

Open Research Online

The Open University's repository of research publications and other research outputs

Shajia, a new genus of polyconitid rudist from the Langshan Formation of the Lhasa Block, Tibet, and its palaeogeographical implications

Journal Item

How to cite:

Rao, Xin; Skelton, Peter W.; Sano, Shin-ichi; Zhang, Yiqiang; Zhang, Yichun; Pan, Yanhong; Cai, Huawei; Peng, Bo; Zhang, Tong and Ma, Zhaoxiong (2020). Shajia, a new genus of polyconitid rudist from the Langshan Formation of the Lhasa Block, Tibet, and its palaeogeographical implications. Cretaceous Research, 105, article no. 104151.

For guidance on citations see FAQs.

 \odot 2019 Elsevier Ltd.

Version: Accepted Manuscript

Link(s) to article on publisher's website: http://dx.doi.org/doi:10.1016/j.cretres.2019.05.009

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data <u>policy</u> on reuse of materials please consult the policies page.

oro.open.ac.uk

Accepted Manuscript

Shajia, a new genus of polyconitid rudist from the Langshan Formation of the Lhasa Block, Tibet, and its palaeogeographical implications

Xin Rao, Peter W. Skelton, Shin–ichi Sano, Yiqiang Zhang, Yichun Zhang, Yanhong Pan, Huawei Cai, Bo Peng, Tong Zhang, Zhaoxiong Ma

PII: S0195-6671(18)30350-1

DOI: https://doi.org/10.1016/j.cretres.2019.05.009

Reference: YCRES 4151

To appear in: Cretaceous Research

Received Date: 31 August 2018

Revised Date: 18 January 2019

Accepted Date: 22 May 2019

Please cite this article as: Rao, X., Skelton, P.W., Sano, S.–i., Zhang, Y., Zhang, Y., Pan, Y., Cai, H., Peng, B., Zhang, T., Ma, Z., *Shajia*, a new genus of polyconitid rudist from the Langshan Formation of the Lhasa Block, Tibet, and its palaeogeographical implications, *Cretaceous Research*, https://doi.org/10.1016/j.cretres.2019.05.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Shajia, a new genus of polyconitid rudist from the Langshan Formation of the
2	Lhasa Block, Tibet, and its palaeogeographical implications
3	Xin Rao ^{1,2} *, Peter W. Skelton ³ *, Shin–ichi Sano ⁴ , Yiqiang Zhang ² , Yichun Zhang ¹ ,
4	Yanhong Pan ⁵ , Huawei Cai ⁵ , Bo Peng ⁶ , Tong Zhang ⁷ , Zhaoxiong Ma ⁷
5	¹ State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of
6	Geology and Palaeontology and the Center for Excellence in Life and
7	Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing
8	210008, China; e-mail: xinrao@nigpas.ac.cn, yczhang@nigpas.ac.cn
9	² Department of Invertebrate Palaeontology, Nanjing Institute of Geology and
10	Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008,
11	China; e-mail: <u>yiqiangzhang81@gmail.com</u>
12	³ School of Environment, Earth and Ecosystem Sciences, The Open University, Milton
13	Keynes MK7 6AA, UK; e-mail: pwskelto@waitrose.com
14	⁴ Department of Earth System Science, Graduate School of Science and Engineering
15	for Research, University of Toyama 3190 Gofuku, Toyama-shi, Toyama 930-8555,
16	Japan; e-mail: <u>ssano@sus.u-toyama.ac.jp</u>
17	⁵ CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing
18	Institute of Geology and Palaeontology and Center for Excellence in Life and
19	Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; e-mail:
20	<u>yhpan@nigpas.ac.cn</u> , <u>hwcai@nigpas.ac.cn</u>
21	⁶ Nanjing Center, China Geological Survey, Nanjing 210016, China; e-mail:

22 pengbocc@163.com

- ⁶Sichuan Geological Survey, No. 25 North Renmin Road, Chengdu 610084, China;
- e-mail: 986573254@qq.com, mzx0120@163.com
- 25 *Corresponding authors
- 26 Abstract.

A new polyconitid rudist Shajia tibetica gen. et sp. nov., of late Aptian to Albian 27 age, is described from the Langshan Formation of Nyima County, northern Lhasa 28 Block, Tibet. Though comparable in size and external morphology with Horiopleura 29 haydeni Douvillé, which is a common endemic species in southwestern Asia, Shajia 30 differs from the latter species in its possession of an inwardly inclined, instead of 31 outwardly facing, posterior myophore in the right valve. In addition, a single 32 specimen from Ladakh, which was previously assigned to Polyconites? sp., on 33 account of a similar myophoral distinction from H. haydeni, is transferred to the new 34 genus. Shajia is considered most likely to have been derived from one of a group of 35 Horiopleura species that lived on the southern margin of the Mediterranean Tethys. 36 The so-called 'Yasin fauna' represented by the late Aptian to Albian Horiopleura 37 haydeni/Auroradiolites gilgitensis rudist association, is considered to be restricted to 38 southwestern Asia, including Afghanistan, Kohistan in northern Pakistan and Ladakh 39 in northern India, though those two species in particular have not so far been recorded 40 from the Lhasa Block of Tibet. Nevertheless, S. tibetica co-occurs with Auroradiolites 41 biconvexus (Yang et al.), which probably evolved directly from A. gilgitensis 42 43 (Douvillé), and the age of the latter association is in accordance with the generally

44	accepted age of the Yasin fauna as late Aptian to Albian. Hence the <i>S. tibetica</i> and <i>A</i> .
45	biconvexus association can be considered a regional variant of the Yasin fauna, which
46	had evidently already dispersed to the Lhasa Block by the late Aptian. So the
47	Langshan Formation can be considered palaeogeographically linked with other
48	mid-Cretaceous shallow-marine carbonate deposits in adjacent southwestern Asian
49	regions. These findings also provide new evidence that the age of the rudist
50	assemblage of the Lhasa Block is late Aptian to Albian, although a slightly younger
51	age cannot be excluded.
52	Keywords: Lhasa Block; Langshan Formation; mid-Cretaceous; Rudists;
53	Polyconitidae; Yasin fauna
54	1. Introduction
54 55	1. Introduction Rudists are an extinct order of bivalves that flourished on the carbonate
54 55 56	1. Introduction Rudists are an extinct order of bivalves that flourished on the carbonate platforms of the Tethyan–Atlantic–Pacific oceanic realm during the Late Jurassic to
54 55 56 57	1. Introduction Rudists are an extinct order of bivalves that flourished on the carbonate platforms of the Tethyan–Atlantic–Pacific oceanic realm during the Late Jurassic to Cretaceous (Skelton, 2018). The mid-Cretaceous rudists of southwestern Asia and the
54 55 56 57 58	1. Introduction Rudists are an extinct order of bivalves that flourished on the carbonate platforms of the Tethyan–Atlantic–Pacific oceanic realm during the Late Jurassic to Cretaceous (Skelton, 2018). The mid-Cretaceous rudists of southwestern Asia and the western Pacific region show great similarity and affinity (Sano and Masse, 2013;
54 55 56 57 58 59	1. Introduction Rudists are an extinct order of bivalves that flourished on the carbonate platforms of the Tethyan–Atlantic–Pacific oceanic realm during the Late Jurassic to Cretaceous (Skelton, 2018). The mid-Cretaceous rudists of southwestern Asia and the western Pacific region show great similarity and affinity (Sano and Masse, 2013; Skelton et al., 2013). Accordingly, the Southwest Asian/Pacific Faunal Province was
54 55 56 57 58 59 60	1. Introduction Rudists are an extinct order of bivalves that flourished on the carbonate platforms of the Tethyan–Atlantic–Pacific oceanic realm during the Late Jurassic to Cretaceous (Skelton, 2018). The mid-Cretaceous rudists of southwestern Asia and the western Pacific region show great similarity and affinity (Sano and Masse, 2013; Skelton et al., 2013). Accordingly, the Southwest Asian/Pacific Faunal Province was proposed, covering Iran, Afghanistan, Kohistan in northern Pakistan, Ladakh in
54 55 56 57 58 59 60 61	1. Introduction Rudists are an extinct order of bivalves that flourished on the carbonate platforms of the Tethyan–Atlantic–Pacific oceanic realm during the Late Jurassic to Cretaceous (Skelton, 2018). The mid-Cretaceous rudists of southwestern Asia and the western Pacific region show great similarity and affinity (Sano and Masse, 2013; Skelton et al., 2013). Accordingly, the Southwest Asian/Pacific Faunal Province was proposed, covering Iran, Afghanistan, Kohistan in northern Pakistan, Ladakh in northern India, Tibet in China and Japan, as well as Cebu Island and the Japanese
54 55 56 57 58 59 60 61 62	1. Introduction Rudists are an extinct order of bivalves that flourished on the carbonate platforms of the Tethyan–Atlantic–Pacific oceanic realm during the Late Jurassic to Cretaceous (Skelton, 2018). The mid-Cretaceous rudists of southwestern Asia and the western Pacific region show great similarity and affinity (Sano and Masse, 2013; Skelton et al., 2013). Accordingly, the Southwest Asian/Pacific Faunal Province was proposed, covering Iran, Afghanistan, Kohistan in northern Pakistan, Ladakh in northern India, Tibet in China and Japan, as well as Cebu Island and the Japanese seamounts in the Pacific region (Rao et al., 2015, 2017). The rudist fauna of this
 54 55 56 57 58 59 60 61 62 63 	1. Introduction Rudists are an extinct order of bivalves that flourished on the carbonate platforms of the Tethyan–Atlantic–Pacific oceanic realm during the Late Jurassic to Cretaceous (Skelton, 2018). The mid-Cretaceous rudists of southwestern Asia and the western Pacific region show great similarity and affinity (Sano and Masse, 2013; Skelton et al., 2013). Accordingly, the Southwest Asian/Pacific Faunal Province was proposed, covering Iran, Afghanistan, Kohistan in northern Pakistan, Ladakh in northern India, Tibet in China and Japan, as well as Cebu Island and the Japanese seamounts in the Pacific region (Rao et al., 2015, 2017). The rudist fauna of this province is dominated by the endemic radiolitid Auroradiolites Rao et al., 2015 and

