentation (Figure 5.4.2 a) and then 

imported into the ENGIN-X virtual instrument (Figure 5.4.2 c, d) elaborated in the 

SScanSS software.

5.4.2.2 Selecting the measurement points

From the tomography data many internal structures and features were revealed, such as 

internal cavities or the pins used in the casting process. Three different measurement points 

were placed (Figure 5.4.2 b) at selected small but compositionally distinctive features:

1. one point at the intersection of a steel pin with the wall of the casting;

2. a second point within the wall for comparison with the point 1;

3. the last point in the area where we suspect a casting cavity in the wall.
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Figure 5.4.2: Steps in TD D  m ethod on rep lica  statue, (a) 3D  m odel o f  the statue with  
se lec ted  p lan e; (b) se lec ted  m easurem ents p o in ts and the corresponding  
sim u la ted  gauge volum es; (c) virtual sam ple and  instrum ent; (d) real 
sam ple and instrument.

5.4.2.3 Collecting the diffraction data

The settings of the real and virtual ENGIN-X instruments were similar to the settings used 

in the engineering bifurcation experiment. The only difference is that the sample was 

mounted directly on the rotation table and the goniometer system was not used. The slits 

and collimator were each set to 2 mm, defining a gauge volume of 2x2x2 mm3. The data 

for the points selected show low counting statistics mainly because the path lengths of the
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neutrons through the material are longer. For data gathering we applied the same software, 

OpenGenie connected to the ENGIN-X instrument.

5.4.2.4 Results

After plotting the diffraction data there were observed peaks of bronze from the 

measurement points inside the wall of the sample. For the point chosen at the intersection 

of the pin with the statue’s wall the diffraction pattern shows both the presence of the 

bronze peaks from the casting and fee-iron from the pin. From the archaeological point of 

view the presence of (fee) iron rather than (bee) ferritic iron would indicate that the object 

measured was a copy not an original artefact. (Figure 5.4.3)

a)

Bronze Peaks

T im e -  o f -  flight (fts)

b)

Iron (fee) peaks

j - ’c* S5»»c* <**:'

T im e -  o f -  flight (its)

Figure 5.4.3: Diffraction patterns fo r points selected in the replica statue, (a) Diffraction 
pattern collected inside the wall, showing the peaks o f bronze; (b) 
Diffraction pattern from volume point where pin passes through casting, 
showing bronze and fcc-iron peaks.

Low measured counts from points placed in the centre of apparent cavities within the wall 

of the statue indicated that they were indeed cavities rather than artefacts of the 

segmentation, providing that we could accurately locate such features for measurements.
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The results from these measurements demonstrate the viability and practicability of 

the TDD approach in the investigation of complex archaeological samples in a non

destructive manner.

5.4.3 Investigation of Striding Nobleman statue

Following the success of the previous study a beamtime application was made to study the 

structure and composition of the Renaissance statue called the Striding Nobleman. It must 

be emphasized that before this research it was difficult to determine the composition of an 

alloy inside of a sculpture at a pre-determined point. It was observed that a Renaissance 

bronze statuette (the Striding Nobleman) from the Rijksmuseum’s exhibition is magnetic5 

and it was suspected that the material compositions differ between the cast walls of the 

statue and the various internal constructional elements revealed by the tomography data. In 

the particular study of production techniques of this statuette two main aspects were of 

interest: the structure of the sculpture and the alloys that were used.

Because this object is precious and unique, the approach of attaching steel balls as 

“fiducial points” cannot be applied, so it was necessary to find an alternative strategy of 

employing prominent features of the statues itself.

5.4.3.1 Neutron imaging -  experimental description

The neutron tomography experiment was performed earlier at the neutron imaging facility, 

NEUTRA, at PSI and it was not part of my study. For this reason, here, we present only 

few preliminary aspects to the application of TDD. Because the field of view was 27.2 cm

5 This was discovered earlier using neodymium-based magnets to check for magnetic materials on bronze 

statues in the Rijksmuseum, to locate hidden parts of iron core pins which were used in the construction 

process of these statuettes.
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the entire object was measured in two individual datasets by shifting the sculpture in 

height. Both datasets were stacked for reconstructing the entire sample using the VgStudio 

software. After reconstruction it was revealed that the statue is hollow, indirectly cast with 

separately cast arms and lower legs attached to the body by brazing and reinforced with 

bronze or brass rods in the shoulders and knees (Figure 5.4.4). Details about the imaging 

experiment are presented in [35].

(a) (b)

Figure 5.4.4: Neutron tomography data o f the Striding Nobleman, (a) Alloy/metal 
distribution; (b) Distribution o f solder joints and hollow parts.

