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ABSTRACT

Neural Stem Cells (NSCs) are self-renewing multipotent populations 

responsible for the generation of neurons and glial cells of the developing brain and 

account for the limited regenerative plasticity of the adult brain. In view of their 

reliable use as cellular model to study neurodegenerative diseases, and as 

potential donors in cell-based therapeutic approaches, we have isolated and 

characterized NSCs from a mouse model of a neurodegenerative Lysosomal 

Storage Disorder (LSD), the Multiple Sulfatase Deficiency (MSD), caused by 

mutations in the sulfatase modifying factor 1 (SUMF1) gene that encodes the 

enzyme responsible for sulfatase activation.

Isolated MSD-NSCs are phenotypically similar to wild-type precursors and are 

able to differentiate into neurons and astrocytes, although they show a progressive 

loss of their self-renewal capacity. Moreover, differentiated MSD cells recapitulate 

the main pathological features of the disease, such as progressive cell 

vacuolization, lysosomal accumulation of glycosaminoglycans (GAGs), altered 

autophagy with accumulation of poly-ubiquitinated proteins, and increased levels of 

apoptosis. Interestingly, glia-differentiated MSD cells display the tendency to form 

aggresomes, perinuclear aggregates of misfolded protein, which is a common 

feature to many neurodegenerative diseases.

We also showed that the overexpression of the Transcription Factor EB 

(TFEB), a master-gene that modulate lysosomal function and autophagy, induces 

lysosomal exocytosis through activation of mucolipin 1 (MCOLN1) and reduces



significantly primary and secondary pathologic storage, ameliorating the phenotype 

of MSD cells (Medina et al. 2011).

These results validate the use of NSCs isolated from LSD mouse models to 

study their neurodegenerative phenotype, and envisage their use to explore new 

therapeutic approaches by the modulation of TFEB expression in LSDs.
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INTRODUCTION

The lysosome

Lysosomes are cellular organelles present in all cell types, which are primarily 

involved in degradation and recycling processes (Kornfeld and Mellman 1989). The 

lysosome was first described by de Duve in 1955 as an acidic organelle containing 

a set of lysosomal enzymes (De Duve et al. 1955), whose function is the 

degradation of other cellular components. The first morphological demonstration of 

lysosomes by electron microscopy of organelles prepared from rat liver was 

presented by Alex Novikoff in 1956 (Novikoff, Beaufay, and De Duve 1956). Since 

these early days, much has been learned about lysosomes and related organelles, 

about their diverse functions, biogenesis and failures in disease.

According to its physiological function at different stages, lysosome can be 

divided into the primary lysosome, the secondary lysosome and the residual body 

(Zhang et al 2009). Primary lysosomes are membrane-bound intracellular 

organelles that contain a variety of hydrolytic enzymes; they fuse with membrane- 

bound vacuoles that contain material to be digested, forming secondary 

lysosomes. Once in the lumen of lysosomes, substrates are then degraded via a 

finely orchestrated network of soluble lysosomal hydrolases (also referred to as 

acid hydrolases), integral lysosomal membrane proteins (LMPs), lysosomal related 

organelles (LROs) and other cellular constituents (Saftig and Klumperman 2009).



After digestion occurred, secondary lysosomes become residual bodies, containing 

only indigestible or slowly digestible materials and within which enzymatic activities 

have become virtually exhausted (Zhang et al 2009).

Macromolecules are delivered toward lysosomes for degradation from the 

extracellular space through endocytosis or phagocytosis, as well as from the 

cytoplasm through autophagy (Doherty and McMahon 2009; Kornfeld 1986; 

Ravikumar et al. 2009). Due to their crucial function, lysosomes are involved in 

various cellular processes, such as cholesterol homeostasis (Lange at al. 1998), 

membrane repair (Reddy et al. 2001), bone and tissue remodelling (Chapman et al. 

1994), pathogen defence (Kanai et al. 1970), signal transduction (Mandeville et al.

1996), cell division (Allison and Mallucci 1964), neurotransmission (Holtzman 

1977) and cell death (Guicciardi et al. 2004). These complex functions highlight the 

fact that the lysosome is a central organelle which is much more than just the 

wastebasket of the cell (Saftig 2006).
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Components of lysosomes

As De Duve initially observed, lysosomes are limited by a single phospholipid 

bilayer. Their shape varies between globular and tubular (Saftig and Klumperman 

2009) and their detailed structure differs depending on the cell type. In fact, 

lysosomes can be morphologically heterogeneous due to differences in their 

internalized content. This heterogeneity of the lysosomal content appears usually 

electron-dense but often includes irregularities and membrane sheets (Saftig and 

Klumperman 2009).

A common characteristic of lysosomal compartments is their acidic interior 

with a pH of 4.5-5, which is maintained by the vacuolar H+-adenosine 

triphosphatases (v-ATPase), a transmembrane multiprotein complex (Schroder et 

al. 2010). Preservation of low pH is important for several lysosomal functions, such 

as cargo release, hydrolase maturation, vesicle maturation, autophagy and 

neurotransmitter loading into synaptic vesicles (Marshansky and Futai 2008; 

Mijaljica, Prescott, and Devenish 2011). Additionally, the pH gradient within the 

endomembrane system is required for intracellular trafficking and its loss can 

impair mannose-6-phosphate receptor (M6PR) recycling back to the Golgi for 

reloading of newly synthesized lysosomal hydrolases (Sobota et al. 2009).

Lysosomes contain more than 50 different acid hydrolases, such as 

proteinases, peptidases, phosphatases, nucleases, glycosidases, sulfatases and 

lipases, and several activator proteins that are localised mainly in the matrix. These 

hydrolases are then able to decompose macromolecules and even membranes 

into their monomeric constituents.



In other studies, it has been shown that cells can also contain lysosome-like 

organelles, such as melanosomes, lytic granules, major histocompatibility complex 

(MHC) class II compartments, platelet-dense granules and synaptic-like micro

vesicles (Dell’Angelica 2004). Nevertheless, acid hydrolases and LMPs are 

essential for the function of lysosomes.

Acid hydrolases

Each of the 50 known lysosomal acid hydrolases targets specific substrates 

for degradation, and their collective action is responsible for the total catabolic 

capacity of the lysosome (Saftig and Klumperman 2009). The breakdown products, 

such as amino acids, monosaccharides, oligosaccharides and nucleotides, are 

then transported back to the cytosol by specific transporter proteins residing in the 

lysosomal membrane (Saftig 2006). In addition to bulk degradation and pre-protein 

processing, lysosomal hydrolases are also involved in antigen processing, 

degradation of the extracellular matrix and initiation of apoptosis (Conus and Simon 

2008).

Lysosomal targeting of newly synthesized lysosomal proteins can be (1) 

direct, from the trans-Go\g\ network (TGN) to the endosomal system, or (2) indirect, 

involving transport to the plasma membrane and subsequent endocytosis (Saftig 

and Klumperman 2009).

Most newly synthesized lysosomal hydrolases enter the lysosomal 

compartment directly via the biosynthetic route (Figure 1). They are synthesized in 

the rough endoplasmic reticulum (ER) and then packaged into vescicles in the



Golgi apparatus. In the TGN, acid hydrolases undergo a critical modification of one 

or several of their carbohydrates to mannose-6-phosphate (M6P) moieties by the 

enzyme N-acetylglucosamine (GlcNAc)-phosphotransferase (Hasilik, Waheed, and 

von Figura 1981; Sleat et al. 2005); then acid hydrolases bind the M6PR that 

delivers them to endosomes (Kornfeld and Mellman 1989). There are two types of 

M6PR, 300 kD cation-independent M6PR (CIM6PR; also known as IGF2R) and 46 

kD cation-dependent M6PR (CDM6PR), both of which are ubiquitously expressed 

(Braulke and Bonifacino 2009). As the v-ATPase leads to acidification during the 

maturation of the endosomal compartment, the hydrolases dissociate from their 

receptors, which are then recycled back to the trans-Golgi network or to the cell 

surface (Saftig 2006) (Figure 1).

In the absence of a functional M6PR pathway, newly synthesized lysosomal 

hydrolases do not acquire M6P tags because of a deficiency in N- 

acetylglucosamine (GlcNAc)-phosphotransferase activity, also known as l-cell 

disease or mucolipidosis type II (Hasilik, Waheed, and von Figura 1981; Waheed et 

al. 1982; Reitman, Varki, and Kornfeld 1981). Nevertheless, in some l-cell diseased 

cells, a significant portion of newly synthesized lysosomal hydrolases do reach the 

lysosome (Waheed et al. 1982; Little et al. 1987; Owada and Neufeld 1982). In this 

condition, new hydrolases can follow the constitutive secretory pathway to the 

plasma membrane and after secretion might be taken up by endocytosis.
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Lysosomal Membrane Proteins

Lysosomes are surrounded by a single phospholipid bilayer that serves as a 

limiting membrane. Such lysosomal membrane has several functions including 

sequestration of lysosomal enzymes, mediation of fusion events, acidification of the 

lysosomal lumen and transport of degradation products to the cytoplasm (Saftig 

2006). In fact, the lysosomal membrane gathers the aggressive hydrolases to the 

organelle lumen, thus preventing undesired proteolytic damage to the 

surroundings; at the same time, it forms an impermeable barrier for the monomeric 

metabolites originating from the degradation of macromolecules, preventing their 

leakage in the cytoplasm. Therefore selective transport proteins are required in 

order to clear these compounds from the lysosomal lumen and facilitate their efflux 

into the cytosol.

LMPs are highly glycosylated proteins decorating the luminal surface of 

lysosomal membranes (Koike et al. 2005). The mammalian lysosome contains -25 

LMPs (Lubke, Lobel, and Sleat 2009), although additional LMPs are currently being 

revealed (Lubke, Lobel, and Sleat 2009; Schroder et al. 2007; Callahan, Bagshaw, 

and Mahuran 2009). The most abundant LMPs are lysosome associated 

membrane protein 1 and 2 (LAMP1 and LAMP2), lysosome integral membrane 

protein 2 (LIMP2, also known as SCARB2) and the tetraspanin CD63 (Saftig and 

Klumperman 2009). The sorting of most lysosomal membrane proteins depends on 

short sequence motifs within their cytoplasmic tails, which are necessary and 

sufficient to target them to lysosomes (Saftig 2006).

Furthermore, lysosomal membranes are characterized by a system of
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transporters that play several important roles, such as establishing controlled acidic 

pH in the lysosome, absorption of the products of digestion, the release of Ca2+ 

from the lysosomal lumen that drives the fusion of lysosomes with late endosomes, 

and transport of the metals bound to endocytosed proteins across the lysosomal 

membrane into the cytoplasm (Ruivo et al. 2009; Jentsch 2007; Luzio et al. 2005). 

Among them, lysosomes contain also members of the transient receptor potential 

(TRP) superfamily; in particular, a key role is played by MCOLN1, an ion channel 

belonging to the subfamily of mucolipins (TRPMLs), which localizes also to late 

endosomes membrane. It has been shown that the channel is permeable to 

multiple ions including Ca2+, Fe2+, Na+, K+, Zn2+ and H+ (X.-P. Dong et al. 2008; 

LaPlante et al. 2002; Raychowdhury et al. 2004) and therefore it appears to be a 

prominent lysosomal metal transporter. Although the exact function of MCOLN1 

remains to be conclusively proven, it is becoming evident that it functions as a 

lysosomal Ca2+ release channel. Membrane trafficking deficits (Treusch et al. 

2004), as well as impaired fusion of lysosomes with autophagosomes in MCOLN1 

deficient cells (Vergarajauregui and Puertollano 2006) support the role of 

MCOLN1-mediated Ca2+ release in the Ca2+-dependent membrane fusion along 

the endocytic pathway.

Besides transport proteins, the membrane also contains other enzymes, 

including the heparan-a-glucosaminide N-acetyltransferase (HGSNAT), which uses 

cytosolic acetyl coenzyme A for the acetylation of non-reducing terminal a- 

glucosaminyl residues of the heparan sulphate degradation intermediates in the 

lysosomal matrix (Fan et al. 2006; Hrebfcek et al. 2006).
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Figure 1. Transport of newly synthesized lysosomal hydrolases to 

lysosomes.

Lysosomal hydrolases are synthesized in the endoplasmic reticulum and move to 

the cis-Golgi network (CGN), were they are covalently modified by the addition of 

M6P groups. At the TGN, the M6P signal allows the segregation of lysosomal 

hydrolases from all other types of proteins through selective binding to the M6P 

receptors. The clathrin-coated vesicles produced bud off from TGN and fuse with 

late endosomes. At the low pH of the late endosome, the hydrolases dissociate 

from the M6PRs and the empty receptors are recycled to the Golgi apparatus for 

further rounds of transport.

Model taken from Coutinho et al. 2012
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Lysosomal Related Organelles

LROs are specialised lysosomes with cell-type specific functions, such as 

melanosomes in melanocytes, Weibel-Palade bodies in endothelial cells, lamellar 

bodies in type II pneumocytes, dense bodies in plateles and granules in cytotoxic T 

cells and natural killer cells (Raposo, Marks, and Cutler 2007). LROs usually co

exist with normal lysosomes. They share features of late endosomes/lysosomes 

but are functionally, morphologically and compositionally distinct; they can also 

contain cell-type-specific proteins and might require additional cellular machinery 

for their biogenesis (Bonifacino 2004; Dell’Angelica 2004). Some LROs resemble 

lysosomes morphologically with electron-dense protein deposits and/or 

intralumenal membranes, and are accessible to endocytic traffic (Raposo, Marks, 

and Cutler 2007); other LROs present entirely novel morphological features as a 

product of their unique cargo, such as the proteinacious fibrils of melanosomes, the 

proteinacious tubules of Weibel-Palade bodies and the lipid swirls within lamellar 

bodies (Raposo and Marks 2002; Bonifacino 2004).

Together with lysosomes, LROs are involved in various physiological 

processes, such as cholesterol homeostasis, plasma membrane repair, bone and 

tissue remodelling, pathogen defence, cell death and cell signalling (Saftig and 

Klumperman 2009).

14



Function of lysosomes

Lysosomes are involved in several cellular processes including endocytosis, 

phagocytosis, autophagy and exocytosis (Figure 2).

Endocytosis and Lysosome Formation

One of the most important functions of lysosomes is the digestion of material 

taken up from outside the cell through endocytosis. However, this function is 

directly related also to lysosome formation within the cell. In other words, lysosome 

biogenesis represents an intersection between the secretory pathway, through 

which lysosomal proteins are processed, and the endocytic pathway, through 

which extracellular molecules are taken up at the cell surface. Specifically, 

lysosomes are formed by the fusion of transport vesicles budded from the TGN 

with endosomes, but they can also contain molecules taken up by endocytosis and 

coming from the plasma membrane. Material from outside the cell is taken up in 

clathrin-coated endocytic vesicles, which bud from the plasma membrane and then 

fuse with early endosomes. Membrane components are then recycled to the 

plasma membrane and the early endosomes gradually mature into late 

endosomes, which are the precursors to lysosomes. In addition, early endosomes 

receive also endogenous proteins from the TGN, such as M6PRs carrying acid 

hydrolases (Klumperman et al. 1993; Waguri et al. 2003) to be delivered to the 

lysosome; in this step, one of the important changes during endosome maturation 

is the lowering of the internal pH to about 5.5 (Figure 1).
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Acid hydrolases are then targeted to lysosomes by mannose-6-phosphate 

residues, which are recognized by M6PRs in the TGN and packed into clathrin- 

coated vesicles (Rohrer and Kornfeld 2001). The clathrin coat is then removed and 

transport vesicles fuse with late endosomes, causing the acidification of the internal 

pH; this change in the internal pH causes the dissociation of hydrolases from the 

M6PR. The hydrolases are thus released into the lumen of the endosome, while 

M6PRs remain in the membrane and are eventually recycled to the Golgi (Figure 

2). As late endosomes acquire a full complement of acid hydrolases they mature 

into lysosomes.
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Figure 2. Lysosomes are involved in several cellular processes and undergo 

maturation.

Lysosomes participate in endocytosis, phagocytosis, autophagy and exocytosis. 

During their biogenesis and maturation they are subjected to a few steps of 

maturation. Primary lysosomes contain hydrolytic enzymes, they fuse with other 

endocytic vesicles that contain material to be digested, forming secondary 

lysosomes; once digestion occurred, secondary lysosomes become residual 

bodies, containing only indigestible or slowly digestible materials.

Modified from The McGraw-Hill Companies, Inc. 2006
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Autophagy

The lysosome is the end-terminal for substrates coming from the autophagy 

pathway. Autophagy is a mechanism by which the cell digests its own intracellular 

components and other organelles, such as mitochondria (Figure 1 and 3). This 

process secures the cell’s supply with macromolecules under conditions of 

starvation and allows the disposal of unneeded and non-functional organelles 

(Schroder et al. 2010).

Autophagy also was first observed by de Duve in 1963 (De Duve 1963); he 

identified membrane-bound vesicles containing endogenous organelles undergoing 

digestion; various stimuli, including starvation and glucagon administration, 

stimulate this process.

Autophagy is critical for growth, development and survival and therefore it is 

highly conserved among eukaryotic organisms, from yeasts to mammals (T Lang et 

al. 2000; Noda et al. 2000; Young et al. 2006).