65	and Nagao, 1926– Magallanesia Sano et al., 2014, as well as some more widely
66	dispersed taxa such as <i>Eoradiolites</i> Douvillé, 1909 and <i>Sellaea</i> Di Stefano, 1889
67	(Skelton et al., 2013; Sano et al., 2014; Rao et al., 2015). The orbitolinid assemblage
68	associated with these rudists is likewise composed of several endemic taxa such as
69	Mesorbitolina birmanica (Sahni, 1937), Palorbitolinoides orbiculata Zhang, 1986
70	and Palorbitolinoides hedini Zhang, 1986, together with cosmopolitan taxa such as
71	Mesorbitolina texana (Roemer, 1849), M. subconcava (Leymerie, 1878) and M. aperta
72	(Erman, 1854) (Cherchi and Schroeder, 2013; Schlagintweit and Wilmsen, 2014; Rao
73	et al., 2015, 2017; Boudagher–Fadel et al., 2017).
74	Within the SW Asian/Pacific Faunal Province, the so-called 'Yasin fauna' of
75	rudists represented by the late Aptian-Albian Horiopleura haydeni/Auroradiolites
76	gilgitensis association had a widespread distribution in southwest Asia including Iran,
77	Afghanistan, Kohistan, and Ladakh (Douvillé, 1926; Rossi Ronchetti, 1965; Montenat
78	et al., 1982; Upadhyay, 2001, 2014; Skelton et al., 2005; Sha and Cestari, 2016). In
79	the mid-Cretaceous, these fossil sites were all located on blocks/terranes arrayed
80	along, or offshore from the southern Asian margin on the northern side of the eastern
81	Neo-Tethyan Ocean (Rao et al., 2017). The Yasin fauna, as such, has not previously
82	been recorded from the Lhasa Block, which occupied a similar geographical and
83	tectonic position to the blocks/terranes mentioned above. Instead, Auroradiolites
84	biconvexus, probably derived directly from A. gilgitensis, and the canaliculate
85	polyconitid genus Magallanesia were found there (Rao et al., 2015; 2017).
86	In this study, a new polyconitid genus, Shajia, which is superficially comparable

87	with Horiopleura haydeni, is described, based on articulated specimens collected
88	from the Langshan Formation of Nyima County, Lhasa Block. A single specimen
89	collected in Ladakh and formerly assigned to Polyconites? sp., by Masse and
90	Fenerci-Masse (2017) is also reappraised in the light of the new material from the
91	Lhasa Block. The relationship of <i>Shajia</i> with the Yasin fauna and its
92	palaeogeographical implications are evaluated and the age of the rudist fauna from the
93	Langshan Formation revised accordingly.
94	2. Geological setting
95	The Qinghai–Tibet plateau is generally regarded as a complex tectonic collage of
96	several blocks; from north to south they are the Songpan–Ganze–Hoh Xil, Qiangtang,

Lhasa and Tethyan-Himalayan blocks, which are separated from each other by

Gondwana, drifted northward, and finally accreted to the Asian continent successively

during the late Palaeozoic and Mesozoic eras, prior to the India-Asia collision (Pan et

al., 2012; Li et al., 2017). Today, the Lhasa Block is bounded by the Bangong-Nu

sutures (Yin and Harrison, 2000; Zhu et al., 2013). These blocks rifted from

suture to the north and the Indua–Yarlung suture to the south (Fig. 1A; Yang et al.,

- 103 2015). It rifted from the India–Gondwana continent in the Late Triassic, and collided
- 104 with Asia in latest Jurassic–earliest Cretaceous times (Yin and Harrison, 2000;

105 Metcalfe, 2006).

97

98

99

100

101

106 [Figure 1 hereabouts]

107 In the late Early to early Late Cretaceous (Barremian–Cenomanian), the Lhasa

108	Block had already collided with the Qiangtang Block, and was located on the north
109	side of the eastern Tethys Ocean. At this time, shallow marine carbonate deposits,
110	represented by the Langshan Formation, were widely distributed along the northern
111	portion of this block (Leier et al., 2007; Rao et al., 2015). The Langshan Formation
112	crops out as a nearly east-west-oriented belt extending from Baingoin County in the
113	east to Rutog County in the west (XZBGM, 1993). It is dominated by dark-grey to
114	black limestone sometimes interbedded with siltstone and mudstone (Zhang et al.,
115	2004; Leier et al., 2007). The thickness of the Langshan Formation is poorly
116	constrained and has considerable lateral variation; in this paper, we regard it as about
117	1000 m, referring to Zhang et al. (1986), Leeder et al. (1988), and Leier et al. (2007).
118	Abundant fossils have been recorded from the Langshan Formation, dominated
119	by orbitolinids (Zhang, 1982, 1986, 1991; Boudagher–Fadel et al., 2017), rudists
120	(Yang et al., 1982; Gou and Shi, 1998, Scott et al., 2010; Rao et al., 2015, 2017),
121	gastropods (Yu and Xia, 1985) and corals (Löser and Liao, 2001; Deng and Wang,
122	2013). The age of the Langshan Formation is mainly constrained by foraminifers,
123	especially large benthic orbitolinids. Deposition started from the Early Barremian
124	based on the occurrence of Eopalorbitolina charollaisi Schroeder and Conrad, 1968
125	(Rao et al., 2015), and extended to the Early Cenomanian, as indicated by the
126	appearance of Daxia cenomana Cuvillier and Szakall, 1949, Nezzazata conica (Smout,
127	1956), Cuneolina cf. cylindrica, Orbitolina qatarica Henson, 1948, Conicorbitolina
128	sp. A and <i>Pseudedomia</i> sp. (Boudagher–Fadel et al., 2017).
129	The polyconitid specimens described herein were collected from the Langshan

130	Formation on the western side of Dangqiong Lake in southern Nyima County (Fig.
131	1B). This fossil site is located in the southern Nyima Basin, about 450 km northwest
132	of Lhasa (DeCelles et al., 2007; Kapp et al., 2007). No palaeontological data have
133	previously been published from the Langshan Formation of the Nyima Basin.
134	According to the observations of Tong Zhang and Zhaoxiong Ma during field work,
135	these specimens were collected from the lower part of the upper Langshan Formation.
136	Furthermore, several large specimens of Auroradiolites were collected from the same
137	bed as these polyconitid specimens. Although the left valves of these Auroradiolites
138	specimens were not preserved, they are most likely attributable to A. biconvexus
139	because of the large size of the right valves. As the age range of A. biconvexus was
140	revised to late Aptian–Albian (Rao et al., 2017), and the geological range of the upper
141	Langshan Formation is late Aptian to early Cenomanian (Rao et al., 2015), a late
142	Aptian to Albian age can be assumed for these polyconitid specimens.
143	3. Systematic palaeontology
144	This published work and the nomenclatural acts it contains have been registered
145	in Zoobank: http://www.zoobank.org/References/xxxxxx
146	The numbered specimens are housed at the Nanjing Institute of Geology and
147	Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008,
148	China (NIGPAS).
149	Abbreviations: <i>at</i> , anterior tooth; <i>ct</i> , central tooth; <i>Lam</i> , anterior myophore of left
150	valve; Lig, Ligamentary infolding; Lpm, posterior myophore of left valve; LV, left

151 valve; *ol*, outer shell layer; *pt*, posterior tooth; *Ram*, anterior myophore of right valve;

152	Rpm, posterior myophore of right valve; RV, right valve.
153	Quantitative characters (Fig. 2): Dap, antero-posterior commissural diameter,
154	Ddv, dorso-ventral commissural diameter; Hd, dorsal height of RV; Hv, ventral height
155	of <i>RV</i> ; <i>LVc</i> , convexity of the <i>LV</i> .
156	The suprageneric classification used herein follows Skelton (2013 <i>a</i> , <i>b</i>).
157	[Figure 2 hereabouts]
158	Order HIPPURITIDA Newell, 1965 (nom. correct. Scarlato & Starobogatov, 1971,
159	pro Order Hippuritoida Newell, 1965; emend. Bouchet et al. 2010)
160	Suborder HIPPURITIDINA Newell, 1965 (Skelton, 2013b)
161	Superfamily RADIOLITOIDEA d'Orbigny, 1847
162	Family POLYCONITIDAE Mac Gillavry, 1937
163	Genus SHAJIA gen. nov.
164	LSID. urn:lsid:zoobank.org:act: xxxxxx
165	Type species. Shajia tibetica gen. et sp. nov.
166	Derivation of name. The new genus is named for Professor Jingeng Sha, a
167	well-known Chinese palaeontologist who has made extensive studies of Mesozoic
168	bivalves and of the geological evolution of the Qinghai–Xizang Plateau (Tibet). In

- 169 recent years, he has focused on reviewing the rudist record of China, including
- 170 publication of an important paper in *Cretaceous Research* to revise the late Aptian–
- 171 Albian Yasin-type rudist fauna of the Himalayan area (Sha and Cestari, 2016). We
- 172 chose his name as the root for the new genus erected herein in honour of his

173 contributions to Himalayan, and especially Tibetan rudist research.

174	Diagnosis. Large-sized polyconitid (antero-posterior commissural diameter can reach
175	90mm). RV conical and slightly twisted, LV low capuloid with dorsally over-hanging
176	umbo. Ventral height of RV is less than twice the dorsal height, resulting in a dorsally
177	inclined commissure. Outer shell layer is relatively thick, especially in the RV where
178	its thickness may reach nearly 10 mm, on which longitudinal ribs are also developed.
179	Subequal teeth of $LV(at > pt)$ straddling the straight and erect central tooth of RV .
180	Ligamentary infolding strongly developed. LV anterior myophore a narrow, flat-ended
181	buttress projecting in from the anterior valve wall and facing onto the shelf-like
182	anterior myophore of the RV, which is formed by a thickening of the inner shell layer.
183	Posterior myophore in LV is a plate projected subparallel to the posterior valve wall,
184	from which it is thus separated by a sub-rectangular ectomyophoral cavity; the
185	adductor insertion surface on the broad tip of the Lpm is inclined somewhat outwards
186	so as to face onto the depressed, inwardly sloping surface of the RV posterior
187	myophore, which is formed by a pillow-like swelling of the inner shell layer.

