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ABSTRACT

Wnt signaling is involved in self-renewal and maintenance of hematopoietic 

stem cells (HSCs); however, the particular role of non-canonical Wnt signaling in 

regulating HSCs in vivo is largely unknown. Here I show Flamingo and Frizzled8, 

members of non-canonical Wnt signaling, both express in and functionally maintain 

quiescent long-term HSCs. Flamingo regulates Frizzled8 distribution at the interface 

between HSCs and N-cadherin+ osteoblasts (N-cad+OBs that enrich 

osteoprogenitors) in the niche. I further show that N-cad+OBs predominantly express 

non-canonical Wnt ligands and inhibitors of canonical Wnt signaling under 

homeostasis. This non-canonical Wnt signaling is attenuated prior to activation of 

HSCs. In the activated HSCs, however, canonical Wnt signaling is enhanced. 

Mechanistically, non-canonical Wnt signaling mediated by Frizzled8 suppresses the 

Ca2+-NFAT- IFNy pathway and antagonizes canonical Wnt signaling in HSCs. My 

findings demonstrate that non-canonical Wnt signaling maintains quiescent long

term HSCs through Flamingo and Frizzled8 interaction in the niche.
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Chapter 1. Introduction

In this chapter, I will present the hematopoietic stem cell (HSC) and its 

associated cellular components, termed “niches”, and the signals emanating from the 

niches, with a particular emphasis on Wnt signaling.

1.1 Stem Cells

Stem cells are a population of cells with the ability to self-renew and the 

pluripotential or multipotential to give rise to all the different cells in a body 

(embryo) or in a given tissue (adults). The regulation of stem cells is crucial to 

support embryo development, establishment of organs, and homeostasis of tissues in 

the body. The disruption of stem cell regulation often leads to diseases including 

tissue defects or cancer (Perry and Li, 2007; Reya and Clevers, 2005; Yilmaz et al., 

2006a; Zhang et al., 2006). Accumulated evidence reveals that extrinsic signaling is 

important for the maintenance, proliferation, and lineage fate determination of stem 

cells. Among the various types of extrinsic signaling, Wnt signaling is one of the best 

characterized pathways to regulate stem cells (Reya & Clevers, 2005).

1.2 Hematopoietic Stem Cells

Hematopoietic stem cells (HSCs) are multipotent stem cells that give rise to all 

the blood cell types (Weissman et al., 2001). HSCs are comprised of long-term (LT)- 

HSCs, short-term (ST)-HSCs, and differentiate to multipotent progenitors (MPPs). 

LT-HSCs are enriched with quiescent HSCs and function over 16-44 weeks when 

transplanted to mice. In contrast, ST-HSCs are enriched with actively cycling HSCs 

and can sustain hematopoiesis for only 4-6 weeks, ending up with loss of myeloid 

cells first, followed by loss of lymphoid cells (Benveniste et al., 2010). MPPs are
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transient-amplifying cells and differentiate to either myeloid or lymphoid lineages 

(Larsson and Karlsson, 2005) (Figure 1-1). HSC is the best characterized stem cell, 

and studies of HSCs have revealed new concepts and functions regarding their 

maintenance and regulation. Furthermore, the insights from HSC study can lead to 

improvements in clinical practice, such as bone marrow (BM) transplantation and 

targeting cancer stem cells.

“LSK” (Lineage* Sca1+ c-kit+)in mouse

Lymphoid
V

LT-HSC

ST-HSC

Myeloid

Pro-B Pro-T

▼
Megakaryocyte

Eosinophil 
Neutrophil Basophil

Erythrocyte Platelets Macrophage

B Cell T Cell NKCell

Dendritic Cell

Stem Cell

Multipotent
progenitor

Committed
progenitor

Mature
cells

Figure 1-1 The process of hem atopoiesis in adults.

HSCs give rise to multipotent progenitors (MPPs) which further differentiate to common myeloid 
progenitors (CMPs) and common lymphoid progenitors (CLPs). (Adapted from Larsson & Karlsson, 
2005.0ncogene)

1.3 HSCs in Development, Adult and Aging

Recently it was shown that HSCs are de novo generated from endothelial cells 

located in Aorta-gonad-mesonephros (AGM) at E l0.5 (in mouse) (Boisset et al., 

2010). After E12.5, HSCs migrated to fetal liver where HSCs underwent expansion
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and reached a peak during E15.5-16.5. Around E17.5, fetal HSCs seeded to BM 

(Mikkola and Orkin, 2006). After birth, BM became the main hematopoietic organ 

through the rest of adult life. Under stress, however, HSCs can migrate to spleen or 

potentially to liver and undergo extramedullary hematopoiesis. A portion of HSCs in 

adult mice are in the quiescent state for long-term maintenance, and a portion of 

HSCs are in cycling to support blood production. A regulation of the balance 

between the quiescent and proliferating states of HSCs is critical. Loss of the balance 

can result in either HSC exhaustion or HSC aging. For example, in adult mice (>2 

years), HSCs have a feature of an increased quiescence (cannot be activated) with a 

bias towards myeloid and reduced lymphoid lineages.

The underlying mechanism of HSC aging is actively investigated in the stem 

cell field. A recent report showed that an increase of Cdc42 activity is responsible for 

aging of HSCs. When adult HSCs were treated with Cdc42 inhibitor, they became 

rejuvenated (Florian et al., 2012). Additionally, Eaves and colleagues reported 2 

types of HSCs: a-HSC (lymphoid deficient) and p-HSC (balanced lineage). In fetal 

liver, p-HSC is predominant. In contrast, a-HSC becomes predominant in BM with 

aging (Benz et al., 2012). However, the mechanisms that regulate the transition of 

HSC state and correlation with potential changes in the associated niches are not 

clear.

1.4 The Stem Cell Niche

1.4.1 Stem cell niches in different tissues

In 1978, Ray Schofield proposed a concept of stem cell niche. According to 

this concept, stem cells are not randomly distributed but rather located in a specified 

microenvironment where specific extrinsic signals play a role in maintaining stem
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cells at an undifferentiated state (Schofield, 1978). Another 20 years passed before 

the stem cell niche was identified in 1998 when it was first found in Drosophila 

ovary where germ line stem cells reside (Xie and Spradling, 1998). Our lab together 

with another lab independently identified mammalian HSC niche in BM using 

genetic models. (Calvi et al., 2003; Zhang et al., 2003a). For long-term maintenance 

of adult stem cells, a subset of stem cells needs to be kept in the long-term quiescent 

state in a specialized niche (Arai et al., 2004; Cotsarelis et al., 1990; Haug et al., 

2008; Li and Clevers, 2010; Wilson et al., 2008; Zhang et al., 2003a). Quiescent 

long-term HSCs are mainly located in the endosteum of the trabecular bone region 

(TBR), where HSCs are found directly attached to N-cad+OBs known to enrich 

osteoprogenitors (Wilson et al., 2008; Xie et al., 2009; Zhang et al., 2003a). The key 

signals emanating from this niche to maintain HSC quiescence, however, remain 

largely unknown (Li and Clevers, 2010).

The endosteal bone surface is covered by bone-lining cells which include pre

osteoblasts and a specific type of macrophages (osteomacs) (Hauge et al., 2001; 

Raggatt and Partridge, 2010). Pre-osteoblasts are derived from mesenchymal stem 

cells (MSCs) and can differentiate into mature osteoblasts to form bone.

1.4.2 Other components of hematopoietic stem cell niches

Recent studies of HSCs have revealed that the endosteal region is a niche to 

maintain quiescent HSCs and that N-cadherin+ bone-lining pre-osteoblasts are one of 

the major components of this niche (Xie et al., 2009; Zhang et al., 2003a). Many 

adhesion molecules and signaling molecules have been reported to affect the 

maintenance of quiescent HSCs in the endosteal niche (Wilson and Trumpp, 2006). 

Once HSCs are activated by extrinsic signaling, they will mobilize from the
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endosteal niche to central marrow (Levesque et al., 2010). Canonical Wnt signaling 

is one of the factors known to activate HSCs as well as to prompt bone-lining pre

osteoblasts to differentiate into mature osteoblasts (Malhotra and Kincade, 2009).

MSCs are able to give rise to osteoblasts, chondrocytes, and adipocytes in 

BM (Pittenger et al., 1999). Transplantation of MSCs showed improved engraftment 

of hematopoietic cells, implying that differentiated mesenchymal cells in BM support 

hematopoiesis (Drouet et al., 2005).

Recent reports have identified other niche components in the perivascular 

zone, such as Nestin+ MSCs (Mendez-Ferrer et al., 2010), Leptin receptor* 

perivascular cells (Ding et al., 2012), nonmyelinating Schwann cells (Yamazaki et 

al., 2011), and CXCR12 abundant reticular (CAR) cells (Sugiyama et al., 2006) 

(Figure 1-2). In contrast to the endosteal zone where HSCs are kept in quiescence, 

the perivascular cells maintain HSCs in an active state (Perry and Li, 2012).

However, the molecular mechanisms that regulate the transition of HSCs between 

the endosteal zone and the perivascular zone remain unclear.
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Sinusoid

Nestin
Active

Actively eyeing
CAR

Vasculature Schwann cell
Bone

Endosteal zone I  Perivascular zone

Figure 1-2 HSC n iche in zo n es.

R e se rv e d  HSCs a r e  a d j a c e n t  w i th  N -c a d h e r in + o s t e o b p a s t s  as  well as  CAR cells a n d  N e s t in + cells in t h e  

e n d o s t e a l  z o n e .  Active  HSCs a r e  l o c a t e d  in t h e  p e r iv a s c u l a r  z o n e  w h e r e  s in u s o id a l  e n d o t h e l i a l  cells ,  

Leprin r e c e o p t o r  (Lepr)+ cells , CAR cells a n d  N e s t in + cells ex is t .  (M o d if ie d  f r o m  P e r ry  a n d  Li, 2 0 1 2 .  

EMBO Jo u rn a l )

1.4.3 Bone remodeling and HSC niche in the endosteal zone

Bone is a dynamic tissue that undergoes continual remodeling by osteoblasts 

and osteoclasts. Osteoclasts are terminally differentiated monocytes which remove 

mineralized bone matrix. Osteoblasts are specialized bone-forming cells derived 

from MSCs (Raggatt and Partridge, 2010).
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One of the questions to address in studying the osteoblast niche is what 

happens to this niche during bone remodeling. Our lab previously has shown that N- 

cadherin is expressed in a specific subset of pre-osteoblasts (N-cad+OBs) (Zhang et 

al., 2003a), to which BrdU label-retaining quiescent HSCs are attached. In my 

preliminary data, N-cad+OBs are quiescent. Their position in TBR and bone-lining 

cell appearance suggests that N-cad+OBs may be located on the “inactive bone 

surface” and do not engage in bone remodeling, but can be activated upon large loss 

of mature osteoblasts (Miller and Jee, 1987). It is interesting to conduct a lineage- 

tracing starting from N-cad+OBs to determine whether they contribute to bone 

remodeling.

1.4.4 Bone remodeling and Wnt signaling

Canonical Wnt signaling is a key pathway in bone formation. The activation 

of p-catenin through co-receptor LRP5/6 induces osteoblast formation and high bone 

mass (Boyden et al., 2002). Non-canonical Wnt signaling regulates commitment of 

MSCs to the osteoblasts (Baksh and Tuan, 2007). In the following sections, I will 

describe molecular components and function of canonical and non-canonical Wnt 

signaling.

1.5 Canonical Wnt Signaling

Wnt signaling plays a central role in many processes during development and 

adult stages of life, and its abnormality is involved in a variety of diseases (Logan 

and Nusse, 2004). Wnt signaling can be broadly categorized as canonical and non- 

canonical (Nelson and Nusse, 2004; Veeman et al., 2003).

In 1982, Nusse and Varmus identified the mouse proto-oncogene Integration 

1 ( Inti) (now designated as Wntl) in the breast tumors of mice infected with mouse
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mammary tumor virus (MMTV). Int was identified as a vertebrate gene near several 

integration sites of MMTV (Nusse and Varmus, 1982). The name of Wnt came from 

Wg (Wingless) and Int in Drosophila. Wg was originally identified as a recessive 

mutation affecting wing and haltere (appendage behind the wing) development in 

Drosophila (Sharma and Chopra, 1976), and then Wg was identified as a homolog of 

Intl. Canonical Wnt signaling controls the stability of p-catenin. In the absence of 

Wnt ligands, a P-catenin degradation complex (comprising two ser/thr kinases: GSK- 

3 and CK-1, and two scaffold proteins: Axin and APC) promotes degradation of p- 

catenin. Wnt receptor, Frizzled, is a family of 7-path transmembrane molecules and 

G-protein coupled receptors. Wnt ligands bind to Frizzled receptors. The lipoprotein 

receptor-related protein (LRP) family is well defined for its role in mediating the 

interaction between canonical-Wnt and Frizzled. When Wnt ligands engage a 

cognate receptor Frizzled along with a LRP 5/6 co-receptor, the Dishevelled (Dvl) 

protein is recruited to the plasma membrane. Dvl is a central component to mediate 

downstream events of both canonical and non-canonical Wnt signaling. Wnt binding 

to Frizzled protein recruits Dvl to the plasma membrane, which leads to activation of 

downstream pathways. Different domains within Dvl, including DIX, PDZ and DEP, 

diverge different downstream pathways (Habas and Dawid, 2005). DIX and PDZ 

domains function together in canonical Wnt signaling to stabilize P-catenin. DIX 

domain binds with Axin and results in inhibition of the p-catenin degradation 

complex in canonical Wnt signaling (Kishida et al., 1999). Phosphorylated p-catenin 

at C-terminal Serine552 by Akt (He et al., 2007) is translocated to the nucleus where 

it interacts with members of the T-cell factor (TCF)/lymphoid enhancer factor (LEF) 

transcription factors to regulate gene expression. The signaling regulates embryo
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body axis and proliferation o f cells (Liu et al., 1999; Pinto et al., 2003). The 

transcriptional targets o f p-catenin-TCF complex include cMyc, Cyclin D and Axin2. 

cMyc and Cyclin D positively regulate cell-cycle. Axin2 is a negative regulator o f 

canonical Wnt signaling (Jho et al., 2002) (Figure 1-3).
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Figure 1-3 Canonical W nt signaling

In t h e  a b s e n c e  o f  W n t  ligand,  (3-catenin is d e g r a d e d  by a c o m p le x  c o m p o s e d  f r o m  Axin, APC, CK-1 
a n d  GSK3. O n c e  W n t  l igand is b o u n d  w i th  Fz a n d  LRP5/6 c o - r e c e p t o r ,  D ish e v e l led  s c a f fo ld s  |3 -ca ten in  
d e g r a d a t i o n  c o m p le x  r e s u l t in g  in a c c u m u l a t i o n  o f  3 - c a t e n in  in cy to s o l  a n d  n u c l e u s .  3 - c a t e n in  
p h o s p h o r y l a t e d  a t  S552  (He e t  al., 2 0 0 7 )  a n d  t r a n s l o c a t e d  t o  t h e  n u c l e u s  w h e r e  it f o r m e d  a c o m p l e x  
w i th  TCF, Lgs a n d  Pygo t o  t r a n s c r i b e  t a r g e t  g e n e s .  (M o d if ie d  f r o m  S u g im u ra  & Li, Birth D e fe c t  
R e s e a rc h  P a r t  C, 90:  2 4 3 -2 5 6 ,  2010)
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1.5.1 Canonical Wnts

Canonical Wnt ligands include the following: Wnt2 (Sousa et al., 2010), 

Wnt2b (Goss et al., 2009), Wnt3 (Bhat et al., 2010), Wnt3a (Nygren et al., 2007), 

Wnt7a (Ohira et al., 2003), Wnt7b (Wang et al., 2005b), Wnt8a (Lindsley et al., 

2006), Wnt8b (Lee et al., 2006), Wnt9a (Spater et al., 2006), Wnt9b (Lan et al.,

2006), WntlOa (Gelebart et al., 2008), WntlOb (Longo et al., 2004) (Table 1-1).

1.5.2 Canonical receptor Frizzleds

The receptors that mediate canonical Wnt signaling include: Fzl (Bhat et al., 

2010), Fz2 (Li et al., 2008), Fz4 (Planutis et al., 2007), Fz9 (Ranheim et al., 2005), 

FzlO (Wang et al., 2005b) (Table 1-1)

Table 1-1 Canonical Wnt signaling

C anonical W nt ligands
Wnt2 Sousa, 2010
Wnt2b Goss, 2009
Wnt3 Bhat, 2010
Wnt3a Nygren, 2007
Wnt7a Ohira, 2003
Wnt7b Wang, 2005
Wnt8a Lindsley, 2006
Wnt8b Lee, 2006
Wnt9a Spater, 2006 .
Wnt9b Lan, 2006
WntlOa Gelebart, 2008
WntlOb Longo, 2004
C anonical Frizzleds
Fz1 Bhat, 2010
Fz2 Li, 2008
Fz4 Planutis, 2007
Fz9 Ranheim, 2005
Fz10 Wang, 2005
C o-recep to r
LRP6 Mao, 2001
M ediator
Dvl Kinoussi, 2002
GSK-33 Hur, 2010
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Axin Hsu, 2001
APC Nishisho, 1991
CK1a
T ranscrip tion  fac to r
|3-catenin G rass II, 2005
TCF Staal, 2000
LEF DasGupta, 1999

1.5.3 Role of Canonical Wnt signaling in vivo

Canonical Wnt signaling is involved in the regulation of many events such as 

embryonic development, morphogenesis, cell proliferation, and lineage fate 

determination. Wnt3 is expressed in the primitive streak in the early mouse embryo, 

and Wnt3 mutants display gastrulation defects (Liu et al., 1999). Wntl has 

redundancy with other Wnts. For example, Wntl knockout showed deficiency in 

neural crest derivatives, reduction in dorsolateral neural precursors in the neural tube 

(with Wnt3a knockout) (Ikeya et al., 1997), and decline in thymocyte number (with 

Wnt4 knockout) (Mulroy et al., 2002). Wnt7a defect caused female infertility and 

delayed maturation of synapses in cerebellum (Ciani et al., 2011). Wnt7b knockout 

showed placental development defect and respiratory failure (Parr et al., 2001).

1.5.4 Classification of Wnts and Frizzleds

In this study, I have classified Wnts and Frizzleds into canonical and non- 

canonical according to previous literature with in vivo model. Wnt3 and Wnt3a have 

been well characterized as canonical Wnt. Wnt5a, Wnt5b, Wntl 1 and Wntl6 have 

been well characterized as non-canonical Wnts. Some Wnts and Frizzleds can 

function for either canonical or non-canonical depending on tissue context. In this 

case, Wnts and Frizzleds have been classified according to evidence in hematopoietic 

system or cancer. For example, Frizzled8 has been documented as non-canonical



Wnt receptor in chronic myeloid leukemia (CML) (Gregory et al., 2010). In the 

following sections, I will describe non-canonical Wnt signaling.

