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Abstract

Spatiotemporal increase of the intracellular Ca2+ is the most universal way to regulate

the function of a eukaryotic cell. Owing to a host of actin-binding proteins and enzymes whose

activities are modulated by the local concentration of Ca2+, free Ca2+ in cytosol serves as a

2+
pivotal second messenger in a variety of cell functions. The rise and fall o f intracellular Ca 

wave has been best illustrated in eggs at fertilization. However, the molecular mechanism by 

which intracellular Ca2+ is increased in the fertilized egg is largely unknown despite the 

discoveries of the distinct Ca2+-mobilizing second messengers in the past 30 years. In this 

thesis, I have used the starfish oocytes to study how Ca2+ signaling can be modulated by the 

actin cytoskeleton, which is known to be dynamically remodelled during meiotic maturation 

and fertilization of the egg. The principal issues of my experimental work are: (i) to establish 

the role of actin-binding proteins and PIP2 in the regulation of the Ca2+ signaling; (ii) to study 

the effect of the Ca2+-store depletion on Ca2+ signaling and on the structure and function of the 

actin cytoskeleton, and (iii) to study the role of the actin-cytoskeleton in establishing the block 

to polyspermy. Microinjected into starfish eggs, actin-binding protein gelsolin, function- 

blocking antibody to depactin, and the PHVsequestering fusion protein that indirectly alters 

the actin cytoskeleton, all changed a certain aspect of Ca2+ signaling. Depletion of the Ca2+ 

store with ionomycin in turn drastically changed the cortical structure and the actin 

cytoskeleton of the eggs, eventually leading to a deleterious effect on egg activation and early 

development. Finally, the alteration of the actin cytoskeleton led to failure to establish a fast 

and slow block to polyspermy. Taken together, this study indicated that the actin cytoskeleton 

is an important factor that optimizes the Ca2+ response at egg activation and guides 

monospermic fertilization.



CHAPTER I 

Introduction

Starfish as an animal model system

The experimental model mostly used in this work was the starfish oocyte. Starfish 

oocytes were obtained from three different species: A. aranciacus (A. aranciacus), Patiria 

miniata (also known as Asterina miniata) and Asterina pectinifera (A. pectinifera). Starfish 

belong to the phylum Echinodermata, class Stelleroide, subclass Asteroidea.

The body of starfish presents radial symmetry. A fully grown organism of A. 

aranciacus is about 50 cm in diameter, and consists o f a central disk and five rays. The 

oral surface containing the mouth is exposed to the substrate, whereas the aboral surface 

with madreporite is the entry site of the water-vascular system. The reproductive system of 

the female animal consists of 10 separate ovaries, two in each ray. During oogenesis, there 

is an increased protein synthesis, growth and differentiation. The breeding season begins 

upon the action of an unknown environmental cue that stimulates the radial nerves to 

produce a neuro-hormone called gonad-stimulating substance (Kanatani et al., 1967). This 

hormone induces production of a maturation hormone 1-methyladenine (1-MA) in the 

follicle cells surrounding the oocytes. When 1-MA is distributed to the oocyte surface, it 

induces meiotic resumption in all the species of starfish (Kanatani et al., 1970). Soon after, 

the mature eggs deprived of follicle cells are released into the seawater. Starfish reproduce 

by external fertilization, for which sperm and eggs are released in vicinity and at the same 

time from gonoducts and gonophores that are located in the base o f the each ray o f male 

and female bodies, respectively (Villet et al., 1978).

A. aranciacus lives 2-20 m deep in the Mediterranean sea, buried in the sand. These 

animals were being captured in the bay of Naples, Italy, during the breeding season from 

February until May. Patiria miniata (P. miniata) were captured in California, USA, 

whereas A. pectinifera were from the Mutsu Bay, Japan. Animals were kept in the natural
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seawater at 15 °C inside the specialized tanks and maintained by the staffs at the Stazione 

Zoologica o f Naples.

Starfish oocytes are a very useful model system for studying Ca2+ signaling, oocyte 

maturation, fertilization and embryonic development. To obtain the gametes, all it takes is 

to make a small surgical cut where the gonads are located. Once the dissected gonads are 

placed in seawater, free oocytes sediment from the cut ends. The gonads provide a large 

quantity of oocytes that are arrested at the first prophase of the meiotic cycle. These 

oocytes can be induced to undergo meiotic resumption in vitro by addition of the 

maturation hormone 1-MA. Microinjection in these big cells is relatively easy, and the 

embryos develop rapidly reaching the 32-cell stage within 5 hours. The eggs and embryos 

are transparent under microscope, enabling excellent observation of morphological traits.
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Figure I 1. (a) Adult animal of A. pectinifera (red arrow) and Astropecten 

araciacus (black arrow), (b) Female gonads isolated from A. pectinifera.
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Morphology of starfish oocytes

When the oocytes of A. aranciacus and P. miniata are fully grown in ovaries, they 

have a diameter of 300 pm and 190 pm, respectively. These oocytes are characterized by 

the presence o f a big nucleus termed ‘germinal vesicle’ that can be seen in one side the 

cytoplasm having a diameter o f 70 pm and 60-90 pm, respectively.

* The oocytes are surrounded by two layers: a jelly coat and a vitelline layer. The 

surface o f the oocytes emits numerous microvilli 0,3-0,4 pm in length, and the vitelline 

layer is intimately associated with the oocyte’s surface (Shroeder, 1981; Longo et al, 

1995). The vitelline layer contains glycoproteins and is about 0,5 pm thick. It is 

surrounded by the jelly coat which is secreted by the follicle cells (Shroeder, 1981; 

Santella et al., 1983). The small follicle cells surround the oocytes about 15 pm from the 

oocytes surface. They make contact with the oocytes surface by means of cytoplasmic 

extensions that penetrate the jelly layer and the vitelline layer to make contact with the 

oocytes plasma membrane through desmosome-like attachments. It has been suggested that 

1-MA is transmitted from the follicle cells through these processes (Schroeder, 1981).

In the germinal vesicle, the chromatin is decondensed and the nucleolus is visible 

even under the light microscope. Starfish oocytes are polarised. The germinal vesicle is 

localised in the animal hemisphere, and the opposite side is defined as the vegetal 

hemisphere. The germinal vesicle is round in shape, but the region at which it is anchored 

to the cortex near the plasma membrane is highly convoluted. This region between the 

plasma membrane and the germinal vesicle is the place where centrosomes and pre-meiotic 

aster are located (Myazaki et al., 2000). The endoplasmic reticulum (ER) is evenly 

distributed in the cytoplasm (Jaffe and Terasaki, 1994) together with other intracellular 

organelles, like lipid droplets and yolk granules (referred also as yolk bodies). Ooocytes 

are also abundant with cortical granules, ribosomes, Golgi complexes and mitochondria. 

Yolk granules occupy about a half of the cytoplasm volume of the oocytes. They are 1-2 

pm in diameter and are the major sites of nutrient storage. The majority of the proteins that



are contained in the yolk granules are not required for early embryogenesis in starfish, as 

their depletion is not significant until the larval stage (Reimer and Crawford, 1995).

A large assemblage in the cortex of the oocyte is the subplasmalemmal 

cytoskeleton (Sardet et al., 2002). The tightly packed actin filaments are absent only where 

the germinal vesicle is connected to the plasma membrane. Through this ‘corridor,’ the 

polar bodies are extruded. Whereas the yolk granules are dispersed in the entire cytoplasm, 

the cortical granules are localized in the cortex o f the oocytes (Reamer and Crawford,

1995). Cortical granules have diameter of about 1 pm and display an irregular ovoidal 

shape, and contain sulphated acid mucopolysaccharides and proteins (Sousa and Azevedo, 

1989). Cortical granules are positioned 1-3 pm away from the plasma membrane in 

immature oocytes. During meiotic maturation, they translocate to the surface area 

immediately underneath the plasma membrane. There are about 40,000-50,000 of cortical 

granules in starfish oocytes of Pisaster ochraceus and A. pectinifera (Schroeder, 1985). It 

has been suggested that they are important during fertilization and at embryonic 

development. Their major function is to form the fertilization envelope following their 

exocytosis. The fertilization envelope serves as a physical barrier to block polyspermy 

(Vacquier et al., 1973; Schuel, 1978). During embryonic development, they secrete 

extracellular matrix components (Teimer and Crowford, 1995). Besides the cortical 

granules, additional class of large vesicles called ‘acidic vesicles’ reside in the cortex of 

the oocytes. These vesicles ranging 1-2 pm in diameter are seen to be exocytosed during 

the vitelline layer elevation at fertilization (Vasilev et al., 2 0 1 2 ).
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Stimulation of the cell cycle resumption by 1-Methyladenine

Fully grown oocytes isolated during the breeding season are arrested in the first 

prophase o f the meiosis. At this stage, the oocytes are not able to be successfully fertilized 

by one sperm. The oocytes can be induced to resume the meiotic cycle in vitro by adding 

the maturation hormone 1-MA. The hormone provokes two successive M-phases of the 

cell cycle, bringing the oocyte to the pronucleus stage (Kishimoto, 2003).

In response to the maturation hormone the immature starfish oocytes resume the 

meiotic cycle and undergo nuclear disassembly during a process referred to as ‘germinal 

vesicle breakdown’ (GVBD). The time course for the GVBD is different for the various 

species, being 30 minutes for P. miniata and 60 minutes for A. aranciacus. It takes several 

minutes since the sharp outline of the germinal vesicle becomes irregular and finally 

disappears until the complete intermixing of the nuclear and cytoplasmic contents.

The dose of 1-MA necessary for inducing the oocytes to undergo meiotic 

maturation in vitro is from 1 to 10 pM. The ‘hormone dependent period’ is defined as the 

minimal time needed for the oocytes to be exposed to the hormone in order to display clear 

signs of maturation in 50% of the oocytes (Nemoto, 1982). It is highly dependent on 

temperature (increases as the temperature is lowered) and the 1-MA concentration 

(Schuetz 1969a).

How 1-MA stimulates the oocytes has not been fully understood so far. However, it 

was shown that the hormone works only when it is added to the oocytes from outside. 

Oocytes microinjected with the hormone does not undergo meiosis, suggesting that a cell 

surface receptor is involved in the process. In line with this, when the uptake of the 

hormone into the cell was blocked it could still elicit its biological activity (Doree and 

Guerrier, 1975), suggesting that its effect is mediated by a signal transduction pathway. 

The receptor for 1-MA has not been identified yet (Shida and Shida, 1976). Indeed, the 

response of oocytes to 1-MA is significantly impeded by Triton X-100 that extracts 

proteins from the plasma membrane (Morisawa and Kanatani, 1978).



It has been suggested that 1-MA could restart meiosis through a receptor-coupled 

heterotrimeric G-proteins (Shilling et al., 1989). The a, (3 and y subunits of the G-protein 

has been purified from the plasma membrane of starfish oocytes (Tadenuma et al., 1991; 

Tadenuma et al., 1992), and the effect of 1-MA has been shown to be sensitive to the 

pertussis toxin (PTX) (Shilling et al., 1989). The inhibition of the 1-MA-induced 

maturation by microinjection o f the pertussis toxin (Shilling et al., 1989) and the Gja 

supports that the 1-MA effect is mediated by the receptor linked with the G-protein. In 

support of the idea, microinjection of Gpy into the starfish oocytes led to GVBD in the 

absence of 1-MA (Jaffet et al., 1993; Chiba et al., 1993). The effectors of the Gpy subunits 

are suggested to be located in the cytoplasm of the oocytes, since injection in the central 

region of the cytoplasm close to the germinal vesicle induces faster GVBD than injection 

near the plasma membrane (Chiba et al., 1993). It has been reported that the target for the 

G-protein py subunits can be phosphatidylinositol 3-kinase (PI3K) (Lopez-Ilasaca et al., 

1997; Stephens et al., 2002). PI3K has been proposed to be downstream effector o f Gpy 

because the inhibition of PI3K by wortmannin and LY294002 blocks the 1-MA-induced 

meiosis and MPF activation (Sadler and Ruderman, 1998).

The finding that the cytoplasmic extract taken from the hormone-stimulated frog 

oocytes can stimulate the progression of the cell cycle in non-stimulated cells (Masui and 

Markert, 1971) suggested the presence of a cytoplasmic factor sufficient for inducing 

maturation. Similar results were obtained from the starfish oocytes microinjected with the 

cytosol of 1-MA-treated oocytes. These oocytes underwent GVBD and polar body 

formation without 1-MA (Kishimoto and Kanatni, 1976). The Maturation-Promoting 

Factor (MPF) has been shown to be the underlying factor in the 1-MA-dependent oocyte 

maturation, and is made of a complex of two proteins: cyclin B and Cdc2 kinase (cyclin 

B/Cdc2). The signaling pathway leading to the activation of the MPF has been elucidated 

in several experimental systems. 1-MA indirectly activates the kinase Akt (protein kinase 

B, PKB), that phosphorylates and down-regulates M ytl, a membrane-associated kinase



that in turn phosphorylates Cdc2 on tyrosine 15 and threonine 14 (Mueller et al., 1995; 

Okumura et al., 2002). The phosphorilation of the Cdc2 keeps the complex cyclinB/Cdc2 

in an inactive state. The activity o f Cdc25, a tyrosine phosphatase that activates MPF by 

dephosphorylating the tyrosine residues, is regulated by autophosphorylation and 

dephospholyration and is sensitive to protein phosphatase 1 (PP1) and protein phosphatase 

2A (PP2A) (Masui, 2001; Prigent and Hunt, 2004). MPF is inactive in the cytoplasm of 

immature starfish oocytes, but accumulates in the nucleus after being activated in the 

cytoplasm (Ookata et al., 1992). The translocation of MPF and Cdc25 is thought to be 

essential for the final MPF activation. In starfish, MPF enters the oocyte nucleus at the 

animal hemisphere (Terasaki et al., 2003). The disassembly of the nuclear lamina occurs as 

a result o f a phosphorylation of lamins by cyclinB/Cdc2 (Peter et al., 1990). In addition, 

phosphorylation by cyclinB/Cdc2 controls the spindle assembly and directs interaction of 

MPF with microtubules (Ookata et al., 1993) and centrosomes (Perez-Mongiovi et al., 

2000). Cdc2 apparently phosphorylates many proteins implicated in the meiotic process, 

and our laboratory has found that cytoskeletal elements such as actin filaments might also 

be modulated by MPF (Lim et al., 2003).
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Figure I 2. (a) Immature oocyte of A. aranciacus arrested at the first prophase of meiosis. 

(b) An oocyte tuned into a mature egg after 70 minutes incubation with 1-MA. 

Abbreviation: n, nucleolus; GV, germinal vesicle. Scale bar, 100 (im. (Modified from 

Santella et al., 2012).
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Morphological changes during meiotic maturation

Within a few minutes after the meiotic cycle is resumed, the first visible change 

take place in the oocyte surface. The follicle cells surrounding the oocytes migrate at one 

side as the desmosome-like attachments connecting the follicle cells to the oocytes 

disappear. After 1-2 minutes’ exposure to 1-MA, the actin-filled cytoplasmic projections 

(spikes) may appear and persist for 2 0  minutes during the hormonal treatment, as the actin 

cytoskeleton is polymerized and subsequently depolymerised (Schroeder and Strieker, 

1983). In addition, starfish oocytes have relatively long microfilaments-filled microvilli 

that emanate from the cell surface into the vitelline layer. They diminish in length and 

decrease in density following 1-MA treatment. Hence, in the first several minutes after 

meiotic resumption, the actin cytoskeleton undergoes extensive reorganization.

During meiotic maturation, the mechanical properties o f the starfish oocytes 

change, by showing a decrease in rigidity of the cell by the time of GVBD (Nakamura and 

Hiramoto, 1978; Nemoto et al., 1980). After the induction of the maturation, the surface 

tension of the oocytes decreases rapidly and remains low until the extrusion o f the first 

polar body. A sharp rise and fall in tension is again observed during the formation of the 

second polar body (Hiramoto, 1964, 1976; Nakamura and Hiramoto, 1978; Shoji et al., 

1978). The changes of the surface tension of the oocytes appear to be a result o f the 

intermixture of nucleoplasm and cytoplasm because it does not occur in the fragmented 

oocytes lacking the nucleus (Yamamoto and Yoneda, 1983; Yamamoto 1985). As the 

changes in the actin cytoskeleton induced by cytochalasin-B leads to a dramatic decrease 

in stiffness o f starfish oocytes (Nemoto et al., 1980), it was suggested that the F-actin 

organization is responsible for the stiffness o f the oocytes (Heil-Chapdelaine and Otto,

1996).

In parallel, the electric properties of the plasma membrane changes during meiotic 

maturation. The initial resting potential marks -80 mV in the starfish oocytes, but the
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membrane potential shifts to a stable level of -10 to -20 mV at the time of GVDB (Dale et 

al., 1979; Miyazaki and Hirai, 1979).

The cortical granules (CG) are scattered in the periphery of the cortical region of 

the oocytes (Longo et al., 1995). During meiotic maturation, they translocate to the egg 

surface and attach themselves to the plasma membrane. With their long axis often 

perpendicular to the plasma membrane, they form a monolayer (Longo et al., 1995). This 

process depends on the actin cytoskeleton (Santella et al., 1999, Wessel et al., 2002). In 

mature eggs, the cortical granules positioned in the subplasmalemmal region are ready to

j 2+
be exocytosed in response to the sperm-induced cytosolic Ca increase or to the Ca - 

liberating second messengers, e.g. inositol-1, 4, 5- trisphosphate (InsPa), cyclic-ADP ribose 

(cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) (Picard et al., 1985: 

Dargie et al., 1990: Lee and Aarhus 1995). This suggests that the triggering event for the 

CG exocytosis is the intracellular Ca2+ increase. It was estimated that about 96% of the 

egg’s CG undergo exocytosis when Ca2+ is mobilized by fertilizing sperm or ionophore, 

(Longo et al., 1995).

During meiotic maturation, there is a significant reorganization o f the ER. The 

structural changes in the ER membranes have been studied by using the fluorescent 

lipophilic carbocyanine dye: dialkylcarbocyanine (Dil). The dye emits mild fluorescence 

when is not bound to the target, but becomes bright when it binds to the cell membranes. 

Once bound to the biological membrane it begins to spread laterally and stains the whole 

leaflet of the membrane. Microinjection of the oil drop saturated with Dil into the starfish 

oocytes labels the cistemae of ER that are uniformly distributed throughout the cytoplasm. 

In mature eggs, the ER acquires the form of spherical shells surrounding yolk granules that 

appear to be interconnected (Jaffe and Terasaki, 1994). During this period o f meiotic 

maturation, the dynamic changes of the actin cytoskeleton are also accelerated. The study 

was performed to examine the possible effect o f the actin cytoskeleton on the GVBD phase 

of the meiotic cycle (Strieker and Shatten, 1991). It was shown that on the onset o f the



GVBD and the pre-GVBD changes in the nuclear shape has been affected by the drugs that 

affect the actin microfilaments, but not the ones that disrupt the microtubules. Hence, the 

actin cytoskeleton is implicated in the meiotic events in starfish oocytes.
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Calcium homeostasis

The functioning of the multicellular organisms is based on exchange o f various

signals among cells to modulate and coordinate their activity. During evolution, they have

developed a complex ways of generating and processing information. Calcium is the

second messenger that has great versatility and controls many cellular processes (e.g.

fertilization, muscle contraction, secretion, gene transcription, apoptosis) (Carafoli, 2002).

The intracellular Ca2+ signaling usually starts with external stimuli (neurotransmitters,

hormones, growth factors) and sperm that interact with the receptors on the cell surface to

trigger synthesis of diffusible factors (second messengers) inside the cells. They in turn

bind to a ligand-gated Ca2+ channels and thereby release Ca2+ from the internal stores. On

the other hand, the external stimuli can also induce Ca2+ influx from the extracellular space

(Berridge, 1993). The concentration of the free Ca2+ outside the cells is orders of

magnitude higher that inside: mM vs.nM. The Ca2+ does not diffuse freely across the

plasma membrane, and the low levels inside the cells are thus maintained by allowing only

a certain amount of Ca2+ to enter through carefully regulated ion channels. The free Ca2+

concentration in the physiological conditions are kept at the 100 nM in cytosol, but it can

rise to 1-10 pM within seconds after the stimuli. Several factors contribute to the

maintenance of the cytosolic Ca2+ concentration. Ca2+ forms low affinity complexes with

2+
small compounds such as phosphates, ATP, amino acids, and acidic phospholipid. Ca can

• • 2+also form high affinity complexes by reversibly binding to the specific sites in the Ca -

2_j_
binding proteins (Carafoli et al., 2001). These molecules serve as a primary buffer for Ca 

in cytosol and effectively provide a mechanism by which the local concentration o f the 

intracellular Ca2+ changes rapidly. Intracellular Ca2+ concentration is largely regulated by 

the release-absorption cycle at the Ca2+ stores. Cytosolic Ca2+ can be increased by the 

release from the intracellular stores or by Ca2+ influx from the extracellular media, while 

the surplus Ca2+ can be removed by the action o f the intracellular Ca2+ pumps and by 

sequestration with the Ca2+-binding proteins and exchangers. The energy-spending action



of the Ca2+ pumps thus restores the resting level of the cytoslic Ca2+ by transporting the 

ions into the lumen of the organelles (e.g. ER, nuclear envelope, Golgi apparatus, and 

mitochondria) and to the extracellular space. Hence, the cytoplasmic Ca2+ concentration is 

maintained by the tightly regulated interplay of Ca2+release and Ca2+ uptake.

In eukaryotic cells, the Ca2+ channels residing on the plasma membrane are mainly 

gated by the changes of the membrane potential, by the binding of the ligands, or by the 

emptying of the intracellular Ca2+ stores. The Ca2+ increase inside the cells can be achieved 

by the ligand-gated InsP3 and cADPR residing mainly on the membranes of the ER. Such 

ligands are second messengers, and several different substances have been shown to induce 

a rapid Ca2+ release from the internal stores. InsP3 is so far the best characterized second 

messenger that releases Ca2+ by gating the InsP3 receptors (InsPsR) from the ER (Streb et 

al., 1983), but also from non-reticular Ca2+ stores, e.g., the Golgi apparatus (Pinton et al., 

1998), lysosomes (Haller et al., 1996; Scrinivas et al., 2002), secretory granules 

(Gerasimenko et al., 1996; Quesada et al., 2001) and nuclear envelope (Gerasimenko et al., 

1995; Hennager et al., 1995; Santella and Kyozuka, 1997). cADPr is another second 

messenger shown to mediate the intracellular Ca2+ release from the ER, whereas NAADP 

has been shown to release Ca2+ from stores distinct from ER, and the acidic vesicles were 

proposed to be the possible Ca2+ store.

InsP3-mediated intracellular Ca increase

The history of InsP3 dates back to 1953 when it was found that the interaction o f 

the acetylcholine with muscarinic receptor on the plasma membrane o f pancreas cells 

stimulated the incorporation of [32P] phosphate into the minor phospholipid phosphatidyl- 

inositol (Hokin and Hokin, 1953). Then, 30 year later, Michael Berridge and colleagues 

identified in pancreatic cells the InsP3 as a soluble product of the turnover o f inositol lipids 

to induce Ca2+ increase (Streb et al., 1983). Besides the InsP3, the turnover o f inositol 

phospholipids led to a production of diacylglycerol (DAG), which remains in the plasma
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membrane. DAG also functions as an intracellular messenger by activating protein kinase 

C (Takai et al., 1979; Kishimoto et al., 1980). Since then, InsP3 was tested and proven to be 

a universal second messenger to release Ca2+ in a vast number o f cell types, including those 

of fungi, animals and plants (Berridge, 2007).

InsP3 is produced by hydrolysis of its precursor, the plasma membrane 

phosphatidylinositol 4, 5-bisphosphate (PIP2) by the phospholipase C. Then, InsP3 diffuses 

in the cytoplasm and binds to InsP3R on the membranes of the ER to elicit Ca2+ release. In 

mammals, three types of InsP3R have been identified (InsP3R l, InsP3R2 and InsP3R3) 

(Furuichi et al., 1989; Furuichi et al., 1994). The amino acid sequence of the receptor 

protein can be divided in three domains, a short C-terminal hydrophobic domain that 

contains the membrane spanning sector, the large regulatory domain in the centre, and the 

flexible N-terminal domain that projects into the cytoplasm and is responsible for binding 

of InsP3 (Mikoshiba, 1997). The receptor was found in the membrane of the nucleus 

(Nicotera et al., 1990), and may be also responsible for the Ca2+ release from secretory 

vesicles (Petersen, 1996) and Golgi apparatus (Pinton et al., 1998). Besides InsP3, the 

channel activity of InsP3R can be regulated by the Ca2+, ATP, and by its 

phosphorylation/dephospholyration status (Berridge, 1995).