There are various types of autophagy, differing in their mechanisms and 

functions (Klionsky 2005): microautophagy, macroautophagy and chaperone- 

mediated autophagy (CMA). Microautophagy is the non-selective internalization of 

small cytosolic portions via lysosomal invaginations. Macroautophagy (hereafter 

referred to as autophagy) is the selective sequestration of cytoplasm or organelles 

that are enclosed in the double-membrane structures known as autophagosomes, 

which subsequently fuses with lysosomes. CMA is the selective targeting of 

specific cytosolic soluble proteins to the lysosome via molecular chaperones. This 

latter process involves a direct translocation of the unfolded protein through the

18



lysosomal membrane by a mechanism not fully clarified, although critically 

depending on an isoform of the lysosome-associated membrane protein 2 

(LAMP2A) as an essential component.

The first step of autophagy appears to be the formation of a cup-shaped 

structure, also referred to as an isolation membrane or pre-autophagosome, in the 

cytosol, where it gradually elongates to surround a portion of the cytoplasm and its 

constituents (Figure 3). Subsequently, the edges of the membrane fuse together to 

form a vesicle, which represents a double-membrane structure termed 

autophagosome (Juhasz and Neufeld 2006). Autophagosomes then undergo a 

maturation process consisting of multiple fusion events with both endosomes and 

lysosomes (Yoshimori 2004; Komatsu et al. 2006; Hara et al. 2006; Nakagawa et 

al. 2004; Ogawa et al. 2005; Ravikumar, Duden, and Rubinsztein 2002; Kamimoto 

et al. 2006; Eskelinen 2005) and their content is digested by lysosomal hydrolases. 

In fact, upon acquisition of lysosomal proteases and the v-ATPase, the interior of 

the autophagosome becomes acidified, and cytoplasmic materials are subjected to 

degradation (Kimura et al. 2007). Autophagosomes at this final stage, after fusion 

with lysosomes, are called autolysosomes (Figure 3).

Autophagy is regulated by more than 30 autophagy-related proteins (Atg), 

many of which have been discovered in yeast (Levine and Klionsky 2004). Most of 

the characterized ATG gene products, including Atg3, Atg5, Atg7, Atg10, Atg12, 

and LC3 (microtubule-associated protein 1 (MAPI) light chain 3), are involved in 

two ubiquitylation-like post-translational modifications of target proteins, which are 

the Atg 12-conjugation and the LC3-modification (Atg8-lipidation in yeast), which 

are essential for the dynamic process of autophagosome formation (Kabeya et al.
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2000; N Mizushima, Noda, et al. 1998; N Mizushima, Sugita, et al. 1998; Noboru 

Mizushima, Ohsumi, and Yoshimori 2002; I Tanida et al. 2001; Isei Tanida et al.

2002). Atg12-conjugation is essential for the formation of pre-autophagosomes, 

whereas LC3-modification is essential for the formation of autophagosomes 

(Kabeya et al. 2000; N Mizushima et al. 2001). Atg12 is activated by the E1 -like 

enzyme Atg7, transferred to the E2-like enzyme Atg10, and conjugated to Atg5 to 

form an autophagosomal precursor (N Mizushima, Noda, et al. 1998; N Mizushima, 

Sugita, et al. 1998; N Mizushima et al. 2001; Noboru Mizushima, Ohsumi, and 

Yoshimori 2002; Nemoto et al. 2003; I Tanida et al. 2001). LC3 is the mammalian 

orthologue of yeast Atg8 and its nascent form, ProLC3, is processed: its carboxyl 

terminal region is cleaved off to become a soluble cytosolic form, LC3-I, exposing a 

carboxyl terminal glicine residue (Kabeya et al. 2000). LC3-I is then activated by 

Atg7, transferred to Atg3, a second E2-like enzyme, modified with 

phosphatidylethanolamine and becomes a membrane-bound form, LC3-II (Tanida 

et al. 2001; Tanida et al. 2002). LC3-II is localized to both the outer and the inner 

membrane of pre-autophagosomes and autophagosomes (Kabeya et al. 2000). 

Following the fusion of autophagosomes with lysosomes, intra-autophagosomal 

LC3-II is degraded by lysosomal hydrolytic enzymes (Kabeya et al. 2000). The 

formation of LC3-II is therefore a good marker to monitor the occurrence of 

autophagosome formation (Kabeya et al. 2000) and thus LC3 is commonly used as 

an autophagosomal marker.

In mammalian cells, autophagy is regulated by nutrient availability and 

hormones, and has been suggested to be essential for cellular homeostasis 

(Kimura et al. 2007). In addition to its homeostatic function, autophagy plays quite
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important physiological roles. In fact, although autophagy is strongly induced under 

conditions of physiological stress, such as starvation, it also occurs at a basal level 

in normal conditions; for example, constitutive autophagy in nutrient-rich conditions 

is involved in intracellular protein quality control, in global turnover of cellular 

components (including organelles) (Komatsu et al. 2006; Hara et al. 2006) and as 

a defense mechanism against bacterial pathogens (Nakagawa et al. 2004; Ogawa 

et al. 2005) or the toxic effects of aggregate-prone proteins (Ravikumar, Duden, 

and Rubinsztein 2002; Kamimoto et al. 2006).
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Figure 3: Schematic diagram of the steps of autophagy.

Autophagy begins with the formation of the phagophore or isolation membrane 

(vesicle nucleation step). The concerted action of the autophagy core machinery 

proteins at the phagophore assembly site is thought to lead to the expansion of 

the phagophore into an autophagosome (vesicle elongation). The autophagosome 

can engulf bulk cytoplasm in a non-specific manner, including entire organelles, or 

target cargos specifically. When the outer membrane of the autophagosome fuses 

with a lysosome (docking and fusion steps), it forms an autophagolysosome, or 

autolysosome. Finally, the sequestered material is degraded inside the 

autophagolysosome (vesicle breakdown and degradation) and recycled.

Model taken from Melendez and Levine, 2009.
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Exocytosis

Lysosomes are also involved in a secretory pathway known as lysosomal 

exocytosis (Figure 1). Exocytosis is the removal of cellular cargo by fusion of 

vesicles with the plasma membrane (PM) (Figure 4). In response to a transient 

increase of cytosolic Ca2+, secretory vesicles move towards the PM, fuse with the 

membrane, and then expel the luminal contents into the external cellular 

environment. Initially, lysosomal exocytosis was considered to be limited to 

specialized secretory cells; in these cells, exocytosis has a housekeeping function 

responsible for the secretion of hormones, cytokines, and neurotransmitter. 

However, several studies indicate that this process occurs in all cell types (N W 

Andrews 2000; Rodriguez et al. 1997; Rodriguez et al. 1999). In fact, it has been 

demonstrated that in non-secretory cells exocytosis plays an important role in PM 

repair (Idone et al. 2008), bone resorption (Smit et al., 2000), cycling/recycling 

proteins to plasma membrane (Catala et al. 2009), pathogen invasion (Imai et al.,

2003), neurite outgrowth (Seiler et al. 2008), and cellular clearance (Pawelek and 

Lerner 1978; Boissy, Zhao, and Gahl 1998). In fact, lysosomes have traditionally 

been viewed as terminal degradative compartments, but they are the most 

important exocytic organelle in non-secretory cells, behaving as Ca2+-regulated 

exocytotic vesicles (Rodriguez et al. 1997).

Lysosomal exocytosis is an ATP- and temperature-dependent process, in a 

way similar to what is known for the classical secretory process (Rodriguez et al.

1997). Lysosomes have exocytic activity, a common feature with synaptic vesicles. 

In fact, they originate from a common early endosome and they also share
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mechanisms of exocytic activation. During the process of the synaptic vesicle 

release, action potentials of neurons reach the presynaptic terminal and activate 

several voltage-regulated Ca2+ channels; this event induces an influx of Ca2+ into 

the presynaptic cytoplasm, the fusion of the synaptic vesicle with the PM and, 

eventually, the release of the neurotransmitter (Nizami et al. 2010). The Ca2+ 

sensor synaptotagmin and the soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor (SNARE) synaptobrevin-2 decorate the synaptic 

vesicles membrane and were found to bind the PM through the corresponding 

SNAREs, syntaxin-1A and synaptosomal-associated protein 25 (SNAP-25), 

respectively (Thorsten Lang and Jahn 2008). The influx of Ca2+ into the cell drives 

interactions between the vesicular and target SNAREs synaptotagmin 7 (SYT7) 

and syntaxin 4 (Thorsten Lang and Jahn 2008), thus inducing lysosomal 

exocytosis.

Moreover, lysosome exocytosis has emerged also as an important 

mechanism for propagating the Ca2+ wave in astrocytes to modulate synaptic 

transmission (Li et al. 2008; Z. Zhang et al. 2007), although on a timescale orders 

of magnitude slower than synaptic transmission.

Lysosomal exocytosis requires two sequential steps. (Figure 4). In the first 

Ca2+-independent step (Jaiswal, Andrews, and Simon 2002), lysosomes are 

recruited to the close proximity of the cell surface. In the second step the pool of 

pre-docked lysosomes fuse with the PM in response to Ca2+ elevation, thus 

emptying their content outside the cell (N W Andrews 2000; Jaiswal, Andrews, and 

Simon 2002; Tucker, Weber, and Chapman 2004).

Taking advantage of exocytosis, lysosomes play a pivotal role in the
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degradation of extracellular matrix (ECM) proteins, cell invasion, and cell migration 

into the ECM (Lakka et al. 2004; Tu et al. 2008).

Exocytosis of lysosomes in response to a transient increase in intracellular 

Ca2+ was first observed in eggs of sea urchin, in which, during the fertilization 

process, thousand of secretory granules are released in response to an increase in 

intracellular Ca2+ concentration (Baker and Whitaker 1980). Furthermore, 

exocytosis, was also observed during cell invasion of Trypanosoma Cruzi: binding 

of the parasite to the cell membrane triggers calcium influx and subsequent fusion 

of lysosomes with the region of the plasma membrane that surrounds the invading 

parasite (Norma W Andrews 2002).

Although the main steps of lysosomal exocytosis have been elucidated, little 

is known about its regulation and how this process is coordinated with lysosomal 

biogenesis.
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Figure 4: Schematic diagram of the steps of lysosomal exocytosis.

Exocytosis is the removal of cellular cargo by fusion of vesicles with the plasma 

membrane (PM). This process requires two sequential steps. (1) In the first Ca2+- 

independent step, lysosomes are recruited to the close proximity of the cell 

surface. (2) In the second step the pool of pre-docked lysosomes fuse with the 

PM in response to Ca2+ elevation, thus emptying their content outside the cell.

Modified from Microbiology: An Evolving Science. Joan L. Slonczewski and John 

W. Foster.
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Lysosomal Storage Diseases

In 1932, Pompe made the crucial observation of extensive glycogen 

accumulation, within membrane-bound vesicles in the heart and skeletal muscles 

of a 7 months old patient who had died from cardiac complications. Based on these 

findings, in 1963 Hers and coworkers deduced the link between the deposition of 

glycogen in Pompe patients and the inherited deficiency of the hitherto unknown 

lysosomal enzyme alfa-D-glucosidase (Hers 1963), identifying the first lysosomal 

disorder. The discovery of the involvement of lysosomes in glycogen degradation 

gave rise to the concept that also other lysosomal storage disorders could be 

explained by specific enzyme deficiencies (Parkinson-Lawrence et al. 2010).

Nowadays, LSDs are a class of metabolic disorders and comprise a group of 

more than 50 different genetic diseases (Wilcox 2004). Despite the large number 

and clinical diversity of lysosomal disorders, these diseases share some common 

features. First, they are typically inherited as autosomal recessive traits (only two 

are X-linked); second, they most commonly afflict infants and young children; third, 

most involve pathology of the brain; and fourth, when brain pathology is present 

they are untreatable (Jeyakumar et al. 2005). Although each of these conditions is 

rare, they exhibit a combined prevalence of 1:5,000 births; some of these disorders 

occur at higher frequency in geographically isolated populations owing to founder 

effects (Dahl, Hillborg, and Olofsson 1993), or in certain ethnic groups in which 

consanguineous marriages are common (Ozkara and Topgu 2004).

LSDs are caused by mutations in proteins critical for lysosomal function. They 

mostly involve the dysfunction of a specific soluble lysosomal hydrolases, which
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result in impaired degradation, substrate accumulation and lysosomal storage 

(Figure 5).

However, lysosomal integral membrane proteins, proteins involved in post- 

translational modifications, in vesicular trafficking and in the biogenesis of 

lysosomal proteins have also been shown to cause storage disorder phenotypes. 

For example, over the last years a number of defects in lysosomal membrane 

proteins have been recognized as the primary cause of lysosomal diseases (Ruivo 

et al. 2009). In fact, lysosomal accumulation can also occur if the correctly 

degraded compound is not properly transported to the cytosol (like in Salla disease 

and in cystinosis).

Other causes of LSDs are deficiencies in membrane-associated enzymatic 

activities (like HSGNAT in mucopolysaccharidosis type III C, MPSIIIC) and 

impairments of ion translocation (like MCOLN1 in mucolipidosis type IV, MLIV). For 

a significant number of LSDs caused by defects in lysosomal membrane proteins, 

the pathogenetic events at a molecular level and also the function of the protein 

under physiological conditions is incompletely understood (Schroder et al. 2010). 

This applies to neuronal ceroid lipofuscinosis (NCL) variants caused by defects in 

the membrane proteins CLN3 (Jalanko and Braulke 2009) and CLN7 (Siintola et al.

2007).

However the biochemical nature of the defects resulting in lysosomal storage 

is very diverse and in many cases the sequence of events leading to lysosomal 

dysfunction is only incompletely understood (Schroder et al. 2010).

In general, LSDs are typically characterized by enlarged lysosomes that 

contain partially degraded material as a result of a deficit in either degradation of
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specific compounds, such as glycosaminoglycans, lipids, or protein, or in transport 

across the lysosomal membrane or in endosome-lysosome trafficking. Any 

disruption of lysosomal function can lead to the accumulation of undegraded 

substrate(s) in endosomes and lysosomes, eventually compromising cellular 

function and ultimately resulting in a complex spectrum of clinical manifestations 

(Hopwood and Brooks 1997).

The accumulation of the primary storage material can cause a chain of 

secondary disruptions to other biochemical and cellular functions, which leads to 

the severe pathology observed in LSDs (Parkinson-Lawrence et al. 2010). Once 

material starts to accumulate, it builds up within lysosomes until the lysosomal 

burden of the cell reaches some maximum level, at which point storage material 

starts to accumulate in other parts of the cell (Jeyakumar et al. 2005). The 

accumulation of undigested molecules can subsequently alter many cellular 

processes, including lysosomal pH regulation, synaptic release, endocytosis, 

vesicle maturation, autophagy, exocytosis and Ca2+ homeostasis (Vitner, Platt, and 

Futerman 2010; Bellettato and Scarpa 2010; Ballabio and Gieselmann 2009; 

Bezprozvanny 2009). It is still undefined whether the storage material affects cell 

function only when it begins to accumulate in extra-lysosomal sites or if problems in 

cell homeostasis are triggered while the material is still confined to the lysosome 

(Jeyakumar et al. 2005).

The accumulation of the primary storage material can also have a functional 

impact on the cell, including the inhibition of other enzymatic processes, causing 

the accumulation of secondary undegraded substrates and the disruption of 

lysosomal biogenesis (Parkinson-Lawrence et al. 2010).
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Clinically, LSDs are associated with a progressive phenotype involving 

multiple organs and tissues (Settembre et al. 2008).

Although lysosomal proteins are ubiquitously distributed, the accumulation of 

undegraded substrate(s) in LSDs patients is normally restricted to those cells, 

tissues, and organs in which substrate turnover is high (Parkinson-Lawrence et al.

2010). However, the Central Nervous System (CNS) is particularly affected in LSD 

patients; over two-thirds of LSDs involve CNS dysfunction, like progressive 

cognitive and motor decline, and these symptoms are often the most debilitating 

(Schultz et al. 2011). In the CNS, the progressive accumulation of undegraded 

material induces a series of secondary defects, eventually leading to severe 

neurodegeneration.

Storage may begin during early embryonic development, and the clinical 

presentation for LSDs can vary from an early and severe phenotype to late-onset 

mild disease (Filocamo and Marrone 2011). However, although individuals affected 

by LSDs can display early symptoms, many are clinically normal at birth and 

typically meet early developmental milestones, indicating that lysosomal storage 

does not affect neuronal function and maturation at early developmental stages. In 

general, this suggests that lysosomal dysfunction per se does not impact 

significantly the complex events of early brain development, such as neural 

induction, establishment of axis, neuronal differentiation and migration, and 

synapse formation (Schultz et al. 2011).

Several systems for the classification of LSDs have been proposed. Most 

simply the diseases are grouped according to the nature of the storage material -  

either regarding biochemical composition or morphological appearance -  in

30



mucopolysaccharidoses, glycoproteinoses, (sphingo)lipidoses, glycogen storage 

diseases and neuronal ceroid lipofuscinoses.

Although individual LSDs are rare, as group they are one of the most common 

genetic disorders in children, affecting 1 out of every 7000-8000 live births.

Many of the phenotypes observed in LSDs can be markedly improved by 

substrate reduction therapy (SRT), enzyme replacement therapy (ERT) or gene 

therapy, whose efficacy can be monitored by concomitant resolution of storage 

material (Eng et al. 2001, 200; Liu et al. 2005). In fact, storage burden in tissue 

sections or body fluids can be used as a reliable indicator of therapeutic efficacy in 

emerging treatment strategies for some LSDs (Eng et al. 2001; Schultz et al. 

2011).

However, the progressive lysosomal accumulation of undegraded metabolites 

results in generalized cell and tissue dysfunction, and, therefore, in a multi- 

systemic pathology (Filocamo and Morrone 2011); thus, such treatments are not 

yet available or feasible for most LSDs. Therefore, understanding how the affected 

cellular pathways interconnect and impact the viability of cells is critical for future 

therapeutic development (Schultz et al. 2011).
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Figure 5. Schematic diagram illustrating the pathogenesis of lysosomal 

storage diseases.