188 [Figure 3 hereabouts]

Discussion. The thickening of the outer shell layer, especially of the *RV*, the subequal teeth of the LV(at > pt) and reflexed plate-like Lpm with adjacent ectomyophoral cavity, all observed in the Nyima specimens (Figs. 3A; 4-6) are diagnostic characters of the family Polyconitidae Mac Gillavry, 1937 (Skelton, 2013a). Comparisons thus need to be made with the handful of known genera in that family, starting with those

194 most easily excluded from further consideration.

195	The lack of sub-division into multiple canals of the LV posterior ectomyophoral cavity
196	of the Nyima specimens (Figs. 3A) rules out the genus Magallanesia Sano et al., 2014
197	(= 'Polyconitid new taxon 1' in Skelton et al., 2013) (Fig. 3F). The genus Polyconites
198	Roulland, 1830, can also be excluded as the LV of this genus is nearly flat
199	(operculiform), the external surface of the shell lacks ribbing, and the posterior
200	myophore of the RV is generally represented only by a slight thickening of the inner
201	shell layer, at least in more derived species (Fig. 3D) (Masse et al., 1998; Skelton and
202	Masse, 1998; Skelton, 2013a), although it is a little more prominent in juvenile shells
203	of more primitive species (Skelton et al., 2010).
204	The external morphology of the Nyima specimens is similar to that of the genus
205	Horiopleura, including the sparse, subdued longitudinal ribs (Fig. 4D), similar to
206	those described from the Himalayan species Horiopleura haydeni by Douvillé (1926)
207	and Rossi Ronchetti (1965). Moreover, the anterior myophoral arrangement of Shajia
208	differs little from that seen in Horiopleura species (e.g., Fig. 3C). However, the
209	depressed, inwardly sloping <i>Rpm</i> in the Nyima specimens (Fig. 3A) contrasts sharply
210	with that in Horiopleura haydeni, which projects upward so as to face back onto the
211	inner face of the Lpm (Fig. 3B). The same contrast is observed, moreover, in the type
212	species of Horiopleura, H. lamberti Douvillé, 1889 (Fig. 3C), as well as in the more
213	derived genera Praecaprotina (Fig. 3E), and 'Polyconitid new taxa 2 and 3' (Skelton
214	et al., 2013), both of the latter additionally showing only a weakly convex LV.

215	Otherwise, both <i>Tepeyacia</i> and 'Polyconitid new taxon 4' (Skelton et al., 2013) are
216	characterized by distinctive pleated infoldings of the RV outer shell layer, not
217	observed in the Nyima specimens, while the polyconitid affinity of Douvillelia and
218	Jerjesia is in any case questionable (Skelton, 2013a; Masse et al., 2015) as neither
219	appears to possess the diagnostic <i>LV</i> posterior ectomyophoral cavity.
220	In a recent review of the genus Horiopleura, however, Masse and Fenerci-Masse
221	(2017, p. 54) noted that the outwardly inclined (facing towards the posterior side)
222	and/or concave upward form of the Rpm (as in Fig. 3B, C) is 'reported in the group of
223	large, advanced species, e.g. Horiopleura lamberti; [whereas] in the group of small,
224	putative primitive species, the inclination may be inwards (towards the anterior side),
225	but a posterior shoulder is always present, a character that differentiates it from
226	Polyconites'. All the figured specimens of the 'putative primitive species' assigned to
227	Horiopleura by Masse and Fenerci-Masse (2017; e.g., Figs. 7C, 8E, F, 9A, B, 13A3
228	therein) indeed show this 'shoulder' to be a consistent attribute, such that adductor
229	insertion area on the <i>Rpm</i> invariably forms a distinct ledge (either flat or slightly
230	concave) that is oriented sub-parallel to the commissural plane.
231	Nevertheless, an Albian specimen from Parnassus, Greece, described by Masse and
232	Fenerci-Masse (2017; Fig. 19B therein) and assigned by them to <i>H. distefanoi</i> Parona,
233	1909, does show an inwardly sloping Rpm with a correspondingly suppressed internal
234	shoulder – a feature accordingly incorporated in their diagnosis for the species: 'RV

ledge like posterior myophore sloping inwards' (Masse and Fenerci-Masse, 2017; p.

236	72). Accordingly, we suggest that the species that includes that specimen, if not H .
237	distefanoi itself (pending confirmation the myophoral condition cited above in that
238	species), might be allied with the new genus proposed herein, as an intermediate form,
239	on the grounds that it differs from other species of Horiopleura by the marked inward
240	inclination of the <i>Rpm</i> with associated suppression of the internal shoulder. This
241	myophoral distinction is analogous to that which was used diagnostically to separate
242	the earliest species of Polyconites, P. hadriani, from its inferred ancestral species of
243	Horiopleura (Skelton et al., 2010), though additionally accompanied in that case by
244	the pronounced flattening of the LV, in contrast to Shajia. Likewise, we propose that a
245	single specimen from Ladakh that was assigned to Polyconites? sp., by Masse and
246	Fenerci-Masse (2017), and which shows remarkably similar characteristics to those of
247	the Nyima specimens (see below), should also be transferred to the genus Shajia.
240	As and list it when I are Antion to Albian for the mulicit bearing lineations had of
248	Age and distribution. Late Aptian to Albian for the rudist-bearing limestone bed of
249	Nyima County in Tibet (China), and late Aptian for the single specimen recorded from
250	Ladakh (northern India); therefore, a late Aptian to Albian age should be assigned to
251	this new genus based on current records.

- 252
- 253 *Shajia tibetica* sp. nov.
- 254

Figures 4–6

255 *LSID*. urn:lsid:zoobank.org:act: xxxxxx

256 ? aff. 2017 Horiopleura distefanoi (Parona, 1909) Masse and Fenerci-Masse, fig. 19B

257	2017 Polyconites ? sp. Masse and Fenerci-Masse, fig. 20
258	Derivation of name. From Tibet, the type locality where the new species was found.
259	Material. Two articulated specimens (NIGP. 110522-110523), with the outer shell
260	layer partially worn. The <i>RV</i> apices of both specimens were broken.
261	Holotype. Articulated specimen (NIGP. 110522; Figs. 4, 5). Two antero-posterior
262	sections cutting through both valves were made (Fig. 4C), the more ventral section
263	(Fig. 5A-B) oblique to the commissural plane and the more dorsal section (Fig. 5C-D)
264	sub-perpendicular to it.
265	Paratype. Articulated specimen (NIGP. 110523; Fig. 6). Three obliquely transverse
266	sections were made (Fig. 6A): the upper one cuts through both valves (the
267	over-hanging dorsal part of the LV and the ventral part of the RV, Fig. 6C); the middle
268	one cuts mainly across the RV, though including the umbonal tip of the LV (Fig. 6D,
269	E); and the lower section cuts across the <i>RV</i> only (Fig. 6F).
270	Localities. The specimens were collected from the Langshan Formation of Nyima
271	County, Tibet. The fossil site is located at the west side of Dangqiong Lake (E
272	86°27′23″, N 31°36′53″; Fig. 1B).
273	Diagnosis. As for genus.
274	[Figures 4–6 hereabouts]

Description. 275

276	<i>External morphology</i> . The two specimens are relatively large; although both <i>RV</i>
277	apices are broken, values of Hd can be estimated at about 70 mm, and of Hv up to 120
278	mm, creating a dorsally inclined commissure. The RV is slightly twisted and curved
279	and the LV is of low capuloid form, becoming gradually lower from the dorsal to
280	ventral parts (Fig. 4C). The commissure is sub-rounded in the holotype, with a 90 mm
281	diameter, whereas in the paratype it is elliptical because of dorso-ventral compression,
282	with a 90 mm Dap and a 50 mm Ddv . Although the <i>ol</i> is partly worn or encrusted,
283	blunt longitudinal ribs could be observed in each RV (Figs. 4D, 6B); rib width is about
284	2 mm. In the LV , fine costae radiate from the apex to the commissural rim.
285	The invaginated ligament, supported on an infolding of the dark outer shell layer,
286	created a longitudinal furrow on the dorsal flank of the RV (Fig. 6A, F). The extent of
287	external wear of the specimens precludes the possibility of recognizing radial bands
288	either in the transverse sections, or on the natural surfaces of the shells.
289	Internal organization. The thickness of the dark outer shell layer may approach 10
290	mm in parts of the RV (Figs. 5, 6C-F). In the LV, in contrast, it is only a few mm thick,
291	thickening slightly towards the commissure (Fig. 5). The inner shell layer is thick,
292	especially in the myocardinal area, and has been replaced by white to pale grey calcite
293	spar (Figs. 5, 6 C, D, F). In the oblique transverse section of the paratype RV, the ol
294	infolding associated with the invaginated ligament is about 3 mm wide and 6 mm in
295	length, and a small ligamentary cavity wraps around its truncated inner tip (Fig. 6F).
296	The myocardinal complex is well displayed in both specimens despite some
297	localized boring and minor disruption by narrow, spar-filled fractures and stylolites.

298	The <i>Lpm</i> is prominent, pedunculate, and reflexed so as to lie nearly parallel to the
299	over-arching posterior shell wall of the LV, from which it is thus separated by an
300	ectomyophoral cavity of sub-rectangular shape in section (Fig. 5C, D); a narrow
301	annexe extends dorsally from the latter cavity above the pt (Figs. 5A, 6C, 'o'). The tip
302	of the Lpm, where the adductor muscle attached, faces outwards onto the depressed
303	and inwardly sloping face of the <i>Rpm</i> , which is formed by a swelling of the <i>RV</i> inner
304	shell layer (Fig. 5C, D). The <i>Rpm</i> thus appears in transverse section simply as a solid
305	thickening of the posterior inner shell, lacking any indication of an ectomyophoral
306	cavity behind it (Fig. 6D-F). The Lam is a protruding buttress with a bluntly
307	sub-rectangular termination in section, separated from the anterior valve wall by a
308	narrow gutter (Figure 5D). Its counterpart in the RV, the Ram, is formed by a
309	shelf-like thickening of the inner shell layer (Figs. 5C, D, 6D-F). The ct in the RV is
310	an erect, robust ridge interposed between the at and pt of the LV (Fig. 5A; 6D, E); at
311	is slightly larger than pt (Fig. 6D-F).