The phosphoinositide family consists of seven derivatives o f phosphatidyl-inositol 

(PI) that are formed by phosphorylation at the 3-, 4- and 5-position o f the inositol ring 

(Bout and Divecha, 2009). PIP2 can be synthesized by the action o f two distinct 

phosphoinositide kinases. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) 

phosphorylates phosphatidylinositol 5-phosphate at the 4-position, whereas 

phosphatidylinositol 4-phosphate 5-kinase (PIP5K) phosphorylates phosphatidylinositol 4- 

phosphate at the 5-position to form PIP2 . The level of PIP2 is tightly regulated by the 

aforementioned kinases and phosphomonoesterases that dephosphorylate PIP2 to PI(4)P 

and Pis (Bout and Divecha, 2009).
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PI and its phosphoinositide derivatives constitute ~10% of the total cellular lipids in 

most cells. PIP2 is enriched in the inner leaflet of the plasma membrane and is estimated to 

be the most abundant phosphorylated derivative of PI. It may comprise from 0,3-1,5 % of 

the phospholipids at the plasma membrane of mammalian erythrocytes, lymphocytes and 

hepatocytes (Saarikangas et al., 2010). The presence of PIP2 and phosphatidylinositol 3, 4, 

5-triphosphate (PIP3) in the plasma membrane controls many important reactions such as 

generation of intracellular second messengers, exocytosis, endocytosis, and reorganization 

of the actin cytoskeleton (De Matteis and Godi, 2004; Di Paolo and De Camilli, 2006; 

Odorizzi et al., 2000). Interaction of PIP2 with various proteins at the membrane can 

induce formation of microdomains o f PIP2 clusters with specific proteins (e.g., actin- 

binding proteins MARCKS, ezrin, dynamin, MIM) that may regulate membrane trafficking 

and receptor signaling (Saarikangas et al., 2010). The presence of different Pis species and 

phosphoinositide-binding actin-binding proteins in the nucleus suggest that 

phosphoinositides could regulate the poorly understood dynamics o f nuclear actin (Irvine, 

2003; Vartiainen, 2008). Extra-plasma membrane pool of Pis has been shown to be 

enriched in early endosomes and multivesicular bodies (Gillooly et al., 2000; Gillooly et 

al., 2003), as well as in the Golgi apparatus, in late endosomes, and lysosomes (D’Angelo 

et al., 2008; Michell et al., 2006).

The hydrolysis of PIP2 to produce InsP3 and DAG is carried out by the 

phospholipase C (PLC) (Rhee, 2001). The InsP3 mediated Ca2+release can be activated by 

many G protein-coupled receptors and tyrosine kinase-linked receptors. There are multiple 

isozymes of the PLC that are grouped in at least six subfamilies ((3, y, 5, s, £ and r|) 

(Saunders et al., 2002; Nakahara et al., 2005). PLCp, y, and 8  have been identified in the 

sea urchin eggs (De Nadai et al., 1998) and PLCp and y have been identified in those of 

starfish (Runft et al., 2004). The structure o f the PLC contains combinations o f various 

regulatory domains that include the pleckstrin homolgy (PH) domain, the Src homoly 2 

(SH2) domain, EF-hand motifs and C2 domain. The active site of the enzyme is composed
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of the X and Y domains, which associate to form the PIP2 cleavage site. The PH domain 

has been proposed to tether the enzyme to the plasma membrane and thereby keep it 

associated with the lipid surface facilitating its access to the substrate, PIP2 . It appears that 

the PH domain from different isozymes of PLC can interact with PIP2 and PIP3 , and with 

the Py subunits of heterotrimeric G proteins (Camps et al., 1992). On the other hand, the 

SH2 domain interacts with the tyrosine kinases (Noh et al., 1995; Weiss, 1993). In starfish 

eggs, the two PLC y-SH2 domains have been shown to be responsible for the InsP3- 

mediated intracellular Ca2+release at fertilization (Runft et al., 2004).

 ̂t
Cyclic ADP ribose-mediated intracellular Ca increase

Ryanodine receptors (RyR) are the other Ca2+-releasing channels on the membranes 

of the ER. It was initially described in the sarcoplasmic reticulum of skeletal and cardiac 

muscle (Fleischer et al., 1985), but now is known to be present in the non-muscle cells as 

well. The name of the receptor derives from the name of the plant alkaloid tyanodine that 

cause contraction of the skeletal muscle (Jenden and Fairhurst, 1969). Then, the receptor 

was isolated and purified and showed to posses the Ca2+ channel activity in the lipid 

bilayer membranes (Lai et al., 1988).

In the sea urchin homogenates, cADPr was identified as the second messenger to 

release Ca2+ from the RyR (Clapper et al., 1987). cADPr is the low molecular weight 

metabolite of the pyridine nucleotide nicotinamide adenine dinucleotide (P-NAD+) 

synthesised by the ADP-ribosyl cyclase (ARCs) (Lee, 1999). In sea urchin eggs the ARC 

isoforms are found to be present and active inside acidic and exocytotic vesicles, where 

their substrate (P~NAD+) is transported and the cADPr produced (Davis et al., 2008). 

cADPr has been reported to be a second messenger to play a role in the sperm-initiated 

Ca2+ signaling at fertilization of sea urchin and starfish eggs (Kuroda et al., 2001; Nusco et

24*al., 2002; Leckie et al., 2003). Injection of cADPr into the sea urchin eggs induces a Ca 

increase similar to the response at fertilization, formation of the fertilization envelope and
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DNA synthesis (Dargie et al., 1990). In contrast, blocking the Ca2+releasing mechanism of 

cADPr alters the pattern of Ca2+ signaling at fertilization (Galione et al., 1993; Lee et al., 

1993; Leckie et al., 2003). In starfish eggs, the cADPr has been suggested to be implicated 

rather in the propagation of the sperm-induced Ca2+ signals then in their initiation (Moccia 

et al., 2006). However, the mechanism by which cADPr induces intracellular Ca increase 

is not yet fully established. As Ca2+-induced Ca2+ release (CICR) is mediated by the RyR 

and InsPsR, nanomolar concentrations of cADPr can greatly increase the sensitivity of the 

CICR mechanism to Ca2+ at RyR (Galione et al., 1991; Lee, 1993). In addition, cADPr can 

activate Ca2+ influx in some cell types (as neutrophils, pancreatic p-cells) that can occur via 

the stimulation o f the transient receptor potential cation channel, subfamily M, member 2 

(TRPM2) in the plasma membrane (Partida-Sanchez et al., 2001; Togashi et al., 2006).

Intracellular Ca2+ increase stimulated by NAADP

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the newly discovered 

second messenger that induces a Ca2+ increase from microsomes isolated from sea urchin 

eggs (Lee and Aarhus, 1995). NAADP, a derivative o f nicotinamide adenine dinucleotide 

phosphate (NADP), is produced by the same enzyme that produces cADPr: ADP-ribosyl 

cyclase. The enzyme catalyzes the conversion of the amide nicotinamide group of the 

common metabolite NADP to a carboxyl group. One example of the ARC is the 

mammalian CD38 that was shown to catalyze NAADP hydrolysis as well.

The target channel for NAADP has been shown to be distinct from those already 

known. NAADP-dependent Ca2+ increase was insensitive to inhibitors o f the InsP3-, 

cADPr- and CICR-based intracellular Ca2+ release mechanisms (Clapper et al., 1987). The 

only way to block it is to self-desensitize it by using high concentrations o f NAADP 

(Aarhus et al., 1996; Genazzani et al., 1996). By fractionation of the sea urchin eggs 

homogenates, it was shown that NAADP targets the Ca2+ stores that are distinct from the 

ER. The NAADP-responsive organelles were found on the bottom of the Percoll density



gradients, well separated from the cADPr-sensitive ER that was on the top of the gradient 

(Lee, 1996). Then, by in situ stratification of live sea urchin eggs, it was conclusively 

shown that the NAADP-responsive stores were located at the pole o f the stratified sea 

urchin eggs (where the organelles are) that was separate and opposite to that o f the cADPr- 

and InsP3-sensitive stores (Lee and Aarhus, 2000). These organelles were further identified 

as the reserve granules, a lysosome-related organelles in the sea urchin eggs (Churchill et 

al., 2002), and the same finding was also confirmed in mammalian cells (Kinnear et al.,

2004). The NAADP receptor was further suggested to reside on the membrane of the 

acidic organelles, since the NAADP-evoked Ca2+ release was inhibited by the agents that 

disrupt Ca2+ storage in acidic organelles, e.g., proton pump inhibitor bafilomycin and the 

lysomotropic agent glycyl-L-phenylalanine-2-naphthylamide (GPN) (Churchill et al., 

2002). Recently, the voltage-gated two-pore channels (TPCs) have been proposed as the 

candidate for the NAADP receptors to be expressed in the lysosomal and endosomal 

membranes (Calcraft et al., 2009).

Additional information on the NAADP-induced Ca2+-releasing mechanism has 

been obtained by using starfish eggs. NAADP was shown to cause a Ca2+ release 

selectively in the subplasmalemmal region of the starfish eggs (cortical flash). This 

response is dependent upon the presence of external calcium. This led to the discovery o f 

the inwardly directed Ca2+ current gated by NAADP (Moccia et al., 2003). Then, it was 

suggested that the NAADP-evoked Ca2+ increase could be mediated by the store operated 

Ca2+ type channel (SOC) because the emptying of the internal stores by thapsigargin, 

promoted the same influx o f Ca2+. Finally, NAADP has been proposed to be the initiator of 

the intracellular Ca2+ increase initiated by the sperm that is further amplified by cADPr and 

InsP3 during fertilization of starfish eggs (Moccia et al., 2006).

Ca signaling during meiotic maturation

19



The importance o f the intracellular Ca2+ signaling in resumption o f the meiotic 

cycle has been controversial. The first report that the maturation hormone 1-MA induces 

intracellular Ca2+ increase in starfish oocytes came from the studies on Marthasterias

2 " h  •  •glacialis oocytes (Moreay et al., 1978). These oocytes responded with the Ca increase m 

the absence of external Ca2+, indicating that the released Ca2+ came from the internal stores. 

However, in the oocytes o f other species such as Asterias forbest and Asterina miniata, no 

Ca2+ increase was detected after stimulation with 1-MA (Doree et al., 1990). Furthermore, 

artificial increase of intracellular Ca2+ by use of InsP3 microinjection did not resume the 

meiotic cycle in the absence of 1-MA (Picard et al., 1985). Conversely, blocking the 

InsPsR by the specific peptide (InsP3-sponge) was shown not to affect the 1-MA-induced 

Ca2+ response (Iwasaki et al., 2002). Whether the Ca2+ increase by 1-MA plays a role in the 

oocytes meiotic maturation was tested by the use of the Ca2+ buffering agents BAPTA and 

EGTA. Buffering the cytoplasmic Ca2+by microinjection of these agents did not inhibit the 

1-MA-induced meiotic resumption in oocytes o f Asterina miniata (Witchel and Steinhardt,

1990). On the other hand, the microinjection o f BAPTA directly into the nucleus prevented 

the dissolution of the nuclear envelope in the oocytes of starfish A. pectinifera (Santella 

and Kyozuka, 1994). Interestingly, photoliberation of the preinjected caged InsP3 and 

caged cADPr in the nucleus stimulated GVBD in the 50 % of the treated oocytes (Santella 

and Kyozuka, 1997).

The 1-MA-mediated Ca2+ increase was demonstrated to initiate always at the 

vegetal hemisphere o f the starfish oocytes and to be restricted to the subplasmalemmal

regions (Kyozuka et al., 2008). Structural reorganization of the actin cytoskeleton in the

• 2+subplasmalemmal region was further shown to be implicated in the 1-MA-induced Ca 

release. The spatiotemporal pattern of the 1-MA-induced Ca2+ release was shown to be 

significantly affected by various agents promoting actin cytoskeleton assembly or 

disassembly, e.g. latrunculin-A (LAT-A), heparin, jasplakinolide (JAS) and G-proteins 

inhibitors (Kyozuka et al., 2008; Kyozuka et al., 2009). The actin cytoskeleton
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reorganization by the preinjection of the actin-modulating protein cofilin into the

• 2 “bcytoplasm of the starfish oocytes was also shown to affect the 1-MA-induced cortical Ca 

release by enhancing the Ca2+release by two-fold (Nusco et al., 2006).

During meiotic maturation, starfish oocytes become more responsive to the stimuli 

that induce an increase of intracellular Ca2+, e.g. InsP3, NAADP, cADPr and sperm (Chiba 

et al., 1990; Nusco et al., 2002; Santella et al., 2000). Microinjection o f the same amount 

o f InsP3 evokes higher Ca2+ release in mature eggs compare to immature oocytes. Indeed, 

the longer the oocytes are exposed to 1-MA, the higher the Ca2+response becomes (Lim et 

al., 2003). While in mammalian oocytes this is in part due to the increased expression and 

redistribution of cortical RLSP3R (Fujiwara et al., 1993), the same does not hold for starfish 

oocytes. The higher Ca2+ response to InsP3 in mature eggs o f starfish is neither due to the 

increased expression and redistribution of the InsPsR (Iwasaki et al., 2002), nor due to the 

increased amount of Ca2+ storage in the ER (Chiba et al., 1990; Lim et al., 2003). In 

starfish oocytes, the apparent sensitization to InsP3 was rather linked to the state of the 

actin cytoskeleton. When the maturation process was induced by 1-MA in the presence of 

the actin-depolymerizing drug LAT-A, the Ca2+ release in response to InsP3 was strongly 

inhibited (Lim et al., 2003). Surprisingly, the treatment of mature A. aranciacus eggs with 

LAT-A induced both Ca2+ influx and the release from the internal stores 10 minutes after 

incubation (Lim et al., 2002). The massive Ca2+ release induced by LAT-A was observed 

in mature eggs, but not in oocytes. As the increased sensibility to InsP3 in mature eggs is 

paralleled with the morphological changes in the ER, it is noteworthy that the actin 

cytoskeleton is dynamically rearranged in response to 1-MA before the ER reorganization 

that peaks at the time of GVDB (Jaffe and Terasaki, 1994). It has been shown that the 

redistribution of the ER is dependent on microfilaments (FitzHarris et al., 2007) as well as 

microtubules (Whitaker, 2006). Finally, the increased sensitivity to InsP3 was shown to be 

delayed by 30 minutes in starfish oocytes preincubated with roscovitine, a specific 

inhibitor of MPF (Lim et al., 2003). At variance with other animal species (Machaca et al.,



2007), MPF does not phosphorylate InsPsR in starfish oocytes (Lim et al., 2003). 

Inhibition of the LAT-A-induced Ca2+release by roscovitine indicated that the sensitization 

might be dependent on rearrangement of the actin cytoskeleton modulated by MPF (Lim et 

a l, 2003).

During meiotic maturation, the cADPr- and NAADP-dependent Ca2+ release 

mechanisms are also sensitized. Photoactivation of injected cADPr in starfish oocytes 

induces multiple patches of Ca2+ release in the cortical region and the signal then spreads 

from these initial spots to the entire cell. In mature eggs, photoactivation of the caged 

cADPr induces Ca2+ increase from one or two sites, which is followed by the cortical flash 

and further propagation of the Ca2+ wave in the entire egg (Nusco et a l, 2006). The 

NAADP-induced Ca2+ release is higher in starfish eggs compared to immature oocytes, and

sy | 2+
the Ca signal in eggs unlike to that in oocytes is dependent on the external Ca . 

Moreover, the NAADP-induced Ca2+ response in mature eggs is more sensitive to the L- 

type inhibitors than in the immature oocytes. Hence, the NAADP in mature eggs was 

suggested to work on the calcium channel at the plasma membrane (Santella et a l , 2000).

Ca2+ signaling at fertilization

The sperm-egg interaction begins with a series of morphological and physiological 

events, involving recognition, adhesion and fusion between gametes. The most common 

event that occurs inside the fertilized eggs in all studied species, from marine invertebrates 

to mammals, is a massive Ca2+ release inside the fertilized eggs. The fertilized egg is then 

activated, and the zygote starts to develop into the embryo (Ciapa and Chiri, 2000). The 

intracellular Ca2+ increase starts from the site of sperm interaction and traverses the egg 

cytoplasm as a wave. Depending on species, the Ca2+ increase may occur as a single 

transient (sea urchin, starfish) or as repetitive oscillations (mouse, hamster, bovine, rat, 

human) (Ciapa and Chiri, 2000; Santella et a l , 2004).
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Fertilization in marine invertebrates usually occurs outside the body, and thus 

requires an extremely sensitive mechanism of chemotaxis between the eggs and the proper 

sperm (Santella and Chun, 2011). Recognition and interaction of the molecules residing on 

the sperm surface and in the egg jelly coat is the initial step of the species-specific 

fertilization that further leads to mutual activation of the sperm and egg. When the sperm 

encounter the egg jelly, the species-specific egg jelly components trigger the acrosome 

reaction (AR) in the sperm. In echinoderms, it is a Ca2+-based exocytosis o f the sperm’s 

acrosomal vesicles, which contains the digestive enzymes that pave the way for the 

fertilizing sperm. During this process, the head of the sperm extends a long process 

(acrosomal process) filled with actin filaments. The three components o f the egg jelly 

known to trigger AR in starfish are ARIS (AR-inducing substance), co-ARIS, and 

asterosap (Hoshi et al., 2000). ARIS is a high molecular weight sulphated glucoprotein, 

which requires a diffusible cofactor, steroid saponin co-ARIS. In sea urchin and starfish, 

asterosap works as a chemotactic agent that stimulates the guanylate cyclase (asterosap 

receptor) located on the sperm flagellar plasma membrane that stimulates the motility of 

the sperm (Hoshi et al., 2000; Matsumoto et al., 2008).

Even though Ca2+ has been known to be the trigger of egg activation for several 

decades, much is yet to be known about the upstream signaling pathway and the nature of 

the Ca2+ release from the internal stores. Three major hypotheses have been proposed on 

how the fertilizing sperm initiates the massive Ca2+ release inside the eggs. The first model 

is based on the idea that the sperm introduces a bolus of Ca2+ during gamete fusion (Jaffe 

1983, 1991), which was later modified to the suggestion that channels in the surface 

membrane of the sperm allowed it to act as a conduit for Ca2+ entry (Creton and Jaffe, 

2001). Ca2+ entered in this way would further act to trigger CICR inside the egg (Jaffe,

1991). Despite the finding that the sperm-egg fusion in both sea urchin and mice always 

precedes the Ca2+ release in the egg (McCulloh and Chambers, 1992; Lawrence et al., 

1997), a number of studies have cast a doubt on the validity o f this model, as direct
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injection of Ca2+ into sea urchin, Ascidian, or mammalian eggs has all failed to induce 

further Ca2+release (Whitaker and Swann, 1993; Swann and Ozil, 1994). Moreover, no 

elevation of the cytoplasmic Ca2+ concentration occurs at the moments of gametes fusion in 

mouse (Jones et al., 1998).

The second model proposed is based on the idea that the sperm introduces a soluble 

factor into the egg at fertilization. Microinjection o f sperm extracts has been shown to 

induce cytosolic Ca2+ increase in eggs of sea urchins (Dale et al., 1985), marine worms 

(Strieker, 1997), ascidians (Kyozuka et al., 1998) and mammalian species (Swann, 1990; 

Wu et al., 1997), mimicking the Ca2+ signals at fertilization. The sperm-released putative 

factors in sea urchins were initially thought to be InsP3 and NAADP (Whitaker and Irwine, 

1984; Churchill et al., 2003), whereas in mouse eggs a soluble protein such as oscillin was 

proposed as a sperm factor that diffuses in the egg cytoplasm after the gametes fusion 

(Parrington et al., 1996). More recently, the novel sperm-specific PLC, the PLC£ 

(Saaunders et al., 2002) was proposed as a potent sperm factor that serves as a 

physiological agent of egg activation in mammals (Swann et al., 2006).

The third hypothesis suggests that the ligand on the surface o f the sperm interacts 

with the egg surface receptor that would further trigger InsP3 production via PLC 

activation. The activation of PLC could be mediated by receptor-bound G proteins. This 

model is supported by the analyses of the timing of the cortical granules breakdown in sea 

urchin eggs upon microinjection of InsP3 and by the consideration that the inhibitor of G 

proteins, GDP-guanosine-5'-0-2-thiodiphosphate (GDPpS), prevents the sperm-induced 

eggs activation (Turner et al., 1986; Mohri and Hamaguchi, 1989). However, the action of 

GDPpS has not been verified as it may have non-specific inhibitory effect at high 

concentration (Crossley et al., 1991). Another slightly different version o f the receptor- 

mediated egg activation model suggests involvement of the tyrosine kinase pathway that 

activates the y isoform of PLC. The PLCy is activated when its two Src homology-2 (SH2) 

domains interact with tyrosine kinases. There are several lines of evidence suggesting that
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a Src-like kinase mediates the activation of the PLCy in eggs of starfish and other animals. 

Activation of PLC in this pathway may produce InsP3 and subsequent Ca2+ increase during 

egg activation at fertilization (Runft et al., 2002; Townley et al., 2006). Microinjection of 

starfish egg with human Src protein evokes Ca2+ release and DNA synthesis (Giusti et al., 

2000). Recombinant proteins containing the two SH2 domains of PLCy that specifically 

inhibit PLCy, but not PLCp, completely blocked Ca2+ release at fertilization, suggesting 

that the Ca2+ release was due to the activation of PLCy and Insp3 formation (Carroll et al., 

1997). Hence, while the central role for starfish egg activation has been ascribed to PLCy, 

the putative receptor remains to be identified.

For a long time, the initial increase of the cytosolic Ca2+ at fertilization has been 

considered to derive mainly in response to the synthesis of InsP3 (Runft., 2002; Whitaker, 

2006; Miyazaki, 2007; Ducibella and Fissore, 2008). Early studies with sea urchin 

observed a substantial increase of polyphosphoinositide in fertilized eggs (Turner et al., 

1984), and the generation of InsP3 coincided with the Ca2+wave (Ciapa et al., 1992). In 

line with the idea that the InsP3 plays a critical role in developing the Ca2+ response at 

fertilization mouse eggs of which InsPsR were blocked by specific antibodies failed to 

display the sperm-activated repetitive Ca2+ spikes (Miyazaki et al., 1992). Similar negation 

of the Ca2+ signaling at fertilization in mice was observed upon ablation o f the PLC^ 

(Nomikos et al., 2005), suggesting the indispensible role of InsP3 in the process. However, 

at variance with the mammals, the role of the InsP3 at fertilization is not conclusively 

established in echinoderms. Experiments on sea urchin eggs did not show a temporal 

coincidence between the major InsP3 increase and the generation of the Ca2+ wave. Rather, 

the onset of the Ca2+ increase coincided with the elevation of the second messenger cGMP 

but preceded the increase of cADPr and InsP3, as the major rise o f Insp3 takes place only 

after the Ca2+has already initiated (Kuroda et al., 2001). In addition, when the changes of 

the plasma membrane PIP2 level was monitored in living cells on a real-time basis by the 

use of the RFP-tagged PH domain of PLC-81, the plasma membrane PIP2 level o f the

25



starfish eggs began to decline 10 seconds after the Ca2+ wave was initiated by the 

fertilizing sperm (Chun et al., 2010). Hence, these results cast a doubt on the role of InsP3 

as a very initial trigger of the Ca2+ response in echinoderm eggs at fertilization.

Although cGMP and cADPr induce intracellular Ca2+ increase when injected into

2+
eggs of many species in which RyR is present, the contribution of the cADPr to the Ca 

release at fertilization has been established only in sea urchin eggs. cADPr is generated 

after the initiation of the Ca2+ wave in fertilized eggs of sea urchins to sustain the duration 

o f the Ca2+ transient (Leckie et al., 2003). On the other hand, blocking RyRs with 8 - 

NH2cADPr inhibiting the cADPr-sensitive Ca2+ release had no effect on the Ca2+ signaling 

in starfish eggs at fertilization (Nusco et al., 2002). Likewise, the inhibition of the RyRs 

by ruthenium red or large dose of ryanodine (Gerasimenko and Gerasimenko, 2004) did 

not impair the development of the Ca wave (Moccia et al., 2006).

The third second messenger that may release Ca2+ at fertilization of echinoderm 

eggs is the NAADP. Photoactivation of NAADP in starfish eggs induces the Ca2+ increase 

as a cortical flash which then propagates centripetally as a wave (Lim et al., 2001; Santella,

2005). This NAADP-evoked cortical flash that closely resembles the one induced by the 

sperm was shown to be completely inhibited by the L-type Ca2+ channel blockers, implying 

that NAADP may induce the Ca2+ influx from seawater through a voltage-sensitive ion 

channel. As the NAADP response was also blocked by SOC inhibitors, it was suggested 

that NAADP might work through a TRP-like channel. In addition, as NAADP can trigger 

the membrane depolarization leading to the initial cortical Ca2+ increase mimicking the 

effect o f the fertilizing sperm, it was suggested that the NAADP may mediate the initial

2 1 #  ̂ 2+
phase of the Ca signaling at fertilization (Moccia et al., 2006). NAADP generates Ca 

influx in sea urchin eggs as well, and it was suggested that NAADP might be delivered 

from the fertilizing sperm (Churchill et al., 2003) as the activated sperm possess high 

concentrations of the NAADP (Billington et al., 2002). Desensitization o f the NAADP 

receptors with high dose of NAADP prevented the onset of the fertilization potential in
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starfish eggs (Moccia et al., 2006), and reduced the cortical flash and the Ca2+waves in sea 

urchin eggs (Churchill et al., 2003). However, the identity and the nature o f the NAADP- 

sensitive Ca2+ stores are not fully established. Whereas lysosome-like acidic organelles 

were identified as NAADP-sensitive Ca2+ stores in sea urchin eggs (Churchill et al., 2002), 

the NAADP-evoked membrane depolarization was not affected by the drugs interfering 

with acidic organelles nor by the agents known (Galione and Petersen, 2005) to block the 

action of NAADP on RyRs (Moccia et al 2006).