After tomographic reconstruction the wall thicknesses can be estimated at any point (with 

an accuracy of 0.25 mm), two heavy wedge-shaped copper alloy plugs in the interior of the 

lower body and an arched insertion soldered in the statue’s back (Figure 5.4.4 a). From the 

attenuation distribution of the neutrons the metal welds are visible in Figure 5.4.4 b (red 

colours). On the other hand from the attenuation map of the different copper alloys and the 

iron it was not possible to determine the metal compositions used in the statue. No 

indications of iron core pins were visible in the neutron tomography data. For this reason, 

it was necessary to extend our investigations to neutron diffraction measurements with 

Rietveld refinements.
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5.4.3.2 Application of TDD method

A polygon surface model was extracted from VgStudio and imported into the SScanSS 

software. The required internal structures were identified on SScanSS generated sections 

through the model and measurements points were identified and marked. (Figure 5.4.5)

(a)

• r

(•', J :

I J

(b)

Figure 5.4.5: Tomography data in SScanSS laboratory, (a) Cutting plane in the sample;
(b) Placing the measurement points in the sample.

The next step was to combine the virtual sample described as an STL model with the 

virtual ENGIN-X instrument model prior to generating the instrument control scripts.
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Figure 5.4.6: Virtual sam ple p o sitio n ed  in the virtual EN G IN -X instrum ent

To determine the initial position of the statue and to correctly align it within the virtual 

SScanSS laboratory we used as fiducial markers the fingers of the hands and the tip of the 

nose of the Striding Nobleman. The position of these features was measured using a touch- 

probe. As in the previous experiments, the SScanSS software was used to automatically 

generate the required instrument control scripts (Figure 5.4.6).

5.4.3.3 Neutron diffraction results

The size of the gauge volume used through the measurements was adjusted by the jaws and 

the pair of radial collimators in front of the neutron scintillation detectors at 4x5x2 mm 

with a beam cross-section of 4x5 mm2 (width x height) and a diffracting length of 2 mm 

along the beam direction as determined by the collimators. Applying the TOF method a 

full diffraction spectrum is obtained from a single measurement. The scattered neutrons are 

recorded in the two 90° detector banks, on either side of the sample position and at a 

distance of 1.5 m from the sample.
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From the positions and intensities of diffraction peaks in the spectra we can extract 

information about the lattice parameter and weight fractions of crystallographic phases, 

such as copper alloys, lead, ferrite and corrosion phases. In addition, information about the 

microstructure and the material treatment can be deduced from the shape and intensities of 

the diffraction peaks, for example, whether or not the alloy was left as-cast or 

homogenized.

The diffraction pattern were collected from 34 points on the wall and internal parts 

of the sculpture: 20 points on the wall scan along front, one point on the support at back, 3 

points on the internal wedge-shaped plugs, 4 points on the internal collar bar and 6 points 

on the proper right leg (Figure 5.4.7). The collection time per analysis point was about 30 

minutes.

140918

140888

140891
140901
140892
140905
140893
140906
140902
140894
140895
140903
140896
140907
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140909
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140910
140904
140900

4 .1 4 0 9 1 5
5 .140916
6 .140917
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Figure 5.4.7: N eutron an alysis po in ts se lec ted  on the tom ography data  in SScanSS  
so ftw are w ith  the specific  run num bers a ssoc ia ted
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All the experimental data were analysed by the Rietveld method with the General Structure 

Analysis System (GSAS) and they are presented in the Table 5.4.1. The following crystal 

structures were included in the Rietveld model to fit the data, where u is the Debye-Waller 

factor [127]:

(1) a-phase (space group Fm3m) with a lattice parameter in a range from a=3.6145 to 

a=3.67 A; u=0.01 A2;

(2) Pb-phase (space group Fm3m), u=0.034 A2; Pb does not dissolve into the copper 

lattice, and can therefore be observed as a separate phase with a characteristic Bragg peak 

at 2.86 A;

(3) ferritic Fe phase (space group Im3m), u=0.0041 A2;

(4) cuprite CU2O (space group Pn3m), u=0.019 A2;

(5) Fe-Ni-Cu Cu-type phase (space group Fm3m) with a lattice parameter of 3.588 A and 

a composition of l/3Fe, l/3Ni, l/3Cu, respectively, and u=0.01 A2.

The Debye-Waller parameters used are empirical values determined from pure 

materials.

Table 5.4.1: Neutron diffraction results fo r  Striding Nobleman statue.
Rietveld refinement results Calculated

Analysis Lattice Copper Pb Alpha Fe Cu20 Fe-Ni-Cu Cu Zn

points parameter Alloy

(A) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %)

Waii scan aiong front (Fig.5.4.7b)

140891 3.6506 96.8 2.5 0.7 (<0.3) - 83.4 16.6

140892 3.6514 96.4 3.1 0.5 (<0.1) - 83.1 16.9

140893 3.6500 96.2 2.8 0.2 (<0.2) 0.8 83.7 16.3

140894 3.6496 99.0 (<3.5) 1.0 (<0.1) “ 83.0 17.0
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140895 3.6501 98.9 (<2.3) 1.1 (<0.6) - 82.8 17.2