312 *Remarks*. The single Ladakh specimen, which was assigned to *Polyconites* ? sp., by Masse and Fenerci-Masse (2017; Fig. 20 therein), is closely comparable with the 313 Nyima specimens. It is similar to them in terms of the external morphology of the 314 shell (including the low capuloid form of the LV), the longitudinal ribbing of the RV, 315 316 and the myocardinal apparatus, with, in particular, a depressed, inward-sloping *Rpm* lacking a prominent internal shoulder (hence the appearance of 'strong affinity with 317 318 Polyconites' noted by Masse and Fenerci-Masse, 2017, p. 72). Though somewhat smaller than the Nyima specimens, this specimen is virtually identical in form to the 319

320	type material	found in	Tibet and	can thus	be considered	conspecific.
-----	---------------	----------	-----------	----------	---------------	--------------

321	As noted earlier, in the discussion of the genus, the specimen assigned to Horiopleura
322	distefanoi by Masse and Fenerci-Masse (2017) and thus perhaps that species - of
323	similar age to Shajia – likewise shows a comparable myophoral configuration, as well
324	as a LV of low capuloid shape. Taken together with other associated forms discussed
325	by them, such similarities may bear upon the evolutionary origin of the new genus.
326	Age and distribution. As for genus.
327	4. Discussion
328	4.1 Phylogenetic relationship of Shajia to other polyconitids
329	At first sight, Shajia appears to have a chimaeric combination of characters from both
330	Horiopleura and Polyconites: while its external shell form and ornamentation are very
331	similar to those of the larger species of Horiopleura, the posterior myophoral
332	arrangement, in particular, approaches that of Polyconites. Notwithstanding its
333	distinction from both of those genera, derivation from either of them appears plausible:
334	i.e., either from Horiopleura, through progressive inward inclination and depression
335	of the Rpm, analogously to that proposed for the earlier origination of P. hadriani
336	from an older Horiopleura sp. (Skelton et al., 2010), though without flattening of the
337	LV and loss of ribbing; or, alternatively, from a Polyconites sp., through reversal of
338	the LV flattening, to re-acquire a Horiopleura-like external shell shape, meanwhile
339	retaining a depressed, inwardly-inclined Rpm - in contrast to the pronounced

posteriorward tilt of the *Rpm* in the more derived species of *Horiopleura*.

341	Although Shajia is externally quite similar to the co-eval SW Asian H. haydeni in size
342	morphology, longitudinal ribs on the RV , as well as with respect to dentition, on the
343	evidence of the few specimens known so far, it differs sharply from the latter species
344	in its posterior myophoral organisation. Specifically, 1) the Lpm of Shajia is strongly
345	reflexed posteriorly, such that it is nearly parallel to the posterior LV shell wall,
346	forming a narrow sub-rectangular ectomyophoral cavity between them, whereas in <i>H</i> .
347	haydeni, the Lpm protrudes more directly down into the RV; 2) correspondingly, the
348	Rpm of Shajia is formed by the low, inward-facing swelling on the inner shell layer,
349	whereas in <i>H. haydeni</i> , the <i>Rpm</i> is tilted backwards to form an erect plate with the
350	adductor insertion surface on its posterior side (contrast Fig. 3A and B). As noted
351	earlier, a similar contrast is seen also with respect to <i>H. lamberti</i> , as well as other,
352	more derived polyconitid genera (Fig. 3 C, E, F).
353	On the other hand, co-eval species of <i>Polyconites</i> differ markedly from <i>Shajia</i> not
354	only in their external form and ornamentation, as noted above, but also in the more
355	extreme deflation of the <i>Rpm</i> (Fig. 3D). Furthermore, Sha and Cestari (2016) have
356	drawn attention to the remarkable lack of records to date of <i>Polyconites</i> from the SW
357	Asian Province (with the single exception of an unconfirmed mention of 'Polyconites
358	sp.', from Ladakh, by Mathur et al., 2008), weakening the circumstantial case for the
359	derivation of Shajia from the latter genus.

360 Thus, by default, on the basis of the currently available evidence the most likely

361 contender for the progenitor of *Shajia* is the species (or another, similar) represented

by the specimen referred to *H. distefanoi* by Masse and Fenerci-Masse (2017; Fig.

363	19B therein), as discussed above. According to this scenario, Shajia would represent
364	an iterative derivation of a <i>Polyconites</i> -like posterior myophoral organization from
365	one of the 'third group' of Horiopleura species from the southern margin of the
366	Mediterranean Tethys (extending to Oman) recognized by Masse and Fenerci-Masse
367	(2017; pp. 75–76 therein). If correct, such a derivation would present an intriguing
368	parallel with the appearance of another typically central to southern Tethyan form,
369	Sellaea sp., in the Langshan fauna (Rao et al., 2015).
370	4.2. The composition and age of the rudist fauna of the Langshan Formation
371	Study of rudists from the Langshan Formation was first conducted by Yang et al.
372	(1982). Six species assigned to four genera were described from Rutog County,
373	including Toucasia sp., Requienia? sp., Rutonia bangonghuensis Yang et al., 1982 and
374	three species of Praeradiolites, P. hedini Douvillé, 1916, P. biconvexus Yang et al.,
375	1982 and P. ngariensis Yang et al., 1982. Gou (1994) and Gou and Shi (1998)
376	described eight new species plus an undetermined ninth, assigned to three genera,
377	from the Langshan Formation of Coqen, Bangoin and Gegyai counties, comprising
378	seven species placed in Praeradiolites, P. gegyainensis Gou, 1994, P. exiguous Gou,
379	1994, P. perbellus Gou, 1994, P. gregareus Gou, 1994, P. daxungensis Gou and Shi,
380	1998, P. bangoinensis Gou and Shi, 1998, P. coquenensis Gou and Shi, 1998, together
381	with Coralliochama anomalusa Gou and Shi, 1998, and Gyropleura? sp.
382	Scott et al. (2010) restudied the specimens described by Yang et al. (1982) and
383	considered the rudist assemblage of the Langshan Formation to be Albian to
384	Cenomanian in age. They suggested that Monopleura sp., had been mistaken for

385	Toucasia sp., by Yang et al. (1982); they assigned Praeradiolites ngariensis to
386	Eoradiolites gilgitensis based mainly on the structure of the anterior and posterior
387	radial bands; and they attributed P. biconvexus to the genus Sphaerulites based on the
388	external morphology.
389	Rao et al. (2015, 2017) revised the rudist taxa of the Langshan Formation
390	described by Yang et al. (1982), Gou (1994), and Gou and Shi (1998). A new genus,
391	Auroradiolites, was proposed for the endemic grouping of SW Asian to Japanese
392	radiolitid species characterised by a compact ol, which were formerly attributed to
393	Praeradiolites by Yang et al. (1982), Gou (1994), and Gou and Shi (1998).
394	Eoradiolites cf. hedini, Magallanesia rutogensis and Sellaea sp. were also recognized,
395	based on newly collected specimens. The age of the rudist assemblage reported by
396	Rao et al. (2015, 2017) is most likely late Aptian to Albian, as the age range of A.
397	biconvexus was revised to late Aptian to Albian by Rao et al. (2017).
398	As the age range of the Langshan Formation goes no younger than the early
399	Cenomanian, according to orbitolinid data (Boudagher-Fadel et al., 2017), the rudist
400	assemblage described from the Langshan Formation by Rao et al. (2015, 2017) is
401	most probably late Aptian–Albian in age, though a younger age cannot be excluded.
402	4.3. Palaeobiogeographic implications
403	Horiopleura haydeni, and Auroradiolites gilgitensis, which together constitute
404	the 'Yasin-type' rudist fauna (Skelton et al., 2005), were both first described by
405	Douvillé (1926) as new species from the Yasin Group of the Gilgit region, northern
406	Pakistan. This fossil site (Table1, No. 4) is located in the northern Kohistan terrane,

407	next to the North Suture Zone, which separates Kohistan from the Asian continent
408	(Karakoram) to the north (Searle et al., 1999; Robertson and Collins, 2002; Khan et
409	al., 2009). Subsequently, Pudsey et al. (1985) described rudists and orbitolinids from
410	Kohistan, and proposed that the rudist-bearing limestone was of latest Aptian and/or
411	early to middle Albian age.
412	[Table 1 hereabouts]
413	In the adjacent Ladakh terrane, Horiopleura sp., tentatively compared with H.
414	haydeni by Upadhyay (2001), also co-occurs with Auroradiolites gilgitensis. This
415	rudist assemblage was identified from limestones within the Saltoro Formation near
416	the village of Shukur (Table1, No. 3) in the Nubra-Shyok valley region along the
417	Shyok Suture Zone, which separates Ladakh from the Karakoram to the north
418	(Upadhyay 2001, 2014). Upadhyay (2014) suggested a latest Aptian to early Albian
419	age for this rudist assemblage.
420	Further west in Afghanistan, Horiopleura haydeni has been reported from two
421	localities: Montenat et al. (1982) identified <i>H. haydeni</i> from the upper Aptian strata at
422	the Adi Gar Mountains, about 30km north-northwest of Spin Boldak in the Kandahar
423	region (Table1, No. 5); Rao et al. (2017) described two H. haydeni specimens, which
424	were found together with Auroradiolites gilgitensis, from the Khist hills, south of
425	Khash Rud, in central Afghanistan (Table1, No. 6).
426	Horiopleura haydeni thus has a relatively wide distribution extending along a
427	nearly east-west-oriented belt in southwestern Asia, including central Afghanistan,