Fast block and slow block to polyspermy

In majority cases o f fertilization in vivo, only one sperm enters the egg at 

fertilization. In echinoderm eggs, the elevation of the fertilization envelope is thought to 

be useful in blocking the entry of the supernumerary sperm (Schuel, 1985), but this process 

takes considerable amounts of time before it produces a visible mechanical barrier against 

the supernumerary sperm (slow and permanent block). Thus, it was predicted that a fast 

mechanism may exist to ensure monospermic fertilization (Just, 1919). Indeed, it was 

estimated that the rate o f refertilization in sea urchin eggs is reduced by a factor of 2 0  

(Rothschild and Swann, 1950). In 1976, Jaffe suggested that the fast block to polyspermy 

in sea urchin eggs may be mediated by electrical changes in the membrane potential (Jaffe 

1976). Like neurons and muscle cells, oocytes and eggs are electrically excitable. It has 

long been known that echinoderm oocytes can fire action potentials in response to stimuli 

(Tyler et al., 1956). In sea urchin eggs, the resting membrane potential o f the egg quickly 

depolarizes upon fertilization. This rapid change of the membrane potential consists of 

three distinct phases. The first response can take the form of a small ‘step depolarization’ 

as was seen in the eggs with the low resting potentials (about -30 mV), or fire action 

potentials in the eggs with high resting potential (about -80 mV). In both cases, the initial 

electric response is followed by a sustained depolarization that is termed ‘activation 

potential’ or ‘fertilization potential’, which usually remains at positive levels for more than
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5 minutes until it begins to decline back to the resting potential in 10 minutes (Dale et al., 

1978; Hinkley et al., 1986; McCullow and Chambers, 1992). In Strongilocentrotus 

purpuratus (S. purpuratus) the activation potential is attained within the 3 seconds after the 

apparent sperm attachment, a timing that is expected as a plausible mechanism for fast 

block to polyspermy. The fast electrical block to polyspermy was supported by several 

other studies in which sperm entry was prevented by holding the membrane potentials at 

positive values in the eggs of sea urchins, frogs and marine worms Urechis capo (Gould- 

Somero et al., 1979; Cross and Elinson, 1980; Lynn and Chambers, 1984). However, no 

fast block in S. purpuratus eggs was obtained by other experimenters (Byrd and Collins, 

1975), and the existence of the fast block in echinoderms has remained controversial (Dale 

and Monroy, 1981). When the sperm-egg intercation is interrupted by addition o f warm 

seawater containing detergent 2 0  seconds after fertilization, successful re-fertilization took 

place in the non-fertilized zones, indicating that the block to polyspermy is more linked to 

the local changes in the egg cortex (Allen and Hagstrom, 1955). Another evidence arguing 

against the idea of the fast electrical block to polyspermy was obtained by artificially 

holding the sea urchin eggs at negative values of the membrane potential that appeared to 

produce monospermic fertilization, and not polyspermy (Dale and De Felice, 2010).

Physiological and morphological studies have suggested that immature oocytes of 

sea urchin are more receptive than mature eggs towards sperm. Not having the cortical 

granules positioned beneath the plasma membrane, immature oocytes do not undergo 

cortical granules exocytosis and therefore become fertilized by 10-15 sperm, although the 

first sperm induces potential o f 50 mV in amplitude (Dale and Santella, 1985). This result 

points to the importance of the cortical granules in promoting the monospermic 

fertilization, and suggests a potential existence o f a limited number o f interacting sites on 

the oocyte surface that may become less receptive during meiotic maturation.
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Actin-binding proteins and PIP2 in regulation of the intracellular Ca2+ homeostasis

Actin is a 42 kDa protein that is highly abundant and strictly conserved in all 

eukaryotic cells. Actin filaments together with microtubules and the intermediate filaments 

constitute the cytoskeleton. It is implicated in the regulation of various cell functions such 

as cell motility, intracellular transport, mechanical support, secretion, phagocytosis, 

cytokinesis, while the nuclear actin may regulate gene expression and transcription 

regulation (Gieni et al., 2009).

The central dogma in the intracellular Ca2+ signaling is that the Ca2+-releasing 

second messengers act on the corresponding ion channels to release Ca2+ from the lumen of 

the internals stores (such as ER) in response to various stimuli. While it is well known that 

the intracellular increase of Ca2+ induces changes in the actin cytoskeleton (Forscher, 

1989), little is known about whether and how the changes in the actin cytoskeleton 

dynamics can affect the intracellular Ca2+ signaling. In starfish oocytes, the actin 

cytoskeleton may play a role in optimizing the InsP3-mediated Ca2+ release during meiotic 

maturation (Lim et al., 2003). LAT-A also induces intracellular Ca2+ release in mature eggs 

which is characterized by a cortical flash, cytoplasmic propagation and oscillatory 

liberation (Lim et al., 2002). The Ca2+ increase by LAT-A occurs in the absence o f the 

external Ca2+ indicating that the active rearrangement of the actin cytoskeleton stimulates 

Ca2+ release from the internal stores. Moreover, inducing changes in the cortical actin 

cytoskeleton of starfish oocytes by the use of several pharmacological agents such as JAS, 

LAT-A and heparin not only resulted in a blockade of the 1-MA induced Ca increase

• 2 " h(Kyozuka et al., 2008) but also significantly altered the patterns o f the sperm-induced Ca

signals (Puppo et al., 2008). When more physiological tools were used to modify the state

• 2+of the actin inside the starfish oocytes, e.g., the actin-modulating protein cofllin, the Ca 

signals was shown to be significantly increased in response to various second messengers

(e.g. InsP3, NAADP), maturation hormone and the sperm (Nusco et al., 2006). Finally,

altering the cortical actin cytoskeleton in starfish eggs by masking the plasma membrane



PIP2 with the PH-domain of the PLC-8  delayed the Ca2+ response in response to the sperm 

and the Ca2+-releasing second messenger InsP3 (Chun et al., 2010).

Inside the cells, actin can be present as a monomer (G-actin), or in a polymerized 

form constituting a long filament (F-actin). The latter constantly undergoes a dynamic 

process o f treadmilling. Approximately half of the actin pool in living cells exists in a 

monomeric form (Forscher, 1989), and the equilibrium between F-actin and G-actin is 

achieved largely due to the action o f an array of actin-binding proteins such as profiling, 

(Wolven et al., 2000), destrin (Ono, 2007), and gelsolin (Sun et al., 2007). This class of 

proteins regulates the state o f the actin cytoskeleton by severing, capping, twisting or 

cross-linking o f the actin filaments (Dos Remedios et al., 2003). The activity o f the actin- 

binding proteins to control the state of the actin can be strongly regulated by the PIP2 

(Lassing and Lindberg, 1985; Janmey and Stossel, 1987; Sehi and Wehland, 2000; Yin and 

Janmey, 2003).

As was aforementioned, the PIP2 is one of the key molecules in intracellular Ca 

signaling, since it serves as a substrate for the PLC to produce the Ca2+-releasing second 

messenger InsP3 (Rhee, 2001). Besides, PIP2 itself may be considered a second messenger 

that has many cellular functions (McLaughlin et al., 2002; Di Paolo and De Camilli, 2006). 

By interacting with the actin-binding proteins (Hilpela et al., 2004), PIP2 can modulate 

their activity and location inside the cell, and could induce local changes in the actin 

cytoskeleton through those proteins that regulate the actin assembly or disassembly (Sechi 

and Wehland, 2000; Yin and Janmey, 2003). On the other hand, once bound to the actin- 

binding proteins, e.g. profilin (Witke, 2004), the effective level of PIP2 can be locally and 

temporally modulated to limit its availability to PLC. Hence, the actin-binding proteins 

can regulate the cytoskeletal dynamics and modulate the intracellular Ca2+ signaling. The 

Ca2+ in turn could induce changes in the actin cytoskeleton by affecting the Ca2+-dependent 

actin-binding proteins, e.g. gelsolin.
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Actin filaments could modulate the cytosolic concentration of free Ca2+ by 

modulating the efficacy o f the intracellular Ca2+ channels either directly or through the 

secondary changes in the structure of the ER. In this context, the ER reorganization during 

meiotic maturation and fertilization may be in part due to the actin cytoskeletal changes. If  

it induces significant changes in the curvature of the membrane, it might also cause a 

‘stretch-induced’ activation of the ion channels on the ER (Jaffe and Tersakai, 1994; Jaffe, 

2007, Chun and Santella, 2009). The direct link between the actin filaments and the InsPsR 

was also demonstrated in mouse cell to regulate the activity and the subcelullar distribution 

of the receptor (Turvey et al., 2005). Hence, by altering the structure of the actin 

cytoskeleton, it is conceivable that cells can either inhibit or enhance Ca2+ release from the

• 2"binternal stores. The regulatory role of the actin filaments has been shown in both the Ca 

influx and the ligand-gated Ca2+ release through ER (Rosado et al., 2000; Furuyashiki et 

al., 2002; Sabala et al., 2002; Wang et al., 2002).

Finally, a more radical hypothesis has been suggested for the actin to be responsible 

for the Ca2+ storage and release during the polymerization and depolymerization o f the 

actin filaments (Lange, 1999). Actin molecules bind Ca2+ and other divalent cations with 

high affinity (Kasai and Oosawa, 1968, 1969). According to this theory, Ca2+ bound in F- 

actin become practically inaccessible to external ions for exchange, as the retention time of 

Ca2+ is increased by up to 3000 times increased. In this way, the F-actin may work as a 

potential Ca2+ store (Lange, 1999). On the other hand, the Ca2+ bound monomers are ready 

to release Ca2+ in exchange of Mg2+ that is 1,000 times more concentrated in cytosol. Thus, 

depolymerisation of the Ca2+-charged microfilaments may serve as a mechanism to release 

Ca2+ in certain subcellular loci. Indeed, disruption of Ca2+-loaded actin filaments by

• 2 " bultrasonic treatment or by incubation with profilin can produce release o f Ca in vitro 

(Lange and Brandt, 1996; Lange, 1999). In favour of this hypothesis the strongest evidence 

so far came from starfish eggs that were able to release Ca2+ during the treatment with the
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actin depolymerising drug LAT-A in the absence of any other Ca2+releasing agent (Lim et 

al., 2002).
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CHAPTER II 

Materials and methods

Oocyte preparation

Starfish A. aranciacus were collected from the Bay of Naples during the breeding 

season from January to May and were kept in the tanks with circulating cold natural 

seawater (15 °C) until July. The female gonads from the animals were dissected out by 

making cut on the arms close to the central disc. By gentle shaking of the female gonads, 

the immature oocytes (containing large germinal vesicle) were released in the filtered 

natural seawater (FSW) or in the artificial seawater (ASW: 490 mM NaCl, 8  mM KC1, 10 

mM CaCl2, 12 mM MgCl2, 2.5 mM NaHC0 3 , pH 8.0), 30 minutes before starting the 

experiments. Certain experiments were performed in the Ca2+-free seawater (500 mM 

NaCl, 8  mM KC1, 12 mM MgCl2, 2.5 mM N aHC03, 2 mM EGTA, pH 8.0). Immature 

oocytes that had spontaneously undergone meiotic maturation (germinal vesicle 

breakdown) were discarded.

Starfish P. miniata (also known as Asterina miniata) and A. pectinifera have been 

collected from the California coast, USA and from Mutsu Bay, Japan, respectively. The 

animals were kept at 15°C in tanks filled with the seawater from the Tyrrhenian Sea and 

diluted with distilled water in a proportion of 9:1.

Sea urchin animals of Paracentrotus lividus {P. lividus) were captured in the Bay of 

Naples and kept at 15°C in tanks with circulating natural seawater. The breeding season 

begins in January and ends in summer. The induction o f spawning in laboratory is 

achieved by injecting KCL (0,5M) into the animal.

Meiotic maturation was stimulated by the addition o f the maturation hormone 1- 

methyladenine (Sigma Chemical Co., St. Louis, MO) at a final concentration of 5 pM for 

P. miniata and A. pectinifera oocytes and 10 pM for Astropecten auranciacus oocytes. Sea 

urchin eggs are already meiotically matured after the dissection o f the gonads. All 

experiments were performed at 18 °C.
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Male gametes were extracted dry and kept at 4 °C. For fertilization experiments 2 

pi of dry sperm were suspended in 1 ml of natural seawater and 2 0  pi o f this suspension 

was added to the 1ml of mature eggs to obtain the final sperm dilution 1:25000.

Microinjection

Microinjection of the oocytes was performed by air pressure (regulated by the Transjector 

5246, Eppendorf) through borosilicate glass capillaries (O.D: 1.0 mm, I.D. 0.58 mm, Sutter 

Instrument, Novato, CA) prepared with the PN-30 puller (Narishige, Japan). The final 

concentration of the injected substances inside the cells is up to 50-100 times lower than 

their concentration in the injecting pipette and the volume of the injected material is 

estimated to be 1 % of the volume of the cell.

Ca2+ imaging

All Ca2+ imaging experiments were performed by use of epifluorescence 

microscopy. Fluorescent calcium dye Calcium Green-conjugated to 10 kD dextran 

(Calcium Green) (Invitrogen, Eugene, Oregon, USA) was suspended in the injection buffer 

(10 mM Hepes, 100 mM L-Asp at 7.0 pH) (IB) and microinjected (5 mg/ml, pipette 

contraction) into the cells. In the case when the Ca2+ measurements was performed as a 

result o f a photolysis of caged InsP3, only Calcium Green was microinjected before doing 

the experiment. In all other experiments, the oocytes were microinjected with the mixture 

of the calcium dye (Calcium Green) (5 mg/ml) and Rhodamine Red (5 mg/ml) (Molecular 

Probes), in order to eliminate the artificial signals emerging due to the movement or 

changes in the volume of the cell during the acquisition (see in Data processing). Changes 

in the cytosolic Ca2+ levels were detected by using a cooled CCD camera (MicroMax, 

Princeton Instruments, Inc., Trenton, NJ) mounted on a Zeiss Axiovert 200 microscope 

with a Plan-Neofluar 20x/0.50 objective. The excitation and emission filter wheels (Sutter
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Instruments, Co., Novato, CA) were controlled using a computer controlled shutter 

(Lambda 10-2, Sutter Instruments).

Photolysis of caged InsP3

Immature oocytes were microinjected with a mixture of Calcium Green (5 mg/ml) 

and caged InsP3 (5 jiM, pipette concentration, Molecular Probes) and kept for 5-10 minutes 

for the substances to diffuse inside the cells. To activate the caged InsP3 (Molecular 

Probes) microinjected eggs were mounted on the CCD camera and irradiated with 330 nm 

UV light by using the computer controlled shutter system (Lambda 10-2, Sutter 

Instruments). The duration of the UV irradiation was 15 seconds in the experiments with 

the depactin-antibody during meiotic maturation, and 32 seconds in the experiments with 

the calcium ionophore-ionomycin.

Confocal microscopy

The starfish oocytes and eggs microinjected with fluorescent probes were viewed 

with two laser-scannning confocal microscopes. One is the Zeiss LSM 510 META Laser 

Scanning Confocal Microscope (Jena, Germany) with excitation at 488/520 nm and 

emission at 500/555 and 560 nm. A Plan-Neofluar 25x/0.80 objective water lens was used 

to produce optical slices from the specimens. The second one is the Olympus Fluoview 

200, equipped with the UplanApo 20x/0.70, 40x/0.85 and 60x/1.20 (W) objectives, and 

used with the laser powered to the 50 %. The images were captured as digital computer 

files and examination of the fluorescence was performed using MetaMorph image analysis 

software.

Light and Transmission electron microscopy (TEM)

Starfish oocytes and eggs were fixed together with proper control samples in 

filtered seawater containing 1 % glutaraldehyde (pH 8.0) for 1 h at room temperature and
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then post-fixed with 1 % osmium tetroxide for 1 h. Specimens were dehydrated in 

increasing concentrations of alcohol and embedded in EPON 812. The polymerized resin 

containing the fixed material was sectioned in two ways. For the experiments following 

ionomycin and 1-MA treatment the semi-thin (1 micron) sections were stained with 

toluidine blue and examined by light microscopy with a Zeiss Axiovert 200 microscope, 

and the images were captured by the CCD camera. For the TEM analysis o f the samples 

from the experiments done by using ionomycin and other substances, the ultrathin sections 

were stained with 2 % uranyl acetate and 0.2 % lead citrate, and examined with a LEO 912 

AB energy filter transmission electron microscope.

Staining of F-actin in living cells

Immature oocytes and mature eggs of starfish were microinjected with the Alexa 

Fluor 488- or 568-conjugated phalloidin (50 pM, pipette concetration) (Invitrogen, Eugene, 

Oregon, USA) diluted in methanol. After each microinjection, the oocytes or eggs were 

incubated in the natural seawater for 1 0  minutes and then mounted on an experiment- 

chamber bathed in seawater and observed either by the laser-scanning microscope, or by a 

CCD camera. The F-actin was also visualized by microinjection of the GFP-tagged 

calponin homology domain o f the actin-binding protein o f human utrophin (GFP-Utr). In 

this case the protein was suspended in injection buffer and after each microinjection the 

cells were left bathing in the dish with FSW for 5-10 minutes before the further treatment 

or imaging.

Sperm staining with Hoechst 33342

After the dry sperm was diluted in seawater, the final concentration o f 5 pM 

Hoechst 33342 (Sigma) was used to stain the sperm solution. The sperm was incubated in 

the presence of the DNA dye for 1 minute at 17 °C before it was used to inseminate the
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eggs. The number of the egg-incorporated sperm was counted in epifluorescence 

microscopy, by applying the UV light (330 nm).

Treatments and microinjection of starfish oocytes and eggs with various agents

Ionomycin (calcium ionophore, Invitrogen) was diluted in DMSO (stock solution of 

5mM) and was used in the final concentration of 5 pM. The ionophore was first diluted to 

the final concentration and then added to the experiment-chamber in which oocytes or eggs 

were kept in a small amount of seawater. When microinjected into the oocytes, the 

ionomycin was diluted in the injection buffer and the concentration used was 500 pM and 

50 pM. The control eggs were microinjected with 5 pM InsP3 (Molecular Probes), or with 

the injection buffer only.

The calcium ionophore A23187 (Sigma Aldrich) was prepared in DMSO and added 

to the eggs by bath incubation in seawater at a final concentration of 40 pM for 20 minutes.

LAT-A was purchased from Invitrogen, and dissolved in DMSO (stock solution 

3mM). Starfish eggs were incubated in the seawater containing 3 pM LAT-A for 20 

minutes and after the treatment the drug was removed by washing the eggs with a fresh 

seawater.

Nicotine (Sigma Aldrich) was suspended in the distilled water, and added at a final 

concentration of 300 pM to the seawater containing oocytes that had been exposed to the 

maturation hormone 1-methyladenine for 40 minutes. After 40 minutes o f incubation o f the 

oocytes in seawater containing nicotine the drug was washed out and then mature eggs 

were further analyzed. Control oocytes were kept in the 1-methyladenine for 40 minutes 

and then transferred to fresh seawater, and after 40 minutes the experiment was performed.

Cold phalloidin (Invitrogen) was diluted in methanol, and was microinjected into 

the eggs at a final pipette concentration of 3 mM. The eggs were incubated for 15 minutes 

before doing the experiment. Control eggs were microinjected with the DMSO.
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Staining of fertilized eggs with the lipophilic dye FM 1-43

Starfish (A. pectinifera) and sea urchin (P. lividus) eggs were treated with 1M citric 

acid for 30 sec to remove the jelly coat and then were washed with FSW. The eggs were 

then stained by incubating with 4 or 1 mM of FM 1-43 (Molecular Probes), respectively, in 

FSW for 2 minutes. After rinse with FSW, the eggs were imaged with confocal microscopy 

for real-time monitoring.

Preparation and microinjection of the proteins

Some of the proteins used in this study were expressed and purified from E. coli in 

collaboration with Dr. Chun at the Stazione Zoologica Anton Dohm. The proteins obtained 

in our laboratory following dialysis in the injection buffer were: the RFP-PFI, R40A-RFP, 

GFP-Utr and RFP. Anti-depactin antibody was generously donated by Dr. Issei Mabuchi 

and was diluted in the injection buffer before microinjection. Human gelsolin protein was 

purchased from Cytoskeleton, Inc, and was suspended in nanopure water. The 

concentrations of each protein used are indicated in the text and in the figures.

Data processing

The quantified Ca2+ signal at a given time point was normalized to the baseline 

fluorescence (Fo) following the formula Frei = [F-Fo] / Fo, where F represents the average 

fluorescence level of the entire oocyte and Fo is the reference fluorescence detected in the 

last image of a Ca2+ measurment before UV irradiation. In case when two dyes were used 

to measure the Ca2+ increase (Clacium Green and Rhodamine Red) the relative 

fluorescence was calculated using the formula Frei = [FREL(green) -  FREL(red)] /  F r a t i o ,  where 

the recorded relative fluorescence for Red, FREL(red) = F - Fo / Fo was subtracted from 

relative fluorescence for Green, FREL(green) = F - Fo / Fo and then normalized against the 

ratio of the reference images for Green and Red acquired before the first detected Ca2+ 

signal, F r a t i o  =  Fo (green) / Fo (red> Fluorescence o f Ca2+ images were analyzed with the 

MetaMorph Imaging System software (Universal Imaging Corporation, West Chester, PA).
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The numerical MetaMorph data were compiled and analyzed with Excel of Microsoft 

Office 2003. The average and variation of the data were reported as mean ± standard 

deviation in all cases. The paired t-test and the one-way ANOVA were performed by use 

of Prism 3.0 (GraphPad Software, La Jolla, CA, USA), and the P-values smaller than 0.05 

(P<0.05) were considered statistically significant.
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CHAPTER III 

The role of the actin-binding proteins and PIP2 in regulation of the

* I
intracellular Ca signaling and egg activation in starfish

Results

Alteration in the plasma membrane PIP2 level affects the cortical granules 

translocation during meiotic maturation, Ca2+-signaling and vitelline envelope 

elevation at fertilization

This part of the thesis addresses the question of how the fine alteration of the actin

•  •  •  •  2+cytoskeleton structure by PIP2 and actin-binding proteins can affect the intracellular Ca

signaling and egg activation at fertilization. PIP2 is enriched in the plasma membrane, and 

is hydrolyzed by PLC to form InsP3 and DAG. PIP2 is also known to bind and modify the 

function o f the actin-modulating proteins such as cofilin (Yonezawa et al., 1990), Arp2/3 

complex and the Wiskott-Aldrich syndrome protein (Higgs and Pollard, 1999), profilin 

(Janmey, 1998), as well as gelsolin (Sun et al., 1999). Therefore, by changing the level or 

the accessibility of the plasma membrane PIP2, it is possible to influence the activity of the 

actin-binding proteins, and thus affect the actin cytoskeleton. To sequester the plasma 

membrane PIP2,1 have used RFP-tagged fusion protein containing the plekstrin homology 

(PH) domain o f rat PLC-81. This PH domain (1-140 aa) has been shown to bind with high 

affinity and specificity to PIP2, both, in vivo (Stauffer et al., 1998; Vamai and Balia, 1998) 

and in vitro (Lemmon et al., 1995).

One of the remarkable morphological changes observed during meiotic maturation 

in starfish oocytes is the actin cytoskeleton rearrangement (Santella et al., 2008; Santella 

and Chun, 2011). In parallel, the cortical granules that have been translocated from the 

inner cytoplasm toward the plasma membrane during oocyte growth, by the end o f the 

GVBD become attached underneath to the plasma membrane. Cortical granules 

positioning beneath the plasma membrane and the Ca2+-induced extrusion of their content
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into the perivitelline space at fertilization were demonstrated to be dependent on the proper 

actin cytoskeleton organization (Santella et al., 1999; Puppo et al., 2008). In order to 

determine whether sequestration o f the plasma membrane PIP2 can affect the orientation of 

the cortical granules, immature oocytes were microinjected with RFP-PH (18 pg/pl) and 

induced to undergo meiotic maturation by addition of 1-MA (10 pM). As shown in the 

electron microscopy image (Fig. Ill lb) when the starfish oocytes undergo meiotic 

maturation in the presence o f the RFP-PH, the cortical granules fail to align 

perpendicularly to the plasma membrane by the end of the GVBD. In contrast, when the 

control protein with one site mutation at Arg 40 of the PH domain (R40A-RFP, 18 jig/pi), 

which does not bind to PIP2, was microinjected into the GV stage oocyte, the normal 

ordering and positioning of the cortical granules took place beneath the plasma membrane 

after 1 hour of exposure to 1-MA (Fig. Ill la). Hence, PIP2 is directly implicated in the 

cortical granules distribution during starfish oocytes meiotic maturation.
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Figure III 1. Sequestration of PIP2 affects cortical granules orientation during meiotic 

maturation. Transmission electron microscopic images show the ultrastructure of the A. 

auranciacus eggs matured in the presence of R40A-RFP (18 pg/pl) or RFP-PH proteins 

(18 pg/pl). (a) In the egg microinjected with R40A-RFP at the GV stage, cortical granules 

(arrows) are intimately apposed to the plasma membrane after 1 hour o f exposure to 

maturation hormone 1-MA. (b) In the eggs microinjected with RFP-PH, cortical granules 

failed to align perpendicularly to the plasma membrane by the end of the meiotic 

maturation. Scale bar, 10pm.
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Because I11SP3 is produced rapidly in the fertilized eggs (Turner et al., 1984), it is 

considered to be the major Ca2+-releasing second messenger in this physiological process. 