1.6 Non-canonical Wnt Signaling

1.6.1 Non-canonical Wnt signaling components

1.6.1.1 Ligand-Wnts

Through their efforts to identify homologs of Wntl, Moon and colleagues 

identified Wnt5a in Xenopus, which turns out to regulate non-canonical Wnt 

signaling (Christian et al., 1991). In contrast to canonical Wntl injection which led to 

duplication of the embryonic axis in Xenopus, Wnt5a injection led to developmental 

defects of the head and tail resulting from a perturbation of cellular movements, 

without inducing ectopic axis. This implied that Wnt5a signaling differs from 

canonical Wnt signaling (Moon, 1993). Using zebrafish, Moon and colleagues 

showed that ectopic expression of Xenopus Wnt5a increased intracellular 

concentration of calcium ion (Slusarski et al., 1997). Furthermore, they proved that 

stimulation of calcium signaling phenocopied Wnt5a signaling. Following this 

discovery of non-canonical Wnt signaling, various researchers identified multiple 

contributing Wnt ligands and Frizzled receptors (Table 1-2).

Table 1-2 Ligands of non-canonical Wnt signaling

N on-canonical W nt 
ligands
W ntl You, 2004
Wnt4 Chang, 2007; Heinonen, 2011
Wnt5a Wallingford, 2001
Wnt5b Hardy, 2008
Wnt6 Schmidt, 2007
Wnt11 Flaherty, 2008
Wnt16 Clements, 2011
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Wnt5a is one of the major ligands responsible for non-canonical signaling. In 

addition to embryo development, non-canonical Wnt signaling regulates tissue

development and homeostasis. For example, it recently became known that non-
/

canonical Wnt signaling is involved in regulation of bone formation (Piters et al., 

2008). Osteoblasts derived from MSCs (MSCs) are responsible for bone formation. 

Because MSCs can differentiate to both osteoblasts and adipocytes, regulation may 

be required to balance the lineage choices. PPAR-y and Runx2 transcriptional 

factors are key regulators that determine respectively the lineage fate of MSCs to 

adipocytes or osteoblasts (Sugimura and Li, 2010). How PPAR-y and Runx2 

expression are regulated is an important question. Kato and colleagues showed that 

Wnt5a suppresses transcription of PPAR-y and activates the expression of Runx2 in 

ST2 mesenchymal progenitor cell line (Takada et al., 2007). A mouse model with 

haploinsufficiency of Wnt5a revealed bone loss with enhanced adipogenesis in BM. 

Non-canonical Wnt signaling has been implicated in regulating the balance between 

osteogenesis and adipogenesis through regulation of PPAR-y and Runx2 (Kang et al.,

2007). However, it remains unknown whether and how non-canonical Wnt signaling 

interacts with canonical Wnt signaling. To examine this, Tuan and colleagues asked 

how MSCs in BM are regulated by canonical and non-canonical Wnt signaling 

(Baksh and Tuan, 2007). They showed that Wnt5a is required for the maintenance of 

MSCs under the culture condition mimicking BM niche. In contrast, when MSCs 

were cultured with Wnt5a directly in a plastic dish, MSCs showed enhanced 

osteogenesis. Wnt3a, however, suppressed osteogenic differentiation but favored 

adipogenesis (Boland et al., 2004). Furthermore, canonical Wnt signaling suppressed
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osteogenesis, which indicates opposing aspects of canonical and non-canonical Wnt 

signaling.The evidence has shown a dual role of non-canonical Wnt signaling: to 

maintain MSCs and to induce osteoblastic differentiation.

Since non-canonical Wnt signaling is required for development of many 

organs through regulation of cell motility, signal disruption may lead to organ 

malformation. Indeed, supporting evidence of such has been provided in studies of 

transgenic or knockout mice (Luo et al., 2007; Moon et al., 2004; van Amerongen 

and Bems, 2006). Wntl 1 is required for kidney development, and its knockout 

showed defect of ureteric branching and consequent kidney hypoplasia in newborn 

mice (Merkel et al., 2007). Wntl 1 also regulates migration of Xenopus neural crest 

cells, which are multipotent cells that produce neurons, glial cells, melanocytes, and 

others. Non-canonical Wnt signaling guides this migration to place those cells in the 

proper microenvironments (Matthews et al., 2008). Recent work by Travers and 

colleagues identified that Wntl 6 induces HSC de novo formation in zebrafish 

through somatic expression of Notch ligands deltaC and deltaD (Clements et al., 

2011).

Another ligand of non-canonical Wnt signaling, Wnt4, promotes female 

gonadal development by blocking the synthesis of gonadal androgens in female 

embryos. Interestingly, an XY intersex patient with ambiguous genitalia was found 

to carry a duplication of chromosome lp35 where Wnt4 is located. Transgenic mice 

with a human Wnt4 locus (as an extra copy of Wnt4 locus) showed abnormal 

testicular vasculature, and their testosterone synthesis was inhibited (Jordan et al., 

2003).
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1.6.2 Non-canonical Wnts

Noncanonical Wnts include: Wntl (You et al., 2004), Wnt4 (Chang et al., 

2007; Heinonen et al., 2011), Wnt5a (Wallingford et al., 2001), Wnt5b (Hardy et al.,

2008), Wnt6 (Schmidt et al., 2007), Wntl 1 (Flaherty et al., 2008), W ntl6 (Clements 

et al., 2011).

1.6.2.1 Receptors - Frizzleds

To understand the role of non-canonical Wnt signaling in neurogenesis, 

Nathans and colleagues knocked out both Frizzled3 (Fz3) and Frizzled6 (Fz6), which 

are receptors of non-canonical Wnt signaling (Wang et al., 2006). Fz3 is required for 

axonal outgrowth and guidance of the central nervous system (Lyuksyutova et al., 

2003; Wang et al., 2002). Fz6 regulates hair patterning in skin (Guo et al., 2004). 

Since substantial redundancy in Frizzled genes had been previously reported in 

Drosophila (Bhanot et al., 1999; Chen and Struhl, 1999; Kennerdell and Carthew, 

1998), Nathans et al suspected that Fz3 and Fz6 functionally interact with each other. 

Their double mutant mouse (knockout of Fz3 and Fz6) indeed showed a defect of 

neural tube closure while neither of the single mutants showed the phenotype. This 

suggests that both molecules redundantly regulate neural tube development.

Frizzled regulates development as well as adult tissue homeostasis, e.g. 

cardiac hypertrophy: the thickening of cardiac muscle in response to an increased 

work load. One report showed that Frizzled2 (Fz2) was upregulated during 

development of cardiac hypertrophy (Blankesteijn et al., 1996) Also, re-expression 

of Fz2 in cardiac hypertrophy of genes associated with fetal development has been 

well documented (van Gijn et al., 2002) (Table 1-3).
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1.6.3 Non-canonical Frizzleds

The receptors that mediate non-canonical Wnt signaling include Fz3 

(Rasmussen et al., 2001), Fz5 (van Es et al., 2005), Fz6 (Heinonen et al., 2011), Fz7 

(De Calisto et al., 2005), Fz8 (Gregory et al, 2010)

Table 1-3 Receptors of non-canonical Wnt signaling

N on-canonical Frizzleds
Fz3 Rasm ussen, 2001
Fz5 van Es, 2005
Fz6 Heinone, 2011
Fz7 De Calisto, 2005
Fz8 Gregory, 2010

1.6.3.1 Co-receptor -  Flamingo

Co-receptors for non-canonical Wnt signaling include Flamingo or Cadherin 

EGF LAG 7-path G type receptor (Celsr) 1,2 ,3 and Vangl2 (see Table 1-4).

1.6.4 Function of Flamingo

Recent studies have revealed other types of receptor molecules involved in 

non-canonical Wnt signaling. One of them is the Flamingo family. Flamingo is a 

type of atypical cadherin molecule, which has both cadherin repeat domain and G 

protein-coupled receptor (GPCR) domain, and hence is named Cadherin EGF LAG 

7-path G type receptor (Celsr). Flamingo was initially shown in Drosophila to 

mediate non-canonical Wnt signaling with Frizzled proteins (Usui et al., 1999). The 

functional interaction of Flamingo with Frizzled raises the question whether these 

proteins directly interact with each other. A recent study showed that Flamingo
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indeed binds with Frizzled, and the resulting protein complex mediates non- 

canonical Wnt signaling (Chen et al., 2008). The Flamingo protein family includes 

several isoforms in mammals: Celsr 1, 2, and 3 (Tissir et al., 2002), which have been 

shown to interact with Frizzled proteins (Devenport and Fuchs, 2008; Tissir et al., 

2005) (Table 1-4). Vangl2 is another component of non-canonical Wnt signaling 

shown to interact with Flamingo and Frizzled proteins (Devenport and Fuchs, 2008; 

Tissir et al.).

Table 1-4 Co-receptors of non-canonical Wnt signaling

C o-recep to rs
Celsrl Tisser, 2002
Celsr2 Tisser, 2002
Celsr3 Tisser, 2002
Vangl2 Davenport &Fuchs, 2008

1.6.5 Mechanism of Flamingo function

The functional role of G-protein in Flamingo (Fmi) has not been 

characterized. A recent report showed that the downstream molecular mechanism of 

Flamingo subtype Celsr3 is to regulate intracellular Ca2+ level; however, it was not 

made clear whether G-protein is involved in this process (Shima et al., 2007) (Figure 1-4).
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Figure 1-4 Flamingo signaling

H o m o p h i l ic  b in d in g  o f  Fmi b e t w e e n  e a c h  cell in i t ia te s  s igna ling  t h r o u g h  Fz a n d  V ang l2  t o  e s t a b l i s h  
p o la r i ty  o f  cells.  T h e  c o n t r i b u t i o n  o f  ca lc iu m  is s u g g e s t e d ;  h o w e v e r ,  its e x a c t  lo c a t io n  in d o w n s t r e a m  
p a t h w a y s  is n o t  k n o w n .  (M o d if ie d  f ro m  S u g im u ra  & Li, Birth D e fe c t  R e se a rc h  P a r t  C, 90 :  2 4 3 - 2 5 6 ,  
2010 )

The Flamingo family protein regulates cell polarity through cell-cell contact (Chen et 

al., 2008; Usui et al., 1999). It affects morphogenesis o f neurons and skin 

keratinocytes (Devenport and Fuchs, 2008; Tissir et al., 2005). Goffinet and 

colleagues showed Celsr3 is required for neural growth and neural axon guidance in 

brain development (Tissir et al., 2005). They found Fz3 expressed together with 

Celsr3 in developing neurons. The single knockout o f Celsr3 showed the similar 

phenotype as Fz3 defect, suggesting that Celsr3 and Fz3 function together to guide 

the neural axon. The double knockout o f both Celsr2 and Celsr3 impaired the 

membrane distribution o f Fz3 (Tissir et al., 2010). This implies that Flamingo 

(Celsr2 and Celsr3) may regulate the membrane distribution o f Fz3, which in turn 

mediates non-canonical Wnt signaling.

Fz6 regulates hair patterning in skin, a typical function o f non-canonical Wnt 

signaling initially revealed in Drosophila. Recently, Fuchs and colleagues reported 

that Celsrl is required to establish polarity o f developing hair follicles (Devenport
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and Fuchs, 2008). Celsrl, Fz6 and Vangl2 proteins were asymmetrically localized in 

hair germs. Interestingly, Fz6 required Vangl2 for its asymmetric localization. In 

addition, Celsrl recruited Fz6 to cell-cell contacting sites. This suggested that Fz6 

shares a common pathway with Celsrl and Vangl2. Considering the finding that 

Celsrl forms calcium-dependent intracellular interactions necessary for recruiting 

Vangl2 and Fz6, the researchers proposed that Celsrl homodimer at the adherent site 

of two cells may initiate the hierarchical events leading to an induction of planer cell 

polarity (PCP) components through Vangl2 and Fz6. Thus, Flamingo interacts with 

Frizzled to mediate non-canonical Wnt signaling in a cell adhesion dependent 

manner.

Mechanistically, Fmi proteins homophilically adhere neighboring cells and 

determine the polarized or focal distribution of Frizzled protein on the surface of the 

cell, allowing local interaction with Wnt ligands (Beall et al., 2005; Lee et al., 2003; 

Tissir et al., 2010). Furthermore, Fmi homophilic junction via cadherin domain 

mediates contact inhibition as shown in control of dendrite overgrowth (Kimura et 

al., 2006). Whether Fmi and Fz8 play a role in regulating HSCs has yet to be 

determined.

1.6.6 Dishevelled-JNK pathway

Non-canonical Wnt signaling antagonizes P-catenin-dependent canonical Wnt 

signaling by either or both CaMKII-TAKl-NLK pathway and NFAT-mediated 

transcriptional regulation. CaMKII-TAKl-NLK pathway inhibits P-catenin-TCF 

dependent transcription through phosphorylation of TCF (Ishitani et al., 2003).

NFAT suppresses p-catenin-dependent transcription (Saneyoshi et al., 2002) (Figure
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1-5, Table 1-1). The detailed components and function of the downstream pathways 

will be discussed below.

PDZ and DEP domains of Dvl cooperate in different sub-pathways of non- 

canonical Wnt signaling (Sheldahl et al., 2003). Activation of small GTPases, such 

as Rho and Rac, occurs downstream of DEP. These small GTPases activate JNK to 

regulate cellular polarity (Boutros et al., 1998; Yamanaka et al., 2002) (Figure 1-5). 

There are 3 subtypes of JNK in mammals: Jnkl, 2 and 3. Jnkl is required for 

embryonic eyelid closure (Weston et al., 2003). Mice lacking Jnkl and Jnk2 die 

during embryonic development because of a defect in neural tube closure (Kuan et 

al., 1999). These observations indicate that the JNK pathway regulates migration of 

epithelial and neuroepithelial cells. PDZ domain of Dvl is bound by PCP factors such 

as Dvl associated activator of morphogenesis 1 (DAAM1), Strabismus, Prickle, 

Prader-Willi/Angelman region -  1 (PARI), and Diego (Wallingford and Habas, 

2005).
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Figure 1-5 Non-canonical W nt signaling

T h e  a c t iv a t io n  o f  Fz by W n t  l igand is m e d i a t e d  by D ish e v e l led  o r  h e t e r o t r i m e r i c  G - p ro t e in s .  T h e  
s igna ling  ca n  b e  s e p a r a t e d  in 3 b r a n c h e s .  P la n a r  Cell Po la r i ty  is m e d i a t e d  by  sm all  G T P a se  (R ho  a n d  
Rac), JNK a n d  Cdc42  w h ic h  is a c t i v a t e d  by  PKC. NFAT t r a n s c r ip t io n a l  f a c t o r  is a c t i v a t e d  by  C a2+-  
Ca lc ineu r in  p a t h w a y  t o  r e g u la t e  g e n e  e x p r e s s io n .  Ca lc ium  in d u c e d  CaMKII-TAKl-NLK p a t h w a y  
s u p p r e s s e s  c a n o n ic a l  W n t  s igna ling  by inh ib i t in g  (3-catenin d e p e n d e n t  t r a n s c r ip t io n  ( S e m e n o v  e t  al., 
20 0 7 ) .  (M o d i f i e d  f r o m  S u g im u ra  & Li, Birth D e fe c t  R e s e a rc h  P a r t  C, 90 :  2 4 3 -2 5 6 ,  2010)

1.6.7 Calcium mediated pathways

1.6.7.1 PKC-Cdc42 pathway

As a consequence o f Frizzled activation by Wnt ligand, Frizzled mediates 

activation o f heterotrimeric G-proteins. Activated G-proteins regulate phospholipase
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C (PLC), phosphor di esterase (PDE) and p38 (Ahumada et al, 2002). After 

activation of these components, calcium ion relays signaling via downstream 

pathways as one of the secondary messengers (Kohn and Moon, 2005; Ma and 

Wang, 2007). Increase of intracellular calcium ion activates protein kinase C (PKC) 

(Sheldahl et al., 2003). Then, it regulates small GTPase Cdc42 (Schlessinger et al.,

2007). Small GTPase Cdc42 is the key effector of PCP to remodel actin cytoskeleton 

and shape polarity of cells (Habas et al., 2003; Schlessinger et al., 2009; Schlessinger 

et al., 2007). Cdc42 is activated at the leading edge of migrating cells and provides 

actin-driven protrusions of cells (Etienne-Manneville and Hall, 2001, 2003) (Table 1-5).

Table 1-5 Mediators and transcription factors of non-canonical Wnt signaling

M ediator Function Reference
Dvl Polarity of cells Sheldahl, 2003
JNK Polarity of cells Sheldahl, 2003
Cdc42 Migration of cells Etienne-Manneville,2001
CK1a Suppress NFAT Dejmek, 2006
Calcineurin Angiogenesis Courtwright, 2009
CaMKII Bone formation Takada,2007

Inhibit canonical Wnt Ishitani,2003
TAK1 Antagonize canonical Wnt signaling Ishitani,2003
NLK Antagonize canonical Wnt signaling Ishitani,2003
T ranscrip tion  fac to r Function Reference
NFAT T-cell activation Macian,2005

Bone formation with Osterix Koga,2005
Inhibit canonical Wnt signaling Saneyoshi,2002

1.6.7.2 CaMKII-TAKl-NLK pathway

The increase of calcium ion concentration in cytosol activates 

calcium/calmodulin-dependent kinase II (CamKII). CaMKII induces activation of 

Transforming growth factor-|3-activated kinase 1 (TAK1) and Nemo-like kinase 

(NLK) kinases in Mitogen-activated protein kinase (MAPK) pathway (Ishitani et al.,
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2003). CaMKII is involved in pathogenesis in the heart and brain (Wang et al.,

2005a; Zhang et al., 2003b) (Table 1-5).

1.6.7.3 Calcineurin -  NFAT pathway

Another branch of the calcium ion pathway is calmodulin-mediated activation 

of calcineurin (Saneyoshi et al., 2002). Calcineurin is a protein phosphatase known to 

activate NFAT transcription factor as described below.

1.6.8 Transcription factors

1.6.8.1 NFAT

NFAT alters cellular behavior through regulation of gene expression. The 

activated NFAT translocates to nucleus to regulate multiple processes such as T-cell 

proliferation and differentiation (Macian, 2005). The Calcineurin-NFAT pathway is 

one of the major non-canonical Wnt signaling pathways in vertebrates, and its 

deregulation leads to several diseases. In Down’s syndrome, for example, the Down 

syndrome critical region gene 1 (DSCR1) and Dual specificity tyrosine- 

phosphorylation-regulated kinase 1A (DYR K1 A) genes are not only located in 

trisomy chromosome 21, but also their expression is increased, suggesting a role of 

these genes in Down’s syndrome (Fotaki et al., 2002; Fuentes et al., 2000). Crabtree 

and colleagues found that Calcineurin and NFATc2 and NFATc4 double knockout 

mice had similar phenotypes as human Down’s syndrome, such as defects in 

placenta, and in cardiovascular, neurological, gastrointestinal, skeletal, immune, and 

genitourinary systems (Arron et al., 2006). Mechanistically, increased expression of 

DSCR1 and DYRK1A synergistically prevent nuclear occupancy of NFAT 

transcriptional factors. In addition, NFAT is required for bone formation through
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regulation of osteoblasts. Takayanagi and colleagues found that NFATcl formed a 

complex with transcription factor Osterix in osteoblasts to induce bone formation. 