A complex substrate is normally degraded by a series of lysosomal enzymes (A, 

B, and C) into soluble end products. If there is a deficiency or malfunction of one 

of the enzymes (e.g., B), catabolism is incomplete and insoluble intermediates 

accumulate in the lysosomes.

Modified from Kumar: Robbins and Cotran Pathologic Basis of Disease
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Multiple Sulfatase Deficiency

Among acid hydrolases acting within the lumen of lysosomes, sulfatases are 

a family of enzymes that share both structural and functional similarities. They are 

involved in a number of different biological functions as diverse as degradation of 

complex molecules, production of steroid hormones and cell signalling. In 

particular, they catalyze the hydrolysis of sulfate ester bonds from a wide variety of 

substrates, ranging from complex molecules, such as GAGs, to sulfolipids and 

steroid sulfates. These enzymes can be divided, at least in mammals, into two 

main categories based on their subcellular localization: those acting at an acidic 

pH, localized in the lysosomes, and those acting at a neutral pH that are found in 

the ER, in the Golgi apparatus, and at the cell surface (Hanson, Best, and Wong 

2004; Parenti, Meroni, and Ballabio 1997) (Hopwood and Ballabio, 2001).

MSD is an extremely rare autosomal recessive disorder, with an incidence of 

1:1,400,000 and characterized by a dramatic impairment of all sulfatase activities. 

Life expectancy for MSD patients is commonly under 10 years of age.

Almost two decades ago it was demonstrated that sulfatases undergo a 

unique post-translational modification, which is indispensable for their enzymatic 

activity (Schmidt et al. 1995). This modification involves a highly conserved 

cysteine residue (Cys), located within the active site of sulfatases, which is 

modified into a formylglycine residue (FGIy). The gene encoding the enzyme 

involved in the post-translational modification of sulfatases was identified and found 

to be mutated in patients with MSD (Cosma et al., 2003; Dierks et al., 2003). The 

MSD causing gene is called SUMF1 and encodes a formylglycine-generating
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enzyme (FGE) (Figure 6). SUMF1 exerts its activity within the ER; however, it can 

also be secreted and taken up by distant cells and tissues, where it relocalizes in 

the ER as an active enzyme (Zito et al. 2007). In MSD patients residual sulfatase 

activities are substantially reduced (Dierks et al. 2003; Cosma et al. 2003), but still 

detectable at variable levels, indicating that MSD is caused by hypomorphic 

mutations in SUMF1 gene and that the complete loss of SUMF1 function is likely to 

be lethal in humans (Cosma et al. 2003). Interestingly, the phenotype of MSD 

patients combines, with some phenotypical variability, all the clinical symptoms 

observed in each individual sulfatase deficiency (Bischel, Austin, and Kemeny 

1966). As a major sign they show a neurodegenerative course of disease with loss 

of sensor and motor abilities and neurological deterioration. Mental retardation, 

hepatosplenomegaly, shortening of stature and corneal clouding appear like in 

different mucopolysaccharidoses.

In the past years, in our laboratory, a mouse line carrying a null mutation in 

the SUMF1 gene has been generated using a gene-trapping approach (Settembre 

et al. 2007). In these mice, the function of the entire sulfatase protein family has 

been completely abolished, mimicking the phenotype observed in MSD patients: 

massive accumulation of undegraded molecules, systemic inflammation and 

neurodegeneration. Moreover, the phenotype of these mice is severe and 

progressive; they display frequent early mortality (only the 10% reaches the age of 

3 months), congenital growth retardation, skeletal abnormalities (including the 

typical flat facial appearance) and tremor and seizures due to defects of the CNS. 

Many tissues were examined for the presence of storage material, which was 

shown to increase with age; glycosaminoglycan accumulation was detected in liver,

34



kidney and, as a prime site, in macrophages which were massively present in all 

tissues. These macrophages and activated microglia in cerebellum and cortex, 

accompanied by neuronal cell loss and astroglyosis, indicate systemic 

neuroinflammation, which are thought to be key patho-physiological processes in 

MSD (Settembre et al. 2007).

In addition, nutrient-starved MSD mouse primary cells, as well as other 

monogenic LSDs, such as the Sanfilippo syndrome, or mucopolysaccharidosis type 

III A (MPSIIIA), present a block of autophagy as a consequence of decreased 

ability of lysosomes to fuse with autophagosomes; this leads to accumulation of 

toxic substrates, such as poly-ubiquitinated proteins and dysfunctional 

mitochondria, which are the putative mediators of cell death (Settembre et al. 

2008).
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Figure 6. Mutations in the suifatase-modifying factor-1 (SUMF1) gene result 

in the production of defective C-formylglycine-generating enzyme (FGE).

Defective FGE cannot convert the cysteine (Cys) residue in the active site of 

lysosomal sulfatases to formylglycine (FGIy). As a consequence, inactive 

sulfatases are transported to the lysosome, where they are unable to degrade 

their substrate, leading to their accumulation and subsequently to MSD pathology.

Model taken from Futerman and van Meer, 2004
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LSDs and autophagy

In the past years there has been an increased interest in investigating the 

possible involvement of autophagy in LSD pathogenesis (Cao et al. 2006; Koike et 

al. 2005; Fukuda et al. 2006; Jennings et al. 2006; Settembre et al. 2008). In our 

laboratory, we study two mouse models of neurodegenerative LSDs, MSD and 

MPSIIIA. Cells from both of these LSD models display: (1) increased numbers of 

autophagosomes, (2) reduced clearance of both endogenous and exogenous 

autophagic substrates and (3) defective organelle turnover (Settembre et al. 2008).

Interestingly, alterations in the autophagic/lysosomal pathway have been 

observed in more common multifactorial diseases (Levine and Kroemer 2008), 

such as Parkinson’s disease (PD) (Pan et al. 2008; Ramirez et al. 2006) and 

Alzheimer’s diseases (AD) (Nixon 2007), many forms of cancer (Kirkegaard 2009) 

and atherosclerosis (Martinet and De Meyer 2008). It is often not clear if the 

observed alterations represent causes or secondary consequences of the disease 

process.

Reports demonstrating that genetic disruption of autophagy causes 

neurodegeneration in mice (Hara et al. 2006; Komatsu et al. 2006) led to the 

hypothesis that the neurodegeneration in LSDs might be a consequence of 

impaired autophagy. Indeed, impaired autophagy has been reported also in other 

models of LSDs, including Pompe disease, Niemann-Pick disease (NPC), NCLs, 

MLIV, and GM1 -gangliosidosis (Cao et al. 2006; Fukuda et al. 2006; Jennings et al. 

2006; Pacheco, Kunkel, and Lieberman 2007; Venkatachalam et al. 2008).
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LSDs and exocytosis

Lysosomal function is intimately linked to exocytosis, and several LSDs.

An example is MLIV; when human MLIV fibroblasts are treated with 

ionomycin to elevate intracellular levels of Ca2+ and induce lysosomal exocytosis, 

the release of soluble lysosomal enzymes in the extracellular space is strongly 

reduced compared to healthy fibroblasts, suggesting that MCOLN1 plays an 

important role in this process (LaPlante et al. 2006). Further, transfection with wild- 

type MCOLN1 cDNA rescues exocytosis, suggesting the possibility of treatments 

based on the restoration of this crucial cellular function (LaPlante et al. 2006).

Another example is Niemann-Pick disease type 1 (NPC1); in fibroblasts 

derived from mouse models, cholesterol accumulation inhibits Rab guanosine 

triphosphatases (GTPases), thus perturbing membrane recycling; overexpressing 

Rab4 in these cells led to an activation of exocytosis and reduced lysosomal 

accumulation (Choudhury et al. 2004). Thus, enhancing exocytosis can not only 

reduce the storage burden, but also improve secondary phenotypes.

Transcriptional regulation of lysosomal biogenesis

A commonly reported observation in several LSDs is a decrease in the 

activity of a disease-associated enzyme are concomitant with increases in other 

lysosomal enzymes, suggesting that gene expression required for their 

interdependence is similarly orchestrated (Schultz et al. 2011). On the other hand, 

it has been shown that expansion of the lysosomal compartment, which is a
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common feature of all LSDs, is usually accompanied by increased activity (and 

release) of many lysosomal proteins (Moran et al. 2000). Thus, a coordinated 

control mechanism with enhanced transcriptional expression was long suspected.

Recently in our laboratory it was observed, by using the gProfiler tool 

(Reimand et al. 2007), that genes encoding lysosomal proteins (hereafter referred 

to as lysosomal genes) tend to have coordinate expression. Furthermore, in most 

of them is present a common palindromic motif, which was named Coordinated 

Lysosomal Expression and Regulation (CLEAR) and which mediates their 

transcriptional activation (Sardiello et al. 2009). The CLEAR motif is a 10-base pair 

neucleotidic sequence (GTCACGTGAC), which is placed near the transcription 

start site of many lysosomal genes and is the target site of the bHLH transcription 

factor TFEB (Figure 7). It was found that most lysosomal genes share one or more 

copies of the regulatory motif in their promoters. The CLEAR network is comprised 

of several classes of genes, including genes that belong to the lysosomal 

complement (hydrolases, transporters, accessory proteins) and genes that 

participate in lysosomal biogenesis and function. Examples of the latter class are 

genes encoding subunits of the vacuolar proton pump, responsible for creating and 

maintaining the lysosomal acidic environment, and genes coding for the 

specialized transporters that import acid hydrolases into the lysosome.

It was observed that TFEB overexpression not only increases the number of 

lysosomes in the cell, but also improves cellular degradative capabilities. In fact, it 

was tested the clearing potential of TFEB on a neuronal cell model of Huntington’s 

disease (HD), and found that TFEB transfection increased the clearance of the 

pathogenic polyglutamine-expanded huntingtin (Sardiello et al. 2009). These data
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uncovered a regulatory network defining TFEB as a master regulator of lysosomal 

biogenesis. Furthermore, in cultured cell models of mucopolysaccharidosis type II 

(MPSII), MPSIIIA, and MSD, TFEB localizes primarily in the nucleus, but is 

cytoplasmic in control cells, suggesting that this pathway is activated under 

lysosomal storage conditions (Sardiello et al. 2009).

The observation that the process of lysosomal degradation is transcriptionally 

regulated raised the hypothesis that other lysosomal-related processes, like 

autophagy, might also be transcriptionally regulated by the same mechanism. In 

principle, enhancement of lysosomal function should result in a decrease in the 

number of autophagosomes due to increased degradation, whereas the opposite 

should occur in the presence of lysosomal inhibitors. However, it was observed that 

TFEB overexpression increases the number of autophagosomes and, conversely, 

RNA interference of TFEB decreases the number of autophagosomes, suggesting 

a role of TFEB in the regulation of the autophagic process as well (Settembre et al.

2011).

Interestingly, the fact that TFEB also regulates key autophagy switches 

indicates that the CLEAR network extends beyond the lysosomal complement to 

favor lysosome-dependent degradative pathways as a whole (Sardiello and 

Ballabio 2009).

Moreover, it was also hypothesized that TFEB may mediate starvation- 

induced autophagy. Interestingly, it was observed that upon starvation TFEB 

translocates from the cytoplasm (where it normally resides) to the nucleus where it 

is active and regulates the expression of its target genes (Settembre et al. 2011). 

This translocation occurs in a phosphorylation-dependent manner. In fact, it was
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demonstrated that TFEB is maintained inactive in the cytoplasm through its 

phosphorylation on a critical serine residue (Ser142), and then it translocates to the 

nucleus when dephosphorylated (Settembre et al. 2012).

In particular, it was also shown that TFEB phosphorylation occurs on the 

lysosomal membrane by the master growth regulator, mammalian target of 

rapamycin (mTOR) complex 1 (mTORCI) (Settembre et al. 2012). Therefore, it 

was proposed the hypothesis that under full nutrients and in the absence of 

lysosomal stress the interaction between the lysosomal amino acid content and the 

v-ATPase complex, involved in lysosomal acidification, regulates Rag GTPases, 

which in turn activate mTORCI by translocating it to the lysosomal surface 

(Sancak et al. 2008; Zoncu et al. 2011). At the lysosome, mTORCI binds and 

phosphorylates TFEB, therfore controlling its subcellular localization and its 

inactive state. Indeed, phosphorylation by mTORCI maintains TFEB in the 

cytoplasm and prevents it from translocating to the nucleus. Starvation, v-ATPase 

inhibition, or lysosomal stress switch the Rags off, leading to mTORCI detachment 

from the lysosome and to its inactivation. TFEB can no longer be phosphorylated 

and thus it translocates to the nucleus, where it activates gene expression 

programs that boost lysosomal function and autophagy. These data demonstrated 

that TFEB mediates starvation-induced autophagy (Settembre et al. 2012).

Therefore, TFEB acts both as a sensor of lysosomal state, when on the 

lysosomal surface, and as an effector of lysosomal function when in the nucleus. 

This unique lysosome-to-nucleus signalling mechanism allows the lysosome to 

regulate its own function (Settembre et al. 2012).
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Figure 7. TFEB controls the expression of lysosomal genes and enhances 

cellular clearance.

(A) Expression analysis of lysosomal genes following TFEB overexpression and 

silencing. Blue bars show the fold change of the mRNA levels of lysosomal genes 

in TFEB- vs. pcDNA3-transfected cells. Red bars show the fold change of mRNA 

levels in mimic-miR-128-transfected cells vs. cells transfected with a standard 

control microRNA (mimic-miR-cel-67). (B) Immunoblot analysis of TFEBEGFP- 

positive (+) and TFEB-EGFP-negative (-) HD43 cells (left panel) and 

immunofluorescence analysis of TFEB and HTT in HD43(Q105) cells transfected 

with 3xFLAG-TFEB construct (right panel).

Taken from Sardiello et al., 2009

42



Neural Stem Cells

Stem cells are undifferentiated cells that are capable of giving rise to 

indefinitely more cells of the same type, and from which certain other types of cell 

arise by differentiation. Indeed, stem cells exhibit two defining characteristics: the 

self-renew, which is the ability to go through numerous cycles of cell division while 

maintaining the undifferentiated state, and the potency, which is the capacity to 

generate a diverse range of specialized cell types through differentiation (Gage

2000).

There are two types of mammalian stem cells: embryonic and adult. 

Embryonic tern cells (ESCs) derive from the inner cell mass of the blastocyst and 

are totipotent, which means that they can differentiate into all of the specialized 

embryonic tissues. Adult stem cells are found in adult tissues and act as a repair 

system for the body, replenishing specialized cells, but also maintaining the normal 

turnover of regenerative organs; unlike ESCs, they are often restricted to certain 

lineages (for exemple hematopoietic or neural fate) (Figure 8).

NSCs are self-renewing multipotent populations present in the developing and 

adult mammalian CNS (Chojnacki and Weiss 2008; Temple 2001). During the 

process of neurogenesis, NSCs generate the neurons and glia of the developing 

brain and also account for the limited regenerative potential of the adult brain.

Neurogenesis is the process of generating functional neurons from precursors 

and in mammals it begins with the induction of the neuroectoderm, which forms the 

neural plate (at embryonic day 7.5 (E7.5) in mice) and then folds to give rise to the
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neural tube (at E8.5 in mice). These structures are made up by a layer of so-called 

neuroepithelial progenitors (NEPs) (Gotz and Barde 2005), which are probably a 

complex and heterogeneous population. During this neural differentiation, ESCs 

undergo progressive lineage restrictions, leading to the generation of a range of 

distinct neural precursor populations that can be used to study the molecular and 

cellular events that occur during stage-specific transitions between different 

populations (Nishikawa, Jakt, and Era 2007; S.-C. Zhang 2006, 200).

Neurogenesis was traditionally viewed to occur only during embryonic and 

perinatal stages in mammals (Ming and Song 2005). Nevertheless, Altman's 

pioneering studies decades ago provided the first anatomical evidence for the 

presence of newly generated dentate granule cells in the postnatal rat 

hippocampus (Altman and Das 1965). Multipotent neural stem cells were later 

derived from the adult mammalian brain (Reynolds and Weiss 1992; Richards, 

Kilpatrick, and Bartlett 1992). Since then, significant progress has been made over 

the past decades in the study of almost every aspect of adult neurogenesis in the 

mammalian CNS.

In general, adult neurogenesis recapitulates the complete process of neuronal 

development in embryonic stages, but is spatially restricted under normal 

conditions to two specific “neurogenic” brain regions: the subgranular zone (SGZ) 

in the dentate gyrus of the hippocampus, where new dentate granule cells are 

generated, and the subventricular zone (SVZ) of the lateral ventricles in the 

forebrain, where new neurons are generated and then migrate through the rostral 

migratory stream (RMS) to the olfactory bulb to become interneurons (Gage 2000; 

Ming and Song 2011).
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In the adult SGZ, proliferating radial and non-radial precursors give rise to 

intermediate progenitors, which in turn generate neuroblasts. Immature neurons 

migrate into the inner granule cell layer and differentiate into dentate granule cells 

in the hippocampus (Ming and Song 2012).

In the adult SVZ, proliferating radial glia-like cells give rise to transient 

amplifying (TA) cells, which in turn generate neuroblasts. In the RMS, neuroblasts 

form a chain and migrate toward the olfactory bulb through a tube formed by 

astrocytes (Lois, Garcia-Verdugo, and Alvarez-Buylla 1996). Once reaching the 

core of the olfactory bulb, immature neurons detach from the RMS and migrate 

radially toward glomeruli where they differentiate into different subtypes of 

interneurons (Lledo, Alonso, and Grubb 2006).