Plasma membrane PIP2 is linked to InsP3 in a several ways. PIP2 serves as a substrate for

PLC to produce InsP3 during fertilization (Swann and Whitaker, 1986). On the other hand,

2+
in in vitro experiments was shown that PIP2 rather suppresses InsP3-dependent Ca 

signaling (Lupu et al., 1998). Furthermore, PIP2 modulates the structure and the activities 

of the cortical actin cytoskeleton in the starfish eggs (Chun et al., 2010) and may also 

affect the Ca2+ signaling at fertilization. In order to elucidate these seemingly contradictory 

roles of PIP2 in intracellular Ca2+ signaling, I have studied how PIP2 contributes to the 

optimization of the intracellular Ca2+ releasing mechanism during meiotic maturation. To 

this end, immature oocytes were co-injected with RFP-PH (or control R40A-RFP) and the 

mixture of calcium dye and Rhodamine Red and stimulated with 1-MA (10 pM) for 1 

hour. Then mature eggs were inseminated to monitor any changes in the pattern o f the 

sperm-induced Ca2+ signaling. As shown (Fig. Ill 2a), the amplitude of the sperm-induced 

intracellular Ca2+ increase in the eggs that have undergone meiotic maturation in the 

presence of RFP-PH was significantly higher (1.08 ± 0.07 RFU, n=6 ) compared to the 

control eggs preinjected with the mutant protein R40A-RFP (0.77 ± 0.14 RFU, n=5, 

P<0.05). However, the kinetics of the Ca2+ increase was not affected, since the average 

length o f time required for reaching the Ca2+ peak was not significantly different in the 

experimental (108 ± 44 sec, n=6 ) and control eggs (93.2 ± 48.9 sec, n=5, P=0.5). In line 

with the data that PIP2 affects the cortical granules orientation during the meiotic 

maturation (Fig. Ill lb), the eggs in which the RFP-PH was injected failed the normal 

fertilization envelope formation (Fig. Ill 2c). As expected, the transmission light image 

(Fig. Ill 2c) showed that all o f the eggs preinjected with the RFP-PH displayed partial 

elevation of the vitelline layer (1 0 0 %, n=6 ), demonstrating either small membrane 

elevation on the entire egg surface or a partial elevation only on one side o f the egg (Fig.
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Ill 2c). On the other hand, only one out o f five eggs (25 %) preinjected with R40A-RFP 

displayed impaired elevation o f the vitelline envelope (Fig. Ill 2c).

Alternatively, when the RFP-PH was used at lower concentrations as a probe to 

only visualize, but not sequester PIP2 in starfish eggs, an increase of PIP2 was found to take 

place in the plasma membrane in the sperm-activated eggs (Chun et al., 2010). The 

increased level of PIP2 in the plasma membrane was shown to be linked with the formation 

of numerous actin-positive spikes traversing the perivitelline layer of the fertilized egg 

(Chun et al., 2010). To examine whether the spikes formation is limited only to a certain 

species or a detection method, I have applied an alternative method. Mature starfish eggs 

o f A. pectinifera and eggs from sea urchin P. lividus were briefly stained with a lipophilic 

dye that selectively delineates the plasma membrane prior to fertilization. As shown in 

figure III 3, spikes formation in the perivitelline layer after 3 minutes of insemination were 

visualized by FM 1-43 both in fertilized starfish (Fig. Ill 3a and 3b) and sea urchin eggs 

(Fig. Ill 3c and 3d). In the same time scale starfish eggs were activated more slowly than 

sea urchin eggs, but the staining pattern of the perivitelline space was similar.
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Figure III 2. Sequestration of plasma m em brane PIP 2 leads to an increased 

intracellular Ca response at fertilization, but with a partial elevation of the vitelline 

layer. A. auranciacus oocytes were loaded with a Calcium Green / Rhodamine Red, and 

microinjected either with R40A-RFP (18 pg/pl) or RFP-PH (18 pg/pl). The oocytes were 

then exposed to 1-MA for 1 hour, and then fertilized, (a) Relative fluorescent Ca2+ signals 

were quantified in the eggs injected with R40A-RFP (green curves) and RFP-PH (brown 

curves), (b) The magnitude of the Ca2+ response in the RFP-PH (1.08 ± 0.07 RFU, n=6) 

microinjected eggs was significantly higher (P<0.05) than that of R40A-RFP (0.77 ± 0.14 

RFU, n=5). (c) Bright field view of the eggs 20 minutes after fertilization shows the partial 

and full vitelline layer elevation in experimental and control eggs. Scale bar, 100pm.
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Figure III 3. Spikes formation in the perivitelline layer is not limited to starfish eggs 

but is also present in fertilized sea urchin eggs, (a) Starfish (A. pectinifera) eggs were 

pretreated with 4 mM lipophilic dye FM 1-43, then washed with natural seawater and 

imaged with confocal microscopy 3 minutes before and after of the addition o f the sperm. 

Scale bar: 40 pm. (b) The mafhified view of the squared area in panel a. (c) Sea urchin (P. 

lividus) eggs pretreated with 1 mM FM 1-43, then washed with natural seawater and 

imaged with confocal microscopy 3 minutes before and after of the addition o f the sperm. 

Scale bar: 20 pm. (d) The mafnified view o f the squared area in panel c.
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Sequestration of PIP2 prevents eggs activation mediated by actin depolymerizing 

drug Latrunculin-A

Exposure of mature Astropecten auranciacus eggs to the actin depolymerizing drug 

LAT-A leads to a massive intracellular Ca2+ increase which is followed by a cortical 

granules exocytosis and vitelline layer elevation (Lim et al., 2002). This intracellular Ca 

mobilization by LAT-A was suggested to be mediated by the InsPsR since their antagonist 

heparin inhibits the Ca2+ increase evoked by LAT-A (Lim et al., 2002). However, in a 

recent report (Puppo et al., 2008) it was clearly shown that, heparin, besides its effect on 

the InsPsR, can also alter the structure of the actin cytoskeleton in the subplasmalemmal 

domain o f the egg. Thus, the inhibition of the LAT-A-induced Ca2+ response by heparin 

may be attributed not only to its pharmacological effect on the InsPsR but also to its affect 

on actin cytoskeleton. PIP2 has been known to regulate the function of the proteins 

involved in exocytosis (Schiavo et al., 1996; Chung et al., 1998; Grishanin et al., 2002) and 

in various cell types (Eberhard et.al., 1990; Hey et al., 1995). In order to see how PIP2 is 

implicated in the process of the cortical granules exocytosis in starfish eggs, I have studied 

its role in the eggs activated by actin depolymerizing agent LAT-A.

As the presence of the RFP-PH in mature starfish eggs has been already 

demonstrated to alter the structure of the actin cytoskeleton at the egg cortex (Chun et al., 

2010), I aimed to examine whether these changes can influence the LAT-A-stimulated egg 

activation. Therefore, mature eggs were microinjected with RFP-PH (18 pg/pl) and 

incubated for 15 minutes before being exposed to the actin depolymeryzing drug LAT-A 

(3pM) for 20 minutes (Fig. Ill 4). In two independent experiments performed, only 15.3% 

(n=26) of the eggs that had been preinjected with the RFP-PH protein underwent activation 

(cortical granules exocytosis), whereas all o f the eggs preinjected with the control RFP 

(18pg/pl) protein become activated (100%, n=29). Since the experimental eggs were 

microinjected with RFP-PH after GVBD when the cortical granules translocation and 

attachment beneath the plasma membrane had occurred normally, the failure o f LAT-A to
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activate these eggs was not due to the lack of the cortical granules beneath the plasma 

membrane. As shown on the electron microscopy image (Fig. Ill 5b), even though 

incubated for 20 minutes in the seawater containing 3 pM LAT-A, the mature eggs 

microinjected with RFP-PH demonstrated failed egg activation with the cortical granules 

intact and tightly apposed to the plasma membrane. On the other hand, as judged by the 

electron-dense material o f the cortical granules present in the perivitelline space of 

activated egg (Fig. Ill 5a), the microinjection of the control RFP protein into the mature 

eggs did not interfere with the LAT-A to exert its action and induce cortical granules 

exocytosis. Thus, masking the plasma membrane PIP2 by the PH-domain interferes with 

the LAT-A ability to cause cortical granule exocytosis and vitelline layer elevation in 

mature starfish eggs.
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Figure III 4. Sequestration of the plasma m em brane PIP 2 blocks the egg activation by 

LAT-A. Mature A. auranciacus eggs were micro injected either with RFP-PH (18 gig/gil) or 

with RFP (18 |ig/pl) prior to treatment with LAT-A (3 pM). (a) Confocal microscopic 

images of RFP fluorescence and (a’) the corresponding bright field view of the activated 

egg 20 minutes after the exposure to LAT-A (FE-fertilization envelope), (b) Confocal 

microscopic image taken 20 minutes after LAT-A treatment of mature egg micro injected 

with PH-RFP protein, (b’) Bright view of the same egg from b, demonstrating the failure 

of LAT-A to induce vitelline layer elevation. Scale bar, 20pm.

49



Figure III 5. Sequestration of plasma membrane PIP2 blocks the cortical granules 

exocytosis induced by the treatment with LAT-A. The ultrastructural images o f the 

cortex o f mature eggs after 20 minutes of exposure to LAT-A. Mature A. auranciacus eggs 

were microinjected either with RFP (18 pg/pl), or, with RFP-PH (18 pg/pl), exposed to 

LAT-A (3 pM) for 20 minutes, washed and then fixed with 1-gluteraldehyde and analyzed 

with the electron microscopy, (a) LAT-A treatment caused cortical granules (arrows) 

exocytosis in mature egg preinjected with the control RFP protein, (b) LAT-A did not 

cause any structural changes in the cortex of the RFP-PH preinjected mature eggs. Scale 

bar, 10pm.

50



The effect of the actin-binding protein depactin on the regulation of the intracellular 

Ca2+ signaling and the meiotic maturation

Precise remodeling of the actin cytoskeleton is regulated by the combinatorial 

action of many actin-binding proteins. Besides the indirect way of modifying the actin 

cytoskeleton networks by altering the availability of the plasma membrane PIP2 that 

interacts and modulates a host of actin-binding proteins, I also employed a more targeted 

approach using a specific function-blocking antibody against depactin, the actin- 

depolymerizing protein present in A. aranciacus oocytes (Nusco et al., 2006) to monitor

• 2"b •the effect o f the blockade of this actin-modulating protein on intracellular Ca increase at 

fertilization.

Ca2+ release from the InsP3-sensitive stores is enhanced during meiotic maturation 

of starfish oocytes (Lim et al., 2003), and the increased sensitivity correlates with the 

dynamic rearrangement of F-actin (Lim et al., 2003), suggesting that the actin cytoskeleton 

distribution may be linked to the enhanced Ca2+ response. Recent data from our laboratory 

have demonstrated that the alterations of the actin cytoskeleton by introducing an actin- 

binding protein cofilin into the starfish oocytes could augment the InsP3-stimulated 

intracellular Ca2+ increase (Nusco et al., 2006). Since InsP3 is considered to be the major 

second messenger responsible for the Ca2+ release at fertilization, I have studied whether 

the actin cytoskeleton reorganization induced by the actin-binding protein could affect the 

sensitization of the InsP3-mediated Ca2+ signaling during meiotic maturation.

The anti-depactin antibody (a generous gift from Prof. Issei Mabuchi) is a specific 

function-blocking agent for depactin, a starfish version o f cofilin. It has been generated 

against starfish (Asterias amurensis) depactin, and was shown to detect a single band o f 17 

kDa in the western blot analysis of A. auranciacus (Nusco et al., 2006). This antibody is 

supposed to interfere with the ability o f the endogenous depactin to interact with its 

physiological partners, and consequently to alter F-actin dynamics. Therefore, to test 

whether the antibody influences InsP3-mediated Ca2+ signals during meiotic maturation I
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have microinjected the antibody (4 pg/pl) into GV stage (immature) oocytes that have been 

pre-loaded with caged InsP3 (5 pM) and calcium dye, and performed a photoactivation of 

the caged InsP3 in the oocytes before and after stimulation with the maturation hormone 1- 

MA. Firstly, it was noticed that the oocytes microinjected with the anti-depactin antibody 

displayed a time delay in the GVBD. If  the approximate time at which the control oocytes 

preinjected with the immunoglobulin-G (IgG) (4 pg/pl) underwent GVBD was 65 minutes 

(n=32) (Fig. Ill 6, pink curve), for the oocytes preinjected with the antibody was 72 

minutes (n=37) (Fig. Ill 6, green curve). The approximate time needed for the GVBD to 

occur in the intact oocytes was 62 minutes (n=30) (Fig. Ill 6, blue curve) indicating that the 

time delay was due to the action of the antibody. In addition, despite the delay of GVBD in 

the examined oocytes preinjected with the depactin antibody, was noticed that the 

nucleoplasm did not intermix well with the cytoplasm (not shown).

Since the alterations of the actin cytoskeleton induced by the depactin antibody 

have already been shown both in immature (GV stage) and mature eggs (Puppo, 2009), I 

have continued to investigate whether the changes in the immature oocytes could somehow 

influence the InsP3-mediated Ca2+ release during maturation. Therefore, the control 

(microinjected with IgG) and experimental oocytes (microinjected with anti-depactin 

antibody) were co-injected with the mixture o f a calcium dye (Calcium Green, 500pM, 

pipette concentration) and caged InsP3 (5 pM, pipette concentration) and exposed to UV 

light (330 nm) for 15 seconds at the three time points of the meiotic cycle: i) at the GV 

stage (prophase I) before addition of 1-MA; if) after 40 minutes o f 1-MA addition; and, iii) 

after 70 minutes after the exposure to 1-MA, when the oocytes had already undergone 

GVBD (metaphase I). In line with the sensitization o f the InsP3-induced Ca2+ release 

during meiotic maturation, in the presence o f the control IgG, the Ca2+ rise have been 

gradually increasing showing 0.38 ± 0.28 RFU (n=8) in GV stage oocytes, and 0.53 ± 0.41 

RFU (n=8) in oocytes exposed to 1-MA for 40 minutes and 1.49 ± 0.09 RFU (n=8), in 

mature eggs (70 min after 1-MA) (Fig. Ill 7a and 8a). In parallel, the oocytes preinjected
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with the depactin antibody showed slightly lower Ca2+ increase in all three time points 

compared to the control oocytes, but, the difference was statistically significant only in the 

mature eggs. The InsP3-induced Ca2+ increase in the GV stage oocytes microinjected with 

depactin antibody was 0.3 ±0 .18  RFU (n=8), whereas in oocytes exposed for 40 minutes 

to 1-MA 0.49 ± 0.12 RFU (n=8). When the InsP3 was uncaged in mature eggs, 70 minutes 

after addition of 1-MA, the Ca2+ increase (1.31 ± 0.1 RFU, n=8) was statistically lower 

compared to the InsP3 uncaging in the control eggs (1.49 ± 0.09 RFU, n=8, P<0,05). 

Interestingly, the time necessary for the Ca2+ increase to reach the maximum peak during 

the InsP3 uncaging at the each time point of the maturation process, was always faster in 

the oocytes preinjected with the depactin antibody than in the control oocytes (Fig. Ill 8b). 

Moreover, as the amplitude of the Insp3-induced intracellular Ca2+ release during the 

meiotic maturation increases (Fig. Ill 8a), the time for reaching the maximum peak of the 

Ca2+rise is being reduced both in control and experimental cells, respectively (Fig. Ill 8b). 

Hence, the fine actin cytoskeleton rearrangement caused by blocking the function o f actin- 

binding protein depactin, induces changes in the kinetics and in the amplitude of the InsP3

04-promoted Ca release.
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Figure III 6. Time course of the GVBD during meiotic maturation in the presence of 

anti-depactin antibody. The GV stage A. aranciacus (immature) oocytes were 

microinjected either with the control immunoglobulin-G (IgG) (4 pg/pl) protein (n=32) or 

with the anti-depactin antibody (4 pg/pl) (n=37). After 15 minutes of incubation, 

microinjected oocytes along with the intact oocytes (n=30) were stimulated by 1-MA to 

undergo meiotic maturation. For the oocytes injected with the anti-depactin antibody the 

approximate time at which examined oocytes underwent GVBD was ~ 72 minutes (green 

curve), whereas for the control (IgG) and control intact oocytes was ~ 67 minutes (pink 

curve) and ~ 63 minutes (blue curve), respectively.
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Figure III 7. Anti-depactin antibody decreases the InsP3-induced Ca2+ response in 

mature eggs. GV stage oocytes of the A. auranciacus species were injected with a mixture 

of a Calcium Green (500 pM, pipette concentration) and caged InsP3 (5 pM, pipette 

concentration). Then, 15 minutes before the addition of the 1-MA, one group o f oocytes 

were injected with 4 pg/pl immunoglobulin-G as a negative control and another group with 

4 pg/pl anti-depactin antibody, (a) The graphs show the kinetics of the relative fluorescent 

Ca2+ curves after InsP3-uncaging by exposure to UV light (330 nm) for 15 seconds 

performed on the CCD camera. Intracellular Ca2+ increase was measured in the GV stage 

oocytes, in the oocytes exposed to 1-MA for 40 and 70 minutes.
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Figure III 8. Anti-depactin antibody accelerates the time of the Ca rise during
 ̂i

meiotic maturation and reduces the amplitude of the InsP3-induced Ca signaling in 

mature eggs. The experimental conditions are the same as in experiments shown in Figure 

III 6. (a) The bar histograms compare the average Ca2+ peaks for control (green bar) and 

experimental (brown bars) oocytes obtained during the photoactivation of caged InsP3 in 

the GV stage oocytes, and in the oocytes exposed to l-M A for 40 and 70 minutes, (b) The 

average time to reach the maximum Ca2+ peak in response to InsP3 uncaging in the two 

groups of oocytes at three different time points of the cell cycle. The presence o f the

9+ .
antibody at the three time points of the cell cycle showed statistically faster Ca rise 

compare to the one in the control oocytes (P<0,05 and P<0,00l).
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Fertilization of starfish eggs in the presence of actin-modulating protein gelsolin

As it was demonstrated, blocking the function of depactin interferes with the InsP3- 

and sperm-induced intracellular Ca2+ increase. In order to extend the knowledge and 

examine if  another actin-binding protein may have an impact on the intracellular Ca2+ 

signaling in starfish eggs, I have inseminated mature eggs microinjected with gelsolin. 

Gelsolin is a 80 kDa Ca2+- and PIP2-regulated actin-binding protein that cuts actin 

filaments and caps the severed end, leading to Ca2+-dependent remodelling of the actin 

cytoskeleton (Sun et al., 1999). A human recombinant gelsolin (1 mg/ml, pipette 

concentration) was microinjected into mature starfish eggs, and the eggs were inseminated 

after 20 minutes incubation. The relative fluorescent measurements of the Ca2+ dye in the 

‘fertilized eggs showed the cortical flash which represents a massive Ca2+ increase beneath 

the plasma membrane induced by the sperm at the initial moments o f the sperm-egg 

interaction was affected (Fig. Ill 9b). The presence o f gelsolin in the fertilized eggs 

reduced to 42 % (3 out of 7) the occurrence of the cortical flash compare to 70 % (7 out of 

10) occurrence in the control eggs (Fig. Ill 9b). However, the presence of gelsolin affected 

neither the amplitude nor the kinetics of the Ca2+ rise. The height o f the intracellular Ca2+ 

increase in experimental eggs (1.28 ± 0.12 RFU, n=12) was not significantly different to 

that in the control eggs (1.33 ± 0.09, n=15, P=0.26) microinjected with the denaturated 

gelsolin (incubated at 95 °C for 5min) (Fig. Ill 9a and c). In parallel, the kinetics of the 

Ca2+ increase was not affected, as there was no difference in the time for the Ca2+ rise to 

reach the peak in control (100.6 ± 21.4 sec, n=15) and experimental eggs (112.6 ± 27.6 sec, 

n=12, P=0.23). Despite the comparably high intracellular Ca2+ increase induced by the 

fertilizing sperm, the gelsolin preinjection inhibited the formation o f the fertilization 

envelope. Only 33 % (4 eggs out of 12) of the eggs microinjected with gelsolin underwent 

normal fertilization envelope formation compared with the 100 % (15 eggs out o f 15) in 

the control (denaturated gelsolin) eggs (Fig. Ill 9d). Hence, the actin-modulating protein
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gelsolin affected the cortical granules exocytosis and the cortical flash, while the amplitude 

and the kinetics of the sperm-induced intracellular Ca2+ seemed not to be much altered.
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Figure III 9. Sperm-induced intracellular Ca2+increase in the eggs microinjected with 

actin-severing protein-gelsolin. Mature A. auranciacus eggs were microinjected with 

Calcium Green / Rhodamine Red and either with the denaturated (95 °C, 20 minutes) 

human gelsolin (1 mg/ml, pipette concentration), or, with the gelsolin (1 mg/ml, pipette 

concentration). Eggs were incubated for 20 minutes and then fertilized, (a) Relative 

fluorescence signals of the calcium dye detected under the CCD camera in fertilized 

control (15 green curves) or experimental (12 brown curves) mature eggs, (b) Relative 

fluorescence pseudo-colored images of cortical flash in control egg, and abolished cortical 

flash in the egg preinjected with gelsolin. (c) Averaged relative fluorescent signals o f the 

amplitude of the Ca2+-rise in control (1.33 ± 0.09 RFU, n=15) and experimental eggs (1.28 

± 0 .12  RFU, P=0.26, n=12). (d) Transmission light images taken with the CCD camera, 

showing the partial (in the presence of gelsolin) and a normal vitelline layer elevation (in 

the presence of a denaturated gelsolin) in the eggs 20 minutes after fertilization. Scale bar, 

100 |rm.
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Actin-binding protein utrophin, as a tool for the F-actin visualization in starfish eggs

Despite an important role o f the actin-binding proteins in regulation o f the 

polymerization/depolimerization dynamics of the actin cytoskeleton, the fluorescently 

tagged actin-binding proteins can be a useful molecular probe -for detecting and visualizing 

the rate of actin cytoskeleton changes in different experimental models (Gerisch et al., 

1995; Edwards et al., 1997; Kost et al., 1998). Therefore, I have further studied how the 

actin cytoskeleton changes during fertilization of starfish eggs can be visualized by specific 

F-actin binding protein.

I have used a probe developed on the basis of the F-actin-binding domain of the 

human protein-utrophin, with the aim to obtain another molecular tool for visualization of 

the actin cytoskeleton in a live oocyte. Utrophin is known as a non-muscle counterpart o f 

dystrophin (Winder et al., 1995). Its calponin-homology domain (CH) was shown to bind 

to F-actin in vitro (Rybakova and Ervasti, 2005) and in vivo in various cell types (Burkel et 

al., 2007). By using a green fluorescent protein-tagged CH of utrophin (GFP-Utr) was 

demonstrated that it binds and visualizes the changes of F-actin during meiotic maturation 

in starfish and embryonic development in sea urchins with no apparent evidence to 

interfere with any of the above mentioned processes (Burkel et al., 2007).

The GFP-Utr was expressed and purified from E. coli (in collaboration with Dr. 

Chun) and was used for microinjections into the starfish oocytes. Microinjected immature 

oocytes and mature eggs of A. auranciacus were observed under the confocal microscope 

to confirm the binding of the recombinant protein to the F-actin. As shown in the figure III 

10a, immature oocytes with microinjected GFP-Utr (12 mg/ml, pipette concetration) 

showed a clear staining of F-actin around the germinal vesicle and in the cytoplasm as 

short microfilaments, while the staining in the plasma membrane often took patched form. 