428	Kohistan in northern Pakistan and Ladakh in northern India (Fig. 7). These Yasin
429	fauna species, per se, have not so far been recorded from the Lhasa Block, but instead
430	A. biconvexus – probably derived from A. gilgitensis – and the canaliculate
431	polyconitid genus <i>Magallanesia</i> were found there (Rao et al., 2015, 2017).
432	[Fig. 7 hereabouts]
433	Shajia tibetica was first recorded from Ladakh, as 'Polyconites sp.', without
434	detailed locality information, by Masse and Fenerci-Masse (2017). The specimens of
435	S. tibetica recorded herein from the Langshan Formation of Nyima County, northern
436	Lhasa Block (Fig. 7), were found in association with A. biconvexus, implying a late
437	Aptian to Albian age (Rao et al., 2015), which is in broad agreement, moreover, with
438	the generally accepted age of the Yasin fauna (Skelton et al., 2005; Sha and Cestari,
439	2016). Hence we conclude that S. tibetica and A. biconvexus can be regarded to be
440	regional variants of the 'Yasin fauna'. Our material thus demonstrates that the Yasin
441	fauna had already dispersed to the Lhasa Block by the late Aptian, which links the
442	Langshan Formation palaeogeographically with other mid-Cretaceous sites of
443	shallow-marine carbonate deposition in adjacent southwestern Asian regions.
444	The Kohistan–Ladakh terrane was situated between Asia to the north and India to
445	the south in mid-Cretaceous times (Rolland et al., 2002). Although the exact timings
446	of the collisions of the Kohistan–Ladakh terrane with Asia and with India,
447	respectively, are still controversial (Rehman et al., 2011), it is generally accepted that
448	the terrane itself was then located on the northern side of the Neo-Tethyan Ocean

449	(Chen et al., 1993; Searle et al., 1999). Meanwhile, according to the palaeogeographic
450	reconstruction of Asia, central Afghanistan was situated on the southern Asian margin
451	by mid-Cretaceous times (Chen et al., 1993; Zaman and Torii, 1999). At that time, the
452	Lhasa Block had already collided with the Asian continent, and was also located at the
453	northern margin of the Neo-Tethyan (Zhang, 2000; Leier et al., 2007). Therefore, all
454	the localities that have yielded Yasin fauna were arrayed along or offshore from the
455	southwestern Asian margin on the northern side of the Neo-Tethyan Ocean in the
456	mid-Cretaceous.
457	As discussed above, in the SW Asian/Pacific Faunal Province, Shajia and
458	Horiopleura haydeni were restricted to the southwestern Asia region. The genus
459	Praecaprotina of late Aptian-Albian age has only been recorded from Japan and the
460	Daiichi–Kashima Guyot in the Northwest Pacific (Masse and Shiba, 2010). The
461	canaliculate polyconitid genus Magallanesia, of likely late Albian age, was found not
462	only on Cebu Island and Takuyo–Daini Seamount, both located in the Pacific region
463	(Sano et al., 2014), but also on the Lhasa Block in southwestern Asia (Rao et al.,
464	2015). These polyconitid taxa, are all endemic to the combined southwestern Asia and
465	Pacific regions, and mostly co-occur with the radiolitid genus Auroradiolites, which is
466	characterised by an entirely compact outer shell layer and is also restricted to these
467	regions (Rao et al., 2017). Hence these findings suggest strong endemism in the rudist
468	fauna of the SW Asian/Pacific Faunal Province during the late Aptian to Albian
469	interval.

470 **5.** Conclusions

471	Shajia tibetica gen. et sp. nov., a new polyconitid rudist, is described from the
472	Langshan Formation of Nyima County in the northern Lhasa Block of Tibet. It is
473	similar in external form to Horiopleura haydeni Douvillé, 1926, an abundant species
474	of late Aptian to Albian age that is endemic to southwestern Asia, including
475	Afghanistan, Kohistan in northern Pakistan, and Ladakh in northern India. However,
476	Shajia differs from the latter species in its posterior myophoral arrangement: 1) Lpm
477	is strongly bent posteriorly, such that it is nearly parallel to the over-arching posterior
478	shell wall of the LV, thereby forming a sub-rectangular ectomyophoral cavity between
479	them; 2) <i>Rpm</i> is formed by an inward-inclined swelling of the inner shell layer,
480	without forming a projecting plate. A single specimen from Ladakh which was
481	assigned to Polyconites? sp. by Masse and Fenerci-Masse (2017), is reappraised and
482	transferred to Shajia. It was most likely derived from one of a small group of
483	Horiopleura species that dwelt on the southern margin of the Mediterranean Tethys
484	(extending to Oman) and which show a posterior myophoral arrangement approaching
485	that of Shajia. The geological range of Shajia is probably Upper Aptian to Albian,
486	combining the records from the Lhasa Block and Ladakh.
487	S. tibetica is associated with A. biconvexus, and as the age of the association is
488	basically in accordance with that of the Yasin fauna (H. haydeni and A. gilgitensis) it
489	may thus be considered as a regional variant of the latter association. This new
490	material thus shows that the Yasin fauna had already dispersed to the Lhasa Block by
491	the late Aptian, making the Langshan Formation comparable palaeobiogeographically
492	with other mid-Cretaceous shallow-water carbonate deposits in adjacent southwestern

Asia regions. 493

Acknowledgements 494

495	This work was supported by the National Natural Science Foundation of China
496	[grant numbers 41702014, 41730317 and 41302011], the State Key Laboratory of
497	Palaeobiology and Stratigraphy [grant number 20162110], the Strategic Priority
498	Research Program of the Chinese Academy of Sciences [grant number
499	XDB26000000], and by the China Geological Survey [grant number DD20160015]. It
500	is also a contribution to UNESCO-IUGS IGCP (United Nations Educational,
501	Scientific and Cultural Organization-International Union of Geological Sciences)
502	Project 632. We warmly thank our referees, Jean–Pierre Masse and Eulàlia Gili for
503	their detailed and constructive critical comments, which greatly helped us to improve
504	the presentation and arguments of our paper.
505	References
506	BOUCHET, P., ROCROI, JP., BIELER, R., CARTER, J.G. and COAN, E.V., 2010.
507	Nomenclator of Bivalve Families (P. B. and JP. R.) and Classification of Bivalve
508	Families (R.B., J.G.C. and E.V.C.). <i>Malacologia</i> , 52 , 1–184.
509	BOUDAGHERFADEL, M. K., HU, X., PRICE, G. D., SUN, G., WANG, J. and AN,

- W., 2017. Foraminiferal Biostratigraphy and Palaeoenvironmental Analysis of the 510
- Mid--Cretaceous Limestones in the Southern Tibetan Plateau. Journal of 511
- Foraminiferal Research., 47(2), 188–207. (in press). 512
- CHEN, Y., COURTILLOT, V., COGNÉ, J. P., BESSE, J., YANG, Z. and ENKIN, R., 513

- 514 1993. The Configuration of Asia Prior to the Collision of India: Cretaceous
- 515 Paleomagnetic Constrains. *Journal of Geophysical Research*, **98**, 927–941.
- 516 CHERCHI, A. and SCHROEDER, R., 2013. The Praeorbitolina/Palorbitolinoides
- 517 Association: an Aptian Biostratigraphic Key-–Interval at the Southern Margin of
- the Neo-–Tethys. *Cretaceous Research*, **39**, 70–77.
- 519 CUVILLIER, J. AND SZAKALL, V., 1949. Foraminifères d'Aquitaine, Première
- 520 partie (Reophacidae à Nonionidae), Boisseau Imp., Toulouse, 112 pp.
- 521 D'ORBIGNY, A. D., 1847. Sur les Brachiopodes ou Palliobranches (deuxième
- 522 Mémoire). Comptes Rendus Hebdomadaires des Séances de l'Académie des
- 523 *Sciences (Paris)*, **25**, 266–269.
- 524 DECELLES, P. G., KAPP, P., DING, L. and GEHRELS, G. E., 2007. Late
- 525 Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau:
- 526 Changing environments in response to tectonic partitioning, aridification, and
- regional elevation gain. *Geological Society of America Bulletin*, **119** (5--6), 654–

528 680.

- 529 DENG, Z. Q. and WANG, G. X., 2013. Mesozoic Corals and Sponges from Gê'gyai
- and Rutog, Xizang. *Acta Palaeontoligica Sinica*, **52**, 202–212. [In Chinese with
- 531 English abstract]
- 532 DI STEFANO, G., 1889. Studi stratigrafici e paleontologici sul sistema Cretaceo della
- 533 Sicilia. 1. Gli strati con *Caprotina* di Termini–Imerese. *Atti della Reale Accademia*
- *di Scienze, Lettere e Belle Arte di Palermo*, Nuova Serie, **10**, 1–44.
- 535 DOUVILLÉ, H., 1889. Sur quelques rudistes du terrain crétacé inférieur des Pyrénées.