140896 3.6506 95.6 3.3 1.1 (<0.3) - 82.9 17.1

140897 3.6494 98.4 (<5.3) 1.6 (<0.9) - 83.2 16.8

140898 3.6507 100 (<2.0) (<0.2) (<0.1) - 83.4 16.6

140899 3.6511 96.2 3.5 0.3 (<0.2) - 83.2 16.8

140900 3.6517 95.4 3.5 1.1 (<0.2) - 82.9 17.1

140901 3.6508 96.2 3.3 0.5 (<0.2) - 83.3 16.7

140902 3.6509 95.0 3.9 1.1 (<0.4) - 83.0 17.0

140903 3.6510 95.8 3.1 1.1 (<0.1) - 83.0 17.0

140904 3.6512 96.0 3.2 0.8 (<0.1) - 83.2 16.8

140905 3.6502 95.5 3.6 0.1 (<0.2) 0.8 83.6 16.4

140906 3.6504 96.6 2.5 0.9 (<0.5) - 83.2 16.8

140907 3.6507 95.2 3.7 1.1 (<0.1) - 83.1 16.9

140908 3.6501 95.2 3.7 0.4 (<0.1) 0.7 83.6 16.4

140909 3.6511 95.9 3.0 0.5 (<0.1) 0.6 83.2 16.8

140910 3.6513 95.9 3.7 0.4 (<0.1) - 83.1 16.9

Support at back (Fig. 5.4.7f)

140918 3.6654 100 (<3.3) (<o.i) (<1.0) - 77.0 23.0

Internal wedge-shaped p ugs (Fig.5.4.7e, Fig.5.4.7g)

140888 3.6524 94.5 5.5 (<0.1) (<0.5) - 82.7 17.3

140920 3.6499 100 (<5.3) (<0.5) - 83.7 16.3

140921 3.6494 97.2 2.8 (<0.1) (<0.1) - 84.0 16.0

Internal co lar bar (Fig.5.4.7d)

140889 3.6160 97.0 (<l-4) (<0.2) 3.0 - 98.6 1.4

140890 3.6159 97.0 (<0.3) (<0.3) 3.0 - 98.6 1.4

140911 3.6162 97.9 (<1.4) (<0.1) 2.1 - 98.5 1.5

140919 3.6513 95.4 3.6 1.0 (<0.3) - 83.2 16.8

Proper right Leg (Fig.5.4.7c)

140912 3.6626 100 (<4.2) (<0.1) (<0.3) - 77.6 22.4
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140913 3.6623 100 (<6.4) (<0.1) (<0.8) - 77.6 21.7

140914 3.6606 100 (<6.4) (<0.6) (<1.1) 77.9 22.1

140915 3.6534 97.4 2.6 (<0.1) (<0.1) “ 82.4 17.6

140916 3.6537 97.9 2.1 (<0.1) (<0.1) “ 82.3 17.7

140917 3.6528 97.5 2.5 (<0.2) (<0.3) “ 82.5 17.5

The lattice constant of the copper alloy depends on the presence of alloying elements such 

as Sn, Zn, Sb and As. From the lattice parameters of the a-phase, the contents of the 

alloying elements can be obtained according to Vegard’s rule, for example using a 

calibration curve for binary Cu-Sn alloys. Partitioning of the copper alloy into Cu and Zn 

in Table 5.4.1 was achieved in a similar way using an experimental calibration curve for 

Cu-Zn system [190].

The variation in alloy composition is determined from the lattice parameter of the 

copper-type phase. A phase fraction entry in brackets (see Table 5.4.1), e.g. (<2) indicates 

an upper limit of a phase not actually observed in the data, based on the counting statistics. 

For the Striding Nobleman statue only three different copper alloy compositions were 

observed.

The main alloy of the sculpture, i.e. inside the wall, shows a copper alloy which is 

characterized by an average lattice parameter of 3.6506 A (e.g. point 140891) and which 

varies only slightly for the wall scan. Further crystallographic phases are observed inside 

the wall of the statue: a Pb-phase with an average content of 3.5wt%, and a ferritic Fe- 

phase with an average content of 0.8wt%. Considering that the X-ray fluorescence 

measurements predominantly identify Zn as the alloying elements [35], the Zn-contents in 

the copper alloy phase can be estimated to be 16.8wt% (Table 5.4.1). This calculation, 

however, ignores the effects of other alloying elements on the copper-alloy lattice. It 

should be noticed that at some isolated points on the front side of the statue, small amounts 

(0.8wt%) of a secondary fee phase with a lattice parameter of 3.588 A is found. The lattice
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constant of this phase is characteristically lower than the lattice constant of pure copper. 

The elemental composition is interpreted based on the lattice parameter observed and 

match with the Fe-Ni-Cu database entry.

The point from the internal support bar in the back of the sculpture (140918) has a 

slightly larger lattice parameter, and corresponding Zn content (23%).