On the other hand, mature eggs displayed a clear perpendicular staining o f the 

microfilaments in the subplasmalemmal region and the short actin filaments in the inner 

cytoplasm (Fig. Ill 10b). In order to check whether this probe could visualize the active F-
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actin remodelling in starfish oocytes, the immature oocytes preinjected with GFP-Utr were 

exposed to the actin-depolymerization agent LAT-A (3 pM). After 20 minutes of 

incubation, oocytes were washed and observed under the confocal microscope. As shown 

on the confocal microscopic image (Fig. Ill lib ) , a drastic actin depolynierization induced 

by the drug can be clearly visualized by the GFP-Utr around the nucleus and in the cortex 

of the immature oocytes. On the other hand, the time matching control oocyte not treated 

with LAT-A, showed a characteristic staining of the F-actin in the cortex and around the 

nucleus (Fig. Ill 11a).
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Figure III 10. F-actin staining in immature and mature starfish oocytes vizualized by 

the GFP-Utr. Immature A. auranciacus oocytes (a) and mature eggs (b) were 

microinjected with GFP-Utr (12 mg/ml) and observed under the confocal microscope 10 

min later, (a) F-actin staining with the recombinant protein in the GV stage oocyte 

revealed predominant staining near the plasma membrane and nuclear envelope. Note that 

the staining in certain areas of the subplasmalemmal region takes a patchy form, (b) In 

mature egg, the staining showed the perpendicularly oriented F-actin fibers in the egg 

cortex. Scale bar, 10 pm.
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Figure III 11. G FP-U tr visualizes the actin depolymerization induced by LAT-A

Confocal microscopic images of the control (non-treated) and immature A. auranciacus 

oocytes treated with LAT-A. (a) Control immature oocyte microinjected with GFP-Utr (12 

mg/ml) and observed with the confocal microscope after 25 minutes, (b) Immature oocyte 

microinjected with GFP-Utr (12 mg/ml), incubated for 5 minutes in the fresh seawater and 

then treated with 3 pM LAT-A for 20 minutes. After the treatment the LAT-A was washed 

out, and the oocytes were observed with the confocal microscope. Scale bar, 20 pm.
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Now the next goal was to examine whether the probe could detect the dynamic

changes of the actin cytoskeleton in a physiological process like fertilization. For this
\

purpose, mature eggs were microinjected with GFP-Utr (12 mg/ml, pipette concentration) 

and after 5 minutes of incubation in seawater were inseminated. The real-time changes in 

the structure of the actin cytoskeleton of the fertilized eggs were monitored under the 

confocal microscope (Fig. Ill 12). At variance with the data of the F-actin staining with the 

fluorescent phalloidin (Chun et al., 2010; Vasilev et al., 2012), the GFP-Utr probe did not 

visualize the F-actin spikes formed in the perivitelline space, nor the cortical actin fibers 

that centripetally migrate in the egg cortex at the time of the sperm entry (Terasaki, 1996; 

Chun et al., 2010; Vasilev et al., 2012). However, the probe visualized the rich actin 

meshwork inside the fertilization cone on the surface of the fertilized egg 5 and 8 minutes 

after insemination (Fig. Ill 12b, c and f). In addition, when the fertilized eggs preinjected 

with GFP-Utr were observed at higher magnification, a staining around the cortical 

vesicles was observed (Fig. Ill 13b’ and c’) at the time of active exocytosis o f cortical 

granules, i.e. vitelline layer elevation (Fig. Ill 13b and c). The staining of the cortical 

vesicles visualized by the probe was gradually decreasing and by 22 minutes after 

insemination only a few cortical vesicles were surrounded with F-actin (Fig. Ill 13d’). 

Taken together, these results suggest that GFP-Utr might selectively labels the actin 

filaments that are physically associated with the membrane such as plasma membrane, 

nuclear envelope and the cortical vesicles in motion.
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Figure III 12. F-actin visualization by G FP-U tr during fertilization of starfish eggs.

Merged images of the confocal and transmission light microscopic images. Mature eggs of 

A. auranciacus were microinjected with GFP-Utr (12 mg/ml). After 5 minutes of 

incubation, the eggs were observed under the confocal microscope just before the sperm 

addition (a) and (b) 5, (c) 8 and (d) 10 minutes after sperm addition. Scale bar, 100 pm. (f) 

The panel represents magnified views of the squared areas from the panels a, b, c and d.
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Figure III 13. GFP-Utr binds to F-actin that is formed around the cortical vesicles 

during fertilization. Mature eggs of A. aranciacus were microinjected with GFP-Utr (12 

mg/ml, pipette concentration) and inseminated after 5 minutes of incubation. The bright 

field views of the egg (a, b, c, d) are shown together with the correspondent fluorescent 

confocal images of the same egg (a’, b’, c’, d’) before (t=0) and after the sperm addition, 

(a’) The probe revealed the perpendicularly oriented microfilaments in the cortex o f 

unfertilized mature egg. After the egg becomes activated by the fertilizing sperm after (b’) 

8 and (c’) 12 minutes the probe binds around the numerous vesicles in the cortex. (d’)After 

22 minutes of the sperm addition, the number of the cortical vesicles visualized by the 

probe was dramatically reduced. Scale bar, 100 pm.
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_  Discussion for Chapter III

' ^ The PH-RFP fusion protein binds to PIP2, and thereby renders the PIP2 inaccessible 

to other PIP2-interacting proteins, which include a host o f actin-binding proteins (Sechi and 

Wehland 2000; Yin and Janmey, 2003). PIP2 sequestration during meiotic maturation of 

starfish oocytes appeared to inhibit the cortical granules orientation (Fig. Ill lb). The
1

positioning and distribution of the cortical granules towards the plasma membrane during
/

4 /  * 
meiotic.maturation is dependent on the actin cytoskeleton (Santella et al., 1999; Wessel et

al., 2002). Since PIP2 is able to influence the function of many actin-binding proteins, it is

conceivable that the intracellular perpendicular positioning beneath the plasma membrane

was interfered with because of the PIP2 sequestration by the PH-domain that may have

dislodged certain class of actimbinding proteins.

2"bConsidering that PIP2 is a substrate for the PLC to produce InsP3 to support the Ca 

signaling during fertilization, one would expect a lower Ca2+ signals by masking the 

plasma membrane PIP2 and making it less available for hydrolysis to produce InsP3. 

Indeed, when mature eggs were microinjected with the RFP-PH before fertilization, the 

sperm-induced Ca2+ signals showed significant delay in the kinetics and slightly lowered 

amplitude of the response than the control eggs preinjected with the R40A mutant protein 

(Chun et al., 2010). Hence, by lowering the level of the free PIP2 at the plasma membrane 

with RFP-PH, the pattern of Ca2+ signaling at fertilization was subtly changed. Another 

interpretation of the data in Chun et al (2010) is that the subtle changes in the actin 

cytoskeleton caused by PIP2 sequestration near the egg plasma membrane may have 

affected the intracellular Ca2+ signaling, as has been numerously demonstrated in the 

starfish oocytes (Lim et al., 2003; Nusco et al., 2006; Chun and Santella, 2009). Given that 

in starfish oocytes the actin cytoskeleton undergoes dramatic rearrangement during meiotic 

maturation, altering the function of the actin-binding proteins by PIP2 sequestration may be 

responsible for the alteration in the intracellular Ca2+ release at fertilization. Moreover, as
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the PIP2 was reported to regulate the ion channels (Lupu et al., 1998; Suh et al., 2008) it is 

conceivable that its sequestration have interfered with ion channel activities.

In this thesis, I have used a slightly different experimental paradigm to test the 

effects of PIP2 sequestration 'by RFP-PH that has'been present in the starfish eggs during 

the maturation process. When oocytes microinjected with RFP-PH were induced to resume

• 94*meiotic cycle with 1-MA and fertilized lh  later, the level o f intracellular Ca increase was 

surprisingly higher than in the control eggs at fertilization (Fig. Ill 2a and b). One way to 

interpret the data is that the intracellular Ca2+-releasing mechanism that is optimized during 

meiotic maturation is even more sensitized in the presence of RFP-PH. Alternatively, the 

enhanced Ca2+ response might be linked to the structural changes that were induced by 

RFP-PH. In this sense, it would be interesting to know if the distribution o f InsPsR on the 

ER was changed by the treatment, or if  the actin cytoskeleton is also changed in its 

structure in the egg cortex.

Although eggs microinjected with the PH-domain at the GV stage displayed a 

higher Ca2+ increase at fertilization, the vitelline envelope elevation was impaired (Fig. Ill 

2c). Because the vitelline layer elevation takes place as a result o f the exocytosis o f the 

cortical granules, this result was expected since the PH-domain interferes with the 

translocation of the cortical granules beneath the plasma membrane during meiotic 

maturation (Fig. Ill lb). In addition, a successful elevation of the fertilization envelope 

may require extension of the actin spikes in the perivitelline space, which was suggested to 

provide a mechanical force for the process (Chun et al., 2010). Hence, by altering the PIP2 

level, PH-RFP might have altered the actin dynamics at the perivitelline space and thereby 

affected the elevation process of the fertilization envelope. It would be interesting to study 

whether the eggs that had been microinjected with PH-RFP at the GV stage oocytes would 

be polyspermic as was expected from the lack o f full elevation o f the fertilization 

envelope.
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As it was mentioned before, incubation of mature starfish eggs with the LAT-A 

induces intracellular Ca2+ increase and cortical granules exocytosis that leads to the 

vitelline layer elevation (Lim et al., 2002). LAT-A stimulated activation of mature eggs is 

inhibited when the eggs are preinjected with the PH-domain (Fig. Ill ‘4b’). Consequently, 

the cortical granules remained attached beneath the plasma membrane even after prolonged 

incubation (20 minutes) in the sea water containing LAT-A (Fig. Ill 4b). It is known that 

PIP2 regulates actin binding proteins that may interfere with the F-actin present in the cell 

cortex (Di Paolo and De Camilli, 2006). When actin is highly polymerized in the cortex of 

the starfish eggs either by heparin or JAS (Puppo et al., 2008), the subsequent exposure to 

LAT-A failed to induce the intracellular Ca2+ increase and activate the eggs (Lim et al., 

2002; Lim et al., 2003). Hence, the failure o f LAT-A to induce cortical granules discharge 

in the perivitelline space in the RFP-PH preinjected starfish eggs might be similarly due to 

the changes o f the actin cytoskeleton.

Depactin is a 17 kDa protein that has been identified in starfish (Mabuchi, 1981) 

and specifically binds to actin molecules (Sato and Mabuchi, 1989). Depactin detaches the 

actin monomers from the polymer of both ends o f the filament, and forms 1 to 1 actin- 

depactin complex (Mabuchi, 1983) thus inducing actin cytoskeleton depolymerization in 

vitro (Takagi et al., 1988). On the other hand, depactin can also accelerate the rate of 

polymerization of actin probably by producing many short filaments that can serve as a 

nuclei or roots for a new filaments formation (Mabuchi, 1983).

Here, in this chapter I reported on the significant delay of the GVBD in the oocytes 

microinjected with depactin antibody (Fig. Ill 6). By the end of the GVBD was observed 

an incomplete mixing of the nucleoplasm with the cytoplasm. Previously, our laboratory 

has demonstrated that the microinjection of the depactin-antibody into the GV stage 

oocytes induced formation of actin fibers formation inside the germinal vesicle (nucleus) 

(Puppo, 2009).
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While nuclear actin does not seem to form microfilaments in normal conditions, it 

has been suggested that actin in the nucleus might play various functions such as 

participation in the transcription machinery, nucleocytoplasmic transport, structural 

support and local translocation of the chromatin (Bettinger et al., 2004; Lenart et al., 2005). 

Actin may play an important role in the nuclear assembly, as it was shown in a cell-free 

assay by using Xenopus laevis egg exctracts (Krauss et al., 2002). The role in establishing 

and/or maintaining the nuclear structure was suggested to be through interactions with the 

nuclear lamina proteins (Sasseville and Langelier, 1998; Lattanzi et al., 2003; Bettinger et 

al., 2004). Moreover, in the context of our findings that cofilin translocates itself inside the 

nucleus (Ohta et al., 1989; Pendleton et al., 2003), the functionally homologous depactin 

might do the same and exert its effect in the nucleus. Hence, in the presence of the 

function-blocking antibody, depactin was expected to be inhibited and might have thereby 

derepressed the formation of the actin fibers in the nucleus. Hence, the shift o f actin 

assembly and disassembly dynamics in the nucleus of the starfish eggs by the depactin 

antibody could explain the failed intermixing of the cytoplasmic and nuclear environments.

Starfish eggs which had undergone meiotic maturation in the presence of the 

function-blocking antibody against the depactin showed significant decrease in the 

amplitude of the InsP3-induced intracellular Ca2+ release (Fig. Ill 7a and III 8a). Not only 

the amplitude of the Ca2+ rise, but also the kinetics of the Ca2+ increase was affected, being 

much faster compared to control eggs (Fig. Ill 8b). These results are in line with the 

blocking effect of the antibody of the function of the endogenous depactin (cofilin), as the 

published data demonstrate that the addition o f the cofilin (homologous protein to 

depactin) into the cytoplasm of starfish oocytes induces significantly higher amplitude of 

the InsP3-induced Ca2+ release (Nusco et al., 2006). There may be several ways by which 

depactin could affect the intracellular Ca2+ signaling in response to InsP3 . Depactin could 

modulate the activity of the InsPsR indirectly by remodelling the cytoskeleton and

24"microenvironment. In line with this possibility, it has been xlemonstrated that the Ca
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influx across the plasma membrane is regulated by cofilin (Rueckschloss et al., 2001; 

Redondo et al., 2006). Since the increased sensitivity of the InsPsR in starfish eggs is not 

likely to be due to the increased charge of the Ca2+ stores during the meiotic process (Chiba 

et al., 1990; Lim et al., 2003), nor to overexpression or redistribution o f the InsPsR 

(Iwasaki et al., 2002), the fine regulation of the actin cytoskeleton dynamics might be 

implicated in the sensitization of the InsP3-mediated Ca2+ release. Indeed, the filamentous

actin was shown to link to the InsPsR and thereby influence the Ca2+ signaling elicited by

2+
InsP3 (Turvey et al., 2004). Another possibility is that depactin has affected the Ca 

liberation from the actin fibers, as proposed by the F-actin-Ca2+ store hypothesis (Lange 

and Brandt, 1996). Finally, it would be interesting to investigate whether depactin could 

directly bind to and fine-tune the activity of the InsPsR.

Another actin-modulating protein used in this chapter to rearrange the actin 

cytoskeleton was gelsolin. It is a 95 kDa cytosolic protein that severs actin filaments when 

it is activated by Ca2+, and after cleaving the actin filaments, gelsolin remains tightly 

bound to the barbed ends (Yin et al., 1981b; Cooper et al., 1987; Janmey and Stossel, 

1987). Microinjection of gelsolin into mature eggs affected neither the amplitude o f the 

Ca2+rise, nor the kinetics of the intracellular Ca2+release at fertilization (Fig. Ill 9a and c). 

However, the initial Ca2+ increase beneath the plasma membrane, the so called ‘cortical 

flash’ was affected along with the normal fertilization envelope formation (Fig. Ill 9b and 

d). Given that the cortical flash at fertilization is a result o f the Ca2+ influx (Moccia et al., 

2003; Churchill et al., 2003), gelsolin-induced actin cytoskeleton remodelling could affect 

the calcium channels on the plasma membrane. In support of the idea, it was reported that 

in the neuronal cells lacking gelsolin, the magnitude of the Ca2+ influx is affected upon 

stimulation (Furukawa et al., 1997). On the other hand, a detrimental effect on the vitelline 

layer elevation may be explained by the depolymerizing effect that gelsolin might have had 

on the actin assembly in the egg cortex. As the vitelline layer elevation is accompanied by 

the extensive actin cytoskeleton polymerization to sustain the elongation o f the spikes in



the perivitelline space of the fertilization envelope, the gelsolin-induced changes in the 

actin cytoskeleton may have affected this process.

The GFP-Utr can be used as a molecular marker for visualization o f the F-actin in 

starfish oocytes and eggs. This F-actin staining probe very similarly reflects the state of the 

actin cytoskeleton in GV stage oocytes and in mature eggs, as was previously shown with 

the staining of F-actin with the Alexa-conjugated phalloidin (Kyozuka et al., 2008; Puppo 

et al., 2008). The probe binds to the F-actin during a dynamic remodelling o f the actin 

cytoskeleton induced either with the actin-modifying agent (e.g. LAT-A, Fig. Ill 11), or 

during fertilization of starfish eggs (Fig. Ill 12 and 13). The novelty observed by this probe 

was the data showing that GFP-Utr actively binds around the vesicles-like ring structures 

in the egg cortex at fertilization (Fig. Ill 13). As the visualization of these structures with 

the probe was diminishing with the time after the egg activation, the probe supposedly 

marked the F-actin that was generated around the cortical granules presumably to facilitate 

their exocytosis. In line with this data is the F-actin staining visible around the fused white 

vesicles and cortical granules in the ionomycin pretreated starfish eggs (Vasilev et al., 

2012). However, the probe did not mark the cortical actin migration and the spikes 

formation in the perivitelline space o f the fertilization envelope. It will be interesting to 

determine if  the probe may have some effect on the Ca2+ signaling and for the further 

development of the A. aranciacus zygotes.
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CHAPTER IV

Effects of ionomycin on egg activation and early development in starfish 

Results

Ionomycin induces intracellular Ca2+ increase in starfish oocytes and eggs by release 

from internal stores and from Ca2+ influx

The fusion of the egg and sperm plasma membranes gives rise to a several 

physiological changes in the fertilized eggs, e.g. rapid changes in the actin cytoskeleton 

structure, alteration of the electrical property of the plasma membrane, cortical granules 

exocytosis, initiation of DNA replication and protein synthesis (Trimmer et al.1986; Epel, 

1990). Practically in all animal species, these cytological and biochemical changes, termed 

‘egg activation’, are accompanied by a significant increase in intracellular Ca2+ that 

propagates in the eggs as a single wave or oscillating waves (Ridgway et al., 1977; 

Miyazaki, 1991; Jaffe, 2002; Santella et al., 2004). The original experiments performed in 

sea urchin eggs leading to the conclusion that the intracellular Ca2+ increase is the initial 

stimulus elicited by the sperm to trigger the egg activation were done by using the calcium 

ionophore A23187. Based on the ability of the A23187 to cause the cortical granules 

exocytosis and fertilization envelope formation in sea urchin eggs in the Ca -free seawater 

(CaFSW) lead to the prevailing view that the intracellular Ca2+ plays the key role in 

initiating the cytological changes in fertilized eggs (Steinhardt and Epel, 1974). 

Nevertheless, Ca2+-independent way might also exist and contribute to the egg activation at 

fertilization (Ciapa and Amoult, 2011).

Ionomycin is a Ca2+-selective ionophore that has been isolated from the

 ̂ I
bacterium Streptomyces conglobatus (Liu et al., 1978). It binds Ca in one-to-one

stoichiometry and support mostly electrically neutral change of Ca2+ for 2H+ or other

divalent cations such as Mg2+, and thereby transfers Ca2+ ions across the vesicle

membranes or through the water-lipid interface (Liu et al., 1978; Erdahl et al., 1994).

Ionomycin is shown to be more specific and potent than A23187 (Kauffman et al., 1980),
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but the precise mechanism of how it raises the Ca2+ level inside the cells is not clearly 

understood and still remains controversial (Morgan and Jacob, 1994). Ionomycin may 

exert its action on plasma membrane and induce Ca2+ influx, or act on the intracellular 

organelles to release Ca2+. On the other hand, it may use an indirect way to potentiate the 

existing Ca2+-mobilizing mechanisms or to activate an enzyme such as PLC that in turn 

cleaves PIP2 to produce the Ca2+-releasing second messenger InsP3. The action of 

ionomycin may depend on the concentration used, since it has ionophorethic effects at 

> lpM  (Mason and Grinstein, 1993; Morgan and Jacob, 1994).

Immature A. aranciacus starfish oocytes were microinjected with Calcium 

Green and Rhodamine Red mounted on the coverslip and monitored with the CCD camera 

for the intracellular Ca2+ changes. Immediately after the addition of ionomycin to the 

artificial sea water containing 10 mM Ca2+ (ASW), the intracellular calcium levels started 

to rise. The calcium signals were significantly increased in the cortical area just beneath 

the plasma membrane before spreading to the center of the oocyte (Fig. IV la). Eight out 

o f nine oocytes displayed sharp rise and fall of Ca2+ in the entire cortical region (cortical 

flashes) 10.5 ± 2.9 seconds after the ionomycin addition (Fig. IV la, arrow), and by 5 

minutes of exposure the Ca2+ signals arrived at the plateau (Fig. IV lb). However, in the 

CaFSW the initial Ca2+ rise was significantly delayed (16.2 ± 5 .3  sec, n = ll)  compared 

with oocytes treated in ASW (6.7 ± 2.9 sec, n=9, PO.OOOl) (Fig. IV lc). In agreement 

with the idea that the short-lasting (<2 sec) cortical flash represents a Ca2+ influx (Muallem 

et al., 1995; Lim et al., 2001; Moccia et al., 2003; Churchill et al., 2003), no cortical 

flashes were observed in the oocytes incubated with the same concentration o f ionomycin

(5 pM) in the CaFSW (0 out of 11) (Fig. IV la). Furthermore, the amplitude of the Ca2+

2_|_
peak in these oocytes was significantly lower (0.46 ± 0 .12  FRU, n = ll)  than that o f Ca - 

containing sea water (0.86 ± 0.04 RFU, n=9, P<0.0001). In addition, upon reaching the 

peak in oocytes treated in Ca2+-containing sea water, the Ca2+ increase was sustained on 

the high levels, compared to that o f the oocytes incubated in CaFSW where the Ca2+ levels
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fell back to the basal level within 15 minutes of exposure (Fig. IV lb). Therefore, 

ionomycin-induced intracellular Ca2+ increase is a result o f a release from the intracellular 

stores and a Ca2+ influx being responsible for maintaining the Ca2+ levels high after 

reaching the peak.
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Figure IV 1. Changes of intracellular Ca2+ levels in the starfish oocytes exposed to 

ionomycin. A. aranciacus oocytes at the GV stage were microinjected with Calcium Green 

/ Rhodamine Red and exposed to 5 pM ionomycin in ASW or in CaFSW. (a) The 

pseudocolored images of Ca2+ changes within the representative oocytes at several key 

time points. Indicated by an arrow is the cortical flash, (b). The dynamics of the released 

Ca2+ after addition of ionomycin in ASW and CaFSW are represented in green and brown

2"b • f\ *curves, respectively. The moment of the first detectable Ca signal was set to t = 0 in 

panels b and c. (c) The initial response of the oocytes to ionomycin in ASW (green curves) 

and CaFSW (brown curves).
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Ionomycin treatment of immature oocytes causes retraction of microvilli and fusion 

of cortical vesicles

When treated with ionomycin, the GV stage starfish oocytes responded with a 

slight elevation of the vitelline layer (Fig. IV 2), as was previously shown in the context of 

ectoplasmic maturation for the oocytes exposed to a sub-threshold concentration of 

maturation hormone (Hirohashi et al., 2008; Terasaki and Runft, 2012). The most evident 

vesicles residing in the ectoplasm of the GV stage oocytes along with the migrating 

cortical granules are the so called ‘white vesicles’. It is not much known about their 

function, except the fact that their content may be needed for the fertilization envelope 

formation, as they are exocytosed during vitelline layer elevation at fertilization (Vasilev et 

al., 2012). In the oocytes that have been briefly exposed to 1-5 pM ionomycin, the white 

vesicles in the subplasmalemmal region have reduced in number and enlarged in size (Fig. 

IV 2a and b). When measuring the longer axis, the average diameter of the ‘white vesicles’ 

in the control oocytes was 1.2 pm whereas in the treated ones ranged from 4 to 8 pm. The 

TEM (transmission electron microscopy) image has clearly shown two intermediately large 

vesicles (>4 pm) forming a ‘peanut shell-shaped’ twin structure in the ionomycin- 

pretrated oocytes (Fig. IV 2c, blue arrows, right panel), supporting the idea that the 

formation of the bigger white vesicles is due to intervesicular fusion. Interestingly, close to 

the plasma membrane the white vesicles appeared to have engulfed the electron-dense 

materials, supposedly derived from the cortical granules (Fig. IV 2c, red arrows, right 

panel). Furthermore, the microvilli representing finger-like protrusions filled with actin 

filaments on the surface of the control oocytes (Fig. IV 2c, blue arrows, left panel) were 

completely absent in the ionomycin-treated oocytes, leaving behind a smooth plasma 

membrane (Fig. IV 2c, right panel). Finally, ionomycin treatment seems to selectively 

target the white vesicles and cortical granules because the other vesicles such as yolk 

platelets, which appear as most numerous and intermediately dark granules in the TEM 

(Fig. IV 2c), did not undergo much structural change.



Figure IV 2. Morphological changes in the cortex of the starfish oocytes exposed to 

ionomycin. A. aranciacus oocytes at the GV stage were incubated for 5 minutes in natural 

seawater containing 5 pM ionomycin and then fixed in 1 %-glutaraldehyde. (a) Bright 

field view in the light microscope of control oocyte (left panel) and treated oocyte (right 

panel). Scale bar, 50 pm. (b) The magnified views o f the dot-lined rectangular areas in 

panel a. The same large vesicles present in the treated oocyte in panel a were marked with 

yellow arrowheads (right panel). Cortical granules that appear as dark vesicles sized about 

1 pm (black arrow) in control oocyte (left panel) had largely disappeared in the oocytes 

briefly exposed to ionomycin (right panel). Scale bar, 10 pm. (c) TEM image o f the same 

batch of oocytes incubated in the natural sea water (left) or in the presence o f 5 pM 

ionomycin for 5 minutes (right). In the cross-section of the control oocytes (left) blue 

arrows indicate microvilli. In pretreated oocytes (right panel), red arrows indicate the white 

vesicles engulfing electron-dense cortical granules whereas blue arrows show the white 

vesicles at fusion. Scale bar, 10 pm.
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Immature oocytes and mature eggs of starfish undergo drastic rearrangement of the 

actin cytoskeleton upon ionomycin treatment

The disruption of the microvilli on the surface of the ionomycin-treated oocytes 

suggested that the alteration in the actin filaments took place. To examine that, I have 

microinjected Alexa Fluor 488-conjugated phalloidin into immature oocytes and monitored 

under the confocal microscope the changes in the actin cytoskeleton during the treatment. 