This observation provided important insight for management of osteoporosis as well 

as bone regeneration in osteogenic diseases (Koga et al., 2005) (Table 1-5).

1.6.9 Non-canonical Wnt signaling in stem cells

1.6.9.1 Hematopoietic stem cells

Recent studies revealed that HSCs contain two subpopulations: dormant 

(quiescent) and active, defined by function. The underlying mechanism that regulates 

these states is not clear. It has been proposed that active HSCs supply differentiated 

hematopoietic cells and support homeostasis. When active HSCs are depleted, such 

as by injury or disease, dormant HSCs function as a reserve pool to replenish active 

HSCs (Benveniste et al.; Elmslie et al., 1995; Haug et al., 2008; Wilson et al., 2008). 

A recent study by Morrison and colleagues knocked out Stem Cell Factor (SCF) in 

the perivascular cells and showed more than 90% loss of HSCs. However, the 

remaining HSCs still had 50% functional capacity (Ding et al., 2012). This suggests 

that the 10% remaining HSCs are a reserve population and are kept in quiescence 

and not affected by loss of SCF. But it is not known how this reserve pool of HSCs is 

maintained.

The function of canonical Wnt signaling is well-characterized in HSCs. f3- 

catenin mediated transcription regulation promotes proliferation of HSCs. However, 

the role of non-canonical Wnt signaling in HSC development and maintenance 

remains largely unknown.

35



A recent report showed that knockout of Fz5 disrupted development of yolk 

sac and placenta, which are both primary sites for HSC development (Ishikawa et al., 

2001). Another report showed that non-canonical Wnt signaling via Wntl 1 induced 

hematopoietic cell fate from embryonic stem cells (Vijayaragavan et al., 2009). But 

the downstream event of non-canonical Wnt signaling that induces HSC 

development is not known. Given that NFAT has been shown to regulate HSC 

lineage (Muller et al., 2009), NFAT may be a link in this regard.

Wnt4 is one of the non-canonical Wnt signaling molecules that regulate 

HSCs (Louis et al., 2008). Wnt4 in HSCs activates genes required for cell 

maintenance such as Cxcr4, Meisl, Pten, Ccnd2, Foxol, Foxo4, Hoxa9, HoxalO and 

Hoxb4. Wnt4 inhibits cell-cycle through Cdknlb, Cdknlc, Cdkn2d, Mxdl and Rbl2. 

Wnt4 deficient mice showed low frequency of HSCs in BM, which raised the 

question whether non-canonical Wnt signaling is required to maintain HSCs in BM. 

A recent study by Bodine and colleagues provided evidence to support this idea 

(Nemeth et al., 2007). The researchers cultured HSCs in the presence of non- 

canonical Wnt5a protein. Wnt5a increased short- and long-term HSC repopulation by 

maintaining HSCs in the quiescent GO phase. Also, Wnt5a inhibited Wnt3a-mediated 

canonical Wnt signaling in HSCs. However, this study was conducted only in vitro 

HSC culture, and in vivo function of non-canonical Wnt ligand remains unknown. In 

addition, the responsible receptor for non-canonical Wnt in HSCs is not clear.

Other reports have indicated that non-canonical Wnt signaling is required to 

maintain quiescent HSCs. In mice, deletion of Rac2 (a component of non-canonical 

Wnt signaling) led to enhanced mobilization of HSCs from BM which suggested 

activation of HSCs (Yang et al., 2001). The phenotype was associated with defective
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cell adhesion and increased motility. In Rac2 deficient HSCs, Cdc42 (another 

component of non-canonical Wnt signaling) was upregulated as a compensation, 

which was associated with an increase in HSC motility. Conditional deletion of 

Cdc42 in HSCs showed a decrease of quiescent GO phase and a defect of cell 

adhesion, resulting in impaired interaction between HSC and its endosteal niche 

where HSCs are kept in quiescence. Cdc42 deficient HSCs revealed significantly 

decreased expression of pl-integrin and N-cadherin, which may explain the loss of 

HSC adhesion with the HSC niche. Also Cdc42 deficient HSCs showed a 

significantly decreased p21 level and increased c-Myc level which would activate 

HSC proliferation (Yang et al., 2007). These reports suggest that HSCs are 

maintained in quiescence by non-canonical Wnt signaling; in contrast, canonical Wnt 

signaling activates HSCs (Table 1-6). My study has revealed in vivo function of non- 

canonical Wnt signaling for HSCs by investigating receptors and co-receptors of the 

signaling, Frizzled8 (Fz8) and Flamingo/Celsr2.

1.6.9.2 Skin stem cells

Skin stem cells are located in the bulge of hair follicles and are regulated by 

canonical Wnt signaling. Skin stem cells are activated by |3-catenin-TCF mediated 

regulation of transcription, including activation of CyclinDl and c-Myc, and 

inhibition of Bmp4 and E-cadherin (Alonso and Fuchs, 2003a, b). The function of 

non-canonical Wnt signaling was unknown until recently.

One of the main events downstream of non-canonical Wnt signaling in 

mammals is the regulation of NFATcl. A recent study by Fuchs and colleagues 

showed that NFATcl was required to maintain quiescence of skin stem cells in hair
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follicle (Horsley et al., 2008). NFATcl expression in skin stem cells was activated 

by BMP signaling, which repressed Cdk4 expression. Repression of Cdk4 led to 

inhibition of cell-cycle progress which maintained skin stem cells in quiescence. 

(Table 1-6).

1.6.93 MSCs

MSCs (MSCs) in BM can self-renew and differentiate to other stromal 

components such as chondrocytes, adipocytes and osteoblastic cells (Uccelli et al.,

2008) (Friedenstein et al., 1974; Friedenstein et al., 1976; Friedenstein et al., 1978). 

Wnt signaling plays a key role in regulation of MSCs, and its contribution has been 

studied in both canonical and non-canonical Wnt signaling. Tuan and colleagues 

showed that Wnt3a canonical signaling activated MSCs. Wnt5a non-canonical 

signaling maintained MSCs and induced osteogenesis ex vivo (Baksh and Tuan,

2007). Because MSCs are exposed by dynamic tension in vivo to form tendon or 

ligament tissues, researchers asked whether the same principle applied to in vitro 

culture. They observed regulation of Wnt gene expression with cyclic stimulation of 

tension, which suggested involvement of Wnt signaling during tendon formation 

from MSCs (Kuo and Tuan, 2008). Rubin and colleagues showed that mechanical 

stimulation of MSCs activated both p-catenin and NFATcl through inhibition of 

GSK3p. This resulted in enhancing osteogenesis and inhibiting adipogenesis from 

MSCs. Molecular mechanisms underlying the observation are not yet known; 

however, the researchers indicated that induction of Cox2 by NFATcl may regulate 

osteogenic or adipogenic differentiation of MSCs (Sen et al., 2009). Recent reports 

have suggested that MSCs and their progenies regulate HSCs (Arai et al., 2004;
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Calvi et al., 2003; Mendez-Ferrer et al.; Naveiras et al., 2009; Nilsson et al., 2001; 

Sugiyama et al., 2006; Xie et al., 2009; Zhang et al., 2003a). Non-canonical Wnt 

signaling may be involved in the regulation of the interaction between MSCs and 

HSCs (Table 1-6).

Table 1-6 Stem cell and non-canonical Wnt signaling

Stem cell Gene Function Reference
Hematopoietic Wnt5a Maintain quiescence Nemeth,2007

Wnt4

Wnt11

Fzd5

Maintain quiescence 
Induce
hematopoietic 
lineage from ES 

cells
Yolk sac  and . 
placenta

Louis,2008 

Vijayaragavan,2009

lshikawa,2001

Rac2

development
Regulate
mobilization Yang,2001

Cdc42 Maintain quiescence
Inhibit cell-cycle
Regulate
mobilization

Yang,2007

Skin NFATcl Maintain quiescence Horsley,2008

Mesenchymal Wnt5a Maintain stem cells 
Induce osteogenesis 
Induce tendogenesis

Baksh,2007 

Kuo,2008
NFATcl Induce osteogenesis Sen,2009

Neural Wnt5a
Regulate
dopaminergic
differentiation

Parish,2008

1.6.9.4 Intestinal stem cells

Both the location and signaling regulation of intestinal stem cells (ISCs) have 

been a focus of study in gastroenterology (Scoville et al., 2008). The contribution of 

canonical Wnt signaling has been established in the activation of ISCs (He et al.,
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2007; He et al., 2004a; Sancho et al., 2004); however, the function of non-canonical 

Wnt signaling is not clear. Clevers and colleagues reported that deletion of Frizzled5 

(Fz5) changed the distribution of Paneth cell location in intestinal crypts (van Es et 

al., 2005). However, it is not understood whether non-canonical Wnt signaling 

contributes to this phenotype or whether this phenotype has significance in ISCs.

1.6.10 Non-canonical Wnt signaling in disease

Canonical Wnt signaling has been well characterized as one of the most 

important contributors to tumorigenesis (Reya and Clevers, 2005; Reya et al., 2001), 

and it has been implicated in over 40 types of solid tumors (Giles et al., 2003). 

Secretion of Wnt antagonists (such as DKK-1, Wnt inhibitory factor WIF, and 

sFRPs) is often downregulated in cancer. Many cancer cells show accumulation and 

nuclear localization of P-catenin. Since non-canonical Wnt signaling regulates stem 

cells, it may also play an important role in cancer. As non-canonical Wnt signaling 

maintains quiescence of stem cells and inhibits canonical Wnt signaling, it has been 

considered primarily a tumor suppressor. For example, mouse mammary cell 

transformation by an anti-sense Wnt5a mimicked canonical Wntl-mediated 

transformation (Olson and Gibo, 1998). For another example, ectopic expression of 

Wnt5a in uro-epithelial cancer reverted tumorigenesis (Olson et al., 1997).

However, other studies have indicated a different role for Wnt5a in tumorigenesis. 

Wnt5a was found unexpectedly to be overexpressed in cancers of lung, breast and 

prostate (Iozzo et al., 1995; Lejeune et al., 1995). More recently, it was reported that 

Wnt5a may enhance motility of malignant cells and tumor invasion such as in breast 

cancer, melanoma and gastric cancer (Kurayoshi et al., 2006; Pukrop et al., 2006). 

Trent and colleagues overexpressed Wnt5a in melanoma cells to determine its
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function in tumor progression (Weeraratna et al., 2002). They found that Wnt5a 

increased motility and invasion of melanoma cells. To analyze further, they disrupted 

Fz5, a receptor of Wnt5a, by functional antibody. Disruption of Fz5 reduced 

melanoma invasion associated with inhibition of PKC activation. From Wnt5a 

staining of human melanoma tissues, the researchers found that a strong expression 

of Wnt5a correlated with a higher grade of tumor.

Gastric cancer is the fourth most common malignancy in the world (Parkin, 

2001). To examine the relationship between aggressiveness of gastric cancer and the 

expression of Wnt5a, Kikuchi and colleagues studied 237 human gastric cancer cases 

(Kurayoshi et al., 2006). Expression of Wnt5a was observed in 30% of the cases. The 

intensity of Wnt5a expression correlated with advanced disease and poor prognosis. 

Also, cytosolic or nuclear accumulation of P-catenin was identified in 21% of the 

cases. However, Wnt5a and p-catenin were rarely expressed in the same gastric 

cancer cells, which implies that Wnt5a and P-catenin express in a mutually exclusive 

manner in gastric cancer, or in different stages of cancer. Whereas the contribution of 

P-catenin to tumorigenesis has been well characterized, the function of Wnt5a in 

gastric cancer is not known. When Wnt5a was knocked down in gastric cancer cells, 

cell migration activity was suppressed. Wnt5a activated both focal adhesion kinase 

and small GTP-binding protein Rac, which both play a role in cell migration. Since 

non-canonical Wnt signaling regulates cell motility, it may be that Wnt5a also 

enhances invasion of cancer in its later stages.

Deregulation of non-canonical Wnt signaling has been observed in 

hematologic malignancies. Using a Wnt5a null mice model, Jones and colleagues 

showed expansion and hyperproliferation of myeloid and B lymphocytes leading to
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myeloid leukemia and B-cell lymphomas. (Liang et al., 2003). Wnt5a suppressed the 

expression of Cyclin D1 through the calcium pathway of non-canonical Wnt 

signaling and negatively regulated B-cell proliferation. To determine whether Wnt5a 

expression level is modulated in leukemia patients, researchers have studied the 

DNA methylation status of a Wnt5a promoter in acute lymphoid leukemia patients 

(Roman-Gomez et al., 2007). 43% of patients showed hypermethylation of a Wnt5a 

promoter, suggesting that Wnt5a was inactivated in those patients. Promoter 

hypermethylation of genes inhibiting canonical Wnt signaling (including Wnt5a) 

correlated with decreased rates of disease-free and overall survival (Martin et al.,

2008). This indicates that non-canonical Wnt signaling suppressed leukemogenesis. 

In contrast, another recent study with chronic lymphoid leukemia (CLL) patients 

showed that Wnt5a increased viability of leukemia cells through Receptor-tyrosine- 

kinase-like orphan receptor 1 (ROR1) and NF-kB induction (Fukuda et al., 2008). 

However, in vivo function of Wnt5a in CLL was not elucidated.

Wnt5a plays a role in tumor suppression, part of which may be via 

downregulating canonical Wnt signaling. In contrast, Wnt5a also promotes 

malignancy by enhancing invasion of cancer cells in the later stages of cancer 

(Figure 1-6). This discrepancy may arise from multiple factors regulating Wnt5a as 

well as from observations at different stages of tumor progression.
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^  Transform Invasion

Normal cell Cancer cell Cancer cell

Non-canonical Wnt signlaing Non-canonical Wnt signlaing

Figure 1-6 Dual function of non-canonical Wnt signaling in cancer

Non-canonical Wnt signaling suppresses transformation of cells. However, in late stage cancer, non- 
canonical Wnt signaling enhances invasion of cancer cells which leads to metastasis of cancer. 
(Modified from Sugimura & Li, Birth Defect Research Part C, 90: 243-256, 2010)

Wnt5a is a main focus of study of non-canonical Wnt signaling in cancer. However, 

there are few reports regarding receptors and cytoplasmic mediators of non-canonical 

Wnt signaling in cancer. A recent study by DeGregori shed light on Frizzled8 (Fz8), 

a receptor of Wnt signaling (Gregory et al., 2010). Using shRNA library, researchers 

screened genes which, when inhibited, made chronic myeloid leukemia (CML) cells 

sensitive to imatinib, an inhibitor of Bcr-Abl tyrosine kinase. Although imatinib is a 

highly effective treatment for patients with CML, it is rarely curative because of 

relapse, even in patients that initially show a complete response (Deininger et al., 

2005; Rousselot et al., 2007). This underscores the need to identify targets that will 

cooperatively treat CML with imatinib. From the gene screening, Fz8 was identified 

by three different shRNAs. Ectopic expression of Fz8 was capable of activating P- 

catenin-dependent canonical Wnt signaling when co-expressed with co-receptor 

LRP6 (Liu et al., 2005). However, studies performed in Xenopus implicated that Fz8 

function in p-catenin is independent of Wnt signaling (Wallingford et al., 2001). 

Through screening in CML cells, researchers identified isoforms of both CaMKII
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and PKC, components of non-canonical Wnt signaling. They tested whether Fz8 

mediates non-canonical Wnt signaling in CML cell line K562 by knocking down 

Fz8. K562 was infected with NFAT reporter construct to measure activity of non- 

canonical Wnt signaling. Calcium ionophore ionomycin rescued downregulation of 

NFAT activity when Fz8 was knocked down, suggesting that Fz8 mediated non- 

canonical Wnt signaling through the calcium pathway to regulate NFAT activity. 

Furthermore, the researchers showed that NFATcl protected CML cells from 

imatinib-induced cell death via induction of IL-4 expression. They indicated that 

Fz8-mediated non-canonical Wnt signaling was responsible for imatinib resistance in 

CML.

There is growing body of evidence that interaction between tumor cells and 

the stromal components is crucial for malignant progression (Raaijmakers et al., 

2010). Binder and colleagues co-cultured breast cancer cell lines with macrophages, 

which led to upregulation of Wnt5a (Pukrop et al., 2006). Wnt5a derived from 

macrophages induced invasion of breast cancer cells. The report suggested that 

Wnt5a-mediated non-canonical Wnt signaling contributed to enhanced malignancy 

through interaction with neighboring macrophages. Surprisingly, DKK-1, a well- 

characterized inhibitor of canonical Wnt signaling, antagonized Wnt5a-induced 

invasion of breast cancer cells without affecting p-catenin signaling. Though further 

study is required, this indicates that DKK-1 may regulate Wnt5a-mediated non- 

canonical Wnt signaling (Table 1-7).
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Table 1-7 Diseases and non-canonical Wnt signaling

Cancer Genes
Hematologic malignancy
B-cell lymphoma Wnt5a B-cell lymphoma in null mice
Acute lymphoid leukemia Wnt5a Hypermethylation of Wnt5a promoter in patients
Chronic lymphoid leukemia Wnt5a Increased viability of leukemia cells
Chronic myeloid leukemia Fzd8 Resistance to imatinib

NFAT Resistance to imatinib

Solid tumor
Mammary cell transformation Wnt5a Antisense Wnt5a mimes Wntl-mediated transformation
Uro-epithelial cancer Wnt5a Reverted tumorigenesis
Lung cancer Wnt5a Upregulated expression
Breast cancer Wnt5a Upregulated expression, macrophage-induced invasion
Prostate cancer Wnt5a Upregulated expression
Melanoma Wnt5a Upregulated expression, increased motility
Gastric cancer Wnt5a Increased motility

Other diseases
XY intersex Wnt4 Overexpression inhibited testicular development

Down's syndrome Calcineurin Knockout mice showed phenocopy of human Down's
NFATc Knockout mice showed phenocopy of human Down's

Cardiac hypertrophy Fzd2 Expressed during hypertrophy
NFAT Pathological hypertrophy
CaMKII Activated in hypertrophy

Alzheimer's disease CaMKII CaMKII containing neurons were lost selectively

1.7 My Study in Context of the HSC Field

In the HSC field, it has not yet been made clear how quiescent and active 

HSCs are regulated in the niche. Although Wnt signaling is one of the best 

studied signaling in the field, the functional role of non-canonical Wnt signaling 

has not been identified in vivo. In addition, it has been controversial where 

quiescent HSCs are located in the BM niche. In my study, I have investigated the 

functional role of non-canonical Wnt signaling by studying receptors 

Flamingo/Celsr2 (Fmi) and Frizzled8 (Fz8) expressed in quiescent HSCs.
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Furthermore, I have analyzed the niche components which facilitate non- 

canonical Wnt signaling.

1.8 Hypothesis

Non-canonical Wnt signaling via its receptors in quiescent HSCs functions to 

maintain HSCs.

1.9 Strategy of My Study

First, microarray analysis of quiescent HSC was done to pick up non-canonical 

Wnt genes. Then, shRNA of each gene was done to see the phenotype in HSCs, 

which was further confirmed by knockout mouse model. Finally, I analyzed the 

cellular mechanism and molecular mechanism of non-canonical Wnt signaling 

function in HSCs (Figure 1-7).

