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Abstract

This thesis details an investigation into how dust and ice aerosols in the atmosphere of 

Earth and Mars affect the solar spectrum from the ultraviolet to the near infrared, allowing the 

characterisation of the aerosols using broad band surface measurements.

A Monte Carlo Light Scattering Model (MCLSM) was developed to predict the optical 

signature of terrestrial and martian dust devils. The MCLSM was applied to measurements 

taken in the Eldorado Valley, U.S.A. Transit signatures were found to be dependent on the 

method of observation. The transit signature measured in scattered light depends on the dust 

concentration and distribution in contrast to the total light transit signature, which depends 

primarily on the column-integrated dust optical depth. On Mars the high diffuse irradiance 

provides better definition of the vortex interior within the transit signature, with wavelengths 

between 600-750 nm optimal for detecting a transit. To determine the vortex size and dust 

concentration, both the total and the scattered light must be measured. Retrieval of the dust 

optical properties showed that spectral measurements and the calculated mass concentration 

were sensitive to the presence of small particles (0.5-5.0 pm).

A comparison of the downward irradiance for two distinct dust components suggests 

that dust with a higher absorption at visible wavelengths causes increased heating at higher 

altitudes, leading to a more statically-stable atmosphere, which may result in more rapid decay 

of large-scale dust storms. The investigations have also shown that variations in single 

scattering properties can lead to -20% difference in the daily UV-C dose.

A method was devised to distinguish compositional changes in the ubiquitous martian 

dust haze and validated against wind tunnel experiments. This technique is applicable to 

determine the size of water-ice crystals in clouds and the optical depth of the dust haze at the 

time of the cloud passage.
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Introduction

1 Chapter One: Introduction

1.1 Aim of the thesis

This thesis aims to investigate the following research questions:

1) What are the critical factors required for successful retrieval of the optical properties of 

dust particles in suspension around dust devil vortices?

2) What can we determine from spectral measurements of dust devil vortices in order to 

constrain the internal characteristics and the mass concentration?

3) What are the observed differences between martian and terrestrial dust devil spectral 

signatures and what are the implications?

4) How do compositional changes to the dust background component of the martian 

atmosphere affect observations of dust devils and is there a method for differentiating 

between different dust and ice aerosol components?

These aims form a scientific case for sending a spectrometer to the surface of Mars, 

observing the atmosphere in the ultraviolet, visible and near-infrared wavelength region for the 

purpose of improving our knowledge of the optical properties of martian dust and determining 

the effect of dust devils on the martian climate. This will further our understanding of the 

influence of dust on the martian atmosphere.
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1.2 The planet Mars

The planet Mars has played an iconic part in many different cultures and religions throughout 

human history, most notably representing the ‘god of War’ in Roman mythology. Less than a 

century ago it was believed that Mars could be habitable and that the dark areas were 

vegetation. This idea was not so far-fetched for the time as observations showed seasonal 

variation in these dark areas (Schiaparelli, 1899, Lowell, 1906). While we may look back with 

mild amusement at these outdated ideas, at the time there was no reason to believe that Mars 

would not be habitable like the Earth. It was not until the space age began, and the first probes 

arrived to study the red planet, that Mars was found to be a cold, barren, dusty desert apparently 

incapable of supporting life like that found on Earth (Klein et a l, 1992).

Regardless that we have yet to discover life on Mars, space agencies continue to send 

robotic explorers in an effort to understand this iconic planet. Beyond Earth it has become a 

major focus of scientific research within the Solar System with over thirty missions sent to 

study the planet.

1.3 History of optical depth measurements from the surface 

of Mars

History has shown that exploring the martian surface is no easy feat, with nearly half of the 

missions sent to the surface to date suffering failure. However, overshadowing this fact are the 

successful missions, some operating many years past their planned mission lifetime. These 

missions have provided, and indeed continue to provide, a large volume of data, allowing better 

understanding of the martian surface, atmosphere and history.

The initial attempts to land a surface probe on the surface of Mars were plagued with 

failure. The Soviet built Sputnik 24 was the first spacecraft designed to land on the martian 

surface, but failed to escape low earth orbit due to a problem with the launch vehicle (Shelton,
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1968). It took nearly a decade before the Soviets attempted another landing in 1971, with both 

spacecraft Mars 2 and Mars 3 successfully entering orbit around Mars (Harvey, 1996). 

Unfortunately, the Mars 2 lander element crashed on the surface and, while Mars 3 did 

successfully land, it ceased all transmissions within a minute of landing. Two more attempts 

were made by the Soviet Union in 1973 with Mars 6 & 7 (Harvey, 1996). Mars 6 was a partial 

success, returning data during the descent through the martian atmosphere but subsequently 

failed on landing. A fault with Mars 7 led to the premature separation of the lander probe which 

entered a heliocentric orbit (Harvey, 1996).

In 1976 a new era of martian exploration began with the successful landing and 

operation of the NASA Viking 1 and Viking 2 (VL1 and VL2) spacecraft (Soffen, 1977). Both 

missions were a success and provided the first surface observations of the martian atmosphere 

and surface environment. In situ measurement of the Sun by the lander imaging cameras 

enabled the determination of atmospheric dust opacity from the surface. Pollack et al. (1977) 

analysed sky brightness data to determine the optical properties of the airborne dust and to 

provide an estimated particle radius of 1.8 pm, important for understanding the radiative effects 

of the dust and its impact on the atmosphere.

Following Viking, it took a further 20 years before another successful landing on the 

martian surface by NASA’s Mars Pathfinder (MPF) in 1996 (Golombek, 1997). Previous 

attempts to land on Mars between Viking and MPF were fraught with failure, with Phobos 1 and 

2 (Galeev, 1996) failing to deploy their lander elements and Mars 96 failing to escape Earth 

orbit (Sagdeev et a l, 1988). The MPF surface probe contained a rover named Sojourner that 

had the capability of exploring the local vicinity of the lander. Images of the horizon captured 

by the Imager for Mars Pathfinder (IMP) were the first surface images to observe directly the 

presence of dust devils (dust laden convective vortices) on Mars (Metzger et al., 1999). The 

IMP allowed in-situ measurements of sky brightness which were used to refine the particle size 

and optical properties of the martian dust background (Markiewicz et a l, 1999). In the late 

nineties and entering the following decade, Mars once again confirmed its status as a
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challenging destination with the failure of the NASA Mars Polar Orbiter, and its accompanying 

lander Deep Space 2 (Smrekar et al., 1999), and the British Beagle 2 probe (Sims et al., 1999).

In 2004, the Mars Exploration Rovers (MER), Spirit and Opportunity arrived at Mars 

(Squyres et al., 2004a; b); these were a resounding success story in the exploration of Mars. 

The two rovers were a significant improvement over MPF, each carrying almost twenty times 

the mass of Sojourner. The initial mission lifetime of MER was 90 sols (a sol is defined as one 

martian solar day with duration of 24 hours and 37 minutes), but eight years on Opportunity is 

still operating on the martian surface, currently returning data from Greeley Haven. The last 

communication from Spirit was received in March 2010 after six years of operations on the 

martian surface. During its operational life, Spirit produced an extensive library of dust devil 

images at Gusev crater, which was used by Greeley et al. (2010) to produce statistical data on 

the characteristics of martian dust devils. Observations of the Sun by the panoramic camera 

(PANCAM) on MER have provided detailed insight into the daily and seasonal variation in 

atmospheric opacity at the Rover locations (Lemmon, 2004). The infrared spectrum measured 

by the Miniature Thermal Emission Spectrometer (mini-TES) on the MER rovers was used by 

Wolff et al. (2006) to determine a dust particle size distribution with an effective radius (the 

mean radius weighted by the geometrical cross-section, reff) between 1.3-1.8 pm.

The landing of the Phoenix Mars Lander inside the Arctic circle of Mars on 25th May 

2008 further enhanced our understanding of the martian atmosphere and surface (Smith et al., 

2008). Phoenix landed during martian northern spring and successfully survived 65 sols past its 

mission lifetime of 90 sols. One of the mission goals was to verify the existence of subsurface 

water-ice, which was inadvertently accomplished, during landing, when one of the thrusters 

exposed the ice table (Smith et al., 2009). On-board Phoenix was the first Light Detection and 

Ranging (LIDAR) instrument sent to the planet (Whiteway et a l, 2008). The LIDAR observed 

water ice clouds in the atmosphere, analogous to cirrus clouds on Earth and detected 

precipitation of ice crystals within the cloud structure (Whiteway et al., 2009). Phoenix
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performed synchronised experiments with the Mars Reconnaissance Orbiter (MRO) and 

discovered discrete vertical layers of water ice and dust (Tamppari et a l, 2010).

During the writing of this thesis, the Curiosity rover successfully landed on the surface 

of Mars ushering in a new era of martian exploration (Grotzinger et a l, 2012). Curiosity is the 

most sophisticated rover to land on Mars to date and the results from its science payload may 

provide new insights into the history of Mars and whether its climate was ever conducive to 

being habitable. Table 1-1 provides a summary of the past and current spectroscopic and 

imaging instruments, on the martian surface, used to study the martian atmosphere. 

Spectroscopic and imager instruments used to study the martian atmosphere from orbit are 

given in Table 2-1. The wavelength region observed and mission duration is given for each 

instrument.

Instrument Acronym Wavlength region Mission Duration

Viking 1 & 2 1976 -1 9 8 2

Imaging Cameras - VIS

Mars Pathfinder

Imager for Mars Pathfinder IMP VIS

1996*

Mars Exploration Rovers 2004 - present**

Minature Thermal Emission Spectrometer 

The Panoramic Camera

Mini-TES

PANCAM

IR

VIS - NIR

Phoenix

Surface Stero Imager 

Light Detection and Ranging

SSI

LIDAR

VIS - NIR 

VIS - NIR

05/2008 -11/2008

Curiosity

The Mast Camera

Rover Enviroment Monitoring Station

MASTCAM

REMS

VIS

UV

07/2012 - present

* The duration on the surface was 84 days UV= Ultraviolet VIS = Visible
** Spirit ceased operations in 2009,

Opportunity is still operational NIR - near-infrared IR = Infrared

Table 1-1: Past and present spectroscopic and imager instruments, on the surface of Mars, to study the 
atmosphere. For mission duration, the years of operation are given except in the case of operation within 

one year only, in which case the months of operation are also given.
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Instrument Acronym Wavlength region Mission Duration

Mariner 9

Ultraviolet Spectrometer 

Infrared Spectrometer

uvs
IRIS

UV

IR

____ 1971-J_972_m_

Viking 1 & 2

Orbiter imager

Infrared Thermal Mapper

Mars Atmospheric Water Detector

IRTM

MAWD

VIS

IR

NIR

__ J 9 7 ^ - J 9 8 2 _

Phobos 2

Combined Radiometer and 
spectrophometer for Mars

Infrared Spectrometer

KRFM

ISM

VIS

IR

Mars Global Surveyor

Thermal Emission Spectrometer 

Mars Orbital Camera

TES

MOC

IR

VIS

_  ___

2001 Mars Odyssey 

Thermal Emission Imaging System THEMIS VIS & IR

2001 - present

Mars Express
Spectroscopy for Investigation of 
Characteristics of the Atmosphere of Mars 
High-Resolution Stero camera 
Planetary Fourier Spectrometer

SPICAM
HRSC
PFS

UV&NIR 

NIR & IR

2003 - present

Mars Reconnaissance Orbiter

Context imager 

Mars Climate Sounder 

Mars Color Imager

Compact Reconnaissance Imaging Spectrometer 

High Resolution Imaging Science Experiment

MCS

MARCI

CRISM

HiRISE

VIS 

UV, VIS & IR 

UV - VIS 

VIS-IR 

VIS & NIR

2005 - present

UV= Ultraviolet VIS = Visible NIR - near-infrared IR = Infrared

Table 1-2: Same as Table 1-1 except for martian orbiters

1.4 The atmosphere of Mars

The primary constituent of the martian atmosphere is carbon dioxide (CO2) with a volume 

abundance of 95.32%. Other main components include nitrogen (2.70%), argon (1.60%), 

oxygen (0.13%), carbon monoxide (0.07%), ozone (O3, seasonally dependent) and seasonally 

dependent water vapour (H2O, ~ 0.03%) (Owen, 1992). Measurements by the Planetary Fourier
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Spectrometer (PFS) on Mars Express (Formisano et al., 2004) and Earth based measurements 

(Mumma et al., 2009) have reported the presence of methane in the martian atmosphere. 

However the validity of these measurements is still a matter of debate (Zahnle et a l, 2011).

Observations and studies of Mars have revealed many similarities with the Earth. The 

diurnal cycle is similar between the two planets, with a typical Martian day (or sol) lasting 24.7 

hours. The obliquity of Mars is 25.2°, comparable to 23.4° for the Earth, leading to Earth-like 

seasonal cycles. Differences do exist however, the higher eccentricity of the Mars orbit results 

in approximately 30% less incident solar radiation at aphelion, areocentric solar longitude (Ls) 

of 90°, in comparison to perihelion, (Ls = 270°). Mars also possesses a significantly thinner 

atmosphere, with a surface pressure approximately 100 times less than Earth. The surface 

pressure was observed to vary between 6 and 10 mb at the Viking 1 landing site over the 

mission duration (Hess et al., 1977). The low pressure at the surface prevents the existence of 

liquid water and results in water-ice subliming directly into the atmosphere. The pressure and 

temperature structure of the martian atmosphere, measured by VL1 and VL2, MPF and MER 

during their descents is shown in Figure 1-1 (Nier et al., 1972, Schofield et a l, 1997, Withers 

and Murphy, 2009). All profiles contain long wavelength oscillations except Spirit’s, which 

exhibits a relatively smooth temperature profile. As suggested by Withers and Smith (2006), the 

moderate dust storm event which occurred prior to the descent of Spirit and Opportunity may 

explain the smoother temperature profile measured by Spirit and the warmer temperatures 

experienced by both rovers compared to the Viking landers and MPF below 30 km. This is 

because dust storms can result in broad vertical warming of the atmosphere (Smith et al., 2001). 

The MPF temperature profile shows the coldest temperature of 92 K (below the condensation 

temperature of C02) at approximately 80 km likely indicating presence of C02 condensate 

clouds. A strong thermal inversion is observed in the lower atmosphere in the MPF profile at 

around 10 km, with a minimum temperature below the condensation temperature of water 

vapour in the martian atmosphere. As noted by Schofield et al. (1997), this temperature 

inversion may indicate the altitude of the water-ice clouds observed by the IMP before sunrise.
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Figure 1-1: The descent profiles for pressure (solid lines) and temperature (dashed lines) by VL1 (green), 
VL2 (grey), MPF (black) and MER (red-Spirit, blue-Opportunity).

The presence of ozone in the Earth’s atmosphere prevents 90% of high energy UVC 

(200-280) and UVB (280-315) from reaching the surface. The thin martian atmosphere 

contains a significantly lower abundance of ozone, exposing the martian surface to a greater 

proportion of the high energy ultraviolet photons (Cockell et al., 2000, Patel et al., 2004). Under 

simulated martian conditions, Schuerger et al. (2003) have shown UVC irradiation to be the 

primary factor that determines the survivability of microorganisms.

Another major difference between Earth and Mars is the ubiquitous presence of 

suspended dust particles in the martian atmosphere. Chemical and physical weathering over 

millions of years has led to micron-sized mineral dust particles dominating the atmospheric 

aerosol component, and gives rise to the red/pink hue to the martian sky seen in images returned 

by Viking, MPF, MER and Phoenix. At this point it is useful to introduce the parameter optical 

depth (t), which defines how opaque the atmosphere is to the incident radiation. Optical depth is 

dimensionless and is defined as the product of a species’ extinction cross-section with its
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column abundance. The extinction cross-section is a measure of the likelihood of a photon- 

particle interaction and is analogous to the projected area of the species as seen by the photons.

1.5 Aeolian mineral dust

Aeolian (windblown) dust is a major component of the martian atmosphere with variations in 

dust loading reflecting major interannual climate variability (Haberle et al, 1982, Haberle et a l, 

1993, Read and Lewis, 2004). The martian dust cycle has been investigated extensively since 

the mid-20th century with Gierasch and Goody (1968) being the first to identify clearly the 

fundamental role of dust aerosols in modifying the structure and evolution of the martian 

atmosphere. Using a simplified radiative convective model, Gierasch and Goody (1968) showed 

that a CO2 atmosphere fails to reproduce the general thermal structures of the martian 

atmosphere as observed by the Mariner 9 spacecraft. By adding an absorbing component which 

removed 10% of the incoming solar radiation they showed that the model atmosphere could 

create temperature profiles in the lower atmosphere consistent with those observed. Subsequent 

studies up to the present day have presented an ever more detailed picture of the effect of the 

airborne dust on the martian climate (Leovy and Mintz, 1969, Gierasch and Goody, 1972, 

Pollack et a l, 1976, Conrath, 1975, Leovy, 1985, Zurek et a l, 1992, Clancy et a l, 1995,

Haberle et a l, 1999, Smith et a l, 2001, Bell et a l, 2007).

The suspended dust is radiatively active and the large temporal and spatial variations in 

the atmospheric dust distribution significantly impact the atmospheric state. The suspended dust 

is strongly coupled to the atmosphere with positive and negative feedback existing between dust 

lifting by near surface wind stress and the atmospheric heating rate (Newman et a l, 2002). The 

injection of dust into the atmosphere causes greater and more vertically-extended solar heating 

leading to stronger circulation within the atmosphere. This in turn increases the near surface 

winds, lifting more dust into the atmosphere and resulting in the formation of dynamical 

meteorological phenomena such as dust clouds and local and planet-encircling dust storms.
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Once a dust storm becomes large, the higher vertical extent of the dust component leads to the 

absorption of solar radiation higher in the atmosphere. This leads to a warming and cooling of 

the atmosphere at higher and lower altitudes respectively. As a result the static stability of the 

atmosphere increases, leading to a more stable atmosphere (Andrews, 2000). The more 

statically-stable atmosphere leads to less small scale instabilities, such as gravity waves and 

convective motions, while large scale phenomena tend towards larger spatial scales. This 

reduces the near-surface wind stress, which will reduce the amount of dust lifted into the 

atmosphere. This mechanism is what eventually results in the decay of large dust storms.

Dust storms have been observed from martian orbit (Cantor et a l, 2001, 2002, 2007),on 

the martian surface (Smith et al, 2006), from Earth based telescopes (Capen and Martin, 1971, 

Parkinson and Hunten, 1972, Boyce, 1973) and from Earth orbit (Wolff et al, 1999). Local 

scale dust events occur frequently throughout a martian year and are usually associated with 

either topographic features or the retreating edge of the seasonal polar ice cap in spring in both 

hemispheres. Regional dust storms are less frequent, occurring annually but typically observed 

when Mars is at perihelion (Ls = 225-315°) while planet-encircling dust events occur on average 

every three martian years and result in the majority of the atmosphere experiencing dust optical 

depths that exceed unity, obscuring the surface. The last planet-encircling dust event occurred in 

2007 and was witnessed by Spirit and Opportunity from the martian surface (Smith, 2009).

1.5.1 Sources o f aerosol dust

The entrainment of fine dust (defined as particles with radii between 0.6-2.0 pm) into the 

martian atmosphere is still not fully understood. Larger particles are more easily lofted, but fall 

swiftly back to the surface due to gravity. Cohesive forces such as electrostatic forces and 

intermolecular forces act to stick the dust particles together, making it more difficult for surface 

winds to lift them from the surface. On Mars the required wind threshold speed to lift micron 

sized particles was determined by Greeley et al (1992) to be an order of magnitude greater than
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those observed at the martian surface. This has led to different hypotheses about how the dust is 

entrained in the atmosphere with the two main theories being saltation and/or dust devils.

Saltation is a process where large particles are temporarily lifted into the air by surface 

winds, quickly fall out by sedimentation and on impact with the surface, dislodge and inject 

smaller particles into the atmosphere (Bagnold, 1941). Bagnold observed wind-blown sand and 

dust in the northern African desert. He suggested that the resistance of surface particles to be 

lifted by surface winds could be quantitatively represented by the fluid threshold and the impact 

threshold. The fluid threshold is the speed required to allow wind stress alone to lift the particles 

from the surface and the impact threshold takes into account saltation and is approximately 80% 

of the fluid threshold (Greeley et a l, 1992). Experiments conducted in martian surface 

conditions have demonstrated the suspension of fine dust through the saltation process however, 

as reported by Greeley et al (1992), the effect is less pronounced than expected.

Dust devils are another mechanism through which micron sized dust particles can be injected 

into the atmosphere. The low pressure observed at the centre of dust devils (Sinclair, 1973, 

Greeley et al., 2003) exerts an upward buoyancy force on the surface particles making such 

phenomena highly efficient at lifting fine dust particles into the atmosphere. Dust devils are 

discussed in further detail in Chapter 2.

1.5.2 Seasonal variation

The majority of the martian dust activity occurs between Ls = 180-360°, coinciding with the 

approach of perihelion (martian southern summer). As mentioned earlier, the reduced distance 

to the Sun increases the solar flux incident on Mars, causing the southern summer to experience 

warmer surface and atmospheric temperatures and higher dust abundances. When Mars is at 

aphelion (northern summer) the atmosphere is cooler resulting in reduced dust activity, with t  

measured by MER oscillating around 0.2 between Ls = 50° and 150° (Lemmon et a l, 2004). 

The optical depth measured by VL1 and VL2 (Pollack et al, 1977), MPF (Smith and Lemmon,

1999), MER (Lemmon, 2004) and Phoenix (Lemmon, 2008) as a function of Ls is shown in
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Figure 1-2. The measurements reveal an annual pattern in r, with reduced dust activity observed 

by all landers during northern spring and summer. Southern spring and summer is characterised 

by an overall increase in t, associated with the increased dust activity, with larger variations 

observed in all datasets over short timescales. The large increase in r measured by Spirit and 

Opportunity in Mars Year 28 (Martian Years are numbered according to the calendar proposed 

by R. Todd Clancy (Clancy et al., 2000): Martian Year 1 begins at a time such that Ls = 0° on 

April 11th, 1955) around Ls = 270° correlates with the 2007 planet encircling dust event where 

r, due to dust, was observed to exceed 4.

4—»
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Figure 1-2: The atmospheric opacity at different wavelengths as a function of Ls, 
measured by: the Viking 1 lander (grey), Spirit (red), Opportunity (blue) and Phoenix (black). 
The blue and red solid and dashed lines represent Mars Years (MY) 27 and 28 respectively.

1.6 Condensate clouds

Dust is not the only aerosol in the martian atmosphere, condensate clouds of H20  and C02 have 

been observed to form frequently in the martian atmosphere by Earth-based telescopes (Pettit 

and Richardson, 1955, Smith and Smith, 1972), orbital spacecraft (Curran et a l, 1973, Jakosky 

and Farmer, 1982, Wang and Ingersoll, 2002) and surface landers (Pollack et a l, 1977, Pollack 

et a l, 1979, Smith et a l, 1997). Ice clouds of water and C02 form when the atmospheric
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temperature is low enough to allow either species to condense. The altitude of this condensation 

can vary considerably and is dependent on the seasonal and diurnal changes in temperature 

profiles on Mars. Water-ice clouds alter the global transport of water vapour, with the 

condensation, sedimentation and sublimation processes resulting in a vertical redistribution of 

water, thus playing a significant part in the martian water cycle (Clancy et a l, 1996).

Water-ice aerosols show an anti-correlation with the dust optical depth, with the 

greatest extent of condensate clouds observed when Mars is at aphelion (low atmospheric 

temperatures and dust activity) and in the polar regions in the winter hemisphere (Pearl et al., 

2001, Wang and Ingersoll, 2002, Liu et al., 2003). The two main cloud features on Mars are the 

polar hoods and the annual formation of the aphelion cloud belt. The aphelion cloud belt lies 

between approximately 10°S and 30°N, with the highest ice optical depths observed around 

large topographic features such as the Tharsis volcanoes. The main belt develops in early 

northern spring (Ls = 0°) and peaks in r  and spatial extent near summer solstice (Ls = 90°). The 

aphelion cloud belt exhibits a rapid non-uniform decay around Ls = 140°, with large fluctuations 

in spatial coverage observed on timescales of a day.

Pure water-ice crystals typically have a single scattering albedo {cod) of ~1 indicating 

that the incident solar radiation is entirely scattered. The reduced absorption decreases the 

atmospheric heating rate, hence ice aerosols act to cool the atmosphere. The atmospheric 

circulation responds by decreasing in strength, thus the near surface winds decrease lowering 

the amount of dust lifted into the atmosphere, further reducing atmospheric heating. Since the 

majority of the solar radiation is scattered by the ice aerosols, their radiative impact is highly 

sensitive to how they scatter the radiation {i.e. their scattering phase function) which is 

dependent on the crystal shape and size. Therefore retrieval of ice particle size and shape is 

crucial, as this will determine how much solar radiation is scattered back to space and how 

much is scattered toward the surface.
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1.6.1 Physical characteristics o f martian H2O aerosols

Modelling the spectral dependence of water-ice absorption in infrared spectra, produced by the 

Infrared Interferometer Spectrometer (IRIS) on Mariner 9, Curran et al (1973) determined 

martian ice aerosols to have an effective radius (r^) of 2 pm. Rodin et al. (1997) and Pearl et al 

(2001) also retrieved ice aerosol distributions with reff= 2 pm using infrared observations from 

Phobos 2 and Thermal Emission Spectrometer (TES) data respectively. Two distinct 

populations of water-ice aerosols were discovered by Clancy et al (2003) using emission phase 

function observations by TES. Type 1 ice aerosols are small with reff between 1 pm and 2 pm, 

while type 2 have a distribution with reff between 3 pm and 4 pm. Type 1 ice aerosols were 

typically observed in high altitude hazes and in the polar hoods, and are reported to have the 

scattering behaviour indicative of crystalline shapes. The larger ice aerosols belonging to the 

type 2 population show scattering characteristics of spheroidal particles and are frequently 

observed in the aphelion belt. Observations over the Tharsis region, during the Phobos 2 

mission, have shown ice particles with reff= 0.5 and 1 pm to exist (Petrova et a l, 1996). 

(Petrova et a l, 1996) take into consideration the potential presence of a dust nucleus within 

each ice particle, and show that over the Tharsis region the dust core will have sizes less than 

0.8 pm.

1.7 Vertical distribution of dust and water-ice aerosols

The vertical distribution of solar energy in the martian atmosphere is dependent on the vertical 

distribution of the dust and ice aerosols. Observations and measurements have shown that the 

scale height of the dust (defined as the vertical distance over which the dust abundance has 

decreased by a factor e) is consistent with a CO2  atmosphere (Pollack et al, 1977, Smith et al, 

1997, Lemmon et a l, 2004). This fact allows retrieval algorithms to make the simplified 

assumption that the dust is well-mixed with the CO2  atmosphere (Conrath et al, 1973, Wolff et 

al, 2009). However, the actual vertical distribution of dust differs from the well-mixed scenario
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with the dust extending to higher altitudes (60 km) during the dustier southern spring and 

summer and confined to lower altitudes in the relatively dust free northern spring and summer 

(Jaquin et al., 1986, Chassefiere et al, 1992, Cantor, 2007). By analysing measurements of the 

martian atmosphere by the Mars Climate Sounder (MCS), McCleese et al. (2010) have shown 

that the dust vertical distribution can deviate considerably from the idealized Conrath profile 

(Conrath, 1975) during northern spring and summer, with a maximum in the dust mixing ratio 

observed at approximately 15-25 km above the surface. The retrieved dust profiles by 

McCleese et al. (2010) reveal a complex vertical dust distribution in the atmosphere with 

multiple discrete dust layers.

The vertical distribution of water-ice in the martian atmosphere is highly dependent On 

the abundance of water vapour and temperature as a function of altitude, and is controlled by the 

saturation conditions of the atmosphere (Pearl et a l, 2001, Richardson et al., 2002). 

Observations of water-ice clouds are consistent with the idea that the altitude at which water-ice 

clouds form correlates with the condensation level of the atmosphere, defined as the altitude 

where atmospheric temperatures are cold enough to allow the condensation of water vapour.

The condensation level is highly dependent on latitude and season, being high (> 30 km) during 

perihelion, when the atmosphere is warmer, and significantly lower (10-20 km) at aphelion. In 

winter, both polar regions display extremely low condensation levels, with the precipitation of 

water-ice observed by the Phoenix lander (Whiteway et al., 2009).

1.8 Diurnal variation of optical depth: Morning fogs

To date, measurement of atmospheric optical depth at high temporal resolution over long time- 

scales has not been performed, leaving a gap in our knowledge and understanding of the diurnal 

cycle of martian atmospheric dust and water-ice. However low temporal resolution 

measurements by Viking landers and IMP of atmospheric optical depth have revealed hour by 

hour variations in r during a martian day and night (Pollack et al., 1977, Pollack et al., 1979,
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Colburn et a l, 1989, Smith and Lemmon, 1999). The Viking landers recorded increased x 

during the early morning, with x in the blue filter being consistently higher than the longer 

wavelength filters. A minimum x was observed around midday before increasing again in late 

afternoon. Similar observations were also observed in IMP x measurements. The mechanism for 

these variations in x is the presence of water-ice particles forming a fog near the surface (Pollack 

et al., 1977, Pollack et al, 1979, Colburn et a l, 1989, Smith and Lemmon, 1999). When the 

temperature at night falls below the frost point of water the dust particles can act as nucleation 

sites enabling the condensation of water vapour around the dust particle. The growth of the 

particles due to the accumulation of ice increases the extinction cross-section of the particle 

resulting in higher x. Thomas et al (1999) measured x during the night by observing the bright 

stars Arcturus and Vega and the martian moons Phobos and Deimos. The optical depth was 

observed to increase during the martian night, correlating with condensation of water vapour. 

Wilson et al (2007) compared spatial patterns of Mars Orbiter Laser Altimeter (MOLA) 

absorptions to the difference between observed and modelled night-time temperatures, and 

found at aphelion, ice optical depths at night are higher than daytime values, consistent with the 

development of a surface fog. In the morning the atmospheric temperature increases causing the 

condensed ice to sublime, reducing the particle size and thus the observed r. During early 

afternoon, IMP observed an increase in x, likely associated with increased dust loading from 

local phenomena such as dust devils or the formation of water-ice clouds higher in the 

atmosphere (Smith and Lemmon, 1999). By late afternoon atmospheric temperatures cool 

enough to re-initiate the condensation of water vapour, indicated by an increase in x.

1.9 Thesis outline

Chapter 2 gives an introduction into single scattering theory and the single scattering properties 

of martian aeolian dust retrieved to date are reviewed. The chapter concludes with a discussion 

on the formation and characteristics of terrestrial and martian dust devils. Chapter 3 provides a 

detailed description of the Monte Carlo Light Scattering Model (MCLSM), developed
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specifically for this work and discusses the predicted optical signatures of terrestrial dust devil 

transits. In Chapter 4 fieldwork undertaken in Eldorado Valley, Nevada, is described, and the 

MCLSM is applied to spectral and optical measurements of terrestrial dust devil transits over a 

spectrometer observing at ultraviolet and visible wavelengths. A retrieval of the single 

scattering properties of dust entrained in the vortices is performed and compared to similar 

desert aerosols around the World. Chapter 5 explores the effect of dust and water-ice on the 

irradiance spectrum encountered at the martian surface (180-1100 nm) using a Mars atmosphere 

Radiative Transfer Model (RTM), and applies the MCLSM to determine the expected optical 

signatures of martian dust devils. Chapter 6 investigates the retrieval of dust optical properties 

from irradiance measurements under controlled laboratory conditions and serves as validation of 

the optical property retrieval technique applied to terrestrial dust devils. The thesis ends with a 

discussion and outlines ideas for further work.
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D ust aerosols in the martian atmosphere

2 Chapter Two: Dust aerosols in the martian 

atmosphere

Images sent back from the surface o f Mars, revealed an orange tint to the colour o f the sky 

(Figure 2-1), indicating that the optical properties o f the martian atmosphere are quite different 

from those typically found on the Earth.

Figure 2-1: Image from the martian surface by Curiosity (NASA/JPL-Caltech/Malin Space Science
Systems).

In general the colour o f Earth’s sky is blue due to the shorter wavelengths o f light (violet 

and blue) being scattered more strongly by the m olecules in the Earth’s atmosphere. As air 

m olecules are smaller than the wavelength o f  light (rm «  X, where rm is the radius o f  the 

m olecule), the angle through which the light is scattered is strongly dependent on wavelength  

(oc A .'4 )  and leads to shorter wavelengths having larger scattering angles. The scattering o f  

electromagnetic radiation by air m olecules can be accurately described by Rayleigh scattering
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(Rayleigh, 1918). In the martian atmosphere the primary scattering component is suspended 

aeolian dust. These dust particles are larger than air m olecules, typically comparable to the 

wavelength o f  visible light, and scatter light anisotropically (predominately in the forward 

direction). As a result, their wavelength dependent scattering cannot be described accurately by 

Rayleigh scattering.

2.1 Light scattering by aerosols

The fundamental concept o f electromagnetic scattering used by M ie (1908) is the modification  

o f  the total electromagnetic field caused by the presence o f a particle. For example, a solution o f  

the macroscopic M axw ell’s equations is a plane electromagnetic wave propagating in an infinite 

non-absorbing medium without a change in its intensity or polarisation state (incident field), 

Figure 2-2a. When a particle is present the electromagnetic field differs from the incident field  

(Figure 2-2b). The difference between the total field when the particle is present and the 

incident field can be thought o f as the electromagnetic field scattered by the particle (Figure 

2-2c). In terms o f a mathematical expression, the total field in the presence o f the particle is the 

sum o f the respective incident and scattered fields.

— ►  k '

a
i a  l l l l l

I
■

E l

Figure 2-2: Effect of a dust particle on a plane electromagnetic wave, (a) The real part of the vertical 
component of the electric field vector of a plane electromagnetic wave propagating in the direction of the 
wave vector kjnc, (b) The electric field in the presence of a small homogeneous spherical particle and (c) 

The difference between the fields shown in (a) and (b). Figure taken from Mishchenko (2009).

« # ) ! )
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Dust aerosols in the martian atmosphere

Like all materials, mineral dust particles interact with electromagnetic radiation. This 

interaction results in what we observe as scattering and absorption, and is the mechanism by 

which dust can alter the distribution of the radiative energy within the atmosphere. The 

scattering properties of a dust particle are dependent on size, shape, orientation, mineral 

composition and surface roughness of the particle (Nousiainen, 2009) and are used to describe 

the fraction of light absorbed and scattered, and the scattering direction.

For an ensemble of dust particles, these properties all form distributions which are inter

dependent on each other and thus, there is no exact analytical solution to Maxwell’s equations 

for light scattering by dust-like particles. Therefore, the simulation of optical scattering by 

aerosols requires simplifications to the modelled particles and/or the use of non-exact methods. 

However numerical methods have their limitations and, as a result of the wide range of particle 

sizes and shapes, different methods and simplifications are often required.

2,1.1 Single scattering theory

In the far-field approximation (kR » 1 ,  where k is the wavenumber and R is the distance from 

the particle) the scattered electric field can be written as follows.

where and E#, describe the scattered and incident electric field parallel and 

perpendicular to the scattering plane (defined as a plane containing the incident and scattered

the amplitude of the outgoing spherical wave to the incident plane wave. For irregularly shaped 

particles, the amplitude matrix is a function of the scattering and incidence directions, nsca and 

nmc, and the particle composition, morphology, size and orientation with respect to the global

1 The Euler angles of rotation transform the global coordinate system into the particle coordinate system .

exp (ikR) (2.1)

beam in the direction of observation) and S is a 2x2 scattering amplitude matrix which relates

coordinate system (defined by the Euler angles of rotation1 a, p and y). The S matrix is the
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primary output of single scattering theory, which if known, enables computation of any other 

light scattering characteristics of the particle.

Optical measurements of light cannot measure the electric field associated with a beam 

of light, but instead measure quantities that are quadratic combinations of the electric field 

components (Mishchenko et a l, 2000) and define the Stokes parameters I, Q, U, V with the 

Stokes vector given by:

The first Stokes parameter, I, is equal to the net monochromatic energy flux, Q and U describe 

the state of linear polarisation and V describes the state of circular polarisation of the 

electromagnetic wave. The condition that the incident electromagnetic wave is unpolarised leads 

to Q = U = V = 0. The transformation of the Stokes vector of the incident wave into those of the 

scattered spherical wave follows from the definition of the amplitude matrix:

with respect to the global frame. The elements of Z are functions of the elements of the 

scattering amplitude matrix S and expressions for Z are summarised by (Mishchenko et al.,

2000). The scattering matrix (F) differs from the phase matrix in that it relates the incident and 

scattered wave Stokes parameters with respect to the scattering plane and is proportional to the

phase matrix Z ( # ca, <psca- = 0; $inc = 0, (pmc = 0; a; /?; yj where nsca is defined by the angles # ca 

and ^ sca, and nmc by the angles $ nc and q) nc.

For isotropic and symmetric media, the scattering matrix is independent of the chosen 

scattering plane and depends only on the angle between the incident and scattered waves (0). In

/

(2.2)

(2.3)

where Z is the 4x4 phase matrix and relates the incident and scattered wave Stokes parameters
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this case, 0 = i f*  and the scattering matrix depends solely on 0  (Van de Hulst, 1957) and is 

defined by:

F ( 0 ) = - ^ Z ( 0 )  (2.4)
"̂sca

The proportionality constant 4 n jCsca originates from the normalisation condition on the phase 

function. Csca is the average scattering cross-section per particle and is calculated from:

Csca = j ^ n  (G) sin 0 d  0 (2.5)

The scattering cross-section is a hypothetical area that quantifies the likelihood that incident 

electromagnetic radiation will be scattered by a particle. The total amount energy scattered by a 

collection of similar particles is the product of the particle scattering cross-section and the total 

number of particles. For isotropic symmetric media, the scattering matrix has the form, (Van de 

Hulst, 1957):

F(©) =

ai (©) M © )
&,(©) «2(©) 

0 0
0 0

0 
0

.(©)  
-*,(©) fl4(e)

(©)
(2.6)

The (1,1) element of the scattering matrix aj(&) is the phase function and satisfies the 

normalised condition:

— f(21(0 )dQ = — frfl1( 0 ) s i n0d0  = l
A n

(2.7)

where Q. is the solid angle. The asymmetry parameter of the phase function, g (defined as the 

average cosine of the scattering angle weighted by the phase function) is a measure of the 

direction towards which the light is favourably scattered. Forward scattering is indicated by a 

positive value, backward scattering by negative values and zero indicates isotropic scattering.
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The asymmetry parameter is defined as:

(2.8)

Similar to the scattering cross-section, the extinction cross-section (Cext) is the 

hypothetical area that describes the likelihood that incident electromagnetic radiation will 

interact with a particle through either scattering or absorption. The absorption cross-section, 

Cabs, is found by subtracting the scattering cross-section from the extinction cross-section. The 

single scattering albedo (co0) is defined as the ratio of the scattering and extinction cross- 

sections, and is a measure of the probability that a photon incident on a small volume element 

will be scattered.

C A l

Another important set of parameters is the extinction, scattering and absorption efficiencies 

which are dimensionless ratios of the respective cross-sections to the geometrical cross-section:

where <zeff is defined for non-spherical particles as the radius of an equal volume sphere and for 

a spherical particles aef[ = r with r being the radius of the spherical particle.

Measurements of dusty environments in nature generally observe a distribution of dust 

particle sizes. At this point it is useful to introduce two parameters, the effective radius, reff (the 

mean radius weighted by the geometrical cross-section) and the effective variance, veff (the 

spread of the particle size) which are defined by:

(2.9)

Q  = — , i = ext, sea, abs
Katii

(2 .10)

(2.11)

1 r2f (2.12)
eff
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where G is the geometric cross-sectional area of particles per unit volume, r is the particle 

radius and n(r) is the particle size distribution per unit volume. Assuming that each particle 

scatters independently, the scattering and extinction coefficients are defined as:

The extinction coefficient relates the total amount of electromagnetic radiation lost to the 

distance travelled through the attenuating species. Similarly the scattering and absorption 

coefficients tell us how much light is lost due to scattering and absorption for a given path 

length through an attenuating environment.

2.1.2 Spherical particles (Mie theory)

Exact solutions to the Maxwell’s equations are only known for special geometries, e.g. spheres, 

spheroids and infinite cylinders. In nature, the physical shape of aerosol particulates is highly 

irregular and, without an exact solution to Maxwell’s equations, approximate methods must be 

used. At the end of the 19th and beginning of the 20th centuries, numerical solutions to 

Maxwell’s equations for homogeneous spherical particles were produced (Lorenz, 1890, Mie, 

1908, Debye, 1909). The Mie solution provides a method for calculating the electric and 

magnetic fields inside and outside smooth homogeneous spherical objects. The formulism can 

be used to calculate the total extinction of light incident on a particle {i.e. scattering and 

absorption) and the amount and direction of the scattered light.

The Mie solution to Maxwell’s equations provides expressions for two elements of the 

amplitude matrix Sn and S22 in the form of two infinite series:

(2.13)

(2.14)

'In + 1 (2.1)
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2fz +1
(2.2)

The parameters tt and t are functions of the scattering angle (0) only, and are calculated by 

recurrence relations. The full derivation for Sn and S22 can be found in Bohren and Huffman 

(1983). The core of the Mie scattering problem is the computation of the coefficients an and bn 

which are functions of the complex refractive index, m = nr — int , and the size parameter,

x = 2;zrr / X , which describes the ratio of the particle circumference to the incident 

wavelength, X. The reader is again referred to Bohren and Huffman (1983) for the full 

derivation of the scattering coefficients an and bn and the final solutions are given below:

The symbols i//, are Riccati-Bessel functions of the first and third kind respectively. The 

scattering coefficients an and bn allow the computation of the scattering and extinction 

efficiencies and the asymmetry parameter from which the extinction and scattering cross- 

sections can be calculated (Van de Hulst, 1957).