- 536 Bulletin de la Société géologique de France, (3), **17**, 627–635.
- 537 DOUVILLÉ, H., 1909. Sur le genre *Eoradiolites* nov. *Comptes Rendus des Séances*
- *de la Société Géologique de France* (série 4), **9**, 77.
- 539 DOUVILLÉ, H., 1916. Les calcaires a Orbitolines et a Radiolites du Thibet. 145–147.
- 540 In HEDIN, S. (ed.) Southern Tibet Discoveries in former times compared with my
- 541 *own researches in 1906–1908. Vol. 5 Petrographie und Geologie I.* Beschreibung
- der Gesteinsproben, Anhang. Lithographic Institute of the General Staff of the
- 543 Swedish Army, Stockholm.
- 544 DOUVILLÉ, H., 1926. Fossiles recueillis par Hayden dans le Kashmir en 1906 et les
- 545 Pamirs en 1914; leur description. *Records of the Geological Survey of India*, **58**,
- 546 349–357.
- 547 ERMAN, A., 1854. Einige Beobachtungen über die Kreideformation an der
- 548 Nordküste von Spanien. Zeitschrift der Deutschen. *Geologischen Gesellschaft*, **6**,
- 549 596–611.
- 550 GOU, Z. H. and SHI, H., 1998. Rudists (Bivalvia) from the Cretaceous of Tibet,
- 551 China, with Descriptions of New Species. 255–266. In JOHNSON, P.A. and
- 552 HAGGART, J.W. (eds.). *Bivalves: an eon of evolution paleobiological studies*
- *honoring Norman D. Newell.* University of Calgary Press, Calgary, Canada, 461
- 554 pp.
- 555 GOU, Z. H., 1994. Rudists Fossils of Cretaceous Period in Gegyai Region, Tibet.
- *Tibet Geology*, **12**, 128–138. [In Chinese with English abstract]
- 557 HAY, W.W., DeCONTO, R., WOLD, C.N., WILSON, K.M., VOIGHT, S., SCHULZ,

- 558 M., WOLD-–ROSSBY, A., DULLO, W.-–C., RONOV, A.B., BALUKHOVSKY,
- A.N. and SOEDING E., 1999. Alternative Global Cretaceous Palaeogeography. In
- 560 BARRERA, E. and JOHNSON, C. (eds.). *The Evolution of Cretaceous*
- 561 *Ocean/Climate Systems, Geological Society of America Special Paper*, **332**, 1–47.
- 562 HENSON, F. R. S., 1948. Larger imperforate foraminifera of south-western Asia.
- 563 Families Lituolidae, Orbitolinidae and Meandropsinidae. *Monograph British*
- 564 *Museum (Natural History)*, London, 127pp.
- 565 KAPP, P., DECELLES, P. G., GEHRELS, G. E., HEIZLER, M. AND DING, L.,
- 566 2007. Geological records of the Lhasa-–Qiangtang and Indo––Asian collisions in
- the Nima area of central Tibet. *Geological Society of America Bulletin*, **119** (7--8),
- 568 917–933.
- 569 KHAN, S. D., WALKER, D. J., HALL, S. A., BURKE, K. C., SHAH, M. T. and
- 570 STOCKLI, L., 2009. Did the Kohistan-–Ladakh Island Arc Collide First with India?
- 571 *Geological Society of America Bulletin*, **121**, 366–384.
- 572 LEEDER, M. R., SMITH, A. B., and JIXIANG, Y., 1988. Sedimentology,
- 573 Palaeoecology and Palaeoenvironmental Evolution of the 1985 Lhasa to Golmud
- Geotraverse. *Royal Society of London*, *Philosophical Transactions*, *Series A*, 327,
 107–143.
- 576 LEIER, A. L., DECELLES, P. G., KAPP, P. and GEHRELS, G. E., 2007. Lower
- 577 Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding
- the Early Tectonic History of the Tibetan Plateau. *Journal of Sedimentary Research*,
- **77**, 809–825.

- 580 LEYMERIE, A., 1878, 1881. Description Géologique et Paléontologique des
- 581 Pyrénées de la Haute-Garonne. E. Privat, Toulouse, 2 v. [text (1878): 1010 p. atlas
 582 (1881)].
- LI, Z., DING, L., SONG, P., FU, J. and YUE, Y., 2017. Paleomagnetic Constraints on
- the Paleolatitude of the Lhasa Block during the Early Cretaceous: Implications for
- the Onset of India Asia Collision and Latitudinal Shortening Estimates Across
- Tibet and Stable Asia. *Gondwana Research*, **41**, 352–372.
- 587 LÖSER, H. and LIAO, W. H., 2001. Cretaceous Corals from Tibet (China) --
- 588 Stratigraphic and Palaeobiogeographic Aspects. *Journal of Asian Earth Sciences*,
- **19**, 661–667.
- 590 MAC GILLAVRY, H. J., 1937. Geology of the Province of Camagüey, Cuba, with
- 591 Revisional Studies in Rudist Paleontology. *Geographische en Geologische*
- 592 *Mededeelingen, Physiographisch–Geologische Reeks*, **14**, 168 pp.
- 593 MASSE, J. P. and FENERCI--MASSE, M., 2017. Taxonomy and Stratigraphy of Late
- 594 Barremian–Albian Species of *Horiopleura* Douvillé (Hippuritida, Polyconitidae) of
- the Mediterranean and Southwestern Asian Regions. *Cretaceous Research*, **76**, 53–
 80.
- 597 MASSE, J. P., ARIAS, C. and VILAS, L., 1998. Lower Cretaceous Rudist Faunas of
- 598 Southeast Spain: an Overview. *In*: MASSE, J. P., SKELTON, P.W. (Eds.),
- *Quatrième Congrès International sur les Rudistes*, Géobios, Mémoire Spécial, 22,
 193–210.
- MASSE, J. P., MOURGES, F. A. and FENERCI-MASSE. M., 2015. Aptian–Albian

- Rudist Bivalves (Hippuritida) from the Chilean Central Andes: Their
 Palaeoceanographic Significance. *Cretaceous Research*, 54, 243–254.
- 604 MASSE, J.P. and SHIBA, M., 2010. Praecaprotina kashimae nov. sp. (Bivalvia,
- 605 Hippuritacea) from the Daiichi-–Kashima Seamount (Japan Trench). *Cretaceous*
- 606 *Research*, **31**(2), 147–153.
- 607 MATHUR, N.S., JUYAL, K.P. and KUMAR, K. 2008. Biotic response to
- 608 Cretaceous—Eocene tectonic events at the northern margin of the Indian Plate and
- 609 the Indus--Tsangpo Suture Zone, Ladakh Himalaya, India. Journal of the
- 610 *Palaeontological Society of India*, **53**, 37–49.
- 611 METCALFE, I., 2006. Palaeozoic and Mesozoic Tectonic Evolution and
- 612 Palaeogeography of East Asian Crustal Fragments: The Korean Peninsula in
- 613 Context. *Gondwana Research*, **9**, 24–46.
- 614 MONTENAT, C., MOULLADE, M. and PHILIP, J., 1982. Le Crétacé inférieur à
- 615 Orbitolines et Rudistes d'Afghanistan central. *Géologie Méditerranéenne*, **9**, 109–
- 616 122.
- 617 NEWELL, N. D., 1965. Classification of the Bivalvia. American Museum Novitates,
- 618 **2206**, 1–25.
- 619 PAN, G., WANG, L., LI, R., YUAN, S., JI, W., YIN, F., ZHANG, W. and WANG,
- B., 2012. Tectonic Evolution of the Qinghai-–Tibet Plateau. *Journal of Asian Earth*
- 621 *Sciences*, **53**, 3–14.
- 622 PARONA, C.F., 1909. La fauna coralligena del Cretaceo dei Monti d'Ocre
- 623 nell'Abruzzo aquilano. Memoria per servire alla descrizione della carta geologica

- 624 *d'Italia*, **5**, 1–233.
- 625 PUDSEY, C. J., SCHROEDER, R. and SKELTON, P. W., 1985. Cretaceous
- 626 (Aptian/Albian) Age for Island-–Arc Volcanics, Kohistan, N. Pakistan. 150–168. In
- 627 GUPTA, V. J. (ed.). Contributions to Himalayan Geology, v. 3, Geology of western
- 628 *Himalayas*. Hindustan Publishing Corporation, Delhi.
- 629 RAO, X., SKELTON P. W., SANO S., LI, C., PAN, Y., LUO, H., CAI, H., PENG, B.
- and SHA, J., 2017. Evolution and Palaeogeographical Dispersion of the Radiolitid
- 631 Rudist genus *Auroradiolites* (Bivalvia: Hippuritida), with Descriptions of New
- 632 Material from Tibet and Archived Specimens from Afghanistan, *Papers in*
- 633 *Palaeontology*, **3**(2), DOI: 10.1002/spp2.1076.
- RAO, X., SKELTON, P.W., SHA, J., CAI, H. and IBA, Y., 2015. Mid--Cretaceous
- Rudists (Bivalvia: Hippuritida) from the Langshan Formation, Lhasa block, Tibet.
- 636 *Papers in Palaeontology*, **1**, 401–424.
- 637 REHMAN, H. U., SENO, T., YAMAMOTO, H. and KHAN, T., 2011. Timing of
- Collision of the Kohistan-–Ladakh Arc with India and Asia: Debate. *Island Arc*, 20,
 308–328.
- 640 ROBERTSON, A. H. F. and COLLINS, A. S., 2002. Shyok Suture Zone, N Pakistan:
- 641 Late Mesozoic–Tertiary Evolution of a Critical Suture Separating the Oceanic
- Ladakh Arc from the Asian Continental Margin. *Journal of Asian Earth Science*, **20**,
- 643 309–351.
- 644 ROEMER, F., 1849. *Texas*. Bonn, 464 pp.
- 645 ROLLAND, Y., PICARD, C., PÊCHER, A., LAPIERRE, H., BOSCH, D. and

- 646 KELLER, F., 2002. The Ladakh Arc of NW Himalaya: Slab Melting and Mantle
- Interaction During Fast Northward Drift of Indian Plate. *Chemical Geology*, 182,
 139–178.
- 649 ROSSI RONCHETTI, C., 1965. Rudiste e nerinee del cretaceo di Yasin (Pakistan
- 650 nord--occidentale). In DESIO A. (leader), BRILL E. J. (eds) Italian Expeditions to
- 651 *the Karakorum (K2) and Hindu Kush, Scientific Reports.* Part 4, 229–272. Leiden.
- 652 ROULLAND, F., 1830. Nouvelles observations sur les *Ichthyosarcolites*. Actes de la
- 653 Société Linéenne de Bordeaux, **4**, 164–166.
- 654 SAHNI, M. R., 1937. Discovery of Orbitolina-bearing Rocks in Burma, with a
- 655 Description of *Orbitolina birmanica* sp. nov. *Records of the Geological Survey of*
- 656 *India*, **71** (**4**), 360–375.
- 657 SANO, S. and MASSE, J. P., 2013. First record of a primitive radiolitid rudist from
- Japan. *Paleontological Research*, **17**, 317–324.
- 659 SANO, S., IBA, Y., SKELTON, P. W., MASSE, J.--P. AGUILAR, Y. M. and KASE,
- T., 2014. The Evolution of Canaliculate Rudists in the Light of a New Canaliculate
- Polyconitid Rudist from the Albian of the Central Pacific. *Palaeontology*, **57**, 951–
 962.
- 663 SCARLATO, O. A. and STAROBOGATOV, Y. I., 1971. Osnovnye Cherty Evolyutsii
- i sistema Klassa Bivalvia Morfologiya, Sistematika i Filogeniya Mollyuskov. *Trudy*
- *Zoologicheskogo Instituta, Akademiya Nauk SSSR*, **80**, 5–38. [In Russian]
- 666 SCHLAGINTWEIT, F. and WILMSEN, M., 2014. Orbitolinid Biostratigraphy of the
- Top Taft Formation (Lower Cretaceous of the Yazd Block, Central Iran).