The lattice parameter of the alloy on one side of the proper right leg is slightly 

increased (points 140912, 140913, 140914) pointing to a different alloy composition. The 

data for these points (Figure 5.4.7 c) show considerably lower counting statistics mainly 

because the path lengths of the neutrons through the material are longer. We have also 

considered a partially filled gauge volume for explaining the reduced counts for these 

points but came to the conclusion that this cannot account for the observed increase of the 

lattice parameter.

The alloy compositions of internal wedge-shaped plugs in the lower part of the 

sculpture (points 140888,140920, 140921) are comparable to the composition of the wall.

In contrast, the internal collar bar at the height of the shoulders (Figure 5.4.7 d) 

exhibits a completely different alloy composition, as indicated by a lattice parameter of 

3.616 A (point 140889) which is close to the lattice parameter of pure copper. The 

calculated Zn content of 1.5% is hardly significant. Additionally the collar bar exhibits a 

small amount of CU2O (which could be caused by reheating the sculpture and where no 

flux could protect the Cu from oxidizing).
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Figure 5.4.8: Comparison of neutron diffraction peak profiles, (200) Bragg peak, for  
different analysis points.

Additional information can be obtained from the analysis o f the shape of the Bragg 

peaks. Figure 5.4.8 compares the (200) Bragg peak for the wall, internal collar bar, and the 

internal support plugs. From these plots we can remark that the peak positions are 

indicative of the lattice parameter, i.e. Zn content, which is the same for wall and plug but 

different for wall and collar bar. Another assumption is that the profiles of the wall peaks 

are narrow, almost matching the instrument resolution, indicating a homogenized copper 

alloy (which could indicate heat treatment). The very large widths of the peak profiles of 

the internal plugs, even though with the same composition as the wall, are rather indicative 

of as-cast alloys, exhibiting segregated, dendritic microstructures.

The results from this experiment show that combining neutron tomography and 

neutron diffraction techniques we can obtain new insights into the composition and hence 

production techniques of Renaissance copper alloys statues. Also, the ferrite inclusions 

obtained throughout the object is the answer to the question about magnetic attraction of 

the statuette to a permanent magnet.
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5.5 Conclusions

The experiments applied on the engineering sample (bifurcation) and cultural heritage 

samples (replica statue and Nobleman statue) carried out at the NEUTRA and ENGIN-X 

instruments illustrated several advantages of the application of the tomography driven 

diffraction method.

In the archaeological research field, TDD offers the ability to conveniently and 

rapidly characterise features that are visible within a tomography as variations in 

attenuation coefficients, but whose exact compositional and microstructural nature is not 

known.

Taking into account the previous experience in the engineering field where the 

method is applied regularly using laser generated virtual models we can say that 

positioning accuracy of at least 0.1 mm can be easily achieved. This level of positioning 

accuracy is comparable to using the traditional method of finding the surface of the sample 

by means of repeated wall scans. For experiments, such as surface investigations, where 

the highest degree of positioning accuracy is essential it is the possibility of augmenting 

the fiducial point based positioning approach with wall scan data.

The alignment of the sample using the SScanSS software realized an important gain 

of time available for measurement, which is very beneficial during the short period of time 

generally allocated for neutron experiments.

Using two separate imaging and diffraction instruments at the different locations 

requires extra travelling expenses and the movement of the samples between the 

instruments. This is not optional, especially when we have an artefact or a valuable object 

such as the Striding Nobleman statue. Because the TDD method is ideally suitable on the 

coupled imaging-diffraction instruments, one future development is to apply this technique 

on combined imaging and diffraction instruments such as the JEEP synchrotron X-ray
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station at DIAMOND in the UK or the future IMAT neutron instrument at ISIS. On such 

instruments it will be possible to perform the tomography, mark the measurement points 

and proceed to the diffraction measurements as one continuous process without the need 

for any sample movement or repositioning.
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6 Conclusions and future work

6.1. Summary and main conclusions

The purpose of this research was to make specific contributions to the design and 

optimization of the IMAT instrument in imaging mode and to develop a combined imaging 

and diffraction technique, Tomography Driven Diffraction, which would utilise the unique 

features of this instrument.

6.1.1. IMAT -  instrument optimization

The IMAT instrument is currently being built on a cold moderator on the ISIS second 

target station (TS-2) offering a combination of imaging and spatially resolved diffraction 

applications such as neutron radiography, neutron tomography, energy-selective imaging, 

neutron strain scanning, crystallographic structure and phase analysis, and texture analysis. 

The two main areas of investigation regarding the design and optimization of the imaging 

mode of the IMAT instrument have been:

• Modelling, investigation and optimisation of individual instrument components.

• Evaluation of complete IMAT design.

The design of the IMAT instrument was challenging due to the combination of both 

measurement modes, imaging and diffraction, which imposes constraints on the individual 

parts of the instrument, but particularly on the neutron guide which was required for 

obtaining a good time resolution for diffraction and energy-selective imaging. All the
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calculations for IMAT imaging part were done using Monte Carlo simulations performed 

by the McStas software package.