In Figure 2-3, co0 and g are plotted as a function of x for different values of the 

imaginary refractive index (n/) the real refractive index (nr)was held constant at 1.5. For small 

values of n(- (< 0.001), a)o remains approximately around 0.99 for x < 100 indicating that for 

small rii the absorption by the particle is more or less unaffected by the particle size. As nt is

my/n{mx)yf\(x)-y/n(x)ii/'n(mx) 
n myrn(mx)%'n{x)-§n(x)yr'n{mx)

(2.15)

y/n(mx)y/'n{x)-mi/n{x)y/'n(mx) 
yrn (mx)£'„{x)-m^n{x)yr\(mi)

(2.16)

2
(2.17)

e.xt=4Z(2«+1)ReK+^) (2.18)

2« + l
"*— 7----- \n(n +1)

Re(a„&;) (2.19)
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increased co0 begins to decrease with increasing x as a result of more of the light refracted into 

the particle being absorbed. The ripples in (Oq are directly related to the ripples seen in the <2sca 

curve and arise from edge rays which graze the sphere (Bryant and Cox, 1966). The 

convergence of coq to ~ 0.53 at large x is explained by Hansen and Travis (1974), in summary 

for ni = 0,50%  of the scattered light is diffracted, 3.3 % is reflected and the remainder is 

refracted into the particle. Single scattering albedo values below 0.5 are observed for small x 

and are the result of the Rayleigh region being approached. A weak dependence is seen in coq 

with particle size for extreme values of nt (-10) due to the particle tending towards a perfect 

reflector.

For x -  1, g is close to the Rayleigh result (g = 0) for n{ lower than < 1, converging close 

to g = 0.2. At large nh backward scattering dominates at small x and g becomes negative. As the 

size parameter is increased a corresponding increase in g is observed, with low nt displaying the 

oscillatory nature as a result of grazing light rays. For increasingly larger values of ni: g quickly 

converges and is constant for x > 10.

0.80.8

3°  0.6

 / ? . =  10'

 /?. = 10'
 n. = 10'
 n.= 10(
 /7. =  10

0.4 0.4

0.2 0.2

,310'
x x

Figure 2-3: <2&and g as a function of x for a selection of n, for a single particle.

Figure 2-4 illustrates the effect of a distribution of particle sizes on co0 and g for 

different nt values. Atx< 10, (O q shows a small dependence on the effective variance of the size
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distribution, At larger x, coo is more or less independent of veff. It should be noted that this is only 

true if reff and veff are used to describe the particle size distribution. At small x, g displays a larger 

dependence on vep  resulting in an increase in g from its single particle value. This indicates that 

light will be more favourably scattered into the forward direction. At larger jc, the size 

distributions dampen out the oscillations (characteristic of a single particle), however variation 

in g is still observed up to x = 10. Note that for the size distribution cases, x  = 27treff / X . The

increase in g as x increases is generally observed in measurements of dust aerosols as a decrease 

in g with increasing X. Similarly, the dependence of coo on x for a constant rii and X indicates that 

if larger particles are present in the dust aerosol distribution then more of the incident solar 

radiation will be absorbed. This dependence also signifies that with a constant size distribution, 

O)o will increase with increasing wavelength if rct- is approximately constant over the wavelength 

range observed.

n.= 10"

0.80.8

fco 0.63 n.=  10 n =  10'

0.40.4
n.= n. =  10

0.20.2

.310'
xX

Figure 2-4: at) and g as a function of x for a selection of for a distribution of particle sizes. The black 
lines denote a single particle and grey lines represent a distribution with veff= 0.1 and light grey for

veff= 0.25.

One of the aims of this thesis is to retrieve the single scattering properties of desert dust 

particles in suspension around dust devil vortices. Evidence suggests (see Section 2.3) that these 

vortices are more efficient, in comparison to near-surface winds, at lifting large particles
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(>10.0 pm) into the atmosphere. This implies that the retrieval of (Do for dust particles entrained 

around dust devils will be lower than equivalent measurements for desert aerosols, and indicates 

that higher absorption is expected over the visible wavelength region. For g, the presence of 

larger particles will result in increased forward scattering. It is thus expected that g for dust 

particles entrained in a dust devil will be higher than those for desert aerosols.

2.1.3 Non-spherical particles (discrete dipole approximation)

One method of calculating the absorption and scattering properties for particles of arbitrary 

shape is the Discrete-Dipole Approximation (DDA) and was first introduced by DeVoe who 

studied the optical properties of molecular aggregates (DeVoe, 1964; 1965). However,

DeVoe’s method did not account for retardation effects (difference in phase between fields 

propagating from different regions of the particle) and thus, was limited to aggregates which 

were small compared with the wavelength (the phase within the particle can be assumed 

uniform). The method was improved by Purcell and Pennypacker (1973), who accounted for 

retardation effects, enabling the use of DDA to study the scattering nature of interstellar dust 

grains. The DDA approach replaces the solid particle by an array of polarisable points (dipoles) 

with the spacing between the dipoles being small compared to the wavelength of light under 

investigation. Each dipole will adopt an oscillating polarisation in response to both an incident 

plane wave and the electric fields of the other dipoles in the array. A full description of the 

DDA method can be found in Draine and Flatau (1994).

DDSCAT, a portable Fortran 95 code developed by Draine and Flatau (1994), was used 

to compute the single scattering properties of kaolinite and hematite particles of different non- 

spherical shapes (prolate and oblate spheroids and cylinders) and the results compared to Mie 

theory for spherical particles. Hematite was used as it has a co0 spectrum representative of 

martian aerosols, with strong absorption at blue wavelengths and highly scattering at red 

wavelengths. Kaolinite was also simulated to show the variation and sensitivity of the single 

scattering properties to particles of different composition which exhibit high scattering of light
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over the UV, visible and near infrared wavelength region. The refractive indices of hematite 

(Sokolik and Toon, 1999) and kaolinite (Egan and Hilgeman, 1979) as a function of wavelength 

are shown in Figure 2-5. The high of hematite indicates that it is highly absorbing, especially 

at wavelengths less than 550 nm. Kaolinite has a nt three orders of magnitude smaller than 

hematite and will result in little absorption at all wavelengths.
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Figure 2-5: The real and imaginary parts of the complex refractive index for kaolinite, grey line, (Egan 
and Hilgeman, 1979) and hematite, black line, (Sokolik and Toon, 1999).

Using DDSCAT, the single scattering properties for spherical, oblate, prolate and 

cylindrical kaolinite aerosol particles were calculated. All particles were assumed to be 

randomly orientated and their sizes selected so that the radius of an equivalent volume sphere 

(aejf) was 0.5. The dimensions of the particles are given in Table 2-1.
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Particle dimensions

Particle shape x l  pm y /p m z !  pm

Sphere 1.00 1.00 1.00

Prolate spheroid 0.794 0.794 1.588

Oblate spheroid 1.258 1.258 0.628

Cylinder 0.742 0.742 1.200

Table 2-1. The x, y and z dimensions of the different aerosol particle shapes, with the particle centre at
the origin.

Figure 2-6 shows that the different shapes of kaolinite particles have approximately the 

same absorption efficiency, with small variation below 500 nm and negligible difference above. 

All shapes show an increase in scattering towards 700 nm before falling off towards the near- 

infrared. The scattering profile of prolate spheroids and the cylindrical particles are very similar 

especially at longer wavelengths. The largest difference is observed with spherical particles, 

which predict significantly less scattering with a calculated scattering cross-section at 500 nm of 

2.15 cm2 compared to 2.61 cm2, 2.76 cm2 and 2.78 cm2 for oblate, prolate and cylindrical 

particles respectively (with the particle size known the scattering cross-sections were calculated 

using Eq. (2.10) with Qsca calculated from Mie theory and DDSCAT). This difference in 

scattering cross-section will result in approximately 18% to 20 % less light being scattered in a 

kaolinite scenario, if spherical particles are assumed to approximate the aerosol particles.

As expected, due to the low absorption, very little difference is observed in cOq. In 

contrast, g shows variations on the order of 0.3 between non-spherical and spherical particles. 

Spherical particles consistently predict lower g values except at 350 nm. This indicates that over 

the majority of the visible wavelength region, spherical particles will scatter more isotropically 

with less light scattered into the forward lobe. Comparing the non-spherical particles, 

considerably less variation is observed above 450 nm, but interestingly at wavelengths less than 

400 nm the particle shapes show large differences in g. Even prolate spheroids and cylindrical 

particles which, have been shown to have similar Qsca profiles, see a difference of approximately
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0.05 at 350 nm. This indicates that the measured attenuation by kaolinite particles at 

wavelengths less than 400 nm will be more sensitive to the particle shape, relative to longer 

wavelengths.
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Figure 2-6: Comparison between the calculated single scattering properties a) Qtn, b) (2abs> c) and d) 
the g for non-spherical shaped kaolinite particles with an effective radius of 0.5 pm. The solid line 

denotes spherical particles, dashed lines represent oblate spheroids, prolate spheroids are shown as dotted 
lines and dot dashed lines denote cylindrical particles.

The single scattering properties of non-spherical hematite particles are given in Figure 

2-7. In comparison to the kaolinite particles, larger variations in C0q and g are observed for 

hematite particles. The assumption of spherical particles will result in an underestimation of the 

amount of incident light absorbed by the hematite particles. At wavelengths < 560 nm, (Oq
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converges to ~0.57 for oblate, prolate and spherical particles but cylindrical particles predict 

increased scattering at these wavelengths with 6% higher coo values, meaning particles of this 

shape will observe a higher scattered component if suspended in an atmosphere. Below 560 nm, 

oblate, prolate and spherical particles show comparable g values, while cylindrical particles 

diverging to lower values of g. At longer wavelengths, cylindrical and prolate particles show 

approximately the same wavelength dependence, with the oblate particles diverging to 

significantly lower g values. Spherical particles exhibit large oscillations in C0q and g as a 

function of wavelength and predict increased and more isotropic scattering over the majority of 

the 350-1100 nm wavelength range.
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Figure 2-7: Same as figure 2-4 but for a randomly orientated and irregular hematite particle.
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While differences in the single scattering properties of individual shapes have been 

analysed and discussed, it should be noted that any distribution of dust will comprise a variety 

of irregular shapes, some of which will be far removed from the examples given above, further 

modifying the particle single scattering properties. Particle shape is not the only parameter that 

has an effect on the single scattering properties and Nousiainen (2009) provides an in depth 

study of the effects of other irregular shapes, particle surface roughness and variation in particle 

composition.

This analysis illustrates the significance of any assumption regarding particle shape. 

Spherical kaolinite particles result in a lower Cscathan non-spherical particles, hence they scatter 

less light. Therefore, when attempting to retrieve single scattering properties, assuming 

spherical over non-spherical particles can lead to the overestimation of the number of particles 

or their size, as more particles or larger sizes are required to observe the same amount of 

scattering. The coo and g wavelength dependence of hematite has shown that higher nt results in 

the single scattering properties being more sensitive to changes in particle shape. The 

implication is that any assumption on the particle shape can lead to erroneous retrieval of n* and 

highlights the need for care when making assumptions on the shape of the dust particle.

In Chapter 4, nt of dust particles entrained in dust devils are retrieved. Spherical 

particles are assumed in the retrieval as only a first order approximation and proof of concept. 

This was because retrievals using more realistic dust particle shapes proved too costly in 

computer resources). However, the above highlights the importance of particle shape on the 

retrieval of dust particle optical properties and the difference that might be expected if more 

realistic particle shapes are considered.

2.2 Optical properties of martian aeolian dust

The optical scattering properties of martian airborne dust have been investigated in a number of 

studies, yet remain highly debated. Part of the ambiguity is due to the fact that the studies are
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based on limited measurements, from remote sensing (Pollack et a l, 1977, Pollack et al., 1995, 

Ockert-Bell et a l, 1997, Wolff and Clancy, 2003, Mateshvili et a l, 2007, Wolff et a l, 2010), in 

situ observations available from the surface from probes such as Viking (Pollack et al, 1977, 

Pollack et al, 1995), Mars Pathfinder (Tomasko et a l, 1999, Smith and Lemmon, 1999, 

Markiewicz et al, 1999), and the MERs (Lemmon et a l, 2004, Wolff et a l, 2009). The 

scattering properties of solid particles are highly dependent on size, shape and composition 

(cf. Hansen and Travis, 1974, Mishchenko et al, 2000, Bohren and Huffman, 1983, Nousiainen, 

2009) and since there has been no attempt to observe directly their composition and shape, their 

properties are inferred indirectly using optical measurements of extinction, spectral intensity and 

phase function retrievals. These derived properties are then compared to outputs from Mie 

theory (Bohren and Huffman, 1983) and other semi-empirical models for spheres and other 

simple particle shapes such as: cylinders, oblate and prolate discs (Pollack and Cuzzi, 1980, 

Petrova, 1993, Pollack et a l, 1995).

2.2.1 Overview o f the different observations

The single scattering properties of martian dust were derived by Pollack et a l (1995) from 

revisited Viking data. They used an improved particle scattering procedure developed by 

Pollack and Cuzzi (1980) for non-spherical particles, and noted that certain angles of the dust 

particle phase function are sensitive to different aspects of the dust particles. The authors 

separated the phase functions into 3 regions; the first region covers the forward scattering peak 

from 0° to 30° and is most sensitive to the dust particle size distribution, with little variation as a 

result of changes to the refractive index and particle shape. The second region between 30° and 

60° has reduced sensitivity to the particle size distribution and is more dependent on the 

particles’ complex index of refraction. The final region is the side and back scattering region, 

which is most sensitive to the particle shape. Their analysis showed that coo increases and g 

decreases with increasing wavelength.
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As well as using Viking 1 data, Ockert-Bell et al (1997) incorporated observations 

from ground based instruments and the Phobos 2 spacecraft, spanning from the ultraviolet to the 

near infrared. To determine the values of nb Ockert-Bell et al (1997) made use of the fact that 

the complex index of refraction is an intrinsic property of the dust, independent of their 

distribution and location (i.e. the same if they are suspended or on the surface). They used 

Hapke theory (Hapke, 1981) to relate observations of reflected light and surface albedo in bright 

regions to w*.

Clancy and Lee (1991) used emission phase function (EPF) from the Infrared Thermal 

Mapper (IRTM) data to separate the atmospheric and surface contributions to retrieve an 

estimate of the solar band (X = 0.67 pm, bandwidth of 0.3-3.0 pm) albedo of 0.92. Wolff et al 

(2009) used retrieved data from the Compact Reconnaissance Imaging Spectrometer (CRISM) 

and MER during the 2007 dust storm to further refine a)0 and nt over the wavelength range 440 

-  2920 nm. Observations of Mars by the Wide Field Planetary Camera 2 (WFPC2) and the Faint 

Object Spectrograph (FOS) on-board the Hubble Space Telescope (HST) were used by Clancy 

et al (1999) and Wolff et a l (1999) to refine the single scattering properties at UV 

wavelengths. They were further refined by Wolff et al (2010) using observations at 258, 320 

and 436 nm of the 2007 planet encircling dust storm, by the Mars Color Imager (MARCI), 

combined with observations from MER. The high atmospheric dust loading reduced the 

contribution of the surface reflections in the retrieval, and the low contrast of the surface in the 

UV and blue wavelengths also reduced the importance of the ground contribution.

2.2.2 Single scattering albedo

Pollack et a l (1995) used the revisited Viking data to derive values of 6% = 0.79 at 490 nm and 

O)o = 0.89 at 860 nm. A similar value for was retrieved by Ockert-Bell et a l (1997) at 490 nm 

of 0.76, however at 860 nm a significantly higher coo of 0.95 was found. The higher coo at 

860 nm of implies a larger faction of the incident light is scattered resulting in a higher diffuse 

flux. The culmination of the studies, by Pollack and Ockert-Bell produced values of co0 that
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resulted in a solar irradiance-weighted average of ~ 0.89, close to the value previously proposed 

by Gierasch and Goody (1968).

However, results from the IRTM and TES (solar band) (Clancy and Lee, 1991, Clancy 

et al., 2003) show a discrepancy with the irradiance-weighted average albedo calculated to be 

0.92-0.94, a difference of 30-45% in the amount of absorbed solar radiation. The solar band 

albedo derived by Wolff et al. (2009) is close to the values proposed by Clancy and Lee (1991), 

Clancy et al. (2003) and Maatanen et al. (2009) With a value between 0.92 and 0.94. As 

suggested by Vincendon et al. (2007) this discrepancy in coo maybe a result of the less than ideal 

observational constraints in the Ockert-Bell et al. (1997) data and suggests closer agreement 

may have been found had they possessed a spectrum with a higher spatial resolution.

Previous work to characterise the dust properties in the UV have yielded co0 values in 

the range of 0.57- 0.60 (Wolff et al., 1999, Clancy et al., 1999). A co0 value of 0.64 at 260 nm 

was retrieved by Goguen et al. (2003) using the Space Telescope Imaging Spectrographs (STIS) 

observations of the 2001 global dust event. Wolff et al. (2010) found co0 to be between 0.619 -  

0.626 at 258 nm and 0.648 at 320 nm for reff= 1.6 pm and are consistent with the values found 

by Mateshvili et al. (2007) using SPICAM data of 0.60 and 0.64 at 213 and 300 nm 

respectively. In comparison to the Ockert-Bell et al. (1997) dataset, the retrieved cq0 by 

Mateshvili et al. (2007) and Wolff et al. (2010) indicate that the dust is more absorbing at UV 

wavelengths. The co0 values retrieved by the various studies are shown in Figure 2-8.
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Figure 2-8: The retrieved 0% of martian aeolian dust from various instruments.

The injection of dust into the atmosphere causes greater and vertically extended solar 

heating leading to a strengthening of the Hadley circulation which in turn affects the surface 

wind stress (Newman et al., 2002). One of the factors determining atmospheric heating rates is 

the amount of solar incident radiation absorbed by the dust particles and is proportional to 

(l-&b) in the optically thin limit. Therefore an uncertainty of 5% for a a)o of 0.9 at solar 

wavelengths will result in a 50% error in the heating rate. This will affect the Hadley 

circulation, surface winds and hence the lifting of additional dust.

2.2.3 Asymmetry parameter and extinction efficiency

The investigations discussed in Section 2.2.1 also produced estimates for g of suspended 

martian dust. In the UV, Ockert-Bell et al. (1997) find that g(210 nm) = 0.81 and 

g(300 nm) = 0.88 and are consistent with Goguen et al (2003), who retrieved a value of 0.84 at 

260 nm. An analysis by Mateshvili et al. (2007) found g(213 nm) = 0.88 and g(300 nm) = 0.86, 

while Wolff et al. (2010) retrieved g(258 nm) = 0.9 and g(320 nm) = 0.87 for reff= 1.6 pm.
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At visible and near-infrared wavelengths the fitted sky brightness phase functions of 

Viking lander observations gave g{490 nm) = 0.68 decreasing to 0.63 at 860 nm (Pollack et al, 

1995). Using a similar technique, Tomasko et al. (1999) and Markiewicz et al (1999) fitted 

phase functions observed by IMP and retrieved g values between 0.78 and 0.68 for wavelengths 

between 443 nm and 965 nm with g decreasing with increasing wavelength. All of these 

analyses are consistent with the Ockert-Bell et al (1997) dataset, which has g = 0.73 and 0.63 at 

500 and 1015 nm respectively (Figure 2-9).

Similar to co0, small changes in g can affect the heating rate of atmosphere and surface. 

A decrease in g corresponds to an increase in backscattering which reduces the amount of solar 

radiation reaching the surface, altering surface temperatures. The scattering of solar radiation 

back to space also reduces the amount of energy deposited in the atmosphere, lowering the 

atmospheric heating rate and altering the Hadley circulation and thus surface winds. The 

extinction efficiency at 670 nm is close to Qext averaged over the solar spectrum and is used in 

Mars atmospheric models to scale the dust optical depth with wavelength (Pollack, et a l, 1979). 

Figure 2-9b shows Qext normalised to 670 nm for the retrieved Qext of Pollack et a l (1995), 

Ockert-Bell et al (1997), Markiewicz et al (1999) and Wolff et a l (2009). Above 600 nm the 

retrieved values for Qext as a function of wavelength are consistent, however below 600 nm the 

profiles diverge, with Wolff et al (2009) predicting an optical depth 10% higher at 350 nm 

relative to Ockert-Bell et al (1997). This will result in a larger fraction of the incident solar flux 

being removed by the dust component, leading to a reduced direct irradiance at the surface. The 

increase in Qtxi with wavelength indicates that the particle size is larger than visible 

wavelengths. A detailed investigation into the effects of different dust components, the 

irradiance spectrum is given in Chapter 5.
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Figure 2-9: (a) The retrieved g of martian dust from various instruments and (b) The retrieved Qen of
martian dust.

2.2,4 Complex refractive index

The first analysis and determination of m for martian aeolian dust was performed using Viking 

Lander images of sky brightness at varying solar zenith angles to approximate the phase 

function of the dust particles. By fitting a semi-empirical phase function to the observed particle 

phase functions, nt was determined to be 0.086,0.074, and 0.041 at 490,550 and 660 nm 

respectively (Pollack et al., 1977). However subsequent investigations have shown these values 

to be extremely high. Using revisited Viking data Pollack et al. (1995) determined nt to be an 

order of magnitude lower at the same wavelengths. Using midday brightness measurements 

from IMP, Markiewicz et al. (1999) determined ii[ to be 0.015 at 443.6 nm with a correlated 

decrease with wavelength to 0.0024 at 965.3 nm. These results are consistent with the values 

retrieved by Tomasko et al. (1999) and the revisited Viking results. Furthermore, the n,- values
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retrieved by Markiewicz et al. (1999) provided further refinement of n,- in the near-infrared 

region which are currently poorly constrained as the comparison in Figure 2-10 demonstrates.

□ Pollack et at (1995) (sol 97)
■ Pollack et al. (1995) (sol 211)
O Ockert-Bell et al. (1997)
A Tomasko et al. (1999)
A Tomasko et al. (1999)
V Markiewicz eta l. (1999)
x Lemmon et al. (2004) -  Spirit
*  Lemmon et al. (2004) -  Opportunity
O Wolff et al. (2009) -  r = 1.2 pm

□ Wolff et al. (2009) -  r  = 1.4 pm

O Wolff et al. (2009) -  r  = 1.6 pm

V  Wolff et al. (2009) -  r  =  1 . 8  pm

A Wolff et al. (2010) -  case 1
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Figure 2-10: The retrieved values of for martian aeolian dust by the authors noted in the legend.

The imaginary refractive index derived by Ockert-Bell et al (1997) and Wolff et al. 

(2009) also agree with the previous investigations with nt decreasing from 0.011 to 0.003 at 500 

and 1000 nm respectively. Below 500 nm, variations in n} become significant, with the Ockert- 

Bell et al. (1997) values exhibiting a large increase towards 400 nm that is not observed in any 

of the other datasets. As discussed by Wolff et al (2010) this discrepancy could be an artefact 

of Rayleigh scattering not being accounted for in the Ockert-Bell analysis. Instead they define 

an effective surface reflectance in the UV by scaling the data to match a visible spectrum, thus 

introducing higher uncertainties into their results. The retrieved nt for martian aeolian dust are 

illustrated in Figure 2-10. It is important to note that the variations in the retrieved single 

scattering properties, presented above could be a result of the different techniques and 

instruments employed and also the different geographical location of the observations.

The single scattering properties of Ockert-Bell et al (1997) have been widely used to 

describe the radiative effects of martian aeolian dust. More recently Wolff et al. (2009) derived
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a new set of wavelength dependent single scattering properties for martian dust by fitting the 

observed phase functions using non-spherical T-matrix calculation (Mishchenko et al., 2000). 

Both datasets reveal a highly absorbing dust component at wavelengths below 500 nm, with a /1,- 

value of 0.011 (cp) -  0.78) at 500 nm. At longer wavelengths /i, quickly reduces to values below 

0.001 (cot) > 0.95), indicating the dust is highly efficient at scattering incident light. As with (Dq 

and g, these two datasets are not in mutual agreement, especially at ultraviolet wavelengths, and 

a comparison between their effects on the irradiance at the martian surface is explored in 

Chapter 5.

2.3 Dust devil phenomena

Particle-loaded convective vortices (dust devils) develop from an unstable near-surface layer of 

air that forms from surface heating. A dust devil consists of a vortex with vertical upward flow 

forming its core, and lateral inflow of air near the bottom of the vortex (Sinclair, 1966; 1973). 

Such vortices are common, but not all are strong enough to loft and carry materials and thus 

remain non-visible. The term ‘dust devil’ is used to distinguish visible vortices from ones that 

are not able to sustain a particle-load. An example of a dust devil is shown in Figure 2-11.

Figure 2-11: Image of a dust devil in the Nevada desert, (a) intensity of the vortex is insufficient to 
suspend large dust particles (b) formation of a sand/dust ‘skirt’ as the wind surface shear stress

allows entrainment of larger particles.
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2.3.1 Dust devil formation

Dust devils are low pressure, warm core vortices which usually occur during the summer season 

in arid locations around the world (Ives, 1947), however they are not limited to these regions 

and can occasionally form in all climate regions. Terrestrial dust devils are commonly squat, V- 

shaped vortices that can last up to several minutes. Well-formed vortices consist of an outer 

cylinder of high dust concentration exhibiting high rotational velocities, an intermediate 

cylinder of moderate vertical lift, and a low pressure inner core (~2% below the ambient 

pressure conditions) that experiences an enhanced temperature excursion up to 20°C above 

ambient air temperature. A number of studies of terrestrial dust devils have been carried out 

(Sinclair, 1966, Ryan and Carroll, 1970, Sinclair, 1974, Greeley et a l , 2003, Metzger, 1999a, 

Balme and Greeley, 2006), with evidence suggesting that dust devil formation occurs in the 

bottom of convective cells (Battan, 1958, Sinclair, 1966, Ryan and Carroll, 1970).

At least two mechanisms are known that could allow convective vortices to lift and 

entrain dust. The first is analogous to the wind shear that lifts particles in boundary layer winds. 

Convective vortices can develop tangential wind velocities which have a surface shear stress 

exceeding that of horizontal turbulent winds. This can result in particle saltation which forms a 

‘skirt’ of windblown sand and dust at the base of the vortex allowing the entrainment of 

particles from the surface that would otherwise be resistant to turbulent wind shear (Bagnold, 

1941). Once suspended, the fine particles remain entrained and enhance the dust load of the 

vortex. The other lifting mechanism which enhances dust loading is the ‘AP effect’ suggested 

by Greeley et al (2003) which is related to the pressure drop found at the centre of dust devils 

and results in an upward force on the particles as the vortex moves along the surface. 

Measurements carried out by Metzger (1999a) showed that terrestrial rotational and lift 

velocities as low as 3.8 ms'1 and 1.9 ms'1 respectively are sufficient to enable dust entrainment 

within convective vortices. Both of these mechanisms result in saltation that aids further lofting 

of particles from the surface. Figure 2-1 lb gives an example of a dust devil in the Nevada
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desert, the dust ‘skirt’ resulting from saltation can be clearly seen around the base of the vortex 

close to the surface.

Laboratory experiments have also been conducted to investigate different components of 

dust devil vortices. Greeley et al. (2006) constructed a vortex generator (The Arizona State 

University Vortex Generator, ASUVG) to simulate terrestrial and martian dust devils. Their 

experiments showed that the pressure drop (AP) at the vortex core provides an additional lift 

component, making dust devils more efficient at removing dust from surfaces than boundary 

layer winds. Using the ASUVG, Neakrase et al. (2006) and Neakrase and Greeley (2010a) 

conducted dust and sediment flux experiments at Earth and Mars atmospheric pressures and 

found that the sediment flux is related to the vortex intensity, which itself is dependent on the 

AP at the core. Their experiments showed that vortices of different sizes could yield the same 

pressure drop at the core and concluded that the vortex size is less important for sediment lifting 

than the AP at the core. The vertical flux of dust (particles < 2 pm in diameter) was found to 

increase exponentially with increasing tangential velocity but decrease exponentially with 

increasing core radii. Their results demonstrated that smaller vortices experience higher dust 

fluxes. A similar relationship to the core pressure drop was also reported with an exponential 

increase in dust flux for larger AP. Furthermore, the effects of surface roughness on dust devil 

dynamics was explored by Neakrase and Greeley (2010b) for terrestrial and martian dust devils. 

They found a correlated increase in the vortex size with increasing surface roughness, while the 

tangential velocity was observed to decrease. The expansion of the vortex reduces the energy 

available and will eventually impede additional lifting of surface material. However, Neakrase 

and Greeley (2010b) showed that small increases in surface roughness can reduce the threshold 

required to lift fine particles (< 100 pm) enhancing the sediment flux of weaker dust devils 

beyond that which would be expected. For larger increases in surface roughness the AP and 

tangential velocities are reduced, decreasing the vertical flux of surface material.
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2.3.2 Lower dust devil structure

The lower structure of dust devils has been well characterised by Kaimal and Businger (1970) 

and Sinclair (1973) and a schematic is shown in Figure 2-12. The main feature of the 

temperature distribution is the well-defined temperature increase towards the inner edge of the 

dust column and the presence of downward moving cooler air within the dust-free core. Figure 

2-13 shows thermal images taken of a dust devil transiting across the Eldorado valley in the 

Nevada desert with the temperature enhancement clearly visible in the dust column. The images 

also correlate with the rapid temperature decrease with altitude described by Sinclair (1973).

Dust devils are also characterised by a low pressure region coinciding with the warm 

core, with a typical drop of 2% relative to ambient pressure. The warm, low pressure core can 

result in the air density at the core being 1-2% lower than ambient conditions (Sinclair, 1973). 

The nature of dust devils results in the pressure perturbation reaching a maximum a few metres 

above the ground before rapidly decreasing with altitude and nearly vanishes a few hundred 

metres above the surface.

Figure 2-12: Schematic of a dust devil moving from right to left (adapted from Sinclair (1973)).
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Figure 2-13: Thermal images taken of a dust devil with a low dust density in the Eldorado Valley,
Nevada.

Field investigations of terrestrial dust devils by Balme et al. (2012) have shown a 

correlation between the wind speed at 20-30 m above the surface to the horizontal speed of the 

vortex along the surface. The vertical velocity component is strongly dependent on the distance 

from the dust devil centre, with vertical velocities reaching speeds of 10 ms'1 around the centre, 

and rapidly decreasing radially outwards. The region of maximum vertical velocity expands 

radially with altitude, correlated with the radial expansion of the dust devil with altitude. 

Perhaps the most significant discovery by Kaimal and Businger (1970) and Sinclair (1973) is 

the presence of a down-current or a region of reduced vertical motion at the core. This result 

correlates with the detected presence of cooler air embedded within the warm central region of 

the dust devil, and agrees with the presence of a highly superadiabatic lapse rate within and 

around the dust devil. It is this downward motion and the centrifugal forces that suppress the 

presence of dust particles in the vortex core.

Another feature reported by Sinclair (1973) and observed during the dust devil field 

work carried out as part of this thesis, was the presence of secondary circulations embedded in 

the primary rotation of the dust devil. Figure 2-14 shows an enhanced image of the dust column 

of a dust devil encounter in the Eldorado Valley. Clearly visible are several small secondary 

circulations within the primary rotating dust column. Although the primary and secondary 

vortices will mutually interact, the wind field of the secondary vortices is locally confined and 

has little influence on the motion of the main vortex and will follow concentric paths around the 

dust devil core.
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Rotation direction
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Figure 2-14: Image taken in the Eldorado Valley of a dust devil with secondary vortices present in the 
primary dust column. Seven secondary rotations are highlighted; however the video capture indicates that 

in this case the entire surrounding dust column was made up of 10s of small secondary rotations.

2.3.3 Dust devils on Mars

Dust devils are not a phenomenon unique to the Earth; recent observations by the imager for 

Mars pathfinder (IMP) (Metzger et al., 1999b, Ferri et a l, 2003), Mars orbital camera (MOC) 

on-board Mars global surveyor (Fisher et a l, 2005, Cantor et a l, 2006), and thermal emission 

imaging system (THEMIS) on Mars Odyssey (Cushing et a l, 2005) among others have shown 

them to frequently occur on the martian surface. Figure 2-15. While dust devils on the two 

planets are similar, they play very different roles on their respective planets. On Earth, they are 

secondary to boundary layer winds and only play a minor role in the dust cycle except possibly 

in arid regions. In contrast, on Mars they maintain the constant aeolian dust background, 

especially in northern summer, and play a major role in the rapid transport of fine particulates 

into the martian planetary boundary layer. As was shown in Chapter 1, the atmospheric dust 

loading is at a minimum during northern spring and summer, when Mars is at aphelion, and the 

atmosphere is cooler due to the reduced level of solar insolation. The cooler atmosphere reduces 

the strength of the atmospheric circulation which in turn decreases the surface wind stress 

leading to less dust lifted into the atmosphere. However, observations by MOC (Edgett and 

Malin, 2000) have shown dust devils forming in all seasons and, as suggested by Sinclair
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(1973), dust devil formation can occur whenever the conditions are met for superadiatic lapse 

rates in the local atmosphere. Therefore it is likely that dust devil activity is responsible for 

maintaining the low level background dust haze that is observed during northern spring and 

summer.

Figure 2-15: Two examples of dust devils on the surface of Mars; (a) imaged by the NAVCAM on sol 
616 by the MER rover (Spirit) in Gusev crater, Greeley et a l  (2006) and( b) image taken by the HiRISE 

imager on the Mars Reconnaissance Orbiter (image: NASA/JPL/University o f Arizona).

It has also been suggested that dust devils may act as a precursor to the formation of large 

scale dust storms on Mars (Thomas and Gierasch, 1985). However, Newman et al (2002) has 

shown that dust devil activity displays a negative feedback with increasing atmospheric dust 

loading. The dust lifted by the dust devils extends vertically into the atmosphere causing 

increased heating above the surface and reduces the solar insolation at the surface. This reduces 

the surface-atmosphere temperature gradient and as a consequence, less energy is available to 

drive dust devil formation. The negative feedback of dust devil formation with atmospheric dust 

loading is counterproductive to the formation of dust storms.

The occurrence of dust devils on the martian surface was first suggested by Ryan (1964), 

and two decades on the first direct observations of dust devils on Mars were performed by the 

Viking Orbiter (Thomas and Gierasch, 1985). In 1997 IMP observed several dust devils with
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estimated diameters of tens of metres to greater than 100 m (Metzger et al., 1999b, Smith and 

Lemmon, 1999, Ferri et a l, 2003). Another indication of dust devil activity on Mars are tracks 

left on the surface. These tracks are characterised by a change in the surface albedo as a result of 

small particulate material on the surface being lofted and entrained within the dust devil, 

exposing a darker (or sometimes lighter) subsurface layer when compared to the surrounding 

surface (Balme et al., 2003, Fisher et al., 2005, Cantor et al., 2006, Drake et al., 2006). 

Observations of dust devil have shown a seasonal dependence on the formation of dust devils, 

with the perihelion (L$ = 270° -360°) showing greater abundance of dust devil tracks, compared 

to the aphelion (Ls = 60° -195°) where very few tracks are observed (Balme et al., 2003, 

Whelley and Greeley, 2006). The widths of the tracks vary significantly from less than 10 m to 

greater than 200 m. Metzger et al. (1999b) used column opacity measurements of dust devils by 

IMP to determine the particle loading to be 70 mg m'3, and assuming a vertical velocity of 

7 ms'1 they estimated the vertical flux of material into the atmosphere to be 500 mg m'2 s'1. 

Furthermore, the Spirit Rover observed an entire year of dust devil activity within Gusev crater 

and, using these data, Greeley et al. (2006) calculated the vertical wind speeds of martian dust 

devils to be between 0.2-8.8 ms'1, similar to the results of Metzger (1999a) for terrestrial dust 

devils. Three dust devil seasonal cycles at Gusev crater, spanning Mars Years (MY27 - MY29) 

as observed by the Spirit Rover, were analysed by Greeley et al. (2010). Estimation of the dust 

concentrations within the dust devils were found to range from 2.1 x 10"9 -  2.5 x 10'4 kg m'3 for 

MY27, 7.9 x 10'7 -  4.5 x 10'5 kg m'3 in MY28 and 4.3 x 10'8 -  7.7 x 10'5 kg m'3 for MY29. 

Extrapolating the dust mass per dust devil over the Gusev crater they determined that the total 

mass of dust injected into the atmosphere ranged from 6.6 x 103 kg to 7.7 x 108 kg (MY27),

9.9 x 104 -  1.2 x 107 kg (MY28) and 2.7 x 105 kg to 2.8 x 108 kg (MY29). Martian dust devils 

are not confined to lower latitudes; analysing meteorological data measured at the Phoenix 

landing site, Ellehoj et al. (2010) showed that during its operational lifetime the lander 

experienced 502 identifiable encounters with convective vortices or dust devils.
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2.4 Previous radiative transfer modelling of dust devils

No detailed radiative transfer (RT) model of light transmission through a dust devil vortex has 

been developed to date. A Monte Carlo scattering model was developed by Metzger et al 

(1999b) to calculate the dust loading within a dust devil observed by the Mars Pathfinder 

camera. However, their model was never applied fully to dust devils of different size and 

internal dust distribution. Furthermore, they did not apply the scattering model as a tool for 

retrieval of the single scattering properties or size distribution of the entrained dust particles. 

Accurate determination of the single scattering properties and particle size entrained within dust 

devils is important for the determination of the dust loading and, hence the vertical flux of 

material into the atmosphere. Metzger et al. (1999b) assumed the entrained dust has the same 

size distribution and single scattering properties as the background haze. A detailed model, 

simulating the transmission of light through a dust devil vortex, is therefore required in order to 

simulate the radiative effect of dust devils and to determine whether the entrained dust particle 

single scattering properties and size distribution can be retrieved from spectroscopic 

measurements during dust devil transit. The description of the dust devil model is the subject of 

the next chapter.
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Chapter Three: Monte Carlo modelling of dust 

devil vortices
Aeolian mineral dust can have a large effect on the radiation budget of planetary atmospheres 

such as those surrounding the Earth and Mars. This dust can absorb solar and infrared radiation 

resulting in localised warming of the atmosphere (positive radiative forcing) and scatter 

incoming light back to space resulting in cooling of the atmosphere (negative radiative forcing). 

The balance between absorption and scattering determines whether the aeolian dust acts to cool 

or warm the surrounding atmosphere (Alpert et al, 1998) and highlights the importance of 

accurate retrieval of the dust particle single scattering properties, specifically <% One method 

used to retrieve the single scattering properties is to fit radiative transfer model outputs with the 

observed attenuated spectrum. However, accurate modelling of the light transmission through a 

dusty environment can be extremely difficult, especially at large r  where the single scattering 

approximation is inadequate to describe accurately the diffuse component. The Monte Carlo 

radiative transfer (MCRT) method has been used successfully in many different fields to 

describe accurately multiple scattering scenarios in significantly different environments. Witt 

(1977) applied MCRT to interstellar grains by looking at reflectance nebulae and has shown that 

MCRT can be applied to the multiple scattering problem. MCRT was employed by Vincendon 

and Langevin (2010) to simulate the impact of aerosols on the remote sensing of the surface of 

Mars and Titan. More relevant to this study, Metzger et al. (1999b) used a MCRT to simulate 

the scattered diffuse component of martian dust devils observed by the Imager for Mars 

Pathfinder (IMP).

In this chapter the development of a Monte Carlo Light Scattering Model (MCLSM) to 

simulate the transmission of sunlight through dust devil vortices is described. The model was 

created using the Research Systems Inc. Interactive Data Language (IDL) and utilising GPUlib 

which allows efficient operation of the model code on the graphics processing unit (GPU). The
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simulated variation in light during a dust devil transit over a fixed point on the surface is 

investigated to determine whether the dust load, size and internal structure of the vortex can be 

estimated from a dust devil transit signature (defined as the observed light curve as a function of 

distance or time). The transmission of sunlight through the vortex depends on how the dust is 

distributed internally and the vortex internal structure (in terms of the core diameter). Therefore, 

using the MCLSM, the internal structure and dust distribution within dust devils is explored 

explicitly, comparing the assumption of a uniform dust concentration to one with a relatively 

dust free central vortex surrounded by walls of larger dust concentration. Finally, the effect on 

the transit signature due to variations in single scattering properties is investigated to determine 

the possibility of retrieval of the dust particle optical properties.

3.1 Radiative transfer in dusty environments

3.1.1 Model description

The scattering of sunlight by dust grains entrained in a dust devil vortex was modelled using the 

Monte Carlo method (Cashwell and Everett, 1959, Witt, 1977, Whitney, 2011). The model 

geometry and coordinate system are illustrated in Figure 3-1. The Cartesian coordinate system 

(X, Y, Z) has its origin at the vortex centre and the vertical Z-axis is directed along the axis of 

symmetry of the vortex flow, normal to the X-Y plane. The positions of the individual photons 

are given by their (X, Y, Z) coordinates while their direction vectors, PVr are described by the 

directional cosines {ux, uy, uz), which are calculated from the angles 0 and (p. It is assumed that 

the incident photons are plane-parallel, travelling in the +X and -Z  directions depending on the 

solar zenith angle ($z). The line of sight of the modelled spectrometer is normal to the X-Y 

plane in the +Z direction.
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+ X^Ty

Figure 3-1: Global coordinate system of the MCLSM. (X0, Y0) is defined as the centre of the dust devil.
Also shown is the decomposition of the photon vector Pv in to its direction cosines.

The quantities describing photon trajectories, for example, direction of travel after a 

scattering event and the path length between scattering events, may be considered random 

variables, with each being characterised by a probability density function (PDF) P(x). The heart 

of the Monte Carlo method is sampling of these PDFs and is known as the ‘Fundamental 

Principle’. For example, to sample the quantity x,- from P(x) the cumulative probability 

distribution (CPD) y/(xi), which is the integral of P(x), is inverted to give:

As the variable xt is integrated over a to b, y/(xi) varies between 0 and 1, therefore to sample the 

variable xt a random number, is selected from a uniform distribution 0 < ^ < 1  and Eq. (3.1) is 

inverted to find jq. After applying the fundamental principle, the r travelled by a photon is given

by:

r  = - ] n ( l - € ) (3.2)
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t is related to the optical free path, S, and is calculated from:

S =T—  (3.3)
k■ext

where kext is the extinction coefficient. The spatial co-ordinates (X, Y, Z) of the point where the 

photon interacts with a dust particle can be determined from:

X  = X q +  Suxq (3.4)

Y = Y0 + Suy o (3.5)

Z  — Z q+ SuzQ (3.6)

where (X0, Yo> Z0) and (ux0, uy0, uz0) are the previous positions and direction cosines of the 

photons respectively and t through the dust devil is defined by:

t= C m NL (3.7)

where Cext is the extinction cross-section of the particle, N  is the dust concentration 

(number of particles / m'3) and L is the path length (m) through the dust devil. The product 

CextN  is defined as the extinction coefficient (kext) which is a measure of the extinction per unit 

length (m'1) and is used in the model to describe heterogeneities in the dust distribution.