Therefore, the SGZ and the SVZ are the two main niches that in vivo support 

self-renewal and regulate the balance between symmetrical self-renewal, by which 

NSCs proliferate, and fate-committed asymmetrical division, by which NSCs 

generate differentiated cells (Alvarez-Buylla and Lim 2004; Garcion et al. 2004; 

Shen et al. 2004; Shen et al. 2008). In fact, niches are defined as 

microenvironments that anatomically house stem cells and functionally control their 

development in vivo.

The size of the NSC pool in the SVZ is much larger than that in the SGZ (Lois 

and Alvarez-Buylla 1993; Morshead et al. 1994).

Due to the constitutive migration and high proliferation rate of neural 

progenitor cells in the SVZ (Lucassen et al. 2010; Curtis, Kam, and Faull 2011), it 

has been proposed that the neuronal differentiation of NSCs in the SVZ might be 

particularly important for the autonomous repair of the brain during the
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pathogenesis of a disease. In fact, studies based on animal disease models 

revealed that neural progenitor cells in the SVZ can also migrate to regions where 

neuronal disorders occur to compensate for the loss of living neurons (Arvidsson et 

al. 2002; Tattersfield et al. 2004).

The proliferation and differentiation of NSCs are strictly regulated by a 

complex regulatory system, including a variety of intrinsic and extrinsic 

mechanisms, such as morphogens and growth factors, as well as transcription 

factors and epigenetic mechanisms. Morphogenic proteins and transcription factors 

are the fundamental forces that determine the fate of NSCs and the process of 

neurogenesis. Morphogens are a group of proteins that not only are vital for the 

embryonic development and patterning of the brain, but also function to regulate 

the self-renewal and differentiation of NSCs in the adult brain. This group of 

proteins includes Notch, sonic hedgehog (Shh), wingless-type MMTV integration 

site family (Wnt), fibroblast growth factor (FGF), and bone morphogenetic proteins 

(BMPs). During the process of embryonic development, ESCs in the ectoderm 

differentiate into excitatory and inhibitory neurons. These morphogenetic proteins, 

combined at different concentrations, act to pattern the brain along the anterior- 

posterior and dorsal-ventral axis into different regions. For instance, FGF is 

responsible for the anterior-posterior patterning and BMP and Shh are specific for 

the dorsal-ventral patterning; Wnt contributes to both processes. In the adult brain, 

the morphogenic proteins continue to subtly modulate the number and 

differentiation of neural precursor cells. In both the SGZ and the SVZ, Shh is 

essential for the maintenance of radial glia-like cells (Ahn and Joyner 2005; Balordi 

and Fishell 2007; Han et al. 2008), whereas Notch is fundamental for the neuronal
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differentiation of NSCs (Imayoshi et al. 2010; Pierfelice, Alberi, and Gaiano 2011). 

Wnt can also promote the neuronal differentiation of NSCs in the SGZ (Lie et al. 

2002), whereas BMP determines their glial fate (Urn et al. 2000; Bonaguidi et al. 

2005; Mira et al. 2010).

The concurrent action of these morphogens via a concentration gradient 

leads to the differentiated expression of hundreds of transcription factors to 

determine the fate of newborn neurons. However, limited information is available 

on the roles that transcription factors play in NSC differentiation in the adult brain, 

and only a handful of transcription factors have been extensively studied. One such 

factor is Sox2, which is present in both the SGZ and SVZ, and colocalizes with 

NSC markers glial fibrillary acidic protein (GFAP), nestin, brain lipid-binding protein 

(BLBP), and Musashi-1 (Ferri et al. 2004, 200; Komitova and Eriksson 2004; Suh 

et al. 2007; Lugert et al. 2010). Evidence based on transgenic mice revealed that 

Sox2 acts probably through an interactive regulation with Notch signaling 

(Taranova et al. 2006; Ehm et al. 2010). Another well-studied transcription factor is 

Pax6, which is expressed in NSCs in the SGZ (Maekawa et al. 2005; Nacher et al. 

2005; Hodge et al. 2008; Roybon et al. 2009) and in neuroblasts in the SVZ 

(Herold et al. 2011; Jones and Connor 2011) and functions to promote the 

dopaminergic fate determination of NSCs (Kohwi et al. 2005; Brill and Huguenard 

2008; Spitere et al. 2008).

On the other hand, abundant evidence supports the finding that NSC 

differentiation and proliferation in the adult SVZ and SGZ is closely regulated by the 

local environmental factors, such as surrounding neurons, astrocytes, and other 

non-neuronal cells (Suh, Deng, and Gage 2009), either in an activity relevant
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manner or through growth factor release.

In general, endogenous NSCs in their undifferentiated state are recognized 

for the expression of the nestin marker. The neural specific intermediate filament 

nestin, in fact, is utilized to visualize the regions of neurogenesis throughout the life 

of the animals. Cells that are immunoreactive for nestin are thought to be involved 

in neurogenesis (Doyle, Khan, and Cunningham 2001; Yue et al. 2006), and 

therefore to differentiate into neurons and glial cells (Itoh et al. 2006). During brain 

development, nestin is expressed by radial glia cells, and nestin expression starts 

to disappear around postnatal day 11 (P11) in the rat cortex (Kalman and Ajtai

2001). Based on these data, nestin might provide an ideal marker to examine 

neurogenesis within the adult brain.

During the development of the CNS, NSCs are precursors of glia and 

neurons, both characterized by the expression of their own specific markers, GFAP 

and neuron specific class III (B-tubulin (Tuj 1), respectively.

GFAP is widely known as a marker for mature astrocytes in the adult brain. A 

large proportion of the newborn cells in the SGZ of the hippocampal region have 

also been found to be GFAP-positive (Eckenhoff and Rakic 1988; Maslov et al.

2004). However, the use of GFAP as a marker for neurogenesis is hampered by 

the finding that the glial cell lineage and mature astrocytes are also labeled. Thus, 

the nestin-positive, but not the GFAP-positive, precursors are the precursors 

involved in neurogenesis (Cao et al. 2006).

Tuj1 expression starts as early as embryonic day 8.5 (Easter, Ross, and 

Frankfurter 1993) and can be detected throughout brain development (Menezes 

and Luskin 1994). Tuj1 has been found to label newly generated immature
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postmitotic and differentiated neurons (Menezes and Luskin 1994). With respect to 

adult neurogenesis, Tuj1 is used as a neuron-specific marker of newly generated 

cells (F Doetsch, Garcia-Verdugo, and Alvarez-Buylla 1997; Gould et al. 2001).

ESCs NSCs

\

\

/

multipotencypluripotency

glia

neurons

Figure 8. Schematic diagram illustrating lineage commitment of adult neural 

stem cells.

Pluripotent ESCs can form any body tissue (except for the placenta). During 

development, cells derived from these stem cells become progressively more 

specialized, like NSCs that are multipotent precursors of the two main cell type of 

CNS, glia and neurons.
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Isolation of adult Neural Stem Cells

Isolation of NSCs from their adult natural niche and their purification and 

expansion have been problematic, as the factors and cell contacts required to 

maintain these cells in their physiological state are poorly understood (Conti and 

Cattaneo 2010). However, epidermal growth factor (EGF) and FGF2 have been 

key players in the identification of cell culture conditions that sustain prolonged cell 

division of cells with NSC properties (Reynolds and Weiss 1992; Reynolds and 

Weiss 1992; Laywell, Kukekov, and Steindler 1999).

Two main strategies have been developed for NSC isolation and in vitro long

term propagation, the neurosphere system and the monolayer system.

Neurosphere system

Neurospheres are free-floating aggregates of neural progenitors, each 

potentially derived from a single NSC (Reynolds and Weiss 1992; Reynolds, 

Tetzlaff, and Weiss 1992; Laywell, Kukekov, and Steindler 1999). Their generation 

relies on tissue microdissection followed by exposure to mitogens (Chojnacki et al.

2008). Commonly, mouse and rat neurospheres are harvested from neural tissue 

at E10.5-E18.5 or from the adult SVZ (F Ciccolini 2001; Francesca Ciccolini et al. 

2005; F Ciccolini and Svendsen 1998; Gritti et al. 1995; Louis and Reynolds 2005; 

Svendsen et al. 1998; Tropepe et al. 1999; Uchida et al. 2000). For their 

expansion, cells are plated in low-attachment tissue culture plastic dishes in serum- 

free media supplemented with EGF (10-20 ng per ml) and/or FGF2 (10-20 ng per
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ml) (Singec et al. 2006). In these conditions, most differentiating or differentiated 

cells are expected to die, whereas the NSCs respond to the mitogens, divide and 

form floating aggregates (primary neurospheres) that can be dissociated and re

plated to generate secondary neurospheres. This procedure can be repeated 

several times to expand a NSC population.

Neurospheres have been used in vitro for defining, by extrapolation, the 

persistence and properties of NSCs in vivo (Golmohammadi et al. 2008; Marshall, 

Reynolds, and Laywell 2007). In fact, the cellular milieu of the neurosphere has 

been suggested to provide an in vitro counterpart to the in vivo neurogenic 

compartment, a microenvironment that is relevant for NSC maintenance, 

proliferation and differentiation. The concept of a neurosphere as an in vitro 

recapitulation of a niche-like structure has become extremely popular in the NSC 

field (Conti and Cattaneo 2010). The regulation of stem cell features in the niche 

requires both interactions between stem cells and interactions between stem cells 

and neighbouring differentiated cells, mediated by soluble and adhesion molecules 

and extracellular matrix components (Conti and Cattaneo 2010).

However, it has been demonstrated the tendency of neurospheres to 

generate differentiated cells in their core (Campos 2004), since different cells in the 

sphere can be exposed to suboptimal conditions due to their three-dimensional 

structure. Consequently, the interaction between differentiating cells and precursor 

cells may expose the NSCs to paracrine factors that promote differentiation. 

Therefore, the maintenance of the neurogenic versus gliogenic potential gradually 

declines with in vitro passages (Conti and Cattaneo 2010). Hence, neurospheres 

can be considered as the in vitro counterpart of the in vivo niche structure only for a
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limited time after brain dissection.

Different neuronal differentiation protocols based on mitogen removal and 

exposure to fetal bovine serum and/or to specific substrates and cytokines have 

been developed (Garcion et al. 2004; Chojnacki and Weiss 2008; Tropepe et al. 

1999; Grandbarbe et al. 2003; Weiss et al. 1996), but none of them generates cells 

that are positive for the early neuronal marker Tuj1 at a proportion greater than 

20%. On the whole, this suggests that the neurosphere system is not particularly 

efficient in terms of neurogenic competence, but it can be useful for studying self- 

renew abilities and proliferation capacities of NSCs after tissue dissociation.

Monolayer system

Early attempts to culture NSCs in monolayer conditions relied on plating them 

on polyornithine-, laminin- or fibronectin-coated dishes in serum-free media (Johe 

et al. 1996) and in the presence of morphogens (Palmer, Takahashi, and Gage 

1997). These cells show homogeneity for nestin and Sox2 expression, and 

symmetrical cell division continuously replenishes the supply of multipotent 

progenitors.

More recently, other strategies for the derivation and stable long-term 

propagation of NSC lines from different sources of rodent (Conti et al. 2005; Pollard 

et al. 2006, 200) and human (Sun et al. 2008) origin have been described. 

According to these procedures, neural precursors can be competently expanded as 

adherent, clonal, uniform NSC lines by exposure to EGF and FGF2 (Elkabetz et al. 

2008; Koch et al. 2009; Conti et al. 2005). Under these conditions cells divide
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symmetrically, retaining their tripotential differentiation capacity, indicating that 

monolayer culture systems can maintain almost pure NSC populations (Conti et al.

2005), with a negligible differentiated component. The key aspect of the NSC 

culture system lies in the combination of EGF and FGF2 used and the focus on 

cells that grow adherently. The continuous provision of EGF together with FGF2 

seems to be essential for the derivation and propagation of these monolayer- 

growing NSCs (Palmer, Takahashi, and Gage 1997). When grown in these 

conditions, NSC population shows a remarkable antigenic similarity to forebrain 

neurogenic radial-glia (RG) (Conti et al. 2005; Pollard et al. 2006). The fact that 

NSCs can also be established from long-term expanded neurospheres indicates 

that RG-like cells might be the NSC fraction in neurospheres and that monolayer 

growth conditions may allow their enrichment and subsequent expansion (Conti et 

al. 2005).

Interestingly, cells in these EGF- and FGF2-dependent monolayers retain 

multipotency and neurogenic efficiency also after prolonged in vitro expansion and 

show a high competence to efficiently originate antigenically and 

electrophysiologically mature neurons on exposure to optimized differentiating 

conditions (Koch et al. 2009; Conti et al. 2005; Spiliotopoulos et al. 2009; Goffredo 

et al. 2008). This capacity can probably be interpreted as a consequence of the 

homogeneity of the starting population.
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AIM

The main objective of the research described in this thesis is to establish a 

cellular system to study the mechanisms of neurodegeneration in MSD pathology. 

This in vitro system must resemble the main hallmarks of the disease, such as the 

primary accumulation of undegraded substrates, secondary accumulation of 

undigested substrates, impaired autophagy and increased apoptosis.

Although cell death characterizes the later stages of the disease, for most of 

the clinical course the pathology mainly involves neuronal dysfunction rather than 

loss. Therefore, the ultimate goal will be to elucidate the intracellular mechanisms 

that lead to neuronal dysfunction after the pathologic accumulation of undegraded 

substrates.

Therefore, my thesis project aimed firstly at the isolation and characterization 

of NSCs from MSD and wild-type adult mice. For this purpose, I successfully built a 

robust protocol to isolate NSCs from postnatal brain tissue; once established in 

culture, I defined the progenitor identity of these cells. In order to assess whether 

NSCs could be a reliable tool to clarify the mechanisms of neurodegeneration in 

MSD pathology, I focused on the characterization of MSD-NSCs and on 

investigating whether they also reflect the main hallmarks of the disease, such as 

the progressive accumulation of undegraded GAGs, impaired autophagy and high 

levels of apoptosis, as seen in adult mice.

Furthermore, establishing an in vitro system that recapitulates the main 

hallmarks of LSDs would be useful also to identify relevant pathogenic intracellular
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pathways leading to the developing of new therapeutics strategies for the treatment 

of MSD, as well as other neurodegenerative LSDs. An intriguing therapeutic 

strategy that allows us to test our in vitro system came from studies carried out in 

our laboratory on the transcription factor TFEB, a master gene for lysosomal 

biogenesis and function. TFEB overexpression is able to reduce mutant huntingtin 

in a cellular model of HD (Sardiello et al. 2009). It was shown that TFEB is able to 

increase the capacity of the lysosome to degrade by increasing the bulk of 

lysosomal components. Therefore, we tested the role of TFEB in the clearance of 

pathologic undegraded substrates in isolated MSD-NSCs. Surprinsingly, we found 

that TFEB overexpression is able to reduce primary accumulation of GAGs in 

differentiated MSD-NSCs by inducing lysosomal exocytosis (Medina et al. 2011). 

Therefore, our studies envisage a novel tool, by targeting lysosomal exocytosis 

mechanism, to reduce the lysosomal burden in storage diseases.

To achieve all these objectives, I selected the following main goals:

(1) isolation and characterization of NSCs from MSD mice;

(2) phenotyping of MSD-NSCs to investigate the intracellular cascades involved 

in neurodegeneration;

(3) modulating lysosomal function as a novel tool to treat LSDs.
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RESULTS

Isolation of NSCs from post-natal brain of wild-type and MSD mice

The crucial point of this research project is the isolation of NSCs from the 

brain of postnatal wild-type and MSD mice. Recently, it has been established a 

methodology that allows for the isolation and continuous ex vivo expansion of 

NSCs from mouse brain tissue that can be easily cryopreserved and readily 

differentiate into neurons and glial cells (Conti et al. 2005).

Two steps basically constitute the NSCs isolation protocol carried out in this 

project: (1) neural tissue dissociation and (2) positive selection of NSCs with anti- 

prominin-1 MicroBeads (MACS, Miltenyi Biotec) (Peh et al. 2009) (Figure 9). In the 

first step, after brain tissue micro-dissection the cortical hemispheres dissociation 

is achieved with an enzymatic degradation using papain, a protease able to breaks 

the extracellular adhesion proteins holding the cells together; in this way, the tissue 

can be dissociated to single-cell suspensions. Then, the second step leads to an 

enrichment of the cell population in NSCs. In order to do that, I incubated the cell 

suspension with anti-prominin-1 antibody. Prominin-1 is a transmembrane 

glycoprotein expressed in various stem cells, including those from postnatal CNS 

(Peh et al. 2009). Therefore, NSCs were magnetically labeled with anti-prominin-1 

MicroBeads and loaded onto a MACS® Column, which is placed in the magnetic 

field of a MACS Separator. The magnetically labeled prominin-1 + cells are retained 

within the column whereas the unlabeled cells run through. After removal of the

56



column from the magnetic field, the magnetically retained prominin-1 + cells can be 

eluted as the positively selected cell fraction.

As reported in literature (Conti et al. 2005), in vitro NSCs grow in so-called 

neurospheres, floating heterogeneous aggregates of cells, containing a large 

proportion of stem cells. Isolated neurospheres were propagated in culture at 

clonal density on uncoated plates in medium containing EGF and FGF2 and with 

penicillin/streptomycin (NS expansion medium). Over 3-5 days, cells formed 

aggregates that, after harvesting and sedimentation to remove debris, 

subsequently outgrew NSCs.