After 5 minutes of exposure to 5 jjM  ionomycin the actin cytoskeleton revealed dramatic 

rearrangement (Fig. IV 3a), whereas the F-actin structures of untreated oocytes remained 

virtually unchanged within the same timeframe (not shown). Hence, during the ionomycin- 

induced intracellular Ca2+ rise, the actin cytoskeleton underwent drastic rearrangement. As 

depicted in the figure IV 3 a, in the inner cytoplasm, the actin cytoskeleton was highly 

polymerized, forming longer and thicker microfilament bundles and patches. At the same 

time, the typical actin filaments in the subplasmalemmal region that are intimately 

associated with plasma membrane (Fig. IV 3a, white arrow at t=0) disappeared by 5 

minutes of exposure, indicating active depolymerization o f the actin filaments in this 

subcellular domain. This structural reorganization of the actin cytoskeleton was maintained 

even after 20 minutes of exposure to the ionophore (data not shown). Hence, ionomycin 

remodels the actin cytoskeleton in the inner cytoplasm and in the cortical area in a different 

manner: accelerated polymerization in the inner cytoplasm and simultaneous fast and 

extensive depolymerization in the subplasmalemmal region. However, when GV stage 

oocytes were pretreated with ionomycin (5 minutes), washed and then let to resume the 

meiotic maturation for one hour in the presence of 1-MA (10 pM), the actin cytoskeleton 

structure was, to some extent, restored to the state o f the control mature eggs (Fig. IV 3b). 

Nevertheless, the F-actin fibers typically observed perpendicular to the plasma membrane 

in the control mature eggs (Fig. IV 3b, arrowheads), were largely absent despite the 

restoration of the dense actin network in the region. Interestingly, phalloidin staining 

showed F-actin fibers cluster around the large vesicles formed by ionomycin (Fig. IV 3b,
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arrows). Except for these structural changes in the ectoplasm, ionomycin pretreated 

oocytes underwent apparently normal meiotic maturation in the nucleus, with the GV 

breakdown occurring in the same time schedule (1 h) after 1-MA addition.
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Figure IV 3. Ionomycin induces rapid  rearrangem ent of the actin cytoskeleton. (a) A.

aranciacus oocytes were microinjected with Alexa Fluor 488-conjugated phalloidin, 

exposed to 5 pM ionomycin and monitored under the confocal microscope. The continuous 

layer of the subplasmalemmal actin network delineating the plasma membrane (arrow, t=0, 

left panel) had mostly disappeared in the same oocyte within 5 minutes after the treatment 

with ionomycin (right panel). In parallel, the actin filaments in the inner cytoplasm formed 

bundles and became much thicker and longer, (b) After 5 minutes of exposure to 5 pM 

ionomycin, the oocytes were washed and induced to undergo meiotic maturation for 1 hour 

in the seawater containing 1-MA (10 pM) and then observed with the confocal microscope. 

Arrowheads indicate the actin fibers in the subplasmalemmal region (left panel) and arrows 

indicate on the actin filaments around the big fused white vesicles (right panel). Scale bar, 

50 pm.
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Short exposure of starfish oocytes to ionomycin causes disruption and exocytosis of 

cortical granules

As it was aforementioned, the brief exposure (3-5 minutes) to 5 pM ionomycin 

of immature oocytes leads to an evident actin cytoskeleton depolymerization in the 

subplasmalemmal region (Fig. IV 3). Compared to the control eggs in which the cortical 

granules were closely attached to the plasma membrane by the end of meiotic maturation 

(Fig. IV 4a, arrowheads, upper panel), in the eggs that had been pretreated with ionomycin 

before undergoing maturation process the cortical granules were much reduced in number. 

Hence, as a result of the treatment, the cortical granules located near to the plasma 

membrane underwent exocytosis (Fig. IV 4a, blue arrows, lower panel) or were engulfed 

by the white vesicles (Fig. IV 4a, red arrows, lower panel). This was not the case in the 

non-treated mature eggs, in which cortical granules were intact despite the presence of 

vicinal white vesicles. Since the ultrastructure of the cortices of the oocytes treated with 5 

pM ionomycin was not altered by further exposure to IMA (see the TEM images of treated 

oocytes and eggs in Fig. IV 2c and 4a), the exposure to the ionophore caused irreversible 

changes in the subplasmalemmal region. Indeed, the actin network subjacent to the plasma 

membrane was still depolymerized (Fig. IV 3b), and the microvilli were still completely 

absent in these eggs (Fig. IV 4a). Interestingly, when matured eggs that have been pre­

treated at the GV stage were again exposed to the same concentration of ionomycin (5 

pM), the intracellular Ca2+ increase did not take place (Fig. IV 4b, brown curves), unlike 

the control non pretreated eggs (Fig. IV 4b, green curves).
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Figure IV 4. Disruption of cortical granules and microvilli by the brief exposure to 

ionomycin leads to depletion of the ionomycin-sensitive Ca2+ stores. A. aranciacus GV 

stage oocytes were treated with 5 pM ionomycin for 3 minutes, washed and stimulated to 

resume the meiotic cycle by 1-MA. (a) After 1 hour, the mature eggs were fixed with 1% 

glutaraldehyde and analyzed by TEM. Blue arrowheads indicate the cortical granules 

attached to the plasma membrane (upper panel), and the remnant of the cortical granules 

that were extruded in the perivitelline space (blue arrows, lower panel). Red arrows 

indicate fragments of cortical granules being engulfed by white vesicles. Scale bar, 10 pm. 

(b) The same batch o f oocytes was exposed to 5 pM ionomycin for 3 minutes and 

transfered to the sea water containing 1-MA. After GV breakdown, the mature eggs were 

microinjected with Calcium Green / Rhodamine red and subsequently re-exposed to 5 pM 

ionomycin (t = 0) to monitor the Ca2+ response. The trajectory of intracellular Ca2+ levels 

in the eggs with or without (control) ionomycin pretreatment were depicted in brown and 

green curves, respectively.
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The same results were obtained with the oocytes from another starfish species P. 

miniata. The brief exposure to 5 pM ionomycin at the GV stage prevented the mature eggs 

to increase the intracellular Ca2+ after the second exposure after maturation (Fig. IV 5a). 

The failure of the second exposure to induce a Ca2+ response is not due to the potential 

acidification of the eggs or the inefficacy of ionomycin at low pH. Because ionomycin has 

no Ca2+-complexing activity below pH 7 .0 ,1 used the A23187 ionophore, which reportedly 

maintains its Ca2+ ionophore activity at pH 5.0 to 10 (Liu and Hermann, 1978). Mature 

eggs exposed to 40 pM A23187 induced intracellular Ca2+ increase, whereas mature eggs 

pretreated with ionomycin at the GV stage, produced no Ca2+ increase (Fig. IV 5b). Taken 

together, these results indicate that the structural changes caused by the brief ionomycin 

exposure, i.e. disruption of the cortical granules and the fusion with the white vesicles and 

elimination of the microfilaments-filled microvilli, are related to the depletion o f the 

ionomycin-sensitive Ca2+ stores.
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Figure IV 5. The mature eggs pretreated with ionomycin at the GV stage respond to

94-the second dose of ionomycin or A23187 with no intracellular Ca increase. P.

miniata GV stage oocytes were exposed to 5 pM ionomycin for 3 minutes and transferred

to the fresh seawater containing 1-MA (10 pM) for 1 h and subsequently treated with the

second dose of 5 pM ionomycin (a) or 40 pM A23187 (b). In both cases, the green curves

depict the Ca2+ response in the control eggs, and the brown ones the response of the eggs

that had been briefly exposed to 5 pM ionomycin at the GV stage.
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9+Ionomycin-sensitive Ca pool in the cortex of starfish eggs

The cytosolic Ca2+ increase in immature oocytes induced by the brief exposure to 

ionomycin had mostly returned or was at least en route to its basal levels one hour after the 

addition of 1-MA, as was noted in the non-exposed control eggs (data not shown). Even

9 4 -  • •though these eggs do not release intracellular Ca to the second exposure to ionomycin 

and A23187 (Fig. IV 4 and 5), they responded to InsP3 with a significant Ca2+ release (Fig. 

IV 6a). However, the amplitude o f the Ca2+ peak in these eggs (0.78 ± 0.23 RFU, n=10) 

was significantly lower (by 43 %) than that o f control mature eggs (1.38 ± 0.20 RFU, n=9; 

P<0.0001) (Fig. IV 6a and b). Hence, the structural changes in the cortex, e.g. elimination 

of the microvilli and disruption of cortical granules (Fig. IV 4a), might be linked to the 

reduction of the InsP3-mediated intracellular Ca2+ release. Nevertheless, the kinetics of the 

Ca2+ rise induced by InsP3 in control mature (12.2 ± 4.8 sec, n=9) and pretreated eggs 

(12.54 ± 3.1 sec, n=10; p= 0,868), was not changed, and remained almost the same (Fig. 

IV 6b). Another characteristic of the ionomycin-pretreated eggs was the failure o f the 

vitelline envelope to elevate despite the substantial intracellular Ca2+ release (Fig. IV 6c). 

In addition, in the majority of cases, repeated insemination was needed for these eggs to 

produce the characteristic fertilization Ca2+ wave (Fig. IV 7a). However, the onset of the 

Ca2+ wave induced by a single sperm in ionomycin pretreated eggs was much delayed 

(68.7 ± 64.3 sec after sperm addition, n=3) in comparison with the control eggs in the same 

batch of experiment (19.2 ± 9.2 sec, n=10; P<0.05) (Fig. IV 7a). In parallel, the peak 

amplitude of the sperm-induced Ca2+ increase in the eggs that had been exposed to 

ionomycin at the immature stage was significantly lowered, by 35.9 % (0.67 ± 0.23 RFU, 

n=20) than that o f the control eggs (1.05 ± 0.13 RFU, n=23, P 0 .0 0 0 1 ) (Fig. IV 7b). 

Again, the kinetics of the Ca2+ transient was virtually the same, since the time required for 

reaching the peak in the ionomycin-pretreated eggs (148.4 ± 52.4 sec, n=20) was not

significantly different from that in control eggs (128.0 ± 26.1 sec, n=23, P=0.1061) (Fig.

2+
IV 7c). Hence, the calcium-releasing mechanism that sustains the propagation o f the Ca



wave remained intact in these eggs. Nevertheless, the massive and instantaneous sperm- 

initiated intracellular Ca2+ release that takes place beneath the plasma membrane (cortical 

flash) at the initial moments of the sperm-egg interaction (Santella et al., 2004) was either 

reduced in its amplitude, or completely abolished in the ionomycin pretreated eggs (Fig. IV 

7d). In five independent experiments, the frequency of the cortical flash was highly 

reduced in ionomycin pretreated eggs (30 ± 24 %, n=5) compared to the control ones (76 ± 

2 %, n=5; P<0.05) (Fig. IV 7e). In addition, the amplitude of the cortical flash of the 

pretreated eggs was substantially reduced to merely 47.8 ±31.2  % (n=7) of the averaged 

value in the control (100 ± 27.6 %, n=17, P 0 .0 0 1 ) (Fig. IV 7f). Therefore, these results 

imply that the fertilization associated events in the cortex of the eggs are highly influenced 

by the pretreatment of the oocytes with ionomycin.
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Figure IV 6. Ionomycin-exposed eggs with cortical granule disruption still respond to 

InsP3 with an intracellular Ca2+ release, but to a reduced extent. A. aranciacus oocytes 

at the GV stage were exposed to 5 pM ionomycin for 5 minutes and microinjected with 

caged InsP3 (5 pM) and Calcium Green (500 pM). The oocytes were matured in a seawater 

containing 1-MA (10 pM) for 1 hour and then irradiated with UV to photoactivate the

caged InsP3 . (a) The trajectories o f the quantified Ca2+ responses at the entire cytoplasmic

2+
field are showed for one of the three independent batches of experiments. Ca responses 

in the control eggs (green) and the eggs briefly exposed to 5 pM ionomycin at the GV 

stage (brown curves) after UV irradiation (violet bar), (b) The average amplitude (left 

histogram) and the time interval between the onset and the peak of the Ca2+ signals (right 

histogram) were depicted of experimental eggs (brown bars, n=10) and control (green bars, 

n=9) eggs, (c) The experimental eggs did not undergo elevation of the vitelline layer in all 

cases.
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Figure IV 7. Fertilization of the ionomycin-pretreated eggs with altered cortical 

structure. A. aranciacus oocytes were exposed to 5 pM ionomycin (5 minutes) at the GV 

stage, washed and then exposed to 1-MA (10 pM). Mature eggs were then inseminated, (a) 

Quantification of the intracellular Ca2+ levels in control (green) and experimental eggs 

(brown curves) of one of the five independent experiments. Sperm addition was set to t = 

0. Asterisks indicate the Ca2+ peaks of the eggs that required a second addition o f sperm, 

(b) The average amplitude of the Ca2+ peaks and (c) the time interval between the onset 

and the peak of the signals in the control (green bars, n=23) and experimental eggs (brown 

bars, n=20). (d) Pseudocolor images of the representative cortical flashes in the control and 

the ionomycin-pretreated eggs (arrow), (e) Frequency of the detectable cortical flashes, (f) 

Comparison of the amplitude of the cortical flashes. Data were normalized in reference to 

the average value of the control eggs in each batch of experiment.
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Finally, unlike the InsP3 and the sperm (Fig. IV 6 and 7), the failure of ionomycin 

to induce intracellular Ca2+ release after the second exposure of mature eggs that have been 

pretreated in the GV stage (Fig. IV 4 and 5), raises the possibility that the ionophore may 

not diffuse deep into the cytoplasm of big cells like starfish eggs in bath incubation. To 

examine that, mature eggs of starfish were microinjected with ionomycin. Surprisingly, 

even the microinjection o f control eggs (and not only the ionomycin-pretreated) with 50 

pM ionomycin in the injection pipette did not evoke intracellular Ca2+ increase. The same 

negative results were obtained even when 10 times higher ionomycin concentration was 

used (500 pM, concentration in the microinjection pipette) in both mature and immature 

oocytes (data not shown). The negative result was not due to a technical problems related

to the simultaneous microinjection and Ca2+ detection because the InsP3 microinjections (5

2+pM in the injection pipette) using the same method produced high levels of Ca response 

in the control eggs (Fig. IV 8).
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Figure IV 8. Microinjected ionomycin does not induce Ca2+ increase inside the 

starfish eggs. GV stage P. miniata oocytes were microinjected with Calcium Green and 

induced to undergo meiotic maturation for 1 hour in the seawater containing 1-MA (10 

pM). Under the CCD camera, the mature eggs were microinjected with InsP3 (without 

caging, 5 pM in the pipette tip), ionomycin (50 pM), or the injection buffer only. Results 

of one of the three independent experiments are shown, (a) Transmission views of the eggs 

10 minutes after microinjection of ionomycin (50 pM) or InsP3 (5 pM). (b) Quantified 

Ca2+ signals for InsP3 (blue curve), injection buffer (green), and ionomycin (brown).
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Fertilization and early development of the ionomycin-pretreated eggs of starfish

Brief exposure of the GV stage oocytes to 5 pM ionomycin leads to a great loss of 

cortical granules (Fig. IV 2 and 4). Since cortical granules exocytosis at fertilization is 

responsible for vitelline layer elevation and fertilization envelope formation known to 

serve as a slow mechanical block to polyspermy, the eggs pretreated with ionomycin at the 

GV stage that do not form fertilization envelope were thought to be prone to polyspermic 

fertilization. To examine that, I have pre-stained the sperm with Hoechst 33342 and 

counted the number o f the sperm that entered the eggs after fertilization. Mature eggs 

exposed to the same sperm concentration showed mostly monospermic fertilization in the 

control (86.4 ± 18.8 %, n=4 independent experiments). In contrast, insemination of the 

ionomycin pre-exposed eggs resulted mainly in no sperm entry (75.1 ± 20.5 %, n=4) (Fig. 

IV 9a). Hence, the ionomycin-pretreated eggs revealed much less efficient interaction with 

the sperm, which leads to the sperm incorporation into the egg. The frequency of 

monospermic fertilization for the control eggs far exceeds (6.4 fold) the frequency of 

polyspermic fertilization (13.6 ± 18.9 %, PO.OOl, Turkey’s test in one-way ANOVA). On 

the other hand, the monospermic fertilization of ionomycin-pretreated eggs (18.5 ± 14.0 

%) displayed 3.1 fold higher rate over polyspermy (6.1 ± 8.8 %), but the difference was not 

statistically significant. Hence, the mechanisms that establish successful monospermic 

fertilization in the control eggs, seems not to work in the ionomycin pretreated ones. 

However, the frequency of the polyspermic fertilization in the total egg population in 

pretreated eggs (20.8 ± 19.1 %, n=3 independent experiments) was not significantly 

different compare to control eggs (16.1 ± 19.6 %, n=4, p=0.7614). Further, to study the 

effect of the ionomycin pre-treatment on the early development of the starfish eggs, I 

followed the fate of the monospermic zygotes. Firstly all the zygotes that have undergone 

treatment had no thick fertilization envelope formed, in contrast to the control ones (Fig. 

IV 9b). Secondly, while all zygotes from the monospermic fertilization o f the control eggs 

underwent normal development to the 16 cell stage, four out of eleven pretreated eggs that



clearly showed monospermy at fertilization failed to develop normally at the early stages 

of the cell cleavage (Fig. IV 9b and c). In particular, they had a problem in creating a clear- 

cut cleavage furrow and therefore were prone to form amorphous cell clusters (Fig. IV 9b). 

Finally, in both cases all polyspermic zygotes failed to develop normally (data not shown).
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Figure IV 9. Fertilization and the early development of the ionomycin-pretreated 

eggs, (a) A. aranciacus oocytes were pretreated with 5 pM ionomycin at the GV stage and 

stimulated with 1-MA for 1 hour. Then, eggs with or without (control) ionomycin 

pretreatment were fertilized with Hoechst 33342-stained sperm. The number o f the 

internalized sperm in each egg was counted after 20 min of insemination, and the 

frequencies of monospermy (gray bars), polyspermy (black bars, sperm count >2), or the 

case with no evident sperm entry (white bar) were calculated in four independent 

experiments, (b) Developmental progress of the representative control and the ionomycin- 

pretreated eggs that clearly established monospermic sperm entry (arrows), (c) Summary 

of the fertilization envelope (FE) formation and the rate of abnormal development in the 

control and ionomycin-pretreated monospermic zygotes.

94



Ionomycin pretreatment disrupts the functionality of the cortical actin cytoskeleton at 

fertilization

Subplasmalemmal actin cytoskeleton is highly implicated in the processes of egg 

activation at fertilization. The actin cytoskeleton, besides the intracellular Ca rise, is a 

decisive factor controlling exocytosis of vesicles, as suggested in various cell types 

(Muallem et al., 1995; Gasman et al., 2004; Malacombe et al., 2006; Kyozuka et al., 2008; 

Puppo et al., 2008; Chun et al., 2010). Despite the relatively high intracellular Ca2+ 

increase induced by the sperm and InsP3, the elevation of the vitelline envelope in 

ionomycin pretreated eggs was blocked (Fig. IV 6 and 8), indicating strong interference 

with the egg activation processes. In the fertilized eggs of echinoderms, it was 

demonstrated that the subplasmalemmal actin fibers migrate centripetally toward the inner 

cytoplasm simultaneously with the elevation of the fertilization envelope (Terasaki, 1996; 

Puppo et al., 2008; Chun et al., 2010). In order to investigate the cause o f the ineffective 

sperm entry and the abnormal cell cleavage in the ionomycin-pretreated eggs, I surveyed 

whether or not the mobilization of the actin cytoskeleton in fertilized eggs is ever affected 

by the ionomycin pretreatment (Fig. IV 10). In contrary to the control eggs, in which the 

cortical actin fibers underwent centripetal movement toward the egg’s center, in the 

ionomycin pretreaetd eggs neither such coordinated translocation occurred, nor the 

vitelline envelope elevated (Fig. IV 10). Hence, the ionomycin pretreatment o f the oocytes 

not only altered the actin cytoskeleton structure but also affected its functionality.
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Figure IV 10. Ionomycin pretreatm ent disrupts the functionality of the cortical actin 

cytoskeleton. P. miniata GV stage oocytes were exposed to 5 pM ionomycin for 8 

minutes, washed and then stimulated for 1 hour with 1-MA (10 pM) to undergo meiotic 

maturation. After 1 hour, the mature eggs were microinjected with Alexa-Fluor 488- 

conjugated phalloidin. The real-time changes in the actin cytoskeleton (arrows) were 

monitored with confocal microscopy before and after insemination. At the right side of 

each panel, the fluorescence image of F-actin in confocal microscopy was merged with the 

transmission view of the same specimen. Images of the same individual eggs were taken 

before and after fertilization (13 minutes post-insemination). Scale bar, 100 pm.
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Deleterious effects of ionomycin on development

In order to study the effect of ionomycin on early development of the monospermic 

zygotes, I screened for the eggs that had been fertilized by a single sperm and that clearly 

demonstrated full elevation of the fertilization envelope. Then, these monospermic zygotes 

were exposed to 5 pM ionomycin, the similar dose in which the human and animal eggs 

are exposed to induce egg’s activation in the practice of intracytoplasmic sperm injection 

(ICSI) (Terada et al., 2009; Heytrens et al., 2010). The data pooled from three independent 

experiments showed that most of the control zygotes developed normally 4 hours after the 

fertilization (88.3 ± 1 . 4  %), whereas only 24.8 ± 10.9 % of the monospermic zygotes 

treated with ionomycin developed normally at 4 hours (P<0.001) (Fig. IV 11a). These 

monospermic zygotes exposed to ionomycin displayed either blocked first cell division or 

a problem in cell cleavage at later stages (Fig. IV 11a). After 3 days o f the given 

experimental condition, the control embryos developed normally in majority of the cases 

(68.3 ±6 .1  %), while the monospermic zygotes exposed to ionomycin after fertilization 

displayed significantly reduced rate (16.2 ± 19.3 %, P<0.05) of the normal progression of 

the development (Fig. IV 1 lb).
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Figure IV 11. Deleterious effects of ionomycin on development. M atured, auranciacus 

eggs were fertilized with the Hoechst 33342-stained sperm, and after 20 minutes 

monospermic zygotes displaying fully elevated fertilization envelope were exposed to 5 

pM ionomycin or to 0,1 % DMSO (control, vehicle) for 10 minutes. Further, the zygotes 

were incubated in seawater to follow the progress o f development, (a) Representative 

photomicrographs of the early embryos developing from the control and the monospermic 

zygotes exposed to ionomycin. Normally developing zygotes that have been exposed to 

ionomycin are indicated with arrows at 4 hours and 3 days after fertilization, (b) Frequency 

of normal development in the control and the ionomycin-exposed zygotes. Data were 

pooled from three independent batches of experiments comprising 8 to 10 monospermic 

zygotes with (brown bars) or without (control, green bars) the 10 min ionomycin treatment 

after fertilization.
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Discussion for Chapter IV

In this chapter, I have studied the effects of ionomycin on egg activation and 

subsequent development in starfish. Ionomycin has been widely used in the laboratories 

studying Ca2+ signaling, and has also been used as a part in the standard protocol to 

activate the eggs that do not respond to ICSI in in vitro fertilization method (Terada et al., 

2009; Heytens et al., 2010; Ciapa and Amoult, 2011). Given that ionomycin by itself 

activates mature eggs, I have used the GV stage oocytes to briefly expose them to the 

ionophore and follow the meiotic maturation, fertilization and early development. 

Treatment of oocytes with 5pM ionomycin induces significant intracellular Ca2+ increase 

(Fig. IV lb). Owing to the large cell size, I was able to follow the spatiotemporal changes 

of the intracellular Ca2+ levels during the ionomycin treatment. First, I have shown that

2"bduring the ionomycin treatment there is a significant contribution o f the influx to the Ca 

rise. The peak of the intracellular Ca2+ in the CaFSW was merely 53.4% of the level in the 

Ca2+-containing seawater, indicating for a substantial contribution of the influx to the Ca2+ 

rise (Fig. IV 1). However, with the meiotic maturation the intracellular Ca2+rise in CaFSW 

was as 79.0% (0.60 ± 0.18 RFU, n = l l )  o f that in the ASW (0.76 ± 0.12 RFU, n = l l )  

containing lOmM Ca2+, implying a higher contribution of the internal stores to the net

• 94- •intracellular Ca increase by ionomycin.

By incubating the oocytes with ionomycin, I have shown that there was a rapid 

increase in the intracellular Ca2+ which was accompanied by a striking reorganization o f the 

actin cytoskeleton network in the distinct subcellular domains (Fig. IV 3a). The molecular 

mechanism underlying these cytoskeletal changes and their physiological significance are 

yet to be known. Since there is a class of actin-binding protein, e.g. gelsolin, that becomes 

functionally active to remodel cytoskeleton when binding to free Ca2+ (Burtnick et al., 

2004), it is conceivable that similar pathway may be at work to sever actin filaments or 

increase the plus ends o f actin filaments. Considering that actin is the most abundant (up to

2 1 jq
300 pM) Ca -binding protein in the cytosol with a high binding activity (Kd = 2-8 x 10'
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M for ATP-bound G-actin) (Carlier et al., 1986; Gershman et al., 1986), and that the Ca2+ 

ions, once bound and buried in the groove of F-actin, are inaccessible for exchange (Kasai 

and Oosawa, 1969), the formation of the F-actin in the cell compartment with elevated 

Ca2+ levels could serve as a mechanism to absorb and store Ca2+ ions. The extensive 

hyperpolymerization of actin due to the ionomycin treatment might thus alleviate at least in 

part the cytosolic Ca2+ increase (Lange and Gartzke, 2006; Santella and Chun 2011). 