3,1.2 Dust scattering and absorption

For each photon-dust particle interaction there is a chance that the photon will either scatter or 

be absorbed by the dust grain. The probability of an absorption event occurring is governed by

o)0 and is equal to (1- o)0). For each interaction a random real number between 0 and 1 is

generated and absorption occurs if the random number is greater than (Do, otherwise the photon 

scatters. Two methods can be used to describe the absorption by dust particles (Whitney, 2011). 

The first method removes the photon from the system if an absorption event occurs; the second
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incrementally reduces the photon weight by a factor of (1- co0). Both methods were applied in 

the model, though the second method processed scattering events and tracked photons with 

small weights, significantly increasing the simulation run-time. Due to computational 

constraints, long run-times were undesirable as this limited the overall number of photons that 

could be injected into the model volume. The difference in the number of photons detected 

between the two methods was two orders of magnitude lower than the photon count, therefore 

the removal method was applied.

If scattering occurs, the angle through which a photon scatters is determined by the phase 

function of the dust grains. The model has the capability of using both the single and three 

parameter analytical Henyey-Greenstein phase function (Cashwell and Everett, 1959, Witt, 

1977) and phase functions produced by semi-empirical codes used to model spherical particles 

(Mie theory) and non-spherical particles (T-matrix and Discrete Diploe Approximation). The 

Henyey-Greenstein parameter description of the phase function is given by:

Here, n = cos0 and 0  is the scattering angle measured with respect to the original photon 

direction and g is the asymmetry parameter. Using Eq. (3.8) it is possible to produce phase 

functions ranging from completely forward scattering to completely backward scattering. 

However, the Henyey-Greenstein function does not allow simultaneous forward and backward 

scattering lobes which are characteristic of many cases of particulate scattering. To remedy this, 

a three parameter form of Eq. (3.8) was also incorporated into the model and is the result of the 

superposition of two Henyey-Greenstein phase functions (Cashwell and Everett, 1959):

Both functions have the form of Eq. (3.8) and/is a characteristic number between 0 and 1 

which describes the proportion of light scattered in the forward and backward directions. 

Following the methods of Witt (1977) the scattering angle for each scattered photon is found by

(3.8)

0( M>gi ’82 ) =  ) + (!■~ / )  0 ( ^ 82 ) (3.9)
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setting a number variable equal to the integral of the phase function. After integration the cosine 

angle (p) is related to random number k by:

28

Witt (1977) also provides an expression relating p and k  for the three parameter analytical phase

over the range 0 to 1. Thus scattering angles are found by generating random numbers between 

0 and 1, equal to the number of scattering events, and interpolated to find the corresponding 

scattering angle. The assumption of randomly orientated dust particles makes the scattering 

phase function independent of the scattering azimuth angle ( ^ ). Thus (f)s is determined using:

where is a random number from a uniform distribution in the range 0 < t,2 < 1 and (ps varies 

from 0 to 27t.

3.1.3 Directional change and photon classification

The scattering angle, 0 , and scattering azimuth angle, (f)s, are determined in the particle 

reference frame and must be transformed to the global frame coordinate system. The equations 

of transformation from the old direction cosines to the new directional cosines are defined as:

M = (3.10)

function which is used to supply the model with a table relating p over the interval -1 to 1 to k

0s = 2^ 2 (3.11)

(3.12)

(3.13)

(3.14)
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As uzo —»1 (uz0 > 0.999) these equations break down resulting in the need to replace them with:

ux = sin ($) cos (^) (3.15)

uy = sin {$ )  sin {(/>) (3.16)

uz = cos[0)uzQ (3.17)

After each photon-particle interaction photons remaining in the simulated dust devil are 

carried forward in the model, with the photon behaviour after subsequent scattering events 

simulated by repeating the above procedure. From here the term scattering cycle refers to one 

pass through the model, i.e. one scattering event. Photons that are outside the vortex and are 

travelling parallel to or away from the simulated desert floor (Z = 0) are removed from the 

simulation. If the photons are outside the dust devil and travelling toward the desert floor, the 

interaction point of the line joining the photon along its trajectory and the desert floor is 

computed before being removed.

3.1.4 Spatial variation in dust distribution

The equations described in Witt (1977) and Whitney (2011) require the assumption of a uniform 

dust distribution within the dust devil. However, for intense vortices this is a poor 

approximation, with the majority of the dust entrained in the ‘wall’ of the vortex which 

surrounds a central core of significantly lower N  (Sinclair, 1973). The non-uniformity in N  was 

modelled as a concentric ring of high kext around a central cylinder of lower kext. The cylinders 

are approximated using the integer grid approximation, creating a uniform grid over the model 

X-Y plane. To find the distance travelled by a photon within the dust devil, knowledge of the 

cumulative optical depth (rc) in front of the photon direction of travel is required. Lookup tables 

of tc relative to the centre of the vortex are generated for an observer looking along the 

y-direction (the X-axis could also have been used since the dust devil is assumed to be a circle
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in the X-Y plane). The generated rc lookup table is required to generate a second lookup table 

relating rc to a distance travelled down each grid path.

Relating the distance travelled by the photon in any given direction to t  requires 

transformation of the photon (X,Y) coordinate and vector {ux, uy, uz) onto the Cartesian

coordinates of the %c grid, (X \Y ')  and (u'x,uy,u 'z) ,  such that the photon direction vector (Pv) is

parallel to the Y' -  axis {i.e. ux -  0). The transformation is illustrated in Figure 3-2 with a 

photon travelling along vector 1 (dashed line) being equivalent to a photon travelling along 

vector 2 (solid line). The transformation allows all the photons within the simulation to be 

placed on a uniform grid for interpolation. The transformation is performed over the individual 

photon locations and cosines instead of the rc grid as this allowed simultaneous calculations 

over many photons, reducing the computation time. The optical depth associated with the

(X ', Y') position in the %c grid is found by interpolating over the zc table. The randomly 

produced r is then added or subtracted from this value depending on the direction of travel {i.e. 

the sign of uy), with the resulting r and Y' position interpolated onto the distance lookup table

to find the new position of the photon.

+y

+x

Figure 3-2: Rotation of a photon vector onto the rc grid.
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The absolute difference between the photon’s new distance and current distance is 

calculated to find the distance travelled in the X-Y plane and the new photon position is 

calculated by modifying the transformation equations defined by Cash well and Everett (1959) 

for the X-Y plane. As sin# —»• 0 (i.e. a photon direction vector close to vertical) the 

transformation equations break down and it is assumed that the X  and Y positions of the photons 

are unchanged for small sin# values since AX and AY tend to zero. The new Z position is 

determined from Z = Z0 + uz Tc / kext where kext is determined by interpolation of the photon 

position on the kext lookup table.

3.1.5 Error analysis o f  coordinate system transformation

The large numerical arrays used in the model resulted in the use of single numerical precision 

for the cosine, sine and interpolation due to memory limitations. This resulted in errors in the 

photon optical free path and final position at the observation point. To characterise the 

magnitude of these errors on the final output of the model, the errors at key stages in the model 

were analysed. Considering the case of no errors, after rotation the photon vectors align 

vertically on the tc grid, giving a value of 0 for the rotated directional cosine, Uĵ . Hence the 

original X' position and the new photon position (A") in the rc grid will be equal. The 

introduction of errors in the rotation angle results in a departure from the perfect case and 

X' f  X”. Fifty batches of 107 photons (a practical limitation) were injected into the system and 

the AXr was computed. Of the photons injected, 99% experience a displacement in XR1 <1x10'

5 m with the remaining 1% having an error on the order of 10*4 m. The impact of the rotation 

errors on the new (X, Y, Z) coordinates of the photons is small with > 85% of all photon 

interactions having a AX between lxlO'4 and lxlO'5 m, ad  7 between lxlO'5 and lxlO'6 m. 

Approximately 99% of the photons had adZ  of less than lxlO'4 m. A small fraction of the 

photon interactions have larger positional differences with approximately 0.6% and 0.006% of 

the interactions exhibiting a dZ of 0.001 m and 0.01 m respectively, while one in every two 

million photons had a dZ of approximately 0.1 m. The larger errors are associated with the error
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due to the calculation of the new directional cosines at small angles and the new Z position 

calculated with a division by sin 6. The above analysis demonstrates that the errors introduced 

by coordinate transformation are negligible. The Vn error for the simulations performed was 

determined to be 1.0%.

3.2 Dust devil simulations

In this section idealised dust devils of different T are modelled to assess what effect the 

quantity of dust has on the photon propagation. For these simulations the composition and size 

of the suspended dust is assumed to be constant, i.e. Cext is constant. A second set of simulations 

investigates the effect of different single scattering properties on the photon propagation with N  

held constant.

3.2.1 Model parameters

The MCLSM requires specification of: solar zenith angle (6Z), dust devil height (Z<«), dust devil 

radius (/?<«), location of the point of measurement (PoM), optical properties of the dust entrained 

in the vortex, the detection plane height (set to the height of the PoM above the surface) and the 

interpolation lookup tables. Two scenarios are presented; the first assumes the full sky 

irradiance (FS) is measured by the detector (i.e. half-angle field of view, FoV, is equal to 90°) 

and the second applies a narrow view (NV) such that the solar disc does not enter the detector 

FoV, meaning that only scattered light is detected. For all simulations in this section, 0Z was 

held constant at 13.5°, which corresponds to the maximum solar elevation angle before the solar 

disc enters the FoV in the NV case, assumed to be 12.7°. The dust particle scattering phase 

function was described by the Henyey-Greenstein approximation.

3.2.2 Photon propagation

Photons are injected into the model volume at random locations. The initial positions of the 

photons for the FS model are found by generating random numbers so that the photons are
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positioned in the X-Y plane at the height of the dust devil. The NV case resulted in significantly 

fewer photons being detected since only scattered photons are detected. To increase the photon 

density, only photons that intersect the vortex are considered. Increasing the number of photons 

injected into the system was not a practical solution due to the available computing resources. 

The initial positions of the photons are randomised on the illuminated edge, described as the 

Sun-facing edge, by randomly selecting -Rdd < Y< Rdd and 0 < Z < Zdd, The X position is then 

determined using Pythagoras’ theorem. The photons propagate forward in the model until all 

photons are either detected or move outside the model volume.

Figure 3-3 shows the propagation of the photon in the X-Y plane after one and four 

consecutive scattering events for a dust devil with a large N  in the wall (&ext = 0.5 m'1) and a dust 

devil with small N  in the wall (kext = 0.05 m'1). In both scenarios a dust-free core is assumed and 

the dust devil is assumed to have a core and outer radius of 3.0 m and 6.0 m respectively. The 

Sun is positioned on the left and the initial vector of the photons is in the +X direction. The 

black dots mark the positions where the active photons interact with a dust particle only 

(photons which travelled outside the model volume or were detected on the previous cycle are 

not shown in consecutive figures). The simulations show what effect varying the dust 

concentration has on the propagation of the photons through the vortex. After the first cycle the 

high opacity case shows that the majority of the photons will interact with a dust particle close 

to the inside edge of the illuminated wall or on the inside edge of the non-illuminated wall. In 

contrast, after one scattering event the dust devil with small N  in the wall has a much more 

uniform distribution with a significantly higher portion of the photons passing directly through 

without interacting. As more cycles are performed the photons migrate towards the non

illuminated side. However, this process is ‘slower’ at large N  as a result of the higher 

probability of photon-dust particle interaction, with the majority of the photon-dust particle 

interactions still occurring in the illuminated wall and near the core on the non-illuminated wall 

after four scattering events. At small N  the propagation is more clearly seen and after the same 

number of scattering events the number of photons present inside the vortex is significantly
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reduced, with their positions being nearly uniform, albeit with a slight bias towards the non- 

illuminated edge.

The results of the simulations are physically realistic. The optical free path of the photons 

is inversely proportional to ken and from Eq. (3.7) assuming the dust composition constant, the 

optical free path is also inversely proportional to N. Thus as N  increases the photons will travel 

a shorter distance before interacting with dust particles. This explains the slower migration of 

the photons from the illuminated wall to the non-illuminated wall in the high r case compared to 

the low r case.
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Figure 3-3: The photon positions after one scattering event in a dust devil of (a) high and (b) low dust 
concentration, and after four scattering events, (c) high and (d) low dust concentration.
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To illustrate the effect of changes in the scattering nature of the dust particles on the 

photon propagation, g was assigned values of 0.70,0.80,0.90 and 0.98. The NV model was 

used for a dust devil with T = 0.6. The position of the photons after six scattering events is 

shown in Figure 3-4 for g = 0.70 and 0.98. As Figure 3-4 illustrates, for lower values of g, the 

location where the photons cross the detector plane is more uniformly spread around the vortex. 

At high g values, the positions where the photons cross the detector plane are highly 

concentrated in the +X plane and cover an area only slightly larger than the dust devil radius. 

This result is expected, since as g —» 0 the photon scattering will tend towards isotropic 

resulting, in a more uniform distribution of photons around the vortex. As g —*■ 1 the photons 

will scatter more favourably in the forward direction and the positions where the photons cross 

the detector plane will be concentrated on the opposite side (+X) from where they enter (-X).

g = 0.98 50, g = 0.70

N

• ••.•••.
/V. • *•"• .*» w rjC'r.TV / •'t •

v ... •£**:

• \
'•* /V .,
•’ .•••!..• - . 
Y # ’** * . •V.'*

\ v.VY • ^

-50 -50

Figure 3-4: Photon positions after six scattering events for: (a) g = 0.98 and (b) g = 0.7.

3.3 Simulated dust devil transits

The simulations assume a sky that is free of dust and clouds and therefore the direct component 

forms the majority of the total surface irradiance. The FS case will detect photons which pass 

directly through the dust without interaction (direct component) and also any photon scattered 

onto the PoM (scattered component). Since the direct component will comprise the majority of 

the combined signal as a dust devil transits across the PoM the light received decreases by a
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factor of exp[-&extL], where L is the path length through the dust. The scattered component 

increases during the transit, though the increase is small in comparison to the decrease in the 

direct component. In contrast, when a dust devil transits in the NV case an increase in light 

should be observed. This is because the FoV in the NV case precludes detection of the direct 

component and therefore only the scattered component is detected, which increases as N  (hence 

kext) increases resulting in a net increase in signal over the ambient signal. Figure 3-5 shows the 

number of photons detected over the model surface for both FoV cases for a dust devil with 

Rdd = 2 m and % = 0.6.
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Figure 3-5: <3>r and @s during a transit of a dust devil with Rdd = 2 m and Tc = 0.6 for: (a) NV case and (b)

FS case.

In the following sections a transit of a dust devil moving in the -X  direction is simulated 

for T= 0.15,0.3, 0.6,0.9,1.2,1.6 and 2.0. For a uniform dust devil with R<m = 2 m this results 

in ken of 0.0375,0.075,0.15,0.225,0.3,0.4 and 0.5 m'1 respectively. Note that since the dust 

devil size and dust composition is fixed the quantity being varied is the dust concentration. For 

the non-uniform dust devils three scenarios were considered: the first assumes 1/4 of the total 

dust is in the core with the remainder in the wall. The second and third assume 1/3 and 2/5 of 

the dust is present in the core leaving 2/3 and 3/5 of the dust in the wall respectively. Table 3-1
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provides kcxt for each scenario for a non-uniform dust devil with a core radius of 1 m and the 

same outer radius as the uniform dust devil.

kext / m'1

Scenario 1 Scenario 2 Scenario 3

Dust optical 
depth Core Wall Core Wall Core Wall

0.15 0.019 0.056 0.025 0.050 0.030 0.045

0.3 0.038 0.113 0.050 0.100 0.060 0.090

0.6 0.075 0.225 0.100 0.200 0.120 0.180

0.9 0.113 0.338 0.150 0.300 0.180 0.270

1.2 0.150 0.450 0.200 0.400 0.240 0.360

1.6 0.200 0.600 0.267 0.533 0.320 0.480

2.0 0.250 0.750 0.333 0.667 0.400 0.600

Table 3-1: The kext in the core and walls for non-uniform dust devils under the different scenarios
considered for each x.

3.3.1 Effect o f dust loading

The transit of a dust devil with the parameters of Scenario 1 is used to investigate the effect of 

increasing dust loads, Figure 3-6. From examination of the simulated dust devil transits we 

would expect a dust devil of high dust loading, for the NV case, to be characterised by a 

significant increase in the scattered light (<£?) as the illuminated edge passes over. This would be 

followed by a sharp decrease in ^through the core and non-illuminated wall. For the dust 

concentrations considered, <2% is approximately 150 and 300% greater in the illuminated wall 

compared to the dust devil core and non-illuminated wall respectively. Smaller N  results in 

fewer photon-particle interactions, lowering the probability of scattering into the PoM, causing 

0 S in the illuminated wall to decrease. The longer optical free path for small N  allows more 

photons to penetrate into the core and opposite wall and correspondingly <2fcin the core and non- 

illuminated wall increases. For vortices with a t  of 0.15 and 0.3, the optical free path far exceeds
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the diameter of the dust devil; as a result $ rapidly decreases with -70 % less light detected in 

the core for a dust devil with T -  0.15 compared to vortices with T -  0.6. At these small values 

of N  the internal distribution of dust becomes important. The uniform case shows a peak in <t>s 

at the dust devil centre, while the more heterogeneous dust devils (Scenario 1) show a 

maximum in detected light near the core-wall boundary of the illuminated and non-illuminated 

wall, with less scattered light detected in the core.
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Figure 3-6: NV dust devil transits from Scenario 1 (black lines) and uniform Scenario (grey lines) for
different r.

The total light {<Pr) transit signatures can generally be characterised by a reduction in 

<Pr as the vortex passes over the PoM. When kext > 0.24 mf1 in the wall there is an increase in <&t 

as the dust devil approaches the PoM. A peak in<Pr is observed just inside the illuminated wall, 

X  = -1.8 m, with high r dust devils showing a 10% increase in Further into the vortex <&r 

decreases depending on r, with low r  showing a more gradual decline between X  = -1.8 m and 

X  = 1.0 compared to high t. As the PoM passes through the core a slight change in the @T 

gradient is observed at large N  in the heterogeneous dust devils which is not observed in the 

uniform case. Upon exiting the dust devil the @T gradient reduces significantly and reduces
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gradually to a minimum at X  ~ 14.0 m before increasing back to the ambient illumination. This 

result is significant as it shows that for dust devil transits with this geometry (vortices moving 

directly towards or away from the Sun) the position of lowest &r does not correlate with the 

portion of the transit signature associated with the centre of the dust devil but to the location on 

the surface where t  along the photon incident path is at a maximum. This occurs at the point 

where the line joining the PoM to the Sun has the longest path length through the dust devil.
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Figure 3-7: As fig.6, but showing the FS simulated transits.

3.3.2 Effect o f dust distribution

To determine the effect of varying internal dust distributions on the transit signature, the 

observed 0s in the core and non-illuminated wall relative to the illuminated wall was plotted as 

a function of dust devil uniformity, defined as the ratio of the core dust concentration to the dust 

concentration present in the walls, Ncore / Nwau. Figure 3-8 shows that for small N, 0s in the dust 

devil core is strongly dependent on the internal dust distribution. A dust devil with T =0.15 and 

a core dust concentration 1/3 of the wall results in an increase in 0s of -35 % in the core 

relative to the illuminated wall. As the dust devil becomes more uniform 0s in the core
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increases, with almost twice the scattered light observed relative to the illuminated wall for the 

uniform case. At T = 1.2 the dust concentration in the dust devil walls for Scenario 1 and 2 

results in the optical free path of the photons being less than the width of the walls resulting in 

Scenarios 1 and 2 experiencing a decrease in <PS of -10 and 2% respectively relative to the 

illuminated wall. Dust distributions with a higher degree of homogeneity (Scenario 3 and the 

uniform case) predict a 2% and 16% increase in 0s entering the PoM at the core than in the 

illuminated wall. This indicates that the different internal dust distributions will result in very 

different transit signatures, with Scenario 1 and 2 showing an increase in 0 S in the illuminated 

wall over the core while the more uniform dust devils will display a lower 0 S in the illuminated 

wall relative to the core. As the dust concentration increases, heterogeneities in the internal dust 

distribution become less important. At T = 2.0, Scenario 1 and the uniform case predict -40% 

and -30% less scattered light in the core respectively. The scattered light in the non-illuminated 

wall relative to the illuminated wall showed little dependence on the internal dust distribution, 

with the relative 0 S constant for all internal dust distributions considered.
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Figure 3-8: The observed 0S in the core relative to the illuminated wall as a function of the Ncore / Nwau.
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The FS simulations showed the relative &r to be approximately constant for all r cases. 

This indicates the internal dust distribution will have an almost negligible effect on the transit 

signature of a dust devil transit when measuring 0 r. The primary parameter governing the 

transit signature shape is the total amount of dust along the line joining the source to the 

detector. From the Beer-Lambert law the direct irradiance is a function of r  only for a fixed 6Z. 

Therefore the manner in which the dust is distributed with the dust devil will have no impact on 

the direct component if r is fixed and the resulting small variations in the FS transit signatures 

are due only to the scattered component. This correlates with the assumption that the direct 

component forms the majority of the total surface irradiance during ‘clear sky’ conditions.

3.3.3 Effect o f core size

To investigate different internal structures the dust devil core radius (Rcore) was varied using 

values of 1/4,1/2 and 3/4 of the Rdd to determine the effect of different core and wall thickness 

on 0 S. This corresponds to a core radius of 0.5 m, 1.0 m and 1.5 m respectively for a dust devil 

with an Rdd of 2 m. The dust distribution defined in Scenario 2 was applied to dust devils with T 

= 0.6 and 1.2.

The NV transits, Figure 3-9, reveal that 0 S is highly dependent on the vortex core size. 

Since the quantity of dust in the two regions is held constant as the core volume is increased, N  

in the wall is enhanced while the core sees a reduction in N. Reducing the core diameter has the 

opposite effect, increasing and decreasing the wall and core volume, hence lowering and 

enhancing the dust concentration in two regions respectively. Looking at the transit of a dust 

devil with a core radius of 1.5 m and T =1.2, the signature shows a significant departure 

compared to the Rcoie = 1.0 m case and more closely resembles a high r dust devil with an Rdd 

and RCOre of 1.0 m and 2.0 m respectively (Figure 3-6). This is because N  in the wall of the two 

dust devils lead to a similar ktn of 0.8 m'1 and 0.67 m'1. At T= 0.6 the increased dust 

concentration in the wall results in a broadening of the uniform 0 S in the dust devil interior and 

the appearance of two peaks in 0 S at the outer edge of the illuminated and non-illuminated

69



Chapter 3

walls. For both N, the transit signature of a dust devil with a small central core will have the 

signature of a peak in 0s at the dust devil centre similar to the transit by a uniform dust devil.
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Figure 3-9: Transit signatures of dust devils with core radii of 0.5 m, 1.0 m and 1.5 m. The internal dust 
distribution from scenario 2 is used and the dust devils have a r of (a) 0.6 and (b) 1.2.

The simulated transits show that 0 S is strongly dependent on N  in the vortex wall which 

is a function of T , Rdd, Rcore and also the internal dust distribution. Therefore, if both t  and the 

dust devil size are known, the transit signature will be able to give insight not only into the 

internal structure and dust distribution, but more importantly the dust concentration. For 

example, a large scattered component in the illuminated wall relative to the core is characteristic 

of a dust devil with large N  in the vortex wall. This can be the result of a dust devil with a 

moderate dust loading and large internal core resulting in a small wall volume or by a vortex 

with a high dust loading and a small core but with the majority of the dust contained within the 

wall. If the scattered component is approximately uniform during the dust devil transit, this is an 

indication of small N  throughout the vortex.
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3.3.4 Effect o f transit direction

The 0s and 0 r over the NV and FS model surfaces, Figure 3-5, can be used to determine the 

transit signature for any dust devil bearing over the PoM by interpolating over this model 

surface. The bearing of the dust devil is defined here as the angle ctdd at which the PoM enters 

the vortex relative to the illuminated edge. A number of simulated dust devil transits were 

performed at different bearings to investigate the effect on 0 S and 0 r and the results are shown 

in Figure 3-10. All simulations in this section apply to a dust devil with Rcore = 1 m and 

Rdd = 2 m with ken of 0.1 m'1 and 0.4 m'1 in the core and wall respectively. As illustrated for the 

NV case, the direction of travel over the PoM relative to the illuminated side can result in a 

significantly different transit signature, especially for large N  in the dust devil wall. The 

signatures show 0 S will be greatest if the PoM passes through the illuminated wall; therefore if 

the dust devil is moving away from the Sun (ocm =180°) and the PoM enters from the non- 

illuminated side, the peak 0 S will be observed in the trailing wall (i.e. after the decrease in 

pressure at the core). Alternatively if the dust devil is heading towards the Sun {ctdd = 0°) the 

leading edge wall will experience the greatest irradiance. As add —> 90°, 0 S in the illuminated 

wall will decrease while 0s in the non-illuminated wall increases. At ctdd = 90°, 0s is constant 

along the path through the core.

The FS model shows that the 0 r transit signature is modified significantly by the 

bearing of the dust devil over the PoM. At large angles from the illuminated wall, the path 

length through the dust devil shadow decreases resulting in a reduction of the transit signature 

width. As a result, the location where 0ris smallest migrates towards the dust devil centre. As 

the bearing tends towards perpendicular, a noticeable change in the gradient is observed as the 

PoM approaches the core with 0r  nearly constant until entering the trailing wall. A 

perpendicular transit of a non-uniform dust devil is characterised by the point of lowest 0r  

coinciding with the core-ward edge of the leading and trailing walls and an increase in 0 r  at the 

dust devil core. It should be noted that the symmetry of the perpendicular transit is an artefact of
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the X-Y plane symmetry assumed in the model and such symmetry is unlikely to be measured in 

reality. The transit signature for dust devils with a bearing such that the PoM enters the 

non-illuminated side of the dust devil will be the reverse of the transits shown in Figure 3-10.
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Figure 3-10: The variation in the dust devil transit signature for different trajectories over the PoM: (a)
NV model (b) FS model.

3.3.5 Effect o f single scattering properties

The optical properties of the dust particles entrained in the dust devil were varied to assess the 

sensitivity of the model to changes in the single scattering properties. Figure 3-11 shows a dust 

devil transit for both the NV and FS cases for changes in the g (with C0o= 0.95 and the scattering 

phase function of the dust particle described by a Henyey-Greenstein phase function). A transit 

parallel and perpendicular to the X-axis is assumed for the NV and FS cases respectively. The 

FS case shows that <pr increases as g —> 1, whereas, an increase in 0s is observed for the NV 

case. The dependence on g can be explained by the scattering phase function; at high values of g 

the photons are scattered predominately at forward angles, therefore even though the photon has 

been scattered it will still be in the direct path to the PoM, and hence will be detected. As g 

decreases the probability of scattering away from the forward direction and out of the direct 

path increases; this results in fewer photons being detected. The reverse is true for the NV case 

where the photons must be scattered out of the direct path in order to be detected which has a 

lower probability of occurring at high g values. For the NV case, Figure 3-1 la also reveals that
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as g increases the measured scattered component in the non-illuminated side relative to the core 

increases. This is a result of more photons penetrating through to the non-illuminated side due 

to the higher probability of scattering at small angles. Similarly the opposite is true for the 

illuminated wall, where a decrease in 0 S is observed for increased values of g.
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Figure 3-11: Transit of a dust devil moving along the X-axis for different values of g. <&bheld constant at
0.95 (a) NV model, (b) FS model.

Unexpectedly, for the NV case, the maximum 0 S does not correspond to the minimum 

value of g but occurs at g = 0.73. This can be explained by examining the effect increasing g has 

on the scattering phase function. For a solar elevation angle of 76.5° a photon needs to be 

scattered by an angle between approximately 5° and 30° in order to be detected given a field of 

view of 12.7°. The probability of scattering between these values decreases as g —> 1 as the 

favourable scattering angle approaches 0°. The maximum 0 S occurs with g = 0.73, as it 

provides the photons the highest probability of scattering between 5° and 30°.

This indicates a bias effect associated with 6Z on the observed 0s for a given g value. At 

larger or smaller 6Z the angle through which the photons must be scattered in order to be 

detected will decrease and increase respectively. The implication is that as the Sun moves 

towards zenith the g value associated with the peak scattered component will increase as 6Z
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decreases, since the angle through which the photons must be scattered in order to be detected 

approaches 0°. Conversely, as the Sun moves towards the horizon the g value will decrease 

accordingly. Figure 3-12 shows the number of photons detected for g values of 0.6,0.7, 0.8, 0.9 

and 0.98 for the NY case for different 6Z spanning 20 -  55°. As expected the largest scattered 

component correlates with the value of g that gives the photons the highest probability of 

scattering into the FoV. At 0Z = 40° the maximum scattered component is observed for dust 

particles with g = 0.6. As 0Z decreases, the g value associated with the highest scattered 

component correspondingly increases and at 6Z = 80° this correlates to g = 0.98. This leads to an 

important bias when interpreting data from potential observations and care is needed when 

attempting retrieval of the dust optical properties. The bias effect is not observed in the FS case 

as a result of the direct component forming the majority of the total illumination and reveals that 

the bias is limited to the scattered component.

10'

,410

,310'

,2
10*

110
50 5540 45 65 70 7560 80

6 / °z

Figure 3-12: Number of scattered photons detected as a function of 0Z for dust 
components with different g.
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The same transit was simulated for changes in Cty, with g held constant at a value of 0.8 

and the result is shown in Figure 3-13. Both the NV and FS simulations predict that smaller 

values of co0 result in lower &r and 0 S and correlates with a high attenuating dust component 

absorbing a larger portion of the incident light. At larger values of cdq the dust grains are less 

absorbing and more light is scattered, increasing the probability of detection, and correlates with 

a higher <^and
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Figure 3-13: Transit of a dust devil moving along the X-axis for different coq values with the asymmetry 
parameter held constant at 0.8: (a) NV model and (b) FS model.

3.4 Discussion of the MCLSM simulations

The most obvious difference between the FS and NV is the contrasting behaviour in the 

observed solar irradiance during the dust devil transit. In the NV case, assuming the Sun is not 

in the FoV, an overall increase in &s is observed as a result of scattering. In the FS case, the <Pr 

decreases during the transit since the loss of light from the direct component due to absorption 

and scattering by the dust particles is much larger than the gain from increased levels of 

scattering.

The NV simulations show that the measured scattered component inside a dust devil vortex 

is strongly dependent on the dust concentration distribution within the dust devil interior.
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Importantly the dust concentration in the illuminated wall plays a significant role in determining 

the shape of the 0 S transit signature, with large AT being associated with a sharp increase in 0s 

as the PoM passes through the illuminated wall followed by significant decrease in 0s through 

the core and non-illuminated wall. When N  is low enough to allow light to penetrate through to 

the core and non-illuminated wall, the dust concentration in these regions becomes more 

important. The implication of assuming a uniform dust distribution at low r is an overestimation 

in the observed scattered component at the dust devil centre and an underestimation through 

both the illuminated and non-illuminated walls.

In the FS case, 0 T transit signature shows a negligible dependence on the dust 

concentration and core size. This is because the direct component dominates the total 

illumination at the surface under ‘clear sky’ conditions.

The analysis into the variation in single scattering properties revealed that the value of the 

g that resulted in the largest 0 S was dependent on 6Z, leading to a bias towards low g for high 6Z 

and g —> 1 for low 6Z. The same dependence was not observed when measuring 0 r and implies 

that the 0Z bias is limited to the scattered component. This has important implications when 

attempting to retrieve the optical scattering properties as any attempt to determine g from 

narrow FoV observations will have to correct for this bias. Both 0s and 0 j  exhibit the same 

dependence on (Dq, with higher (Do corresponding to increased illumination.

The variation of light during a dust devil transit was investigated to determine whether the 

dust load, size and internal structure of the vortex could be estimated from a dust devil transit 

light signature. The implication of this work is that separate measurement of both the total and 

scattered light is crucial for characterising the distribution of dust within a dust devil by its 

transit signature. The total light observed provides information about the dust devil size and 

total amount of dust, while the scattered light gives details of the internal structure of the vortex. 

Variation in the dust particle single scattering properties were shown to modify significantly the 

amount of total and scattered light detected during the transit. These variations imply that the
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transit signature of a dust devil passage will differ depending on the wavelength of observation 

and the properties of the suspended dust. Therefore by comparing the amount of scattered and 

total light observed during the transit at different wavelengths it is possible to determine single 

scattering properties of the dust.

Finally we conclude that in situ measurements of the optical signatures of transiting dust 

devils provide a powerful tool to characterise dust devils, including those on Mars, allowing for 

determination of their size, dust concentration, internal structure and dust distribution. 

Following the simulations presented here, the model could be validated by measuring terrestrial 

dust devil transits with visible spectrometers covering a spectral range of 300-800 nm. The 

nature of such measurements makes them an ideal technique to use on Mars, only requiring two 

upward viewing spectrometers of low complexity and mass. Measuring the wavelength 

dependent transit signatures of dust devils would provide a wealth of information on the 

characteristics of martian dust devils and the dust entrained within them.
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Chapter Four: Spectral measurements of 

terrestrial dust devils
The Monte Carlo Light Scattering Model (MCLSM) discussed in the last chapter was applied to 

spectral measurements of terrestrial dust devils. The aim of the field work was to validate the 

MCLSM and whether dust devils could be characterised from their transit signature. The transit 

measurements also provided the opportunity to test whether the optical properties of the 

suspended dust particles could be retrieved from the attenuation of the solar spectrum during a 

dust devil transit.

The experiments were conducted in the Southern Nevada Desert (Eldorado Valley), in a 

closed playa basin outside Boulder City, U.S.A. The regional climate is arid and hot, with 

strong insolation and the conditions for dust devil formation occurring frequently. The basin 

itself is flat, hard and dry with regions of both fine and coarse material on the surface, making it 

ideal for vehicular activities, and covers an area of 13 km2.

4.1 Experimental setup and execution

The instrumentation used for these experiments included a spectrometer, observing the 

ultraviolet and visible wavelength region (326-7S0 nm) and is referred to as (UV-VIS), pressure 

and temperature probes, a photodiode light sensor (Sun sensor) and a GPS receiver. The 

pressure, temperature and Sun sensor data form the ‘PICO’ dataset and are referred to as such 

from this point. The instrumentation had to be positioned in the path of the dust devils and, due 

to the unpredictable nature of dust devil formation, was required to be mobile. This was 

accomplished by setting up the instrumentation on the roof of a vehicle with the line of sight of 

the UV-VIS probe normal to the vehicle roof. The layout of the instrumentation used for these 

experiments is illustrated in Figure 4-1.
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Figure 4-1: The experimental setup for the dust devil measurements.

The measurement process is illustrated in Figure 4-2. Two vehicles were used; the chase 

vehicle (with the instrumentation mounted on the roof) positioned itself in the path of the dust 

devil, while an orbital vehicle time-stamped and photographed the encounter to allow for visual 

referencing and comparison with the recorded data from the spectrometers. The GPS receiver 

recorded the time and position of each encounter. After each dust devil encounter, the chase 

vehicle remained stationary for an extended period of time to allow measurement of the incident 

(reference) spectrum once quiet conditions were restored. This was required for the retrieval of 

the dust single scattering properties.
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Figure 4-2: Illustration of the measurement process performed by the chase vehicle a) chase vehicle 
moves into the path of the dust devil b) the vehicle is stationary during the dust devil encounter c) the 

reference spectrum is obtained after the encounter.

The UV-VIS spectrometer used two different optical setups each with a different field of 

view (FoV). The first setup incorporated a diffuser attached to the end of the detector probe that 

allowed for measurement of the full sky irradiance (here on called FS, following the convention
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in Chapter 3). The second optical setup was identical except the diffuser was removed, giving 

the UV-VIS spectrometer a narrower FoV (here on called NV, see Chapter 3). In the NV optical 

setup the optical fibre had a numerical aperture (dimensionless number that characterises the 

range of angles over which light can be detected) of 0.22. This resulted in the UV-VIS 

spectrometer having a FoV with a half angle of 12.7° projected from the probe aperture. Figure 

4-3 illustrates the different fields of view for both optical setups and the angle, $d, defines the 

half angle of the UV-VIS FoV.

Figure 4-3: Diagrams showing the different viewing geometries for the two optical setups (a) full sky 
measurement and (b) narrow FoV observations.

The two optical setups allowed different components of the total surface irradiance to be 

measured. The FS setup measures both the diffuse ‘scattered’ component (light which reaches 

the detector that has undergone interactions with airborne dust particles) and the direct 

component (light which has not undergone interactions with the suspended dust). Reducing the 

detector FoV to a half angle of 12.7° prevented the detector from directly observing the solar 

disc in order to only measure the scattered component in the NV setup. It should be noted that 

the scattered component is defined as the amount of sunlight scattered from dust particles within 

the FoV of the NV setup and will be less than the total diffuse component measured by the FS 

setup.
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4.2 Dust devil measurements

In total 78 encounters with dust devil vortices were recorded during the experimental campaign 

between the 20th and 25 th o f  June 2009. The size o f the vortices varied significantly, with 

diameters ranging from just a few  metres to as large as twenty metres, and vortex heights 

varying from tens o f metres to many hundreds o f metres. Only a small proportion o f the dust 

devil encounters were selected from each optical setup for further analysis. These are from June 

21st (FS) and 23rd (N V ) as both days had ideal atmospheric conditions: clear skies, low  ambient 

wind speeds and strong insolation. On June 23rd only dust devils which occurred before 11 am 

and after 2 pm were considered. This was because between these times the solar elevation was 

such that part o f the solar disc was directly in the FoV o f  the NV probe, resulting in saturation 

o f  the spectrometer. Simultaneous measurement o f the total and scattering irradiance could not 

be achieved due to lack o f  available equipment. Another unexpected effect that restricted the 

number o f dust devils available for analysis was interference from dust lifted by the chase 

vehicle. In the majority o f  the encounters this masked the dust devil transit. These criteria for 

the NV setup limited our analysis to one dust devil encounter for retrieval o f its internal 

characteristics (dust distribution and core radius). The FS setup had fewer constraints and the 

dust optical properties for five dust devils were retrieved. The dust devils with the FS setup are 

label E 1-E 5  and the N V  encounter is denoted by E6. Figure 4-4 illustrates the location o f  all the 

dust devil encounters on the 21st and 23rd which are shown in blue and red respectively.
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Figure  4-4: Location of the dust devil encounters considered for further analysis. The blue flags mark 
encounters on the 21st and the red flags for the 23rd. The light blue (21st) and orange (23rd) flags mark the

dust devils analysed during this study.

4.2.1 Data reduction

Dust devil encounters are characterised in the dataset by a drop in pressure, a correlated increase 

in temperature and, follow ing the results o f Chapter 3, a decrease or increase in observed  

irradiance for the FS and N V  setups respectively. The apparent transmission (Ta) describes the 

ratio o f the reference irradiance to the irradiance measured during the transit. Since the 

measured irradiance during the dust devil encounter will contain scattered light, Ta is used to 

differentiate it from the true transmission. Figure 4-5 shows an example o f  a full dataset from  

the PICO and UV-VIS spectrometer for a given encounter, with Ta, from the U V -V IS, 

calculated at 386 nm. The dust devil transit corresponds to the reduction in Ta between 15 and 

16 minutes. The motion o f the chase vehicle, as it positioned itself in the path o f  the dust devil, 

caused ‘noise’ in the recorded data, with the spectrometer and pressure sensor being the most
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affected. The similarity between the motion variations and a dust devil encounter highlights the 

importance of accurately time-stamping each encounter and carefully correlating between drops 

in pressure and variations in the observed irradiance.

1.6 53

6 8 10 
Time / minutes

Figure 4-5: An example of a typical dataset obtained for a dust devil encounter. Careful time-stamping 
and correlation between the different sensors was necessary in order to extract the portion associated with 

the transit. The graph displays the UV-VIS (black lines) and the PICO datasets, Sun sensor (grey line),
pressure (blue line) and temperature (red line).

The dust devil transits were identified by using the recorded time on the GPS and 

correlating the UV-VIS output with the PICO dataset. Unfortunately the UV-VIS did not record 

the measurement start time and the recorded end time of the measurement was the file creation 

time, which could be tens of seconds after the final measurement, resulting in an offset between 

the UV-VIS and PICO datasets. This was corrected for by applying a correction factor (Ts) to 

the file creation time ( rend) using:

F , = T a -
T

end 3600
sc.end SCK (4.1)
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Where sc and sceni are the current and end scan number respectively, Tsc is the equivalent time 

for scan number sc, and Integration is the integration time of the spectrometer. The correction 

factor was varied until the UV-VIS and Sun sensor data were aligned. A number of additional 

checks were performed to identify the dust devil transit. The first method looked for differences 

in response between the Sun sensor and the UV-VIS (FS setup only). At T = 13.15 minutes, in 

Figure 4-5, the Sun sensor exhibits a drop in response but the UV-VIS has an unexpected 

increase in measured irradiance. This is a result of the different FoV between the UV-VIS and 

Sun sensor which resulted in the same response when the vehicle is stationary, and both are 

looking directly up but diverged as the angle of the vehicle changed. The final method of data 

reduction was to look directly at the irradiance spectrum produced by the UV-VIS spectrometer 

and identify the attenuation of light by the dust (discussed in Section 4-3). Figure 4-6 shows the 

reduced data for the dust devil encounter shown in Figure 4-5. Good correlation is observed 

between the increase in temperature and subsequent decrease in pressure and transmission.
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Figure 4-6: An example of the reduced data for a dust devil encounter. The graphs displays the UV-VIS 
(black lines) and the PICO data sets, Sun sensor (grey line), pressure (blue line) and temperature (red

line).
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The correlation between the PICO and the UV-VIS measurements for the dust devil 

encounters analysed, using the FS setup, are shown below in Figure 4-7, with Ta calculated at 

386 nm. Good agreement between the Sun sensor and the UV-VIS measurements is seen for all 

encounters considered. Note, the point of lowest signal does not always correspond to the 

passing of the dust devil interior. E1-E3 all show the lowest detected signal occurring before 

the pressure decrease and temperature increase, i.e. before entering the dust devil core. From the 

results of Chapter 3, this indicates that the UV-VIS passes through the dust devil shadow prior 

to entering the interior, and the point of lowest illumination occurs when the length of the dust 

column is at maximum. The pressure profiles for encounters E1-E3 all show a distinct 

similarity, with a decrease observed upon entering the vortex, followed by an increase which 

subsequently decreases again before increasing back to ambient conditions. The increase in 

pressure is suggestive of downward flow of cooler air in the dust devil core, which was reported 

by Sinclair (1973), however no correlated temperature decrease is observed. This could be due 

to the temperature sensor being insensitive to these small variations in temperature.