From neurospheres, NSCs were conveniently dissociated to single cells and 

plated directly on coated plates, to finally obtain a monolayer cell culture. These 

cells were propagated in culture with NS expansion medium. The entire isolation 

protocol was carried out for three wild-type and three Sumfl -/- mice.
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Figure 9. NSCs isolation protocol

NSCs are isolated following a two step protocol: (1) brain tissue micro-dissection 

and neural tissue dissociation with papain, and (2) labeling of NSCs with magnetic 

anti-prominin-1 MicroBeads (MACS, Miltenyi Biotec) and positive selection 

through the magnetic field of a MACS Separator (MACS, Miltenyi Biotec).

58



NSCs uniformly express morphological and molecular features of radial 

glia progenitors

Once established in culture, NSCs showed the typical elongated bipolar 

morphology with lamellate extensions, end-feet and oval nuclei anticipated for 

radial glia, with no substantial differences between MSD cells and their wild-type 

counterpart (Figure 10-A). In these conditions, NSCs proliferate continuously, with 

a doubling time of around 25 hours.

By flow cytometry analysis I observed that around 99.3% of the wild-type cells 

and 98.8% of MSD cells expressed the NSC marker nestin, suggesting that 

isolated NSCs have a defined progenitor identity (Figure 10-B).

Therefore, I analyzed their progenitor signature at a molecular level, testing a 

set of markers commonly used to define this cell population (Figure 11). By RT- 

PCR, I found that both wild-type and MSD-NSCs lacked the pluripotency marker 

genes typical of embryonic stem cells such as oct4 and nanog (Scholer et al. 1990; 

Cavaleri and Scholer 2003), whereas they expressed Pax6, and BLBP mRNAs 

(Hack et al. 2004; Feng, Hatten, and Heintz 1994, 199). In addition, NSCs 

expressed the neural precursor markers olig2, Sox2 and mashl (Gabay et al. 

2003; Lo et al. 1991) and lacked expression of dlx2, a marker of transient 

amplifying neuroblasts but not of NSCs (Fiona Doetsch et al. 2002) and, as 

expected, they did not express the marker of neuronal differentiation NF-L 

(Schimmelpfeng, Weibezahn, and Dertinger 2004). This set of markers is 

considered diagnostic for neurogenic radial glia, precursors of both neurons and 

astrocytes during development of the nervous system (Campbell and Gotz 2002;
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Hartfuss et al. 2001; Noctor et al. 2001).

Therefore, NSCs isolated from wild-type as well as those isolated from MSD 

affected littermates uniform ly express morphological and molecular features of 

radial glia progenitors.

A

W T MSD

Figure 10. NSCs exhibit morphologic similarities to radial glia

(A) Bright field pictures of isolated wild-type (WT) and MSD-NSCs showed 

elongated bipolar morphology with lamellate extensions, end-feet and oval nuclei 

anticipated for radial glia, and (B) Flow cytometry analysis revealed a high 

expression of the neurogenesis marker nestin in WT- (99.3 %) and MSD-NSCs 

(98.8 %).
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Figure 11. NSCs exhibit phenotypic similarities to radial glia

Expression pattern of a set of markers by RT-PCR on cDNA obtained by RNA 

retrotrnscription. RNA extraction was obtained from wild-type (WT) and MSD 

undifferentiated NSCs, from wild-type ESCs, and from wild-type mouse brain. Genes 

tested were divided in five different groups: stem cell markers (oct4, nanog), radial glia 

markers (pax6, bibp), pan-neuronal and region specific transcriptional regulators 

(sox2, olig2, mashi), a neuroblast marker (dlx2), and a differentiated neuron marker 

(NF-L).
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MSD-NSCs present a progressive loss of self-renewal

To assess whether in absence of SUMF1 protein NSCs display a defect in 

their ability to self-renew, I tested them with the neurosphere assay (Figure 12). 

Cells were plated as single cells at a density of 5x104 cells/ml in medium containing 

FGF2 and EGF. After incubation for 7 days, primary neurospheres were counted 

and then dissociated and re-plated in the same conditions; similarly, I generated 

secondary and tertiary neurospheres. I observed a significant decrease in the 

number of MSD tertiary neurospheres compared to wild-type counterpart, thus 

suggesting that accumulation of undegraded substrates is likely to impact on the 

ability of NSC population to self-renew. Interestingly, it was demonstrated that 

NSCs isolated from a mouse model of another neurodegenerative lysosomal 

disorder, Niemann-Pick disease type 1 (NPC1) show a similar defect in the self- 

renew (Yang et al. 2006); although a greater understanding of the machanisms 

involved in this defect is needed, this observation raises the possibility that 

neurodegeneration observed in LSDs may be characterized by a general reduction 

in the NSCs population, due to a defect in their self-renew ability.
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Figure 12. MSD neurospheres show an impaired seif-renewal

Bright field images of neurospheres assay. 5x1 ( f  cells/ml were plated in NS 

expansion medium and formed primary neurospheres (I); after 7 days primary 

neurospheres were counted and then dissociated and re-plated in the same 

conditions, generating secondary neurospheres (II); similarly, tertiary 

neurospheres (III) were generated. Scale bars represent 200 pM. Data are mean 

of replicates (n=30) ±  SEM; *p <  0.05 by Student’s t-test.
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MSD-NSCs are able to differentiate into astrocytes and neurons

Neural progenitors are committed cells with multipotential fate. To confirm the 

nature of isolated NSCs, I tested their ability to give rise to the two main cell types 

of the CNS: astrocytes and neurons. Thus, cell differentiation was studied at 

molecular level by immunofluorescence and immunoblotting using specific 

antibodies for differentiation markers, such as GFAP for glial differentiation, and 

Tuj1 for neuronal cells. Fully differentiation capacity was assessed by 

immunofluorescence looking at the absence of nestin expression after glial or 

neuronal differentiation protocols (Figure 13-A).

As expected, both wild-type and MSD-NSCs showed uniform expression of 

the progenitor marker protein nestin when kept in the undifferentiated state. 

Moreover, wild-type differentiated cells showed a uniform expression of GFAP or 

Tuj1, after glial or neuronal differentiation, respectively; at the same time, they did 

not show expression of nestin. In a similar way, MSD-NSCs were able to 

differentiate into glia and neurons, showing the same uniform expression of GFAP 

and Tuj1, respectively, and no expression of nestin. The same results were 

obtained by western blot analysis of protein homogenates from wild-type and MSD- 

NSCs, both undifferentiated and differentiated to glial and neural cells (Figure 13- 

B).
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Figure 13. MSD-NSCs correctly express differentiation markers

(A) Confocal microscopy image of wild-type (WT) and MSD undifferentiated NSCs 

(ND), glia (AG) and neurons stained with immunofluorescence detecting nestin 

(upper panel), GFAP (middle panel) and Tuj1 (lower panel). Scale bars represent 

50 pM. (B) Immunoblotting detecting GFAP (left panel) and Tuj1 (right panel) in 

protein extracts from NSCs, glia and neurons.
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MSD neurons develop neurites and are electrophysiologically active

During differentiation, neurons extend numerous processes that develop into 

dendrites and axons. These processes, also termed neurites, are critical for 

communication between neurons through interconnection of neuronal cell bodies. 

Moreover, neurite development was studied in another LSD, Sandhoff disease, 

which is a neurodegenerative disorder characterized by the deficiency in the 

hexosaminidase B (HEXB) gene; in particular in explant culture of retinal tissue 

from HexB -/- mice it was observed an impaired neurite outgrowth (Sango et al. 

2005), suggesting that lack of a lysosomal enzyme has an effect on neuronal 

branching. Therefore I performed the neurite assay in order to establish whether 

the absence of SUMF1 protein could affect neurite outgrowth of 3- and 7-days 

differentiating neurons (Figure 14-A). Nevertheless, I observed no differences in 

neurite outgrowth between MSD neurons and their wild-type counterpart, 

suggesting once again that neuronal differentiation and processes extension is not 

affected in MSD cells.

For unambiguous assignment of neuronal identity, we investigated the 

electrophysiological properties of neural differentiated NSCs. Toward this goal, in 

collaboration with Dr. Francesco Miceli and Prof. Maurizio Taglialatela from 

University of Naples “Federico II”, we recorded currents from wild-type and MSD- 

derived neurons using the whole-cell configuration of the patch-clamp technique. 

During depolarizing test potentials, MSD neurons and their wild-type counterpart, 

showed an inward current followed by a sizeable outward voltage-gated current, 

with features of a delayed-rectifier K+ current (Figure 14-B, upper panel).
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Furthermore, in MSD neurons the fast inactivating inward current was blocked by 

the selective Na+ channel blocker tetrodotoxin (TTX) (1 \iM) and peaked at a test 

potential of around -20 mV, typical features of voltage-gated Na+ currents in 

neurons (Figure 14-B, lower panel). These preliminary electrophysiological data 

suggest that isolated NSCs are capable to give rise to electrophysiologically active 

neurons, exhibiting excitability properties and underlying conductances typical of 

maturing nerve cells. Most importantly, we did not find any differences in the 

electrophysiological properties between MSD derived neurons and their wild-type 

counterpart.

Taken together, these observations suggest that MSD pathology does not 

affect the ability of NSCs to differentiate into astrocytes and functional neurons.
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Figure 14. MSD differentiated neurons develop proper neurites and are 

electrophysiologically active

(A) Neurite outgrowth assay and (B) electrophysiological test on NSC-derived 

neurons; superimposed inward and outward current tracings were obtained using the 

indicated electrophysiological protocol. Data are mean of replicates (n=2) ±  SEM.
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MSD-NSCs recapitulate the progressive GAG accumulation

MSD-affected mice present a massive accumulation of undegraded GAGs in 

brain tissue, vacuolization and increased neurodegeneration (Settembre et al.

2007). Thus, after the isolation and characterization of MSD NSCs, I started to 

study these pathologic features in differentiating cells. Firstly I observed that during 

both astrocyte and neuronal differentiation, MSD cells display a progressive and 

massive perinuclear vacuolization compared to their wild-type counterpart (Figure 

15-A). In particular, MSD cells display a thick cell body with enlarged extensions, 

whilst wild-type cells acquired the typical morphology of terminally differentiated 

CNS cells. In addition, MSD cells vacuoles have increasing dimensions during the 

course of the differentiation process, eventually reaching, and in some cases 

exceeding, the diameter of the nucleus. Electron microscopy analysis confirmed 

the presence of vacuole structures containing heterogeneous undegraded material 

(Figure 15-B).

Then I investigated whether MSD cells reflect also the main hallmark of the 

disease, which is the progressive accumulation of undegraded GAGs (Figure 16). 

By alcian blue staining (Figure 16-A) and GAG colorimetric assay (Figure 16-B) I 

detected increased levels of GAGs in MSD not-differentiated cells and in both glial 

and neuronal fate, reflecting the GAG storage phenotype observed in vivo. In fact, 

MSD-NSCs showed massive accumulation of GAGs even from the undifferentiated 

state; the storage then becomes prominent during both glial and neuronal 

differentiation and also increases as the differentiation proceeds, thus 

recapitulating the progressive accumulation seen in vivo. Pulse-and-chase
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experiments using H3-glucosamine to label GAGs confirmed that MSD 

differentiated cells accumulate GAGs (Figure 16-C).

The hypothesis is that during the differentiation process cells arrest their 

proliferation rate thus not dividing themselves anymore, and non-mitotic cells 

cannot dilute accumulating cytosolic content by cell division; in the case of MSD, 

due to the enzymatic inactivity of sulfatases, cells are not able to burn off the 

undegraded substrates that subsequently accumulate. In this condition, MSD cells 

accumulate all the undegraded material in a progressive manner as the 

differentiation proceeds.

Interestingly, also in a neuronal model of mucopolysaccharidosis type VII it 

was found a massive accumulation of abnormally high levels of GAGs, thus giving 

confidence to my model (Heuer et al. 2001).

These results suggest that long-term differentiated MSD-NSCs are able to 

recapitulate the main hallmarks of the disease, which is the progressive storage of 

GAGs.
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Figure 15. Differentiating MSD-NSCs display progressive vacuolization and 

undegraded material

(A) Bright field images of wild-type (WT) and MSD-NSCs, glia and neurons. (B) 

Electron Microscopy images of WT and MSD-derived glia cells. Scale bars represent 

50 pM (A) and 1 pM (B).
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Figure 16. Differentiated MSD-NSCs display progressive accumulation of GAGs

(A) Alcian-blu staining of GAGs on wild-type (WT) and MSD-NSCs, glia and neurons. 

Scale bars represent 50 pM. (B) GAG quantitative assay on wild-type and MSD- 

NSCs, glia (left panel) and neurons (right panel). (C) Pulse-and-chase incorporation of 

H3-glucosamine in wild-type and MSD-derived glia cells. Data are mean o f replicates 

(n=5) ± SEM; *p < 0.05 by Student’s t-test (B and C).
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MSD differentiated cells suffer from impaired autophagy

In a previous work from our laboratory, it was shown that LSDs are 

associated with a lysosomal dysfunction that impairs the autophagic pathway 

(Settembre et al. 2008). This impairment ultimately leads to cell death, although the 

detailed mechanism has not been described yet. In particular, it was demonstrated 

that in MSD pathology a block of autophagic pathway occurs as a consequence of 

decreased ability of lysosomes to fuse with autophagosomes. Accordingly to this 

previous in vivo data, I observed an increase of LC3-II levels in cellular extracts 

from glial and neuronal differentiated MSD-NSCs (Figure 17-A), thus indicating 

autophagic activation. However, the autophagy process requires the fusion of 

newly formed autophagosomes with lysosomes, in order to digest autophagosome 

content; in glia differentiated MSD-NSCs I observed a decreased intracellular co

localization of autophagosome punctae containing LC3-II molecules with the 

lysosomal membrane protein marker cathepsin D (CatD) (Figure 17-B), suggesting 

an impaired fusion of autophagosomes with lysosomes and a block of the 

autophagy process.

The consequential effect of defective autophagy is the accumulation of poly- 

ubiquitinated proteins normally destined for recycling in the lysosomal 

compartment; in fact, poli-ubiquitin is a well-known signal for protein degradation. 

As expected, I detected a massive accumulation of poly-ubiquitinated proteins in 

MSD not differentiated cells, but also in glia and neurons, by immunofluorescence 

(Figure 18-A, left panel) and immunoblotting (Figure 18-B, left panel). These results 

confirm those found in the previous in vivo work (Settembre et al. 2008), in which a
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massive and progressive accumulation of ubiquitin-positive inclusions were 

observed in the cerebral cortex as well as in other brain regions of MSD mice.

In addition, I found that p62/SQSTM1, a protein involved in targeting poly- 

ubiquitinated proteins to the autophagosomes (Pankiv et al. 2007), significantly 

accumulates in differentiated MSD-NSCs, both glia and neurons (Figure 18-A and 

B, right panels). The p62/SQSTM1 protein is known to be a common component of 

ubiquitin-positive protein aggregates in neurodegenerative diseases, being 

involved in targeting poly-ubiquitinated proteins to the autophagosomes, where 

they are selectively degraded via the autophagic pathway.
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Figure 17. Differentiating MSD-NSCs display impaired autophagy

(A) Immunoblotting of LC3-I and - I I  in wild-type (WT) and MSD undifferentiated cells 

(ND), glia and neurons (left panel). LC3-ll/Bact ratio (right panel). (B) Confocal 

microscopy image of immunofluorescence detecting LC3 and CatD in WT and MSD- 

NSCs, undifferentiated and differentiated to glia. Scale bars represent 10 pM. Arrows 

indicate colocalization between autophagosomes (marked with LC3) and lysosomes 

(marked with CatD), suggesting that in glia-differentiated WT cells autophagosomes 

properly fuse with lysosomes and, therefore, the autophagy process is working. Such 

colocalization is not present in glia-differentiated MSD cells, suggesting a block of the 

autophagy process.
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Figure 18. Differentiating MSD-NSCs display accumulation of poly-ubiquitinated 

proteins and p62/SQSTM1

(A) Epifluorescence microscopy image of immunofluorescence detecting poly-ubiquitin (left 

panel) and p62/SQSTM1 (right panel) in wild-type (WT) and MSD undifferentiated cells 

(ND), glia and neurons. Scale bars represent 10 pM. (B) Immunoblotting of poly-ubiquitin 

and p62/SQSTM1 in WT and MSD ND cells, glia and neurons.
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MSD differentiated cells display the tendency to form aggresomes

It has been demonstrated that when poly-ubiquitinated misfolded proteins 

cannot be properly cleared, they accumulate into the aggresome (Goldberg 2003; 

Kawaguchi et al. 2003), an inclusion body localized in the proximity of the 

microtubule-organizing centre (MTOC) (Iwata et al. 2005; Pandey et al. 2007), 

where protein aggregates are ensheathed by the intermediate filament protein 

vimentin (Johnston, Ward, and Kopito 1998). Microtubule-associated histone 

deacetylase 6 (HDAC6) mediates this process (Matthias, Yoshida, and Khochbin

2008) through its ubiquitin-binding domain (UBA): HDAC6 binds to and facilitates 

the transport of poly-ubiquitinated misfolded proteins along microtubules to 

aggresome (Kawaguchi et al. 2003).

In wild type NSCs differentiated to glia we observed a typical cytoscheleton- 

associated localization of HDAC6, while in glia-differentiated MSD-NSCs we found 

an increase in the amount of HDAC6 detected by immunoblotting analysis (Figure 

19-A, left panel), as well as an altered punctate cytoplasmic staining, occasionally 

colocalizing with poly-ubiquitinated proteins, as shown by immunofluorescence on 

wild-type and MSD glia cells (Figure 19-B, upper panel). Immunoblotting analysis 

showed also a consistent increase in vimentin expression (Figure 19-A, right 

panel). These observations suggest that, as a consequence of impaired 

autophagy, the presence of poly-ubiquitinated proteins produce an elevation in the 

levels of HDAC6, whose role is to target them to the aggresome.