Non-canonical Wnt

Reduction of HSC in vitro 

Reduction of HSC in vivo

Reduction of HSC in vivo 

Loss of quiescence

Analyze the mechanism

Microarray quiescent HSC

shRNA to check phenotype

Confirm phenotype in KO mouse

Interaction with niche 

Downstream pathway

Figure 1-7 Strategy of my study
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Chapter 2. Materials and Methods

2.1 Animals

Both Flamingo/Celsr2+/~ (Tissir et al., 2010) and Frizzled8+/~ (Ye et al., 2011) 

mice were obtained from the Jackson Laboratory (Celsr2tml and Fzd8tm 

respectively) and bred to obtain homozygous mice. Some heterozygous female mice 

were infertile from uterus atresia, and I observed less number of homozygous. H2B- 

GFP mice and SCL-tTA mice were also obtained from Jackson labs (TRE-mCMV- 

H2B-GFP and Tall-tTA respectively). Nestin-GFP and Col2.3-GFP mice were 

kindly provided by Grigori Enikolopov (Cold Spring Harbor Laboratory) and David 

Rowe (University of Connecticut Health Center). CD31-GFP mice were generated in 

our lab, in which we used the CD31-GFP ESCs kindly provided by Dr. Virginia 

Bautch (University of North Carolina). TOP-GAL mice were kindly provided by Dr. 

Elaine Fuchs (Rockefeller University). Axin2-d2EGFP mice were kindly provided 

by Dr. Frank Costantini (Columbia University). All of the mice in this study were 

kept in C57BL/6J background. All mice used in this study were housed in the animal 

facility at the Stowers Institute for Medical Research (SIMR) and handled according 

to SIMR and National Institute of Health (NIH) guidelines. All procedures were 

approved by the Institutional Animal Care and Use Committee (IACUC) of SIMR.

2.2 Flow cytometry

For phenotype analysis, hematopoietic cells were harvested from BM (femur 

and tibia), spleen, and peripheral blood. Red blood cells were lysed using a 0.16M 

ammonium chloride solution. For cell surface phenotyping, a lineage cocktail (Lin, 

PE-Cy5) was used including CD3, CD4, CD8, Mac-1, Grl, B220, IgM, and Terl 19
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(eBioscience,). Monoclonal antibodies against Sca-1, c-Kit, Flk2, CD34, CD150, 

GRP78 (Sigma), CD45.1, and CD45.2 were also used where indicated. Biotinylated 

monoclonal N-cadherin antibody (AbD13077, Toshio Suda, Keio University) and 

streptavidin-PE-Cy7 were used for sorting bone cells. Cell sorting and analysis were 

performed using a MoFlo (Dako), InFlux Cell Sorter (BD Biosciences) and/or CyAn 

ADP (Dako). Data analysis was performed using FlowJo.software.

2.3 Cell-cycle analysis

Cell-cycle analysis of HSCs was conducted with BD PhamingenTM FITC 

Mouse Anti-Human Ki67 Set according to manufacturer’s instruction. The cells were 

further incubated with O.lug/uL DAPI for 30min at room temperature followed by 

flow cytometric analysis with InFlux Cell Sorter (BD Biosciences).

2.4 HSC culture

HSC expansion media (ST + insulin media) consisted of StemSpan SFEM 

media (Stem Cell Technologies) supplemented with 10 pg/ml heparin (Sigma), 0.5x 

Penicillin/Streptomycin (Sigma), 10 ng/ml recombinant mouse (rm) Stem cell Factor 

(SCF) (Biovision) and 20 ng/ml rm (Thrombopoietin) Tpo (Cell Sciences) (Perry et 

al., 201 lb). BM cells were harvested from C57BL/6J (CD45.2) mice and made into a 

single cell suspension by gently passing through a 22g needle 3-5 times. Mouse 

Wnt3a (100 ng/uL, Millipore), mouse Wnt5a (500 ng/uL, R&D), and human Wnt7b 

(100 ng/uL, Novus Biologicals) were added in culture as indicated. The 

concentration of Wnt ligands used was according to a previous report (Nemeth et al., 

2007). NFAT inhibitor (11R-VIVIT, Cell-permeable, Calbiochem) was used in the 

HSC expansion media (luM).
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2.5 Lentivirus construction

The pSicoR-EFla promoter-IRES-EGFP lentiviral construct was kindly 

provided by Dr. Ting Xie (SIMR). CA-NFAT from Addgene (distributed by Anjana 

Rao at Immune Disease Institute) and shRNA for Flamingo and Frizzled8 were 

cloned into Smal site of the construct. The sequences of Flamingo and Frizzled8 

shRNA used were from a previous report (Shima et al., 2004) and from RNAi Codex 

(http://cancan.cshl.edu/cgi-bin/Codex/Codex.cgi).

Flamingo shRNA 1 Fwd:
AGCGCCGTGCATGCGCACACGAAGATTAGTGAAGCCACAGATGTAATCT
TCGTGTGCGCATGCACGA
Flamingo shRNA 1 Rev:
GGCATCGTGCATGCGCACACGAAGATTACATCTGTGGCTTCACTAATCTT
CGTGTGCGCATGCACGG
Flamingo shRNA 2 Fwd:
AGCGCGCTGGCTCTCTGTCTATGATATAGTGAAGCCACAGATGTATATCA
TAGACAGAGAGCCAGCA
Flamingo shRNA 2 Rev:
GGCATGCTGGCTCTCTGTCTATGATATACATCTGTGGCTTCACTATATCAT
AGACAGAGAGCCAGCG
Frizzled8 shRNA Fwd:
AGCGCCCGAATCCGTTCAGTCATCAATAGTGAAGCCACAGATGTATTGAT
GACTGAACGGATTCGGA
Frizzled8 shRNA Rev:
GGCATCCGAATCCGTTCAGTCATCAATACATCTGTGGCTTCACTATTGAT
GACTGAACGGATTCGGG
Scramble shRNA Fwd:
AGCGCCGTGCATGCGCACACGAAGATTAGTGAAGCCACAGATGTAATCT
TCGTGTGCGCATGCACGA
Scramble shRNA Rev:
GGCATCGTGCATGCGCACACGAAGATTACATCTGTGGCTTCACTAATCTT
CGTGTGCGCATGCACGG

2.6 Lentivirus infection

Mice were treated with 150 ug/g body weight of 5FU to activate and enrich 

for HSPCs (Miller and Eaves, 1997). 4 days later, BM was harvested and cultured
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overnight in ST media and transduced by MagnetofectionTM using ViroMag R/L 

particles according to the manufacturer’s protocol (OZ Biosciences).

2.7 Transplantation and Homing assay

Sorted 200 LSK cells and 2x105 rescue BM cells were transplanted for 

Flamingo and Frizzled8 knockout model. Propidium iode staining was used to 

determine viability of sorted LSK. 50% (100) of the sorted LSK cells were alive. 

Transplantation experiments were conducted in the knockdown model using unsorted 

3xl05 infected BM cells (CD45.2). The cells were transplanted into each lethally 

irradiated (lOGy) Ptprc (CD45.1) recipient. Homing assay was performed according 

to a previous report (Zhang et al., 2006). 5x106 BM cells (labeled with CFDA, 

Invitrogen) were injected to each lethally irradiated (lOGy) Ptprc (CD45.1) recipient. 

16 hours post injection, femur and spleen were collected to compare the number of 

CFDA+LSK prior to injection.

2.8 Repopulation assay

16 weeks post transplantation, peripheral blood was collected from 

submandibular vein. The hematopoietic repopulation was measured from donor- 

derived blood cells (CD45.2).

2.9 RNA-sequencing

The RNA-sequencing library was prepared from approximately 200 ng of 

total RNA [CD31-GFP+ (VEGFR2+CD45'Terl 19') cells, Nestin-GFP+ (CD45'CD31‘ 

Terl 19') cells, N-cad+OBs (CD45'CD3 l'Terl 19') and mature OBs Col2.3-GFP+ 

(CD45'CD31'Terl 19')] for each sample using illumina TruSeq RNA Sample Prep 

Kit (Catalog #: FC-122-1001). The fragment size in the generated library ranged
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from 220 to 500 bps with a peak at 280 bps. A total of 10 fmol library fragments 

were loaded to cBot to generate clusters, followed by sequencing on an Illumina 

HiSeq 2000 to produce 10-30 million paired-end 100 bp reads per sample. Reads 

were trimmed to 70bp due to quality, and aligned to mm9 with Tophat 1.3.1 

(Trapnell et al., 2009) / Bowtie 0.12.7(Langmead et al., 2009), using the Ensembl 63 

GTF file for gene models. Parameters were -g 1 —mate-inner-dist 200 —mate-std- 

dev 70 --segment-length 35 —segment-mismatches 2; this allowed for 4 mismatches 

per read (two per read half) and unique alignments only. Gene expression was 

quantitated using Cufflinks 1.0.3 (Trapnell et al., 2010).

2.10 Calcium level assay

BM cells were incubated in PBS/2%FBS containing Fluo-3 (Molecular 

Probes) according to the manufacture’s instruction. Ionomycin (Sigma) was used as a 

positive control to measure intracellular Ca2+ level in LT-HSCs.

2.11 Mitochondrial activity assay

BM cells were incubated in PBS/2%FBS containing Mitotracker Green FM 

(Molecular Probes) according to the manufacture’s instruction. The Mitotracker 

signal was measured by FITC channel in flow cytometry.

2.12 qRT-PCR

Primary HSCs or infected HSPCs were sorted by flow cytometry as described 

above. The cells were lysed, reverse transcribed, and pre-amplified by TaqMan® 

PreAmp Cells-to-CTTM Kit (Ambion) according to the manufacturer’s instruction. 

TaqMan® gene expression assays (Applied Biosystems) were performed on 

triplicate samples using a 7900HT fast real-time PCR system (Applied Biosystems).
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The primer sequences and TaqMan (Applied Biosystems) serial numbers are listed in 

Appendix.

2.13 Production of the recombinant anti-mouse N-cadherin Fab 

antibody

The phage display library, Human Combinatorial Antibody Libraries 

(HuCAL® Gold, AbD Serotech) was used and isolated recombinant Fab against 

mouse N-cadherin (AbD 13077). In brief, HuCAL phage library was screened by 

biopanning using N-cadherin extracellular fragment-Fc fusion protein. After the first 

screening, the ELISA screening, clone sequencing, and QC ELISA with positive and 

negative control proteins were performed. Since N-cadherin binds not only to N- 

cadherin but also R- and OB-cadherins, R- and OB-cadherins-Fc fusion proteins 

were used for the negative controls. Seven Fab clones were obtained that react to N- 

cadherin but not to R- and OB-cadherin. These Fab clones were characterized for 

their availability for flow cytometry using NIH3T3 cell line and mN-cadherin- 

overexpressing Ba/F3 cell line. AbD 13077 was useful for the flow cytometric 

analysis and cell sorting.

2.14 Immunostaining

Paraffin sections of bone were deparaffmized at 600C for 20min. Then, the 

sections were treated with 100% Xylene for 5min twice, 100% Ethanol for 5min,

95% Ethanol for 5min, 70% Ethanol for 5min, water rinse for lmin, followed by 

antigen retrieval with Citrate buffer at 900C for lOmin. Blocking was done with 

Universal Blocking Reagent (BioGenex). The following antibodies were used: 

Flamingo (Celsr2) antibody (rabbit, 1:25, NLS1943, Novus Biologicals), Frizzled8
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antibody (goat, 1:100, NB100-2439, Novus Biologicals), Osterix antibody (rabbit, 

1:100, ab22552, abeam), NFAT antibody (mouse, 1:100, sc-7294, Santa Cruz), 

biotinylated monoclonal N-cadherin antibody AbD 13077 (against mouse N-cad but 

fused with human-Fc, provided by Dr. Toshio Suda, Keio University), GFP antibody 

(chicken, 1:200, abl3970, abeam), pS552-(3-catenin polyclonal antibody (rabbit, 

1:200, Li lab). Secondary staining was done with donkey anti-rabbit AF546, donkey 

anti-mouse AF546, donkey anti-chicken DL488, donkey streptavidin-DL488, donkey 

streptavidin-AF594 and donkey anti-goat DL649 (Invitrogen). Each dilution was 

1:200. For immunostaining of sorted cells, cells were sorted onto lysine-coated 

slides, fixed with chilled methanol for lOmin followed by blocking and staining with 

primary antibody (Ema et al., 2006). For high-resolution 3D images, the Z-stack 

collected images from LSM 510 VIS Confocal Microscopy (Zeiss) were analyzed 

with Imaris software (Bitplane). For H2B-GFPhi LRC image, H2B-GFP mean 

fluorescence intensity (MFI) was >80,000. The population correlated with H2B- 

GFPhi in flow cytometry.
\

2.15 Isolation of endosteal and central marrow hematopoietic stem 

cells

Central marrow cells were isolated from femur and tibia. For endosteal BM 

cells, the edge of femur and rest of flushed bones were collected and ground, 

followed by digestion with collagenase I (3mg/ml) and dispase II (4mg/ml) at 370C 

for 20 min. in a horizontal shaker (Grassinger et al., 2010).
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Chapter 3. Flamingo regulates non-canonical Wnt 

receptor Frizzled8 distribution in quiescent long-term 

HSCs

In this chapter, I will examine the expression of Flamingo/Celsr2 (Fmi) and 

Frizzled8 (Fz8) in HSC subpopulation. Then, I will test whether and how Fmi 

regulates distribution of Fz8 protein on the surface of HSCs.

Xi He previously reported expression of both Celsr2/Flamingo (Fmi) and 

Frizzled (Fz) 8 in quiescent HSCs (Rhodamine10 or Rhl23loLSK) as detected by 

microarray analysis (Akashi et al., 2003). As these non-canonical Wnt receptors were 

highly expressed in quiescent HSCs, I hypothesized Fmi and Fz8 may regulate HSC 

maintenance. To further confirm Fmi expression in HSCs, I compared its expression 

level in long-term (LT)-HSCs (CD34'Flk2'LSK), short-term (ST)-HSCs 

(CD34+Flk2"LSK), and multipotent progenitors (MPPs) (CD34+Flk2+LSK) (Figure 

3-1A-B) (Yang et al., 2005). qRT-PCR analysis revealed that Fmi mRNA level in 

LT-HSCs was 2-fold and 3-fold higher than in ST-HSCs and MPPs respectively 

(Figure 3-1C).
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Figure 3-1 Expression of Fmi and Fz8 in LT-HSCs, ST-HSCs and MPPs

(A) LT-HSCs, ST-HSCs and MPPs with N-cad+OBs in BM. (B) Gating LT-HSCs (CD34'Flk2'LSK), ST-HSCs 
(CD34+Flk2"LSK), and MPPs (CD34+Flk2+LSK). (C) qRT-PCR analysis of Fm i expression in sorted LT-HSCs, 
ST-HSCs, and MPPs in a setting of triplicates. (Modified from Sugimura et al., Cell 150, 351-365, 2012)

I next examined Fmi and Fz expression in quiescent LT-HSCs that were 

identified using H2B-GFP label-retaining cells (LRCs) (Blanpain et al., 2004; Foudi 

et al., 2008; Tumbar et al., 2004; Wilson et al., 2008). H2B-GFP was expressed 

under the control of Doxycycline (Dox)-inducible SCL-promoter/enhancer -tTA, 

which is specific to hematopoietic stem and progenitor cells (HSPCs) (Koschmieder 

et al., 2005). The mice with SCL- tTA driven H2B-GFP were induced and then 

chased for 120 days by long-term Dox feeding, during which time H2B-GFP 

marking was lost from the majority of cycling HSCs (Figure 3-2A). I excluded H2B- 

GFP background signal derived from non-tTA induced animals (Challen and 

Goodell, 2008; Wilson et al., 2008) and set H2B-GFP gate at the high position (H2B-

hiGFP ) (Figure 3-2B, see Figure 3-2C for unchased positive control).

55



SCL Prom/Enh

X
| tT /^  @ )  TRE @ ) |  Ki2B-GFP

v SCL-tTA: H2B-GFP lH§ ^ pcl

TRE H2B-GFP

+Dox^,Chase 120 days 

TRE |H h2B-GFP

I Quiescent HSC|

100- LT-HSCc
Chased

Unchased

rA

H2B-GFP

H2B-GFP'
(Background control) 

H2B-GFP*
LT-HSC 
H2B-GFP- H2B-GFPM

10 10 10‘ 10

LT-HSC 

H2B-GFP- H2B-GF0N

10 10 10‘ 10 10

Scl-tTA*: H7B-GFP+

LT-HSC 
H2B-GFP- H2B-GF^

22.6%

10° to' to2 103 10"'
H2B-GFP r

Figure 3-2 Labeling quiescent HSCs with H2B-GFP

(A) SCL-tTA: H2B-GFP mouse model. H2B-GFP was expressed under SCL-tTA and chased 120 days 
with Dox to wash out label in cycling cells. (B) Controls for H2B-GFP model. H2B-GFP’ (left panel), Scl- 
tTA': H2B-GFP+ (background control, middle panel) and Scl-tTA+: H2B-GFP+ (sample, right panel). (C) 
Controls for H2B-GFP model. Iso (H2B-GFP*, red), chased (brown), and unchased (blue). (Modified 
from Sugimura et al., Cell 150, 351-365, 2012)

I confirmed that Scl-H2B-GFP 'LSKs enriched LT-HSCs 5-fold and had 

fewer (4.8-fold) MPPs compared to Scl-H2B-GFP'LSKs (Figure 3-3A). I further 

sorted Flk2'LSK HSCs (to exclude MPPs) into H2B-GFP' (active) and H2B-GFPhl 

(quiescent) subpopulations (Figure 3-3B). Consistent with a previous report (Wilson 

et al., 2008), I found that CD34 mRNA had a much higher expression in active HSCs 

than in quiescent HSCs (Figure 3-3C). Fmi expression was 12.5-fold higher in 

quiescent HSCs than in active HSCs (Figure 3-3D). Among Fzs, non-canonical Wnt 

receptor Fz8 showed significantly higher (3-fold) expression in quiescent HSCs than 

in active HSCs (Figure 3-3E-F).
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Figure 3-3 Expression of Fmi and Fzs in quiescent HSC and active HSC

(A) Percentage of LT-HSCs, ST-HSCs and MPPs in H2B-GFP1SK (left) and H2B-GFPhiLSK (right). (B) 
Gating H2B-GFP HSCs (Flk2'LSK). (C-E) qRT-PCR analysis of CD 34 (C), F m i (D), Fzs (E) in H2B-GFP'Flk2' 
LSK and H2B-GFPhlFlk2'LSK. (F) qRT-PCR of Fzs in H2B-GFP‘Flk2'LSK (active HSC) and H2B-GFPhiFlk2’ 
LSK (quiescent HSC). (Modified from Sugimura et al., Cell 150, 351-365, 2012)

To confirm Fmi and Fz8 protein expression in LT-HSCs, I immunostained 

sorted LT-HSCs and found that both Fmi and Fz8 were expressed in LT-HSCs 

(Figure 3-4A). The expression of Fmi and Fz8 protein, as revealed by immunoassay, 

was detected in 18% of H2B-GFP' HSCs compared to 70% of H2B-GFPhl HSCs
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Figure 3-4 Expression of Fmi and Fz8 in HSC subpopulations