As expected the temperature increases as the dust devil passes over the sensor. The 

highest temperature is experienced through the trailing wall and is a result of it being on the 

Sun-facing side. The similarity of the transit profiles for the different encounters is no 

coincidence and is an artefact of the orientation of the lake bed and the wind direction. As 

illustrated in Figure 4-4, the wind direction on the 21st was SW to NE and, given the position of 

the Sun in the sky, the probability of encountering a dust devil travelling towards the Sun was 

very small and limited to early morning.
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Figure 4-7: Correlation of the UV-VIS and PICO datasets for encounters: (a) E l, (b) E2, (c) E3, (d) E4 
and (e) E5, which used the FS optical setup. The Sun sensor and UV-VIS measurements have been 

normalised to the reference signal to allow a direction comparison.
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As shown in Chapter 3, the NV setup experiences an increase in irradiance during the 

dust devil encounter. When a dust devil transits over the UV-VIS, sunlight that would not 

normally be observed is scattered by the suspended dust into the UV-VIS probe, increasing the 

measured signal. This meant direct correlation with the Sun sensor response could not be 

achieved for encounter E6. However, further analysis of the PICO and UV-VIS datasets, Figure 

4-8, reveals a correlation between features as illustrated by the arrows. The value of Ts in Eq. 

(4.1) was varied until good agreement between these features was obtained. Upon close 

inspection, the features align well; the peak signal in the UV-VIS dataset correlates with the 

minimum in the Sun senor data. There is a small reduction in scattered light in the UV-VIS 

dataset at approximately 10 s and this correlates well with the expected pressure drop at the dust 

devil centre. The decrease in the scattered component at the dust devil centre agrees with the 

model predictions discussed in Chapter 3 and suggests a reduced dust concentration at the core 

of the dust devil.
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Figure 4-8: Comparison o f Ta measured by the UV-VIS using the NV setup with the PCIO dataset for
encounter E6.
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4.2.2 Estimation o f dust devil parameters

As illustrated in Chapter 3, the signature of a transiting dust devil depends on a number of 

variables: the dust devil’s direction of travel relative to the Sun (add), the solar zenith angle (0*) 

and azimuth angles ($jZ), the radius of the dust devil (Rdd) and the dust devil height (Zdd). While 

6Z and (paz are essentially fixed for a given encounter, constraints must be applied to the other 

parameters.

The direction of travel for each dust devil was estimated using video footage, visual 

references taken during the transits and the pointing direction of the chase vehicle relative to the 

Sun. Loading the GPS co-ordinates recorded from the chase vehicle into Google Earth™ 

allowed the location of each encounter to be mapped and the pointing direction of the vehicle 

relative to North to be determined. The National Oceanic and Atmospheric Administration 

NOAA solar calculator2 was used to calculate (f)az at the time of the encounter using the latitude 

and longitude recorded by the GPS. The solar data was imported and overlaid onto the 

encounter location map providing a reference between the vehicle pointing direction and (paz- 

The visual references were then correlated with the maps to determine the dust devil travel 

direction. An estimation of the dust devil tangential velocity was achieved using the 

approximate diameter calculated from the static images and the time taken for the dust devil to 

transit across the chase vehicle. Transit time was determined from the recorded encounter video.

The physical dimensions of the dust devils were estimated using images which 

contained the chase vehicle near each vortex. Knowing the length, width and height of the chase 

vehicle to be approximately 5.5, 2.0 and 1.9 m respectively it was used as a size reference to 

place limits on the dust devil dimensions as Figure 4-9 illustrates.

2 http://www.esrl.noaa.gov/gmd/grad/solcalc/
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Figure 4-9: Illustration of how the dust devil dimensions were approximated for each encounter.

The horizontal velocity o f  the dust devils caused a tilt in their structure, in the direction 

o f  the ambient wind, and cannot currently be accounted for in the M CLSM. The angle o f  tilt 

causes the path length o f the incident light through the vortex to vary with position inside the 

dust devil, as illustrated in Figure 4-10 for encounter E2, where Irej  is the direction o f  the 

incident light, lcore is the path length o f  light observed at the vortex centre and l[w is the path 

length o f light observed in the leading wall o f the vortex. A s Figure 4-10 shows, the tilt o f the 

vortex leads to the condition o f lcore <  l/w, resulting in an underestimation o f the amount o f dust 

in column through l[w\f  a dust devil height o f 9.7 m is used.

To assess the effect o f the dust devil height (Zdd) two simulations were performed: One 

with a dust devil height o f 12 m and the other with a height o f 38 m. In both cases the dust devil 

radius was assumed to be 4 m and the dust optical depth ( td) was held constant between the two 

scenarios (i.e. increasing the path length through the dust decreases the dust concentration such 

that the measured r is constant). A  highly scattering dust component was chosen as, shown in 

Chapter 3, the scattered component is strongly dependent on the dust concentration and thus,
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more sensitive to uncertainties in the dust devil height. Therefore the dust was given an coq and g 

of 0.95 and 0.7 respectively. Figure 4-11 shows Ta at the dust devil core as a function of r and 

reveals that the dust devil with Zdd = 12 m experiences a higher transmission at all t. This higher 

transmission is the result of detecting a higher scattered component compared to the taller dust 

devil, which in turn is a consequence of a higher dust concentration in the shorter vortex. The 

higher dust concentration increases the probability of scattering back into the path of the 

detector’s line of sight, whereas the lower dust concentration for Zdd = 38 m reduces the 

probability of scattering back into the path due to lower photon-dust interactions. This is a 

consequence of assuming vertical homogeneity within the model, where an increase in the path 

length through the dust requires a reduction in the dust concentration such that r is constant. 

Therefore a cautious approach is used, with the dust devil height taken to be the vertical extent 

of the high dust loading in the lower portion of the dust devil vortex as illustrated in Figure 

4-10b.

core

Figure 4-10: (a) Uncertainty in the dust devil attitude during a dust devil encounter, (b) enhanced image 
showing the vertical extent of the vortex with the highest dust loading confined to an altitude of 12 m

above the surface
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Figure 4-11: The apparent transmission at the core of a 4m dust devil with an height of 12 m and 38 m.

Encounters E4 and E5 involved the same dust devil and provides an excellent 

opportunity to determine the accuracy of the estimates for the dust devil velocity and 

dimensions. By measuring two transits the bearing dust devil along the surface and its velocity 

could be calculated more accurately than for a single transit. Ta at 450 nm as a function of time 

is shown in Figure 4-12a. A wavelength of 450 nm was used as less scattered light is detected at 

shorter wavelengths however, due to the high dust abundance, the measured total irradiance at 

wavelengths <450 nm was of the same order as the instrument noise. The time-series reveals 

four significant reductions in Ta and corresponds to the dust devil transits E4 and E5, and 

passage of the chase vehicle through the dust devil shadow, Shadow (1) and Shadow (2). Figure 

4-12b shows the measured transmission spectrum during the E4 and E5 transits and passage 

through Shadow (1) and Shadow (2). The transmission spectra, for the dust devil transits, show 

greater extinction at shorter wavelengths in comparison to the transmission through Shadow (2); 

here an increase in irradiance is observed. The increase at blue wavelengths through the dust 

devil shadow is a result of direct component being sufficiently reduced such that the diffuse 

component from the clear sky forms a larger fraction of the total irradiance. Light scattered by
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air molecules is described by Rayleigh scattering and is proportional to X4: blue light scatters at 

larger angles, leading to the diffuse component being higher at shorter wavelengths. Shadow (1) 

exhibits similar spectral extinction as the dust devil transits and is a result of the chase vehicle 

passing through the peripheral dust haze lofted by the dust devil.
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Figure 4-12: (a) The apparent transmission spectrum measured during the dust devil transits E4 and E5 
and through the dust devil shadow, (b) Ta at 450nm as a function time.

The geometry of encounter E4 and E5 is shown in Figure 4-13a, which shows the 

location and distance between the two transits, the direction of the incoming solar radiation, the 

position of the chase vehicle approximately thirty seconds after E4 (730) and an estimation of the 

size of the dust devil shadow. The path taken by the chase vehicle is denoted by the white line. 

The velocity of the dust devil was calculated by measuring the distance between E4 and E5 in 

Google Earth (315.7 m) and taking the time between the two transits from the UV-VIS data set 

(49.2 s). This gave an average velocity of 6.4 m s1, consistent with the transit velocity estimated 

from the image and video references of 6.5 ms'1 for E5. A lower velocity of approximately 5.8
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ms'1 was determined for E4 which suggests that the surface speed of the dust devil increased 

between the two encounters.

Assuming that the dust devil travelled in a straight line, the bearing across the playa 

(J3dd) is given by the angle of the line joining the two encounter positions relative to North. This 

was found to be approximately 23.0°. Given (f)az -  268°, the path taken by the spectrometer 

through the dust devil (a dd) was calculated to be 115° relative to the illuminated dust devil wall. 

The different angles are illustrated in Figure 4-13b.

. Location o f dust 
devil at T30

Shadow (2)

ie chase

m*
Sunlight
direction

*82

I223m

Figure 4-13: Encounter correlation for E4 and E5. (a) schematic of the surface geometry for E4 and E5, 
(b) determination of the dust devil bearing, (c) image from the chase vehicle at r 30 showing correlation 

with the predicted location of the dust devil shadow at T30.
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The accuracy of the above determinations can be uniquely tested for this encounter. The 

UV-VIS dataset displays a decrease in Ta at T30, Shadow (2), consistent with the image shown in 

Figure 4-13c. The image is taken from the encounter video at T30 and shows the chase vehicle 

passing through the shadow of the dust devil. The location of the dust devil at T30 was 

calculated using the estimated average velocity of the dust devil. Furthermore, knowing the 

direction of the incident solar radiation, the solar elevation, and the dimensions of the dust devil, 

the surface footprint and direction of the dust devil shadow could be estimated. It is assumed 

that the dust devil dimensions remained constant between the E4 and E5 transit. The height of 

the dust devil was limited to the top of the central vortex, estimated to be 330 m. Therefore, 

with a solar elevation angle of 43°, the shadow footprint would extend approximately 354 m 

along the ground. As shown in Figure 4-13a, the shadow will cross the path taken by the chase 

vehicle and shows good correlation with the encounter video, Figure 4-13c.

The velocity, radius and height of the dust devils considered in this analysis are shown 

in Table 4-1. Also shown is the apparent optical depth (ia) for each encounter and is calculated 

from the Beer-Lambert law using the reference irradiance and the irradiance measured during 

the encounter. Note that ra differs from r since the addition of scattered light, in the total 

irradiance measurement, during the dust devil transit will cause the calculated r to be lower than 

the actual value and therefore serves as a lower limit.

Encounter Dust devil Dust devU surface Bearing relative to r„
______ radius / m height / m Velocity / ms'1 illminated wall 1° at 450 nm

E l 10.0 15 5 -7 .0  253 0.75
E2 4.0 12 5 -7 .5  230 0.57
E3 5.0 50 - 210 0.18-0.21
E4 9.0 50 5 .5-7 .5  115 2.30-2.71
E5 9.0 50 6 .4-7 .5  115 1.63-2.00
E6 1.5 15 - 31 0.9

Table 4-1: Estimated dust devil parameters from the visual references and UV-VIS data.
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4.3 Possible sources of error and uncertainties

The following sections discuss possible sources of error and uncertainty encountered during the 

experimental campaign.

4.3.1 Presence o f a dust haze

The image in Figure 4-14 reveals the presence of a dust haze that extended from tens of 

metres to greater than hundreds of metres around the dust devil vortices, and may be evidence 

of a persistent dust haze present in the experimental area.

The impact of this dust haze was difficult to assess due to its spatial heterogeneity and 

the variability in dust concentration. The initial attempts to fit the transit signatures included this 

dust haze by adding an additional concentric ring of dust around the dust devil vortex that had a 

lower &cx, than the dust devil, but higher than a clear atmosphere. However, the symmetric 

nature of the MCLSM resulted in a dust haze that was too uniform, and while changes in the 

dust concentration could be modelled in the X-Y plane, the inability to model vertical changes to 

the dust abundance resulted in erroneous transit signatures outside of the vortex. It was decided 

therefore to fit only the part of the transit signature that corresponded to the interior of the dust 

devil, where the impact of the dust haze could be considered negligible.

Figure 4-14: Enhanced colour image showing the dust haze that was present during the first two days of
the experiments.
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4.3.2 Uncertainty in dust devil dimensions and non-uniformity

Dust devils are continually evolving systems with their dust distribution and concentration 

altering significantly over very short timescales. Even within the time frame of a transit, over 

the instruments, the dust distribution and concentration can potentially vary considerably. 

Figure 4-15 shows images taken before, during and after the transit of a dust devil measured on 

the 21sl June. The upper image has been processed by changing the image brightness, contrast 

and colour temperature and, while the brightness is not strictly related to the dust particle 

concentration, it may provide insight into the dust devil structure. The lower image is the 

unprocessed image, to provide a direct comparison. The unaltered image appeals to show the 

dust devil to be stable throughout the encounter with variations in the dust loading difficult to 

distinguish. The processed images suggest a possible heterogeneous structure, with the highest 

dust concentration occurring around the vortex and relatively close to the surface. The images 

show that during the encounter the primary dust devil spawned a ‘little brother’. This 

occurrence was also reported by Sinclair (1973), who observed a similar process of primary 

vortices forming a new secondary vortex.

Before During After

Figure 4-15: Enhanced images taken during a dust devil transit illustrating the evolution of the dust devil
structure over short time scales.

Another source of error comes from the use of 2-D images to determine the vortex size. 

Even with the enhanced images it was difficult to determine any depth. Dust which appeals to
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be part of the main vortex may actually be in front or behind the perceived vortex vector in the 

image.

4.3.3 Interference from the chase vehicle

Another important artefact in the measurements is the effect the chase vehicle had on the 

transiting dust devil. It was observed from videos taken of the dust devil transits that the 

structure and dust loading of small dust devils, with low dust concentrations and diameters 

comparable to the dimensions of the chase vehicle, changed significantly upon encountering the 

chase vehicle. In some cases the encounter with the vehicle proved fatal, resulting in the 

termination of the vortex, while others became more intense with increased dust loading. Others 

abruptly changed their direction of motion along the surface. It is suspected that this last case 

occurred in response to the pressure differential created by the vehicle as it approached the dust 

devil, a variable dependent on the time between the vehicle coming to rest and the transit. Not 

enough data was collected to determine any correlation between the effect on the dust devil to 

the position and orientation of the vehicle and wind direction. These parameters would play a 

significant role, as well as others which were not measured (i.e. the pressure differential 

generated by the chase vehicle) on the modification of the dust devil vortex as it encountered the 

chase vehicle. The effect of the chase vehicle on large dust devils, with diameters greater than 

the dimensions of the chase vehicle, or intense small vortices with high dust loading was 

considerably smaller and no obvious change to the dust devils were observed. This has 

implications for measuring dust devils on Mars where, depending and the size of the spacecraft, 

termination or modification of transiting vortices may occur.

4.4 Retrieval of the dust single scattering properties

As the dust devil transits over the spectrometer, the incident solar radiation will be attenuated by 

the suspended dust particles entrained within the vortex, modifying the solar spectrum observed 

at the surface. The measured reference and attenuated spectra for encounters E1-E5 are shown
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in Figure 4-16. To remove the diurnal variation in illumination, and to allow direct comparison 

between the different dust devils and reference spectrum, the spectra have been normalised to 

the peak irradiance within the wavelength range of the spectrometer. The variation in the 

different reference spectra was negligible and therefore only one is shown.

The normalised spectra reveal that the attenuation caused by the dust is small at ra 

between 0.2-1.0 at 450 nm in encounters E1-E3, with only slight absorption seen at 

wavelengths shorter than 550 nm and increased scattering at longer wavelengths. At ra > 2.0 the 

dust concentration is sufficient to cause a significant modification to the solar spectrum, with 

high absorption seen at wavelengths shorter than 550 nm and a significant increase in the 

observed light at wavelengths longer than 550 nm. The higher attenuation is due to the fact that, 

at ra > 2.0, the majority of the detected light is from the scattered component (i.e. has undergone 

interaction with dust particles). This implies that the imaginary refractive index («/) of the dust 

particles is larger at shorter wavelengths, compared to longer wavelengths, to account for the 

observed absorption and scattering at wavelengths shorter and longer than 550 nm respectively.
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Figure 4-16: (a) The measured reference and attenuated solar spectrum normalised to the peak irradiance
for each encounter considered for the retrieval.
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The higher attenuation measured during encounters E4 and E5 may also be a result of 

the vortex intensity, size and wind speeds (as observed from video references) which greatly 

exceed those of the other encounters. Larger size and higher winds speeds enable greater 

quantities of larger dust particles to be lifted to higher altitudes. As discussed in Chapter 2, this 

will result in a greater fraction of light being absorbed by the dust particles. As discussed by 

Greeley et al. (2003) and Neakrase et a l (2006), the efficiency of a vortex to lift small particles 

is governed by the pressure drop (AP) at the vortex core. The observed AP for the different dust 

devil encounters were 4.3% (El), 5.2% (E2), 3.9% (E3), 5.0% (E4), 4.8% (E5), and 2.4% (E6). 

This indicates that encounters E2, E4 and E5 will have larger quantities of finer and coarse 

particles relative to El and E3. The variation in AP between Eland E3 will also affect greatly 

the particle size distribution for these encounters. Therefore, it is suggested that the particle size 

distribution of dust suspended in the dust devils will vary considerably and likely unique for 

each vortex. Due to experimental constraints the particle size distributions could not be 

measured in situ at the time of the measurements and is the largest source of uncertainty in the 

retrieval of the dust optical properties.

4.4,1 Dust particle size distribution

With no prior knowledge of the particle size distribution, the effect of different distributions 

with various coarse and fine modes on the particle single scattering properties, coq, g  and Qexl, 

was investigated. The size distribution of terrestrial desert dust is generally bimodal in nature 

defined by a fine fraction (r < 1.0 pm) and a coarse fraction (r > 1.0 pm). Sinclair (1973) 

determined a median radius for the particle size to be 0.6 pm for a small size dust devil (< 3 m). 

However as discussed by Sinclair, there was insufficient sampling for particles below 5 pm 

during his measurements and suggests that an inflection in the measured size distribution 

towards smaller particles is likely, indicating a bimodal particle size distribution. Furthermore, 

Sinclair suggested that the size of the particles suspended by a dust devil will tend to be larger
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than desert sand aerosols and more analogous to soil aerosols. The mean volume radius rv and 

variance ov2 are used to define the particle volume distribution from:

® = y ^ L exp
dlnr

( ln r - ln rv,)'

2 < -
(4.2)

where V* represents the particle volume concentration, r is the particle radius, rv>i is the median 

radius and aV;i- is the standard deviation which are calculated from:

lnrv = d lnr
dV(r)
d lnr

d lnr

f"* (In r - I n  rv ) ^ ^ d l n  r 
L n  V din r

r*min

v = r

dV(r)
dlnr

d lnr

dlnr

Yi

dV(r)
d lnr

(4.3)

(4.4)

(4.5)
dlnr

The different size distributions considered are shown in Figure 4-17, for various coarse 

(rvc = 1.2,2.5 and 5.0 pm) and fine (rvf= 0.15, 0.3 and 0.6 pm) median radii. The variance was

held constant at cr2 = 2.0, which is representative of terrestrial aerosols (Reid et al., 2003).
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Figure 4-17: The volume size distribution as a function of particle radius for different model radii. The 
solid, dashed and dotted lines indicate a y  of 0.12, 0.3 and 0.6 pm respectively.

The refractive indices of the dust particles were taken by Dubovik et al. (2002) for 

Bahrain-Persian Gulf dust and the single scattering properties calculated using Mie theory; the 

results are shown in Figure 4-18. As expected from the discussion in Chapter 2, as the particle 

size of the coarse fraction increases, lower coq and higher g values are predicted over the 

wavelength range. The effect of increasing y  results in a divergence in co0 and g at shorter 

wavelengths towards lower and higher values respectively. At longer wavelengths (> 550 nm) 

C0q and g are insensitive to changes in rvf with a fine fraction volume of 5% of the total particle 

volume. However even at this low concentration of fine particles, Qext displays significant 

sensitivity to the particle size of the fine fraction, with the introduction of y  = 0.15 pm and 0.3 

pm into the rvc = 5.0 pm distribution resulting in a negative gradient. This implies that the 

measured r will increase towards longer wavelengths for the particle volume size distributions 

considered, with the exception of y  = 0.15 pm and 0.3 pm and a rvc of 5.0 pm. In these two 

cases a reduction in t  will be observed with increasing wavelength.
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Figure 4-18: (a) Qtxt (b) coo and (c) g as a function of wavelength for various particle size distributions.

To investigate the effects of increasing the abundance of the fine mode relative to the 

coarse mode, the fraction of the total volume occupied by the fine mode was increased from 0% 

to 20% for a particle volume distribution with rvc = 2.5 pm and rvf=  0.3 pm; the results are 

shown in Figure 4-19.



Chapter Four

0.5

S 0.4 o  
*> 
a
>3* 0.3 
04
G

0.2

R/fim

Figure 4-19: The effect on the size distribution as a result of increasing the volume occupied by the fine
particles.

The change in coo and g, as a result of increasing the volume occupied by the fine 

particle mode, is illustrated in Figure 4-20. It is observed that even small additions of fine 

particles can cause a noticeable difference in all single scattering parameters. Increasing the 

volume fraction of fine particles to 1 0 % of the total volume leads to approximately half the 

amount of light at 400 nm being absorbed relative to the Vf = 0% case. The fine particles also 

result in increased backscattering, observed as a decrease in g over the wavelength range, while 

the gradient of Qext becomes negative with increasing Vf. This is important as the efficiency of a 

dust devil in lifting fine particles is governed by the AP at the core. From the calculated AP for 

E1-E5 each dust devil will suspend different amounts of fine particles. This implies that each 

dust devil will have its own unique set of Qext, coq and g parameters since the volume fraction of 

coarse and fine particles will be different for each encounter.

104



Spectral measurements of terrestrial dust devils

2.8

2.6

2.4

* 2 ' 2<u

1.8

200 400 800600 1000
Wavelength / nm

0.9

o
3  0.8

0.7

0.6
200 400 800 1000600

Wavelength / nm

v, = o%
_v
...v 
-  v 
_ v

= 1 %
= 5% 

= 1 0 % 
= 2 0 %

0.9

0.85

0.8

0.75

0.7

0.65
200 400 800600 1000

Wavelength /  nm

Figure 4-20: The effect of increasing the fraction of total volume occupied by the fine particle on (a) Qtxt,
(b) Ob and (c) g.

Relatively small variations in the particle size can cause significant differences in Qext, co0 

and g, greatly impacting the results of radiative transfer solutions. Another problem is the 

bimodal nature of the particle size distribution for desert dust which adds at least three 

additional parameters: rvc, rvf  and the volume fraction of each mode that must be sought in order 

to retrieve accurate optical properties. This leads to a minimum of five interdependent 

parameters that must be varied until the model converges on the best solution, which is 

undesirable given the MCLSM computational limits in terms of run-time. Another source of 

uncertainty is the assumption that the particles are homogenous spheres and using Mie theory to 

calculate their single scattering properties. Therefore, to remove the assumption on particle
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shape, and to reduce the number of dependent variables, the Henyey-Greenstein analytical phase 

function (Henyey and Greenstein, 1941) was used to approximate the particle scattering phase 

function and the parameters retrieved were coq, g and r.

4.4.2 Retrieval method

The physical dimensions of the dust devils E1-E5, determined in Section 4.2.2, were used to 

create model dust devils for the MCLSM. The centre of the dust devil vortices were taken to be 

the point on the transit signature where AP was at maximum. As stated previously, za provides a 

lower limit to the dust concentration. Therefore, to ensure adequate sampling of the dust 

concentration is achieved, z was incrementally increased from za to a value three times larger.

For each z the MCLSM is executed sequentially for dust components of varying single 

scattering albedo and asymmetry values, with 0.6 < coo < 0.99 and 0.6 < g < 0.99. These limits 

on coo and g are based on retrieved values for various desert aerosols (Kaufman, 1987, Dubovik 

et a l, 2000). The output of the simulations results in a matrix relating the number of photons 

detected to combinations of coo and g values. The simulated reference signal is found by 

executing the MCLSM with the dust devil removed from the model volume. This is 

accomplished by setting kext to a very small number, such that, the optical free path of the 

photons is greater than the distance from their starting positions to the surface along their 

trajectory. Figure 4-21 shows Ta as a function of C0q and g for a given z and reveals that no 

unique solution will exist, with the same transmission predicted for different combinations of 

CQo, and g.

The implications of multiple solutions for different values of coo, g and z are significant, 

resulting in erroneous retrieval of the dust particles single scattering properties. Therefore 

reasonable constraints had to be applied to the retrieval routine. One method is to restrict the 

potential values of 6% and g by using results from similar studies to define an upper and lower 

limit for each wavelength. However this method is essentially forcing the result to converge
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within the defined limits of dust components which may have a different composition and 

particle size distribution to the measured particles. For this reason it was decided to base our 

constraints primarily on the observed attenuation during the dust devil transits.

Apparent transmission
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Figure 4-21: Ta as a function of (Do and g. No unique solution will be found since the same Ta is observed
for different combinations of (Oo and g. .

The transmission of light for each encounter is shown in Figure 4-22 and, with the 

exception of E4 and E5, is approximately constant above 600 nm. This indicates that the amount 

of scattered light received at these wavelengths is similar, hence an approximately constant (Oq 

and g. Below 600 nm the transmission decreases, owing to higher absorption by the dust 

particles, leading to a decrease in C0o towards shorter wavelengths. Encounters E4 and E5 do not 

exhibit a constant transmission at wavelengths longer than 600 nm. Furthermore, the decrease in 

transmission at shorter wavelengths is enhanced in comparison to the other encounters. This is
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consistent with the hypothesis that E4 and E5 contained larger particle sizes relative to E1-E3, 

resulting in higher absorption at all wavelengths.
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Figure 4-22: Ta as a function of wavelength for the different dust devil encounters.

From the transmission spectrum it can be deduced that (Oq increases towards longer 

wavelengths. Therefore a constraint was applied to the retrieval routine such that

Ctf) (./^) < Gl (z^) < OF (^3 )—^ ( \ ) .  At longer wavelengths (> 1000 nm) this condition is

expected to break down, however as shown by Reid et a l (2003) the constraint is valid over the 

wavelength region of interest. After examination of g as a function of wavelength for different 

particle size distributions (Figure 4-18) it was assumed that g had to obey the constraint

g (4 )  > g ( /^ ) > g (/I3 )... > g (An). To further reduce the number of possible solutions a 

secondary constraint was applied, confining the possible values of (Oq and g for the subsequent 

wavelength. The 00q and g wavelength dependence for the different size distributions (Figure 

4-18 and Figure 4-19) show that variations in coo and g greater than 0.05 do not occur over a 

wavelength increment of 50 nm, therefore it was assumed that:
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(4) (4-0+o.os (4.6)

g (4 )< g (4 _ 1)-0-05 (4.7)

Placing reasonable constraints onr(>l) was more difficult as, depending on the quantity of fine 

particles, t(A) could either increase or decrease with wavelength. Therefore t ( X) was chosen to 

obey the constraint, t(/ll)=T(At_1)±0.04xT(Ai_1) , i.e. within 4% oft(/L)for the preceding

wavelength. The value of 4% corresponds to the mean difference in Qtxt between two adjacent 

wavelengths for the size distributions described in the previous section.

The retrieval process begins by finding the combinations of cod, g and Tfor each 

wavelength that resulted in the modelled transmission to be within 1 % of the measured 

transmission. All solutions for the shortest wavelength A* are then cycled through sequentially 

and the &b, g andTsolutions obeying the above constraints for the next wavelength, X2, are 

filtered. One of these solutions for X2 is randomly chosen and the algorithm moves to the next 

wavelength where another solution conforming to applied constraints is randomly selected. The 

process stops once the longest wavelength 7  ̂is reached and the modelled transmission as a 

function of wavelength is compared to the measured transmission to produce a merit of fit value 

given by:

where N2 is the number of fitted wavelengths and Tdd(0,X) is the measured transmission, 

(Tdd(tX)), and Tm(0,X) is the modelled transmission (Tm(t,X)) at the centre of the vortex (t = 0). If 

X2 is less than 1 0 ' 4  (corresponding to a 1 % error in transmission at each wavelength) then the 

solution is stored. The process repeats until all possible solutions are found or the maximum

solutions were found, and with the above constraints, 106 iterations was sufficient). In total 10 

wavelengths between 350 nm and 800 nm were selected for fitting. Ideally a larger number of 

wavelengths would have been fitted, however, adding additional wavelengths significantly

(4.8)

number of iterations (1 0 6) is reached (the algorithm was tested to ensure that all possible

109



Chapter Four

increased the computational time required for the retrieval process and therefore a compromise 

had to be reached.

4.4.3 Retrieval results

The applied constraints limited the number potential solutions, however as expected no unique 

solution was obtained for the different dust devil encounters. Therefore the retrieved cooiX) and 

g(2 ) corresponding to the lowest %2 value and the standard deviation for each wavelength are 

shown in Figure 4-23. The retrieved <fy(X) for each dust devil indicates that the dust is more 

absorbing of light at wavelengths less than 550 nm and is more efficient at scattering light at 

wavelengths greater than 550 nm. These results are consistent with previously retrieved values 

of o)0 for desert aerosols which range from 0.63 to 0.87 at 500 nm (Shettle and Fenn, 1976, 

WMO, 1983, Hess et al., 1998). The retrieved values for oooQI) are lower in comparison to the 

results of Fouquart et al (1987) who, using measurements from aircraft, determined (Oq for the 

broadband solar spectrum to be 0.95 for Saharan dust. Furthermore, Dubovik et al. (2002) 

retrieved o)o > 0.9 over the solar spectrum for desert aerosols at different locations on Earth 

agreeing with the results of Fouquart et al. (1987). The higher predicted absorption for Nevada 

desert sand particles (in the Eldorado valley) suggests that they either, have a different 

composition resulting in a higher imaginary refractive index (»f) relative to the desert particles 

measured by Fouquart et al. (1987) and Dubovik et al. (2002) or the particles suspended within 

the dust devil are larger, leading to higher absorption of the incident solar radiation. The lower 

coo(X) retrieved for encounters El, E2, E4 and E5, compared to E3, correlates with the presence 

of larger particles suspended by these vortices, resulting in increased absorption of the incident 

light. This is consistent with the larger AP observed at the vortex centre, and the higher wind 

speeds observed for El, E2, E4 and E5 relative to E3, making these dust devils more efficient at 

suspending larger particles.
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Figure 4-23: The retrieved (pfX) and g(2) for encounters El, E2, E3, E4 and E5. Closed circles represent
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A first order approximation of for the suspended particles was performed. Sinclair (1974) 

determined a median particle radius of 0 . 6  pm for the particle number distribution in a small 

dust devil vortex. For the same dust devil, Sinclair (1974) also determined that the median 

particle radius for the mass distribution was 40.0 pm, with 70% of the mass contained within 

particles with a radius larger than 25.0 pm. Therefore, the particle volume size distribution was 

estimated using two log-normal distributions, Eq.(4.2), to describe the coarse and fine particle 

fractions. The median particle radius rvc was held constant at a value of 40.0 pm (since volume 

is proportional to mass). The fraction of the total volume occupied by the coarse particles (Vc) 

and / v/were varied until 70% of the mass was contained in particles with a radius greater than 

25 pm and the median particle radius of the particle size distribution (rw) was equal to 0.6 pm. 

The values of Vc and rm that best matched the desired particle distribution was Vc = 0.81 and 

rv/=  1.21 pm. The single scattering properties of the dust particles were calculated using Mie 

theory for different values of nt for each of the wavelengths used to fit the coo{X) profiles. The 

retrieved ooo{X) for E3 were then interpolated to find n;{2). E3 was used as its physical size was 

the closest to the small vortex measured by Sinclair (1974). The particle volume distribution 

measured by Dubovik et al (2002) for Bahrain-Persian Gulf desert aerosols was also used to 

estimate nfcI), for the dust particles entrained in the dust devils, in order to determine the 

sensitivity of the retrieved n^X) on the particle size distribution. The retrieved n,(2) for both 

distributions are shown in Figure 4-24 along with comparisons from other rii(X) retrievals for 

desert aerosols. For the estimated particle size distribution using the values from Sinclair 

(1974), the retrieved rij{X) for Nevada desert particles are consistent with the retrieved n^X) of 

Kaufman et a l (2001) and Dubovik et al. (2002) for desert aerosols in the Bahrain-Persian Gulf, 

Saudi Arabia and Cape Verde. The values presented in this study are slightly higher at 

wavelengths <450 nm in comparison to the Dubovik et al (2002) values, however this could be 

due to natural variability in the particle composition. Applying a dust particle volume 

distribution more typical of dust aerosols (taken from Dubovik et a l (2002) for Bahrain-Persian 

Gulf dust), the retrieved n£I) are more consistent with the n^X) values from Patterson et al
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(1977) for sand particles in Tenerife, Sal Island, Sahara desert and Barbados. The higher nfX) 

values are due to a higher abundance of smaller particles in the assumed particle distribution, 

requiring n, to increase in order to produce the same coo as larger particles with a smaller Both 

retrieved «,-(/I) values have larger errors at longer wavelengths; a result of progressively smaller 

variations in coo for increasingly lower values of nh which the MCLSM is currently insensitive 

to.
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Figure 4-24: The retrieved refractive index as a function of wavelength for dust suspended in dust devil 
vortices in the Nevada desert. For comparison n^X) retrieved values by Patterson et al. (1977) for sand 

particles from Tenerife, Sal Island, Sahara desert and Barbados, and the retrieved n,(2) for Bahrain- 
Persian G ulf, Saudi Arabia and Cape Verde from Dubovik et al. (2002) are shown.

As suggested by Sinclair (1974), the particle size distribution within dust devils will contain 

a greater quantity of larger particles and will be more analogous to soil particle distributions. 

Therefore it is concluded that the estimated particle size distribution using the values from 

Sinclair (1974) provides the best estimate for nfX) for Nevada desert aerosols.
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4.5 Determination of the dust devil structure and vertical 

mass fluxes

As was shown in Chapter 3, fitting the dust devil transit signature can provide an estimation of 

the dust devil internal dust distribution and the dimensions of the dust column. The parameters 

in Table 4-1, the retrieved single scattering properties and rfor each dust devil were used to 

generate a model of transmission over the desert surface, as illustrated in Figure 4-25 for the 

two optical setups (NV and FS). A dust devil transit signature can be estimated by interpolating 

over the model surface.

j  <1>s (Normalised)

0.5 0.6 0.7 0.8 0.9 0 0.5

Figure 4-25: The transmission and normalised scattered light over the model surface for the two optical
setups: (a) NV and (b) FS.

The dust devil encounters E1-E5 measured the total surface irradiance at the surface 

and, as shown in Chapter 3, this causes their transit signature to be insensitive to variations in 

the dust devil internal structure. This permits the assumption that the dust concentration within 

the dust devils is constant, i.e. no lower dust concentration within the core. To determine 

whether the MCLSM would produce accurate retrieval of the dust devil transit parameters, the 

bearing and velocity were iterated about the values given in Table 4-land an additional 

parameter defining the offset from the dust devil centre was also iterated. The offset was left as
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a free parameter between 0 and a maximum value equal to the dust devil outer radius. The 

transit signature corresponding to a given offset and bearing is found by interpolating over the 

modelled surface, while the velocity is used to convert the model spatial coordinates to time. 

The “goodness” of the fit is determined by modifying the merit value in Eq.(4.8) to:

devil transit respectively and Nt is the number of data points fitted in the encounter timeseries. 

As discussed in Section 4.3, the leading edges of the dust devil transit signatures are 

contaminated by dust lofted by the chase vehicle and peripheral dust around the vortex. These 

currently cannot be modelled, therefore only the portion of the transit signature associated with 

the dust devil interior is fitted.

Figure 4-26 shows the best model fit for the transits of the investigated encounters using 

the FS setup (E1-E5). The simulated transit signatures are consistent with the measured transit 

signatures, with the best fits observed for the large dust devils E4 and E5 which both had a high 

dust concentration. The MCLSM is less able to reproduce the transit profiles for vortices with 

low dust concentrations such as encounter E3. This is likely a result of complex heterogeneities 

in the dust distribution within the dust column, causing the observed r to vary significantly 

during the encounter.

2

(4.9)

whereTdd (tn X) and Tm (ti,X) are the measured and modelled transmissions during the dust
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Figure 4-26: Model fits of the dust devil transit signatures for E l, E2, E3, E4 and E5.
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The transit parameters corresponding to the best model fit for the transit signatures of 

E1-E5 are given in Table 4-2. The vortex surface velocities for encounters E2, E4 and E5 are in 

good agreement with the estimated values (Table 4-1). The fitted bearing shows a larger 

variation with good correlation observed for encounter El and lesser agreement for encounters 

E2, E4 and E5. The error in the bearing for encounter E2 is likely the result of the extreme 

intensity of this vortex. This resulted in rapid changes in the dust devils direction and velocity 

across the playa. The transit geometry for encounter E4 and E5 was close to perpendicular and 

the extreme physical dimensions and dust loading made the model transit profile relatively 

insensitive to small changes in the dust devil transit direction.

Encounter Surface Bearing relative to Offset in Y-axis
____  velocity /  m s'1 illminated wall 7° from centre / m

El 4.0 252 1.4
E2 8.0 152 1.2
E3 3.0 256 1.0
E4 5.4 8 6  -0.2
E5 6.4 80 -0.6

Table 4-2: The best fit model parameters for encounter E4 and E5.

The fitted rc;(2) for encounter E3 provided an estimate for the extinction cross-section 

(Cgxt) of the dust particles. Using Cext and the retrieved ken(X) for the different encounters (from 

the fitted transmission spectrum) the total number of particles suspended in the vortex was 

estimated from the relationship ktxt = CextN , where N  is the dust concentration. With the particle 

number density known, the particle volume density was determined by interpolating the volume 

size distribution and, assuming a dust particle density of 1600 kg m' 3 for the desert sand, the 

total mass concentration was estimated. The vertical velocity was taken from Metzger et al 

(2011) which had similar dust devil radii to those analysed in this study. Table 4-3 shows the 

retrieved kext at 386 nm, the calculated mass concentration, assumed vertical velocity and the 

vertical mass flux of material for E1-E5. The vertical mass flux provides a measure for the
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amount of material injected into the atmosphere per unit time; thus knowing the life-time of the

dust devil can permit estimation of the total mass of material injected into the atmosphere.

Encounter k ext at Mass Vertical Vertical mass
386 nm /  m 1 concentration /  mg m'3 velocity/ m s'1 flux /  mg m'2 s'1

El 0.0 4.0 1.2 4.8
E2 0.1 12.4 1.6 19.8
E3 0.0 4.1 1.6 6.6
E4 0.4 40.3 2.3 92.8
E5 0.4 40.1 2.3 92.3

Table 4-3: The retrieved ken at 386 nm, mass concentration, assumed vertical velocities and the calculated
vertical mass flux.

The determined mass concentrations and vertical mass fluxes are consistent with those 

measured by Metzger et al. (2011) for particulate matter (particle diameter between 0.1 pm and 

10.0 pm). The attenuation of the solar spectrum at UV and visible wavelengths is highly 

sensitive to the abundance of the small particles, of comparable size to the wavelength of 

observation, with larger particles having less of an influence. This explains the agreement 

between the mass concentrations derived in this study and the particulate matter concentrations 

found by Metzger et al. (2011). The large dust devil of E4 and E5 had an extremely high dust 

loading and lasted for several minutes. This is similar to the documented event ‘2005 EV_16- 

06-05/1543’ by Metzger et al. (2011), with both examples exhibiting similar dimensions and 

dust loading. The peak mass concentrations determined for E4 and E5 are in good agreement 

with the mass concentration derived for the ‘2005 EV_16-06-05/1543’ event of 98 mg m' 2 s'1. 

Furthermore, using a Light Detection And Ranging (LIDAR) instrument, Renno et al. (2004) 

estimated a peak dust loading within terrestrial dust devils to be 1 0 0  mg m"3, consistent with 

peak mass concentration determined for E4 and E5.

In order to fit the transit signature for E6 , observed using the NV setup, a number of 

assumptions had to be made. Firstly, rwas unknown since only the scattered component was 

measured, therefore the t  measured by the Sun senor was used as an estimate. Secondly, 

retrieval of the single scattering properties for E6  was unsuccessful since inadequate
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information on the total irradiance meant the total amount of light incident on the dust particles 

was unknown. Attempts were made to retrieve the single scattering properties by fitting the 

normalised attenuated spectrum, however this lead to erroneous retrieval of the dust particle 

single scattering properties. Comparing the visual references and video for E6  with encounters 

E1-E5 and the AP at the core, it was determined that the best approximation would be to use the 

retrieved (fy(X) and g(X) from E3.

The scattered component is sensitive to the dust concentration within the vortex. 

Therefore, the scattered light at the surface was modelled for vortices with different core radii, 

and dust concentration within the surrounding dust column walls. Fitting the transit signature 

follows the same procedure applied to the FS cases, with the addition of three variables: the 

extinction coefficient in the dust devil core and wall, kext_c and kext.w and the core radius (Rcore)• 

Figure 4-27 shows the three fitted transits for E6  (E6 a, E6 b, E6 c) that correspond to the lowest

values, with all simulated transits showing good agreement with the measured scattered light 

signature. All fits predicated a Rcore of 0.5 m with a kext< equal to 0.05 m"1, while kexJ.w had values 

of 0.125 m’1, 0.25 m' 1 and 0.45 m 1 for E6 a, E6 b and E6 c respectively. The lower dust 

concentration in the dust devil core is consistent With the reduction in scattered light measured 

by the UV-VIS spectrometer and the predictions in Chapter 3.The trailing edge of the simulated 

dust devil shows closer agreement to the observed transit signature than the leading edge of the 

dust devil. It is proposed that this is the result of two possible mechanisms: contamination of the 

transit signature by dust lifted by the chase vehicle, or different dust concentrations in the 

leading and trailing walls.
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Figure 4-27: The best fit for different dust concentrations for E6 .