Aggresome clearance is then mediated by ubiquitin-binding proteins like 

p62/SQSTM1 and neighbor of BRCA1 gene 1 (NBR1) (Kirkin et al. 2009), and in
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fact we observed a higher co-localization of p62/SQSTM1 and HDAC6 in glia 

differentiated MSD-NSCs compared to wild type cells (Figure 19-B, lower panel), 

suggesting an increased aggresome formation. As an adaptor protein, 

p62/SQSTM1 is then responsible for misfolded protein degradation through 

autophagy pathway (Kirkin et al. 2009; Komatsu et al. 2010; Komatsu et al. 2007), 

which is impaired in MSD pathology. In fact, we did not observed co-localization 

between poly-ubiquitinated protein aggregates and the autophagy marker LC3, 

suggesting that the block of the autophagy process observed in vivo impairs not 

only the fusion of lysosomes with autophagosomes, but also the sequestration of 

toxic protein aggregates within the cytoplasm. In fact, even when we induced 

autophagy activation through starvation of undifferentiated cells we still did not 

observe the incorporation of poly-ubiquitinated proteins inside autphagosomes, 

rather producing as the only effect an increase in the size of aggregates (Figure 

20).

As far as we known this is the first time that aggresome has been described 

in brain-derived cells from mice affected of MSD. Therefore, more experiments are 

needed to assess the contribution of aggresome formation in MSD pathology, and 

in particular its role in neurodegeneration.
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Figure 19. Differentiating MSD-NSCs display the tendency to form aggresomes

(A) Immunoblotting of HDAC6 and vimentin in wild-type (WT) and MSD-glia. (B) 

Epifluorescence microscopy image of immunofluorescence detecting poly-ubiquitin (upper 

panel) and p62/SQSTM (lower panel) in WT and MSD cells, glia and neurons. Scale bars 

represent 10 pM.
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Figure 20. Defects in the autophagy pathway impairs toxic protein aggregates 

sequestration into autophagosomes.

Epifluorescence microscopy image of immunofluorescence detecting poly-ubiquitin and 

LC3 in wild-type (WT) and MSD undifferentiated cells (ND). Scale bars represent 10 pM. 

Incorporation of poly-ubiquitinated proteins inside autphagosomes in MSD ND cells was 

not observed upon starvation-induced autophagy.
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MSD differentiated cells show increased apoptosis

To determine whether the accumulation of GAGs, poly-ubiquitinated proteins, 

p62/SQSTM1 and the block of autophagy are likely to sensitize NSCs to cell death, 

I analyzed the levels of apoptosis in MSD-NSCs (Figure 21). I tested their viability 

in the undifferentiated state and also in the two main differentiation programs, glia 

and neurons. Apoptosis was measured by TUNEL (Terminal deoxynucleotidyl 

transferase dUTP nick end labeling) assay, a method for detecting DNA 

fragmentation resulting from apoptotic signaling cascades, by labeling the terminal 

end of nucleic acids. I observed that in undifferentiated conditions or during the 

differentiation programs MSD cells suffer an increased level of apoptosis. These 

findings well correlated with previous in vivo data, showing elevated apoptosis in 

brain cortex of MSD mice. These results suggest that brain progenitor cells from 

MSD brain are sensitized to apoptosis and, together with the reduced self-renew 

ability, this might count for the reduced brain size observed in early MSD pups 

(Settembre et al. 2007). In addition, after differentiation the cells are even more 

sensitized to apoptosis in vitro suggesting that the progression of lysosomal 

accumulation is even deleterious for post-mitotic NSCs.

In summary, MSD-NSCs represent a confident model to recapitulate in vitro the 

basic features of the disease, and that represent a useful tool to investigate the 

mechanisms of neurodegeneration.
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Figure 21. MSD-NSCs suffer increased apoptosis

Tunel assay was performed following the manufacturer’s manual (Roche) on NSCs, glia 

and neurons derived from wild-type (WT) and MSD cells. Data are mean of replicates 

(n=20) ±  SEM; *p <  0.05, **p <  0.005, *p <  0.0005 by Student’s t-test.
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TFEB induces lysosomal biogenesis in NSCs

Lysosomal biogenesis and function are transcriptionally regulated by TFEB 

(Sardiello et al. 2009). Moreover, TFEB overexpression not only increases the 

number of lysosomes in the cell, but it is also able to improve the degradative 

capability of the cell, as showed by the reduction of accumulated expanded 

huntingtin in a neuronal cell model of HD (Sardiello et al. 2009).

Therefore we questioned whether TFEB could mediate the clearance of 

accumulated material also in a cellular model of LSD. In particular, we investigated 

whether TFEB overexpression could reduce GAG accumulation in MSD-NSCs.

Firstly we observed that TFEB overexpression in NSCs increased lysosomal 

compartment (Figure 22). We nucleofected wild-type and MSD-NSCs with a 

bicystronic plasmid expressing TFEB-GFP and performed an immuno-fluorescence 

against LAMP1, a lysosomal membrane protein, in order to visualize the lysosomal 

compartment. Cells overexpressing TFEB always showed an increased LAMP1 

compared to non-transfected cells in their proximity, with a slightly enhanced signal 

in MSD cells.
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Figure 22. TFEB overexpression increases lysosomal compartment in NSCs

Epifluorescence microscopy image of immunofluorescence of LAMP 1 in NSCs transfected 

with a bicystronic plasmid expressing TFEB-GFP. Cells expressing TFEB were localized 

by the expression of GFP; non-transfected cells are indicated by asterisks. Scale bars 

represent 10 pM.
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TFEB promotes cellular clearance in MSD-NSCs

We tested whether TFEB-mediated increase of the lysosomal compartment 

could be exploited to induce cellular clearance in MSD-NSCs (Medina et al. 2011). 

Specifically, we evaluated the effect of TFEB overexpression on the clearance of 

GAGs in glia differentiated MSD-NSCs (Figure 23); we nucleofected cells with 

either a TFEB plasmid or with an empty plasmid and after 24 hours we induced glia 

differentiation for 48 hours; at the end of the differentiation program, we performed 

the alcian blue staining to reveal the amount of GAG accumulation within cells. 

Interestingly, TFEB overexpression resulted in a striking reduction of alcian blue 

stained GAGs in MSD glial cells (Figure 23-A), suggesting that TFEB is able to 

modulate cellular clearance also in cells affected by a lysosomal storage disorder.

This result was further confirmed by pulse-and-chase experiments using H3- 

glucosamine to label GAGs (Figure 23-B). Wild-type and MSD-NSCs were 

nucleofected either with a TFEB plasmid or with an empty plasmid, and after 16 

hours, cells were pulsed with H3-glucosamine in differentiation medium and chased 

for 48 hours. Cell extracts obtained were quantified to determine the levels of 

labeled GAGs. The experiment showed a significant reduction of the levels of 

labeled GAGs in MSD glial cells overexpressing TFEB.

Finally, EM analysis revealed that TFEB-mediated clearance of GAGs in 

TFEB-overexpressing MSD cells was associated with both significant reduction of 

cellular vacuolization and recovery of normal intracellular morphology (Figure 23- 

C). Glia-differentiated MSD-NSCs were nucleofected with either TFEB or with an 

empty vector, fixed with glutaraldehyde and processed for standard electron
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microscopy. The number of vacuoles per cell was significantly reduced in cells 

overexpressing TFEB compared to the empty vector, thus confirming the clearing 

potential of TFEB on pathologic vacuolization, typical of LSD cells and tissues.
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Figure 23. TFEB promotes cellular clearance in MSD-NSCs

(A) Alcian-blu staining o f GAGs of MSD-derived glia cells nucleofected with either an 

empty vector or TFEB plasmid. (B) Pulse-and-chase incorporation o f H3-glucosamine of 

wild-type and MSD-derived glia cells nucleofected with either an empty vector or a TFEB 

plasmid. (C) Electron Microscopy of MSD-derived glia cells nucleofected with either an 

empty vector or TFEB plasmid. Scale bars represent 100 pM (A) and 10 pM (B). Data are 

mean of replicates (n=3) ± SEM; *p < 0.05 by Student’s t-test (B and C)
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TFEB Overexpression Induces Lysosomal Exocytosis

Since TFEB is not able to replace the missing SUMF1 gene product in MSD 

NSCs, we postulated that the overexpression of TFEB may be able to induce the 

activation of lysosomal exocytosis, a secretory pathway that allows lysosomes to 

empty their content in the extracellular space. As we know, lysosomal exocytosis 

requires two sequential steps; in the first step lysosomes are recruited to the close 

proximity of the cell surface in a Ca2+-independent manner (Jaiswal, Andrews, and 

Simon 2002), and in the second step the pool of predocked lysosomes fuse with 

the PM in a Ca2+-dependent manner, thus emptying their content outside the cell 

(N W Andrews 2000; Jaiswal, Andrews, and Simon 2002; Tucker, Weber, and 

Chapman 2004).

Hence, a typical hallmark of lysosomal exocytosis is the translocation of 

lysosomal membrane markers to the PM (Reddy, Caler, and Andrews 2001; 

Rodriguez et al. 1997; Yogalingam et al. 2008). Therefore we detected LAMP1, a 

lysosomal membrane marker, using an antibody against its luminal portion, and in 

conditions of non-permeabilized wild-type NSCs, transfected with either a 

bicystronic plasmid expressing TFEB-GFP or an empty vector. Interestingly, TFEB 

overexpression resulted in an increased exposure of the luminal domain of LAMP1 

on the PM, thus suggesting an increased translocation of lysosomes to the PM 

(Figure 24-A).

Consistently, also a quantitative analysis by flow cytometry (FACs) showed 

an increase of LAMP1 staining on the PM of TFEB-overexpressing wild-type NSCs 

(Figure 24-B).
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Furthermore, a direct consequence of lysosomal exocytosis is the release of 

lysosomal enzymes into the cell culture medium (Rodriguez et al. 1997). Therefore 

we analyzed the presence of acid hydrolases in the culture medium of wild-type 

NSCs transfected with either a bicystronic plasmid expressing TFEB or an empty 

vector (Figure 24-C). Significantly higher levels of lysosomal hydrolases were 

detected in the medium of NSCs overexpressing TFEB compared with control 

cells. However, the increase of lysosomal enzymes in the medium was not 

associated with an increase in the levels of cytosolic lactate dehydrogenase (LDH) 

(Figure 24-D), thus excluding that the release of lysosomal enzymes was due to 

cell damage and that TFEB overexpression is cytotoxic. Together, these data 

indicate that TFEB induces lysosomal exocytosis (Medina et al. 2011).
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Figure 24. TFEB Overexpression Induces Lysosomal Exocytosis

(A) Con focal microscopy image of immunofluorescence detecting the luminal portion of 

LAMP1 (with the antibody LAMP1-1DB4) in non-permeabilized wild type NSCs transfected 

with either a bicystronic plasmid expressing TFEB-GFP or with an empty vector. TFEB- 

transfected cells were localized by the expression of GFP; non-transfected cells are 

indicated by asterisks. (B) Quantitative analysis by flow cytometry of LAMP1 levels on the 

PM in wild-type NSCs that express either a bicystronic TFEB-GFP plasmid or GFP. Bars 

represent the fold increase of LAMP1 fluorescence in TFEB-transfected versus GFP- 

transfected (CTRL) cells. (C) Activities of lysosomal enzymes acid phosphatase, b- 

galactosidase, and b-hexosaminidase in the culture medium of wild-type NSCs 

nucleofected with either an empty vector or with a TFEB-expression vector. The figure 

shows percentages of enzyme activities released compared with total activities. (D) LDH 

activity was determined following the manufacturer’s manual (Abeam) in supernatants of 

NSCs transfected either with TFEB or with an empty vector. Data are mean of replicates 

(n=4) ±  SEM (B, C and D). *p <  0.05 by Student’s t-test (B and C)



TFEB Overexpression Enhances Lysosomal Predocking to the PM and 

Elevates Intracellular Ca2+

Induction of lysosomal exocytosis involves the recruitment of lysosomes to 

the PM (Blott and Griffiths 2002). To clearly demonstrate that TFEB overexpression 

resulted in an increased motility of lysosomes we took advantage of a HeLa cell 

line stably expressing TFEB (HeLa CF7) using the immuno-EM approach (Figure 

25-A). In HeLa control cells lysosomes were distributed randomly throughout the 

cells, whilst CF7 cells exhibited numerous lysosomes in the close proximity of the 

PM, indicating that TFEB overexpression significantly stimulates the recruitment of 

lysosomes to the PM, a step that is required for lysosomal exocytosis.

Several studies demonstrated that the elevation of Ca2+ concentrations is 

required for the fusion of lysosomes with the PM, but not for the previous step of 

the recruitment of lysosomes to the cell surface (N W Andrews 2000; Jaiswal, 

Andrews, and Simon 2002; Rodriguez et al. 1997). We also demonstrated that in 

HeLa control cells the overexpression of TFEB led to an elevation of intracellular 

Ca2+ levels (Figure 25-B), consistent with the role of TFEB in the induction of 

lysosomal exocytosis.

To assess whether the elevation of intracellular Ca2+ levels was responsible 

for the activation of lysosomal exocytosis and thus for the clearance of 

accumulated GAGs, we tested TFEB ability to reduce storage in presence of a 

Ca2+ inhibitor (Figure 25-C). Therefore, we nucleofected MSD-NSCs with a TFEB 

plasmid, we differentiated them to glia and at the same time we treated them with 

the Ca2+ chelator, BAPTA-AM, at increasing concentrations; then, after 48 hours,
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alcian blue staining of GAGs was performed. We observed an inhibition of GAG 

clearance after the addition of BAPTA to TFEB overexpressing NSCs, confirming 

the involvement of Ca2+ in TFEB-mediated reduction of pathologic storage.

Together, these results indicate that in addition to promoting lysosomal 

recruitment to the PM, TFEB induces lysosomal exocytosis by enhancing Ca2+- 

mediated fusion of lysosomes with the PM (Medina et al. 2011).
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Figure 25. TFEB enhances PM proximity of lysosomes and Intracellular Ca2+ Release

(A) Immuno-Electron Microscopy in control and HeLa CF7. Cells were fixed and labeled 

with the antibodiy against LAMP1 and prepared for immuno-EM. LAMP1 detected at a 

substantial distance from the cell surface are indicated by arrows, while lysosomes that are 

close to the PM are indicated by arrowheads. The distance between lysosomes and PM 

was estimated in thin sections and 100 lysosomes were counted for each condition. Scale 

bars represent 350 nm. (B) Analysis of intracellular Ca2+ by confocal microscopy of HeLa 

cells transfected with a bicystronic TFEB-GFP construct. Data are displayed as the 

percentage of cells with Ca2+ response compared with the non-transfected cells. (C) Ca2+ 

involvement in TFEB-mediated GAG clearance in MSD-NSCs. Alcian blue staining of 

GAGs was performed on glia-differentiated MSD-NSCs nucleofected with a TFEB. The 

cells were treated with different concentrations of the Ca2+ chelator BAPTA-AM for 12 

hours.
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TFEB Releases Ca2+ from Acidic Stores through the Activation of 

Mucolipin-1

Although we demonstrated that TFEB overexpression strongly activates 

lysosomal exocytosis and eventually leads to the clearance of pathologic material, 

the mechanism of action was still left to clarify.

In a separate study, we demonstrated that among other genes belonging to 

the network, TFEB regulates the expression of the gene encoding MCOLN1 

(Palmieri et al. 2011), a lysosomal non-selective cation channel that is mutated in 

MLIV, a severe type of LSD (Bargal et al. 2000; Bargal et al. 2002; Bassi et al. 

2000). Previous studies reported that lysosomal exocytosis is reduced in MLIV 

cells (LaPlante et al. 2006) and increased in cells expressing gain-of-function 

MCOLN1 mutations (X. Dong et al. 2009). These observations made MCOLN1 an 

appealing candidate to mediate TFEB effects on lysosomal exocytosis, suggesting 

that MCOLN1, upon a proper cellular stimulation, mediates intralysosomal Ca2+ 

release to trigger lysosomal exocytosis.