The use of a neutron guide was unusual for an imaging instrument and this 

component was optimised, by varying its geometrical dimensions and reflectivities, in 

order to maximise the neutron flux on the sample position for imaging and diffraction 

experiments and obtain symmetric open beam images. Also, the spatial and spectral 

homogeneity of the neutron beam profile was considered. The large cross section of the 

straight neutron guide (95x95 mm2) provides a flux for imaging on the sample position of

7  910 [n/cm /s] at higher energies at reasonable costs and a symmetric open beam field for 

neutron imaging. The combination of pulsed source operation with a neutron guide allows 

for energy-selective imaging with high wavelength resolution. On the other hand, the 

simulated data shows that, particularly with decreasing pinhole size, the intensity 

distribution on the imaging screen, at the sample position is inhomogeneous, exhibiting 

geometric patterns (i.e. artefacts or stripes). The primary cause of the geometric artefacts 

was found to be that there are regions of the detector at the sample position, which look at 

points on the guide/moderator system from which no neutrons emanate, such as chopper 

gaps or regions outside of the moderator. These image artefacts can be reduced at source 

by consideration of the guide geometry, and further corrected by pixel-by-pixel 

normalisation at the data processing stage. For the lower L/D values these artefacts are 

present but they are washed out due to the higher divergence and corresponding lower 

resolution.

Depending on the requirements of particular imaging experiments (for example do 

they require higher neutron flux or higher spatial resolution) the L/D collimation ratio can 

be varied for different pinhole sizes and for a fixed distance L (L=10 m) between pinhole 

and imaging detector. Increasing the pinhole size (so, decreasing L/D) the neutron flux is 

increased, but also the blurring due to the larger beam divergence.
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The maximum neutron beam diameter for imaging on IMAT, corresponding to the 

maximum field-of-view (FOV), was chosen to be 200 mm at the sample position whereas 

the minimum beam size for diffraction will be 1 mm. The maximum FOV for imaging is 

given by the pinhole-camera distance but also limited by the operational space available at 

the sample position for sample movements and the diffraction detector installations. The 

choice of a maximum FOV is also constrained by the requirement to build a compact, 

transportable camera box.

Preliminary studies into the IMAT’s expected performance were made using 

simulated tomography experiments. Such experiments were carried out using different 

McStas sample models. The first such model modelled attenuation as wavelength 

independent and was used to investigate the reconstruction of a cylindrical sample. The 

second enabled wavelength dependent attenuation and was used to investigate more subtle 

wavelength dependent effects such as beam hardening.

6.1.2. Tomography driven diffraction on the IMAT instrument

A main driver for this thesis was to develop a method for making use of the natural

complementarity between the neutron tomography and neutron diffraction. The result was

the Tomography Driven Diffraction (TDD) method [14] in which geometry information

extracted from tomographies is used to guide diffraction measurements. The advantage of

the TDD method is that the tomography data replace the previously used laser scan data

and so provide information about internal as well external geometry of the sample, in the

sense of dimensions, shape, internal defects or density. Using such data, in conjunction

with the virtual laboratory provided by the strain scanning simulation software SScanSS

[168] enables the placing and control of diffraction measurements, which, in contrast to a

tomography experiment only measure over a volume of a few cubic millimetres known as

the gauge volume. The method was tested using experiments applied on samples drawn
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from engineering and cultural heritage research. These experiments were carried out using 

the NEUTRA and ENGIN-X instruments and supported the viability of the tomography 

driven diffraction method. For engineering the ability to guide residual strain diffraction 

measurements accurately in relation to internal features was demonstrated to be a valuable 

new possibility to the measurement of stress within an engineering sample. In the 

archaeological research field, TDD offers the ability to conveniently and rapidly 

characterise features that are visible within a tomography, as variations in attenuation 

coefficients, but whose exact compositional and microstructural nature is not known.

The concept, TDD, will be a useful tool to the IMAT instrument which combines 

imaging and diffraction on one beamline. Hence, TDD will utilize IMAT tomography data 

for diffraction scans on IMAT. Moreover, the method can be applied to ENGEN-X with 

imaging data from IMAT.

6.2. Future work

Whilst we have provided useful results for the design and optimization of the 

IMAT imaging part, we have also discovered other areas where improvements can be 

made through future work:

• Continue with further simulations of white beam and energy selective radiography and 

tomography experiments in order to more fully explore issues of image quality and 

processing.