- 668 *Cretaceous Research*, **49**, 125–133.
- 669 SCHROEDER, R. and CONRAD, M. A., 1968. Huitième note sur les Foraminifères
- du Crétacé inférieur de la région genevoise. *Eopalorbitolina charollaisi*, n. gen., n.
- sp., un Orbitolinidé nouveau du Barrémien à faciès urgonien. Compte rendu des
- séances de la Société de Physique et d'Histoire Naturelle de Genève, nouvelle série,
- **673 2(3)**, 145–162.
- 674 SCOTT, R. W., WAN, X., SHA, J. and WEN, S., 2010. Rudists of Tibet and Tarim
- Basin, China: Significance to Requientidae Phylogeny. *Journal of Paleontology*, 84,
- 676 444–465.
- 677 SEARLE, M. P., KHAN, M. A., FRASER, J. E., GOUGH, S. J. and JAN, M. Q., 1999.
- The Tectonic Evolution of the Kohistan Collision Belt Along the Karakoram
- Highway Transect, North Pakistan. *Tectonics*, **18**, 929–949.
- 680 SHA, J. and CESTARI, R., 2016. Late Aptian-Albian Yasin--type Rudist
- 681 Assemblage in the Himalayas: Palaeobiogeographic Implications. *Cretaceous*
- 682 *Research*, **65**, 34–47.
- 683 SKELTON, P. W. and MASSE, J.--P., 1998. Revision of the Lower Cretaceous Rudist
- 684 Genera *Pachytraga* Paquier and *Retha* Cox (Bivalvia: Hippuritacea), and the
- origins of the Caprinidae. *Géobios, mémoire spécial*, **22**, 331–370.
- 686 SKELTON, P. W., 2013a. Rudist Classification for the Revised Bivalvia Volumes of
- 687 the 'Treatise on Invertebrate Paleontology'. *Caribbean Journal of Earth Science*,
- **688 45**, 9–33.
- 689 SKELTON, P. W., 2013b. Rudist Classification: Nomenclatural Correction of

- 690 'Suborder Radiolitidina Skelton, 2013' to 'Suborder Hippuritidina Newell, 1965'.
- 691 *Caribbean Journal of Earth Science*, **45**, 34.
- 692 SKELTON, P. W., 2018. Part N, Volume 1, Chapter 26A: Introduction to the
- 693 Hippuritida (rudists): Shell structure, anatomy, and evolution. *Treatise Online*
- 694 104:1–37.
- 695 SKELTON, P. W., SANO, S. and MASSE, J.--P., 2013. Rudist Bivalves and the
- 696 Pacific in the Late Jurassic and Early Cretaceous. *Journal of the Geological Society*,
- **170**, 513–526.
- 698 SKELTON, P.W. and MASSE, J. P., 2000. Synoptic Guide to the Lower Cretaceous
- 699 Rudist Bivalves of Arabia. *SEPM Special Publication*, **69**, 85–95.
- 500 SKELTON, P.W. and SMITH, A.D., 2000. A Preliminary Phylogeny for Rudist
- 701 Bivalves: Sifting Clades from Grades. *In*: HARPER, E.M., TAYLOR, J.D.,
- 702 CRAME, J.A. (Eds.), the Evolutionary Biology of the Bivalves. Geological Society,
- London. Special Publication, **177**, 97–127.
- 704 SKELTON, P.W., GILI, E., BOVER--ARNAL, T., SALAS, R. and MORENO--
- BEDMAR, J.A., 2010. A New Species of *Polyconites* from the Lower Aptian of
- 706 Iberia and the Early Evolution of Polyconitid Rudists. *Turkish Journal of Earth*
- 707 *Sciences*, **19**, 557–572.
- 708 SKELTON, P.W., RAISOSSADAT, N., UPADHYAY, R. and BERNOULLI, D.
- 2005. 'Yasin--type' rudist fauna from eastern Iran and northern Ladakh. In
- FILKORN, H.N. (Ed.), SEPM Abstracts and Post--congress Field Guide, Seventh
- 711 International Congress on Rudists, p. 91. Austin. ISBN 1565761197.

- 712 SMOUT, A. H., 1956. Three new Cretaceous genera of foraminifera related to the
- 713 Ceratobuliminidae. *Micropaleontology*, **2**, 335–348.
- 514 STEUBER, T., 1999. Cretaceous Rudists of Boeotia, Central Greece. Special Papers
- 715 *in Palaeontology*, **61**, 229 pp.
- 716 UPADHYAY, R., 2001. Middle Cretaceous Carbonate Build-–Ups and Volcanic
- 717 Seamount in the Shyok Suture, Northern Ladakh, India. *Current Science*, **81**, 695–
 718 699.
- 719 UPADHYAY, R., 2014. Palaeogeographic Significance of 'Yasin--type' Rudist and
- 720 Orbitolinid Fauna of the Shyok Suture Zone, Saltoro Hills, Northern Ladakh, India.
- 721 *Current Science*, **106**, 223–228.
- WANG, L., PAN, G., DING, J., and YAO, D., 2013. Geological Mapping illumination
- 723 (1:1500000) of Qinghai–Tibet Plateau and Its adjacent area. Geological Publishing
- House, Beijing. 288pp. [In Chinese]
- 725 XZBGM (XIZANG BUREAU OF GEOLOGY and MINERAL RESOURCES), 1993.
- 726 *Regional geology of Xizang Autonomous Region.* Geological Publishing House,
- Beijing. 707pp. [In Chinese with English summary]
- YABE, H. and NAGAO, S., 1926. Praecaprotina, nov. gen. from the Lower
- 729 Cretaceous of Japan. Science Reports of the Tohoku Imperial University, Second
- 730 *Series*, **9**, 21–24.
- 731 YANG, T., MA, Y., ZHANG, S., BIAN, W., YANG, Z., WU, H., LI, H., CHEN, W.
- and DING, J., 2015. New Insights into the India Asia Collision Process from
- 733 Cretaceou Paleomagnetic and Geochronologic Results in the Lhasa Terrane.

- 734 *Gondwana Research*, **28**, 625–641.
- 735 YANG, Z., NIE, Z., WU, S. and LIANG, D., 1982. Cretaceous Rudists from Ngari,
- 736 Xizang (Tibet), Autonomous Region, China and Their Geologic Significance. Acta
- *Geologica Sinica*, **56**, 293–301. [In Chinese with English abstract]
- 738 YEHARA, S., 1920. A Pachyodont Lamellibranchia from the Cretaceous Deposits of
- 739 Miyako in Rikuchu. *Journal of the Geological Society of Tokyo*, **27**, 39–44.
- 740 YIN, A. and HARRISON, T. M., 2000. Geologic Evolution of the Himalayan--
- Tibetan Orogen. *Annual Review of Earth and Planetary Sciences*, **28**, 2211–2280.
- 742 YU, W. and XIA, J. B., 1985. Late Jurassic-Cretaceous Nerineids from Northern
- 743 Xizang. Acta Palaeontoligica Sinica, 24, 640–650. [In Chinese with English
- abstract].
- 745 ZAMAN, H. and TORII, M., 1999. Paleomagnetic Study of Cretaceous Red Beds
- from the Eastern Hindukush Ranges, Northern Pakistan; Paleoarc Construction of
- the Kohistan-–Karakoram Composite Unit before the India-–Asia Collision.
- 748 *Geophysical Journal International*, **136**, 719–738.
- 749 ZHANG, B. G., 1982. Orbitolina (Foraminifera) from Xizang. 51–80. In The Series
- of the Scientific Expedition to the Qinghai-Xizang (Tibet) Plateau, Paleontology of
- 751 *Xizang (Tibet), 4.* Science Press, Beijing. [In Chinese with English abstract].
- 752 ZHANG, B. G., 1986. Early Cretaceous Orbitolinids from Xainza and Baingoin,
- 753 Xizang. In Bulletin of Nanjing Institute of Geology and Palaeontology, Academia
- *Sinica*, **10**, 101–122. [In Chinese with English abstract].
- 755 ZHANG, B. G., 1991. Cretaceous Larger Foraminifera Orbitolines from Ngari,

- 756 Western Xizang (Tibet). 68–87. In SUN, D. L., XU, J. T. et al. (eds). Stratigraphy
- and Palaeontology of Permian, Jurassic and Cretaceous from the Rutog Region,
- 758 Xizang (Tibet). Nanjing University Press, Nanjing. [In Chinese with English
- abstract].
- 760 ZHANG, B. G., YANG, S. Q., SUN, D. L. and YE, C. H., 1986. Cretaceous System.
- 761 In Bulletin of Nanjing Institute of Geology and Palaeontology, Academia Sinica, 10,
- 762 46–55. [In Chinese with English abstract].
- 763 ZHANG, K. J., 2000. Cretaceous Palaeogeography of Tibet and Adjacent Areas
- 764 (China): Tectonic Implications. *Cretaceous Research*, **21**, 23–33.
- 765 ZHANG, K. J., XIA, B. D., WANG, G. M., LI, Y. T. and YE, H. F., 2004. Early
- 766 Cretaceous Stratigraphy, Depositional Environments, Sandstone Provenance, and
- 767 Tectonic Setting of Central Tibet, Western China. *Geological Society of America*,
- 768 *Bulletin*, **116**, 1202–1222.
- 769 ZHU, D., ZHAO, Z., NIU, Y., DILEK, Y., HOU, Z. and MO, X., 2013. The Origin
- and Pre--Cenozoic Evolution of the Tibetan Plateau. *Gondwana Research*, 23,
- 771 1429–1459.
- 772
- 773