Therefore, we performed a flow-cytometry Ca2+ flux assay in NSCs 

transfected with a control vector, a vector containing a scramble shRNA plus TFEB 

plasmid, and a vector containing a pool of four fluorescently tagged vectors 

carrying specific MCOLNI-shRNAs plus TFEB plasmid (Figure 26-A). Levels of 

Ca2+ were determined in resting condition and after stimulation with ionomycin (10 

micromolar), an ionophore that raises the intracellular level of Ca2+. Remarkably, 

TFEB-mediated increase of intracellular Ca2+ was blocked in NSCs overexpressing 

TFEB by transient silencing of MCOLN1 with shRNAs, suggesting a crucial role of
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MC0LN1 in TFEB-mediated activation of lysosomal exocytosis. This observation 

was further confirmed also in HeLa cells stably depleted for MCOLN1 (HeLa 

shMCOLNI) (Figure 26-B) and in human MLIV fibroblasts (Figure 26-C). In 

addition, stable depletion of MCOLN1 in HeLa cells also impaired TFEB-mediated 

fusion of LAMP1 with the PM (Figure 26-D) and secretion of lysosomal enzymes 

(Figure 26-E).
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Figure 26. TFEB elevates intracellular Ca2+ levels through the activation of MCOLN1

(A) Flow-cytometry Ca + flux assay in NSCs transfected with a control vector, a vector 

containing a scramble shRNA plus TFEB plasmid, and a vector containing a specific 

shRNA against MCOLN1 plus TFEB plasmid. Ca2+ was determined in resting condition 

and after stimulation with ionomycin (10 pM). (B and C) Analyses of intracellular Ca2+ by 

confocal microscopy of (B) HeLashMCOiN and (C) human MLIV fibroblasts transfected with a 

bicystronic TFEB-GFP construct. Data are displayed as the percentage of cells with Ca2+ 

response compared with non-transfected cells. (D) Flow-cytometry analysis o f LAMP1 on 

the PM of HeLashMCOiN1 cells transfected with TFEB. (E) Secretion o f lysosomal b- 

galactosidase in HeLashMCOiN1 cells. Secretion efficiency was calculated as the % of 

enzymatic activity in the medium with respect to the total activity (medium and cellular 

pellet). Data represent mean of replicates (n=5) ± SEM; *p < 0.05 (A-E). Scale bars 

represent 10 mm (B) and 25 mm (C).
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Furthermore, the lysosomal localization of MCOLN1 and its channel 

properties suggested that the elevation of intracellular Ca2+ levels induced by TFEB 

overexpression was due to the release of Ca2+ from lysosomal stores through 

MCOLN1. In fact, we treated cells with the inhibitor of the v-ATPase, Bafilomycin 

A1, which is responsible for the proton gradient driving lysosomal Ca2+ uptake 

(Christensen, Myers, and Swanson 2002), and therefore induces acidic Ca2+ 

release. The result clearly showed that both TFEB and MCOLN1 overexpressing 

HeLa cells were less sensitive to Bafilomycin A1-dependent depletion of lysosomal 

Ca2+ compared to HeLa control cells (Figure 27-A). This suggests that in a 

condition of induced lysosomal exocytosis, acidic stores of Ca2+ are actively being 

used to induce the fusion of lysosomes with PM and Bafilomycin A1 effect is less 

prominent if compared to control cells.

Moreover, we tested TFEB-mediated clearance of accumulated material in 

human MLIV fibroblast; cells were transfected with either TFEB-FLAG or with an 

empty vector and analyzed by confocal microscopy. TFEB overexpression did not 

reduce lipofuscin accumulation in human MLIV fibroblasts (Figure 27-B), thus 

confirming the importance of MCOLN1 function in TFEB-mediated clearance of 

lysosomal storage.

Together these data strongly suggest that MCOLN1-dependent release of 

Ca2+ from acidic Ca2+ stores plays a major role in TFEB-mediated lysosomal 

exocytosis (Medina et al. 2011).

At this point, we questioned whether MCOLN1 overexpression could mediate 

activation of lysosomal exocytosis, with no participation of TFEB. Thus, to assess 

whether MCOLN1 on its own was able to reduce GAG accumulation as well as
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TFEB, we performed Alcian blu staining on glia-differentiated MSD-NSCs infected 

with either a lentiviral vector carrying TFEB or an adenoviral vector encoding 

MCOLN1. We observed reduced GAG accumulation in cells overexpressing 

MCOLN1, but to a lesser extent compared with TFEB, suggesting that Ca2+ 

elevation is required but not sufficient to mediate TFEB effects on lysosomal 

exocytosis. In fact, MCOLN1 overexpression only partially reduced GAG pathologic 

storage.
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Figure 27. MC0LN1 plays a central role in TFEB-mediated activation of lysosomal 

exocytosis

(A) Ca2+ levels were measured by loading cells with the ratiometric fluorescent dye 

FuraRed. After 1.5 min of confocal time-lapse acquisition, cells were treated with 1uM 

Bafilomycin A1 to induce the release of Ca2+ from the acidic compartment. Data represent 

the F458/F488 ratio of each experimental group compared with their basal ratio before 

stimulation (F/F0*100). (B) Human MLIV disease fibroblasts were transfected with either 

TFEB-FLAG or with an empty vector and analyzed by confocal microscopy. (C) Alcian blue 

staining of GAGs in glia-differentiated MSD-NSCs infected with either a lentiviral vector 

carrying TFEB or an adenoviral vector encoding MCOLN1.
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To further confirm that the clearance is effectively mediated by exocytosis, we 

measured the secretion efficiency of GAGs in the culture medium of MSD-NSCs 

overexpressing TFEB (Figure 28-A). Cells were nucleofected with either TFEB or 

an empty vector after pulse-chase incorporation of H3-glucosamine and then 

radioactive GAGs were measured in the culture medium. When MSD-NSCs were 

overexpressing TFEB, we observed an increase in GAG secretion in the cell 

culture medium, thus confirming that clearance is mediated by exocytosis.

We then extended these studies to other types of LSDs associated with the 

storage of different types of lysosomal substrates, like Neuronal Ceroid 

Lipofuscinosis type 3 (CLN3 or Batten disease), and glycogenosis type II (or 

Pompe disease), characterized by the accumulation of lipofuscin and glycogen, 

respectively (Beratis, LaBadie, and Hirschhorn 1978; Persaud-Sawin et al. 2007). 

We found that TFEB overexpression strongly reduced lipofuscin autofluorescence 

in cells from a murine model of NCL3, and also in fibroblasts from a patient 

affected by glycogenosis type II, Pompe disease (Figure 28-B). These data indicate 

that induction of lysosomal exocytosis promotes cellular clearance in diseases due 

to accumulation of different types of lysosomal substrates. Notably, all diseases 

tested (i.e., MSD, Batten, and NCL) are due to deficiency of proteins whose activity 

is involved in crucial steps of different catabolic pathways. In addition, the cells 

analyzed were derived from patients and murine models carrying either null 

mutations or mutations that severely inactivate protein function. Therefore, it is 

unlikely that clearance of lysosomal substrates is due to either the enhancement of 

the activity of the defective enzymes, or to an overall induction of lysosomal 

catabolic processes, suggesting that clearance is mediated by exocytosis.
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Figure 28. TFEB clearance is mediated by exocytosis and is tested in Batten and 

Pompe diseases’ cellular model.

(A) Secretion efficiency of radioactive GAGs measured in the culture medium of MSD- 

NSCs nucleofected with either TFEB or an empty vector after pulse-chase incorporation of 

H3-glucosamine. Data represent mean ±  SEM; *p <  0.05 (B and C). (B) TFEB promotes 

clearance of lipofuscin in fibroblasts from a patient with Batten disease (upper panel) and 

of the fluorescent sugar 2-NBDG in human Pompe disease fibroblasts (lower panel). Cells 

were transfected with a vector carrying TFEB-Ruby (continuous red staining). After 24 hr, 

cells were examined by live imaging confocal analysis. Cells with increased TFEB (i.e., 

cells with red signal in the picture and outlined by dashed white lines in the middle panel) 

display highly reduced levels of lipofuscin or 2-NBDG (punctate green signal) and a normal 

cellular morphology compared with non-transfected cells (i.e., cells with intense green 

staining).
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TFEB induces storage clearance in a mouse model of MSD

Finally, we tested whether in vivo overexpression of TFEB in the mouse 

model of MSD had similar effects on cellular clearance (Figure 29). To this end, we 

injected systemically into adult MSD mice an adeno-associated virus type 2/9 

(AAV2/9) that carries TFEB-3xflag or GFP, both under control of the 

cytomegalovirus (CMV) promoter. One month after injection, several tissues were 

collected to monitor transduction efficiency and GAG storage; AAV-mediated TFEB 

delivery was detected using a specific anti-flag antibody and resulted in efficient 

TFEB transduction (Figure 29-A, left panel). In both liver and skeletal muscles we 

observed a significant reduction of GAG amount, as detected by alcian blue 

staining and GAG quantification (Figure 29-A, right panel, and B).

Subsequently, we investigated whether TFEB-mediated clearance of GAGs 

resulted in the reduction of the pathologic hallmarks of MSD, such as macrophage 

infiltration and apoptosis (Settembre et al. 2007) (Figure 30). We found a striking 

reduction of CD68-positive cells in the liver of AAV-TFEB injected MSD mice 

compared with MSD non-injected littermates (Figure 30-A). Most importantly, we 

also observed a significant reduction of apoptotic cells in liver of 4-month-old MSD 

mice injected with an AAV2/9-CMV-TFEB3xflag viral vector (Figure 30-B); we 

counted the number of TUNEL-positive cells and compared it with age matched 

MSD non-injected mice.

These results indicate that TFEB activation of lysosomal exocytosis reduces 

both primary accumulation of GAGs and secondary pathological processes 

associated with LSDs, such as inflammation and cell death (Medina et al. 2011).
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Figure 29. TFEB overexpression reduces GAG storage in a mouse model of MSD

(A) Representative immunofluorescence of liver and muscle sections infected with AAV- 

TFEB-FLAG (left panel) and alcian blue staining of GAG content in skeletal muscle and 

liver from mice injected systemically with either an AAV2/9-CMV-GFP or with an AAV2/9- 

CMV-TFEB3xflag viral vector (right panel). (B) Quantitative analysis of GAG content in liver 

(left panel) and skeletal muscle (right panel) of MSD mice injected with either an AAV2/9- 

CMV-GFP or with an AAV2/9-CMVTFEB3xflag viral vector. GAG content was displayed as 

mg of GAGs/mg of tissue extract. At least four mice per group were analyzed for each 

tissue examined (*p < 0.05). Data are mean of replicates (n=5) ± SEM; *p < 0.05.
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Figure 30. TFEB overexpression reduces tissue pathology in a mouse model of MSD

(A) TFEB reduces inflammation in the liver of MSD mice. Macrophages and macrophage- 

related inflammatory cells were detected in liver sections from mice injected systemically 

with either an AAV2/9-CMV-GFP or with an AAV2/9-CMV-TFEB3xflag viral vector by 

immunofluorescence analysis using an antibody against CD68. (B) Reduction of TUNEL- 

positive cells (arrows) in 4-month-old MSD mice injected with an AAV2/9-CMV-TFEB3xflag 

viral vector compared with age-matched MSD non-injected mice. At least four mice per 

group were analyzed for each tissue examined). Data are mean of replicates (n=5) ±  SEM; 

*p <  0.05 (B and D). Scale bars represent 100 mm (A, C, and D).
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DISCUSSION

NSCs recapitulate the main hallmarks of MSD pathology

Most of the LSDs present neurological involvement, but yet little is known 

about the mechanism of neurodegeneration. Intracellular accumulation of 

undegraded compounds are the primary effect observed in patients as well as in 

animal models, but whether they are the direct cause of cell death it is not clear; 

most likely the primary accumulation of undegraded substrates triggers secondary 

pathologic cascades, such as impaired autophagy, which in turn contributes 

together with global lysosomal dycfunction to neurodegeneration.

Post-mitotic neurons do not replicate in adult life and have a highly developed 

lysosomal network for membrane recycling: lysosomes are trafficked in axonal 

fibres using molecular motors to ensure that, as the cytoplasm extends to the far 

reaches and ramifications of the axon, distribution of the organelle is maintained 

(Tsukita and Ishikawa 1980). For this reason, the well-being of the lysosomal 

compartment has a particularly high relevance in post-mitotic neurons, and any 

perturbation of its proper function can cause neurological deficits, with or without 

cell death. In fact, in lysosomal diseases, electron microscopy of neurons, as well 

as other cell types, shows formation of vacuoles and lysosomes distended by 

recognizable cellular cargo (Walkley et al. 2010). Thus, it does not surprise that 

two-thirds of lysosomal diseases have potentially devastating consequences in the 

nervous system, and therefore future therapeutic research will require an

105



integrative understanding of the unitary steps in their neuronal pathogenesis.

Multiple Sulfatase Deficiency is a neurodegenerative lysosomal disease 

caused by the deficiency of a non-lysosomal protein; in fact, SUMF1 resides in the 

ER, where it is responsible for the post-translational activation of a whole family of 

enzymes, sulfatases. Patients suffering from MSD combine clinical symptoms of 

the different single sulfatase defects, with a severe impairment of neurological 

abilities. Sumfl -/- mice recapitulate all the features of the disease observed in 

MSD patients, obviously including neurodegenerative aspects. The Sumfl -/- 

mouse model not only allows a systematic study of the pathophysiology of MSD; 

importantly, it also provides a model to test therapeutic approaches to the 

treatment of MSD, similar to other mouse models of individual LSDs.

These observations prompted us to develop a reliable system to generate a 

neural cellular model from MSD mice, in order to investigate the signaling 

pathways involved in the neuronal pathology and eventually develop novel 

therapeutic strategies.

Furthermore, MSD mice are asymptomatic immediately after birth, but soon 

after they display congenital growth retardation and frequent mortality in the first 

weeks of life (Settembre et al. 2007). This observation suggested that early stages 

after birth are crucial for MSD pathology development, especially from the aspect 

of the neurological dysfunction, but that deeper investigation was needed.

Therefore, I isolated NSCs from neo-natal (P0) brain of wild-type and MSD 

mice, establishing a robust protocol that allows not only for the isolation, but also 

for the continuous in vitro expansion of NSCs, resembling and preserving all the 

morphological and molecular features of in vivo neuronal progenitors.
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As a first observation, MSD-NSCs display similar properties of their wild-type 

counterpart, suggesting that, with SUMF1 lack of function, progenitor cells maintain 

their radial glia identity, although they seem to have a progressive reduction of self- 

renew.

It has been shown that Hematopoietic Stem Cells (HSCs) isolated from MSD 

mice are characterized by an altered extracellular signaling of FGF and Wnt 

pathways (Buono et al. 2010). Self-renewal and differentiation of HSCs are 

balanced by the concerted activities of FGF, Wnt, and Notch pathways; Sulfl and 

Sulf2 are two non-lysosomal sulfatases, which are activated by SUMF1 post- 

translational modification and localize at the cell surface, where they mediate the 

remodeling of heparan sulfate proteoglycans (HSPGs). It has been demonstrated 

that Wnt controls tissue-specific cell fate decisions during embryogenesis, binding 

to the heparan sulfate moieties of HSPGs on the cell surface (Logan and Nusse 

2004; Bejsovec 2005). Sulf enzymes remove the sulfate from heparan sulfate, and 

releases Wnt from HSPGs. This released Wnt associates with Frizzled (Fz) and 

LRP5/6 receptors, resulting in inactivation of a multiprotein destruction complex, 

which in turn leads to the translocation of (B-catenin into the nucleus, where it 

activates several target genes (Hoppler and Kavanagh 2007). (3-catenin 

translocation in the cell nucleus has been shown to enhance self-renewal and 

maintain totipotency of ESCs and multipotency of HSCs (Reya et al. 2003; Suh et 

al. 2007). Thus, the impairment in the activities of Sulfl and Sulf2 in SUMF1 

deficient cells may alter the action of important extracellular signals by modifying 

the sulfation state of the heparan sulfates contained in HSPGs. In fact, crystal 

structure studies have demonstrated that binding of FGF1 and FGF2 to the FGF
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receptor is stabilized by sulfation of the heparan sulfates of the HSPGs (Pellegrini 

et al. 2000). It is also known that FGF signaling controls proliferation and 

subsequent lineage commitment of neural stem cells through a concerted action 

with p-catenin (Israsena et al. 2004).

Therefore, the self-renew impairment of MSD-NSCs observed in neurosphere 

assay may be ascribed to an alteration in the local concentration of important 

mitogenic factors bound to the HSPGs. Conversely, I did not observe any major 

block in the differentiation of MSD-NSCs, as glia and neurons expressed typical 

glia and neuronal markers, respectively, and they both did not show expression of 

the progenitor marker, as well as neurons outgrow neurites and were 

electrophysiologically active; nevertheless, more detailed and specific experiments 

are needed, in order to better quantify the extent of the differentiated cell 

population.

Isolated NSCs have the potency to generate the two main cell types of the 

CNS, glia and neurons, thus providing an in vitro model that can easily resemble all 

the main features of the developing brain. In fact, I did not observe defects in the 

differentiation of NSCs to the two main cell types of the brain, glia and neurons. 

However, the protocols I followed is one of the most accepted in order to visualize 

differentiation capacities in a grossly manner (Conti et al., 2005), but does not allow 

for a more specific analysis of diverse sub-populations actually present. In fact, 

NSCs can give rise also to oligodendrocytes, as well as different types of neurons; 

therefore, more detailed investigation on this aspect is needed, in order to evaluate 

whether the lack of SUMF1 can interfere with one or more of these cellular fate.

Furthermore, cellular differentiation is a progressive and committed process,
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in which a single defect becomes usually amplified and triggers a cascade of 

subsequent intracellular malfunctions, eventually leading to a severe 

neurodegeneration. The more the cells proceed in the developmental progression, 

the more restricted they become in their differentiation potential, losing their self

renewal ability.

Altered autophagy is a hallmark of various LSDs, such as MSD and MPSIIIA 

(Settembre et al. 2008). As a degradative process, autophagy is responsible for 

constitutive protein turnover, a crucial function in neuronal cells and thus relevant 

to neurodegenerative diseases (Reggiori and Klionsky 2002). In agreement with in 

vivo data, we observed an increase of LC3-II levels in cellular extracts from 

differentiated MSD-NSCs, and accumulation of p62/SQSTM1 and poly- 

ubiquitinated proteins, both common components of protein aggregates in 

neurodegenerative diseases (Bjorkoy, Lamark, and Johansen 2006). We found 

that the accumulation of GAGs, poly-ubiquitinated proteins, and p62/SQSTM1 are 

likely to be associated with cell death. In fact, we observed that MSD-NSCs were 

more sensitive to apoptosis compared with wild-type cells, and in particular during 

the differentiation toward glial or neural cells. These findings correlate with the 

recent observation that defect in the recycling of dysfunctional mitochondria, 

through autophagy, could be involved in CNS neurodegeneration in MSD mouse 

model (de Pablo-Latorre et al. 2012).