(A-B) Immunostaining Fmi and Fz8 in sorted LT-HSCs (A) and H2B-GFP HSCs (B). Endogenous H2B-GFP 
signal diminished by methanol fixation for further immunostaining. (C) Percentage of Fmi and Fz8 
expressed in sorted H2B-GFP HSCs. (D) Fmi and Fz8 immunostaining of CD150+CD34'Flk2-LSK. 
(Modified from Sugimura et al., Cell 150, 351-365, 2012)

58



(Figure 3-4B-C). I also detected the expression of Fmi and Fz8 in CD150+CD34' 

Flk2'LSK HSCs (Figure 3-4D). I used a recently reported hypoxic-related HSC 

marker GRP78 (Miharada et al., 2011) and detected Fmi and Fz8 expression in 

GRP78+CD34‘LSK HSCs as well (Figure 3-5).
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Figure 3-5 Expression of Fmi and Fz8 in HSC subpopulations

qRT-PCR for Fmi and Fz8 comparing GRP78+CD34‘LSK and GRP78-CD34-LSK. (Modified from Sugimura 
et al., Cell 150,351-365,2012)

Fmi has been reported to determine the cellular distribution of Frizzled 

protein (Devenport and Fuchs, 2008; Tissir et al., 2010). I confirmed this by 

overexpressing Fmi and Fz8 fused with fluorescent proteins in 293T cells. I found 

that Fz8 distributed randomly when Fmi was not expressed; however, Fz8 was 

restricted to the site where Fmi was present (Figure 3-6A). To ascertain whether Fz8 

distribution in HSCs was determined by Fmi, I used an in vitro culture system of 

HSCs with OP9, an osteoprogenitor cell line (Mahmood et al., 2011; Nakano et al., 

1994). (Figure 3-6B). Immunostaining showed that Fmi was present at the interface
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Figure 3-6  Fmi reg u la tes  Fz8 localization  in HSC

(A) Fmi re s t r i c t s  Fz8 p r o t e in  d i s t r ib u t io n  in 2 9 3 T  cells.  (B) OP9 o s t e o p r o g e n i t o r  cells e x p r e s s  Fmi, IN- 
cad ,  O s te r ix  a n d  Runx2. (C) I m m u n o s t a in in g  Fmi in s o r t e d  LSK cells (GFP la b e le d )  a n d  OP9 
o s t e o p r o g e n i t o r s .  (D-G) 3 D - im a g e s  o f  Fz8 im m u n o s t a i n i n g  o f  LSK cells o n  OP9. Scale  b a r  is 5 u M .  (H) 
Fmi in OP9 a lso  re s t r i c t s  Fz8 d i s t r ib u t io n  a t  t h e  i n t e r f a c e  b e t w e e n  LSK a n d  OP9, a n d  a f fe c t s  n u c l e a r  
vs. c y to p l a s m ic  loca l iza t ion  o f  NFAT. (I) Fz8 d o e s  n o t  r e s t r i c t  Fmi d i s t r ib u t io n  a t  t h e  i n t e r f a c e  
b e t w e e n  LSK a n d  O P9. (M o d if ie d  f ro m  S u g im u ra  e t  al., Cell 150 ,  3 5 1 -3 6 5 ,  20 1 2 )

between sorted LSK (labeled with GFP) and OP9 cells (Figure 3-6C). When Fmi was 

knocked down, the distribution o f Fz8 protein became random (Figure 3-6D-E). In 

addition, lack o f Fmi in OP9 also resulted in random distribution o f Fz8 in LSK cells 

(Figure 3-6F-H), suggesting that homophilic interaction between two Fmi located in 

adjacent HSC and OP cells functions to restrict Fz8 at the HSC-OP9 interface. In
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contrast, knockdown of Fz8 in LSK did not affect Fmi protein distribution at the 

HSC-OP9 interface (Figure 3-61). These results show that Fmi and Fz8 are both 

expressed in quiescent, long-term HSCs and that Fmi restricts Fz8 distribution at the 

interface between HSCs and osteoprogenitors in vitro.
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Chapter 4. Flamingo and Frizzled8 co-localize 

predominantly at the interface between quiescent LT- 

HSCs and N-cad+OBs in the TBR

In this chapter, I will examine where Fmi and Fz8 co-localized between quiescent 

HSCs and niche components.

I conducted immunostaining of Fmi and Fz8 with H2B-GFPhl label-retaining 

quiescent HSCs and niche reporters with GFP. I next confirmed in vitro observation 

of the Fmi and Fz8 co-localization in vivo. Since HSCs tend to home to the TBR 

(Figure 4-1A-B) rather than the compact bone region (CBR) (Xie et al., 2009), I 

examined the distribution of Fmi-Fz8 co-expressing LT-HSCs in different bone 

regions, including the TBR and the CBR (Figure 4-1B). I sorted LT-HSCs (CD34' 

Flk2'LSK) and immunostained with anti-Fmi and anti-Fz8 antibodies (Figure 4-1C- 

D). I detected a majority (67%) of LT-HSCs derived from the TBR, but only 31% of 

those from the CBR expressed both Fmi and Fz8 (Figure 4-1E).
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Figure 4-1 Distribution of Fmi and Fz8 expressing HSCs in bone

(A) HSC and niche components N-cad+OBs, Nestin+-MSCs, and endothelial cells (CD31+). (B) Femur 
sagittal section showing TBR and CBR, (C-D) Sorted LT-HSCs from TBR (C) and CBR (D) and 
corresponding immunostaining of Fmi and Fz8. (E-F) Percentage of LT-HSCs (E) and H2B-GFPhl LRCs in 
total nuclear cell (TNC) (F) expressing both Fmi and Fz8 from TBR and CBR. (Modified from Sugimura 
et al., Cell 150,351-365, 2012)

63



I next determined the distribution of quiescent LT-HSCs in the sagittal 

section of the femur. I identified quiescent LT-HSCs using the Scl-tTA-induced 

H2B-GFPhi LRCs (H2B-GFPhiLRCs) (Blanpain et al., 2004; Foudi et al., 2008; 

Tumbar et al., 2004; Wilson et al., 2008), and I compared the distribution of 

quiescent LT-HSCs between the TBR and the CBR (Figure 4-1F, 4-2A-B). Flow 

cytometry analysis showed the frequency of quiescent HSCs (H2B-GFPhl LRCs) was 

more than 3-fold higher in the TBR than in the CBR (Figure 4-IF). Immunostaining

Hiconfirmed this observation, revealing H2B-GFP LRCs mainly in the TBR but not in 

the CBR endosteum (Figure 4-2A-B).

I then examined the correlation between the distribution of quiescent LT- 

HSCs (H2B-GFPhlLRCs) and the distribution of niche components known to regulate 

HSCs, including endothelial cells, Nestin+ MSCs, and N-cad+OBs (Kiel et al., 2005; 

Mendez-Ferrer et al., 2010; Wilson et al., 2008; Xie et al., 2009; Zhang et al., 2003a) 

(Figure 4-1A, 4-2D-P). Using a CD31-GFP endothelial reporter (established in our 

lab) and Nestin-GFP reporter (Mignone et al., 2004), I found that CD31-GFP+ 

endothelial cells and Nestin-GFP+ cells were distributed in both TBR and CBR 

without bias (Figure 4-2D-E, 4-2G-H). In contrast, N-cad+OBs were predominantly 

detected in the TBR but rarely in the CBR (Figure 4-2J, L). The anti-N-cad 

monoclonal antibody (AbD13077) was newly generated by Suda’s lab, and its 

specificity was confirmed by loss of N-cad staining in the N-cad knockout mice 

(Figure 4-2K, R). I detected expression of Fmi and Fz8 in N-cad+OBs mainly in the 

TBR endosteum (yellow arrow, compare Figure 4-2J, N to 4-2L, O).

Next I compared the relationship between Fmi and other niche markers 

(Figure 4-2C, F, I, M, P, Q). I found that Fmi expression as shown by
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immunostaining was almost absent in CD31-GFP+ endothelial cells, low in Nestin- 

GFP+ cells (Figure 4-2F, I, Q), and high in N-cad+OBs (Figure 4-2M, Q). Fz8 was 

also expressed in N-cad+OBs (Figure 4-20-P). Notably, I detected Fmi and Fz8 at 

the interface between H2B-GFPhlLRCs and N-cad+OBs in the TBR endosteum 

(Figure 4-2C, P), supporting a role o f Fmi and Fz8 in mediating a niche signal to 

regulate quiescent LT-HSCs.

TBR CBR

Nestin-GFP
Fmi

Nestin-@FP

n=10 im ages

r  Mx1-Cre-: N-cadm Mx1-Cre+: N-cadF"

Figure 4-2 Distribution of quiescent HSCs and niche components

(A-P). Im m unostain ing  o f TBR and CBR w ith  d iffe re n t HSC or niche co m p o n en t m arkers. (A-B) H2B- 
GFP ' LRCs representing  quiescent LT-HSCs. H2B-GFP signal was m easured using m ean fluorescence  
in tensity  (M F I) and M FI o f H2B-GFPhl LRCs was fo u n d  to  be > 8 0 ,0 0 0  (u M 2). (D-E) CD31-GFP as 
en do the lia l rep o rte r. (G -H) Nestin-GFP as MSC rep o rte r. (J-L) N-cad staining, Fmi staining. (N -O ) N- 
cad staining, Fz8 staining. (K) N-cad conditional knockout. Scale bar is 2 0 u M . For en larged im ages (C, 
F, I, M , P), scale bar is 5 u M . (Q) Percentage o f niche com ponents expressing Fmi. Q u an tified  fro m  
m icroscopy im ages. n=10 im ages. (R) N-cad staining fo r  M xl-Cre  :N -caJ  fx and M xl-C re+:N-cadf . 
(M o d ifie d  fro m  Sugim ura et al., Cell 150, 3 5 1 -3 6 5 , 20 1 2 )
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The co-localization of Fmi and Fz8 was observed in H2B-GFPhl LRCs 

attached to the bone surface of TBR (Figure 4-3 A), which was further confirmed by 

consecutive sections revealing this co-localization at the interface between H2B- 

GFPhl LRCs and N-cad+OBs (Figure 4-3B). I took a 4-color 3D high-resolution 

image (Figure 4-3C) to confirm the in vivo co-localization of Fmi (red) and Fz8 

(green) at the interface between H2B-GFPhl LRCs (white nucleus) and N-cad+OBs 

(blue). In addition, I used OP9 assay and observed the co-localization of Fmi and Fz8 

at the interface between sorted H2B-GFPhl Flk2‘LSKs and OP9 cells (Figure 4-3D) 

as well as sorted LT-HSCs and OP9 cells (Figure 4-3E). This co-localization was 

observed neither in H2B-GFP"Flk2'LSKs (Figure 4-3D) nor in ST-HSCs (Figure 4- 

3E). Presumably, this was due to lower expression levels of Fmi and Fz8 in these 

cells. In summary, quiescent LT-HSCs are found more in the TBR than in the CBR. 

Fmi and Fz8 are co-localized at the interface between quiescent LT-HSCs and N- 

cad+OBs.
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Figure 4-3 Co-localization of Fmi and Fz8 in quiescent HSCs

(A) C o- loca l iza t ion  o f  Fmi a n d  Fz8 a t  t h e  in t e r f a c e  b e t w e e n  H2B-GFPhl LRC a n d  e n d o s t e u m  o f  TBR. (B) 
C o- loca l iza t ion  o f  Fmi a n d  Fz8 a t  t h e  in t e r f a c e  b e t w e e n  H2B-GFP LRCs a n d  N -cad +OBs in s u b -  
s e q u e n t i a l  s e c t io n s .  (C) H ig h - re s o lu t io n  3D im a g e s  o f  H2B-GFPhl LRC (w h i te ,  M F I= 1 2 2 ,0 0 9  u M 2), Fmi 
( red) ,  Fz8 (g re e n )  a n d  N-cad (b lue)  in TBR. Co-loca l iza t ion  o f  Fmi a n d  Fz8 a t  t h e  i n t e r f a c e  b e t w e e n  
H2B-GFPhl LRCs a n d  N -cad+OBs (w h i t e  a r ro w ) .  (D) H ig h - re s o lu t io n  3D im a g e  o f  s o r t e d  Flk2‘H2B- 
GFPhlLSK a n d  Flk2’H2B-GFP"LSK o n  OP9 cells.  C o- loca l iza t ion  o f  Fmi a n d  Fz8 a t  t h e  i n t e r f a c e  b e t w e e n  
Flk2"H2B-GFPhlLSK a n d  OP9 cells (ye l low  a r ro w ) .  (E) C o- loca l iza t ion  o f  Fmi a n d  Fz8 a t  t h e  i n t e r f a c e  
b e t w e e n  LT-HSC a n d  O P9 cells,  b u t  n o t  b e t w e e n  ST-HSC a n d  OP9 cells.  (M o d if ie d  f r o m  S u g im u ra  e t  
al., Cell 1 5 0 , 3 5 1 - 3 6 5 ,  20 1 2 )
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Chapter 5. N-cad+OBs and HSCs maintain non- 

canonical Wnt signaling during homeostasis, but are 

attenuated in response to stress

In this chapter, I will analyze which Wnt ligands are produced from each 

niche component using RNA-sequencing technology. Also, I will analyze the 

dynamic change of Wnt ligand expression patterns in the niche following stress.

Fmi and Fz8 have been shown to mediate non-canonical Wnt signaling, 

which in turn suppresses canonical Wnt signaling (Morgan et al., 2003). Apama 

Venkatraman used RNA-sequencing analysis to examine the expression patterns of 

ligands and inhibitors for canonical and non-canonical Wnt signaling in the niche 

components, including CD31+VEGEFR2+ cells (endothelial progenitor cells), 

Nestin-GFP+ MSC-like cells, N-cad+ OBs, and Col2.3-GFP+ mature OBs (Kalajzic et 

al., 2002; Lyden et al., 2001; Mendez-Ferrer et al., 2010; Xie et al., 2009; Zhang et 

al., 2003a) (Figure 5-1A). Expression level was measured by Fragments per Kilobase 

of exon per Million fragments mapped (FPKM) (Trapnell et al., 2010). Expression of 

canonical Wnt ligands overall was either absent or low (3-6 FPKM) in all three niche 

components (Figure 5-1B, Table 5-1). There were expressions of Wnt2b and Wnt7b 

only in N-cad+OBs; Wnt9a in both N-cad+OBs and mature OBs; and WntlOb in 

Nestin-GFP+, N-cad+OBs, and mature OBs (Figure 5-1B). In contrast, expression of 

canonical Wnt inhibitors was much higher (15-168 FPKM) and mainly in Nestin- 

GFP+ cells, N-cad+OBs, and mature OBs, with N-cad+OBs expressing the highest 

levels. For example, expressions of Sfrp4 and Dkk3 were 6 and 5 times higher 

respectively in N-cad+OBs than in Nestin-GFP+ cells. Wifi expression in N-cad+OBs
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was 6.5-fold and 1.6-fold higher than in CD31+VEGEFR2+ and Nestin-GFP+ cells 

respectively (Figure 5-1C). Wifi as a non-canonical Wnt inhibitor was 2- and 5-fold 

higher than DkkS and Sfrp4 respectively in Nestin+ cells, suggesting a favored 

canonical Wnt environment maintained by Nestin+ cells (Hsieh et al., 1999). In 

contrast, Sfrp4, a canonical Wnt inhibitor, was 3-fold higher than Wifi in N-cad+OBs 

(Figure 5-1C), suggesting a dominant non-canonical Wnt signaling in N-cad+OBs.

CD31-GFP

U. 3

I FP

N-cad+OB

rg*"~ ■'
COI2.3-GFP

^  19V 

*
£100

Canonical Wnt ligands DCD31-GFP (VEGFR2+CD45Ter119-) □ N-cad+ OB (CD45 CD31 Ter119-)
■ Nestin-GFP (CD45-CD31 Ter11 &) EMature OB (Col2.3GFP+CD45CD31Ter119-)

Wnt2 Wnt2b Wnt3 Wnt3a Wnt7a Wntfb Wnt8a Wnt8b Wnt9a Wnt9b Wnt 10a WntlObIW
Inhibitors of canonical Wnt

- n .  ,1 I  J n  nl B
Sfrpl Sfrp4 Dlckl Dkk3 Wifi

Non-canonical Wnt ligands

la  illi_n
Vnt4 Wnt5a \Wht1 Wnt4 Wnt5a Wnt5b Wnt6 W ntll Wnt16

Figure 5-1 RNA-sequencing of niche com ponents for Wnt genes

(A) BM section with CD31-GFP (green), Nestin-GFP (green), N-cad+OBs (green), and Co!2.3-GFP 
(green) respectively. We used FACS to sort these cells [CD31-GFP+ (VEGFR2+CD45’T e rll9 ‘) cells, 
Nestin-GFP (CD45‘CD31'Terll9') cells, N-cad+OBs (CD45'CD31'Terll9') and mature OBs Col2.3-GFP 
(CD45’CD31’Terll9 ').] and analyzed with RNA-sequencing. (B-D) RNA-sequencing analysis of niche 
components for canonical Wnts (B), canonical Wnt inhibitors (C), and non-canonical Wnts (D). 
Expression level was shown by FPKM (Fragments per Kilobase of exon per Million fragments 
mapped). CD45: hematopoietic cell marker, CD31: endothelial cell marker, T e rll9 : red blood cell 
marker (Modified from Sugimura et al., Cell 150, 351-365, 2012)
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Table 5-1 RNA-sequencing FPKM value of niche components

Canonical W nt ligands in niche com ponents

CD31-GFP
(VEGFR2+)

Nestin-GFP
(CD31-)

N-cad+OB Total OB

Wnt2 0.09 0.11 0 0.13
Wnt2b 0.41 0.4 3.39 0.84
Wnt3 0 0 0 0
Wnt3a 0 0 0 0
Wnt7a 0 0 0 0
Wnt7b 0 0.76 3.62 1.08
Wnt8a 0 0.03 0 0.14
Wnt8b 0 0.03 0 0
Wnt9a 0.82 0.98 4.68 2.59
Wnt9b 0.34 0 0 0
Wnt10a 0 0.11 0.28 0
Wnt10b 0.24 2.77 4 5.79

Non-canonical Wnt ligands in niche components

CD31-GFP
(VEGFR2+)

Nestin-GFP
(CD31-)

N-cad+OB Total OB

Wnt1 0.03 0.03 0.09 0.05
Wnt4 0.59 12.7 4.29 16.6
Wnt5a 0.43 7.4 13.8 6.6
Wnt5b 4.31 41.4 18.8 17.4
Wnt6 0 0.09 3.22 0.13
Wnt11 0.53 37 9.76 27.1
Wnt16 0.07 1.17 10.7 8.64

Canonical Wnt inhibitors in niche components

CD31-GFP
(VEGFR2+)

Nestin-GFP
(CD31-)

N-cad+OB Total OB

Sfrpl 1.02 2.73 8.58 4.07
Sfrp4 5.27 26.3 168 79.1
Dkk1 0.05 0.51 0.92 0.51
Dkk3 1.25 10 54.6 25.7
Wifi 14.6 56.4 98 62.6

In summary, canonical Wnt ligands were generally expressed at low levels, 

and their activity was most likely suppressed by very high levels of inhibitors (Figure 

5-1B-C). Non-canonical Wnt ligands overall were expressed at comparable levels in 

Nestin-GFP+ cells, mature OBs, and N-cad+OBs, except for Wnt6 and Wntl6 which 

were predominantly expressed in N-cad+OBs (Figure 5-ID). CD31+VEGEFR2+
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endothelial cells expressed low level Wnt5b (Figure 5-ID). These observations 

suggest that the N-cad+OB niche provides a microenvironment in which canonical 

Wnt signaling is suppressed and non-canonical Wnt signaling is predominant in 

homeostasis.