The mass concentration was determined for the three simulated dust devils that best 

approximated the spectral signature of E6 . The different kext.w predicted in the dust devil wall 

resulted in mass concentrations of 13.5 mg m' 3 for E6 a, 48.7 mg m' 3 in E6 b and 22.6 mg mf3 for 

E6 c.The mass concentration in the core of the vortices was determined to be 0.514 mg m’3. 

Therefore the core contains significantly less dust than the surrounding walls; furthermore, 

vertical velocities in the core are generally small or even negative, i.e. downward flow (Sinclair, 

1973), resulting in zero mass flux into the atmosphere. This highlights the importance of 

determining the dust distribution and vertical velocities within dust devils as these parameters 

will enable more accurate determination for the mass of particulate material injected into the
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atmosphere. Absence of a total irradiance measurement during this encounter leads to an 

uncertainty in the mass concentration in the dust devil wall of up to 70%. This supports the 

requirement for simultaneous measurement of both the scattered and total light during a dust 

devil transit in order to obtain accurate mass concentrations.

4.6 Summary of results

The MCLSM has been successfully applied to dust devil vortices in the Eldorado Valley 

(Nevada). By simulating the transmission of light through dust devil vortices, an estimation of 

the dust particle single scattering properties and the imaginary refractive index of Nevada desert 

aerosols have been retrieved from spectral measurements during a dust devil transit. The 

retrieved single scattering properties were used successfully to determine the dust devil physical 

dimensions, internal distribution and core size for encounter E6  for which, the scattered light 

was measured. Finally, using the estimated n^X) to determine the particle extinction cross- 

section, the total mass and vertical mass flux was calculated. The results are consistent with a 

previous investigation of dust devils in the Eldorado Valley by Metzger et a l (2011). 

Uncertainty in the dust particle size distribution limits the accuracy of these results, however 

they serve as a good first order approximation, with the retrieved n,(2 ) and calculated vertical 

mass fluxes consistent with similar studies into desert aerosols (Dubovik et al., 2002) and 

terrestrial dust devils (Metzger et al., 2011, Renno et a l, 2004) respectively. Good correlation 

to these other studies validates the use of spectral measurements during dust devil transits as a 

technique for characterising terrestrial and martian dust devils, and the retrieval of the optical 

properties of the suspended dust particles.
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Chapter Five: Effects of dust and ice aerosols 

on the downward irradiance at the martian 

surface
In this chapter the effect of dust and ice aerosols on the surface irradiance spectrum between 

180-1100 nm is assessed over two Mars years using a radiative transfer model (RTM) of the 

martian atmosphere developed by Patel (2003) and Otter (2010). The attenuation of surface 

irradiance spectrum resulting from different aerosol species (airborne dust and ice particles of 

different size and composition) is explored and a method for differentiating between aerosols 

and retrieving of the ice particle size is discussed. Finally, the Monte Carlo Light Scatter Model 

(MCLSM), described in Chapter 3, was adapted to predict the optical signatures of martian dust 

devils.

5.1 Mars radiative transfer model

The martian RTM covers the wavelength region 180 -  1100 nm with a 1 nm resolution (Patel et 

al, 2002, Patel, 2003, Patel et al., 2004, Otter, 2010). The two stream delta-Eddington 

approximation (Joseph et al, 1976) is used to simulate the interaction of the incident solar flux 

with the constituent components of the martian atmosphere. The output is an approximation of 

the downward surface irradiance at a local location on the planet surface (Otter, 2010). Two 

possible interactions can occur between the atmosphere and the incoming solar flux and are 

characterised as either scattering or absorption events. Absorption events will reduce the amount 

of light received at a particular wavelength at the surface, since absorbed radiation will tend to 

be re-emitted at wavelengths longer than that of the incident photon. Scattering events can either 

increase or decrease the light received depending on whether the photons are scattering into or 

out of the path of the incident solar flux. The total irradiance at the surface is the sum of the 

direct component and the diffuse component. The direct component describes radiation that has
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passed through the atmosphere without interaction and the diffuse component is radiation that is 

scattered back into the path. An illustration of the direct and diffuse components is given in 

Figure 5-1.

Scattering out 
of atmosphere

Undetected 
direct fluxTo P _9 ?.? PJ] 9 /®

Layer: 0

Undetected 
diffuse fluxScattering into 

higher Jayers
Layer: 1

Undetected 
direct flux Scattering 

from surface
Layer: 2

Detected 
diffuse fluxDetected 

diffuse flux //,
Layer: n

Planetary surface

Figure 5-1: Illustration of how the incident light interacts with the layered atmosphere of the delta- 
Eddington approximation. Also shown are the interactions between the incident solar radiation and the 

planet’s atmosphere resulting in the direct (blue lines) and diffuse (red lines) components, adapted from
Otter (2010).

A simulated martian surface irradiance spectrum at local noon is illustrated in Figure 5-2 

for a dust optical depth (t) of 0.3, corresponding to the average opacity observed by the MER 

rover Spirit during northern summer (Lemmon, 2004). The presence of dust in the atmosphere 

increases the probability that incident solar radiation will be scattered and as a result the martian 

surface receives a relatively high diffuse component (-35% of the total observed irradiance).
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Figure 5-2: Simulated irradiance at the martian surface for an atmosphere with r = 0.3.

5.2 Effect of martian airborne dust on the downward 

irradiance at the surface

The following sections investigate the effect of airborne dust on the surface flux in the 180- 

1100 nm wavelength region for two Mars years, MY27 and MY28. The investigations use the 

atmospheric optical depths measured by Spirit during MY27 and MY28 which are shown in 

Figure 5-3 along with the atmospheric optical depths for MY29. The observed r  show a seasonal 

dependence, with low r  (0.2-0.4) observed during northern summer (aphelion) and higher r 

(> 0.8) in southern summer (perihelion). A large increase r is observed in MY28 compared with 

MY27 and MY29 between Ls = 270-330° and is associated with the presence of a large dust 

event.
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Figure 5-3: Optical depth measured by the Spirit rover during MY27, MY28 and MY29 (Lemmon,
2004).

Throughout this chapter, extensive use is made of the single scattering properties for 

martian dust retrieved by Ockert-Bell et al (1997) and Wolff et al (2009) and are referred to 

097 and W09 from this point. A comparison between the two dust types is given in Section 

5.2.2. Furthermore, unless stated otherwise, Table 5-1 shows the input parameters for the model. 

A latitude of 14.8° S was selected, as this coincides with the location of the Spirit rover.

Parameter Value

Time of day Local noon

Latitude 14.8° S

Solar Longitude (.Ls) 1 2 1 °

Dust Maximum Altitude 70 km

Conrath Parameter 0.007

Optical Depth (670 nm) 0.5

Table 5-1: Parameters used in the radiative transfer model.
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5,2.1 Impact o f dust on the downward surface irradiance

The simulated spectrum in Figure 5-2 is for low atmospheric dust content (r = 0.3). As Mars 

approaches perihelion, dust activity increases causing r to exceed unity. The increased dust 

content of the atmosphere increases the amount of incident solar radiation scattered, leading to 

an increase in the diffuse component and a decrease in the direct component. Figure 5-4 shows 

direct, diffuse and total surface flux at local noon as a function of r  for W09 (black lines) and 

097 (grey lines). As discussed by Otter (2010) the presence of dust in the martian atmosphere 

can, under certain conditions, cause the observed total surface irradiance to increase above the 

Top of the Atmosphere (ToA) value. This is a result of an increase in diffuse irradiance received 

at the surface as the dust opacity increases. During the analysis, Otter (2010) assumed the single 

scattering properties of 097 for the dust particles and found an increase over the ToA irradiance 

to be approximately 13% at r = 1.2. A larger increase of nearly 20% is observed at a higher 

opacity of 1.8 when substituting in W09. The point at which the total surface irradiance falls 

below the ToA value also varies as a result of the different dust single scattering properties and 

occurs at a r of -4.1 for W09 compared to -2.7 reported in Otter (2010) for 097.
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Figure 5-4: The surface flux at noon as a function of r at the location of the Spirit rover. The solid line 
represents the total surface flux between 180-1100 nm. The back lines represent W09 and the grey lines

denote 097  dust component.
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The above analysis shows that variation in the dust particle single scattering properties 

has only a small impact on the surface flux at t  less than 0.58 {i.e. r at which the diffuse and 

direct component contribute equally to the combined irradiance). At r > 0.58 the diffuse 

component forms a greater portion of the combined irradiance and as a result the surface 

irradiance becomes more sensitive to the scattering properties of the dust particles. The outcome 

is an almost 20% difference in total surface irradiance between W09 and 097.

Local noon corresponds to the time when the lowest airmass is encountered by the 

incident radiation. Earlier or later in the martian day the amount of atmosphere through which 

the incident radiation must travel increases, increasing the probability of scattering or absorption 

by dust particles. Figure 5-5 shows direct, diffuse and total surface flux as a function of r for 

three hours before local noon. As was seen for the noon surface flux, the variation in the total 

surface flux resulting from two different dust components is small at low t  and only becomes 

significant once the diffuse component becomes the main contributor. However, unlike noon, 

the surface flux observed in the morning does not surpass the ToA value. This is because the 

increased path length through the atmosphere causes a greater portion of the incident radiation 

to be absorbed by the dust particles. Furthermore, lower solar zenith angles (6Z) require the 

angle through which the incident radiation must be scattered in order to be detected to increase. 

The scattering phase function of the dust particles (see Chapter 2) indicates that less light is 

scattered at larger scattering angles, hence as 0Z decreases the diffuse component is reduced. 

Therefore the lower rate at which the diffuse component increases with increasing dust loading 

is insufficient to make up the loss in the total surface flux from the reduction in the direct 

component.

Figure 5-4 and Figure 5-5 illustrate that once the diffuse component becomes larger 

than the direct component, the surface irradiance becomes sensitive to changes in the dust 

particle single scattering properties. In the two cases considered a higher surface flux is 

observed for a W09 dust component than an 097 dust component.
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Figure 5-5: As figure 5-4 except for 9am local time.

The impact of dust on the surface flux, at noon, as a function of Ls is shown in Figure 

5-6 for MY27 and MY28 with dust components described by 097 and W09. A reference 

scenario with no dust present in the atmosphere is also shown. During both MY27 and MY28 

the dust has only a small effect on the total surface irradiance in northern summer, with a 5% 

difference relative to the dust free case. The dust has a greater impact on the surface flux during 

southern summer with an increase of 15% observed. The difference in the total surface 

irradiances between the W09 and 097 dust component are negligible under the low opacity 

conditions expected in northern summer. In the dustier southern summer, total surface 

irradiances are predicted to be 1-5% higher for a W09 dust haze relative to a dust haze 

composed of an 097 dust type. During the MY28 dust storm a W09 dust haze displays a total 

surface flux greater than 10% higher than the 097 dust haze.

The large dust storm between Ls -  265-320° is clearly evident and, for an 097 dust 

component, results in a noticeable decrease in total surface irradiance below the dust free case. 

At the point of peak x (Ls -  283°) the total surface flux is reduced by 27% and 36%, relative to
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MY27 and the dust free scenario. For W09 a decrease in surface irradiance is observed during 

the dust storm but this value is 1 1 % higher than the dust free case.
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Figure 5-6: The total (black lines), visible (green lines), NIR (red lines) and UV (blues lines) noon surface 
flux as a function of Ls for MY27 and MY28. The solid and dashed lines denoted W09 and 097 single

scattering properties respectively.
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In northern summer the dust haze during MY27 and MY28 is stable around t = 0.2-0.4. 

At these the dust opacities the impact of dust on the surface flux is small. Under typical 

southern summer conditions the total surface flux can be expected to increase above the ToA 

value at noon. Large dust storms significantly reduce the surface flux but the large r  make the 

observed irradiance highly sensitive to the optical properties, and hence composition, of the dust 

component. The 28% change in the total surface flux between 097 and W09 during the MY28 

dust storm implies that such events are invaluable for investigating potential heterogeneities in 

the background dust haze.

Separating the irradiance into different wavelength regions (UV, Visible, and NIR) provides 

insight into the portion of the UV-NIR spectrum most affected by the presence of dust. Relative 

to the dust free case, the highly absorbing nature of martian dust in the UV results in the 

observed UV irradiance being consistently -15% and -30% lower in northern and southern 

summer respectively. This will reduce the UV dose received at the martian surface. In northern 

summer the visible and NIR regions show less variability with -5% less irradiance in the visible 

and - 8 % increase in the NIR flux received at Ls -  90° in comparison to the ‘no dust’ case. As 

the dust content in the atmosphere increases towards Ls = 270°, the visible and NIR irradiances 

show an increase of 10-15% and 30-50% above the dust free scenario respectively.

In the UV region, larger changes in the UV flux are predicted between the two dust 

components 097 and W09, especially during southern summer and through the MY28 dust 

storm peaking at approximately 35% (dust storm) and 10% (southern summer). In the expected 

nominal conditions less variance is seen between 097 and W09 in the visible and NIR 

compared to the UV, with <1% observed at Ls = 90° and -3% at Ls = 283° (MY27). At the time 

of the MY28 dust storm a considerable difference between 097 and W09 is observed in the 

visible and NIR regions, with the 097 dust experiencing a dramatic decrease in irradiance at 

both visible and NIR wavelengths. The W09 dust exhibits an increase in irradiance in both 

regions at the onset of the dust storm. As the dust content increases further, the visible 

irradiance sees a correlated decrease, however at the point of peak r the 097 and W09
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components show a difference in surface irradiance of -30%. For W09, the NIR region displays 

a continuing increase in irradiance and at peak opacity W09 predicts 25% more NIR irradiance 

than 097. Note that during the MY28 dust storm the observed NIR irradiance is still 12% (097) 

and 50% (W09) higher than the dust free atmosphere scenario.

Measuring the total surface flux provides only limited information about the scattering 

species in the atmosphere and little variation in the total surface flux was found between the two 

dust components 097 and W09 under nominal t values. At r > 3.0, this difference becomes 

significant, but such values of t  are rare outside of large dust events. Therefore taking nominal 

conditions, the impact of varying the dust single scattering properties on the total surface 

irradiance at the Spirit Rover location is small.

As the atmospheric dust loading increases the total surface flux increases above the top 

of the atmosphere value and indicates that more solar energy is deposited into the atmosphere 

than would be present for a dust-free atmosphere. This will affect the atmospheric heating rate, 

which feeds back into the atmosphere circulation and dust lifting. Dividing solar spectrum into 

ultraviolet (UV,190-400 nm), visible (401-750 nm) and near infrared (NIR, 751-1100 nm), 

bands reveals that the increase in surface flux is due to the higher irradiances at the visible and 

NIR wavelengths as the dust content increases. This is a result of martian dust being more 

efficient at scattering light at these wavelengths. This highlights the importance of accurate 

retrieval of the dust particle optical properties in the visible and NIR, as these will determine the 

amount of additional solar radiation that reaches the lower atmosphere and surface and, in turn, 

this will affect the atmospheric state.

5.2 .2  Effect o f  Qexb 0%, and g  on the irradiance spectrum

In Chapter 2, the single scattering properties of martian aeolian dust were reviewed. As 

discussed, the differences in the retrieved extinction efficiency (Qen), single scattering albedo 

(cot)) and asymmetry parameter (g) could be the result of many factors, namely the assumptions 

used in describing the dust particle characteristics (i.e. spherical or non-spherical). However, the
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differences in the retrieved optical properties could be the result of spatial heterogeneity in the 

background dust component. To gain insight into the sensitivity of the surface irradiance 

spectrum to variations in the retrieved single scattering properties, the values retrieved by 

Pollack et al. (1995), Ockert-Bell et al. (1997) and Wolff et al. (2009) were entered into the 

radiative transfer model. The values of Qext, coo and g were determined for the model wavelength 

range through spline interpolation and a comparison is shown in Figure 5-7. Also shown are the 

single scattering properties produced by Mie theory for randomly-orientated spheres, with the 

refractive indices taken from Ockert-Bell et al (1997) and Wolff et al (2009).
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Figure 5-7: Comparison of the single scattering properties derived for martian aeolian dust including that
produced by Mie theory for spherical particles.
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A size distribution with reff= 1.6 pm and veff= 0.4 for the first and second moment is 

assumed (Wolff et al., 2009). The most obvious contrast is in the single scattering properties 

calculated by Mie theory compared to the retrieved values. Mie theory predicts the particles will 

absorb more of the incident radiation at all wavelengths and that the scattering will be more 

anisotropic. A full comparison of the single scattering properties was given in Chapter 2.

The surface irradiance spectrum resulting from the different dust single scattering 

properties is shown in Figure 5-8a. The resolution of the model has been reduced to 10 nm to 

allow for better distinction between the dust components. Noticeable differences in the 

irradiance spectrum are observed as a result of varying dust single scattering properties. The 

spherical particle approximation for 097 (grey dashed line) shows between 10% and 15% less 

irradiance over the majority of the spectrum and highlights how poor an approximation the 

spherical particle assumption is for modelling martian aeolian dust. The spherical 

approximation for W09 shows closer agreement but still predicts -5% less irradiance than a 

W09 dust component. Figure 5-8b shows the ratio of the surface irradiance produced by the 

different aerosols relative to the spectrum produced by 097. With the exception of the 097 

spherical particle case, the variation in surface irradiance for the majority of the spectrum is 

±5%. Larger differences (>10%) are observed at 400 and 850 nm but the most significant is the 

almost 15% decrease in irradiance produced by W09 in the UV (< 300 nm). These differences 

are associated with variations in Qext, co0 and g of 6 .8 %, 12% and 7.8% at wavelengths less than 

280 nm and 6.3%, 8.7% and 0.6% change in the 315 -  400 nm wavelength region. This variance 

in the UV irradiance at the surface resulting from two different dust types forms the discussion 

of the next section.
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Figure 5-8: a) Surface irradiance spectrum for different dust components b) the irradiance ratio between 
the different dust components to 097. The dust components have the single scattering properties of W09 
(Black line), 097 (dashed line). Pollack et al. (1995), sol 97 (dotted line) and Pollack et al. (1995), sol 
211 (dash dot line). The blue and red lines show the Mie result for the refractive indices retrieved by 

Wolff et al. (2009) and Ockert-Bell et al. (1997).

5.2.3 UV radiation at the surface o f Mars for different dust properties

The U V  flux at the surface o f Mars from 180-400  nm forms only a small part o f  the solar flux 

(< 5 % o f the solar constant) but the impact o f this UV radiation on potential life is significant. 

Short-wave UVC (190 -2 8 0  nm) is very damaging to D N A  and a full study into the U V  

environment at the martian surface is given by (Patel et al., 2002, Patel et al., 2004). The recent 

retrieval o f  coo by W olff et al. (2010) at 258 nm and 320 nm has revealed that the dust maybe 

more absorbing in the 2 0 0 -3 0 0  nm wavelength region and less absorbing in the 3 0 0 -4 0 0  nm 

region than was suggested by Ockert-Bell et al. (1997). The 0 9 7  dataset for the optical 

properties o f martian dust is widely used as it comprises the most complete dataset as a function  

o f wavelength. 0 9 7  was previously used to calculate the U V  flux at the surface o f Mars and to 

determine the total UV dose (J m'2) during a single sol and the Beagle 2 mission life-tim e (Patel 

et al., 2004, Patel et al., 2002). The purpose o f  this study is to determine if  a W 09 dust 

component produces a significant difference in UV flux at the surface o f  Mars compared to 0 9 7  

dust component. The difference in UV dose is quantified across both a single sol and an average 

m ission life-time. The total dose as a function o f  t for both W 09 and 0 9 7  dust aerosols is also 

investigated
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The total U V  flux at noon across a latitude strip from the north pole (90°) to the south 

pole (-90°) as a function o f Ls is shown in Figure 5 -9a and Figure 5 -9b, for aW 09 and 0 9 7  dust 

component respectively. The latitude and Ls values are binned at a resolution o f  2° and the TES 

(Thermal Emission Spectrometer) average year scenario included in the Mars radiative transfer 

model is used to determine the seasonal and latitudinal dependence on r. The two dust scenarios 

are very similar and follow  the same distribution as described by Patel (2003), but differences as 

a result o f  the different dust single scattering properties can be seen. This is especially true at 

Ls = 180 -3 3 0 °, when UV flux and dust opacity are at a maximum. Figure 5-9c shows the 

difference in UV flux between the dust scenarios with the maximum difference of 

approximately 4% observed around Ls = 250° correlating with the seasonal variation in r. The 

variation in the calculated UV flux at noon results from an average difference o f 6.5, 3.5 and 

3.8% in Qcxl, coo and g respectively in the 190 -  400 nm region between the two dust 

components.

190 - 400  nm Total noon UV flux (W m )1 90  - 40 0  nm Total noon UV flux (W m )

0 180 2 
S o lar Longitude (L )

0 180 2 
S o lar Longitude (Ls)

S olar Longitude (Ls)

Figure 5-9: The latitudinal and seasonal variation of local noon UV flux for, (a) W09 and (b) 097 dust 
components, (c) shows the difference between the noon UV flux with the positive values indicating that a

W09 dust component results in a higher UV flux.
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The latitudinal and seasonal analysis shows that between 190-400 nm an approximate 

4% difference in C0q and g and ~6 % difference in Q&xl can affect the amount of UV radiation 

absorbed and scattered and will impact the total UV dose received at the surface. Figure 5-10 

shows the total daily UV dose at the surface of Mars for 097 and W09 as a function of r. 

Perihelion was selected for this study as it receives higher UV irradiance as a result of the 

eccentric Mars orbit and experiences greater dust activity at the time. At r greater than unity, a 

2.5% larger UV dose is received with a W09 dust haze relative to 097 dust haze. Negligible 

difference in UV dose is observed at r lower than unity.

Figure 5-10b shows that at low r the direct component is the main contributor to the 

total UV dose received at the surface. This indicates that the daily UV dose is only weakly 

dependent on the diffuse component, hence on (Do and g, and more strongly coupled to Qtn. The 

difference in Qen results in W09 having a 7.7% higher t  compared to 097 at UV wavelengths, 

explaining the higher UV dose received for 097 at low dust opacities. The higher (Dq values of 

W09 result in a larger diffuse component compared to 097 which is more absorbing. As the 

diffuse component becomes comparable with the direct component the larger diffuse component 

of W09 is sufficient to make the total UV dose exceed that received for the 097 dust 

component.
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Figure 5-10: a) Total UV daily dose as a function of r for 097 and W09. b) The UV daily from the 
received from the direct component (solid lines) and diffuse component (dashed lines).
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From r measured by Spirit (Figure 5-3), Figure 5-10 implies that a negligible difference 

in UV daily dose during northern summer (where z is consistently below ~ 0.9) will be observed 

between the two dust components W09 and 097. During the dustier southern summer, a larger 

UV dose (> 2.5%) would be received for a dust component with the single scattering properties 

of W09 compared to 097.

The total dose received during two different martian years for both dust types was 

simulated to provide an insight into the differences in total UV dose between a year with no dust 

storm and one with a significant dust event. The UV spectrum was divided into in constituent 

parts; UVC (190-280 nm), UVB (280-315 nm) and UVA (315-400nm). The daily UVC dose 

for both years for the two dust types is plotted in Figure 5-11. Between Ls = 50-130°, when t  is 

consistently between 0.2 and 0.4, there is a difference of approximately 5-7% in the daily UVC 

dose between the two dust types, with a greater UVC dose received for a 097 component. From 

Ls = 150-330°, up to 10-15% more UVC radiation is received for 097 compared to W09. 

Greater than 40% difference is found during the dust storm in MY28 at Ls = 250° which 

exhibited z values exceeding 4.0. The difference is the result of (D q  for 097 being -12% higher 

than that of W09 averaged over the 190-280 nm wavelength range. Less UVC radiation is 

absorbed and more is scattered by the dust. This leads to the 097 case having a higher diffuse 

component than the W09 case, increasing the UVC flux incident at the surface. The single 

scattering albedo is not the only contributing factor however; the wavelength dependence of Qext 

results in W09 dust component having a 7.7% higher z between 190-280 nm leading to a lower 

direct component.
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Figure 5-11: Difference in UVC dose as a function of Ls for 097 and W09 during MY27 and MY28.

The total daily dose of UVB and UVA radiation is shown in Figure 5-13 and Figure 

5-13 respectively. During northern summer the difference in daily UVB and UVA dose between 

097 and W09 is small (1-3%). With the approach of southern summer the difference in dose 

increases, with a maximum difference of approximately 10% (UVB) and -20% (UVA) observed 

during the large dust storm in MY28 (the negative indicates the UVA dose is greater for W09 

compared to 097). The UVB band shows the smallest difference between the two dust 

components and is correlated with the region where co0 is similar for W09 and 097 with an 

average difference of just 2.5%. This results in a comparable diffuse component, making the 

region more dependent on Qexl in determining which dust background receives the larger UVB 

dose. In the UVA wavelength region, the W09 dusts component experiences a larger diffuse 

component since its coo values are 8.5% higher compared to the 097 case. At r < 0.48 the 

diffuse irradiance is insufficient to increase the UVA dose received above that of the 097 dust 

background. At higher r however, the W09 diffuse irradiance is sufficient to cause the total 

UVA dose received at the surface to be greater than that of the 097 case.
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Figure 5-12: Same as figure 5-11 except for UVB.
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Figure 5-13: Same as figure 5-11 except for UVA.
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The total cumulative UV dose for each year in the different UV regions is summarised 

in Table 5-2. The greatest discrepancy in cumulative dose is observed in the UVC region which 

shows a difference of approximately 1 2 % between the two dust types and is well correlated to 

an average difference of 12 % in the single scattering albedo values. The other regions show 

similar cumulative UV doses with differences of 4% and 1% for UVB and UVA respectively. 

Interestingly, the UVA cumulative dose is comparable for both dust types, a result of the 

incident UVA being higher for an 097 dust background at r lower than 0.48 and higher for a 

W09 background at larger r. The net effect is a small difference to the cumulative UVA dose 

during the martian year.

Mars Year Wavlength UV Dose / MJ m 2
Band W09 097
UVC 28.52 32.13

MY27 UVB 72.11 75.13
_JUVA_ 367.99 _364;55

i i v c ~ 26^86 30~44’
MY28 UVB 68.09 70.95

UVA 349.18 344.55
Table 5-2: Summary of the cumulative UVC, UVB and UVA dose for the two different dust components

097  and W09 during MY27 and MY28.

Comparing MY27 and MY28, the presence of a planet-encircling dust storm reduces 

the cumulative UV dose by approximately 6 % in all UV regions for both dust types. This 

indicates that while large dust events of different dust types can cause large variation on the 

daily dose (>20 % in UVC and UVA), the impact on the cumulative dose throughout a martian 

year is significantly smaller.

UV exposure has to be taken into consideration for human missions to Mars, where the 

time on the surface would be approximately one Mars year for a long-stay mission. If the 

assumption is made that landing occurs at Ls = 0° this gives a total cumulative UV dose of 

468.62 MJ m' 2 (444.13 MJ m'2) for W09 and 471.81 MJ m' 2 (445.94 MJ m'2) for 097 if MY27 

(MY28) r conditions are present. Therefore an average 3.5% difference in the assumed optical 

properties of the dust in the wavelength range 190-400 nm will result in a slight under or over
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estimation of the total UV dose received at the surface during the mission. More importantly, 

the higher energy UVC radiation will see a 12% difference depending on the optical properties 

of the dust, with large variations in the daily dose observed for both UVC and UVA dependent 

on the amount of dust present in the martian atmosphere.

Furthermore, under martian UV conditions, Kerney and Schuerger (2011) observed 

positive growth of Bacillus subtilis in analogue martian soil after direct contact with a rover 

wheel; a scenario similar to the planned landing for the Curiosity rover. During the time of the 

Curiosity landing Mars will be at approximately Ls = 150° with dust opacities between -1.0 

(MY27) and -0.5 (MY28) likely to be present. If conditions are similar to MY27 then a 097 

dust component will result in a UVC daily dose -15% higher than a W09 dust component, 

leading to fewer B. subtilis endospores surviving at the surface. More importantly the lower 

UVC dose observed for a W09 dust component will increase the survivability and viability of 

B. subtilis endospores under martian UV conditions.

5.2.4 Dust-dependent UV dose: Implications fo r astrobiology

UVC radiation has been shown to be the primary factor that determines short-term survivability 

and viability of microorganisms under simulated martian UV conditions (Schuerger et al, 2003, 

2006). Schuerger et a l (2003) determined that the effective lethal dose (LD) rate of 

UVC + UVB (200 to 315 nm) for 99.9% (LD99) and 100% (LDi00) was 0.39 kJm' 2 and 

11.9 kJm' 2  for Bacillus subtilis endospores.

To assess the different influence of 097 and W09 on the survivability of B. subtilis, a 

similar method to that used by Schuerger et al (2003) was applied. Using the Mars radiative 

transfer model, the total noon instantaneous UVC+UVB flux at the martian surface for various t 

was determined. This improves upon the work of Schuerger et al (2003) since they only take it 

account the direct component that reaches the surface when calculating the noon irradiances. To 

estimate the time required to accumulate LD, the noon surface flux was converted to dose rate 

per minute (kJ m'2  min'1) and then dividing LD99 by this value for each r. Three different
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latitudes were considered for the analysis, 14.8°S, 4.5°S and 68.0°N corresponding to the 

landing sites of Spirit, Curiosity and Phoenix and the results are shown in Tables 5.3- 5.5. Each 

table gives the total noon UVC+UVB surface flux and the time taken to reach LD99 for 097 and 

W09. Two seasons are shown, northern summer (Ls = 90°) and southern summer (Ls = 270°). 

Note the high latitude of the Phoenix lander location exposes it to the polar night, hence during 

the northern winter no solar radiation reaches the lander.

Ls 90° Ls 270°
UVC+UVB Time to UVC+UVB Time to
flux / W m"2 LD 9 9  / Minutes flux / W m' 2 LD 9 9  / Minutes

Optical
depth 097 W09 097 W09 097 W09 097 W09

0 . 0 6.91 6.91 0.94 0.94 12.85 12.85 0.52 0.52

0 . 1 6.72 6.71 0.97 0.97 12.77 12.79 0.51 0.51

0.3 5.85 5.82 1 . 1 1 1 . 1 2 1 1 . 6 6 1 1 . 6 8 0.56 0.56

0.7 4.48 4.46 1.45 1.46 9.67 9.72 0.67 0.67

1.4 2.98 3.01 2.18 2.16 7.13 7.24 0.91 0.90

2.5 1.75 1.80 3.71 3.60 4.59 4.72 1.42 1.38

3.5 1.13 1.17 5.75 5.55 3.14 3.24 2.07 2 . 0 1

Table 5-3: Time required to accumulate the lethal (LD9 9 ) UVC+UVB doses for dust components 09 7  and
W09 at the Spirit rover location.

Optical
depth

Ls 90° Ls 210'O

UVC+UVB
Flux/Wm ' 2

Time to 
L D 9 9 / Minutes

UVC+UVB
Flux/Wm '2

Time to 
LD 9 9 /  Minutes

097 W09 097 W09 097 W09 097 W09

0 . 0 7.83 7.83 0.83 0.83 1 2 . 0 0 1 2 . 0 0 0.54 0.54

0 . 1 7.78 7.78 0.84 0.84 12.05 12.07 0.54 0.54

0.3 6.94 6.94 0.94 0.94 10.91 10.92 0.60 0.60

0.7 5.55 5.55 1.17 1.17 8.92 8.95 0.73 0.73

1.4 3.89 3.94 1.67 1.65 6.44 6.53 1 . 0 1 1 . 0 0

2.5 2.39 2.46 2.72 2.64 4.07 4.19 1.60 1.55

3.5 1.59 1.64 4.09 3.96 2.75 2.84 2.36 2.29

Table 5-4: Time required to accumulate the lethal (LD99) UVC+UVB doses for dust components 097  and
W09 at the Curiosity landing site.
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Ls 90° Ls 270°
UVC+UVB Time to UVC+UVB Time to
flux / W m’2 LD99 / Minutes flux / W m"2 LD99 / Minutes

Optical Q 9 7  W Q 9  Q 9 7  w Q 9  Q 9 7  w Q 9  Q 9 7  w Q 9  

depth
0 . 0 6.62 6.62 0.98 0.98

0 . 1 6.38 6.37 1 . 0 2 1 . 0 2 - - - -

0.3 5.51 5.47 1.18 1.19 - - - -

0.7 4.16 4.13 1.56 1.58 - - - -

1.4 2.72 2.74 2.39 2.38 - - - -

2.5 1.57 1.62 4.14 4.01 - - - -

3.5 1 . 0 1 1.04 6.47 6.24 _ _ _ _

Table 5-5: Time required to accumulate the lethal (LD 9 9) UVC+UVB doses for dust components 097 and
W09 at the Phoenix lander.

The time taken to reach LD99 for B. subtilis endospores ranges from 0.84 minutes (r = 0.1) 

at the Curiosity landing site, to greater than 6.0 minutes (r = 3.5) at Phoenix. The -40% higher 

incident solar radiation received at the martian surface during southern summer results in a 

proportional decreases in the time taken to reach LD9 9. Under low x the survival time at the 

Spirit and Curiosity locations is approximately 30 seconds, at % typical of a planet-encircling 

dust storm (> 3.0) the time increases to approximately 2 minutes. Comparing the results to the 

seasonal variation in t (Figure 5-3) the expected dust opacities during northern summer range 

from 0.1-0.3, giving a typical survival time of B. subtilis endospores of approximately 1 minute 

at all locations considered. During southern summer r ranges between 0.7 and 1.4, leading to a 

survival time between -0.7 and 1.0 minute at the Spirit and Curiosity locations. Under optimum 

conditions the reproductive time of B. subtilis is 15 minutes. Given that the survival time for 

this microbe during a typical annual seasonal cycle is -  1  minute, this suggests that any 

contaminated surface exposed to the total UVC + UVB surface flux will be sterilised.

Negligible difference (< 1 s) in the time to taken reach LD99 for the different dust 

components is observed at r below 1.4. Even at the high dust opacities seen during a planet- 

encircling dust storm, the change in time is negligible (-5 s). This indicates that the variation in
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the dust single scattering properties between 097 and W09 will have little impact on the 

survival of B. subtilis endospores exposed to the total UVC+UVB surface flux.

The difference in time taken to reach LD99 between W09 and 097 dust components is only 

of the order of seconds if B. subtilis endospores are exposed to the total UVC + UVB flux. 

However microorganism could be present on all spacecraft surfaces including those obscured 

from the direct component, thus will only be exposed to the diffuse component. This will lower 

the instantaneous UVC+UVB dose rate leading to an increase in the time taken to reach LD99. 

Applying the methods above, it is assumed the B. subtilis endospores are only exposed to the 

diffuse irradiance. The Curiosity landing location and the location of Phoenix are compared for 

this analysis and the result for 100% of the diffuse irradiance is shown in Table 5-6 for 097 and 

W09 at Ls = 90°.

Ls 90° - Curiosity Ls 90° - Phoenix
UVC+UVB Time to UVC+UVB Time to
f lux/Wm ' 2 LD99/ Minutes flux(Wm'2) LD99/Minutes

►ptical
iepth 097 W09 097 W09 097 W09 097 W09

0 . 1 1 . 0 2 1.09 6.38 5.95 0.81 0.87 8 . 0 0 7.47

0.3 1.38 1.54 4.71 4.23 1.08 1 . 2 0 6 . 0 2 5.40

0.7 1.78 2.04 3.66 3.19 1.36 1.55 4.78 4.18

Table 5-6: Time required to accumulate LD99 for B. subtilis endospores exposed to 100% of the diffuse 
irradiance for dust components 097 and W09 at the Curiosity and Phoenix locations.

Even exposed to only the diffuse component the time taken to reach LD9 9 is still in the order of 

minutes indicating that microorganisms will be sterilised even from areas shielded from direct 

light. In order for B. Subtilis to survive, the UVC+UVB dose rate per minute needs to be less 

than 26 J m'2 min'1. Therefore, assuming a r of 0.3, the contaminated surface must shield the B. 

subtilis from 70% (Curiosity) and 60% (Phoenix) of the incident diffuse irradiance. It should be 

noted that this does not take into account reflections and scattering form the surface and other
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spacecraft surface which will increase the diffuse component, hence further reducing the 

survival time.

5 .2 .5  Differentiating between different dust species

In Section 5.2.1 it was shown that variations in the total surface irradiance due to dust 

components W09 and 097 were small. The total surface flux provides no information to 

determine whether the dust background is homogenous or heterogeneous in terms of dust 

composition. Measuring the UV-NIR spectrum allows direct comparison of the irradiance at 

two wavelengths. Furthermore we can compare the wavelengths in regions which have 

significantly different single scattering properties. The retrieved single scattering properties of 

martian dust (Figure 5-7) indicate that the dust is highly absorbing at short wavelengths 

(< 500 nm) and efficient at scattering at longer wavelengths. It is also important to note that by 

taking the ratio of the irradiance at two wavelengths, the seasonal variation in irradiance is 

removed. Therefore, the ratio of the combined irradiance (direct + diffuse) at 388 nm to 750 nm, 

hereafter denoted was calculated for W09 and 097 for MY27 and MY28 and is shown as a 

function of Lsin Figure 5-14. Note that 388 nm was selected since, as mentioned by Otter 

(2 0 1 0 ), it coincides with a minimum in 0 3 absorption (the main absorbing component after dust 

between 2 0 0 - 1 1 0 0  nm), thus any change in the spectrum will be a result of the dust only. 

Similarly, 750 nm was selected as it sits in between two weak H20  absorption bands. The 

difference between W09 and 097 is clearly seen in 9ti, with W09 showing a larger ratio of 7% 

during northern summer when the opacity ranges from 0.2-0.5, approximately 15% between 

Ls = 180°-350° and > 30% during the MY28 dust storm.
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Figure 5-14: 9ti as a function of Ls for 097  (grey line) and W09 (black line) during MY27 and MY28.

Figure 5-14 shows differences between two dust backgrounds but in situ measurements 

of the surface irradiance spectrum will provide only one profile for This single profile could 

be produced by either a homogenous or heterogeneous dust particle composition. Figure 5-15 

shows a hypothetical variation in 9ti as a function of Ls, resulting from such a varying 

background dust component. An 097 dust background is assumed over the majority of the 

hypothetical MY27 and MY28. At given times of the year (correlating with increases in 

opacity) the dust background is changed to have the single scattering properties of W09. The 

composite signature, Figure 5-15, tells us very little about the background dust component. It 

indicates that the irradiance at 750 nm is higher than at 388 nm, but this fact provides no insight 

into the heterogeneity of the dust background.
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Figure 5-15: as a function of Ls for the hypothetical MY27 and MY28 scenario. 097  forms the
background dust component. W09 is added during increases in r, simulating a change in the atmospheric

dust component.

One method of differentiating between potential dust components is to plot %  as a 

function of r as illustrated in Figure 5-16 for W09,097, and the hypothetical composite 

background. W09 and 097 show different gradient curves with increasing dust opacity and 

superimposed on these are the 9Ti values associated with the composite dust background. This 

indicates that the hypothetical dust background was not constant during the simulated MY27 

and MY28. Furthermore, it is possible to determine on which sol this change occurred by 

matching the measured r to the date of observation and the relevant spectrum retrieved for 

analysis. Seasonal variation in 9ti is observed for a given r, however the variation is negligible 

compared to the variation caused by differences in the single scattering properties between W09 

and 097.
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Figure 5-16: 9ti as a function of r for MY27 and MY28. Dust components of W09 (grey line) and 097  
(grey dashed line) are shown. Also shown is a composite scenario which is explained in the text.

While the ratio of the combined irradiance at 388 nm to 750 nm can distinguish 

between different dust components, at dust opacities representative of northern summer, the 

ratio profiles converge. This is expected since below r = 0.58 the direct component contributes 

more to the combined irradiance, and hence the spectrum becomes less sensitive to changes in 

the scattered diffuse component. Unfortunately the information regarding the scattering nature 

of the dust particles is contained in the diffuse component. If we make the assumption that only 

the diffuse component is measured (either by observation or by subtracting the direct 

component from the combined irradiance) then a better comparison can be made: the diffuse 

irradiance at 388 nm relative to that at 750 nm, SRd, Figure 5-17. In comparison to 

shows greater sensitivity to variation in the dust component at optical depths expected to be 

present in the martian atmosphere during most of the year (0.2-0.8). A smaller change in 

between 097 and W09 is observed at extreme opacities (>3.0), however the difference is still 

greater compared to that seen in 9ti.
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Figure 5-17: As Figure 5-16 but for Sip for W09 and 097.

It should be noted that this is an idealised case and in reality and 9tD will likely have 

values between the two curves shown in Figure 5-16 and Figure 5-17 as a result of mixing of 

the two components. However any change in 9tD and 9^, at a given t, is still indicative of a 

change to the background dust component and can be used to investigate the variability in the 

dust species forming the background dust haze.

This analysis shows that in situ measurement of the combined irradiance spectrum and its 

components provides a powerful tool for distinguishing variation in the dust background over 

seasonal and diurnal time-scales. Such measurements would allow insight into the fundamental 

question on the variability in the composition of the suspended dust. The study also emphasises 

the importance in measuring not only the combined surface irradiance, but also simultaneous 

measurement of either the direct or diffuse components.
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5.3 Transits of martian dust devils

The previous section was concerned with the impact of dust on large spatial and temporal 

scales. However, small local scale dust phenomena occur frequently on the surface of Mars such 

as dust devils (Chapter 2). In this section the MCRT is applied to martian dust devils to 

determine their transit signature (light curve as a function of time).

Dust devils observed in Gusev crater by the Spirit rover were analysed extensively by 

Greeley et al. (2006) and Greeley et al (2010) and provide statistics on dust devil size and dust 

content over the dust devil season in Mars Year MY27-MY29. Their results show significant 

variation in dust devil size with diameters of about 2 m to more than 250 m and with vertical 

heights ranging from less than 10 m to greater than 300 m. The dust concentration within the 

dust devils was also observed to vary considerably ranging between 2 . 1  x 1 0 ' 9 kg m' 3 and as 

high as 4.6 x 10"4  kg m'3. The mean dust devil diameter measured by Greeley et al. (2010) was 

19,24 and 39 m in MY27, MY28 and MY29 respectively. Ideally the mean diameter, over the 

three years, of 27 m would have been used but to model a dust devil of this size resulted in a 

significant increase in the simulation runtime. Therefore a dust devil with a diameter of 20 m 

was selected to simulate the transit of a martian dust devil over a spectrometer and corresponds 

to the maximum dust devil size allowed within the constraints of the model. The vertical extent 

of the model dust devil was taken to be 50 m as this dust devil height was commonly observed 

by Spirit in Gusev crater (Greeley et al, 2006). The optical depth of the dust devil (r^) was 

given values of, 0.01,0.14 and 2.64, corresponding to the minimum, mean and maximum dust 

devil opacity measured by Greeley et al (2006). For the size of our model dust devil this gave 

dust concentrations of 7.0 x 10 7, 9.8 x 10' 6 and 1.9 x 10'4 kg m'3, well within the range reported 

by (Greeley et al, 2010).