• Because we used a lambda monitor rather than a TOF monitor, the need to perform 

simulations using a proper TOF monitor in McStas will be addressed in the future.
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Throughout most of this work, the gravitation effect was neglected; however, a

preliminary study was carried out into the effect of the gravity on the radiography

blurring. This preliminary research on the gravity effect on the image could be 

developed by simulating these effects depending on the pinhole size enabling the 

expected resolution to be calculated depending on the collimation ratio, the distance 

between sample and monitor and the gravitational effect. Moreover, useful information 

on the radiographies could be obtained by comparing the blurring effect due to gravity 

with the blurring effect depending on the divergence or due to the finite resolution of 

the cameras. Given the energy selective capability of IMAT the possibility might exist 

to reduce the effect of gravitational blurring, which is essentially an energy dependent 

phenomenon.

In the monoenergetic beam the Lambert-Beer law I  -  l§e~^1 is defined as a linear

relationship between the proportion of radiation absorbed and the path length through 

the material. In the case of a polychromatic beam this statement is not valid because 

different wavelengths are absorbed differently. Generally the attenuation coefficients 

are integrated over all energies in the neutron spectrum and the flatfield correction 

applied. IMAT will take the advantage of the pulsed source which will offer the 

possibility of applying wavelength dependant flat-fielding which may be advantageous. 

This issue needs to be addressed in future work.

Due to limited beam time, more work on determining the accuracy, under different 

experimental circumstances, of sample positioning using the TDD method is required. 

Issues to be investigated in the future would include:

o effect of distortions and artefacts in tomography data; 

o best type of fiducial points to use;



o effects of magnification in tomography data;

o to investigate advantages of combining tomography and laser data in order 

to improve positioning accuracy.

• Using two separate imaging and diffraction instruments at the different locations 

requires extra travelling expenses and the movement of the samples between the 

instruments. Because the TDD method is also suitable on the coupled imaging- 

diffraction instruments, one future development is to apply this technique on IMAT 

instrument. On such instrument it will be possible to perform the tomography, mark the 

measurement points and proceed to the diffraction measurements as one continuous 

process.
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Appendix 1

Calculation of the projection of the image onto the moderator, reflection 
angle and number of neutron reflectivities in the guide

#include<iostream>
#include<cmath>
#include<stdio.h>
#include<conio.h>
#define pi 3.14159265

int main()
{
FILE* fout = fopen("outlOO.csv", "w");

float image,pinhdet=10,xguide=42.8,guidepinh=l.5,modguide=l.7, 
yguide=0.055,theta,xa,xO,xl,ynl,yn2,xn,yO,c,EF; 
int n; 
image=0;
while (image<0.10){

image=image+0.0 01;
std::cout <<"Image value"<<image<<std::endl; 
std::cout << "pinhdet"<<pinhdet<< std::endl; 
std::cont << "xguide"<<xguide<< std::endl; 
std::cout << "guidepinh"<<guidepinh<< std::endl; 
std::cout << "modguide"<<modguide<< std::endl; 
std::cout << "yguide"<<yguide<< std::endl; 
xa=modguide+xguide+guidepinh+pinhdet; 
xO=modguide+xguide+guidepinh; 
xl=x0+(xO-xa)*yguide/image; 
c=image/pinhdet; 
theta=atan(c)*180/pi; 
ynl = -yguide; 
yn2 = yguide; 

if ((modguide<xl)&&(xl<(modguide+xguide)))
{

std::cout << "reflections:YES" <<std::endl; 
int k = 1}//number of reflections 
n=l;
int nmax=0; 
float yprint=0; 
float EFmax=0; 
while (n<12)
{

xn=(2*n-l)* (xl)-2*(n-1)*x0;
std::cout<<"xn"<<xn<<std::endl;
if ((modguide<xn)& & (xn<(modguide+xguide)))
{

if (n%2==l)
{ EF=ynl+xn*image/(xa-xO) ; 

nmax=n;
EFmax=EF; 
yprint = ynl;
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}
else
{

EF=yn2-xn*image/(xa-xO);
EFmax=EF; 
nmax=n; 
yprint = yn2;

}
std::cout<<"has reflections:"<<nmax<<std::endl;

}
else
{
break;
}
k + + ; 
n++;

} ;/ * i f  ((-0.055<EFmax)& & (EFmax<0.055)) {*/
std: : cout <<" ( " « x n « " ,  "<<ynl<<", "<<EFmax<<"

" « n m a x « " )  "<<std: :endl;
fprintf(fout, "%f,%f,%f,%f,%d\n",theta,image, EFmax,yprint, 

nmax);

}

else { EF=-image*(modguide+xguide+guidepinh)/pinhdet;
/* i f  ((-0.055<EF)& & (EF<0.055))

{*/ std: : cout « "  ( " < < E F « 11) "<<std: : endl; 
fprintf (f out, 11 %f, %f, %f " , theta, image, EF) ; 
fprintf(fout, ",%d\n",0);
std: : cout«" reflect ions : " <<0<<std: : endl; } 

std::cout << "The arc tangent of " << c << " : "
<<theta<<std::endl;

}
getch(); 
fclose(fout); 
return 0;
}
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Appendix 2

IMAT imaging instrument modelled in McStas (initial stage)