774	Table caption
775	Table 1. Localities yielding Shajia and Horiopleura haydeni in the SW Asian/Pacific
776	Faunal Province, with currently assigned ages. See Fig. 7 for the geographical
777	distribution of these localities.
778 779	Figure Captions
780	1. Location of study area. (A) Map showing the tectonic framework of Tibet and the
781	outcrops of the Langshan Formation (grey) in the Lhasa Block (after XZBGM,
782	1993; Wang et al., 2013). (B) Locality map for Shajia in Nyima County (red
783	rectangle in A). Abbreviations: BNS, Bangong–Nu Suture; IYS, Indus–Yarlung
784	Suture.
785	[in colour]
786	2. Abbreviations of quantitative characters used for the description of <i>Shajia</i> (<i>LV</i> ,
787	left valve; RV, right valve): Dap, antero-posterior commissural diameter, Ddv,
788	dorso-ventral commissural diameter; Hd, dorsal height of RV; Hv, ventral height
789	of <i>RV</i> ; <i>LVc</i> , convexity of the <i>LV</i> .
790	[in black and white]
791	3. Diagrammatic antero-posterior sections across both valves of <i>Shajia</i> and other
792	similar polyconitids (outer shell layer shown in black; inner shell, in grey). A,
793	Shajia (based on Fig. 5D herein); B, Horiopleura haydeni (after Rossi Ronchetti,
794	1965, Plate 38, fig. 1; outer shell layer worn, and image reversed to facilitate
795	comparison); C, Horiopleura lamberti (after Skelton and Smith, 2000, Fig. 7); D,
796	Polyconites (after Skelton, 2013a, Fig. 7A); E, Praecaprotina yaegashii (after

797		Sano et al., 2014, Fig. 2); F, Magallanesia canaliculata (after Sano et al., 2014,					
798		Fig. 4D). Abbreviations: <i>Lam</i> , anterior myophore of left valve; <i>Lpm</i> , posterior					
799		myophore of left valve; LV, left valve; Ram, anterior myophore of right valve;					
800		<i>Rpm</i> , posterior myophore of right valve; <i>RV</i> , right valve.					
801	[in	black and white]					
802	4.	Shajia tibetica gen. et sp. nov., holotype articulated specimen (NIGP. 110522). A,					
803		dorsal view showing overhanging umbo of LV. B, ventral view. C, anterior view					
804		showing the oblique commissure and the convexity of the LV; red lines show the					
805		two sections made on this specimen; a, b, c, and d represent the positions of the					
806		sections shown in Figs. 5A–D respectively. D, posterior view of RV showing the					
807		longitudinal ribs (inset: magnified view of red rectangle).					
808	[in	colour]					
809	5.	Shajia tibetica gen, et sp. nov., holotype (NIGP, 110522): A–D, successively					
810		more ventrally situated antero-posterior sections of both valves, as indicated either					
810 811		more ventrally situated antero-posterior sections of both valves, as indicated either side of the red lines in Fig. 4C (B and D are reversed so that all images are viewed					
810 811 812		more ventrally situated antero-posterior sections of both valves, as indicated either side of the red lines in Fig. 4C (B and D are reversed so that all images are viewed looking dorsally, for ease of comparison): A–B show the dentition; C–D show the					
810 811 812 813		more ventrally situated antero-posterior sections of both valves, as indicated either side of the red lines in Fig. 4C (B and D are reversed so that all images are viewed looking dorsally, for ease of comparison): A–B show the dentition; C–D show the myophoral organisation. Abbreviations: <i>at</i> , anterior tooth (from <i>LV</i>); <i>ct</i> , central					
 810 811 812 813 814 		more ventrally situated antero-posterior sections of both valves, as indicated either side of the red lines in Fig. 4C (B and D are reversed so that all images are viewed looking dorsally, for ease of comparison): A–B show the dentition; C–D show the myophoral organisation. Abbreviations: <i>at</i> , anterior tooth (from <i>LV</i>); <i>ct</i> , central tooth (from <i>RV</i>); <i>Lam</i> , anterior myophore of left valve; <i>Lpm</i> , posterior myophore					
 810 811 812 813 814 815 		more ventrally situated antero-posterior sections of both valves, as indicated either side of the red lines in Fig. 4C (B and D are reversed so that all images are viewed looking dorsally, for ease of comparison): A–B show the dentition; C–D show the myophoral organisation. Abbreviations: <i>at</i> , anterior tooth (from <i>LV</i>); <i>ct</i> , central tooth (from <i>RV</i>); <i>Lam</i> , anterior myophore of left valve; <i>Lpm</i> , posterior myophore of left valve; <i>LV</i> , left valve; <i>o</i> , annexe extending dorsally from the ectomyophoral					
 810 811 812 813 814 815 816 		more ventrally situated antero-posterior sections of both valves, as indicated either side of the red lines in Fig. 4C (B and D are reversed so that all images are viewed looking dorsally, for ease of comparison): A–B show the dentition; C–D show the myophoral organisation. Abbreviations: <i>at</i> , anterior tooth (from <i>LV</i>); <i>ct</i> , central tooth (from <i>RV</i>); <i>Lam</i> , anterior myophore of left valve; <i>Lpm</i> , posterior myophore of left valve; <i>LV</i> , left valve; <i>o</i> , annexe extending dorsally from the ectomyophoral cavity; <i>pt</i> , posterior tooth (from <i>LV</i>); <i>Ram</i> , anterior myophore of right valve; <i>Rpm</i> ,					
 810 811 812 813 814 815 816 817 		more ventrally situated antero-posterior sections of both valves, as indicated either side of the red lines in Fig. 4C (B and D are reversed so that all images are viewed looking dorsally, for ease of comparison): A–B show the dentition; C–D show the myophoral organisation. Abbreviations: <i>at</i> , anterior tooth (from <i>LV</i>); <i>ct</i> , central tooth (from <i>RV</i>); <i>Lam</i> , anterior myophore of left valve; <i>Lpm</i> , posterior myophore of left valve; <i>LV</i> , left valve; <i>o</i> , annexe extending dorsally from the ectomyophoral cavity; <i>pt</i> , posterior tooth (from <i>LV</i>); <i>Ram</i> , anterior myophore of right valve; <i>Rpm</i> , posterior myophore of right valve; <i>RV</i> , right valve.					

819	6.	Shajia tibetica gen. et sp. nov., paratype articulated specimen (NIGP. 110523). A,
820		dorsal view, commissure indicated by dashed red line; solid red lines show the
821		three transverse sections made of this specimen. B, anterior view showing the
822		longitudinal ribs on the RV. C, D–E and F show the three successively lower
823		transverse sections indicated in A, all in adumbonal view of the RV, revealing the
824		myocardinal organisation.
825		Abbreviations: <i>at</i> , anterior tooth (from <i>LV</i>); <i>ct</i> , central tooth (from <i>RV</i>); <i>Lig</i> ,
826		infolding of outer shell layer associated with invaginated ligament; Lpm, posterior
827		myophore of left valve (dorsalmost part only); LV, left valve; o, annexe extending
828		dorsally from the ectomyophoral cavity; <i>ol</i> , outer shell layer (of <i>RV</i>); <i>pt</i> , posterior
829		tooth (from LV); Ram, anterior myophore of right valve; Rpm, posterior myophore
830		of right valve; <i>RV</i> , right valve.
831	[in	colour]
832	7.	Present-day geographical map showing the fossil localities bearing Shajia and
833		Horiopleura haydeni, represented by red and blue stars respectively (see Table 1
834		for details). The base map was generated using the ODSN online Plate Tectonic
835		Reconstruction Service (Hay et al., 1999). CAF, central Afghanistan; KOH–LAD,
836		Kohistan–Ladakh terrane; LSA, Lhasa block.
837	[in	colour]
838		

839

Table 1

Record	Locality	Age	Species	References
1	Nyima County, Tibet,	late Aptian to	Shajia tibetica	This paper
	Southeast China	Albian		6
2	Ladakh, North India	late Aptian	S. tibetica	Masse and
			(='Polyconites	Fenerci-Masse,
			sp.')	2017
3	Shukur, Nubra-Shyok	latest Aptian	Horiopleura	Upadhyay, 2001,
	valley, Ladakh, North	to early	haydeni	2014
	India	Albian		
4	Yasin, Gilgit region,	latest Aptian	H. haydeni	Douvillé, 1926;
	Kohistan, Northwest	to middle		Rossi Ronchetti,
	Pakistan	Albian		1965; Pudsey et
				al., 1985; Sha
				and Cestari, 2016
5	Adi Gar Mt. (about 30 km	late Aptian	H. haydeni	Montenat et al.,
	N.N.W. from Spin			1982
	Boldak) in Kandahar,			
	Central Afghanistan			
6	Khist hills, south of	latest Aptian	H. haydeni	Rao et al., 2017
	Khash Rud, Central	to middle		
	Afghanistan	Albian		

CER HA

1 Highlights

- A new polyconitid rudist *Shajia tibetica* gen. et sp. nov., likely late Aptian to
 Albian in age, is described from the Langshan Formation of Nyima County, Tibet.
 Shajia is externally comparable with *Horiopleura haydeni* Douvillé, 1926, but
 differs in its possession of an inwardly inclined, instead of outwardly facing,
 posterior myophore in the right valve
 A single specimen from Ladakh that was assigned to *Polyconites*? sp. by Masse and
 Fenerci-Masse (2017), is revised and transferred to *Shajia*.
- 9 4. The *Shajia tibetica /Auroradiolites biconvexus* rudist association can be considered
- 10 a regional variant of the Yasin fauna.

CER CER

⁶Nanjing Center, China Geological Survey, Nanjing 210016, China; e-mail:

pengbocc@163.com₽

⁷Sichuan Geological Survey, No. 25 North Renmin Road, Chengdu 610084, China; e-

-

mail: <u>986573254@qq.com</u>, <u>mzx0120@163.com</u>+/