In Chapter 4 it was shown that on a clear sky day on the Earth the direct component 

dominates the total measured signal with the diffuse component being orders of magnitude 

smaller and to first order approximation can be assumed negligible when simulating dust devil
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transits. As shown in Section 5.1, the high dust content of the martian atmosphere results in a 

diffuse component of comparable magnitude or larger than the direct component and thus 

cannot be assumed negligible. To estimate the direct and diffuse fractions of the total irradiance 

r measured by Spirit was used, Figure 5-3.

The Mars radiative transfer model was used to estimate the direct and diffuse irradiance 

received at the surface for three different dust background optical depths (rbg): 0.41,0.81 and 

1.57 and correspond to the minimum, mean and maximum r of the Spirit dataset over all three 

dust devil seasons. Note our maximum %  does not correlate with the peak r in Figure 5-3 

because, from inspection of statistical data produced by Greeley et al. (2010), during this time 

no dust devils were observed. Furthermore, the increased opacity around sol 1700 and sol 2000 

also showed suppressed dust devil activity. This results from the fact that under high 

atmospheric dust loadings, dust devil formation is dampened.

The dust background was assumed to have the single scattering properties of W09. The 

wavelength dependence of the optical properties of martian dust will result in the fractional 

contribution of the direct and diffuse component towards the total irradiance to be different for 

largely separated wavelengths. Figure 5-18 shows the fraction of the combined signal 

contributed by the direct and diffuse components for the irradiance at 388 nm (blue lines) and 

750 nm (red lines). For 388 nm, the direct component forms 75% of the total irradiance for 

rbg = 0.41 and 60% at rbg = 0.81. At 750 nm, the larger diffuse component results in the direct 

component forming only 55% and 32% of the total irradiance at %bg = 0.41 and 0.81 

respectively. For the maximum %  (1.57) simulated, the diffuse components dominates at both 

wavelengths with the direct component contributing 34% and 12% to the combined irradiance at 

388 nm and 750 nm respectively. Note at rbg = 0 Rayleigh scattering becomes important and 

leads to the diffuse component at 388 nm not tending to zero as rbg —>0.
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Figure 5-18: The relative contributions to the total surface irradiance from the direct (solid lines) and 
diffuse (dashed lines) components. The blue lines denote a wavelength of 388 nm and the red lines

represent a wavelength of 750 nm.

The incident diffuse light cannot be assumed a point source and will be incident at all 

angles. This will modify the optical signature of a transiting dust devil from the ‘clear sky’ 

simulations performed for terrestrial dust devils in Chapter 4, with the alteration dependent on r 

and composition of the dust background.

5.3.1 Modelling the diffuse component

The MCLSM was adapted for the martian atmosphere and simulates the transmission of light 

through the lowest 50 m of the atmosphere and it is assumed that the direct and diffuse 

irradiance 50 m above the surface is equal to the surface irradiance calculated by the radiative 

transfer model. The MCLSM, described in Chapter 3, for terrestrial dust devils made the 

assumption of a negligible diffuse component resulting from the ‘clear sky’ and that the total 

irradiance was dominated by the direct component from the Sun. The Mars MCLSM differs 

from the terrestrial MCLSM in that both the direct and diffuse components of the total
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irradiance had to be simulated in order to predict accurate optical signatures of transiting 

martian dust devils. The direct component is modelled separately from the diffuse component 

and follows the procedure described in Chapter 3 for terrestrial dust devils. To help differentiate 

the photons comprising the direct and diffuse components, photons forming the diffuse 

component are called ‘diffuse photons’ and the photons forming the direct component are called 

‘direct photons’. The diffuse photons were given a random position on the surface and a random 

trajectory. The point of intersection with the model boundary was calculated and taken to be the 

initial position of the diffuse photons. The trajectories are then reversed and used as the initial 

travelling direction of the photon. This method allows photons travelling at all angles over the 

hemisphere and always ensures sufficient photons are detected by assuming all photons impact 

the model surface. The initial photon zenith angle (9pz) is determined from a probability 

distribution which weights the random 9pz depending on %. The weighting is required because 

diffuse photons with high 9pz travel a greater distance through the atmosphere before they reach 

the surface and therefore have a higher probability of being absorbed or scattered out of the path 

to the detector. Assuming that the dust is the dominant scattering and absorbing component in 

the martian atmosphere for visible wavelength, the light received for any particular 6pz angle

will be diminished by a factor exp|—TL Ljc o s 6pz j , where t l  is the optical depth per unit length

and L is the path length from 2 km to 50 m. Therefore if Nv is the number of diffuse photons 

entering the model volume, then the number of photons for a given 6pz angle is

Np exp ( - t l  L/cos&pz), resulting in fewer photons with large 0pz being incident relative to

photons with a small 9pz. The 9pz probability distribution for the three rbg scenarios is shown in 

Figure 5-19. For low rbg there is a high probability of diffuse photons having an incident 9pz 

between 0 and 70° before exponentially decreasing at high 9PZ. The probability of photons 

having high incident 9pz quickly decreases as Tbg increases with the high %bg scenario showing the 

photons being 20 % less likely of having an incident 9pz of 50°. The initial azimuth angle of the 

photons is found by producing a uniform random number between 0  and 2n.
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Figure 5-19: The 6pz probability distribution for photons incident on the model surface.

The position o f  the direct and diffuse photons after 1-5 scattering events for dust devils 

with rdd =  2.64 and rdd = 0.01 at two wavelengths 388 nm and 750 nm is illustrated Figure 5-20. 

The background dust haze was assumed to have a columnar optical depth o f  1.57. For dust 

devils with low  dust content, the simulations predict a low  contrast between the background 

dust haze and the dust devil, with no definition o f the dust devil observed at red wavelengths 

(750 nm). As expected, for high background atmospheric dust loadings visually detecting low  

opacity dust devils will be extremely difficult and will tend to blend with the dust haze. At blue 

and U V  wavelengths, low  opacity dust devils are more distinguishable but still suffer a reduced 

definition from the background haze. O f note is the absence o f a vortex shadow for dust devils 

with low  dust content on the model martian surface. This occurs because the diffuse component 

from the dust background haze is larger than the amount removed from the direct com ponent by 

the dust devil. Dust devils with a high dust concentration are easily seen over the background 

haze at both wavelengths. The reduction in the direct component is sufficient that the addition 

o f  the background diffuse component is unable to make up the loss and therefore a vortex 

shadow is observed.
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Figure 5-20: Direct and diffuse photon positions after 1-5 scattering events for a high dust background 
component and low and high opacity dust devils. Blue denotes a wavelength of 388 nm and red represents 

a wavelength of 750 nm. The incident solar radiation is plane parallel along the axis.

The simulations correlate well with images o f dust devils captured by IMP which  

revealed a low  contrast at red wavelengths between dust devil vortices and the background dust 

haze (M etzger el al. , 1999b). At 388 nm the dust devil is more easily distinguished from the 

background haze agreeing with the analysis performed by M etzger et al. (1999b), who used the 

450 nm filter on IMP to resolve the vortices.
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5.3.2 Transit signatures o f martian dust devils

The background diffuse component replaces the fraction of light lost from the direct component 

and will result in the modification of the optical signature of the transiting dust devils from the 

clear sky simulations performed for terrestrial dust devils (Chapter 3). The transit of the three 

different dust devils for low (0.41), mean (0.81) and high (1.57) value of rbg are shown in Figure 

5-21 for a 6Z of 52.2° and 75.6° respectively (local time of two hours before noon and one hour 

after noon). The results indicate that transits by dust devils with low dust loading at small 9Z 

will be difficult to distinguish from the background irradiance with an observed transmission 

greater than 0.9. Of particular note is the lack of distinction of the transiting dust devil with 

uniform illumination observed through the vortex and shadow. For a low atmospheric dust 

loading (rbg = 0.41), the predicted transit signature for a vortex with tm = 0.14 closely resembles 

the expected transit signatures for terrestrial dust devils (Chapter 3), with the point of lowest 

illumination seen after the passage of the vortex core. The effect of the diffuse component on 

the transit profile is observed as a more gradual increase in irradiance back to ambient, whereas 

on the Earth we see a significantly steeper gradient as the irradiance increases back to ambient 

values. High opacity dust devils produce a pronounced reduction in irradiance through the 

vortex and are characterised by a sharp increase in irradiance of approximately 1 0 %, followed 

by a more gradual increase before sharply increasing to ambient upon exiting the dust devil 

shadow. The first increase coincides with the detector exiting the non-illuminated wall and 

measuring the ambient diffuse irradiance. The more gradual increase for around 15 seconds is a 

result of the vortex taking up a smaller fraction of the FoV as it moves away from the Point of 

Measurement (PoM), thus increasing the amount of sky observable. Finally, as the PoM moves 

outside the dust devil shadow the irradiance quickly returns to ambient levels. Of particular 

note, the point of lowest transmission is within the dust devil interior, within the 

non-illuminated wall, and not the dust devil shadow as would be the case on Earth (Chapter 3).
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Figure 5-21: The spectral signature at 388 nm during a transit of a martian dust devil of low(solid lines), 
mean(dashed) and high(dotted) dust content. Three different dust haze opacities were considered, 0.41, 

0.81 and 1.57 (see text). Two different times are also considered, 10:00 and 13:00. The dust devil interior 
and centre are denoted by the dotted and dash-dot lines.
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As expected, small Oz results in a significantly shorter transit profile, correlating with a 

reduction in the length of the dust devil shadow. Small 6Z increase the path length through the 

dust column, therefore the irradiance received during an afternoon transit is less than observed 

during the morning transits. Most importantly the point of lowest transmission is observed 

inside the dust devil interior for all vortex dust loadings.

For mean and high rbg, the portion of the transit profile associated with the dust devil 

interior becomes well defined for both morning and afternoon transits and the point of lowest 

illumination is observed close to or at the core. A shadow is still observed at mean rbg, resulting 

in a gradual increase towards ambient illumination, with the low and mean opacity dust devils 

showing no discernible change upon exiting the non-illuminated wall. The rapid increase in 

irradiance observed for high opacity dust devils upon exiting the non-illuminated wall becomes 

more pronounced with an increase in irradiance of 25 % and 35 % for morning and afternoon 

transits respectively. At high Tbg no discernible shadow is observed and the transit profiles are 

symmetrical about the dust devil centre for both morning and afternoon transit.

This result is advantageous; in Chapter 4 it was seen that one of the most challenging 

aspects of characterising dust devils from their transit signature was determination of the 

position of the dust devil interior in the signature time-series. On Mars the high diffuse 

component acts to distinguish the dust devil interior making it more easily identifiable in the 

transit profile. As observed for a mean rbg, the point of lowest transmission occurs within the 

dust devil interior and for dust devils vortices with low and mean dust loadings, correlates with 

the centre of the dust devil core.

The transit signatures at 750 nm are shown in Figure 5-22 and, for a dust devil with 

mean and high dust content, are similar to that seen for 388 nm. Comparing the low dust 

devil, at all rbg simulated, the presence of a shadow (created by the direct component) is not 

observed in the transit signature.
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Figure 5-22: As figure 6-21, but at a wavelength of 750 nm.
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The absence of a discernible shadow at 750 nm makes the portion of the transit 

signature associated with the dust devil interior more distinguishable in comparison to 388 nm. 

The enhanced definition of the dust devil at 750 nm is the opposite experienced when directly 

imaging dust devils on Mars (as illustrated in Figure 5-20 and correlated by images of dust 

devils taken by IMP).

The high diffuse irradiance observed at the martian surface result, the portion of the 

transit signature corresponding to the dust devil interior is more easily distinguished when 

compared to terrestrial transit signatures (Chapter 3&4). In contrast to directly imaging dust 

devils, the simulations imply that detecting a transit of a dust devil with low dust content under 

low and nominal ttg is best accomplished at red wavelengths where the higher diffuse 

component reduces the vortex shadow, providing better definition of the dust devil interior 

within the transit signature.

5.3.3 Single scattering properties for the entrained dust

One the main questions regarding martian dust devils is whether the dust entrained within 

vortex is the same as the background dust component. While not always present, observational 

evidence has shown the presence of dust “skirts” around martian dust devils, indicating that 

larger particles can be lofted into the lowest few metres of the atmosphere (Sinclair, 1973, 

Greeley et al., 1992). The larger dust grain size will modify the single scattering properties 

relative to the background dust haze resulting in different attenuation of the solar spectrum.

To investigate the change in attenuation, the background dust haze was assumed to have 

refractive indices equal to those retrieved by Wolff et al. (2009) and a particle size distribution 

described by a power law with reff = 1.6 pm and veff= 0.4 (Wolff et al., 2009). Four different 

cases were considered. The first assumes the dust entrained within the dust devil is identical to 

the background haze (Dl). The second and third cases were assumed to have the same 

composition as the background haze (i.e. same refractive indices) but the effective radius of the 

size distribution was increased to 2.5 pm (D2) and 5.0 pm (D3) respectively. A dust devil with
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the optical properties of 097 was also simulated (D4), to determine whether changes in the dust 

composition would be observed. The velocity of the dust devil across the surface was assumed 

to be 2.5 ms'1. To simplify the analysis the dust concentration is assumed constant through the 

vortex, i.e. no dust free core.

The transit signatures for the different cases, relative to case D1 is shown in Figure 5-23 

as a function of time. Similar variations are observed at 388 nm with all dust components 

showing a 1-2% difference. Within the dust devil interior D1 experiences a higher irradiance at 

388 nm compared to the other cases correlated to a higher coq. Greater variation in the spectral 

signature is observed at 750 nm, with D4 displaying lower irradiances through the dust devil 

transit. D2 and D3 see an increase in irradiance over the D1 case, peaking in the non-illuminated 

wall of the dust devil at -1% for D2 and -2% for D3.
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Figure 5-23: The variation in the transit signatures at 388 nm and 750 nm of dust devils with different 
dust components entrained within the vortex. W09 with reg= 2.5 (blue line), W09 with reg -  5.0 (red) and

097 (grey).

While the variations in the transit signatures are small (<5%) they will result in a difference 

in Oti and 9tD. Applying the technique used to differentiate between different dust backgrounds, 

9ti and are shown as a function of the apparent optical depth (ra) at 670 nm in Figure 5-24. 

Ta is the increase in r  over the background value prior to the dust devil transit and is calculated
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from Ta = -]n (la (610)/IM (670)) where 4(670) is the ambient irradiance at 670 nm and

4/670) is the irradiance at 670 nm during the transit of the dust devil. Also shown is 94 and 0tD 

for an equivalent increase in ibg. Comparing the dust devil transits, there is sufficient variation 

between 94 and 9tD to distinguish between the different dust components. Therefore by 

measuring the transit signature of transiting dust devils and comparing their 94 and 91D values 

as a function of ra it can be determined whether the entrained dust differs between different 

vortices.

Comparing 94 and 9tD of the dust devils to equivalent increases in rbg, significantly 

different 94 and 9tD values are observed for equivalent r. As was discussed in Chapter 3 the 

scattered component during a dust devil transit is highly sensitive to the dust concentration. The 

higher dust concentration increases the probability of photon-particle interaction leading to a 

higher chance the photon will be absorbed by the particle. Thus for the dust devil opacities 

considered here, the measured diffuse component during the dust devil transit is lower than the 

equivalent increase in the dust background leading to different 94 and 94>.
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Figure 5-24: 94 and 9tD as a function of the ra for dust devils with different dust components of D1 
(black), D2 (blue), D3 (red), and D4 (grey). 94 and 9tD for an equivalent increase in rbg is denoted by the

sold black line.
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It was discovered in Chapter 3 for terrestrial dust devils that the direct component was 

insensitive to the dust concentration. Therefore to remove the dependence on the dust 

concentration, the ratio of the direct irradiances at 388 nm and 750 nm (9tDir) was plotted as a 

function of ra and is shown in Figure 5-25 for the different dust components. The 9tDir 

dependence on ris equivalent for a dust devil transit and an increase in the dust background. 

Case D4, which suspended dust particles with the composition of 097, results in a significantly 

higher 9lDir and is easily distinguished from the dust background. For dust particles with the 

same composition and only slightly larger in size (D2), large differences are observed at low t  

(< 0.3). With increasing t  it becomes apparent that the gradient of Ŝ Dir for D2 is steeper than 

that of D1 indicating a change in the dust component. At low r, 0tDir is lower for larger particles 

(D3) relative to Dl. The gradient of 9tDir for the D3 case is less steep than both D1 and D2 

resulting in lower 9tDir values at higher r. While variations in 9tDjx can identify changes to the 

suspended dust component it is important to sample r sufficiently so that the gradient of 9tDir can 

be determined; this provides another measure for identifying changes in the dust component.
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Figure 5-25: Stoir as a function of the xa for dust devils with different dust components of Dl (black dots), 
D2 (blue dots), D3 (red dots), and D4 (grey dots). for an equivalent increase in tbg is denoted by the

sold black line.
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Similar to differentiating between different dust background components, 9ti and 9tD can 

be used to compare transits of different dust devils to determine whether the dust suspended 

within the vortices differs. However as shown in case D l, the sensitivity of the diffuse 

component to the dust concentration results in %  and 9tD having different values when 

compared to an equivalent increase in the dust background even if identical dust is entrained in 

the dust devil. 9tDir enables comparisons between the dust background and the dust suspended in 

dust devil vortices. By sampling the r  sufficiently, the gradient of 9tDir provides another measure 

for identifying changes to the dust component. It should be noted that measuring the direct 

component is extremely difficult and advocates the need for simultaneous measurements of the 

total and diffuse surface irradiance, from which the direct component can be determined.

5.4 The effect of water-ice clouds on the downward 

irradiance at the surface

As discussed in Chapter 1, the atmospheric temperature can fall below the condensation point of 

water, resulting in the formation of H20  condensate clouds at altitudes between 8  km and 30 km 

and also the formation of near surface fogs during the martian night. One of the main 

applications for a visible spectrometer on the surface of Mars is discerning between airborne 

dust and ice particles and the retrieval of the ice particles characteristics.

5.4.1 Attenuation o f the irradiance spectrum

The attenuation of the irradiance spectrum for different ice particle sizes was investigated and 

compared to the attenuation by the suspend dust. Figure 5-26 shows the variation in attenuation 

of the irradiance spectrum resulting from the passage of a water-ice cloud with an optical depth 

(tcif) of 0.3, relative to an equivalent increase in the dust haze, with the single scattering 

properties of W09 assumed. The ambient background dust haze had an optical depth of 0.3, 

leading to an overall atmospheric optical depth of 0.6 during the cloud event. From the two 

types of cloud observed by Clancy et al (2003), the ice particle size distribution was assumed to
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have a reff of 1.0 pm and 2.0 pm for type 1 clouds, and 3.0 pm and 4.0 pm for type 2 clouds. It 

is acknowledged that the retrieval by Clancy et a l (2003) invokes non-spherical particles. 

However, for this analysis more accurate particle shapes proved to computationally intensive 

and, therefore, spheres were used as an approximation. Immediately obvious is the distinct 

increase in irradiances at wavelengths shorter than 500 nm for both cloud types. This is because 

ice particles have an C0q extremely close to unity, leading to the majority of the incident light 

being scattered, increasing the diffuse irradiance. At longer wavelengths (>500 nm) both the 

dust and the ice particles exhibit a high diffuse component. However, the presence of ice 

particles in the martian atmosphere leads to a reduced irradiance at these longer wavelengths. 

This is a result of a higher fraction of the scattered light being reflected back into space.
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Figure 5-26: The variation in the surface irradiance spectrum during the passage of a H20  ice cloud
relative to an equivalent increase in xbg.

Measuring the attenuation of the irradiance spectrum at wavelengths shorter than 

500 nm allows the determination of whether a water-ice cloud is present. However, from the 

attenuated spectrum it is difficult to determine the size of the ice particles within the cloud, tcW 

and Tbg. It is important to know the dust loading since different quantities of dust and ice
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aerosols, and variation the ice particle shape, can lead to equivalent attenuation of the irradiance 

spectrum. Hence accurate retrieval of the atmospheric dust content is required if the ice particle 

abundance and size is to be retrieved.

5,4,2 Retrieval o f  water- ice aerosol characteristics

The attenuation of the irradiance spectrum enables distinction between dust and ice 

aerosols. However, the retrieval of rbg and ice aerosol size is problematic, given that there is no 

unique solution for the observed attenuation. The technique applied to distinguish between 

different dust components in the background haze (Section 5.2.5) and within dust devils 

(Section 5.3) can be applied to water-ice particles. Figure 5-27 shows 9ti as a function of 

atmospheric optical depth. If the increase in r is due to the passage of a water-ice cloud, the 

irradiance at both 388 nm and 750 nm wavelengths increases. This leads to a decrease in the %  

gradient, with the new gradient dependent on the ice particle size. However, if the increase in r 

is a result of increased dust loading then has a distinctly steeper gradient, in comparison to 

ice particles, since the irradiance at 388 nm and 750 nm decrease and increase respectively. 

Furthermore, by extrapolating back to zero Tcld, r where the ice lines intersect with the dust 

9ti line provides an estimation of xbg.

This scenario is an idealised case where rbg was assumed to be constant. However, over 

long time-scales, the dust loading will increase and decrease depending on current atmospheric 

state. To assess the effect of a varying dust haze with time, x measured by the Opportunity rover 

(Lemmon, 2008) was used to estimate realistic values for rbg and xcM during martian northern 

summer. To estimate Tbg, the lowest r values between Ls = 40-120° (as measured by 

Opportunity) were selected, and interpolated over Ls. The interpolated xbg was then subtracted 

from the Opportunity data with the residuals taken to be tcm. The dust and ice optical depths are 

illustrated in Figure 5-28.
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Figure 5-27: as a function of the atmospheric optical depth. The solid and dotted lines represent the
passage of an ice cloud with a xbz of 0.2 and 0.3 respectively.
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Figure 5-28: Dust and ice optical depth as a function of Ls.
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The irradiance at noon was calculated using the Mars Radiative Transfer Model and the 

profiles for the different cloud types as a function of atmospheric optical depth for a varying 

Tbg are shown in Figure 5-29a. Over long time-scales, the inclusion of a varying dust haze results 

in less defined 9ti profiles between the different ice particle sizes, and no unique intersection 

with the Saline for dust. Figure 5-29b shows for two cloud events over shorter time-scales, 

from Lg = 56° to Ls = 65° and Ls = 105° to Ls = 115°. Clear distinction between the ice particles 

with reff =1.0 pm and 3.0 pm is observed and the point of intersection with the 9ti for dust 

occurs for the two cloud events at a rbg of 0.47 and 0.42 respectively. This correlates with the 

simulated Tbg (Figure 5-28).
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Figure 5-29: % as a function of atmospheric optical depth for a varying xbg from (a) Ls = 40° to Ls = 120° 
and (b) from Ls = 56° to Ls = 65° (filled circles) and Ls = 105° to Ls = 115° (clear circles).

These simulations have shown that measuring 9ti over seasonal time-scales in order to 

differentiate between ice particle sizes breaks down. Variations in %  complicate the estimation 

of both the dust background and ice abundance over long time-scales, since varying the 

abundance of both aerosols can lead to the same values. However, as shown, this analysis 

method for differentiating between ice particle sizes can be applied over time-scales where the 

dust background can be assumed to vary only slightly.
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The highly efficient scattering by ice aerosols leads to a redistribution of the solar 

energy deposited into the martian atmosphere. The size and shape of the ice particles dictates 

how much of the incident radiation is scattered towards the surface and how much is scattered 

back to space. The more EM radiation that is scattered back to space the lower the energy 

deposited in the atmosphere. This affects the atmospheric heating rate and thus the atmospheric 

circulations and the coupled feedbacks with the dust aerosols. Hence methods for retrieving the 

ice particle shape and size are highly important if their radiative impact on the Mars climate 

system is to be fully understood.
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Chapter Six: Wind tunnel measurements of 

suspended dust

The European Mars Simulation W ind Tunnel Facility (M SW TF) at the University o f  Aarhus 

was used to conduct experiments to measure the wavelength dependent attenuation o f  light by 

different dust aerosol samples in suspension under simulated martian atmospheric conditions. 

Using the Monte Carlo Fight Scattering M odel (M CFSM ), the optical properties o f the dust 

samples were to be retrieved. Unfortunately the experiments were too ambitious and the 

M CFSM  could not simulate the irradiance spectra to sufficient accuracy in order to retrieve the 

optical properties o f the dust samples. Experiments were performed to simulate the scenario at 

the martian surface o f the passage o f a dust cloud com posed o f dust particles with a different 

com position to the ubiquitous background dust haze.

6.1 The Mars Simulation Wind Tunnel Facility and 

experimental setup

The aim o f the experiments were to validate the retrieval technique applied to dust particles 

entrained by terrestrial dust devils and to demonstrate the retrieval o f dust aerosol optical 

properties in dusty environments with a high scattered irradiance (analogous to conditions on 

Mars).

The M SW TF is a re-circulating wind tunnel, with a volume o f 50 m3, and dust injection  

system to allow suspended particulates (aerosols) in the airflow. The wind tunnel is capable o f  

producing pressures, temperatures and wind speeds analogous to martian ambient conditions. 

The chamber em ploys a unique FED-based optical illumination system allow ing variable 

illumination levels over the visible wavelength region (Merrison et al., 2009).
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Figure 6-1: Image of the Mars Simulation Wind Tunnel Facility.

6.1.1 Spectroscopic instrumentation

Tw o irradiance spectrometers, measuring the ultraviolet and visible wavelength region, were 

used in the experiments. The two spectrometers were set up to look across the M SW TF at the 

light sources with a path length o f approximately 217 cm through a quartz window as illustrated 

in Figure 6-2.

(a) (b)

Figure 6-2: (a) experimental setup showing the MSWTF and the positions of the spectrometers and light 
sources and (b) the approximate chamber volume observed by the UV-VIS spectrometer.
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The attenuation data was taken solely from the primary spectrometer (designated UV- 

VIS). The spectra recorded by the UV-VIS were calibrated using the Avantes AvaLight-HAL 

CAL light source. The spectra produced by the secondary spectrometer (designated validation 

spectrometer) were cross-calibrated against the UV-VIS spectrometer. Figure 6-3 shows the 

irradiance spectrum measured by the UV-VIS spectrometer compared with the spectrum 

measured by the validation spectrometer for the halogen bulb and LED arrays. Both 

spectrometers produce very similar spectra for both types of light sources with the largest 

differences seen at wavelengths > 600 nm with a variation of approximately 1 % and 2 % 

observed for the halogen and LED spectra respectively. The Avantes AvaLight-HAL CAL light 

source had a calibration uncertainty of 2.5% between 380 nm and 1100 nm and a light source 

output uncertainty of 9.5% placing the difference between the two detector responses well 

within the error of the calibration. A greater difference between the irradiance spectra is seen at 

wavelengths below 400 nm with a difference of 10% being observed. The calibration and 

calibration light source output uncertainty at wavelengths <380 nm is 5% and 12% respectively 

which could account for the increased error in irradiance.
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Figure 6-3:The measured the irradiance spectrum by the UV-VIS spectrometer (black line) and the 
validation spectrometer (red line) produced by (a) the halogen bulb and (b) the LED arrays.
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6.1.2 Light sources

Two light sources were used, a 50 W halogen bulb with a beam angle of 10°, which produced a 

broadband spectrum over the 320-800 nm wavelength region, and an array of Light Emitting 

Diodes (LEDs). The LED arrays consisted of multiple colours; UV, blue, green, amber, red, 

dark red and white, with spectral peaks at 405, 465, 525, 590, 627, 660 and 465/540 nm 

respectively. The halogen bulb was mounted inside the chamber alongside the LED arrays so 

that the spectrometer viewing probes did not have to be altered and a constant path length of 

2.17m could be maintained when switching between the different light sources. The irradiance 

spectrum for the halogen and LED array is shown in Figure 6-4.
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Figure 6-4: (a) Image of the halogen bulb used in the experiments, (b) The measured irradiance spectrum 
of the halogen bulb, (c) Layout of one of the LED arrays. There were 20 identical arrays along each side 

of the MSWTF. (d) An example of the irradiance spectrum produced by the LED arrays.
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6,1.3 Determination of LED radiant flux

The measured reference irradiance spectrum (Iref) is the irradiance received at the spectrometer 

location as a result of the twenty LED arrays and/or the halogen bulb facing the spectrometer, 

with no dust present in the chamber. The twenty LEDs on the same side of the chamber as the 

spectrometers will also provide some contribution to the reference spectrum due to reflections 

from the opposite wall, as will higher order reflections. Quantifying the contribution as a result 

of all reflections is beyond the scope of this work and is thus included within the calculated 

radiant flux of the LED arrays. This assumption results in the calculated ’output’ of the 

individual LEDs being larger than their “true” values. The error induced as a result of this 

assumption will be small, since the dominant component observed by the spectrometer is the 

direct component from the twenty facing LED arrays and the halogen bulb.

To determine the radiant flux of the LED arrays the contribution towards the observed 

reference spectrum from all twenty had to be calculated from Iref. The distance from each LED 

array to the detector was measured and the output angular dependence of the individual LEDs 

was determined from the manufacturer datasheet. Figure 6-5 illustrates the contribution to Iref  

from each LED array. i ^ i -2 0 is the reduction in radiant flux as a result of the line of sight being 

off the plane normal to the LEDs. RSti_2ois the distance from the LED arrays to the point of 

observation and P0 is the radiant flux unit solid angle.

LED Arrays
1 ------------------------------------------ -> i*

(s,3

'ref
Detector

Figure 6-5 Determination of the output power of the individual LED arrays.
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The measured irradiance, Iref, is thus given by:

T ^O^dn,l . ^0^dn,2 , ^O^dn.,3 . . 0̂^dn,iIref=—^ — + n2 + n2~
Ri Ri Ri K i

(6.1)
vs,l *- s,2 x\s, 3

Hence, rearranging for P0, the radiant flux of the LED arrays per unit solid angle is given by:

20

P0 = ! ref Z
i=1

Rdn,i
~ w

- 1

(6.2)

Figure 6 - 6  shows the angular dependence of the output intensity for the different LEDs 

in single array. Of note are the UV and blue LEDs which have a much broader angular 

distribution compared to the longer wavelength LEDs. For small displacement angles (with the 

exception of the dark red LED) the angular distribution of the relative intensity is similar for all 

LEDs. However at larger angular displacements, 45°, there is an approximate difference of 60% 

between the red LED output intensity compared with the UV and blue LED.
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Figure 6 -6 : Relative intensity as a function of angular displacement for the individual wavelengths.

To determine the significance of the angular dependence on the output radiant flux for 

the different LEDs, the irradiance within the MSWTF was modelled by dividing the chamber 

into a discrete number of volume elements (discrete volume model). The irradiance received at
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each node was calculated using the determined LED radiant power from Eq.(6.2) and knowing 

the distance from the volume elements to each of the LED arrays. A slice through the modelled 

MSWTF is given in Figure 6-7 showing the irradiance in the X-Z plane at different locations 

along the T-axis of the chamber from the blue and red LEDs in a single array. It shows that 

volume elements at large angular displacements, from the normal to the LED surface, receive 

more irradiance from the blue LEDs than the red LEDs. However, the number of LED arrays 

present reduces the effect of this angular dependence, since the majority of the light incident on 

any volume element is from the array with the smallest angular displacement to the volume 

element.
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Figure 6-7: Slices through the modelled chamber showing the irradiance at each node from a single (a) 
blue and (b) red LED highlighting the differences in angular displacement. The yellow circles mark the 

location of the LED arrays and the red dot denotes the location of the UV-VIS probe.

Another factor that reduces the importance of the LED angular displacement is the field 

of view (FoV) of the detector. The volume elements that are most sensitive to the radiant power 

angular dependence are near the limits of the chamber volume (i.e. near the chamber edge walls 

and floor) which are not visible to the detector. The need to take into account the angular 

displacement of the LED output would therefore seem superfluous, but since the deep-red LED
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shows an almost 10% difference in output at smaller displacement (-30°), the angular 

displacements of all the individual LEDs are considered in the model for completeness.

6.1.4 Dust samples

A number of materials with different optical properties were chosen to be suspended within the 

MSWTF environment. The materials are in three categories:

• mineral and iron oxide samples;

o quartz, hematite and magnetite,

• clay samples;

o kaolinite and montmorillonite

• martian dust simulants;

o Salten Skov 1 (Npmberg et al., 2009) and Mars JSC-1 (Allen et al., 1998).

Hematite and Mars JSC-1 have absorption spectra analogous to martian dust aerosols, 

being highly absorbing of light at short wavelengths (<500 nm) and efficient at scattering longer 

wavelength light (>500 nm) (Sokolik and Toon, 1999, Allen et al., 1998). Kaolinite and quartz 

have very low imaginary refractive indices and thus are not representative of martian dust (Egan 

and Hilgeman, 1979). However, they have a single scattering albedo (co0) of ~1 over the spectral 

range 350-750 nm and as such will demonstrate similar spectral absorption to water-ice 

particles over these wavelengths. It should be noted that the shapes of quartz and kaolinite 

particles do not accurately represent those for water-ice particles, and therefore the amount of 

scattered light will be significantly different. However, they did provide a means of assessing 

the retrieval of aerosol optical properties in a highly scattering environment. The particle 

volume size distribution (normalised such that the integral over all particle sizes is unity) is 

shown in Figure 6 - 8  for each of the samples. The graph shows that each sample has a broad 

distribution of particles.
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Figure 6 -8 : The particle size distributions of the various dust samples.

The hematite sample displays a bimodal distribution with a fine fraction peak below 

1.0 [tm and a coarse particle fraction, with a peak showing at a radius of approximately 3.5 pm. 

Using Eq (4.2) the particle size distribution for hematite was approximated using two log

normal distributions to describe the fine and coarse particle mode. Therefore the fraction of the 

volume in the fine and coarse modes was varied along with the median volume radii for the fine 

fraction (rf) and coarse fraction (rvc). The approximated particle size distribution of the hematite 

sample is shown in Figure 6-9. Good correlation is observed over all particle sizes for log

normal distributions where rv/=  0.37 pm, rvc = 4.0 pm and with 90% of the sample mass 

constrained to a particle size of below 2.5 pm. The calculated effective radius (reff) of the 

hematite distribution was 0.35 pm, which is approximately an order of magnitude smaller than 

the effective particle size expected in the martian atmosphere.
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Figure 6-9: The approximated size distribution for the hematite dust sample using two log-normal
distributions.

The other dust sample used, with known optical properties optically similar to martian 

dust, was Mars JSC-1. However Mars JSC-1 had a high abundance of large particles 

(> 1 0 0 . 0  pm), which were two to three orders of magnitude higher than those expected for 

Mars. Furthermore, these larger particles were expected to settle out of the MSWTF 

environment significantly faster than the smaller particles in the sample. This resulted in an 

uncertainty in the actual particle size distribution for Mars JSC-1 at the time of measurement. 

Therefore, the hematite sample was used as a validation for the optical property retrieval as the 

particle size distribution at the time of measurement was expected to remain closer to the 

measured size distribution of the sample prior to injection.

6.1.5 Effect o f  dust particle shape

The composition and dust particle size of the samples varied significantly, which will have an 

effect on the particle shape within each sample. Figure 6-10 shows SEM images of JSC-1, 

quartz and hematite. The SEM images of the dust samples show the individual particle shapes 

vary significantly from nearly spherical through to cylindrical. As discussed in Chapter 2, this 

will affect greatly the single scattering properties of the suspended aerosols. The individual
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particles of the hematite samples were extremely small (< 1 pm) and tended to form large 

spheroidal aggregates as shown in Figure 6-10c. However, the large aggregates were expected 

to disperse due to the force of the pressurised injection system of the MSWTF, leaving only the 

smaller non-spherical aggregates in suspension in the MSWTF environment.

Figure 6-10: SEM images of (a) Mars JSC-1, (b) quartz and (c) hematite.

To assess the sensitivity of the measured spectrum to the particle shape, the scattered 

irradiance from each volume element, in the discrete volume model, to the detector was 

calculated as illustrated in Figure 6-11, where fs,N) is the incident irradiance on the volume 

element and I(N>F) is the irradiance per unit solid angle scattered towards the spectrometer.
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Figure 6-11: The scattering process that takes place at each node in the model.
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Assum ing single scattering, the required scattering angle for each volume elem ent in 

order for the scattered light to be detected by the UV-VIS spectrometer was calculated. The 

average scattering angles for each volum e elem ent is shown in Figure 6-12. The average 

scattering angle from all the facing LED arrays is less than 50° for the majority o f the chamber 

volume seen by the UV-VIS spectrometer. Pollack and Cuzzi (1980) showed that the particle 

phase function is relatively insensitive to the particle shape at scattering angles < 2 0 °, 

moderately dependent between 20° and 60° and highly sensitive at angles > 60°. This implies 

that light from the twenty facing LED arrays that undergoes scattering by the suspended dust 

particles will be relatively insensitive to the particle shape and more strongly dependent on the 

particle size distribution and com position. For the LED arrays on the same side o f the chamber 

as the UV-VIS probe (back wall LEDs) the scattering angles are large (> 70°) and are within the 

region were the particle shape has a strong effect on the scattering phase function. This suggests 

that the use o f  Mie theory w ill overestimate the amount o f  light scattered by these LEDs 

towards the UV-VIS spectrometer due to the characteristic high backscattering lobe o f M ie 

solutions.
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Figure 6-12: Scattering angles for (a) the facing LED arrays and (b) back wall LED arrays. The sources 
(yellow dots) and fibre (red dot) are shown in the plot for prospective.
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To quantify the relevance o f this error, the amount o f light scattered at 525 nm 

(corresponding to the centre o f the measured LED spectrum and to the peak wavelength o f  the 

green LED) by each discrete volume was determined for a simulated dust component with the 

com position and particle size distribution o f the kaolinite sample. Kaolinite particles were 

assumed as their low  imaginary refractive index results in the majority o f the light being 

scattered, and it is this scattered component that is being quantified. Figure 6-13 show s the 

scattered light from each volume elem ent towards the UV-VIS spectrometer. In comparison to 

the facing LED arrays the amount o f  scattered light from the back wall LEDs is two orders o f  

magnitude lower at the observation point o f  the UV-VIS probe, however the remainder o f  the 

chamber volume experiences scattered irradiances < 3 orders o f magnitude smaller. As a result 

o f the significantly smaller contribution to the scattered irradiance from the back wall LEDs the 

particle shape is assumed to have negligible effect on the outcome o f the retrieval.
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Figure 6-13: Scattering irradiances for (a) the facing LED arrays and (b) back wall LED arrays. The 
sources (yellow dots) and fibre (red dot) are shown in the plot for prospective.
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6.2 Experimental procedure

Eleven measurements were made of suspended dust. The experiments were conducted in three 

sets corresponding to the three separate days. Table 6-1 lists the measurement number, the 

material suspended, the mass of material injected and the light source used for each 

measurement.

M easurement Sample Mass /  g Light Source
Ml Salten-Skov 1 34.39* Halogen
M2 Salten-Skov 1 68.78* Halogen
M3 Salten-Skov 1 34.39* LED
M4 Salten-Skov 1 68.78* LED
M5 kaolinite 17.22 Halogen / LED
M6 magnetite 90.16 Halogen / LED
M7 hematite 52.05 Halogen /LED

M8
hematite / 
magnetite

43.71 / 
62.29

Halogen / LED

M9 quartz 17.74 LED
M10 hematite 20.72 LED

M il
hematite / 

Mars JSC - 1
35.69/
35.03

LED

* Calculated by taking the average of 3 filled vials and multiplying by the number of injections

Table 6-1: List o f the experiments carried out, showing total mass of each sample and the light source
used.

The experimental procedure begins with recording the dark spectrum, required for the 

calibration of the UV-VIS spectrometer. The reference spectrum {i.e. light source on with no 

dust present) was then measured, after which the acquisition of ‘experiment’ spectra was 

initiated. After approximately five seconds the dust sample was injected into the MSWTF. Once 

the dust has become uniformly distributed in the MSWTF airflow the attenuated spectrum was 

measured. The experimental procedure is illustrated in Figure 6-14.
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(a)  (b)  (c)

LightSources LightSources LightSources

Measurement of 
the reference 
spectrum

x j ; \ j  k j  \ j  \ j X T X 7^3T-X 3rX 7

Measurement of 
the attenuated 
spectrum

Detector Detector Detector

Figure 6-14: The experimental procedure for the experiments, (a) Light source reference spectrum taken 
in dust free environment, (b) Dust sample is injected into the wind tunnel resulting in the passage of dust 

clouds, (c) Once the dust is uniformly distributed within the chamber an attenuated spectrum is taken.

Figure 6-15 shows the transmission as a function o f time for measurement M 2 with the 

other experiments showing similar behaviour. For each measurement the reference spectrum  

was taken as the average over the first twenty scans prior to the injections o f the dust samples 

(represented by the black line in Figure 6-15). The four injections o f the dust sample are clearly 

seen and cause a significant reduction in the observed transmission follow ed by a sharp increase 

as “thick” dust clouds pass between the light source and the detector (denoted by the red line in 

Figure 6-15). After the last injection oscillations in the measured irradiance were observed but 

these dampen quickly as the dust becom es w ell mixed and uniform. The data for attenuated 

spectra measurements were taken from the uniform region (denoted by the blue line in Figure 

6-15), which was taken to be 70 s after the oscillations from the injections subsided. The 

average over twenty scans was taken to further remove any possible heterogeneity in the 

distribution o f the dust within the chamber that might still have been present.
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Reference spectrum 
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Figure 6-15: Transmission as a function of time for experiment M2 showing the different stages of the 
experiment and the locations where the reference and attenuated spectra are measured.

The measured spectra were grouped into three separate r values (measured at 400 nm) 

equal to 0.09 (quartz, hematite and kaolinite), 0.15 (Mars JSC -1, kaolinite and Salten Skov) and 

0.6 (magnetite and hematite). This allowed direct comparisons between the measured 

transmission spectra for the different dust samples. The retrieval of the dust optical properties 

was performed at six wavelengths, corresponding to the peak wavelengths of the LED array.