DEFINE INSTRUMENT IMAGING(l_min=0.1,l_max=10)
DECLARE
%{

double e_min, e_max;

%}
INITIALIZE
%{

e_min=81.79 9/l_max/l_max; 
e_max=81.799/l_min/l_min;

%}
TRACE
COMPONENT moderator = ISIS_moderator(

Face = "w5", EO = e_min, El = e_max, dist = 1.6 99, 
xw = 0.11, yh = 0.11, modXsize = 0.11, modYsize = 0.11,
CAngle = 0, SAC=1)

AT (0,0,0) ABSOLUTE
COMPONENT myguide = Guide(

wl = 0.095, hi = 0.095, w2 = 0.095, h2 = 0.095, 1 = 42.8, m = 3) 
AT (0, 0, 1.7) RELATIVE moderator

COMPONENT PSDdetl = PSD_monitor(
nx = 100, ny = 100, filename = "PSDl.dat", 

xmin =-0.1, xmax =0.1, ymin = -0.1, ymax =0.1)
AT (0.0, 0.0, 42.8001) RELATIVE myguide

COMPONENT lmonl = L_monitor(
nchan = 1000, filename = "lmonl.dat", xmin = -.10,
xmax =.10, ymin = -.10, 
ymax = .10, Lmin = l_min,
Lmax = l_max)

AT (0.0, 0.0, 42.8002) RELATIVE myguide
COMPONENT pinholel = Circular_slit(radius=0.01)

AT (0.0, 0.0, 46) RELATIVE moderator
COMPONENT PSDdet2= PSD_monitor(

nx = 100, ny = 100, filename = "PSD2.dat", 
xmin =-0.1, xmax =0.1, ymin = -0.1, ymax =0.1)
AT (0.0, 0.0, 10) RELATIVE pinholel

COMPONENT lmon2 = L_monitor(
nchan = 1000, filename = "lmon2.dat", xmin = -.10,
xmax =.10, ymin = -.10, 
ymax = .10, Lmin = l_min,
Lmax = l_max)

AT (0.0, 0.0, 0.001) RELATIVE PSDdet2
END
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Appendix 3

IMAT imaging instrument modelled in McStas (last stage)

DEFINE INSTRUMENT IMAGING (l_min=2, l_max=14)
DECLARE
%{

double e_min, e_max;

%}
INITIALIZE
%{

e_min=81.799/l_max/l_max; 
e_max=81.799/l_min/l_min;

%}
TRACE
COMPONENT moderator = ISIS_moderator(

Face = "w5", EO = e_min, El = e_max, dist = 1.699,
xw = 0.11, yh = 0.11, modXsize = 0.11, modYsize = 0.11,
CAngle = 0, SAC=1)

AT (0,0,0) ABSOLUTE
COMPONENT PSDdetl = PSD_monitor(

nx = 100, ny = 100, filename = "PSDl.dat", 
xmin =-0.1, xmax =0.1, ymin = -0.1, ymax =0.1)
AT (0.0, 0.0, 1.699) RELATIVE moderator

COMPONENT lmonl = L_monitor(
nchan = 1000, filename = "lmonl.dat", xmin = -.10,
xmax =.10, ymin = -.10, 
ymax = .10, Lmin = l_min,
Lmax = l_max)

AT (0.0, 0.0, 1.699) RELATIVE moderator
COMPONENT myguide1= Guide(

wl = 0.1, hi = 0.1, w2 = 0.1, h2 = 0.1, 1 = 2, m =  3)
AT (0, 0, 1.7) RELATIVE moderator

COMPONENT PSDdet2 = PSD_monitor(
nx = 100, ny = 100, filename = "PSD2.dat", 

xmin =-0.1, xmax =0.1, ymin = -0.1, ymax =0.1)
AT (0.0, 0.0, 3.749) RELATIVE moderator

COMPONENT lmon2 = L_monitor(
nchan = 1000, filename = "lmon2.dat", xmin = -.10,
xmax =.10, ymin = -.10, 
ymax = .10, Lmin = i_min,
Lmax = l_max)

AT (0.0, 0.0, 3.749) RELATIVE moderator
COMPONENT myguide2= Guide(

wl = 0.095, hi = 0.095, w2 = 0.095, h2 = 0.095, 1 = 8.05, m = 3) 
AT (0, 0, 3.75) RELATIVE moderator

COMPONENT PSDdet3 = PSD_monitor(
nx = 100, ny = 100, filename = "PSD3.dat",
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xmin =-0.1, xmax =0.1, ymin = -0.1, ymax =0.1)
AT (0.0, 0.0, 11.899) RELATIVE moderator

COMPONENT lmon3 = L_monitor(
nchan = 1000, filename = "lmon3.dat", xmin = -.10, 
xmax =.10, ymin = -.10, 
ymax = .10, Lmin = l_min,
Lmax = l_max)