N-cad+OBs in the TBR have been implicated in maintaining quiescent HSCs 

as evidenced by their physical location adjacent to BrdU+ LRCs, H2B-GFPhl LRCs, 

and transplanted HSCs (Arai et al., 2004; Wilson et al., 2008; Xie et al., 2009; Zhang 

et al., 2003a). During stress, however, quiescent HSCs can be activated and undergo 

expansion. For example, expansion of N-cad+OBs precedes the activation and 

subsequent expansion of HSCs (Dominici et al., 2009) (Figure 5-2A-B). I therefore 

compared the change in expression levels of canonical and non-canonical Wnt 

ligands and inhibitors in N-cad+OBs under 5FU-induced BM (BM) stress. Four days 

post 5FU treatment, I found that N-cad+OBs were resistant to 5FU treatment and 

subsequently expanded (more than 5-fold increase in both frequency and number in 

bone) (Figure 5-2C-E). In contrast, N-cad'OBs were sensitive to 5FU treatment and 

significantly declined -7-fold post treatment (Figure 5-2C). This result suggests that 

N-cad+OBs are normally in a quiescent state and thereby resistant to 5FU treatment.
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Figure 5-2 Changes in N-cad*OBs post 5FU

(A-B) Immunostaining of TBR with N-cad (green), OB marker Osterix (Osx) (red) and DAPI (blue) in 
control (A) and 4 days post 5FU treatment (B). Scale bar is 20uM. (C) Flow cytometric analysis of the 
change in percentage of N-cad+ OBs in total OBs without or with 5FU treatment. The cells were gated 
from Col2.3GFP+CD45'CD3rTerll9‘ OBs. (D-E) Frequency (D) and number (E) of N-cad+OBs in bone 
cells post 5FU. (F-H) qRT-PCR for non-canonical Wnts (F), inhibitors of canonical Wnt (G) and 
canonical Wnts (H) among N-cad+OBs and N-cad’OBs with or without 5FU. (Modified from Sugimura 
et al., Cell 150,351-365, 2012)

The correlation between an increase in N-cad+OBs (Figure 5-2C-E) and 

activation and expansion of HSCs (Dominici et al., 2009) post 5FU treatment 

suggested that 5FU could also induce dynamic changes in the expression of Wnt 

ligands in N-cad+OBs. To test this idea, I sorted N-cad+OBs and N-cad"OBs with or 

without 5FU treatment and examined the expression of Wnt ligands and inhibitors 

using qRT-PCR (Figure 5-2F-H). I found that non-canonical ligands Wnt 11 and 

Wnt 16, as well as canonical Wnt inhibitors Dkkl and Sfrp4, were diminished (Figure 

5-2F-G, 5-3). However, canonical Wnt7b increased 6-fold post 5FU treatment 

(Figure 5-2H). These observations show that 5FU treatment leads to a decline of 

non-canonical Wnt signals but an increase in canonical Wnt signaling via 

upregulation of canonical Wnts and downregulation of inhibitors.
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qRT-PCR of N-cad, non-canonical Wnt ligands, canonical Wnt inhibitors, and canonical Wnt ligands in 
N-cad+OBs, N-cad'OBs with or without 5FU. (Modified from Sugimura et al., Cell 150, 351-365, 2012)

Next, I investigated the impact of 5FU on Fmi and Fz8 in HSCs. I isolated 

LT-HSCs (CD34'Flk2'LSK) from TBR and CBR (Figure 5-4A) and used
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immunostaining to compare the co-localization of Fmi and Fz8 before and after 5FU 

treatment (Figure 5-4C). Observing Fmi and Fz8 co-localization post 5FU by high- 

resolution 3D image (Figure 5-4B), I found an ~8-fold decline in Fmi-Fz8 co

localization in LT-HSCs from TBR and a 2-fold decline of that in CBR (Figure 5- 

4D). This observation was explained by the reduction of both Fmi and Fz8 mRNA in 

LT-HSCs post 5FU. In addition, Fz8 protein (Figure 5-4G-H) and mRNA (Figure 5- 

41) were reduced by 50%, and Fmi mRNA was increased by 20% in N-cad+OBs post 

5FU (Figure 5-41). The data indicate that non-canonical Wnt receptors Fmi and Fz8 

are reduced in LT-HSCs post 5FU treatment.
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Figure 5-4 5FU-induced change of Fmi and Fz8 expression in HSC and niche

(A) Isolation of LT-HSCs from TBR and CBR. TBR was removed first, then BM was flushed. (B) 3D con- 
focal image of Fmi and Fz8 co-localization in LT-HSCs. (C) Representative flow panels and image of 
Fmi and Fz8 co-staining of LT-HSCs from TBR (upper left), central marrow of CBR (lower left), TBR 4 
days post 5FU treatment (upper right), and central marrow of CBR 4 days post 5FU (lower right); Fmi 
(red), Fz8 (green), and DAPI (blue). (D) Percentage of Fmi and Fz8 co-localization in LT-HSCs from TBR 
(white), central marrow of CBR (black), TBR 4 days post 5FU treatment (smaller dots), and central 
marrow of CBR 4 days post 5FU (larger dots). n=18, 22, 45, 36 cells. (E-F) Fmi expression level (E) and 
Fz8 expression level (F) in LT-HSCs 4 days post 5FU. (G-H). Fmi and Fz8 immunostaining of TBR in 
control (G) and 4 days post 5FU (H). (I) qRT-PCR for Fmi and Fz8 in N-cad+OB post 5FU. (Modified 
from Sugimura et al., Cell 150, 351-365, 2012)
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Next, I asked whether 5FU induced a reduction of non-canonical Wnt 

signaling and subsequent upregulation of canonical Wnt signaling in LT-HSCs 

(Figure 5-5A). As the Ca2+-NFAT pathway is one of the major molecular 

downstream events of non-canonical Wnt signaling in adult tissue (Dejmek et al., 

2006; Gregory et al., 2010), I measured intracellular Ca2+ level by Fluo-3 (Minta et 

al., 1989). LT-HSCs post 5FU treatment showed a 2.5-fold increase of intracellular 

Ca2+ level (Figure 5-5B) and an 8-fold increase ofNFATcl nuclear translocation 

(Figure 5-5C). The downstream target genes of NFAT, IFNy and Cox2, were 

upregulated 6- and 2-fold respectively in LT-HSCs post 5FU treatment (Figure 5- 

5D). I also examined IFNy expression in cytotoxic T cells and regulatory T cells 

(Treg cells) that were recently reported to be a niche component (Treg, CD4+CD25+) 

(Fujisaki et al., 2011) (Figure 5-5E). Notably, IFNy expression was upregulated in 

Treg cells but not in cytotoxic T cells (Figure 5-5E), indicating sources of IFNy 

include both autocrine from HSCs as well as paracrine from surrounding Treg cells.

To measure canonical Wnt signaling in LT-HSCs post 5FU treatment, I 

immunostained the sorted LT-HSCs with p-catenin-pS552, which was 

phosphorylated by phosphor-Akt (pAKT) and became an active form in nucleus (He 

et al., 2007). pAkt staining was observed in more than 70% of LT-HSCs post 5FU 

treatment but in only 10% of control LT-HSCs (Figure 5-5F). p-catenin-pS552 was 

detected in more than 50% of LT-HSCs post 5FU treatment and in 20% of control 

LT-HSCs (Figure 5-5G). This observation was confirmed by TOP-Gal staining 

which showed more than a 2.5-fold increase of signal intensity in LT-HSCs post 5FU 

treatment (Figure 5-5H). Furthermore, canonical Wnt target Axin2 (Luis et al., 2011) 

increased 8-fold in LT-HSCs post 5FU treatment (Figure 5-51). These observations
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indicate that 5FU induces a decline of non-canonical Wnt signaling (Figure 5-5B-D)

and an increase of canonical Wnt signaling (Figure 5-5F-I) in LT-HSCs.

LT-HSC, 
5FU/Control

Ctrl 5FU 
2 independent exp.

I  cm pS552 p-cat & TOPGAL |  1° T
£  S  | !L x103 , *** £ 1

III I i l l  r  I, !l:lnl ti'inl I„J
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n=21 n=30 cells n=61 n=32 cells n=3

Figure 5-5 5FU-induced change of canonical and non-canonical Wnt signaling in HSC

(A) Non-canonical Wnt signaling (Ca2+-NFAT pathway) and canonical Wnt signaling (P-catenin-TCF- 
Axin2). Non-canonical Wnt receptors Fmi and Fz8 were declined post 5FU. (B) Intracellular Ca2+ level 
in LT-HSCs post 5FU. 2 independent experiments. Comparison of protein and mRNA levels between 
control and 5FU treated samples (C) NFAT staining of LT-HSCs (D) qRT-PCR analysis of NFAT targets, 
IFNy and Cox2 in LT-HSCs. Reactions were triplicated. (E) qRT-PCR for IFNy in T cells and Treg 
(CD4+CD25+). (F) Immunostaining of pAkt in LT-HSCs post 5FU. White arrow indicates dividing LT- 
HSCs post 5FU. (G) p-catenin-pS552 staining of LT-HSCs. (H) TOP-GAL staining of LT-HSCs. (I) qRT-PCR 
analysis of A xin2  in LT-HSCs. (Modified from Sugimura et al., Cell 150, 351-365, 2012)
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Chapter 6. Flamingo maintains quiescent long-term 

HSCs in vivo

In this chapter, I will analyze the functional role of Fmi in HSC maintenance 

in vivo. I used the mouse model of Fmi gene conventional knockout.

Since Fmi-Fz8 co-localization is enriched in quiescent HSCs and in the niche 

that expresses non-canonical Wnt ligands, I hypothesized that Fmi may have a role in 

maintaining HSC quiescence. My preliminary results of knockdown of Fmi led to a 

reduction in LT-HSCs but an increase in ST-HSCs and MPPs, and functionally 

resulted in more than a 50-60% decrease of engraftment in repopulation assay 

(Figure 6-1 A). To confirm this, I used Fmi/Celsr2 conventional knockout mouse 

model. The gender and age (>40 days old) of mice were matched for the analysis 

(Figure 6-1B). The frequency of LT-HSCs decreased 60% (Figure 6-1B). In addition, 

the number of LT-HSCs decreased 80%, and the numbers of ST-HSCs and MPPs 

declined as well in the FmTu mice (Figure 6-1C). The results from both knockdown 

and knockout suggest loss of LT-HSC function followed by consequent loss of ST- 

HSCs and MPPs, which correlates with predominant expression of Fmi in quiescent 

LT-HSCs. I used a hypoxic-related HSC marker GRP78 to stain LT-HSCs and 

observed a decline in GRP78+ population from 31.3 ± 0.3% (control) to 11.8 ± 1.1%

(FmfA) (Figure 6-1D-E). In line with this finding, I observed an increase of 

mitochondrial activity in FmfA LT-HSCs (Figure 6-1F). All these suggested an 

increase in HSC activity when Fmi was lost. I therefore performed a cell cycle 

analysis and found that within Flk2'LSK HSCs, the percentage of quiescent (GO) 

cells declined from 23 ± 0.71% (control) to 15 ± 1.1% (FmfA) (Figure 6-1G-H).
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Figure 6-1 Analysis of primary Fmry' mice

(A) Transplantation of Fmi knockdown over 16 weeks. N=10 mice. 3 independent experiments. (B-C) 
Analyses of conventional Fmi knockout mice. Frequency (B) and number (C) of HSCs in TBR. (D) 
GRP78 analysis of LT-HSCs comparing F m r  mice and W t. Wt=2, KO=2 mice, 2 independent 
experiments. (E) Percentage of GRP78+ and GRP78’ LT-HSCs. (F) Mitochondrial activity assay 
comparing F m r  mice and W t. (G) Cell-cycle analysis of Flk2‘LSK comparing F m r  mice and W t. Wt=2, 
KO=4 mice. 2 independent experiments. (Modified from Sugimura et al., Cell 150, 351-365, 2012)

Next, I transplanted 100 LSK (alive) enriched with HSPCs (CD45.2) with 

rescue 2x105 BM (CD45.1) into lethally irradiated recipient mice (CD45.1) (Figure

6-2 A). Homing efficiency analysis of the recipient mice 16 hours posttransplantation 

confirmed that knockout of Fmi did not affect HSPC homing to BM and spleen 

(Figure 6-2B). After 16 weeks, Fmi knockout reduced 80% of the hematopoietic 

reconstitution from donor-derived HSCs (Figure 6-2A). The analyses of recipients
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showed an 80% decrease of donor-derived LT-HSCs and a 70% decrease of donor-

derived ST-HSCs in frequency and number (Figure 6-2C-D). In addition, the loss of 

HSCs was not due to apoptosis, since knockout did not increase 

AnnexinV+SytoxGreen+ LT-HSCs (Figure 6-2E).
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Figure 6-2 Transplantation analysis of F/nf7' mice

(A) Chimerism analysis of transplantation: 100 LSK (CD45.2) + 2x10s BM (CD45.1). Recipients were 
lethally irradiated (CD45.1). The repopulation was analyzed 16 weeks post injection. (B) Homing 
analysis of live CFDA+HSPC (7AAD'CFDA+LSK) comparing F m i1' mice and W t. Wt=5, KO=5 mice. (C-D) 
Frequency (C) and number (D) of donor-HSCs 17 weeks post transplantation. (E) Apoptosis assay 
with SytoxGreen and AnnexinV staining of LT-HSCs comparing F m r  mice and Wt. Wt=2, KO=2 mice. 
(Modified from Sugimura et al., Cell 150, 351-365, 2012)

I next asked whether H2B-GFPhl LRCs (quiescent HSCs) were affected by 

Fmi knockout. H2B-GFPhl LRCs were predominantly observed in TBR in Wt, but

less so in Fmi ' (Figure 6-3A-B, D-E). The H2B-GFP signal intensity was
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significantly reduced in FmTA LT-HSCs, suggesting that label retention was lost due 

to decrease of quiescence in HSCs (Figure 6-3G). The frequency of H2B-GFPhl 

LRCs in FmiA was decreased 8-fold in TBR and 10-fold in CBR (Figure 6-3H). 

Within TBR in Wt control, 65% of H2B-GFPhl LRCs were in direct contact with N- 

cad+OBs, which was reduced 20% in FmfA (Figure 6-31). The localization of Fz8 

protein was observed at the interface between H2B-GFPhl LRCs and N-cad+OBs in 

Wt (Figure 6-3C); however, its distribution became random in remaining FmiA H2B- 

GFPhl LRCs (Figure 6-3F). These observations provide further evidence to support 

the conclusion that Fmi facilitates the maintenance of quiescent LT-HSCs in vivo.
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Figure 6-3 Label retention of FmrA HSC

(A-F) Immunostaining of Fz8, N-cad, and H2B-GFPhl LRC in TBR and CBR from Scl-H2B-GFP (A-C) and 
F m i'': Scl-H2B-GFP (D-F) mice. Scale bar is 20uM (A-B, D-E) or 5uM (C, F). High-resolution 3D image 
of localization of Fz8 (red arrow) in H2B-GFP ' LRC (C, F). (G) Flow cytometric analysis of H2B-GFP 
signal in LT-HSCs from W t and F m r .  (H) H2B-GFP ' LRC distribution in TBR and CBR from W t and Fmi" 
\  Wt=2, KO=2 mice. (I) Frequency of H2B-GFPhl LRCs directly contacting with N-cad+OBs in TBR from 

W t or F m r mice. (Modified from Sugimura et al., Cell 150, 351-365, 2012)
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Chapter 7. Frizzled8 maintains quiescent long-term 

HSCs in vivo

In this chapter, I will analyze the functional role of Fz8 in HSC maintenance 

in vivo, using the conventional Fz8 knockout mouse model.

Since subcellular distribution of Fz8 is regulated by Fmi in quiescent LT- 

HSCs (H2B-GFPhlFlk2‘LSK), I examined the functional role of Fz8 in HSCs using 

Fz8 conventional knockout mouse model. The gender and age (>40 days old) of mice 

were matched for the analyses (Figure 7-1A). The frequency of LT-HSCs decreased 

40%. In addition, the number of LT-HSCs decreased 50%, and the numbers of ST- 

HSCs and MPPs declined as well in the Fz8'A mice (Figure 7-IB). The results from 

Fz8 knockout suggest loss of LT-HSCs followed by subsequent loss of ST-HSCs and 

MPPs, which correlates with predominant expression of Fz8 in quiescent LT-HSCs. I 

performed a cell cycle analysis and found that within Flk2'LSK HSCs, the 

percentage of quiescent (GO) cells declined from 22 ± 2.9% (control) to 16 ± 1.9% 

(Fz8'a) (Figure 7-1C-D).
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Next, I transplanted 100 LSK (alive) enriched with HSPCs (CD45.2) with 

rescue 2x105 BM (CD45.1) into lethally irradiated recipient mice (CD45.1) (Figure

7-2 A). Homing efficiency analysis of the recipient mice 16 hours posttransplantation 

confirmed that knockout of Fz8 did not affect HSPC homing to BM and spleen 

(Figure 7-2B). After 16 weeks, the Fz8'A group reduced 70% of the hematopoietic 

reconstitution from donor-derived HSCs (Figure 7-2A). The analyses of recipients 

showed a 70% decrease of donor-derived LT-HSCs and a 70% decrease of donor- 

derived ST-HSCs in frequency and number (Figure 7-2C-D). In addition, the loss of
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HSCs was not due to apoptosis, since Fz8 knockout did not increase 

AnnexinV+SytoxGreen+ LT-HSCs (Figure 7-2E).
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Figure 7-2 Transplantation analysis of FzS'7' mice

(A) Chimerism analysis of transplantation: 100 LSK (CD45.2) + 2x10s BM (CD45.1). Recipients were 
lethally irradiated (CD45.1). The repopulation was analyzed 16 weeks post injection. (B) Homing 
analysis of live CFDA+HSPC (7AAD‘CFDA+LSK) comparing Fz8 mice and W t. Wt=5, KO=5 mice. (C-D) 
Analyses of recipient mice 20 weeks post transplantation. Frequency (C) and number (D) of donor- 
HSC. (E) Apoptosis assay with SytoxGreen and AnnexinV staining of LT-HSCs comparing F m r  mice 
and W t. Wt=2, KO=2 mice. (Modified from Sugimura et al., Cell 150, 351-365, 2012)

I next asked whether H2B-GFPhl LRCs (quiescent HSCs) were affected by 

Fz8 knockout. H2B-GFPhl LRCs were predominantly observed in TBR in Wt, but 

less so in Fz8v~ (Figure 7-3A-B, D-E). The H2B-GFP signal intensity was 

significantly reduced in Fz8'A LT-HSCs, suggesting that label retention was lost due 

to decrease in HSC quiescence (Figure 7-3G). The frequency of H2B-GFPhl LRCs in
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Fz8'A was decreased 6-fold in TBR and 8-fold in CBR (Figure 7-3H). Within TBR in 

Wt, 63% of H2B-GFPhl LRCs were in direct contact with N-cad+OBs, which was 

reduced 10% in Fz8'A mice (Figure 7-31). The localization of Fmi protein was not 

affected in Fz8'A LRCs (Figure 7-3 C, F), further supporting that the function of Fmi 

is to determine Fz8 distribution, but Fmi distribution is not affected by Fz8. Taken 

together, these observations indicate that Fz8 plays a critical role in the maintenance 

of quiescent LT-HSCs in vivo.
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Figure 7-3 Label retention of Fz8v' HSC

(A-F) Immunostaining of Fmi, N-cad, and H2B-GFPhl LRC in TBR and CBR from W t: Scl-H2B-GFP  (A-C) 
and Fz8 : Scl-H2B-GFP (D-F). Scale bar is 20uM f.A-B, D-E) or 5uM (C, F). High-resolution 3D image of 
Fmi protein localization (red arrow) in H2B-GFP ' LRC (C, F). (G) Flow cytometric analysis of H2B-GFP 
signal in LT-HSCs from W t and F z8 . (H) H2B-GFP ' LRC distribution in TBR and CBR from W t and Fz8~ 
. Wt=2, KO=3 mice. (I) Frequency of H2B-GFP 1 LRCs directly contacting with N-cad+OBs in TBR of W t  

and Fz8 . (Modified from Sugimura et al., Cell 150, 351-365, 2012)
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Chapter 8. Frizzled8 maintains quiescent HSCs by 

suppressing NFAT-induced IFNy expression and 

antagonizing canonical Wnt signaling

In this chapter, I will analyze the downstream molecular events of non- 

canonical Wnt signaling mediated by Fz8 in HSCs.