The transmission spectra for the different cases considered are shown in Figure 6-16. The 

transmission spectrum produced by kaolinite and quartz are similar, with approximately 

constant transmission at all wavelengths. This is expected since kaolinite and quartz particles 

have extremely low nt over the wavelength range measured, leading to negligible absorption of 

the incident light. Magnetite particles displayed strong absorption at all wavelengths while 

hematite, JSC-1 and Salten Skov 1 dust particles exhibited high absorption at wavelengths less 

than 550 nm and were efficient at scattering at longer wavelengths. This contrast in behaviour at 

different wavelengths is illustrated in Figure 6-16c where the transmission of magnetite and 

hematite is shown. At short wavelengths (<550 nm) both magnetite and hematite particles show
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strong absorption, resulting in near identical transmission at these wavelengths. At longer 

wavelengths magnetite continues to show strong absorption, however hematite displays a 

significant increase in transmission as a result of increased scattering which is detected by the 

UV-VIS.
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0.8
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Figure 6-16: The measured transmission for different dust samples for r of (a) 0.09, (b) 0.15 and (c) 0.5.

6.2.1 Detection o f the scattered light component

Both light sources were used in separate experiments involving Salten Skov 1 and, therefore, 

provided an opportunity to compare the measured spectrum and retrieved optical properties 

from the two different light sources. This provides a “ground truth” to the derived optical
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properties as they should be equal regardless of the light source used. The transmission spectra 

for Salten Skov 1 at different x (0.09,0.15,0.3) for the halogen and LED light sources are 

shown in Figure 6-17. By comparing the transmission spectra of Salten Skov 1 for the different 

light sources, information on the scattering properties of the dust can be gained. The measured 

transmission spectra for both light sources are consistent for low x (0.09), with slight variations 

observed at wavelengths longer than 600 nm. As x increases to 0.15 a departure is observed 

between the measured transmission spectra at longer wavelengths > 500 nm, with the LED 

experiment measuring a greater irradiance. The narrower beam of the halogen light source 

illuminates a smaller volume of the MSWTF and hence, a smaller proportion of the dust 

particles are illuminated. This led to the measured halogen spectrum being less affected by 

increased scattering due to increases in dust abundance within the MSWTF. At x -  0.3 the 

transmission spectra using the LED arrays displays a -9% increase in transmission over the 

equivalent for the halogen bulb.

0.95

0.9

0.85

0.75
- -  LED (0.09)
— LED (0.15) .
— LED (0.3)
—  HAL (0.09)
—  HAL (0.15) '
—  HAL (0.3)

0.7

0.65

0.6
400 450 500 550 600 650 700

Wavelength / nm

Figure 6-17: Transmission values for the Salten Skov 1 dust sample for x of 0.09, 0.15, and 0.3 for the
different light sources.
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Another example that emphasizes the effect of scattering is experiment M9, where large 

dust opacities were achieved for hematite particles (>0.5). Figure 6-18 shows the measured 

irradiance spectrum for hematite dust for r 0.05,0.2,0.4 and 0.55. The spectra have been 

normalised to 1 at 405 nm to enable comparison of the attenuation. If scattering were negligible 

then the normalised spectra should be equal for all r (providing the particle size and composition 

remain constant) however, as illustrated, there is a correlated increase in irradiance at 

wavelengths greater than 525 nm as the dust abundance increases. This is because hematite 

particles are efficient at scattering light at wavelengths longer than 525 nm (Sokolik and Toon, 

1999) and as the number of particles increases, the probability of the light being scattered into 

the UV-VIS probe increases. This leads to an increase in the measured irradiance.

2.5
 Reference
 t = 0.05
 x = 0.2
 t = 0.4
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Figure 6-18: Attenuated irradiance spectrum for experiment M9 (hematite) at different r. The spectra are
normalised to 1 at 405 nm.

The occurrence of a significant scattered component in the measured irradiances 

artificially increases the observed transmission (as was seen in Chapter 4 for dust devil transits). 

This higher transmission will lead to an underestimation of t and hence, the dust abundance. 

More importantly, the scattered component must be simulated in order to retrieve accurate
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optical properties for the dust particles. To model the scattering of light within the chamber the 

MCLSM was adapted with the modifications described in the next section.

6.3 Adaptations to the Monte Carlo Light Scattering Model

The MCLSM was adapted to simulate the scattering and absorption of light scattered by a 

uniform suspension of dust particles inside the MSWTF. The most significant modification 

from that used for dust devil modelling (Chapter 3 & 4), was to the boundary conditions that 

describe the photon trajectory after interaction with the wind tunnel internal walls. Another 

change was the initial position of the photons, which was at the location of the 40 LEDs or at 

the location of the halogen lamp. The different viewing geometry of the spectrometer probe, 

compared to the dust devil experiments, also required modification of the photon detection 

condition.

6.3.1 Photon initial position and trajectory

The photons injected into the wind tunnel are divided equally between the 40 LED arrays with 

their initial locations equal to the positions of the LEDs. The injection trajectory of the photons 

is described by two angles: the photon zenith angle, which is determined from the LED intensity 

distributions (Figure 6 -6 ) using the rejection method (Whitney, 2011) and the photon azimuth 

angle, which is a random angle between 0 and 2n. Figure 6-19 illustrates the injection of 105 

photons into the modelled MSWTF and the initial trajectories of the photons are shown.
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Y /m

Figure 6-19: The initial trajectory of the photons entering the modelled MSWTF.

6.3.2 Boundary conditions

The M SW TF interior, ceiling and floor (Figure 6-2) are metallic creating a significant amount 

o f  reflected light. The walls o f the chamber were less reflective due to the rough metal finish 

leading to more isotropic scattering. The floor was reflective but the settling o f  the dust led to 

the surface having the scattering properties o f  the suspended dust.

Therefore the ceiling was given a high single scattering albedo (0% = 0 .99), with the 

photons intercepting the ceiling assumed to be reflected at the angle o f  incidence. The scattering 

from the walls was assumed to be isotropic and less than that from the ceiling (0% =  0.8). 

Determining an appropriate boundary condition for the floor was more problematic as a result o f  

dust settling. The dominant dust type, on the floor surface, was Salten Skov but without 

knowledge o f  the single scattering properties, or the scattering phase function, the photons 

scattered from the surface could not be modelled. The reflective surface o f  the floor also 

complicated the scattering problem. A portion o f  the photons incident on the floor surface 

passed through the settled dust particles without interacting and were reflected from the metal 

surface. Therefore a cautious approach was used, which assumed isotropic scattering from the 

floor surface and, based on the colour characteristics o f  Salten Skov, OJb was given a wavelength
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dependent value with higher absorption at blue wavelengths and higher scattering at red 

wavelengths.

6.3.3 Photon detection

The UV-VIS spectrometer was positioned outside the m odelled M SW TF correlating with the 

experimental setup. The quartz window restricted the spectrometer FoVresulting in only a 

portion o f  the chamber volume being observed. The approximate FoV is shown in Figure 6-20  

which illustrates the detection location o f the scattered light (blue lines). As shown all twenty 

facing LEDs were visible to the UV-VIS probe, with the direct component (red lines) being 

detected from all twenty LED arrays.

Figure 6-20: Illustration of the direct and scattered photons detected in the modelled MSWTF.

6.4 Discussion on the retrieval of optical properties

The experiments performed were too ambitious, resulting in the M CLSM  being unable to 

retrieve accurately the optical properties o f  the suspended dust particles. The reflective surfaces

Y / m

0
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of the MSWTF boundaries led to an uncertainty in the simulated irradiance spectrum of greater 

than 15% at all wavelengths.

The radiated power of the LED arrays for each wavelength was determined from the 

method outline in Section 6.2.2 and knowing the number of photons injected the measured 

reference and attenuated spectra were simulated. A comparison of the measured and simulated 

reference and attenuated irradiance spectra is shown in Figure 6-21 for hematite particles using 

the complex refractive indices from Sokolik and Toon (1999). An average over 10 model 

simulations is shown along with the standard deviation of the predicted irradiances. The 

modelled spectrum is qualitatively consistent with the measured spectrum. However, the high 

scattering environment of the MSWTF resulted in large variations in the number of photons 

detected by the MCLSM and led to variations in the irradiances spectra of greater than 10%.
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Figure 6-21: The measured and model spectrum for experiment M10. (a) shows the reference spectrum
and (b) shows the attenuated spectrum.

The large variations in the simulated irradiance spectrum masked the attenuation 

resulting from variation in the particle n,-. A decrease in the hematite n-x of 20% from the Sokolik 

and Toon (1999) values, led to a change in ab of 0.01 at 405 nm and 0.03 at 660 nm and would 

result in a decrease in measured irradiances of 1-3%. This is an order of magnitude smaller than 

the modelled uncertainty and led to ambiguous retrieval of the dust optical properties.
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The error in the modelled irradiances could be improved by increasing the number of 

simulations over which the average is taken. However, the model runtime increases by the same 

factor i.e. averaging over hundred simulations instead of ten, increases the model runtime by ten 

times. This is the limiting factor, currently averaging over 10 simulations led to a simulation 

duration of 300 minutes per wavelength for twelve rii values, leading to an overall runtime of 

1800 minutes. Increasing the averaging, results in unrealistic simulation times, especially if 

other parameters such as, particle size and t, have to be varied.

The experiments could be improved by reducing the amount of scattered light entering 

the detector from the chamber boundaries. This could be accomplished by using only a single 

light source, such the halogen bulb. This would limit the amount of reflected light in the 

chamber in comparison to the LED arrays resulting in less variation in the simulated irradiances. 

Blackening the chamber walls would also have the same effect, resulting in absorption of the 

incident light on the chamber boundaries as opposed to scattering. The most important change, 

however, would be to confine FoV of the spectrometer, such that the volume of the wind tunnel 

observed would be a narrow corridor linking the UV-VIS probe to the light source. This would 

prevent light reflected off the boundaries being detected, resulting in the light detected being 

more sensitive to scattering from the dust particles.

6.5 Differentiating between two dust samples

Two experiments were performed to simulate the scenario at the martian surface of the passage 

of a dust cloud composed of dust particles with a different composition to the ubiquitous 

background dust haze. The purpose of these experiments was to validate the method outlined in 

Chapter 5 for differentiating between two dust components in the martian atmosphere. The 

experimental procedure involved injecting the first dust sample into the chamber; after a 

uniform dust distribution was achieved (i.e. a ubiquitous background ‘haze’), the second dust 

sample was injected to simulate the passage of a local dust cloud containing particles of 

different composition. For Experiment One, hematite was injected initially into the chamber
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followed by magnetite; in Experiment Two, JSC-1 was injected prior to montmorillonite. Due to 

dust settling, the abundance of hematite in the chamber continually decreased with time. 

Therefore to approximate a constant dust background haze, r and 9ti (ratio of irradiances at two 

widely spaced wavelengths) were calculated over the injection period of the secondary dust 

component which was 37 s for Experiment One and 25 s for Experiment Two. The transmission 

as a function of time for these two experiments is show in Figure 6-22.
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Figure 6-22: The time-series showing the simulated passage of a dust cloud containing particles of 
different composition super imposed on a ubiquitous background dust haze, (a) Experiment One, a 

background of hematite and cloud a magnetite and (b) Experiment Two, a cloud containing 
montmorillonite particles and a background 

of Mars JSC-1 .

The LED arrays were used for these experiments, therefore at 388 nm and 750 nm 

could not be measured (which would have made it consistent with Chapter 5) as this was 

outside of the LED spectral range. However, the actual wavelengths used to calculate can 

differ provided that there is a change in the dust optical properties between the two wavelengths. 

The two wavelengths used in this analysis were 405 nm and 660 nm which corresponded to the 

peaks of the blue and dark red LEDs respectively. Figure 6-23 shows as a function of r for 

the two experiments performed. As the dust cloud passed the UV-VIS a departure was observed 

in the signature correlating well with the simulations in Chapter 5. A linear fit was applied to 

the background and cloud signatures and extrapolating back to r = 0  for the dust clouds, r for
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the background hazes was determined to be 0.58 and 0.15 for Experiment One and Experiment 

Two respectively. The retrieved r  for the background dust for Experiment Two correlates well 

with the measured t of 0.15, while the t measured for Experiment One was lower at 0.52. The 

error in Experiment one could be the result of using a linear fit to approximate the magnetite 

cloud 9^ signature. Another explanation could be the result of additional residual hematite 

particles being injected along with the magnetite samples, increasing the hematite abundance in 

the chamber. The injection mechanism on the MSWTF used a pressurised system to evacuate 

the container holding the dust sample. However the entire sample did not always successfully 

evacuate, and while cleaning was performed, removing all the remaining particles could not be 

achieved.
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Figure 6-23: 9^ as a function of x within the MSWTF for the two cloud simulations (a) hematite with a 
cloud of magnetite and (b) Mars JSC-1 with the passage of a montmorillonite cloud.

Magnetite and montmorillonite have extremely different optical properties, as indicated 

by their transmission spectrum (Figure 6-16). Magnetite shows strong absorption within the 

350-800 nm wavelength range, while in contrast montmorillonite predominantly scatters light 

within this wavelength region. However, both the magnetite and montmorillonite clouds cause 

an increase in 9^. This is a result of the magnetite particles absorbing the longer wavelength 

light that would be scattered by the hematite particles. At shorter wavelengths both particles 

show strong absorptions. This leads to the irradiance at 405 nm being relatively unchanged and
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a lower irradiance at 660 nm, resulting in an increase in 9ti. Similarly, both Mars JSC-1 and 

montmorillonite are efficient at scattering light with wavelengths > 520 nm. However Mars 

JSC-1 exhibits stronger absorption at shorter wavelengths. Therefore, the introduction of 

montmorillonite results in higher scattered irradiance at 405 nm but only small variation in the 

irradiance at 660 nm, hence will increase.

This is an important feature of 9^ as dust components of significantly different 

composition can result in similar 9^ values making retrieval of the optical properties of the 

particles contained in the cloud difficult. However, it is proposed that measuring 9ti provides a 

powerful tool for quickly and efficiently distinguishing events that cause a change in the 

composition of an ubiquitous dust haze (i.e. a dust cloud containing particles of a different 

composition). Such an identified event can then undergo a subsequent full spectral analysis.

The experiments simulating the passage of a dust cloud, containing particles of different 

composition to a ubiquitous dust background, have shown that plotting 9^ as a function of r is a 

valid technique for distinguishing between aerosols of different composition and correlates well 

with the simulations performed in Chapter 5. Furthermore, by producing linear fits to the 9ti 

signature, r for the background haze has been determined for both experiments and are 

consistent with the measured values. This provides a validation for using 9fy as a means of 

discerning compositional changes to the ubiquitous dust haze on Mars.

6.6 Summary

The high scattering environment in the MSWTF, resulting from the metallic boundaries, caused 

large uncertainties in the simulated irradiance spectra. This led to ambiguous retrieval of the 

dust optical properties. The primary factor governing the model accuracy is the number of 

photons injected into the model, currently limited to 1 0 7 due to available computing resources. 

Therefore to increase the model accuracy the simulations had to be sequentially repeated, to 

represent additional photons, resulting in a linear increase in model runtime. In order to produce
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irradiance spectra with an uncertainty of -15%, averaging was required over 10 simulations 

with each simulation performing 50 model executions of 107 photons. As indicated by 

discussion in Section 6.4, this led to unrealistic simulation runtimes. Therefore, other methods 

were applied in order to increase artificially the number of photons detected or to reduce the 

scattered component from the chamber walls.

The simplest method was to limit the number of scattering events processed per model 

execution. This reduced the number of scattering events from the chamber boundaries, 

improving the simulation runtime. This had negligible effect on the model output however, 

since the largest contributor to the scattered irradiance is from the first scattering events, with 

higher order scattering events contributing significantly less to the total scattered irradiance.

The modelled chamber boundary conditions were varied, i.e. increasing the absorption 

from the ceiling, walls, and floor. However increasing the absorption or assuming no scattering 

from the chamber walls led to an underestimation in the observed irradiance and, therefore, the 

scattered light from the boundaries could not be assumed to be negligible.

Another method, which could not be fully explored due to computing limitations, was 

to arrange the LEDs to point directly at the detection area, such that the majority of the photons 

injected would have an initial trajectory towards the detector. A correction factor to the photon 

weights would then be applied based on the angle of the photon trajectory to the true pointing 

direction of the LED array. The photon weight would then be calculated by interpolating over 

the LED intensity distributions (Figure 6 -6 . This limits the number of photons that interact with 

the chamber boundaries and increases the number of photons that form the direct component 

and interacted with dust particles along the spectrometer line of sight, which (from Figure 6-13) 

contributes to the majority of the scattered light from the dust. The correction factor ensures that 

the relative contribution from the direct irradiance, dust scattered irradiance and boundary 

scattered irradiance remains unchanged. Unfortunately tracking the photon weightings required 

the creation of an additional array, which extended the computing requirement of the MCLSM
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beyond available limits. Therefore, (contrary to the original aim) the number of photons injected 

had to be reduced, lowering the overall photon density in the model. More analyses are required 

to fully explore this avenue but it is currently the best option (unless the programming language 

is changed to one that can handle increase array sizes) for improving the accuracy of the 

MCLSM for the MSWTF environment.
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Discussion and Further Work

Chapter Seven: Discussion and further work
The remit of this thesis was to investigate the following research questions as outlined in 

Section 1.1.

1) What are the critical factors required for successful retrieval of the optical properties of 

dust particles in suspension around dust devil vortices?

2) What can we determine from spectral measurements of dust devil vortices in order to 

determine the internal characteristics and the mass concentration?

3) What are the differences between martian and terrestrial dust devil transit signatures and 

what are the implications?

4) How do compositional changes to the dust background component of the martian 

atmosphere affect observations of dust devils and is there a method for differentiating 

between different dust and ice aerosol components?

Here, each research question is explored individually and conclusions based on the results 

presented in this thesis are discussed.

7.1 Retrieval of the dust optical properties of dust devil 

vortices

In order to retrieve the optical properties of dust particles in suspension around terrestrial dust 

devil vortices, a Monte Carlo Light Scattering Model (MCLSM) was developed, capable of 

simulating the transmission of light through a dusty environment. The MCLSM traces the path 

taken by photons through the model volume and calculates the interaction between the photons 

and dust particles (i.e. absorption or scattering) by sampling probability distributions. The 

Monte Carlo method was applied as the high dust concentrations observed in dust devils led to 

the requirement that multiple scattering of light by the dust must be taken into account, with the 

single scattering assumption leading to an underestimation in the scattered light.
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The retrieved values indicate a highly scattering dust component {(Dq > 0.95) at 

wavelengths greater than 625 nm. A decrease in coq towards shorter wavelengths was observed, 

resulting in of higher absorption. These results are consistent with previous studies of desert 

dust aerosols generally displaying greater absorption towards blue wavelengths relative to 

longer wavelengths (Kaufman, 1987, Dubovik et al., 2000, Kaufman et al., 2001). The retrieved 

&b(2 ) values for the dust entrained in the dust devils are lower than those predicted for 

suspended desert dust aerosols and are indicative of either larger particles being lifted by the 

vortices or a higher imaginary refractive index for Nevada desert sand in the Eldorado Valley.

A first-order approximation for the imaginary refractive index niQ) of Nevada desert 

aerosols was presented for two assumed particle size distributions, that of dust devils and 

terrestrial desert aerosols. The former was based on measurements of terrestrial dust devils by 

Sinclair (1974) and contains a large fraction of large particles (r > 10.0 |tm) while the latter uses 

the particle volume distribution measured by Dubovik et al (2002) for Bahrain-Persian Gulf 

desert aerosols which contains fewer large particles, nfcI) values for the two size distributions 

were significantly different, with the retrieval resulting in desert aerosols exhibiting n;(2 ) an 

order of magnitude higher than those retrieved for using the size distribution of Sinclair (1974).

This is significant as the two sets of n,(2) values will result in the dust particles displaying 

contrasting behaviour once in suspension in the atmosphere. For the particle size distribution 

measured by Sinclair (1974), the low C0q values are a result of large particles being present. 

However, these large particles quickly fall back to the surface and it is the fine fraction that 

remains suspended in the atmosphere. The removal of the large particle fraction will lead to an 

increase in C0o to >0.9 over the 380-750 nm wavelength range, as less incident light is absorbed 

by the smaller particles, resulting in less direct solar heating of the surrounding atmosphere. In 

contrast, assuming smaller particles which are typical of desert aerosols requires nt to increase to 

achieve the same absorption observed for the larger particles. Thus once suspended in the 

atmosphere they will absorb more light in comparison to the remaining fine fraction of the

202



Discussion and Further Work

Sinclair (1974) size distribution and will actively warm the atmosphere. Erroneous assumptions 

for the size of the dust particles entrained in dust devils vortices can therefore lead to contrasting 

implications of their radiative effect on atmospheric heating. This highlights the importance of 

in situ measurement of the dust particle size distribution if accurate retrieval of the dust particle 

optical properties are to be obtained from spectral measurements of dust devil vortices. As 

discussed by Sinclair (1974), the particle size distribution within dust devils will contain a 

greater quantity of larger particles and will be more analogous to soil particle distributions. 

Therefore, it is concluded that the estimated particle size distribution using the values from 

Sinclair (1974) provides the best estimate for n-,(l) for Nevada desert aerosols. This in turn 

suggests that the fine particle fraction injected into the atmosphere by the dust devils in the 

Nevada desert will result in less heating of the surrounding atmosphere compared to Saharan 

desert aerosols measured by Patterson et al (1977).

Analyses of desert dust particles in suspension around dust devil vortices in the Nevada 

desert has shown that the required parameters critical for the successful retrieval of the dust 

optical properties are: the physical dimensions of the vortex; the spatial distribution of the dust; 

the dust optical depth; the particle size distribution. These parameters are required to model the 

transmission of light through the vortex in order to reproduce spectra which have been 

attenuated by the dust particles. The largest uncertainty in the retrieval of n,(/1) is the lack of 

knowledge of the particle size distribution of the entrained dust particles. Any subsequent dust 

devil field studies must incorporate in situ measurement of the particle size distribution for each 

encounter. This would allow validation of the retrieved nfcI) presented in this study and provide 

more accurate measurement of the total mass of particulate material lifted into the atmospheric 

boundary layer.

An investigation into the dependence of the amount of scattered light on the dust particle 

single scattering properties revealed that the estimate for the asymmetry parameter (g) that 

resulted in the largest scattered irradiance (0s) during a dust devil transit, was dependent on the 

solar zenith angle (61). This led to a bias towards low g (-0.6) for high 6Z and g —> 1 for low 6Z.
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The same dependence was not observed when measuring the total irradiance (@T) which 

indicates that the 0Z bias is limited to the scattered component. This has important implications 

when attempting to retrieve the optical scattering properties from measurements of scattered 

light, as any attempt to determine an estimate for g from narrow field of view (FoV) 

observations would need to correct for this bias. This is significant as a higher value of g will 

result in an increase in scattered light in the non-illuminated side of the vortex. Therefore if a 

lower value of g is assumed for the dust particles, the dust concentration must be reduced to 

compensate for the lower irradiance that will be observed. This could lead to an underestimation 

of the mass of dust entrained in the vortex and hence the total mass of material injected into the 

atmosphere.

7.2 Predicted and measured transit signatures of terrestrial 

dust devils

The MCLSM was applied to both modelled and terrestrial dust devils to simulate the optical 

signature during a dust devil transit. The aim was to determine whether the dust devil 

parameters required for the retrieval of the dust optical properties (physical dimensions, vortex 

centre, spatial distribution of dust, dust optical depth and the particle size distribution) could be 

obtained from their transit signatures.

7,2.1 MCSLM predictions

This work has shown that the optical signature of a transiting dust devil is highly dependent on 

the method of observation, with the narrow field of view (NV, assuming the Sun is not in the 

FoV) and full sky (FS) simulations showing contrasting transit signatures.

In the FS case, <&r decreases during the transit since the loss of light from the direct 

component, as a result of absorption and scattering by the dust particles, is much larger than the 

gain from increased diffuse scattering. Predictions of &t transit signatures revealed a negligible
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dependence on the dust concentration and core size. This is due to the dominance of the direct 

component in the total irradiance at the surface under ‘clear sky’ conditions and therefore, <Pr is 

dependent upon the total extinction along the line of sight to the Sun.

In the NV case, the incident solar flux interacts with the dust column of the dust devil 

vortex resulting in light, which would otherwise be undetected, being scattered into the point of 

measurement (PoM). This causes the observed light to increase during a dust devil transit. The 

NV simulations have shown that &s inside a dust devil vortex is strongly dependent on the dust 

distribution within the dust devil interior. The &s dependence on the dust concentration 

manifests itself in the transit signature as a reduction in 0 S in the region of lower dust 

concentration and an increase in &s through regions of higher dust concentration. Investigations 

of terrestrial dust devils have revealed central cores that are relatively free of dust particles 

(Sinclair, 1974). The NV simulations have shown that this dust free core becomes clearly 

defined in the 0 S transit signature as a reduction in 0 S, enclosed by regions of increased 0 S as 

the PoM passes through the vortex. Therefore, by measuring the 0s signature of a transiting 

dust devil, the vortex core dimensions can be quantified, providing a more accurate 

determination of the dust column volume. Furthermore, measurement of both 0r  and 0s allows 

determination of the direct component, from which the dust optical depth can be calculated. 

Therefore, if the dust particle size distribution and optical properties are known, estimation of 

the total mass concentration and the total mass of dust particulates injected into the atmosphere 

can be determined. This will result in varying levels of direct solar heating of the atmosphere, 

dependent on the optical properties of the dust.

7.2,2 Transit signature o f terrestrial dust devils

Optical measurements of terrestrial dust devils in the Eldorado Valley, Nevada, were used to 

validate the predictions of dust devil transit signatures from the MCLSM. The total and 

scattered irradiances measured during the transit of terrestrial dust devils are consistent with the
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predictions of the MCLSM: the total irradiance experiences a reduction, while the scattered 

component exhibits an increase during the transits.

Good correlation between the measured and modelled transit signatures was achieved, 

further validating the retrieved single scattering properties. The transit signatures for 0s also 

displayed good agreement with the MCLSM for the portion of the transit signature associated 

with the dust devil interior. As the UV-VIS spectrometer passed through the dust devil core a 

drop in irradiance was observed, which is also seen in the MCLSM for the case of a dust devil 

with a reduced dust concentration in the core. The higher degree of non-uniformity in the dust 

concentration surrounding natural dust devil vortices resulted in a departure from the transit 

signatures predicted by the MCLSM for the scattered light outside of the vortex. A more 

gradual increase in irradiance prior to entering the dust devil vortex, resulting from peripheral 

dust lifted by the vortex, was often observed in the field experiments. This increase in scattered 

light occurred many tens of seconds before the transit, providing further evidence for large 

peripheral dust hazes that extend tens of metres to greater than hundreds of metres around dust 

devil vortices.

The mass concentrations and vertical mass fluxes calculated for the dust devils analysed 

in this work are consistent with those measured by Metzger et al (2011) for particulate matter 

(particle radius between 0.05 pm and 5.0 pm). This suggests that spectral measurements of dust 

devils at visible wavelengths are highly sensitive to the fine particle fraction entrained in dust 

devil vortices. This correlates well with the known fact that the attenuation of visible light 

occurs more efficiently for particles of comparable size to the wavelength of observation, with 

larger particles having less of an effect. The sensitivity of the spectral measurements to the fine 

fraction is one of the key outcomes of this work, as it is the fine particle fraction that remains 

suspended in the atmosphere once the dust devil has subsided. These aerosols can modify the 

radiative properties of the atmosphere depending on the quantity injected, potentially affecting 

local and regional-scale atmospheric dynamics. It is therefore important to retrieve accurately 

the mass concentration of the fine particle mode in dust devil vortices.
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The implication of this work is that separate measurement of both the total and the 

scattered light is crucial for determining the internal characteristics of a dust devil from its 

transit signature in order to estimate the parameters required to retrieve accurately the dust 

single scattering properties. Measurements of just one of these aspects could result in 

ambiguous interpretation. The total irradiance provides information about the dust devil size and 

the total amount of dust in the dust column, while the scattered component gives insight into 

how the dust is distributed within the interior of the vortex. As was seen for encounter E6 

(Chapter 4), the lack of information regarding the total irradiance resulted in 30% uncertainty in 

the mass concentration contained with the dust devil wall. Furthermore, the optical properties 

were retrieved from the measured total irradiance, with the vortices assumed to be homogenous 

dust columns. Knowledge of the scattered component during these encounters would have 

allowed determination of the dust spatial distribution, leading to an estimation of kext both within 

the walls and the vortex core. In addition, the combined total and scattered irradiances would 

also have allowed calculation of the direct light component, which allows determination of the 

‘true’ dust optical depth. This would have led to more accurate retrieval of the dust optical 

properties.

7.3 Transit signatures of martian dust devils

The MCLSM was used to determine the transit signatures of martian dust devils at 388 nm and 

750 nm. At these wavelengths the dust particles show contrasting spectral behaviour, being 

mainly absorbing at 388 nm and scattering at 750 nm.

One of main uncertainties encountered for characterising terrestrial dust devils from their 

transit signatures was from the interference from the dust devil shadow, masking the point of 

entry (or exit depending on the dust devil trajectory) into the dust devil interior. This led to an 

uncertainty in the calculated outer diameter of the dust devil. The higher background diffuse 

irradiance, resulting from scattering by background suspended dust, results in a modification of 

the transit signature for martian dust devils in comparison to terrestrial dust devils. This work
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has shown that the high diffuse irradiance observed at the martian surface diminishes the 

uncertainty due to the effect of the vortex shadow. As a result, the portion of the transit 

signature corresponding to the dust devil interior is more easily distinguished when compared to 

terrestrial transit signatures. This indicates that spectral measurements of martian dust devils 

enable a more accurate determination of the outer diameter and internal volume in of the vortex 

in comparison to terrestrial measurements, and will provide a comparatively better estimate for 

the mass of material injected into the atmosphere.

In contrast to directly imaging dust devils, the simulations imply that detecting the transit 

of a dust devil with a low dust content under low and nominal dust haze optical depths is 

optimal at wavelengths between 600-750 nm, where the higher diffuse component reduces the 

vortex shadow, thus providing better definition of the dust devil interior within the transit 

signature. Future Mars missions aimed at investigating the martian surface environment, should 

therefore include an instrument capable of measuring the solar spectrum between 600-750 nm 

in order to characterise martian dust devils. These measurements allow a more accurate 

determination of the total mass of particulate material injected into the martian climate system 

by dust devils, improving the accuracy of Global Climate Models (GCMs) through correlation 

with the in situ measurements.

The dust component suspended by the simulated martian dust devils was varied to 

determine what effect the injection of larger particles would have on the transit signature and 

whether any discernible difference could be observed between different particle size 

distributions. It was shown that the transit signature is highly dependent on the particle size 

distribution, especially at longer wavelengths, where the scattered light observed during the 

transit is strongly dependent on g. Determination of the size distribution of particles entrained in 

martian dust devils is important as larger particles absorb more of the incident solar radiation. 

Therefore, if during the passage of a dust devil larger particles are lofted into the atmosphere, a 

localised increase in the atmospheric heating rate will be experienced relative to the nominal 

heating rate due to the increased absorption of solar radiation by the larger particles.
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In situ measurement of the particle size distribution within dust devil vortices on Mars is 

significantly more challenging. However, optical measurements will provide greater detail on 

the internal dust distribution and core size and, coupled with simultaneous measurement of 

pressure, temperature and wind speed in the vortex, will enable refinement of dust lofting 

modelling, which can be used to constrain the particle sizes that are likely to be lifted.

7.4 Effects of martian dust and ice aerosols on the surface 

irradiance spectrum

The effect of martian dust aerosols on the surface irradiance was explored using an adapted 

Mars radiative transfer model, RTM, (Patel, 2003, Otter, 2010) and measurements of dust 

optical depths made by the Spirit rover for two Mars years, MY27 and MY28. These two years 

were used as MY27 is representative of a typical annual dust cycle and MY28 illustrates an 

annual dust cycle with the occurrence of a large dust event during southern summer.

A comparison was performed between two dust components. One scenario was 

assumed to have the single scattering properties of Wolff et al. (2009), designated ‘W09’, and 

the other scenario used the single scattering properties retrieved by Ockert-Bell et al. (1997), 

denoted ‘097’. During a large dust event, the small variations in the single scattering properties 

have been shown to have a significant effect on the surface irradiance. The results suggest that 

-30% more solar radiation will reach the lower atmosphere and surface for a W09 dust 

component, whereas, an 097 dust component will see a lower total irradiance This indicates 

that the amount of solar energy encountered at the surface and absorbed by the atmosphere will 

be significantly different between the two dust types during large-scale dust events. The higher 

scattering of W09 dust will lead to more solar radiation reaching the lower atmosphere and thus, 

the lower atmosphere will experience increased heating relative to an 097 dust component. The 

more absorbing 097 dust will lead to increased heating at higher altitudes and less heating at 

lower levels in the atmosphere. The heating of the atmosphere at high altitudes, away from the 

surface, results in a more statically-stable atmosphere (Andrews, 2000). This leads to fewer

209



Chapter Seven

small scale instabilities, such as gravity waves and convective motions, while large scale 

baroclinic instabilities tend towards larger spatial scales. This typically results in a reduction in 

the near-surface wind stress, reducing the amount of dust lofted into the atmosphere. This 

mechanism is believed to be responsible for controlling the decay of global dust events 

(Newman et a l, 2002), therefore a 097 dust component would lead to a more rapid decay 

compared to a W09 dust component for the same quantity of dust in the atmosphere.

The heating rate of the martian atmosphere is influenced strongly by the absorption of 

visible light, since the majority of the incident solar energy is contained in the visible region of 

the incident solar spectrum. Currently martian GCMs apply a scaling factor of between 1.5 and 

2.5 to the dust optical depth measured in the infrared (9-15 pm) to approximate the dust optical 

depth at visible wavelengths (Forget et a l, 1999). However, the measured optical depth at IR 

wavelengths does not have a direct relation to the atmospheric heating resulting from the 

absorption of visible light. Therefore knowledge of the dust spectrum at visible wavelengths is 

vital for accurate predictions of atmospheric heating rates. The scaling of dust optical depth 

from the infrared to the visible is a key parameter of GCMs as it controls the local radiative 

balance. However, the value of the scaling factor is uncertain, and more accurate determination 

of this value is required to determine if modelled heating rates are consistent with the observed 

dust opacity. This highlights the importance of measuring the dust optical depth, and of accurate 

retrieval of dust optical properties at visible wavelengths, for which an irradiance spectrometer 

would be ideally suited.

The daily UV dose received during MY27 and MY28 was determined for the two dust 

components, W09 and 097. The UVC (190-280 nm) dose received during a large dust event 

was shown to be highly dependent on the dust single scattering properties, with a >20% higher 

UVC dose received when implementing the single scattering properties of W09 compared to 

097. Integrating over MY27 and MY28 revealed that the presence of a planet-encircling dust 

event in MY28 reduced the cumulative UV dose by approximately 6% in all UV regions for 

both dust types. This indicates that while variations in the atmospheric dust content and single
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scattering properties can affect significantly the daily UV dose, the cumulative effect during an 

annual cycle is small.

An investigation into the survival of Bacillus subtilis endospores in the martian UV 

environment concluded that, with a dust optical depth of 0.3 (typical of northern summer), the 

contaminated surface environment must shield the B. subtilis cells from 70% (Curiosity landing 

site) and 60% (Phoenix landing site) of the incident diffuse irradiance. This implies that, even if 

the microorganisms are protected from the direct solar irradiance, the high diffuse irradiance 

experienced at the martian surface is sufficient to sterilise partially shielded surfaces. More 

work is required to fully assess the survivability of microorganisms in sheltered locations on the 

surface of Mars, however the MCSLM can be adapted to simulate the UV irradiance on the 

underside and sheltered surfaces of martian landers and rovers. This will allow a more accurate 

determination of the UV dose received by microbes in such locations, and whether microbes 

may be able to survive the martian UV environment.

The presence of ice particles, in the form of condensate clouds, results in increased 

scattering at all wavelengths considered here. Reduced levels of irradiance are observed at 

wavelengths longer than 550 nm as a result of a higher fraction of the scattered light being 

reflected back into space. At shorter wavelengths the incident light is scattered rather than 

absorbed, resulting in an increase in surface irradiance. This makes distinguishing the passage 

of water-ice clouds relatively simple: the change in the irradiance spectrum at wavelengths less 

than 500 nm can be analysed. However, ice aerosols formed of pure water-ice crystals have high 

CQo values (of ~1) indicating that the majority of the incident solar radiation is scattered. With 

the majority of the solar radiation scattered by ice aerosols, their radiative impact is highly 

sensitive to how they scatter the radiation (i.e. their scattering phase function), which is 

dependent on the crystal shape and size. Retrieval of the ice aerosols size and shape is therefore 

crucial, as this will determine how much solar radiation is scattered back to space and how 

much is scattered toward the surface.
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7.5 Differentiating between different dust compositions and 

ice particle size

A method was developed to distinguish changes in the composition of the dust that forms the 

background haze from spectral irradiance measurements. The ratio of the total irradiance at 

380 nm and 750 nm is defined as and similarly the ratio of the diffuse irradiance at 380 nm 

and 750 nm is defined as 9tD. The gradient of Sti and 9tD as a function of the observed dust 

optical depth over short and long time-scales has been shown to provide a good indication on 

whether the attenuation of the solar spectrum by the dust has changed. While an ideal case is 

presented, any change in 9^ or 9tD at a given optical depth is still indicative of a change to the 

background dust component, and can be used to investigate the variability of the background 

dust haze. The analysis has shown that in situ measurement of the total irradiance spectrum, and 

the direct and diffuse components, provides a powerful tool for distinguishing variation in the 

dust background over seasonal and diurnal time-scales. Such measurements would allow insight 

into the fundamental questions concerning the variability in the composition of the suspended 

dust, which will impact the atmospheric state by altering atmospheric heating. This study 

emphasises the importance in measuring not only the combined surface irradiance, but also 

simultaneous separate measurement of either the direct or diffuse component.

These ratios can also be used to compare transits of different dust devils to determine 

whether the dust suspended within the vortices differs. However, due to the sensitivity of the 

diffuse component to the dust concentration, it is more appropriate to use the ratio of the direct 

irradiance at 388 nm and 750 nm (9tDir) if comparing between the dust background and the dust 

suspended in a dust devil vortex. Furthermore, by sampling the optical depth sufficiently, it is 

concluded that the gradient of 9tDir provides another measure for identifying changes to the dust 

component. Measurement of the direct component is extremely difficult and advocates the need 

for simultaneous measurements of the total and diffuse surface irradiance, from which the direct 

component can be determined.
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It has been shown that measurements of water-ice clouds over short time-scales (such 

that the background dust optical depth can be assumed constant) can utilise 9ti, with the gradient 

of SRi as a function of optical depth providing an estimation of the ice particle size. By 

extrapolating to zero ice optical depth, the dust optical depth of the background haze can be 

estimated. It is important to know how much dust is present as this will influence the amount of 

atmospheric heating, which the condensation level is dependent upon. Furthermore, in order to 

retrieve an accurate estimate for the particle size, the dust content of the atmosphere must be 

known in order to remove its radiative effects.

The experiments at the Mars Simulation Wind Tunnel Facility simulating the passage of a 

dust cloud, containing particles of different composition to a ubiquitous dust background, have 

shown that plotting 9^ as a function of optical depth is a valid technique for distinguishing 

between aerosols of different composition and correlates well with the simulations performed in 

Chapter 5 for Mars. Furthermore, by producing linear fits to the 9^ signature, the background 

haze optical depths has been determined for both experiments and are consistent with the 

measured values.

7.6 Further work

The dust distribution entrained by the modelled dust devils is currently limited to symmetrical 

heterogeneities about the dust devil interior which are uniform in the vertical. While the purely 

vertical assumption is adequate for fitting the portion of the transit signature associated with the 

dust devil interior, and retrieval of the dust optical properties, more accurate modelling of dust 

devil transit signatures would require the capability to simulate dust devils that are tilted by the 

ambient boundary layer winds. Adapting the MCLSM to allow the dust concentration to vary in 

three dimensions solves this problem, i.e. by enabling asymmetric heterogeneities to be 

introduced into the model. However, this would require transferral of the current model to a 

more efficient programming language that is better equipped to deal with the large memory 

requirements of such Monte Carlo simulations, and as such is a task for future work.
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Additional field studies of terrestrial dust devils are required to further refine retrieval of 

the optical properties of the dust in suspension around dust devils and to assess fully the 

characterisation of their internal structure from their transit signatures. Future field 

measurements will utilise simultaneous observations of the total and scattered irradiances, and 

also measurement of the particle size distribution within the vortex. The transit trajectory can be 

constrained by driving directly towards the dust devil, opposite to its ambient motion. This 

allows the vehicle’s path to be mapped, with the bearing of the vehicle relative to north being 

exactly 180° to that of the dust devil. Marking the scan number and offset from the dust devil 

centre would provide a validation of the fitted transit signatures and more accurate 

determination of the vortex velocity.

The simulations of martian water-ice clouds assume complete cloud cover over the 

measurement area, whereas images from the Spirit and Opportunity rovers and Phoenix lander 

have shown that the cloud cover can be patchy. The effect of patchy cloud cover on the 

irradiance spectrum could be analysed by adapting the MCLSM to simulate the radiative 

transfer. Furthermore, the MCLSM could be applied to obtained optical and spectral signatures 

of morning fogs. Predicting the effect on the atmospheric optical depth as the water-ice shells of 

the composite fog particles sublime could be correlated to actual measurements from the 

martian surface.

7.7 Final remarks

In situ measurements of the optical signatures of transiting dust devils provide a powerful tool 

to characterise dust devils, both on Earth and Mars, allowing determination of the vortex size, 

dust concentration, internal dust distribution and the optical properties of the dust in suspension 

around the vortex. The nature of such measurements makes this an ideal technique for use on 

Mars, only requiring two upward viewing spectrometers (observing the UV-NIR wavelength 

region) of low complexity and mass. Ideally the entire UV-NIR wavelength band would be 

measured at high resolution, however considering the results of this thesis a minimum of three
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wavelengths would be required, namely 388, 670 and 750 nm. The optical depth measured at 

670 nm would allow correlation between predicted atmospheric heating rates from GCMs and 

the actual dust abundance in the martian atmosphere. Furthermore it would enable refinement of 

the dust optical depth visible-IR scaling factor employed in current Mars GCMs. Observing the 

irradiance at 750 nm would allow characterisation of dust devil vortices that transit over the 

spectrometer, providing enhanced definition in the transit signature between the vortex shadow 

and interior compared to shorter wavelengths. Measuring the irradiance at 388 nm and 750 nm, 

would allow the ratios 9?i, and 9tDir to be calculated. The 9ti ratio can also be applied to ice 

aerosols, enabling retrieval of the ice particle size within water-ice clouds and determination of 

the optical depth of the dust background. These ratios allow variations in the dust composition 

and size, within a dust devil vortex and the background haze, to be inferred. This would permit 

measurement of the spatial and temporal variability of the composition of martian aeolian dust.