Hence, it may function as a cell’s adaptive defence mechanism against the potential 

toxicity of prolonged Ca2+ rise. On the other hand, actin cytoskeleton depolymerization in 

the cortex may be involved in the regulation of store-operated Ca2+ entry that was shown to 

occur in ionomycin-treated cells (Morgan and Jacob, 1994; Darbellay et al., 2011).

It was also shown that the rapid actin cytoskeleton rearrangement was accompanied 

by the formation of the large white vesicles, which are often vested with actin filaments 

(Fig. IV 3b). This type of vesicles appeared with the concomitant loss of smaller vesicles 

of the same morphology which were always present in the subplasmalemmal region of 

control oocytes. Since the intermediate twined structure resembling two white vesicles at 

fusion (Fig. IV 2c) seen in the ionomycin-treated oocytes but not in the control ones, it was 

concluded that the large white vesicles are formed by fusion with other vesicles. Being 

often observed inside the white vesicles, the electron-dense materials are likely to be 

fragments of the cortical granules (Fig. IV 4a, red arrows, lower panel). The physiological 

role of the large white vesicles is unknown, but their morphology observed in ionomycin- 

pretreated oocytes is reminiscent of the ‘clear granules’ containing residual electron-dense
s

materials in the normal sea urchin eggs of Arbacia punctuate (Ramos et al., 2010). These 

clear granules (0.83 pm in diameter) in the sea urchin eggs were found to contain large 

amount of Ca2+and polyphosphate and were identified as ‘acidocalcisome’-like organelles. 

While the formation of the large white vesicle could be a result o f a cell stress due to a 

dramatic actin cytoskeleton rearrangement and extended intracellular Ca2+ increase in the
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ionomocyn-pretreated eggs, the physiological role of the ‘small’ white vesicles seen in the 

control eggs is still to be resolved.

2+
A brief ionomycin treatment of immature oocytes leads to a intracellular Ca 

increase and to the loss of a cortical granules that are partially exocytosed or engulfed by 

the white vesicles (Fig. IV 2 and 4). Interestingly, when the ionomycin-pretreated oocytes

were induced to undergo meiotic maturation by addition of 1-MA and then exposed to the

2+ #
same dose of ionomycin, they did not show any increase of the intracellular Ca (Fig. IV 

4b), raising the possibility that the loss of the cortical granules may be mainly responsible 

for the ionomycin-sensitive Ca2+increase. This result is in agreement with the early studies 

in which Xenopus oocytes did not produce Ca2+-dependent CF currents in response to the 

second exposure to ionomycin if the oocytes had been previously treated with the 

suprathreshold (1 pM) dose o f ionomycin (Yoshida and Plant, 1992). In Xenopus oocytes 

this refractory period could be overcome by washing the oocytes for 50 minutes, whereas 

the starfish eggs in this study did not show any sign of recovery from the refractory phase 

even after 70 minutes after removal of the ionomycin from the media. Hence, I was not 

able to establish whether this refractory period is reversible in starfish eggs. Despite the 

apparent loss of the responsiveness to ionomycin, the eggs of the same treatment (5 

minutes exposure to ionomycin at the GV stage) still responded to InsP3 and sperm with 

the substantial intracellular Ca2+ increase (Fig. IV 6 and 7), although with the consistently 

lower amplitude than in the ionomycin-untreated eggs. A possible explanation for this 

result is that the internal Ca2+ stores sensitive to InsP3 and sperm were not fully recharged 

after the ionomycin treatment. Alternatively, we can not rule out the possibilty that the 

optimization of the intracellular Ca2+ stores that occurs during oocyte maturation (Chiba et 

al., 1990; Lim et al., 2003) might have been interfered with as a result o f the ionomycin 

pretreatment. Finally, given that the pretreated eggs fail to respond to the second exposure 

to ionomycin and A23187 (Fig. IV 5), the reduction of the Ca2+ response may represent a 

fraction of the internal Ca2+ stores that is sensitive to ionomycin and InsP3 but had been



destroyed by the ionomycin pretreatment. However, from these data it is difficult to locate 

which structure represents the ionomycin-distroyed internal Ca2+ store sensitive to InsP3. 

While the conventional ER Ca2+ store may be affected by the treatment, it is conceivable 

that the loss of microvilli, cortical granules and white vesicles may contribute to the InsP3- 

induced Ca2+ increase. In line with the idea that the cortical granules represent the major 

cortical Ca2+ stores, accounting for nearly 10 % of total Ca2+ storage in sea urchin eggs 

(Gilot et al., 1991), the reduction in the InsP3-dependent Ca2+ release may be ascribed to 

the loss of the cortical granules or their associated structures. However, the Ca2+ contained

•  ♦ 9+  •in the cortical granules is not likely to contribute to the intracellular Ca increase at 

fertilization. Secretory vesicles o f any types seem to lack InsPsR (Rizzuto and Pozzan, 

2006), and if  cortical granules do not have Ca2+-releasing channels on their membranes, 

then the luminal Ca2+ would be extruded in the perivitelline space during exocytosis at 

fertilization. Nevertheless, according to the early studies, cortical granules are tightly 

connected with fine network of ER on the membrane of which reside ryanodine receptors 

(McPherson et al., 1992). Hence, if  they also contain InsPsR, then the reduced InsP3- 

sensitive Ca2+ response that contributes to the Ca2+ signaling at fertilization could be from 

the ionomycin-disrupted endoplasmic cistemae ensheathing the cortical granules, and not 

the cortical granules proper. However, the ER-enriched microsomal fraction of sea urchin 

egg cortices sometimes do not respond to InsP3 with the detectable Ca2+ release (Oberdorf 

et al., 1986). Therefore, the potential contribution of the Ca2+ stored in the cortical granules 

and in the associated structures to the intracellular Ca2+ increase at fertilization still 

remains as an open question. An alternative explanation of the diminished intracellular 

Ca2+ increase in response to InsP3 and sperm can be that InsP3-dependent Ca2+-releasing 

mechanism may have a reduced efficacy following the dramatic alteration o f the actin 

cytoskeleton structure, as has been suggested in the starfish oocytes and eggs (Nusco et al., 

2006; Kyozuka et al., 2008; Puppo et al., 2008; Chun and Santella, 2009).
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The results in this chapter raise a question about how ionomycin works inside 

the cell. It may diffuse inside the cell and target all the Ca2+ stores to transport Ca2+ across 

the membrane and down the concentration gradient. However, ionomycin showed to have 

specific targets in exerting its impact, because at the same profundity of the egg cytoplasm 

the membrane fusion was restricted only to cortical granules and white vesicles, while yolk 

platelets and other organelles were not disrupted or modified by the treatment. One 

possible explanation for that could be that the vesicles specialized in secretion, e.g. cortical

2"b •granules and white vesicles (Vasilev et al., 2012) might specifically posses a Ca -sensing 

membrane-bound proteins that interact with cytoskeleton and facilitate membrane fusion, 

as demonstrated by synaptotagmin in synaptic vesicles (Lee at al., 2010). Since white 

vesicles are often delineated by fluorescent probes for F-actin (Fig. IV 3b), it is possible 

that prolonged intracellular Ca2+ rise by ionomycin have provoked deregulated membrane 

fusion between these vesicles in a mechanism that involves actin cytoskeleton. 

Furthermore, given that ionomycin functionality highly depends on pH (Liu and Hermann, 

1978), such specificity might be associated with the subtle difference in the luminal pH of 

these vesicles and organelles (Morgan, 2011).

Mature eggs that had been pretreated with ionomycin at the GV stage responded 

with Ca2+ increase to InsP3 but not to the second exposure to ionomycin. That was not due 

to the possible problems of ionomycin in diffusing across the eggs, since microinjection of 

ionomycin in the center in the egg cytoplasm did not induce any Ca2+rise (Fig. IV 8). This 

data suggest that in order to evoke intracellular Ca2+ increase, ionomycin should be added 

to the cells from the side o f the higher Ca2+ concentration (to the media), as it is always 

done in the laboratory practice. Alternatively, Ca2+ ions transported inside the cell from 

outside by ionomycin could sustain the further intracellular Ca2+ increase in an indirect 

way, by inducing CICR or activating Ca2+-sensitive enzymes such as PLC. Nevertheless, 

in an assay using PH-GFP, I could not observe any sign of hydrolysis o f PIP2 in the plasma 

membrane (data not shown), which is at variance with the results obtained in fibroblast
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(Van Rheenen and Jalink, 2002) and starfish eggs at fertilization (Chun et al., 2010). Thus, 

the question of how ionomycin works inside the cells merits further investigation also in 

other experimental models.

• 04- • •Finally, the pretreatment of immature oocytes with Ca ionophore ionomycin was 

shown to have detrimental effects on both egg activation and the early embryonic 

development (Fig. IV 9, 10 and 11). Ionomycin-pretreated oocytes were still able to 

undergo meiotic development at least in the nucleus, but, they revealed several problems at 

fertilization. Firstly, these eggs were not able to establish an effective interaction with the 

sperm at fertilization. Given that the production of the initial Ca2+ spot underneath the 

plasma membrane at the site of the sperm-egg contact is a sign of a successful interaction 

of the gametes (Santella et al., 2004), the initiation of the Ca2+ waves in the ionomycin- 

pretreated eggs required more than three times longer latent period compare to control 

(Fig. IV 7a). The microvilli may play an important role in the gametes interaction (Runge 

et al., 2007), and in this study I found them largely disrupted on the surface of the 

ionomycin-pretreated eggs (Fig. IV 2 and 4). Then, because of the loss of the cortical 

granules and other secretory vesicles (Fig. IV 2 and 4) in the ionomycin-pretreated eggs, 

the fertilization envelope failed to elevate in all cases (Fig. IV 9b). Furthermore, in these 

fertilized eggs, the centripetal migration of the cortical actin filaments that takes place 

during the egg’s activation was completely abolished (Fig. IV 10). Hence, the ionomycin- 

pretreated eggs at the GV stage lacked several important features of the normal fertilization 

process in echinoderms. The monospermic zygotes derived from these fertilized eggs 

showed further abnormality during development. While the control monospermic zygotes 

4.5 hours after insemination showed normal progression of division beyond the 4-16 cells 

stage, the monospermic zygotes from ionomycin-pretreated eggs displayed unsuccessful 

cell cleavage (Fig. IV 1 la  and b). Whether the failure of the monospermic zygotes derived 

from the ionomycin-pretreatment to proceed with the normal development is due to a 

failed formation of the fertilization envelope (which is thought to be protective o f the



developing embryo) or to a dramatic alteration of the egg ectoplasm (Fig. IV 2 and 4) is a 

matter of discussion. However, it is important to note that the zygote with a fully elevated 

fertilization envelope, when exposed to the same dose o f ionomycin (5 pM), displayed a 

comparable failure rate for cell cleavage and development (Fig. IV 11). Thus, the 

detrimental effect o f ionomycin on embryo development is likely to be caused by the 

changes in the egg ectoplasm rather then the failure o f the eggs to form the fertilization 

envelope. There might be several different factors responsible for this, but I focused on the 

actin cytoskeleton. Indeed, actin cytoskeleton is implicated in many cellular events at 

fertilization and early development (Santella and Chun, 2011). In sea urchin eggs, the cell 

cleavage of zygotes is highly dependent on the regulation of the actin cytoskeleton (Dale 

and De Santis, 1981). As it was recently demonstrated, the actin filaments in the egg cortex 

extend through the perivitelline space of the fertilization envelope in starfish (Chun et al., 

2010). Hence, the actin cytoskeleton is closely implicated in the fertilization-associated 

events and in the early stages of development. Although it is difficult to make a direct 

comparison between the results of this study and the similar use o f ionomycin in the rare 

case of the medical practice of ICSI in the in vivo fertilization clinics (Nasr-Esfahani, 

2008), the results of this study call for a more detailed studies on the safety o f such 

procedure used for in vitro fertilization of human eggs.
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CHAPTER V 

Roles of the egg actin cytoskeleton in the regulation of monospermic 

fertilization in starfish

Results

The actin cytoskeleton may be linked to the regulation of sperm entry: experiments 

on starfish eggs pretreated with nicotine and BAPTA

In sea urchin and starfish eggs, it is well known that the actin cytoskeleton in the 

subplasmalemmal region undergoes centripetal migration towards the inner cytoplasm at 

fertilization during the vitelline envelope elevation (Terasaki, 1996; Puppo et al., 2008; 

Chun et al. 2010). If this migration is blocked, the sperm often fails to enter the egg (See 

in Chapter IV Fig. IV 9a and IV 10; Vasilev et al., 2012). At the time of the sperm entry, a 

specialized structure called ‘fertilization cone’ is formed on the egg’s surface that serves to 

engulf the sperm. The fertilization cone is filled with the F-actin that is continuous with the 

long filamentous actin bundles inside the cytoplasm, which appeared to be associated with 

the penetrating sperm (Puppo et al 2008; Chun et al., 2010). Concurrent with the elevation 

of the vitelline layer, the spikes protruding from the plasma membrane and traversing the 

perivitelline space was also shown to be filled with microfilaments (Chun et al., 2010). 

Hence, the actin cytoskeleton in the cortex of the egg is highly implicated in the processes 

of fertilization. Interestingly, by perturbing the cortical actin cytoskeleton structure in the 

starfish eggs by various means, e.g. heparin, JAS and sequestration of plasma membrane 

PIP2, there were signs of multiple sperm interactions and entries (Puppo et al., 2008; Chun 

et al., 2010). In heparin pre-incubated eggs, an abnormal formation of fertilizing cones 

were observed, whereas JAS-exposed eggs failed to undergo normal elevation of the 

fertilization envelope despite the comparably high intracellular Ca2+ increase and many 

sperm-egg interactions. Thus, it appears that the fine regulation of the actin cytoskeleton 

that normally occurs at the egg cortex during fertilization appears to play a pivotal role in
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guiding sperm entry and cortical granules exocytosis. Therefore, it was o f interest to study 

how the regulation of the state of the actin cytoskeleton might contribute to ensure 

monospermic fertilization.

Since the first discovery that nicotine induces polyspermic fertilization (Hertwig 

and Hertwig, 1887) it has been widely used to study the mechanisms controlling sperm 

entry because the treatment provides more chance to observe egg-penetrating sperm 

(Rothschild and Swann, 1950; Hagstrom, 1956; Longo and Anderson, 1970). Firstly, I 

have confirmed the previous data of others (Rothschild 1952; Longo and Anderson, 1970; 

Dale, 1985) that nicotine treatment of mature eggs induces polyspermic fertilization (Fig. 

V 1). As shown in Fig. V la, 40 minutes exposure of mature eggs to nicotine (300 pM) 

induced high polyspermic fertilization, as judged by the number of Hoechst 33342 (a 

fluorescent DNA dye) pre-stained sperm that entered the eggs. In contrast, monospermic 

fertilization was observed in most untreated control eggs. Nicotine treatment rendered the 

starfish eggs more susceptible to supernumerary sperm entry (40.5 ± 33.6, n=6) compared 

to the control eggs (1.17 ± 0.41, n=6, P<0.05) (Fig. V lb). In addition, while the vitelline 

layer elevation occurred in all control eggs (n=6), a nicotine pretreatment affected the 

cortical granules exocytosis and fertilization envelope formation in all studied eggs (n=10), 

by showing either partial (n=5) or complete blockade (n=5) (Fig. V lc). These results 

suggest that a failure in the fertilization envelope elevation, the so called mechanical slow 

block to polyspermy may be the reason for the high number of sperm entry. As previously 

shown (Kyozuka et al., 2008; Puppo et al., 2008), the failure of the vitelline envelope 

elevation often implies a possible deregulation of the cortical actin cytoskeleton. 

Therefore, to gain more insights of the role the actin cytoskeleton might play in regulating 

the block to polyspermy in A. aranciacus starfish eggs, I have examined whether or not the 

nicotine treatment ever changes the structure of the actin cytoskeleton in the eggs. To this 

end, the nicotine-pretreated eggs were microinjected with Alexa 568-conjugated phalloidin 

(50 pM, pipette concentration) and monitored for the changes in the actin-cytoskeleton
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structure under the confocal microscope. Indeed, confocal microscopy images taken few 

minutes after the microinjection revealed a dramatic rearrangement o f the actin 

cytoskeleton underneath the plasma membrane (Fig. V 2). It appears that the actin fibers in 

the cortex were shifted from the very subplasmalemmal zone to form polymerized bundles 

in the more inner cytoplasmic regions (Fig. V 2b and b ’). This striking actin cytoskeleton 

reorganization observed after 40 minutes of nicotine (300 pM) treatment was completely 

absent in the time-matching control eggs (Fig. V 2a and a’), in which the phalloidin-stained 

actin fibers exhibited the characteristic perpendicularly orientation immediately beneath 

the plasma membrane. Since the fluorescent phalloidin probe was microinjected after the 

nicotine treatment and was used at low dose that does not influence the normal progression 

of the dynamic movement of the actin fibers (Kyozuka et al., 2008; Chun et al., 2010), 

these observation in the nicotine pretreated eggs were not caused by the potential actin- 

stabilizing effect o f the phalloidin probe itself.

In addition, another agent used to study the Ca2+ signaling at fertilization, the 

calcium chelator BAPTA, which buffers the intracellular Ca2+ increase induced by the 

sperm, induces similar effect on the cytoskeleton structure in starfish eggs (Fig. V 3b). It 

was already demonstrated that microinjection of BAPTA into the mouse (Halet et al., 

2002; McAvey et al., 2002) and sea urchin eggs (Turner et al., 1986; De Simone et al., 

1998) completely blocks or delayes the sperm-induced intracellular Ca2+ rise and 

consequently the egg activation at fertilization. Since the exocytosis of the cortical 

granules is important to provide a mechanical block to polyspermic fertilization in 

echinoderms and is dependent on the proper actin cytoskeleton organization (Longo et al., 

1995; Santella et al., 1999; Puppo et al., 2008), I have studied whether the BAPTA 

preinjected starfish eggs could alter its dynamics. As shown in Fig. V 3 on the confocal 

and merged image (transmission light and confocal images), the phalloidin staining 20 

minutes after the microinjection of the eggs with BAPTA (100 mM, pipette concentration) 

produced a drastic reorganization of the actin cytoskeleton in the cortex (Fig. V 3b and

108



3b’) that was strikingly similar to the changes induced by nicotine (Fig. V 2b). In contrast, 

the time-matching control eggs microinjected with the injection buffer again displayed the 

expected characteristic structure of the actin cytoskeleton (Fig. V 3a and 3a’). These 

observations raise an intriguing possibility that the structural alteration of the actin 

cytoskeleton at the plasma membrane region of the eggs might be the cause of the 

supernumerary sperm entry. To test that, BAPTA-treated eggs were inseminated with the 

Hoechst 33342-prestained sperm and after 15 minutes observed under the CCD camera to 

count the number of the sperm that entered the eggs. As shown on the transmission light 

images, the BAPTA pre-injected egg failed to elevate the vitelline envelope, which was not 

the case in the control egg (Fig. V 4a). In parallel with the similarities in the structural 

changes of the actin cytoskeleton in the BAPTA-microinjected and the nicotine-pretreated 

eggs, the BAPTA-preinjected eggs showed higher number of successful sperm entry (53.8 

±48.1, n=16) (Fig. V 4b and c) as was observed in the nicotine-treated eggs (Fig. V lb). In 

the same time frame, 76.2 % (16 eggs out of 21) of control eggs were monospermic, in 

which in average 1.28 ± 0.56 successful sperm entry was detected (P<0.0001) (Fig. V 4b).
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Figure V 1. Nicotine induces polyspermic fertilization in A. auranciacus eggs, (a)

Mature eggs treated with nicotine (300 pM) for 40 minutes, were exposed to Hoechst 

33342-prestained sperm in the presence of nicotine (300 pM), and monitored on a CCD 

camera. Eggs-incorporated sperm were visualized with UV light (330 nm). Treated mature 

eggs showed increased sperm entry (right panel, arrow), while the untreated control eggs 

showed only one sperm incorporated (left panel, arrow). Scale bar, 50 pm. (b) Histogram 

displaying the sperm entry number in control (1.17 ± 0.41, n=6) and experiment eggs (40.5 

± 33.6, n=6; P<0.05). (c) Transmission light images of fertilized control and nicotine 

pretreated eggs (FE-fertilization envelope). Scale bar, 50 pm.
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Figure V 2. Nicotine treatm ent alters the cortical actin cytoskeleton in m ature  eggs.

(a) Confocal microscopy image of the control mature egg stained with the Alexa 568- 

conjugated phalloidin (50 pM), and (a’) merged (transmission light and confocal) image of 

the same egg. The eggs were incubated in fresh seawater for 40 min prior the acquisition.

(b) Mature egg treated with 300 pM nicotine for 40 minutes. Confocal macroscopy image 

of the cortical actin changes (arrow) visualized with the Alexa-conjugated phalloidin and 

(b ) merged image of the same egg. Scale bar, 50 pm.
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Figure V 3. BAPTA microinjection in the m ature eggs causes rearrangem ent of the 

cortical actin cytoskeleton. Mature A. auranciacus eggs were microinjected with Alexa- 

Fluor 568-conjugated phalloidin (50 pM) and monitored with the confocal microscope 20 

minutes after incubation in the seawater or, 20 minutes after the microinjection of BAPTA 

(100 mM, pipette concentration), (a) The perpendicular actin fibers located underneath the 

plasma membrane visualized in the control (non treated) egg with Alexa-conjugated 

phalloidin and (a’) merged (transmission light and confocal) image of the same egg. (b) 

Actin fibers in the cortex are shifted inwardly 20 minutes after BAPTA-microinjection 

visualized with Alexa-conjugated phalloidin and (b’) merged image of the same egg. Scale 

bar, 50 pm.
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Figure V 4. Starfish eggs preinjected with BAPTA fail to elevate the vitelline layer at 

fertilization and lead to polyspermy, (a) Transmission light image taken with the CCD 

camera 15 minutes after the sperm addition to the eggs. Note the absence o f the 

fertilization envelope in the BAPTA (100 mM, pipette concentration) preinjected egg 

(right egg). Scale bar, 50 pm (b) Histogram of the sperm entry count in control 

(microinjected with injection buffer) (1.28 ± 0.56, n=21) and in the eggs preinjected with 

BAPTA (lOOmM pipette concentration) (53.8 ± 48.1, n=16, P<0.0001). (c) Hoechst 

33342-stained sperm visualized in the BAPTA-pre-injected egg, observed on the CCD 

camera excited with the UV light (330 nm). Scale bar, 50 pm.
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Polyspermic fertilization may be linked to the structural features of the egg cortex at 

the meiotic stage

In gonads of female starfish, oocytes are arrested at the first prophase of meiosis 

(prophase I). These oocytes are characterized by the presence of a big nucleus termed 

‘germinal vesicle’ (GV). Exposure of the GV stage oocytes to 1-MA leads to a resumption 

of the cell cycle and transition to a metaphase I. The mechanism that renders starfish eggs 

competent to be successfully fertilized by a single sperm is established during the so called 

‘maturation process’ that is hallmarked by GVBD. As the oocytes ensue with the meiotic 

cycle, the actin cytoskeleton undergoes significant reorganization in the region subjacent to 

the plasma membrane. Concomitant with the actin reorganization, the apposition o f the 

cortical granules immediately beneath the plasma membrane is essential to trigger the 

sperm-induced cortical granules exocytosis into the perivitelline space. By discharging the 

content of the cortical granules and by the vitelline layer elevation, the fertilization 

envelope is formed that is considered to provide a slow block against polyspermy.

The optimum period for monospermic fertilization in starfish eggs was shown to be 

between the GVBD and the extrusion of the first polar body (Fujimori and Hirai, 1979). 