I investigated the underlying molecular mechanism by which Fmi and Fz8- 

mediated non-canonical Wnt signaling maintains quiescent LT-HSCs. Non-canonical 

Wnt5a ligand stimulates the Ca -NFAT signals in embryonic cells (Huang et al.,

2011; Saneyoshi et al., 2002) but downregulates the Ca2+-NFAT signals in adult cells 

(Dejmek et al., 2006). It is also known that non-canonical Wnt5a suppresses 

canonical Wnt activity (Nemeth et al., 2007) (Figure 8-1 A). To examine the function 

of non-canonical Wnt signaling in HSCs in this context, I observed that the 

intracellular Ca2+ level, as measured using a Ca2+ reporter (see Experimental 

Procedure), increased 2-fold in the Fz8'A LT-HSCs (Figure 8-1B, D-E). Canonical 

Wnt target gene Axin2 was upregulated 6 times more in active HSCs (Flk2‘H2B- 

GFP'LSK cells) than in quiescent HSCs (H2B-GFPhi Flk2'LSK cells) (Figure 8-1C). 

These observations indicate that non-canonical Wnt signaling mediated by Fz8 

suppresses the Ca -NFAT pathway as well as canonical Wnt signaling in HSCs.
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Figure 8-1 Canonical and non-canonical Wnt signaling in HSC

(A) Ca2+-NFAT pathway and (3-catenin pathway regulated by non-canonical Wnt signaling. (B) 
Intracellular Ca + level in LT-HSCs in W t and Fz8 . 2 independent experiments. (C) qRT-PCR analysis 
of A xin 2  in quiescent HSCs (Flk2'H2B-GFP LSK LRCs) and active HSCs (Flk2'H2B-GFP'LSK). (D) Fluo-3 
intracellular Ca2+ analysis of LT-HSCs comparing Fz8 and W t. (E) Positive control of Fluo-3 analysis 
with lonomycin in LT-HSCs (Omin, lm in and lOmin post lonomycin). (Modified from Sugimura et al., 
Cell 150, 351-365, 2012)

To confirm this, I observed in quiescent Fmi+Fz8+ HSCs (H2B-GFPhl Flk2‘ 

LSK) that NFATcl (shown to be highly expressed in LT-HSCs by RNA-seq) was 

mainly localized in the cytoplasm (Figure 8-2A, left panel). In contrast, however, in 

active Fmi'Fz8'HSCs (H2BGFP' Flk2'LSK), NFATcl was accumulated in the 

nucleus (Figure 8-2A, right panel). Statistically, only 4.3% of quiescent HSCs 

exhibited nuclear localized NFATcl versus 87.7% of active HSCs (Figure 8-2B).
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This observation indicates a correlation between cytoplasmic versus nuclear 

localization of NFAT and the quiescent versus active state of HSCs.

I further tested whether Fmi and Fz8 regulate NFAT protein localization in 

HSCs using knockdown analysis. In the scramble control, NFAT was mainly 

localized in the cytoplasm of infected LSK cells. In contrast, when either Fmi or Fz8 

was knocked down, more than 80% of LSK cells showed nuclear accumulation of 

NFAT (Figure 8-2C-D). In addition, Fmi knockdown in OP9 cells induced NFAT 

nuclear translocation in LSKs that were co-cultured with OP9, suggesting that 

homophilic interaction of Fmi in adjacent cells regulates NFAT nuclear 

translocation.
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Figure 8-2 NFAT nuclear translocation in HSC

(A) Fmi, Fz8, and NFAT staining in sorted quiescent HSCs (Flk2'H2B-GFPhlLSK LRCs) and active HSCs 
(Flk2‘H2B-GFP‘LSK); NFAT (red), Fmi (white), Fz8 (green), and DAPI (blue). Scale bar is 5uM. (B) 
Percentage of HSCs with NFAT nuclear translocation. (C) Fmi-, Fz8- knockdown LSK cells stained with 
NFAT; NFAT (red), and DAPI (blue). (D) Percentage of cells with NFAT nuclear translocation. 
(Modified from Sugimura et al., Cell 150, 351-365, 2012)

I then forced expression of a constitutive active (or nuclear localized) form of

NFAT (CA-NFAT) (Monticelli and Rao, 2002) (Figure 8-3A) to test whether NFAT

activates HSCs. Cell-cycle analysis of LSKs expressing CA-NFAT showed a

decrease of quiescent HSCs and a substantial increase of cycling HSCs (Figure 8-3B-

C), indicating that NFAT promotes HSC activation. I further confirmed this

observation by showing that NFAT inhibitor could rescue the phenotype of a

reduction in the GO-phase Flk2'LSK HSCs (compare Figure 8-3B to 8-3D).
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Figure 8-3 NFAT regulates HSC activation

(A) Immunostaining of NFAT with CA-NFAT and vector control transfected cells. (B-C) DNA content 
(DAPI) versus Ki67 staining of GFP+LSK cells. Representative flow panels. Percentage of cells with GO, 
G l, and S/G2/M phases; vector control (white), and CA-NFAT (black). (D) Percentage of quiescent 
(GO phase) Flk2'LSK comparing W t and Fz8 with or without NFAT inhibitor (NFATi). (Modified from 
Sugimura et al., Cell 150, 351-365, 2012)

To further specify the downstream target genes of NFAT, I examined the 

genes involved in maintaining HSC quiescence, such as p57, Ren and Txnip (Jeong 

et al., 2009; Yilmaz et al., 2006b; Yoshihara et al., 2007; Zhang et al., 2006; Zou et 

al., 2011). I showed that these genes were overall downregulated to varying degrees 

in Fmi or Fz8 knockdown HSCs (Figure 8-4A).

Using qRT-PCR analysis of NFAT target genes, I found a 4-fold increase of 

IFNy expression and a 1.8-fold increase of Cox2 in FmfA LT-HSCs respectively 

(Figure 8-4B). I further observed a 3-fold increase of IFNy expression in Fz8'A LT- 

HSCs (Figure 8-4C), which is consistent with the observation that forced expression 

of CA-NFAT increased IFNy by 2-fold in HSCs (Figure 8-4D). This upregulation of 

IFNy expression could not be rescued by non-canonical Wnt5a ligand (Figure 8-4E), 

but could be rescued by NFAT inhibitor (Figure 8-4F). The results support that non- 

canonical Wnt5a-Fz8 signaling has a role in suppressing the NFAT-IFNy pathway.

To examine the antagonization between canonical and non-canonical Wnt 

signaling, I conducted an in vitro culture experiment. Non-canonical Wnts
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downregulated, whereas canonical Wnts upregulated IFNy expression, and the latter 

showed a synergistic effect with Fz8'f' LT-HSCs (Figure 8-4G). All these results 

support an antagonization between canonical and non-canonical Wnt signaling to 

regulate downstream IFNy expression.
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Figure 8-4 NFAT target genes in HSC

(A) qRT-PCR analysis of quiescence-related genes; scramble (white), Fmi-shRNA (gray), and Fz8- 
shRNA (black). Reactions were triplicated (hereafter). (B) qRT-PCR analysis of NFAT-target genes, 
IFNy and Cox2 in LT-HSCs comparing W t and F m r .  (C) qRT-PCR of IFNy in LT-HSCs comparing W t and 
Fz8'f\  (D) qRT-PCR for IFNy of CA-NFAT infected HSCs. (E) qRT-PCR analysis of IFNy in LT-HSCs 
cultured with Wnt5a. (F) qRT-PCR analysis of IFNy in LT-HSCs comparing W t and Fz8 with or without 
NFAT inhibitor (NFATi). (G) qRT-PCR analysis of IFNy in LT-HSCs cultured with Wnt ligands. (Modified 
from Sugimura et al., Cell 150, 351-365, 2012)

Mechanistically, non-canonical Wnt ligands suppress the Ca2+-NFAT-IFNy 

pathway. In contrast, canonical Wnt ligands and Fz8'A promote NFAT nuclear 

translocation (Figure 8-5A, E-G, Figure 8-6A). I also examined the downstream 

event of canonical Wnt signaling using immunostaining of active p-catenin (P-cat- 

pS552) (He et al., 2007), TOP-Gal staining, Axin2-d2EGFP reporter, and canonical 

Wnt target Axin2 expression. I confirmed that canonical Wnts, loss of Fz8 or Fmi, all
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increased nuclear-localized P-catenin-pS552, TOP-Gal staining, Axin2-d2EGFP 

level, in LT-HSCs (Figure 8-5B-D, Figure 8-6B-E). Taken together, all these 

observations indicate that non-canonical Wnt signaling via Fmi-Fz8 blocks the Ca 

NFAT-IFNy pathway and canonical Wnt signaling.
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Figure 8-5 Analysis of canonical and non-canonical Wnt signaling in HSC

(A) NFAT immunostaining of LT-HSCs cultured with Wnt ligands. Percentage of NFAT nuclear 
translocation. n=28, 31, 36, 40 cells. (B) |3-catenin-pS552 staining of LT-HSCs cultured with Wnt 
ligands. Percentage of HSCs with |3-catenin-pS552 in nucleus. (C) 3-catenin-pS552 staining of LT-HSCs 
from F m r and W t. Percentage of HSCs with 3-catenin-pS552 in nucleus. (D) TOP-GAL and Axin2- 
d2EGFP staining in LT-HSCs cultured with Wnt ligands or F m r .  n=24, 21, 27,15, 38, 55 cells. (E) NFAT 
and 3-catenin-pS552 staining of LT-HSCs cultured with Wnt ligands. Green arrows indicate cells with 
nuclear-localized |3-catenin-pS552. (F) NFAT and |3-catenin-pS552 staining of LT-HSCs from F zS f' and 
Wt. Green arrow indicates a cell with nuclear-localized |3-catenin-pS552. (G) |3-catenin-pS552 staining 
of LT-HSCs from F m r and Wt mice. (Modified from Sugimura et al., Cell 150, 351-365, 2012)
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Figure 8-6 Analysis of canonical and non-canonical Wnt signaling in HSC (continued)

(A) Fluo-3 intracellular Ca2+ analysis of LT-HSCs cultured with Wnt ligands. (B-C) TOPGal staining (B) 
and Axin2-d2EGFP reporter analysis (C) of LT-HSCs cultured with Wnt ligands. n=24, 21, 27,15 cells. 
(D) qRT-PCR for Axin2 in Fm/ and Fz8 compared to Wt. (E) d2EGFP reporter staining for Wt and 
F m f LT-HSCs. (Modified from Sugimura et al., Cell 150, 351-365, 2012)
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Chapter 9. General Discussion

In this work, I observed that a protein complex of Fmi and Fz8 co-localized 

in quiescent LT-HSCs that are predominantly located in TBR. Functionally, Fmi- 

and Fz8-mediated non-canonical Wnt signaling plays a critical role in maintaining 

quiescent LT-HSCs. Mechanistically, this non-canonical Wnt signaling suppresses 

HSC activation, in part through inhibiting the NFAT-IFNy pathway, and in part 

through antagonizing canonical Wnt signaling during homeostasis. In response to 

stress, however, there is a decline of non-canonical Wnt signaling, accompanied by 

an increase of canonical Wnt signaling and activation of HSCs. Thus I provide strong 

evidence to distinguish the roles of non-canonical and canonical Wnt signaling in 

maintaining quiescent HSCs and in activating HSCs respectively.

9.1 Flamingo-Frizzled8-mediated non-canonical Wnt signaling, 

predominantly in the N-cad+OB niche, is critical for 

maintaining quiescent long-term HSCs 

I found a correlation between the expression of Fmi and Fz8 in quiescent LT- 

HSCs and their function in maintaining these HSCs. The remaining question was at 

which niche component did Fmi and Fz8 primarily function. Multiple HSC niche 

components have been reported to date, including OBs (particularly N-cad+OBs), 

endothelial cells, Nestin-GFP+ MSC-like cells, bipotential CAR (CXCL12 abundant 

reticular) cells, and Schwann cells (Calvi et al., 2003; Kiel et al., 2005; Mendez- 

Ferrer et al., 2010; Omatsu et al., 2010; Sugiyama et al., 2006; Yamazaki et al., 2011; 

Zhang et al., 2003a). The functional role of OBs was previously tested by 

Col2.3ATK-induced ablation of mature OB cells, and this resulted in a much delayed
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loss of HSCs (Visnjic et al., 2004). Osteoclasts also influenced HSCs by indirectly 

regulating osteoblasts (Lymperi et al., 2011). In contrast, genetic ablation of 

Nestin+MSCs and CAR cells caused a rapid mobilization of 50-60% of HSCs from 

BM to spleen. This was consistent with the distribution of 60% of HSCs in the 

sinusoidal perivascular niche (Kiel et al., 2005). Notably, the lost or mobilized HSCs 

were initially proliferating (or active) HSCs (Omatsu et al., 2010). These 

observations suggested that different niche components may form different 

microenvironments— quiescent versus active niches (Li and Clevers, 2010). The 

perivascular-localized Nestin-GFP+ and CAR cells, together with endothelial cells, 

most likely form an active niche, as they mainly support active HSCs (Butler et al., 

2010). In contrast, the endosteal-localized N-cad+OBs in TBR may form a quiescent 

niche. A previous report (Dominici et al., 2009) and my finding that N-cad+OB is 

quiescent and drug-resistant show that N-cad+OB is a very stable niche component 

even under stress (Figure 9A-B).

The model that N-cad+OBs form a quiescent HSC niche is further supported 

by my observation that Fmi and Fz8 expressed at the interface between quiescent 

HSCs and N-cad+OBs in TBR. Fmi homophilic adhesion has been shown to mediate 

‘contact inhibition’ and transduce non-canonical Wnt signaling between neural axons 

(Kimura et al., 2006). I have shown that Fmi, in both HSCs and niche cells, regulates 

Fz8 distribution, consistent with the “contact inhibition” function of Fmi in 

maintaining the quiescent state of HSCs in the niche. Additionally, by comparing the 

expression of non-canonical Wnts and canonical Wnts/inhibitors, I found that 

endothelial cells expressed detectable levels of Wnt5b and that Nestin-GFP+ cells 

expressed limited canonical Wnts, such as WntlOb. In contrast, N-cad+OBs
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expressed the highest levels of Wnt inhibitors that suppress canonical Wnt signaling 

in homeostasis. Although, both Nestin-GFP+ cells and N-cad+OBs expressed several 

non-canonical Wnts, N-cad+OBs predominantly expressed additional Wnt6 and 

Wntl6. Notably, Wntl6 was recently shown to be critical in inducing HSC 

generation from endothelial progenitor cells during fetal development of zebrafish 

(Clements et al., 2011). All these observations support that N-cad+OBs maintain a 

quiescent niche with dominant non-canonical Wnt signaling and simultaneously 

suppress canonical Wnt signaling in homeostasis. This dominant expression of non- 

canonical Wnts is consistent with the presence of Fmi-Fz8 complex in the N-cad+OB 

niche (Figure 9B).

9.2 FIamingo-FrizzIed8-mediated non-canonical Wnt signaling 

suppresses Ca2+-NFAT-IFNy-pathway and antagonizes 

canonical Wnt signaling, thereby preventing HSCs from 

activation

Recently, non-canonical Wnt signaling was shown to be involved in HSC 

development (Clements et al., 2011; Heinonen et al., 2011; Louis et al., 2008) and in 

HSC maintenance in vitro culture (Murdoch et al., 2003; Nemeth et al., 2007). The 

underlying mechanism, however, was undefined. The downstream pathways of non- 

canonical Wnt signaling have diverse functions: forming planar cell polarity,
^  I

blocking Ca -NFAT nuclear translocation, and suppressing p-catenin activity. In 

this work, I demonstrated that Fmi-Fz8 mediated non-canonical Wnt signaling 

indeed suppresses nuclear translocation of NFAT. NFAT was previously shown to 

maintain hair follicle stem cells through suppression of Cdk4 (Horsley et al., 2008)
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and to play an important role in hematopoiesis (Muller et al., 2009). In HSCs, I 

identified that NFAT stimulates IFNy. Another niche component, Treg cell, also 

expresses IFNy post 5FU. I do not exclude that other stromal cells as well might 

express IFNy. While IFNs play a critical role in activating HSCs (Baldridge et al., 

2010; Essers et al., 2009), Fmi- and Fz8-mediated non-canonical Wnt signaling 

maintains quiescence, partially through downregulation of IFNy expression (Figure 

9C). I further demonstrated that culturing HSCs with Wnt5a inhibits IFNy 

expression. This inhibitory effect ended when Fz8 was knocked out, further 

supporting the critical role of Fz8-mediated non-canonical Wnt signaling to suppress 

the Ca2+-NFAT-IFNy pathway. In addition, I showed that Fmi-Fz8-mediated non- 

canonical Wnt signaling antagonizes canonical Wnt signaling, which is consistent 

with a previous report that Wnt5a and Fz8-mediated non-canonical Wnt signaling 

inhibited canonical Wnt signaling (Mikels and Nusse, 2006; Nemeth et al., 2007) 

(Figure 9C).