215



Chapter Seven

216



References

References

Allen, C. C., Jager, K. M., Morris, R. V., Lindstrom, D. J., Lindstrom, M. M. and Lockwood, J. 
P. (1998) 'JSC MARS-1: A Martian Soil Simulant', Space 98, pp 469-476.

Alpert, P., Kaufman, Y. J., Shay-El, Y., Tanre, D., Da Silva, A., Schubert, S. and Joseph, J. H.
(1998) 'Quantification of dust-forced heating of the lower troposphere’, Nature, Vol 
395, No 6700, pp 367-370.

Andrews, D. G. (2000) An introduction to atmospheric physics, Cambridge, Cambridge 
University Press.

Bagnold, R. A. (1941) The Physics of Blown Sand and Desert Dunes, London, Methuen.

Balme, M. and Greeley, R. (2006) 'Dust devils on Earth and Mars', Reviews of Geophysics, Vol 
44, No 3, pp RG3003.

Balme, M. R., Pathare, A., Metzger, S. M., Towner, M. C., Lewis, S. R., Spiga, A., Fenton, L., 
Renno, N., Elliot, H., Saca, F., Michaels, T., Russell, P. and Verdasca, J. (2012) 'Field 
measurements of horizontal forward motion velocities of terrestrial dust devils: 
Towards a proxy for ambient winds on Mars and Earth', Icarus, Vol 221, No 2, pp 632- 
645.

Balme, M. R., Whelley, P. L. and Greeley, R. (2003) 'Mars: dust devil track survey in Argyre 
Planitia and Hellas Basin', Journal of Geophysical Research, Vol 108, No E8, pp 5086.

Battan, L. J. (1958) 'Energy of a Dust Devil', Journal of Atmospheric Sciences, Vol 15, pp 235- 
236.

Bell, J. M., Bougher, S. W. and Murphy, J. R. (2007) 'Vertical dust mixing and the interannual 
variations in the Mars thermosphere', Journal of Geophysical Research, Vol 112, No 
E12, pp E12002.

Bohren, C. F. and Huffman, D. R. (1983) Absorption and Scattering of Light by Small Particles, 
John Wiley and & Sons Inc.

Boyce, P. (1973) 'Remote sensing photometric studies of Mars in 1971', Icarus, Vol 18, No 1, 
pp 134-141.

Bryant, H. C. and Cox, A. J. (1966) 'Mie theory and the glory', Journal of the Optical Society of 
America, Vol 56, No 11, pp 1529-1532.

217



References

Cantor, B., Malin, M. and Edgett, K. S. (2002) 'Multiyear Mars Orbiter Camera (MOC)
observations of repeated Martian weather phenomena during the northern summer 
season', Journal of Geophysical Research, Vol 107, pp 5014.

Cantor, B. A. (2007) 'MOC observations of the 2001 Mars planet-encircling dust storm', Icarus, 
Vol 186, No 1, pp 60-96.

Cantor, B. A., James, P. B., Caplinger, M. and Wolff, M. J. (2001) 'Martian dust storms: 1999 
Mars Orbiter Camera observations', Journal of Geophysical Research, Vol 106, No 
E10, pp 23653-23687.

Cantor, B. A., Kanak, K. M. and Edgett, K. S. (2006) 'Mars Orbiter Camera observations of 
Martian dust devils and their tracks (September 1997 to January 2006) and evaluation 
of theoretical vortex models', Journal of Geophysical Research, Vol 111, No E12, pp 
El2002.

Capen, C. F. and Martin, L. J. (1971) 'The developing stages of the Martian yellow storm of 
1971', Lowell Observatory Bulletin, Vol 7, pp 211-216.

Cashwell, E. D. and Everett, C. J. (1959) A practical manual on the Monte Carlo method for 
random walk problems, Pergamon Press.

Chassefiere, E., Blamont, J. E., Krasnopolsky, V. A., Korablev, O. I., Atreya, S. K. and West, 
R. A. (1992) 'Vertical structure and size distributions of Martian aerosols from solar 
occultation measurements', Icarus, Vol 97, No 1, pp 46-69.

Clancy, R. T., Grossman, A. W., Wolff, M. J., James, P. B., Rudy, D. J., Billawala, Y. N.,
Sandor, B. J., Lee, S. W. and Muhleman, D. O. (1996) 'Water vapor saturation at low 
altitudes around Mars aphelion: A key to Mars climate?', Icarus, Vol 122, No 1, pp 36- 
62.

Clancy, R. T. and Lee, S. W. (1991) 'A new look at dust and clouds in the Mars atmosphere: 
Analysis of Emission-Phase-Function sequences from global Viking ERTM 
observations', Icarus, Vol 93, pp 135-158.

Clancy, R. T., Lee, S. W., Gladstone, G. R., McMillan, W. W. and Rousch, T. (1995) 'A new 
model for Mars atmospheric dust based upon analysis of ultraviolet through infrared 
observations from Mariner 9, Viking, and PHOBOS', Journal o f Geophysical Research, 
Vol 100, No E3, pp 5251-5263.

Clancy, R. T., Sandor, B. J., Wolff, M. J., Christensen, P. R., Smith, M. D., Pearl, J. C., 
Conrath, B. J. and Wilson, R. J. (2000) 'An intercomparison of ground-based 
millimeter, MGS TES, and Viking atmospheric temperature measurements- Seasonal 
and interannual variability of temperatures and dust loading in the global Mars 
atmosphere', Journal of Geophysical Research, Vol 105, No E4, pp 9553.

218



References

Clancy, R. T., Wolff, M. J. and Christensen, P. R. (2003) 'Mars aerosol studies with the MGS 
TES emission phase function observations: Optical depths, particle sizes, and ice cloud 
types versus latitude and solar longitude', Journal o f Geophysical Research, Vol 108, 
No E9, pp 5098.

Clancy, R. T., Wolff, M. J. and James, P. B. (1999) 'Minimal aerosol loading and global
increases in atmospheric ozone during the 1996-1997 Martian northern spring season', 
Icarus, Vol 138, No 1, pp 49-63.

Cockell, C. S., Catling, D. C., Davis, W. L., Snook, K., Kepner, R. L., Lee, P. and McKay, C. P. 
(2000) 'The ultraviolet environment of Mars: biological implications past, present, and 
future’, Icarus, Vol 146, No 2, pp 343-359.

Colburn, D., Pollack, J. and Haberle, R. (1989) 'Diurnal variations in optical depth at Mars', 
Icarus, Vol 79, No 1, pp 159-189.

Conrath, B., Curran, R., Hanel, R., Kunde, V., Maguire, W., Pearl, J., Pirraglia, J., Welker, J.
and Burke, T. (1973) 'Atmospheric and surface properties of Mars obtained by infrared 
spectroscopy on Mariner 9', Journal of Geophysical Research, Vol 78, No 20, pp 4267- 
4278.

Conrath, B. J. (1975) 'Thermal structure of the Martian atmosphere during the dissipation of the 
dust storm of 1971', Icarus, Vol 24, No 1, pp 36-46.

Curran, R. J., Conrath, B. J., Hanel, R. A., Kunde, V. G. and Pearl, J. C. (1973) 'Mars: Mariner 
9 spectroscopic evidence for H20 ice clouds', Science, Vol 182, No 4110, pp 381-383.

Cushing, G. E., Titus, T. N. and Christensen, P. R. (2005) 'THEMIS VIS and IR observations of 
a high-altitude Martian dust devil', Geophysical Research Letters, Vol 32, No 23, pp 
L23202.

Debye, P. (1909) 'Der Lichtdruck auf Kugeln von Beliebigem Material', Annalen der Physik, 
Vol 335, No 11, pp 57-136.

Deepak, A. and Gerber, H. E. (1983) Report of WMO (CAS)ZRadiation Commission oflAMAP 
Meeting of Experts on Aerosols and Their Climatic Effects,(Williamsburg, Virginia, 
USA, 28-30 March, 1983),

DeVoe, H. (1964) 'Optical properties of molecular aggregates. I. Classical model of electronic 
absorption and refraction', The Journal o f Chemical Physics, Vol 41, No 2, pp 393.

DeVoe, H. (1965) 'Optical properties of molecular aggregates. II. Classical theory of the
refraction, absorption, and optical activity of solutions and crystals', The Journal of 
Chemical Physics, Vol 43, No 9, pp 3199.

219



References

Draine, B. T. and Flatau, P. J. (1994) 'Discrete-dipole approximation for scattering calculations', 
Journal of the Optical Society of America, Vol 11, No 4, pp 1491-1499.

Drake, N. B., Tamppari, L. K., Baker, R. D., Cantor, B. A. and Hale, A. S. (2006) 'Dust devil
tracks and wind streaks in the North Polar Region of Mars: A study of the 2007 Phoenix 
Mars Lander Sites', Geophysical Research Letters, Vol 33, pp L19S02.

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., TanrA©, D. 
and Slutsker, I. (2002) 'Variability of absorption and optical properties of key aerosol 
types observed in worldwide locations', Journal of the Atmospheric Sciences, Vol 59, 
No 3, pp 590-608.

Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F. and Slutsker, 
I. (2000) 'Accuracy assessments of aerosol optical properties retrieved from AERONET 
sun and sky-radiance measurements', Journal of Geophysical Research, Vol 105, No 
D8, pp 9791-9806.

Edgett, K. S. and Malin, M. C. (2000) 'New views of Mars eolian activity, materials, and 
surface properties: Three vignettes from the Mars Global Surveyor Mars Orbiter 
Camera', Journal of Geophysical Research, Vol 105, No El, pp 1623-1650.

Egan, W. G. and Hilgeman, T. W. (1979) Optical properties of inhomogeneous materials, San 
Diego, Calif., Academic.

Ellehoj, M. D., Gunnlaugsson, H. P., Taylor, P. A., KahanpAnAs, H., Bean, K. M., Cantor, B.
A., Gheynani, B. T., Drube, L., Fisher, D. and Harri, A. M. (2010) 'Convective vortices 
and dust devils at the Phoenix Mars mission landing site', Journal of Geophysical 
Research, Vol 115, pp E00E16.

Ferri, F., Smith, P. H., Lemmon, M. and Renno, N. O. (2003) 'Dust devils as observed by Mars 
Pathfinder', Journal of Geophysical Research, Vol 108, No 7, pp 1-7.

Fisher, J. A., Richardson, M. I., Newman, C. E., Szwast, M. A., Graf, C., Basu, S., Ewald, S. P., 
Toigo, A. D. and Wilson, R. J. (2005) 'A survey of Martian dust devil activity using 
Mars Global Surveyor Mars Orbiter Camera images', Journal of Geophysical Research, 
Vol 110, No E3, pp E03004.

Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R.,
Read, P. L. and Huot, J. P. (1999) 'Improved general circulation models of the Martian 
atmosphere from the surface to above 80 km', Journal of Geophysical Research, Vol 
104, No E10, pp 24.

Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. and Giuranna, M. (2004) 'Detection of 
methane in the atmosphere of Mars', Science, Vol 306, No 5702, pp 1758-1761.

220



References

Fouquart, Y., Bonnel, B., Brogniez, G., Buriez, J. C., Smith, L., Morcrette, J. J. and Cerf, A.
(1987) 'Observations of Saharan aerosols: Results of ECLATS field experiment. Part II: 
Broadband radiative characteristics of the aerosols and vertical radiative flux 
divergence', Journal of Applied Meteorology, Vol 26, pp 38-52.

Galeev, A. A. (1996) 'Russian Program of Planetary Missions', Acta Astronautica, Vol 39, No 
1-4, pp 9-14.

Gierasch, P. and Goody, R. (1968) 'A study of the thermal and dynamical structure of the 
Martian lower atmosphere(Scaling of equations of motion in lower Martian 
atmosphere)', Planetary and Space Science, Vol 16, No 5, pp 615-646.

Gierasch, P. J. and Goody, R. M. (1972) 'The effect of dust on the temperature of the Martian 
atmosphere', Journal of the Atmospheric Sciences, Vol 29, No 2, pp 400-402.

Goguen, J. D., Clancy, R. T., Wolff, M. J. and James, P. B. (2003) 'UV optical properties of
aerosol dust from HST STIS spectra of Mars during the 2001 dust storm', Bulletin o f the 
American Astronomical Society, Vol 35, pp 914.

Golombek, M. P. (1997) 'The Mars Pathfinder Mission', Journal of Geophysical Research, Vol 
102, No E2, pp 3953-3965.

Greeley, R., Balme, M. R., Iversen, J. D., Metzger, S., Mickelson, R., Phoreman, J. and White,
B. (2003) 'Martian dust devils: Laboratory simulations of particle threshold', Journal of 
Geophysical Research, Vol 108, No E5, pp 5041.

Greeley, R., Lancaster, N., Lee, S. and Thomas, P. (1992) 'Martian aeolian processes, 
sediments, and features’. Mars, Tucson, The University of Arizona Press.

Greeley, R., Waller, D. A., Cabrol, N. A., Landis, G. A., Lemmon, M. T., Neakrase, L. D. V., 
Hoffer, M. P., Thompson, S. D. and Whelley, P. L. (2010) 'Gusev Crater, Mars: 
Observations of three dust devil seasons', Journal of Geophysical Research, Vol 115, pp 
E00F02.

Greeley, R., Whelley, P. L., Arvidson, R. E., Cabrol, N. A., Foley, D. J., Franklin, B. J.,
Geissler, P. G., Golombek, M. P., Kuzmin, R. O. and Landis, G. A. (2006) 'Active dust 
devils in Gusev crater, Mars: observations from the Mars exploration rover spirit', 
Journal of Geophysical Research, Vol 111, No E12, pp E12S09.

Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., Blake, D.
F., Conrad, P., Edgett, K. S. and Ferdowski, B. (2012) 'Mars Science Laboratory 
mission and science investigation', Space Science Reviews, Vol 170, pp 1-52.

Haberle, R. M., Joshi, M. M., Murphy, J. R., Barnes, J. R., Schofield, J. T., Wilson, G., Lopez- 
Valverde, M., Hollingsworth, J. L., Bridger, A. F. C. and Schaeffer, J. (1999) 'General 
circulation model simulations of the Mars Pathfinder atmospheric structure

221



References

investigation/meteorology data', Journal of Geophysical Research, Vol 104, No E4, pp 
8957-8974.

Haberle, R. M., Leovy, C. B. and Pollack, J. B. (1982) ’Some effects of global dust storms on 
the atmospheric circulation of Mars', Icarus, Vol 50, No 2-3, pp 322-367.

Haberle, R. M., Pollack, J. B., Barnes, J. R., Zurek, R. W., Leovy, C. B., Murphy, J. R., Lee, H. 
and Schaeffer, J. (1993) Mars atmospheric dynamics as simulated by the NASA Ames 
general circulation model 1. The zonal-mean circulation', Journal of Geophysical 
Research, Vol 98, No E2, pp 3093-3123.

Hansen, J. E. and Travis, L. D. (1974) 'Light Scattering in Planetary Atmospheres', Space 
Science Reviews, Vol 16, No 4, pp 527-610.

Hapke, B. (1981) 'Bidirectional reflectance spectroscopy, 1-Theory (of planetary surfaces)', 
Journal of Geophysical Research, Vol 86, pp 3039-3054.

Harvey, B. (1996) The new Russian space programme: from competition to collaboration, 
Chichester, Wiley.

Henyey, L. G. and Greenstein, J. L. (1941) 'Diffuse radiation in the galaxy', The Astrophysical 
Journal, Vol 93, pp 70-83.

Hess, M., Koepke, P. and Schult, I. (1998) 'Optical properties of aerosols and clouds: The
software package OP AC', Bulletin of the American Meteorological Society, Vol 79, No 
5, pp 831-844.

Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A. and Tillman, J. E. (1977) 'Meteorological
results from the surface of Mars: Viking 1 and 2', Journal of Geophysical Research, Vol 
82, pp 4559.

Ives, R. L. (1947) 'Behavior of dust devils', Bulletin of the American Astronomical Society, Vol 
28, pp 168-174.

Jakosky, B. M. and Farmer, C. B. (1982) 'The seasonal and global behavior of water vapor in
the Mars atmosphere: Complete global results of the Viking atmospheric water detector 
experiment', Journal of Geophysical Research, Vol 87, No B4, pp 2999-3019.

Jaquin, F., Gierasch, P. and Kahn, R. (1986) The vertical structure of limb hazes in the Martian 
atmosphere', Icarus, Vol 68, No 3, pp 442-461.

Joseph, J. H., Wiscombe, W. J. and Weinman, J. A. (1976) The delta-Eddington approximation 
for radiative flux transfer’, Journal of the Atmospheric Sciences, Vol 33, No 12, pp 
2452-2459.

222



References

Kaimal, J. C. and Businger, J. A. (1970) 'Case studies of a convective plume and a dust devil', 
Journal of Applied Meteorology, Vol 9, pp 612-620.

Kaufman, Y. J. (1987) 'Satellite sensing of aerosol absorption', Journal o f Geophysical 
Research, Vol 92, No D4, pp 4307-4317.

Kaufman, Y. J., Tanre, D., Dubovik, O., Kamieli, A. and Remer, L. A. (2001) 'Absorption of 
sunlight by dust as inferred from satellite and ground-based remote sensing', 
Geophysical Research Letters, Vol 28, No 8, pp 1479-1482.

Kemey, K. R. and Schuerger, A. C. (2011) 'Survival of Bacillus subtilis Endospores on 
Ultraviolet-Irradiated Rover Wheels and Mars Regolith under Simulated Martian 
Conditions', Astrobiology, Vol 11, No 5, pp 477-485.

Klein, H. P., Horowitz, N. H. and Biemann, K. (1992) 'The search for extant life on Mars'. 
Mars, The University of Arizona Press Tucson.

Lemmon, M. (2004) MER Mars Pancam Atmospheric Opacity RDR VI.0, NASA Planetary 
Data System, MER1/MER2-M-PANCAM-5-ATMOS-OPACITY- V1.0

Lemmon, M. (2008) PHX Mars SSI Atmospheric Opacity RDR V1.0, NASA Planetary Data 
System, PHX-M-SSI-5-ATMOS- OPACITY-Vl.O

Lemmon, M. T., Wolff, M. J., Smith, M. D., Clancy, R. T., Banfield, D., Landis, G. A., Ghosh, 
A., Smith, P. H., Spanovich, N. and Whitney, B. (2004) 'Atmospheric imaging results 
from the Mars Exploration Rovers: spirit and opportunity', Science, Vol 306, No 5702, 
pp 1753-1756.

Leovy, C. and Mintz, Y. (1969) 'Numerical simulation of the atmospheric circulation and
climate of Mars', Journal of the Atmospheric Sciences, Vol 26, No 6, pp 1167-1190.

Leovy, C. B. (1985) The general circulation of Mars: Models and observations', Advances in 
geophysics, Vol 28, pp 327-346.

Liu, J., Richardson, M. I. and Wilson, R. J. (2003) 'An assessment of the global, seasonal, and 
interannual spacecraft record of Martian climate in the thermal infrared', Journal of 
Geophysical Research, Vol 108, No E8, pp 5089.

Lorenz, L. V. (1890) 'Upon the light reflected and refracted by a transparent sphere', Vidensk. 
Selsk. Shrifter, Vol 6, pp 1-62.

Lowell, P. (1906) Mars and its Canals, The Macmillan company; London: Macmillan & co., 
ltd.

223



References

Maatanen, A., Fouchet, T., Forni, O., Forget, F., Savijarvi, H., Gondet, B., Melchiorri, R.,
Langevin, Y., Formisano, V. and Giuranna, M. (2009) 'A study of the properties of a 
local dust storm with Mars Express OMEGA and PFS data', Icarus, Vol 201, No 2, pp 
504-516.

Markiewicz, W. J., Sablotny, R. M., Keller, H. U., Thomas, N., Titov, D. and Smith, P. H.
(1999) 'Optical properties of the Martian aerosols as derived from Imager for Mars 
Pathfinder midday sky brightness data', Journal of Geophysical Research, Vol 104, No 
E4, pp 9009-9017.

Mateshvili, N., Fussen, D., Vanhellemont, F., Bingen, C., Dodion, J., Montmessin, F., Perrier,
S. and Bertaux, J. L. (2007) 'Detection of Martian dust clouds by SPICAM UV nadir 
measurements during the October 2005 regional dust storm', Advances in Space 
Research, Vol 40, No 6, pp 869-880.

McCleese, D. J., Heavens, N. G., Schofield, J. T., Abdou, W. A., Bandfield, J. L., Calcutt, S. B., 
Irwin, P. G. J., Kass, D. M., Kleinbohl, A. and Lewis, S. R. (2010) 'The Structure and 
Dynamics of the Martian Lower and Middle Atmosphere as Observed by the Mars 
Climate Sounder: 1. Seasonal variations in zonal mean temperature, dust and water ice 
aerosols', Journal of Geophysical Research-Planets, Vol 115, No E12, pp E12016.

Merrison, J., Holstein-Rathlou, C., Gunnlaugsson, H. and Nomberg, P. (2009) 'A European
Mars Simulation Wind Tunnel Facility', European Planetary Science Congress 2009, 
pp. 76.

Metzger, S. M. (1999a) Dust devils as Aeolian Transport Mechanisms in Southern Nevada and 
the Mars Pathfinder Landing Site, University of Nevada.

Metzger, S. M., Balme, M. R., Towner, M. C., Bos, B. J., Ringrose, T. J. and Patel, M. R.
(2011) 'In-Situ Measurements of Particle Load and Transport in Dust Devils', Icarus, 
Vol 214, No 2, pp 766-772.

Metzger, S. M., Carr, J. R., Johnson, J. R., Parker, T. J. and Lemmon, M. T. (1999) 'Dust devil 
vortices seen by the Mars Pathfinder camera', Geophysical Research Letters, Vol 26, 
No 18, pp 2781-2784.

Metzger, S. M., Carr, J. R., Johnson, J. R., Parker, T. J. and Lemmon, M. T. (1999b) 'Dust devil 
vortices seen by the Mars Pathfinder camera', Geophysical Research Letters, Vol 26, 
No 18, pp 2781-2784.

Mie, G. (1908) 'A contribution to the optics of turbid media, especially colloidal metallic 
suspensions', pp. 377-445.

Mishchenko, M. I. (2009) 'Gustav Mie and the fundamental concept of electromagnetic 
scattering by particles: A perspective', Journal of Quantitative Spectroscopy and 
Radiative Transfer, Vol 110, No 14-16, pp 1210-1222.

224



References

Mishchenko, M. I., Hovenier, J. W. and Travis, L. D. (2000) Light scattering by nonspherical 
particles: theory, measurements, and applications San Diego, Academic Press.

Mumma, M. J., Villanueva, G. L., Novak, R. E., Hewagama, T., Bonev, B. P., DiSanti, M. A., 
Mandell, A. M. and Smith, M. D. (2009) 'Strong release of methane on Mars in northern 
summer 2003', Science, Vol 323, No 5917, pp 1041-1045.

Neakrase, L. D. V. and Greeley, R. (2010a) 'Dust devil sediment flux on Earth and Mars: 
Laboratory simulations', Icarus, Vol 206, No 1, pp 306-318.

Neakrase, L. D. V. and Greeley, R. (2010b) 'Dust devils in the laboratory: Effect of surface
roughness on vortex dynamics', Journal of Geophysical Research, Vol 115, No E5, pp 
E05003.

Neakrase, L. D. V., Greeley, R., Iversen, J. D., Balme, M. R. and Eddlemon, E. E. (2006) 'Dust 
flux within dust devils: Preliminary laboratory simulations', Geophysical Research 
Letters, Vol 33, No 19, pp L19S09.

Newman, C. E., Lewis, S. R., Read, P. L. and Forget, F. (2002) 'Modeling the Martian dust
cycle, 1. Representations of dust transport processes', Journal of Geophysical Research, 
Vol 107, No E12, pp 5123.

Nier, A. O., Hanson, W. B., McElroy, M. B., Seiff, A. and Spencer, N. W. (1972) 'Entry science 
experiments for Viking 1975', Icarus, Vol 16, No 1, pp 74-91.

Nprnberg, P., Gunnlaugsson, H. P., Merrison, J. P. and Vendelboe, A. L. (2009) 'Salten Skov I: 
A Martian magnetic dust analogue', Planetary and Space Science, Vol 57, No 5, pp 
628-631.

Nousiainen, T. (2009) 'Optical Modeling of Mineral Dust Particles: A Review', Journal of 
Quantitative Spectroscopy & RadiativeTransfer, Vol 110, No 14-16, pp 1261-1279.

Ockert-Bell, M. E., Bell, J. F., Pollack, J. B., McKay, C. P. and Forget, F. (1997) 'Absorption 
and scattering properties of the Martian dust in the solar wavelengths', Journal of 
Geophysical Research, Vol 102, No E4, pp 9039-9050.

Otter, S. (2010) Simulation of the Radiative Flux at the Martian Surface between 180 and
llOOnm, Planetary and Space Science Research Institue, Thesis, The Open University.

Owen, T. (1992) 'The composition and early history of the atmosphere of Mars'. Mars, tucson, 
The University of Arizona Press.

Parkinson, T. D. and Hunten, D. M. (1972) 'Martian dust storm: its depth on 25 November 
1971', Science, Vol 175, pp 323.

225



References

Patel, M. R. (2003) Modelling the Ultraviolet Environment at the Surface of Mars and Design 
of the Beagle 2 UV Sensor, Thesis, The Open University.

Patel, M. R., Christou, A. A., Cockell, C. S., Ringrose, T. J. and Zamecki, J. C. (2004) 'The UV 
environment of the Beagle 2 landing site: detailed investigations and detection of 
atmospheric state', Icarus, Vol 168, No 1, pp 93-115.

Patel, M. R., Zamecki, J. C. and Catling, D. C. (2002) 'Ultraviolet radiation on the surface of
Mars and the Beagle 2 UV sensor', Planetary and Space Science, Vol 50, No 9, pp 915- 
927.

Patterson, E. M., Gillette, D. A. and Stockton, B. H. (1977) 'Complex index of refraction
between 300 and 700 nm for Saharan aerosols', Journal of Geophysical Research, Vol 
82, No 21, pp 3153-3160.

Pearl, J. C., Smith, M. D., Conrath, B. J., Bandfield, J. L. and Christensen, P. R. (2001)
'Observations of martian ice clouds by the Mars Global Surveyor Thermal Emission 
Spectrometer: the first martian year', Journal of Geophysical Research, Vol 106, No 12, 
pp 325-12.

Petrova, E., Keller, H. U., Markiewicz, W. J., Thomas, N. and Wuttke, M. W. (1996) 'Ice hazes 
and clouds in the Martian atmosphere as derived from the Phobos/KRFM data', 
Planetary and Space Science, Vol 44, No 10, pp 1163-1176.

Petrova, E. V. (1993) 'Irregular shape of particles and the Martian aerosols' properties', 
Planetary and space science, Vol 41, No 8, pp 587-591.

Pettit, E. and Richardson, R. S. (1955) 'Observations of Mars made at Mount Wilson in 1954', 
Publications o f the Astronomical Society of the Pacific, Vol 67, No 395, pp 62-73.

Pollack, J. B., Colbum, D., Kahn, R., Hunter, J. and Van, C. (1977) 'Properties of aerosols in the 
Martian atmosphere, as inferred from Viking Lander imaging data', Journal of 
Geophysical Research, Vol 82, No 28, pp 4479-4496.

Pollack, J. B., Colbum, D. S., Flasar, F. M., Kahn, R., Carlston, C. E. and Pidek, D. (1979)
'Properties and effects of dust particles suspended in the Martian atmosphere', Journal 
of Geophysical Research, Vol 84, No B6, pp 2929-2945.

Pollack, J. B. and Cuzzi, J. N. (1980) 'Scattering by nonspherical particles of size comparable to 
wavelength-A new semi-empirical theory and its application to tropospheric aerosols', 
Journal of Atmospheric Sciences, Vol 37, pp 868-881.

Pollack, J. B., Leovy, C. B., Mintz, Y. H. and Van, C. (1976) 'Winds on Mars during the Viking 
season- Predictions based on a general circulation model with topography', Geophysical 
Research Letters, Vol 3, pp 479-482.

226



References

Pollack, J. B., Ockert-Bell, M. E. and Shepard, M. K. (1995) 'Viking lander Image Analysis of 
Martian Atmospheric Dust', Journal of Geophysical Research, Vol 100, No 3, pp 5235- 
5250.

Purcell, E. M. and Pennypacker, C. R. (1973) 'Scattering and absorption of light by nonspherical 
dielectric grains', The Astrophysical Journal, Vol 186, pp 705-714.

Rayleigh, L. (1918) 'On the scattering of light by a cloud of similar small particles of any shape 
and oriented at random', Philosophical magazine, Vol 35, pp 373-381.

Read, P. L. and Lewis, S. R. (2004) The Martian climate revisited: atmosphere and 
environment of a desert planet, Springer Verlag.

Reid, J. S., Jonsson, H. H., Maring, H. B., Smirnov, A., Savoie, D. L., Cliff, S. S., Reid, E. A., 
Livingston, J. M., Meier, M. M. and Dubovik, O. (2003) 'Comparison of size and 
morphological measurements of coarse mode dust particles from Africa', Journal of 
Geophysical Research, Vol 108, No 9, pp 1-9.

Renno, N. O., Abreu, V. J., Koch, J., Smith, P. H., Hartogensis, O. K., De Bruin, H. A. R.,
Burose, D., Delory, G. T., Farrell, W. M. and Watts, C. J. (2004) 'MATADOR 2002: A 
pilot field experiment on convective plumes and dust devils', Journal o f Geophysical 
Research, Vol 109, No E7, pp E07001.

Richardson, M. I., Wilson, R. J. and Rodin, A. V. (2002) 'Water ice clouds in the Martian 
atmosphere: General circulation model experiments with a simple cloud scheme', 
Journal of Geophysical Research, Vol 107, No E9, pp 5064.

Rodin, A. V., Korablev, O. I. and Moroz, V. I. (1997) 'Vertical Distribution of Water in the
Near-Equatorial Troposphere of Mars: Water Vapor and Clouds', Icarus, Vol 125, No 1, 
pp 212-229.

Ryan, J. A. (1964) 'Notes on the Martian yellow clouds', Journal of Geophysical Research, Vol 
69, No 18, pp 3759-3770.

Ryan, J. A. and Carroll, J. J. (1970) 'Dust devil wind velocities: Mature state', Journal o f 
Geophysical Research, Vol 75, No 3, pp 531-541.

Sagdeev, R. Z., Balebanov, V. M. and Zakharov, A. V. (1988) 'The Phobos project: scientific 
objectives and experimental methods', Astrophysics and Space Physics Reviews, Vol 6,
pp 1-60.

Schiaparelli, G. (1899) 'Observations of the planet Mars', Science, Vol 9, No 227, pp 633.

Schofield, J. T., Barnes, J. R., Crisp, D., Haberle, R. M., Larsen, S., Magalhaes, J. A., Murphy, 
J. R., Seiff, A. and Wilson, G. R. (1997) 'The Mars Pathfinder Atmospheric Structure 
Investigation/Meteorology (ASI/MET) experiment', Science, Vol 278, pp 1752-1757.

227



References

Schuerger, A. C., Mancinelli, R. L., Kern, R. G., Rothschild, L. J. and McKay, C. P. (2003) 
'Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated 
martian environments::: implications for the forward contamination of Mars', Icarus,
Vol 165, No 2, pp 253-276.

Schuerger, A. C., Richards, J. T., Newcombe, D. A. and Venkateswaran, K. (2006) 'Rapid
inactivation of seven Bacillus spp. under simulated Mars UV irradiation', Icarus, Vol 
181, No l ,pp 52-62.

Shelton, W. R. (1968) Soviet space exploration: the first decade, New York, Washington 
Square Press.

Shettle, E. P. and Fenn, R. W. (1976) 'Models of the atmospheric aerosols and their optical 
properties',

Sims, M. R., Pillinger, C. T., Wright, I. P., Dowson, J., Whitehead, S., Wells, A., Spragg, J. E., 
Fraser, G., Richter, L. and Hamacher, H. (1999) 'Beagle 2: a proposed exobiology 
lander for ESA's 2003 Mars Express mission', Advances in Space Research, Vol 23, No 
11, pp 1925-1928.

Sinclair, P. C. (1966) A Quantitative analysis of the dust devil, Thesis, University of Arizona.

Sinclair, P. C. (1973) 'The lower structure of dust devils', Journal of Atmospheric Sciences, Vol 
30, pp 1599-1619.

Sinclair, P. C. (1974) Vertical transport of desert particulates by dust devils and clear thermals, 
California University., Livermore (USA). Lawrence Livermore Lab.,

Smith, M. D. (2009) 'THEMIS observations of Mars aerosol optical depth from 2002-2008', 
Icarus, Vol 202, No 2, pp 444-452.

Smith, M. D., Pearl, J. C., Conrath, B. J. and Christensen, P. R. (2001) 'Thermal Emission 
Spectrometer results- Mars atmospheric thermal structure and aerosol distribution', 
Journal of Geophysical Research, Vol 106, No E10, pp 23929-23945.

Smith, M. D., Wolff, M. J., Spanovich, N., Ghosh, A., Banfield, D., Christensen, P. R., Landis,
G. A. and Squyres, S. W. (2006) 'One Martian year of atmospheric observations using 
MER Mini-TES', Journal o f Geophysical Research, Vol 111, No El l ,  pp E12S13.

Smith, P. H., Bell III, J. F., Bridges, N. T., Britt, D. T., Gaddis, L., Greeley, R., Keller, H. U., 
Herkenhoff, K. E., Jaumann, R., Johnson, J. R., Kirk, R. L., Lemmon, M. T., Maki, J. 
N., Malin, M. C., Murchie, S. L., Oberst, J., Parker, T. J., Reid, R. J., Sablotny, R. M., 
Soderblom, L. A., Stoker, C., Sullivan, R., Thomas, N., Tomasko, M. G., Ward, W. and

228



References

Wegryn, E. (1997) 'Results from the Mars Pathfinder Camera', Science, Vol 278, pp 
1758-1764.

Smith, P. H. and Lemmon, M. (1999) 'Opacity of the Martian atmosphere measured by the 
Imager for Mars Pathfinder', Journal of Geophysical Research, Vol 104, No E4, pp 
8975-8985.

Smith, P. H., Tamppari, L., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W., Carswell, A., 
Catling, D., Clark, B. and Duck, T. (2008) 'Introduction to special section on the 
phoenix mission: landing site characterization experiments, mission overviews, and 
expected science', Journal o f Geophysical Research, Vol 113, No E3, pp E00A18.

Smith, P. H., Tamppari, L. K., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W. V., Carswell, 
A., Catling, D. C., Clark, B. C. and Duck, T. (2009) 'H20 at the Phoenix landing site', 
Science, Vol 325, No 5936, pp 58-61.

Smith, S. A. and Smith, B. A. (1972) 'Diurnal and seasonal behavior of discrete white clouds on 
Mars', Icarus, Vol 16, No 3, pp 509-521.

Smrekar, S., Catling, D., Lorenz, R., Magalhaes, J., Moersch, J., Morgan, P., Murphy, L, 
Murray, B., Presley-Holloway, M. and Yen, A. (1999) 'Deep Space 2: the Mars 
microprobe mission', Journal of Geophysical Research, Vol 104, No E l l ,  pp 27013- 
27030.

Soffen, G. A. (1977) 'The Viking Project', Journal of Geophysical Research, Vol 82, No 28, pp 
3959-3970.

Sokolik, I. N. and Toon, O. B. (1999) 'Incorporation of mineralogical composition into models 
of the radiative properties of mineral aerosol from UV to IR wavelengths', Journal of 
Geophysical Research, Vol 104, No D8, pp 9423-9444.

Squyres, S. W., Arvidson, R. E., Bell Iii, J. F., Bruckner, J., Cabrol, N. A., Calvin, W., Carr, M. 
H., Christensen, P. R., Clark, B. C. and Grumpier, L. (2004a) 'The opportunity rover’s 
athena science investigation at Meridiani Planum, Mars', Science, Vol 306, No 5702, pp 
1698-1703.

Squyres, S. W., Arvidson, R. E., Bell Iii, J. F., Bruckner, J., Cabrol, N. A., Calvin, W., Carr, M.
H., Christensen, P. R., Clark, B. C. and Grumpier, L. (2004b) The Spirit rover's Athena 
science investigation at Gusev crater, Mars', Science, Vol 305, No 5685, pp 794-799.

Tamppari, L. K., Bass, D., Cantor, B., Daubar, I., Dickinson, C., Fisher, D., Fujii, K., 
Gunnlauggson, H. P., Hudson, T. L. and Kass, D. (2010) 'Phoenix and MRO 
coordinated atmospheric measurements', Journal of Geophysical Research, Vol 115, pp 
E00E17.

229



References

Thomas, N., Keller, H. U., Britt, D. T., Smith, P. H., Herkenhoff, K. E. and Semenov, B. (1999) 
'Observations of Phobos, Deimos, and bright stars with the Imager for Mars Pathfinder', 
Journal of Geophysical Research, Vol 104, No E4, pp 9055-9068.

Thomas, P. and Gierasch, P. J. (1985) 'Dust devils on Mars', Science, Vol 230, No 4722, pp 175.

Tomasko, M. G., Doose, L. R., Lemmon, M., Smith, P. H. and Wegryn, E. (1999) 'Properties of 
dust in the Martian atmosphere from the Imager on Mars Pathfinder', Journal of 
Geophysical Research, Vol 104, No E4, pp 8987-9007.

Van de Hulst, H. C. (1957) Light scattering by small particles, Dover Publications.

Vincendon, M. and Langevin, Y. (2010) 'A spherical Monte-Carlo model of aerosols:
Validation and first applications to Mars and Titan', Icarus, Vol 207, No 2, pp 923-931.

Vincendon, M., Langevin, Y., Poulet, F., Bibring, J. P. and Gondet, B. (2007) ’Recovery of
surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR 
using a Monte Carlo approach: Application to the OMEGA observations of high- 
latitude regions of Mars', Journal of Geophysical Research, Vol 112, No E8, pp 
E08S13.

Wang, H. and Ingersoll, A. P. (2002) 'Martian clouds observed by Mars Global Surveyor Mars 
Orbiter Camera', Journal of Geophysical Research (Planets, Vol 107, No E10, pp 5078.

Whelley, P. L. and Greeley, R. (2006) 'Latitudinal dependency in dust devil activity on Mars', 
Journal of Geophysical Research, Vol 111 No E10, pp E10003.

Whiteway, J., Daly, M., Carswell, A., Duck, T., Dickinson, C., Komguem, L. and Cook, C.
(2008) 'Lidar on the Phoenix mission to Mars', Journal of Geophysical Research, Vol 
113, pp E00A08.

Whiteway, J. A., Komguem, L., Dickinson, C., Cook, C., Hlnicki, M., Seabrook, J., Popovici, 
V., Duck, T. J., Davy, R. and Taylor, P. A. (2009) 'Mars water-ice clouds and 
precipitation', Science, Vol 325, No 5936, pp 68-70.

Whitney, B. A. (2011) 'Monte Carlo radiative transfer', Bulletin of the Astronomical Society of 
India, Vol 39, pp 101-127.

Wilson, R. J., Neumann, G. A. and Smith, M. D. (2007) 'Diurnal variation and radiative
influence of Martian water ice clouds', Geophysical Research Letters, Vol 34, No 2, pp 
2710.

Withers, P. and Murphy, J. R. (2009) MER1/MER2-M-LMU-5-EDL-DERNED- NASA 
Planetary Data System

230



References

Withers, P. and Smith, M. D. (2006) 'Atmospheric entry profiles from the Mars exploration 
Rovers Spirit and Opportunity', Icarus, Vol 185, No 1, pp 133-142.

Witt, A. N. (1977) 'Multiple scattering in reflection nebulae. I. A Monte Carlo approach', 
Astrophysical Journal Supplement Series, Vol 35, pp 1-6.

Wolff, M. J., Bell, J. F., James, P. B., Clancy, R. T. and Lee, S. W. (1999) 'Hubble Space 
Telescope observations of the Martian aphelion cloud belt prior to the Pathfinder 
mission- Seasonal and interannual variations', Journal o f Geophysical Research, Vol 
104, No E4, pp 9027-9041.

Wolff, M. J. and Clancy, R. T. (2003) 'Constraints on the size of Martian aerosols from Thermal 
Emission Spectrometer observations', Journal of Geophysical Research, Vol 108, No 
E9, pp 5097.

Wolff, M. J., Smith, M. D., Clancy, R. T., Arvidson, R. and Kahre, M. (2009) 'Wavelength 
dependence of dust aerosol single scattering albedo as observed by the Compact 
Reconnaissance Imaging Spectrometer', Journal of Geophysical Research, Vol 114, No 
E2, pp E00D04.

Wolff, M. J., Smith, M. D., Clancy, R. T., Spanovich, N., Whitney, B. A., Lemmon, M. T., 
Bandfield, J. L., Banfield, D., Ghosh, A. and Landis, G. (2006) 'Constraints on dust 
aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES’, 
Journal o f Geophysical Research, Vol 111, No E12, pp E12S17.

Wolff, M. J., Todd Clancy, R., Goguen, J. D., Malin, M. C. and Cantor, B. A. (2010)
'Ultraviolet dust aerosol properties as observed by MARCI', Icarus, Vol 208, No 1, pp 
143-155.

Zahnle, K., Freedman, R. S. and Catling, D. C. (2011) 'Is there methane on Mars?', Icarus, Vol 
212, No 2, pp 493-503.

Zurek, R. W., Barnes, J. R., Haberle, R. M., Pollack, J. B., Tillman, J. E. and Leovy, C. B.
(1992) 'Dynamics of the atmosphere of Mars'. Mars, Tucson, The University of Arizona 
Press.

231