Starfish eggs fertilized outside this tight time frame tend to fail to develop normally. Since 

this might be caused by polyspermy, I examined the number o f sperm that are actually 

incorporated by the eggs fertilized at different meiotic stages. To do that, I added Hoechst 

33342-stained sperm to the A. aranciacus eggs at three different stages: i) immature 

oocytes at the GV stage, ii) mature eggs immediately after GVBD, and Hi) overmatured 

eggs 4 hours after GVBD. As expected, in the GV stage oocytes that do not undergo 

vitelline layer elevation when fertilized, many sperm (12.2 ± 13.7, n=31) succeeded to 

penetrate the plasma membrane and entered the cytoplasm (Fig. V 5a and a ’, and Fig. V 

6a). In contrast, mature eggs exposed to the same concentration o f sperm displayed single 

sperm entry in most cases (Fig. V 5b’ and Fig. V 6a). On the other hand, when 

overmatured eggs were fertilized, despite the full and normal elevation o f the fertilization
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envelope, several sperm could be seen inside the egg (Fig. V 5c and c’). While the eggs 

fertilized immediately after GVBD were mainly monospermic 1.12 ± 0.33, (n=33), 4 hours 

post-GVBD fertilized eggs showed 3.8 ± 1.2 (n=35) sperm entered (Fig. V 6a). Hence, our 

data are in line with the previous report in the literature (Fujimori and Hirai, 1979), 

demonstrating that the frequency of a polyspermy in immature oocytes (87.1 ± 26.8 %) and 

overmatured eggs (100 %) is significantly higher (P<0.001) than in mature eggs that have 

been fertilized immediately after GVBD (10.3 ± 13.1 %) (Fig. V 6b). These results of 

polyspermy taking place in the face of full elevation of the fertilization envelope in the 

overmatured eggs clearly demonstrate that the fertilization envelope formation is not the 

sufficient factor that warrants monospermic sperm entry in echinoderm and there might be 

an additional and fast mechanism that is at work to prevent supernumerary sperm entry at 

fertilization.
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Figure V 5. Monospermic fertilization takes place only in mature eggs fertilized 

shortly after GVBD. (a) Transmission light image taken with the CCD camera 15 minutes 

after fertilization of immature oocytes, (b) mature (10 minutes after GVBD) and (c) 

overmatured eggs (4 hours after GVBD). (a’) Polyspermic fertilization in immature 

oocytes, (b’) Single sperm entry in mature egg. (c’) Polyspermic fertilization in 

overmatured eggs. Sperm are visualized with the Hoechst-33342 which appears as 

fluorescent dots. FE - fertilization envelope. Scale bar, 50 pm.
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Figure V 6. High frequency of polyspermy in GV stage oocytes and overmatured (4h) 

fertilized eggs. Hoechst 33342-stained sperm was used to fertilize GV stage oocytes, 

mature eggs and overmatured (4 hours after GVBD) eggs and the sperm entry was counted 

on the CCD camera, (a) The number of sperm count in GV stage oocytes is significantly 

different than in mature eggs (PO.OOl) and the number of sperm count in overmatured 

eggs is statistically significant than in mature eggs (PO.OOl). (b) Frequency of 

polyspermy for GV stage oocytes (87.1 ± 26.8 %), mature (10.3 ± 13.1 %) and 

overmatured eggs (100 %).
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Actin cytoskeleton as a contributing factor to the single sperm entry at fertilization

The actin cytoskeleton of the starfish oocytes and eggs undergoes finely regulated 

reorganization during meiotic maturation and fertilization (Lim et al., 2003; Kyozuka et al., 

2008; Puppo et al., 2008). It was suggested that it may play a role in the sperm 

incorporation at fertilization, by facilitating the anchorage of the sperm in the fertilization 

cone or by establishing long microfilaments bundles at the head of the egg-incorporated 

sperm (Chun et al., 2010). When the structure of the actin cytoskeleton was altered with 

pharmacological agents and thereby its function was impaired, the number and the pattern 

of sperm entry were also affected (Puppo et al., 2008; Vasilev et al., 2012). I f  the 

modifications in the cytoskeleton network played a certain role in deciding this, one should 

expect to see similar link between the structural status of the actin cytoskeleton and the 

tendency of polyspermy in the eggs that are fertilized in physiological conditions as well. 

To test that, I have surveyed the actin cytoskeleton configuration in the starfish oocytes at 

different meiotic stages, which clearly displayed differential tendency to polyspermy. I 

have microinjected Alexa 568-conjugated phalloidin into immature oocytes, mature eggs 

(immediately after GVBD) and into overmatured (4h post GVBD) eggs. As shown in the 

confocal images (Fig. V 7), the long F-actin fibers observed in the cytoplasm of immature 

oocyte (Fig. V 7a) were largely absent in the mature eggs microinjected with phalloidin 

immediately after GVBD (Fig. V 7b). Instead, the orthogonal irregularly interconnected 

fine meshwork of the plasma membrane of the immature oocytes are now orderly oriented 

with the actin bundles perpendicularly apposed to the plasma membrane in the matured 

eggs. On the other hand, 4 hours after GVBD, phalloidin staining showed formation of 

short actin fibers in the cytoplasm and no staining in the subplasmalemmal region, which is 

an indication of the F-actin depolymerization (Fig. V 7c). When the phalloidin 

microinjected overmatured eggs was fertilized with Hoechst 33342-stained sperm and 

observed under the CCD camera, the presence of the incorporated sperm in the egg did not 

show any F-actin formation in the fertilization cones (Fig. V 8c). This was in sharp



contrast to the mature egg, in which the fertilization cone was clearly visible to be filled 

with actin fibers (Fig. V 8b). On the other hand, when immature oocytes were fertilized, 

the fertilizing cones were filled with F-actin which often took abnormal shapes, to be long 

and often sharply (Fig. V 8a). Hence, while the naturally occurring polyspermy in 

immature oocytes may be currently attributed to the lack of the fertilization elevation (no 

cortical vesicles exocytosis), the changes of the subplasmalemmal actin fibers in the 

overmatured eggs may represent a structural factor that is linked to the polyspermy that 

takes place in the face o f the full elevation of the fertilization envelope.
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Figure V 7. Dynamic reorganization of the actin cytoskeleton in starfish oocytes 

during meiotic maturation. Alexa 568-conjugated phalloidin (50 pM) was microinjected 

into A. aranciacus oocytes at diverse meiotic stages to stain F-actin in the cytoplasm. The 

observation was done under confocal microscope 10 minutes after incubation in natural 

seawater, (a) GV stage (prophase I) immature oocyte, (b) Mature egg (immediately after 

GVBD). (c) Overmatured (4 hours post GVBD) egg. Scale bar, 50 pm.
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Figure V 8. Comparison of the sperm entry sites in the GV stage oocytes, m ature eggs 

and overm atured eggs of starfish. A. aranciacus oocytes at the three different meiotic 

stages were microinjected with Alexa Fluor-568-conjugated phalloidin (50 pM) and 10 

minutes later inseminated with Hoechst 33342-stained sperm. Images taken with a CCD 

camera in the area of the sperm entry 5 minutes after insemination, (a) The actin staining 

in the fertilized immature oocyte and (a’) Alexa Fluor-568 phalloidin converted to brown 

and Hoechst 33342 to green in order to visualize both F-actin and sperm (arrow) in the 

merged view of the same oocyte from a. (b) Actin fibers formation in the fertilization cone 

and (b’) merged image showing the sperm entry (green dot, arrow) and the actin staining at 

fertilization of the same mature egg. (c) No actin fibers formation is visible in the site of 

the sperm entry in overmatured egg. (c’) Arrows indicating the sperm entered in the 

overmatured fertilized egg from c. Scale bar, 50 pm.
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Microinjection of phalloidin in overmatured eggs alleviates polyspermy

Since the changes of the actin cytoskeleton correlate with the increased sperm 

entry at fertilization in overmatured eggs, shifting the polymerization/depolymerization 

balance o f the actin network should influence the tendency toward polyspermy at 

fertilization in the overmatured eggs. As an initial attempt to test if  the presence of the 

agent that stabilizes the structure of F-actin affects the number of sperm entry, overmatured 

oocytes were microinjected with cold phalloidin (3 mM) and incubated during the last 15 

minutes of the maturation (4 hours). While the control (DMSO microinjected) overmatured 

eggs exhibited the expected polyspermy (3.88 ± 1.2 integrated sperm in eggs , n=35), the 

overmatured eggs with cold phalloidin (3 mM) microinjection showed significantly less 

number of the sperm entry (2.2 ±2 .1 , n=26, P<0.05) (Fig. V 9a). Moreover, if  the obtained 

data are separated in a three categories, where each category represents the number o f eggs 

fartilized by one, two or more than two sperm, while the control overmatured eggs reveal 

100 % (n=35) polyspermy (Fig. V 9b), only 34.6% (n=9) of the overmatured eggs 

microinjected with cold phalloidin showed polyspermic fertilization, whereas others 50 % 

(n=13) are monospermic and the rest 15.4 % (n=4) are with no detectable sperm entry (Fig. 

V 9b). The data obtained indicate that the stabilization of the F-actin by cold phalloidin 

leads to a decreased number of sperm entry.
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Figure V 9. Stabilization of F-actin by cold phalloidin decreases the number of the 

sperm entry in eggs fertilized 4h post GVBD. Sperm count in the overmatured eggs at 

fertilization either with DMSO (control) or with 3 mM cold phalloidin in the last 15 

minutes of 4 hours incubation after GVBD. (a) Count of Hoechst 33342-stained sperm 

inside the DMSO microinjected (3.88 ± 1.2, n=35) and of 3 mM cold phalloidin-injected 

eggs (2.23 ± 2.17, n=26, P<0.05) eggs, (b) Histogram showing the results o f the same 

experiment from a, indicating the number of fertilized overmatured eggs in which 0 (15.4 

%, n=4), 1 (50 %, n=13) or more than 2 sperm were incorporated (34.6 %, n=9).
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Discussion for Chapter V

The initial steps o f fertilization in echinoderm eggs are characterized by plasma 

membrane depolarization and the sharp increase of intracellular Ca that propagates as a 

wave from the sperm-egg interaction site towards the opposite pole o f the egg. The 

intracellular Ca2+ rise is then followed by a cortical granules exocytosis that leads to the 

elevation of the vitelline layer and eventually to the formation o f the fertilization envelope. 

In echinoderm, the formation of the thick fertilization envelope serves as a mechanism to 

mechanically block the entry of supernumerary sperm after fertilization. As described in 

the Result section, the observation of the polyspermy taking place in the face o f the fully 

elevating fertilization envelope indicates that an additional mechanism might be normally 

at work before the fertilization envelope is fully elevated. That is to say, the failed block to 

polyspermy in the overmatured eggs (Fig. V 5) may represent the failure o f the mechanism 

that would have otherwise prevented the entry of a few sperm in the normal and optimal 

egg conditions. The explanation of the underlying mechanism of the fast block to 

polyspermy is controversial in the literature. While demonstration o f the equally fast 

structural changes in the egg plasma membrane is elusive, one line of thoughts have 

suggested that the electrical changes of the egg plasma membrane upon the successful 

attachment of the fertilizing sperm may be responsible for the fast block (Jaffe, 1976). 

Although this idea of the fast electrical block to polyspermy was corroborated in several 

other species (Gould-Somero et al., 1979), it was not unanimously accepted by other 

experimenters, who rather argued that the depolarization of the egg membrane potential 

might be merely the electrical consequence of the cortical granules exocytosis (Dale and 

Russo, 1984). Thus, the issue is still a matter of controversy in the literature (Dale and 

Monroy, 1981; Dale and DeFelice, 2010; Santella and Chun, 2011).

The initial work that suggested the existence of the fast block was performed on the 

sea urchin eggs (Jaffe, 1976). It was shown that upon the first sperm-egg contact, a small 

initial step depolarization across the plasma membrane takes place that precedes the further
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larger depolarizing (positive) potential by several seconds. This initial sperm-induced 

electrical change in the egg surface was suggested to reduce the probability of additional 

sperm entry by a factor o f 20 (Rothschild and Swann, 1950), while the later slower (about 

60 seconds) change reduces the probability o f a successful sperm-egg collision to zero. 

However, the argument that in the latent period of several seconds, before the fertilization 

potential reaches the highest amplitude, many sperm can bind and fuse with egg (Dale, 

1985) and demonstration that holding the sea urchin eggs at negative membrane potential 

produces monospermic fertilization, and not polyspermic (Dale and DeFelice, 2010), cast 

doubts whether the fast block really exists. Finally, the discovery that the electrical fast 

block to polyspermy occurs in sea urchins (Jaffe, 1976) was not confirmed by others (Byrd 

and Collins, 1975) and in addition it was not found to occur at fertilization of mouse, 

hamster, or rabbit eggs (Miyazaki and Igusa, 1982; Jaffe et al., 1983; McCalloh et al., 

1983).

In this chapter, it was undertaken a morphological study in order to gain more 

insights of the role of the actin cytoskeleton as a potential mechanism to usher the entry of 

single sperm in the fertilized eggs of starfish. The conventional agent used to induce 

polyspermy, nicotine, evoked the same effect on the fertilization of A. aranciacus eggs 

(Fig. V la  and b). While the mechanism underlying this phenomenon has never been 

understood, the results of this thesis demonstrated for the first time that the nicotine 

produced striking alteration of the actin cytoskeleton of the eggs. Thus, in view of the 

previous findings that linked the actin cytoskeleton to polyspermy (Puppo 2008, Chun 

2010), it is plausible that the nicotine-based polyspermy might also be attributed to the 

altered structure o f the actin cytoskeleton in the egg cortex (Fig. V 2b). In support o f the 

idea, the treatment of the eggs with BAPTA that produced similar changes in the F-actin 

structures also displayed entry of tens o f sperm. This kind of failed block to polyspermy 

may well be attributed to the lack o f the formation of the fertilization envelope that 

obviously serves as a mechanical block to supernumerary sperm. However, it is also
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conceivable that polyspermy in these eggs treated with nicotine or BAPTA may represent a 

deregulated mechanism that is responsible for establishing an actin-dependent site- 

selective sperm interaction and entry. If  so, this kind of subtle effect exerted by the 

alteration of the actin cytoskeleton may have been masked by the failed elevation of the 

fertilization envelope. At any rate, it bears an emphasis that the process of cortical granules 

exocytosis itself and the consequent elevation of the fertilization envelope are also 

dependent on the fine regulation of the actin cytoskeleton (Kyozuka et al., 2008; Puppo et 

al. 2008, Chun et al., 2010; Vasilev et al., 2012). .

Treatment of mature eggs for 40 minutes with 300 pM concentration of nicotine 

revealed a complete blockade of the vitelline layer elevation and fertilization envelope 

formation. The result o f this study using fluorescent F-actin probe clearly demonstrated the 

significant alteration of the actin cytoskeleton in the egg cortex treated by nicotine (Fig. V 

2) by an unknown mechanism. The mechanism by which nicotine induces polyspermy in 

the eggs of another echinoderm, sea urchin, was proposed to be due to impairment 

(Hagstrom and Allen, 1956) or not (Longo and Anderson, 1970) of the cortical reaction, 

due to the alteration of the fast partial block to polyspermy (Rothschild, 1952; 1954) or due 

to an alteration of the gamete’s surface in such a manner as to increase the probability of a 

successful sperm-egg collision (Rothschild and Swann, 1950; Hagstrom and Allen, 1956). 

As for the fast block to polyspermy that takes place in the initial seconds o f the sperm-egg 

interaction, it was shown that nicotine can reduce the amplitude o f the plasma membrane 

fertilization potential induced by the sperm in sea urchin (Jaffe, 1980), and thus, induce 

polyspermy. In these studies, nicotine seems to induce polyspermy mainly by affecting the 

fast block mechanism. Depending on the concentration used (from 250 pM up to 2,5 mM 

in sea urchin Arbacia punctulata), it may or not block the vitelline layer elevation at 

fertilization, but still induces polyspermy (Longo and Anderson, 1970). In this thesis, 300 

pM concentration of nicotine was used to induce polyspermy and the blockage of 

fertilization envelope elevation. It would be interesting to see if the lower dose o f nicotine
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could also produce polyspermy and structural changes of the actin cytoskeleton without 

affecting the vitelline layer elevation. The results indicated that nicotine induces actin 

cytoskeleton changes, and that this structural change of the egg surface may alter the 

receptive field o f the sperm on the egg surface. Thus, this study raises an intriguing 

possibility that the fine regulation of the actin cytoskeleton may serve as another factor 

contributing to the fast block to polyspermy. Since it was already shown that the proper 

actin cytoskeleton organization in the subplasmalemmal region is required for normal 

cortical vesicles exocytosis to occur at fertilization in starfish eggs (Puppo et al., 2008), the 

nicotine-induced changes in the actin, prevented the cortical reaction, and, thus, interfered 

also with the mechanical block to polyspermy, causing many sperm to enter the egg.

On the other hand, buffering intracellular Ca2+ with BAPTA induced numerous 

sperm entry in starfish eggs (Fig. V 4c) as it was previously shown in mouse eggs 

(McAvey et al., 2002). Buffering the intracellular Ca2+ as a result o f BAPTA 

microinjection leads to the blockade of the cortical vesicles exocytosis and the vitelline 

layer elevation, which contributed to the polyspermic fertilization. Interestingly, the 

presence of microinjected BAPTA (100 mM pipette concetration) for 20 minutes in mature 

eggs, prior to fertilization, revealed very similar changes in the actin cytoskeleton 

structure, as observed in the nicotine treated eggs (Fig. V 2b), by showing actin 

polymerization in the cortex shifted towards the inner cytoplasm (Fig. V 3b). The actin 

cytoskeleton perturbations evoked by microinjection of BAPTA has already been 

described to take place in various cell types. Significant depolymerizing effect on the actin 

cytoskeleton has been shown for mammalian cells such as MDCK cells, mouse myoblasts

and for A6 Xenopus cell line (Saoudi et al., 2004). At least in the Xenopus cells the effect

2_|_
on the actin cytoskeleton disassembly was demonstrated to be independent o f the Ca 

chelation activity (Saoudi et al., 2004). Nevertheless, nothing more is known about how 

BAPTA induces changes in the actin cytoskeleton. Interestingly, in the same study (Saoudi 

et al., 2004), it was also shown that the effect on the cytoskeleton in the BAPTA-AM
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incubated RAT2 cells was reversible, displaying actin assemblies re-formed within 2 hours

94-after the removal of the Ca chelator from the medium.

During the transition from the immature (GV stage) oocyte to the mature egg induced 

by the maturation hormone 1-MA, there is a dramatic reorganization in the actin

2_j_
cytoskeleton structure which is important for the sensitization o f the intracellular Ca 

stores and precise cortical granules orientation beneath the plasma membrane (Chiba et al., 

1990; Longo et al. 1995; Santella et. al., 1999; Lim et al., 2003; Hirohashi et al, 2008). 

Immediately after the GVBD has occurred, matured eggs acquire the capacity to be 

successfully fertilized by one sperm, again with the active contribution of the actin 

cytoskeleton, which is thought to play important roles in establishing the sperm-egg 

contact and enabling the cortical vesicles exocytosis and the sperm entry (Puppo et al., 

2008; Chun et al., 2010; Vasilev et al., 2012). However, when Asterias amurensis mature 

eggs are fertilized 3 hours after GVBD (overmatured), they display polyspermy and 

abnormal development (Fujimori, 1979). This data indicates the existence of the optimal 

window time for the successful monospermic fertilization to occur, which is before the first 

polar body extrusion. In line with the idea that the occurrence of polyspermy is linked to 

the meiotic stage of the eggs, the data of fertilized A. aranciacus overmatured eggs (Fig. V 

6a) have confirmed the results of the other starfish specie {Asterias amurensis). In addition, 

the actin cytoskeleton structure in these overmatured eggs (Fig. V 7c), revealed a 

significant changes in its structure as compared to the mature monospermic eggs (Fig. V 

7b). The apparent actin depolymerization in the cortex could affect the structure of 

microvilli which in turn may affect the normal sperm-egg interaction (Fig. V 7c). Being 

important for the sperm anchorage and its incorporation into the egg cytoplasm, the 

absence o f the actin polymerization in the fertilization cone of the fertilized overmatured 

egg (Fig. V 8c) presumably made the egg surface easily penetrable for the sperm (Fig. V 

8c’, note 3 sperm entered). Starfish eggs susceptibility to polyspermy increases with the 

time after spawning, and this phenomenon was correlated with the time-dependent



decrease in the fertilization potential amplitude (Miyazaki and Hirai, 1979). In this thesis, 

94 % (33 out of 35) of overmatured eggs successfully undergoing fertilization envelope 

formation displayed 100 % polyspermy (Fig. V 6b), and these striking results 

concomitantly took place with the drastic structural alteration of the actin cytoskeleton at 

the plasma membrane. Thus, the result o f this thesis suggests that the proper readiness of 

the actin cytoskeleton in the egg surface might also be linked to the establishment of a fast 

block for polyspermy in starfish eggs at fertilization.

During fertilization of starfish eggs, it takes up to 3 minutes for the vitelline layer 

elevation and hardening of the consequent fertilization envelope, which appears to be a 

mechanical block to the entry of supernumerary sperm. If  we assume that the fast block 

does not work, then what prevents the additional sperm entry in this window time? An idea 

was put forward, suggesting that the successful sperm entry happens in the strictly defined 

sites on the egg surface and these sites are rich with F-actin (Dale and DeFelice, 2010). In 

favour of this idea was shown that when immature oocytes of starfish (Fig. V 6a) and sea 

urchin are fertilized, only 10-15 sperm can penetrate the oocytes Even if  it is assumed that 

all sperm were fertilization-competent and get in close contact with the immature sea 

urchin oocytes, only these small number o f sperm penetrate the oocyte (Dale, 1985). On 

the other hand, it is well known that it is not the first sperm that arrives to the mature egg, 

either sea urchin or starfish, that establishes the strong interaction and consequently to 

enter the egg. In this context, the data in this thesis are strongly supportive o f the idea that 

the actin cytoskeleton may contribute to regulate the number of this cryptic sperm 

receptive sites. As shown previously, microfilaments-filled microvilli may play a role in 

gamete fusion (Carron and Longo, 1982; Sato and Osani, 1986). During meiotic 

maturation their number strongly reduces and by the end of the GVBD their shape 

becomes shortened (Hirai and Kanatani, 1973; Cayer et al., 1975). Hence, it is possible 

that there is a progressive decrease in the number of sperm-engaging sites. It is tempting to 

speculate that in the initial minutes of fertilization, upon the first sperm has been
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successfully anchored to the plasma membrane on the microvilli, the other microvilli on 

the egg surface could retract so that no other sperm could interact with the egg. However, 

sometimes even mature eggs are polyspermic, and can be made polyspermic with various 

chemical agents. Inducing polyspermy with nicotine and BAPTA as it was shown in the 

results section, interfere with the normal cytoskeleton structure (Fig. V 2 and 3). Further, 

the actin polymerization during the extension of the fertilization cone (Fig. V 8b), 

formation of the thick actin bundles in the site of the sperm entry (Chun et al., 2010) and 

the cortical fibers migration (Terasaki, 1996; Vasilev et al., 2012) during the sperm entry, 

again underline the important morphological changes driven by actin cytoskeleton at 

fertilization. Shifting the fertilization process toward mono or polyspermy by altering the 

actin cytoskeleton, might indicate that the sperm-transmitted information to the egg might 

cause swift changes in the cortical actin that could further interfere with the additional 

sperm-egg interactions.

Stabilizing the actin cytoskeleton by microinjecting a high concentration of cold 

phalloidin, reduced the number of the sperm entry in overmatured eggs (Fig. V 9a). 

Moreover, it produced considerable number of eggs in which none of the sperm entered 

(15 %), or in which only one sperm was incorporated (50 %). This numbers, again, 

confirm the important role the actin cytoskeleton plays at fertilization. Firstly, the fact that 

there are eggs that do not have any sperm incorporated, indicates that the stabilized actin 

structures in the microvilli heavily affected the sperm-egg interaction, presumably, due to 

disturbances of the correct microvilli structure unable to establish strong contact with the 

sperm. Alternatively, in the case if  the normal interaction was established, by blocking the 

long actin microfilaments in the site of the sperm entry and newly formed F-actin during 

cortical fibers migration at fertilization, it could have interfered with the sperm 

incorporation into the egg. However, the stabilizing effect on the actin cytoskeleton in 50 

% of the same batch of the cold phalloidin microinjected eggs, seemed to return the lost 

ability o f overmatured eggs to be fertilized by one sperm, presumably due the actin
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microfilaments stabilization itself, or to an unknown factors that apparently are dependent 

on the dynamic state o f the actin. The most resistant 35 % of the overmatured eggs 

managed to overcome the stabilizing effect, and showed slight decrease in the sperm entry 

number, still being polyspermic as control eggs. The finding that the alteration in the actin 

networks in the eggs, causes abnormality in the fertilization process was already shown for 

the ionomycin pretreated starfish eggs (Vasilev et al., 2012) and for the mouse eggs, that 

have undergone changes in the acto-myosin structure (Matson et al., 2006; Larson, 2009). 

Since the receptor proteins residing on the plasma membrane on the microvilli of 

mammalian eggs (Runge et al., 2007), that have been shown to be a binding partners for 

the receptors on the sperm plasma membrane in the process of sperm anchorage to the egg, 

it is also conceivable that these receptors interact with the actin cytoskeleton. If  analogous 

takes place in starfish eggs, then, altering the actin cytoskeleton could lead to their 

structural changes which may affect their function, which in turn might lead to the failure 

of gametes recognition and fusion.
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Conclusions

The major findings in the present thesis are:

1. The fine regulation of the actin filaments is essential for the sensitization of the

InsP3-inducing Ca2+ release during meiotic maturation because the depactin

2+ # #
antibody microinjected into oocytes reduces the InsP3-mediated Ca signals in 

mature starfish eggs.

2. Sequestration of the PIP2 during meiotic maturation of starfish oocytes impeded the 

translocation of the cortical granules that normally align in the tight space beneath 

the plasma membrane.

3. Ionomycin induces intracellular Ca2+ increase from the internal stores and from

2 1 t . 2 1
Ca influx and the pretreated oocytes displayed a compromised Ca response to 

InsP3 and sperm, and no response to the second dose of ionomycin.

4. Ionomycin induces significant alterations in the structure of the actin cytoskeleton 

and in the structure of the cortical vesicles.

5. Ionomycin-pretreated eggs often display unsuccessful sperm entry at fertilization, 

and the resulting zygotes, even the monospermic ones, failed to develop normally.

6. Stabilization of the acting cytoskeleton interferes with a successful sperm entry and 

reduces the rate of polyspermy in overamatured starfish eggs.

7. Nicotine and BAPTA dislodge the subplasmalemmal actin fibres in a strikingly 

similar pattern, and this may be linked to their capability o f inducing polyspermy.
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