9.3 Non-canonical versus canonical Wnt signaling have

distinguished roles respectively in maintenance vs. activation of 

HSCs

Wnt signaling, particularly the canonical pathway through activation of p- 

catenin, has been shown across several species to be prominent in regulating stem 

cell self-renewal in both embryonic and adult stem cells (Blanpain and Fuchs, 2009; 

Reya et al., 2003; van de Wetering et al., 2002; Ying et al., 2008). The role of 

canonical Wnt signaling in HSC maintenance, though, is debatable. For example, 

forced expression of Dkkl in osteoblasts suppressed canonical Wnt signaling in
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HSCs, accompanied by a decrease in quiescent HSCs (Fleming et al., 2008). 

However, other studies showed that Dkkl-transgenic mice had a defect in trabecular 

bone formation (Guo et al., 2010; Li et al., 2006). This is consistent with the role of 

canonical Wnt signaling in osteogenesis during trabecular bone formation. For 

example, absence of P-catenin in osteoblasts led to a defect in trabecular bone 

formation, resulting in a decrease of quiescent HSCs (Nemeth et al., 2009).

Therefore, it is most likely that Dkkl directly affects the osteoblastic niche, and thus 

indirectly influences the resident quiescent HSCs. A similar observation was reported 

that inactivation in bone of Sfrpl, a soluble canonical Wnt inhibitor, resulted in the 

decrease of HSCs (Renstrom et al., 2009). Another example is that forced expression 

of Wifi in osteoblasts reduced quiescent HSCs. Although overexpression of Wifi in 

a transgenic model did not alternate bone architecture, Wifi inhibited non-canonical 

Wnt signaling (Hsieh et al., 1999) and thus increased canonical Wnt signaling 

(evidenced by increased Wnt3a) in HSCs (Schaniel et al., 2011).

The association of non-canonical Wnt signaling with N-cad+OBs provides 

insight to reconciling previous contradictory observations.

First, ablation of Nestin-GFP+ cells or CAR-cells leads to a rapid loss of a 

portion of HSCs. This observation can be explained by the role of these niche 

components to support primarily the active HSC subpopulation (Omatsu et al.,

2010). In contrast, ablation of mature osteoblasts induced by Col2.3ATK (thymidine 

kinase) results in a much delayed reduction of HSCs, which is consistent with the 

role of this niche component to support the long-term quiescent HSC subpopulation 

(Visnjic et al., 2004). This is because loss of quiescent HSCs often does not have an 

immediate influence on hematopoiesis, as the active population still supports
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hematopoiesis. Furthermore, reduction in quiescent HSCs often leads to an increase 

in cycling HSCs, and therefore the immunophenotypic measurement of total HSCs is 

not affected in the short term. The observation that there is a subsequent recovery of 

HSCs following deletion of mature OBs induced by Col2.3 ATK (Visnjic et al., 2004) 

can be explained by Col2.3 being mainly expressed in mature OBs. Therefore,

Col2.3 induced TK cannot efficiently target N-cad+OBs that enrich quiescent 

osteoprogenitors (Xie et al., 2009). The untargeted N-cad+OBs can facilitate recovery 

of osteogenesis initially and then subsequent HSC recovery.

Second, Fmi, as an atypical cadherin family molecule, mediates a homophilic 

interaction between N-cad+OBs and HSCs, and provides a redundant role as that of 

N-cadherin in mediating HSC-niche interaction (Figure 9C). This may account for 

the subtle phenotype seen in the N-cad conditional KO model (Kiel et al., 2008).

N-cad+OBs may not just play a passive role in maintaining quiescent HSCs, 

as they have been implicated to facilitate HSC expansion in response to irradiation- 

induced BM damage (Dominici et al., 2009). Another report also showed the 

correlation between the number of HSCs and N-cad+OBs, but not mature OBs 

(Lymperi et al., 2008). Consistent with this observation, I found that in response to 

5FU-induced BM damage, non-canonical Wnt signaling in N-cad+OBs was 

downregulated (Figure 9D-E). This microenvironmental change was further 

supported by specific and strong stimulation of IFNy by Wnt7b in vitro. In this 

experiment, Wnt7b also promoted an increase in the active form (p-cat-pS552) of f3- 

catenin in the HSC nucleus, clearly indicating antagonizing roles between canonical 

and non-canonical Wnt signaling. The attenuation of non-canonical Wnt signaling 

may coordinate with other niche components with different activation signals (such
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as SCF etc.) to facilitate HSC activation and subsequent expansion. This new finding 

may help reconcile the contradictory reports regarding canonical Wnt signaling in 

HSCs. In a previous study, for example, inactivation of p-catenin did not affect 

homeostatic HSCs (Cobas et al., 2004). This is because canonical Wnt signaling is 

not prominent during homeostasis, as revealed in my study. On the other hand, 

inactivation of p-catenin during embryonic and fetal stages indeed affected 

hematopoiesis, due to involvement of canonical Wnt signaling in HSC expansion. 

Transgenic expression of stabilized p-catenin leading to HSC reduction (Kirstetter et 

al., 2006; Scheller et al., 2006) seems not to support the role of canonical Wnt 

signaling in HSC self-renewal and expansion. However, this observation can be 

explained by our recent report that constitutive expression of p-catenin in HSCs 

induced apoptosis. Only in coordination with PI3K/Akt (or Bcl2) signaling, can 

HSCs be expanded with canonical Wnt signaling (Perry et al., 201 lb; Reya et al., 

2003). My study provides novel evidence to distinguish the respective roles of non- 

canonical versus canonical Wnt signaling in maintenance versus activation and 

expansion of HSCs.

9.4. Expression of Flamingo subtypes in HSCs

Flamingo family has 3 subtypes, Celsrl, 2, and 3. In this study, I found that 

Flamingo/Celsr2 is expressed in quiescent label-retaining HSCs in the endosteal zone 

of TBR. I also found Celsrl was not expressed in HSCs. In contrast, Celsr3 is 

expressed in mobilized HSCs following 5FU-mediated activation in blood vessels. 

This indicates Celsr3 may regulate HSC maintenance of mobilized HSCs which have 

been reported in quiescent state (Morrison et al., 1997). In the future, it will be 

interesting to test whether deletion of Celsr3 affects HSCs during circulation.
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9.5. Canonical and non-canonical Wnt signaling

Wnt signaling can be separated into canonical and non-canonical signaling. 

Which signaling is to be used depends on the tissue types that express different types 

of Frizzleds and other co-receptors. For example, Wnt5a activates non-canonical 

Wnt signaling in the presence of Ror2 co-receptor. In contrast, Wnt5a activates 

canonical Wnt signaling in the presence of Frizzled4 (Mikels and Nusse, 2006). In 

my study using TOP-Gal and Axin2-d2EGFP reporter models, I have confirmed that 

Wnt5a activates non-canonical Wnt and suppresses canonical Wnt signaling.

The structure of Wnt and Frizzled recognition remains unclear. A recent 

report showed the 3D structure of Xenopus Wnt8 and mouse Fz8 binding (Janda et 

al., 2012). According to the report, Wnt structure resembles a “hand” with “thumb” 

and “index” fingers extended to grasp Frizzled8 cysteine-rich domain at two distinct 

binding sites. This observation suggests that the different biding sites of Wnts and 

Frizzleds may fine-tune the downstream pathways with co-receptors, thus 

determining canonical or non-canonical Wnt signaling.

9.6. Wnt signaling and BMP signaling in determination of quiescent vs. active 

niches

Our lab previously showed that BMP signaling in the endosteal zone 

regulates HSC and ISC maintenance (He et al., 2004b; Zhang et al., 2003a). In 

contrast, canonical Wnt signaling through p-catenin promotes proliferation of HSCs 

and ISCs (He et al., 2007; Perry et al., 201 la). These observations indicate “Yin- 

Yang control” of stem cells by canonical Wnt signaling and BMP signaling. In my 

study, non-canonical Wnt signaling has been identified as another signaling to 

maintain quiescent HSCs. My preliminary data showed that BMP4 is expressed in
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the TBR; in contrast, BMP inhibitor Noggin is expressed in the compact bone region. 

A recent report showed that BMP4 and BMP7 induce osteoblast differentiation of 

MSCs via histone demethylases KDM4B and KDM6B which activate the chromatin 

region (Ye et al., 2012). These observations suggest that BMP signaling may form 

the endosteal zone of TBR, where non-canonical Wnt signaling facilitates a local 

control of quiescent HSCs adjacent to N-cad+OBs. After stress, non-canonical Wnt 

signaling switches to canonical Wnt signaling to allow HSC activation. Canonical 

Wnt signaling determines the active HSC niche.

9.7. Dynamic regulation of Wnt signaling balance during development and 

aging

It is very interesting to consider the state of Wnt signaling balance in the 

niches in fetal stage BM and adult mice. Since fetal HSCs are proliferating and a 

portion of adult HSCs are quiescent, it seems that the balance of canonical and non- 

canonical Wnt signaling may be different between fetal and adult stages. Adult HSCs 

are more deeply quiescent which are difficult to activate. This may suggest non- 

canonical Wnt signaling is very high in the adult HSC niche. It is intriguing to see 

the level of non-canonical Wnts expression in adult niche cells.

Recently, Eaves and colleagues studied a-HSCs (lymphoid-deficient) and p- 

HSCs (balanced-lineage) and revealed that a-HSCs became predominant in adult 

mice, which explains why adult HSCs are more committed to myeloid and deficient 

for lymphoid lineage (Benz et al., 2012). Indeed, their data showed that a-HSCs and 

p-HSCs interconverted at secondary transplantation, which suggests HSCs can be 

redistributed to different niches so that HSC states can be extrinsically influenced. It
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is intriguing to see whether this switch is correlated with canonical versus non- 

canonical Wnt signaling in association with niches.

9.8. Future direction

My study has revealed that the balance of Wnt signaling can regulate 

different populations of HSCs in anatomically distinct niches. Quiescent HSCs are 

adjacent with N-cad+OBs in the TBR endosteal zone. This population functions as a 

reserve population and is maintained by non-canonical Wnt signaling. Under stress, 

the endosteal zone switches to canonical Wnt signaling to activate HSCs. Normally, 

active HSCs are located in the perivascular zone.

So far, the field has focused on canonical Wnt signaling, with fewer studies 

focused on non-canonical Wnt signaling in HSCs. My study proposed the model in 

which canonical and non-canonical Wnt signaling have opposite functions to 

regulate HSCs. Considering functional cross-talk of canonical and non-canonical 

Wnt signaling and their opposing effect, it is critical to clarify canonical and non- 

canonical Wnt signaling when we investigate Wnt signaling in HSCs.

In recent years, the HSC niche field has made remarkable progress and also 

has been very controversial. This is partly because HSCs reside in different locations. 

Label-retaining quiescent HSCs are in the endosteal zone with N-cad+OBs (Zhang et 

al., 2003a); CD150+ CD48' HSCs are in the perivascular and sinusoidal zones (Kiel 

et al., 2005; Mendez-Ferrer et al., 2010). The debate is ongoing regarding which is 

the “real” HSC niche. This controversy can be reconciled by a new model that HSCs 

may include both active and quiescent HSCs. The former is responsible for daily 

production of blood cells, whereas the latter is a reserve population that rarely enters
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cell-cycle, but can be triggered to replenish lost active HSCs when needed (Li and 

Clevers, 2010; Wilson et al., 2008).

The remaining questions related to my study are how the balance of Wnt 

signaling is regulated in different niches, and whether and how active HSCs revert to 

quiescent HSCs (Wilson et al., 2008).

This thesis study showed the different and sequential process of HSC 

activation in anatomically and molecularly distinct zones, and the related different 

types of Wnt signaling. In order to have a systematic and comprehensive 

understanding of the niche network and the associated signaling, it will be important 

to investigate not only just one type of niche or signaling, but also multiple niches 

and both canonical and non-canonical Wnt signaling.
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Figure 9-1 Model of non-canonical Wnt signaling maintaining HSC in the  niche

(A) Sagit ta l  s e c t i o n  o f  f e m u r  ind ica t in g  TBR a n d  CBR. (B) HSC m a i n t e n a n c e  d u r in g  h o m e o s t a s i s .  
W ith in  TBR, a p o r t io n  o f  q u i e s c e n t  LT-HSCs a r e  a d h e r e d  t o  N -c a d +OBs t h a t  m a in t a in  d o m i n a n t  n o n -  
c a n o n ic a l  W n t  s igna ls  a n d  s u p p r e s s  c a n o n ic a l  W n t  s igna ling  by t h e i r  in h ib i to rs .  Fmi ( red  bo x  in B) 
r e s t r i c t s  Fz8 (g re e n  b o x  in B) a t  t h e  i n t e r f a c e  b e t w e e n  q u i e s c e n t  HSCs a n d  N -c a d +OBs, e n g a g in g  
i n t e r a c t i o n  w i th  local n o n - c a n o n ic a l  W n t  l igands  f r o m  N -c a d +OBs. (C) Fz8 s u p p r e s s e s  Ca2+-NFAT 
n u c le a r  t r a n s l o c a t i o n  a n d  N F A T -d e p e n d e n t  IFNy e x p r e s s io n .  N-cad t e t h e r s  P -c a te n in ,  inh ib i t in g  
c a n o n ic a l  W n t  s igna ling .  In a d d i t io n ,  Fmi a n d  Fz8 a n t a g o n i z e  c a n o n ic a l  W n t  s igna ling .  T h e r e f o r e ,  
n o n - c a n o n ic a l  W n t  s igna ling  is p r e d o m i n a n t  in q u i e s c e n t  HSCs. (D) P o s t  5FU t r e a t m e n t ,  c a n o n ic a l  
W n t  l igand  (e.g. W n t 7 b )  e x p re s s io n  is u p r e g u l a t e d .  In a d d i t i o n ,  t h e  e x p r e s s io n  o f  n o n - c a n o n ic a l  W n t  
l igands  ( W n t l l  a n d  W n t l 6 )  a n d  ca n o n ic a l  W n t  in h ib i to rs  a r e  d e c l in e d .  HSCs r e d u c e  b o t h  F lam in g o  
a n d  Fz8 e x p r e s s io n .  N -cad +OBs r e d u c e  Fz8 e x p r e s s io n .  (E) D e c r e a s e  in Fmi-Fz8 m e d i a t e d  n o n -  
c a n o n ic a l  W n t  s igna ling  r e s u l t e d  in NFA T-induced  IFNy e x p r e s s io n ;  a n d  i n c r e a s e  in W n t 7 b  led  t o  
r e l e a s e  o f  P -c a te n in  t o  c y to p la s m  a n d  f u r t h e r  in to  n u c le u s ,  t h u s  t o g e t h e r  p r o m o t i n g  HSC a c t iv a t io n .  
( M o d if ie d  f r o m  S u g im u ra  e t  al., Cell 150 ,  3 5 1 -3 6 5 ,  2 0 1 2 )
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APPENDIX
Primers Sequence
Flamingo (Celsr2) Fwd TGTACAGCAGTAGCCCGTTACG
Flamingo (Celsr2) Rev CGCCAGCGCTTCCACTT
Frizzled 1 Fwd CAAGGTTTACGGGCTCATGT
Frizzled 1 Rev GTAACAGCCGGACAGGAAAA
Frizzled2 Fwd GAGGTGCATCAGTTCTACCC
Frizzled2 Rev ATGGCCTGCTCCAGCACT
Frizzled3 Fwd GCAGATAGGTGGGCACAGTT
Frizzled3 Rev AAAGAAATGGCCGAAAATCC
Frizzled4 Fwd CACGCCGCTCATCCAGTA
Frizzled4 Rev GCCGATGGGGATGTTGAT
Frizzled5 Fwd CAACCATGACAGGCAGGAC
Frizzled5 Rev GGGCGTGTACATAGAGCACA
Frizzled6 Fwd TTCCCTAACCTGATGGGTCA
Frizzled6 Rev ACATTTCAATGTTTGGTGAACA
Frizzled7 Fwd ATATCGCCTACAACCAGACCATCC
Frizzled7 Rev AAGGAACGGCACGGAGGAATG
Frizzled8 Fwd ATGGAGTGGGGTTACCTGTTG
Frizzled8 Rev CACCGTGATCTCTTGGCAC
Frizzled9 Fwd GTCCGCGTTGTGTTTCTTCT
Frizzled9 Rev CAGACCCTCCTGGATCACAT
Frizzled 10 Fwd GTACCCCGAACGTCCTATCA
Frizzled 10 Rev GTGCTCTCCAGTCCTTCCTG
Cox2 Fwd CC ACC ACTACTGCC ACCTC
Cox2 Rev TGGTCAAATCCTGTGCTCAT
IL2 Fwd AACCTGAAACTCCCCAGGAT
IL2 Rev CGCAGAGGTCCAAGTTCATC
CD34 Fwd ACAGGAGAATGCAGGTCCAC
CD34 Rev TGGTAGGAACTGATGGGGATA
Ifny Fwd GCTTTGCAGCTCTTCCTCAT
Ifny Rev TTTTGCCAGTTCCTCCAGAT
p57 Fwd ACAGGACAAGCGATCCAGAC
p57 Rev GCGCTAT C ACT GGG AAGGT
Pten Fwd AGATCGTTAGCAGAAACAAAAGG
Pten Rev TCTGCAGGAAATCCCATAGC
Txnip Fwd GCAGTGCAAACAGACTTTGG
Txnip Rev AGCTCGAAGCCGAACTTGTA
Tnfa Fwd CCACCACGCTCTTCTGTCTA
Tnfa Rev AGGGTCTGGGCCATAGAACT
N-cadherin Fwd AGCGCAGTCTTACCGAAGG
N-cadherin Rev TCGCTGCTTTCATACTGAACTTT
Osterix Fwd ATGGCGTCCTCTCTGCTTG
Osterix Rev TGAAAGGTCAGCGTATGGCTT
Runx2 Fwd CGGCCCTCCCTGAACTCT
Runx2 Rev TGCCTGCCTGGGATCTGTA
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Rpll9 Fwd ATGAGTATGCTCAGGCTACAGA
Rpll9 Rev GCATTGGCGATTTCATTGGTC
Gapdh Fwd TGGCAAAGTGGAGATTGTTGCC
Gapdh Rev AAGATGGTGATGGGCTTCCCG

TaqMan assays Serial number (Applied Biosystems)
Wntl Mm-01300555 gl
Wnt2 Mm-00470018 ml
Wnt2b Mm-00437330 ml
Wnt3 Mm-00437336 ml
Wnt3a Mm-00437337 ml
Wnt4 Mm-01194003 ml
Wnt5a Mm-00437347 ml
Wnt5b Mm-01183986 ml
Wnt6 Mm-00437353 ml
Wnt7a Mm-00437354 ml
Wnt7b Mm-01301717 ml
Wnt8a Mm-00436822 ml
Wnt8b Mm-00442107 ml
Wnt9a Mm-00460518 ml
Wnt9b Mm-00457102 ml
WntlOa Mm-00437325 ml
Wntl Ob Mm-00442104 ml
W ntll Mm-00437328 ml
Wntl 6 Mm-00446420 ml
Dkkl Mm-00438422 ml
Dkk3 Mm-00443800 ml
Sfrp4 Mm-00840104 ml
Wifi Mm-00442355 ml
Axin2 Mm-00443610 ml
N-cadherin Mm-00483213 ml
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