AT (0.0, 0.0, 11.899) RELATIVE moderator
COMPONENT myguide3= Guide(

wl = 0.095, hi = 0.095, w2 = 0.095, h2 = 0.095, 1 = 0.275, m = 
AT (0, 0, 11.9) RELATIVE moderator

COMPONENT PSDdet4 = PSD_monitor(
nx = 100, ny = 100, filename = "PSD4.dat", 

xmin =-0.1, xmax =0.1, ymin = -0.1, ymax =0.1)
AT (0.0, 0.0, 12.224) RELATIVE moderator

COMPONENT lmon4 = L_monitor(
nchan = 1000, filename = "lmon4.dat", xmin = -.10, 
xmax =.10, ymin = -.10, 
ymax = .10, Lmin = l_min,
Lmax = l_max)

AT (0.0, 0.0, 12.224) RELATIVE moderator
COMPONENT myguide4= Guide(

wl = 0.095, hi = 0.095, w2 = 0.095, h2 = 0.095, 1 = 0.5, m = 3 
AT (0, 0, 12.225) RELATIVE moderator

COMPONENT PSDdet5 = PSD_monitor(
nx = 100, ny = 100, filename = "PSD5.dat", 

xmin =-0.1, xmax =0.1, ymin = -0.1, ymax =0.1)
AT (0.0, 0.0, 13.074) RELATIVE moderator

COMPONENT lmon5 = L_monitor(
nchan = 1000, filename = "lmon5.dat", xmin = -.10, 
xmax =.10, ymin = -.10, 
ymax = .10, Lmin = l_min,
Lmax = l_max)

AT (0.0, 0.0, 13.074) RELATIVE moderator
COMPONENT myguide5= Guide(

wl = 0.095, hi = 0.095, w2 = 0.095, h2 = 0.095, 1 = 7.3, m = 3 
AT (0, 0, 13.075) RELATIVE moderator

COMPONENT PSDdet6 = PSD_monitor(
nx = 100, ny = 100, filename = "PSD6.dat", 

xmin =-0.1, xmax =0.1, ymin = -0.1, ymax =0.1)
AT (0.0, 0.0, 20.424) RELATIVE moderator

COMPONENT lmon6 = L_monitor(
nchan = 1000, filename = "lmon6.dat", xmin = -.10, 
xmax =.10, ymin = -.10, 
ymax = .10, Lmin = l_min,
Lmax = l_max)

AT (0.0, 0.0, 20.424) RELATIVE moderator
COMPONENT myguide6= Guide(

wl = 0.095, hi = 0.095, w2 = 0.095, h2 = 0.095, 1 = 25.275, m 
AT (0, 0, 20.425) RELATIVE moderator

COMPONENT PSDdet7 = PSD_monitor(
nx =100, ny = 100, filename = "PSD7.dat",
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xmin =-0.1, xmax =0.1, ymin = -0.1, ymax =0.1)
AT (0.0, 0.0, 45.701) RELATIVE moderator

COMPONENT lmon7 = L_monitor(
nchan = 1000, filename = "lmon7.dat", xmin = -.10, 
xmax =.10, ymin = -.10, 
ymax = .10, Lmin = l_min,
Lmax = l_max)

AT (0.0, 0.0, 45.701) RELATIVE moderator
COMPONENT pinhole= Circular_slit(radius=0.0025)

AT (0.0, 0.0, 46) RELATIVE moderator
COMPONENT slitl = Slit(

xmin = -0.017125, xmax = 0.017125, ymin = -0.017125, ymax = 0.017125) 
AT (0.0, 0.0, 1.5) RELATIVE pinhole

COMPONENT slit2 = Slit(
xmin = -0.03175, xmax = 0.03175, ymin = -0.03175, ymax = 0.03175)

AT (0.0, 0.0, 3) RELATIVE pinhole
COMPONENT slit3 = Slit(

xmin = -0.046375, xmax = 0.046375, ymin = -0.046375, ymax = 0.046375) 
AT (0.0, 0.0, 4.5) RELATIVE pinhole

COMPONENT slit4 = Slit(
xmin = -0.061, xmax = 0.061, ymin = -0.061, ymax = 0.061)

AT (0.0, 0.0, 6) RELATIVE pinhole
COMPONENT slit5= Slit(

xmin = -0.07075, xmax = 0.07075, ymin = -0.07075, ymax = 0.07075)
AT (0.0, 0.0, 7) RELATIVE pinhole

COMPONENT PSDdet8 = PSD_monitor(
nx = 100, ny = 100, filename = "PSD8.dat", 

xmin =-0.1, xmax =0.1, ymin = -0.1, ymax =0.1)
AT (0.0, 0.0, 10) RELATIVE pinhole

COMPONENT lmon8 = L_monitor(
nchan = 1000, filename = "lmon8.dat", xmin = -.10,
xmax =.10, ymin = -.10, 
ymax = .10, Lmin = l_min,
Lmax = l_max)

AT (0.0, 0.0, 10) RELATIVE pinhole
END
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