Furthermore, I found a possible interesting correlation between impaired 

autophagy and aggresome formation and, although very preliminary, my data can 

suggest that, through this mechanism, the cell is protecting itself from toxic 

accumulation of proteins. Accumulation of misfolded proteins, indeed, is a

109



prominent pathological feature common to many neurodegenerative diseases, 

including Parkinson's disease (PD), Alzheimer's disease (AD), HD, Amyotrophic 

Lateral Sclerosis (ALS) and many others; protein quality control is particularly 

important to neuronal homeostasis and normal function because neurons are post

mitotic and unable to dilute cytotoxic misfolded proteins through cell division (Ross 

and Poirier 2004). Genetic mutations or environmental insults can induce many 

different proteins to misfold and aggregate, suggesting that a common pathological 

mechanism may link clinically distinct neurodegenerative diseases (Bucciantini et 

al. 2002; Kayed et al. 2003; Fandrich, Fletcher, and Dobson 2001; Glabe 2004). 

Interestingly, MSD and MPSIIIA cells present increased accumulation of 

overexpressed mutant forms of huntingtin and a-synuclein compared with wild-type 

counterparts, suggesting that protein aggregation may be activated in these 

diseases due to impaired autophagy (Settembre et al, 2008). In addition, recent 

findings demonstrate that certain regions of the brain of MPSIIIB mice show 

accumulation of hyperphosphorylated tau (Ptau) (Ohmi et al., 2009) and beta 

amyloid aggregations (Ohmi et al., 2011), both reminiscent of Alzheimer’s disease, 

suggesting that LSDs are likely to produce toxic protein aggregates, as well as 

other more known neurodegenerative diseases. Therefore, in order to clarify the 

aspect of protein aggregation in MSD pathology, a future challange will be to detect 

endogenous toxic proteins, such as huntingtin and a-synuclein, and follow their 

accumulation in post-mitotic cells.

In cultured cell, when the production of misfolded proteins exceeds the 

capacity of the ubiquitin-proteasome degradation pathway, misfolded proteins are 

actively transported to the aggresome. Aggresome formation is recognized as a
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cytoprotective response serving to sequester potentially toxic misfolded proteins 

and facilitate their clearance by autophagy (Fortun et al. 2003; Taylor et al. 2003; 

Iwata et al. 2005; Ravikumar, Duden, and Rubinsztein 2002). However, the deficit 

in autophagosome fusion with lysosome observed both in vivo and in vitro in MSD 

pathology can neutralize this cellular protective response, eventually worsening 

cellular viability.

TFEB-mediated activation of lysosomal exocytosis promotes the 

clearance of undegraded substrates

Establishing an in vitro system that was able to recapitulate all the main 

features of MSD prompted us to take advantage of the usefulness of this tool to 

explore possible therapeutic approaches, in the direction of reverting the pathologic 

phenotype. Towards this goal, we took advantage of the studies previously carried 

out in our laboratory on the bHLH transcription factor EB (TFEB) that was shown to 

coordinate lysosomal biogenesis, autophagy and also clearance in a neuronal 

model of HD (Sardiello et al. 2009; Settembre et al. 2011). Therefore we 

questioned whether TFEB-mediated increase of the lysosomal compartment could 

be exploited to induce the clearance of accumulated GAGs also in a neuronal 

cellular model of MSD.

Interestingly, TFEB overexpression resulted in a striking reduction of stored 

GAGs in MSD glial cells, as well as it induced recovery of normal intracellular 

morphology.

We also demonstrated that TFEB-mediated clearance of undegraded material
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is actually due to the activation of one of his target genes, the cation-channel 

MCOLN1, which is then responsible for the promotion of lysosomal exocytosis; in 

fact, MCOLN1 triggers the intracellular Ca2+ elevation, required to induce 

lysosomes to move to the proximity of the PM; once there, they expel their content 

in the extracellular space, thus mitigating the intracellular burden (Figure 31).

Finally, we confirmed the importance of our result, showing that TFEB 

delivery rescues tissue pathology in a mouse model of MSD; one month after 

TFEB systemic injection, we observed a significant reduction of GAG storage in 

crucial organs, such as liver and muscles. Interestingly, also macrophage 

infiltration and apoptosis were strongly reduced, thus indicating that TFEB action 

ameliorates not only primary defects, such as the accumulation of undegraded 

material, but also those secondary defects, such as inflammation and cell death, 

that are the main pathologic features of MSD. Future studies overexpressing TFEB 

in the brain of MSD mice will allow us to further confirm the benefits of modulating 

lysosomal function in order to reduce pathologic lysosomal accumulation in the 

CNS.

Our data indicate that lysosomal exocytosis can be exploited to promote 

cellular clearance in lysosomal storage diseases, suggesting an alternative 

strategy to treat disorders due to intracellular storage, such as LSDs and other 

more common neurodegenerative diseases. Several approaches, such as gene 

delivery, pharmacological induction of TFEB, and target gene activation, could be 

exploited to promote cellular clearance in target tissues. These strategies will have 

to be tested by long-term in vivo studies in animal models to verify the therapeutic 

potential of this discovery.
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As future investigation, it is particularly relevant that NSCs can be the perfect 

tool for drug screening, in order to find compounds able to induce cellular 

clearance, either in a TFEB-dependent or -independent way. As a second step, a 

very interesting goal will be to find genetic modulators of TFEB, whose expression 

can be modulated in order to achieve the clearance of undegraded substrates in 

LSDs. Toward this goal, I plan to use the very powerful and rapid genetic system of 

the fruit fly, Drosophila Melanogaster. Once generated all the fly models of LSDs, 

they can be used to validate in vivo drug targets that have been found to activate 

TFEB expression in a high-throughput cell screening. Furthermore, I can also 

conduct unbiased genetic screens on the whole fly genome to find genes that 

modify the phenotype of the diseases. This can enable us to uncover molecular 

pathways that are involved in the progression of LSDs. The screen may underlie 

interesting differences amongst them, but since several disorders share common 

features, it is very likely that the genetic screens will reveal common modifiers.
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Figure 31. Schematic representation of TFEB mechanism of action.

TFEB overexpression activates the network of lysosomal genes, includind 

MCOLN1, which in turn promotes lysosomal exocytosis, reducing the storage of 

undegraded substrates.
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MATERIALS AND METHODS

Isolation of NSCs and cell culture conditions

Neural tissue dissociation and positive selection of NSCs was achieved as 

described in results and following the manufacturer’s manual (Miltenyi Biotec, 

Cologne, Germany).

Isolated neurospheres were propagated in culture at clonal density on 

uncoated plates (Nunclon, Waltham, Massachusetts, USA) in ESGRO medium 

(Chemicon, Temecula, California, USA) containing 20 ng/mL EGF and 10 ng/mL 

FGF2 (Peprotech, Rocky Hill, New Jersey, USA) and with penicillin/streptomycin 

(NSC expansion medium). Over 3-5 days, cells formed aggregates that, after 

harvesting and sedimentation to remove debris, subsequently attached to fresh 

plastic and outgrew NS cells.

For derivation from established neurospheres, NSC monolayer cultures was 

achieved by dissociating to single cells using Accutase (Sigma, St. Louis, Missouri, 

USA) and plating at 104 cells/ml on poly-ornithine (Sigma, St. Louis, Missouri, 

USA)/laminin (Invitrogen, Carlsbad, California, USA) coated culture plates in NSC 

expansion medium. For passaging established NSC lines, it was routinely used 

accutase (Sigma), cells were collected in phosphate-buffered saline (PBS) and split 

1:3 to 1:5 every 2-3 days. The entire isolation protocol was carried out for three 

wild type and three Sumfl -/- mice.
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Flow cytometry analysis of nestin

NSCs were detached and dissociated with Accutase (Sigma, St. Louis, 

Missouri, USA), washed in PBS and triturated to a single cell suspension in PFN 

(15% PBS, 2% FCS, 0.1% sodium azide). Cells were distributed into 96-well U- 

bottomed microtiter plates (Nunc), fixed in 2% PFA (Sigma, St. Louis, Missouri, 

USA) for 20 minutes on ice, washed in PBS and incubated in PBS 0.5% saponin 

for 20 minutes on ice. After three washes in PBS 0.1% saponin, cells were 

incubated for 30 minutes on ice with a mouse anti-nestin primary antibody 

(Covance, Berkeley, California, USA) diluted 1:200 in PBS containing 0.1% 

saponin. After a further three washes, the cells were incubated for 30 minutes with 

a FITC-anti-mouse IgG diluted 1:200 in PBS 0.1% saponin. The cells were then 

washed in PBS 0.1% saponin and resuspended in PFN prior to Fluorescence- 

Activated Cell Sorting (FACS) analysis.

RT-PCR analysis

Total RNA was extracted from NSCs using RNeasy kit (Qiagen, Valencia, 

California, USA), and cDNA was generated using Superscript II (Invitrogen, 

Carlsbad, California, USA). Polymerase Chain Reaction (PCR) was performed for 

30 cycles for all markers except B-actin (25 cycles). The primers used were as 

follows: (3-actin (forward) 5’-GGCCCAGAGCAAGAGAGGTATCC-3’ and (reverse) 

5’-ACGCACGATTTCCCTCTCAGC-3’; oct4 (forward) 5’-

GGCGTT CT CTTT GG AAAG GT GTT C-3 ’ and (reverse) 5’-
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GTCGAACCACATCCTTCTCT-3’; nanog (forward) 5’-

AT G AAGT GCAAGCGGTGGCAG AAA-3’ and (reverse) 5’-

CCT GGTGG AGT CACAG AGT AGTT C-3’; pax6 (forward) 5’-

GCTTCATCCGAGTCTTCTCCGTTAG-3’ and (reverse) 5’-

CCATCTTTGCTTGGGAAATCCG-3’; BLBP (forward) 5’-

G GGT AAG ACCCG AGTT CCT C-3 ’ and (reverse) 5’-ATCACCACTTTGCCACCTTC-

3’; sox2 (forward) 5’-GGCGGCAACCAGAAGAACAG-3’ and (reverse) 5’-

GCTTGGCCTGCGTCG AT G AAC-3’; olig2 (forward) 5’-

GGCGGTGGCTTCAAGTCATC-3’ and (reverse) 5’-

TAGTTTCGCGCCAGCAGCAG-3’; mashl (forward) 5’-

CTCGT CCT CT CCGG AACT G ATG-3 ’ and (reverse) 5’-

CGACAGGACGCCGCGCTGAAAG-3’; dlx2 (forward) 5’-

AACCACGC ACC AT CT ACTCC-3’ and (reverse) 5’-CCGCTTTT CC AC AT CTT CTT- 

3’; nf-l (forward) 5’-GGATTCGCACAGCCTTCTC-3’ and (reverse) 5’- 

CCCTTCCTCTTCCAGCTTCT-3’.

Neurosphere assay

Cells were plated at 10 cells/pL in 24-well (0.5 mL/well) uncoated plates 

(Nunclon) in NSC expansion medium. The total number of spheres that formed in 

each well was counted after 7 days; the process was repeated similarly to generate 

secondary and tertiary neurospheres, after 15 and 21 days, respectively. Only 

colonies with a diameter > 100 pm were counted as spheres.
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Cell Differentiation

For glia differentiation, NSCs were plated onto 24-well gelatine coated plates 

at 105 cells/well in ESGRO medium supplemented with 1% fetal bovine serum 

(FBS) (Hyclone, Logan, Utah, USA) and without any supplemented growth factor 

(glia differentiation medium); rapid differentiation of NSC to GFAP positive glia 

occurs within 2 days.

For neural differentiation, NSCs were plated onto 24-well poly- 

ornithine/laminin coated plates in ESGRO medium (Chemicon, Temecula, 

California, USA) 0.5% B27 (GIBCO, San Diego, California, USA) and with 10 

ng/mL FGF2 (Peprotech, Rocky Hill, New Jersey, USA); a half volume of medium 

is replaced every 2-3 days to maintain conditioning of medium. After 7 days in 

these conditions, the media was switched to ESGRO medium (Chemicon, 

Temecula, California, USA) 0.5% B27 (GIBCO, San Diego, California, USA), 

without any growth factor. Half of the medium was exchanged every 2-3 days 

during the differentiation.

Immunofluorescence

To detect expression of intracellular markers, cells were plated on coated 

coverslips and fixed in PBS pH 7.4, 4% paraformaldehyde (PFA) (Sigma, St. Louis, 

Missouri, USA) for 20 minutes, quenched with 50 mM NH4CI for 15 minutes. Cells 

were incubated per 20 minutes in FBS (Hyclone, Logan, Utah, USA) with 0.2% 

Triton X-100 to block nonspecific binding and permeabilize membranes, and
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stained over-night with primary antibodies and for 2 hours with appropriate Alexa- 

594 and Alexa-488 conjugated secondary antibodies. Coverslips were mounted on 

glass slides in Vectashield with DAPI (Vector Laboratories, California, USA) to 

nuclear counterstaining and viewed on an epi-fluorescent or on a Zeiss LSM 510 

META confocal microscope (LSM510; Carl Zeiss, Thornwood, New York, USA) 

equipped with a Plan-Neofluar 63x immersion objective (Carl Zeiss, Inc.). Mice 

tissues were collected after PBS perfusion and fixed with 4% PFA (Sigma, St. 

Louis, Missouri, USA) for 12 h at 4°C and then subjected to a sucrose gradient 

(from 10 to 30%) and incubated over night in 30% sucrose at 4°C, before OCT 

embedding. Immunofluorescence analyses were performed on 10-mm-thick serial 

cryosections. The specimens were incubated for 1 hour with blocking solution 

(PBS, 0.2% Tween-20) and 10% goat normal serum (Sigma) before incubation 

over-night with the specific primary antibody. After washing, sections were 

incubated for 40 min with secondary antibody. Stained sections were mounted with 

Vectashield with DAPI (Vector Laboratories, California, USA). Primary antibodies 

were used at the following dilutions: mouse anti-Nestin (1:400) (Covance, Berkeley, 

California, USA); mouse anti-GFAP (1:300) (Sigma, St. Louis, Missouri, USA); 

mouse anti-Tuj1 (1:200) (Covance, Berkeley, California, USA); rabbit anti-LC3 

(1:200) (Novus Biological, Colorado, USA); mouse anti-CathD (1:500) (Sigma, St. 

Louis, Missouri, USA); rabbit anti-ubiquitin (1:100) (DakoCytomation, Carpinteria, 

California, USA); mouse anti-p62/SQSTM1 (1:200) (BD Biosciences, Franklin 

Lakes, New Jersey, USA); rabbit anti-HDAC6 (1:300) (Abeam, Cambridge, 

Massachusetts, USA); mouse anti-LAMP1 (1:500) (Sigma, St. Louis, Missouri, 

USA); rabbit anti-CD68 (1:250) (Serotech, Ontario, Canada) and mouse anti-flag



(1:200) (Sigma, St. Louis, Missouri, USA). Secondary antibodies were: goat anti

rabbit (1:3000) and donkey anti-mouse (1:5000) conjugated to Alexa Fluor 488 or 

594 (Molecular Probes, Eugene, Oregon, USA).

Immunoblotting

Cells were lysed in cold lysis buffer (20 mM Tris-HCI, pH 7.4,150 mM NaCI, 

1% TritonX-100) in the presence of protease inhibitors (Roche Diagnostics, 

Indianapolis, Indiana, USA) for 30 minutes on ice. Proteins were quantified by the 

Bradford method. 10-20 ug of protein samples were separated on SDS-PAGE 

acrylamide gel and transferred onto nitrocellulose membrane (Amersham 

Pharmacia Biotech, Uppsala, Sweden). Primary and HRP-conjugated secondary 

antibodies were diluted in 5% milk TBS-T. Bands were visualized using the ECL 

detection reagent (Pierce, Rockford, Illinois, USA) and normalized against actin. 

Antibodies were used as follows: mouse anti-GFAP (1:300) (Sigma, St. Louis, 

Missouri, USA); mouse anti-Tuj1 (1:200) (Covance, Berkeley, California, USA); 

rabbit anti-LC3 (1:200) (Novus Biological, Colorado, USA); rabbit anti-ubiquitin 

(1:100) (DakoCytomation, Carpinteria, California, USA); mouse anti-p62/SQSTM 

(1:200) (BD Biosciences, Franklin Lakes, New Jersey, USA); rabbit anti-HDAC6 

(1:300) (Abeam, Cambridge, Massachusetts, USA); mouse anti-vimentin (1:300) 

(Santa Cruz Biotechnology, Santa Cruz, California, USA); and rabbit anti-Bactin 

(1:10000) (Sigma, St. Louis, Missouri, USA). HRP-conjugated secondary 

antibodies were: rabbit anti-mouse (1:3000) and mouse anti-rabbit (1:3000) 

(Amersham, Uppsala, Sweden).

120



Neurite Outgrowth Assay

Neurite assay was performed following the manufacturer’s manual 

(Millipore). Differentiating neurons were placed in Millicell 12-well inserts containing 

neural differentiation medium at a concentration of 100,000 cells/100 pL (1 x 106 

cells/mL). Plates were incubated at 37°C for 3 and 7 days. Following the neurite 

extension period, each insert was removed from the culture well, washed with PBS 

and fixed in cold methanol for 20 minutes at room temperature. Then the insert was 

stained for 15-30 minutes with Neurite Stain Solution, washed with PBS and then 

cell bodies were gently swabed from top of insert. Neurite Stain Extraction Buffer 

was added to the top of each swabbed inserts and incubate for 5 minutes at room 

temperature. Inserts were spinned and then read at an absorbance of 590 nm.

Electrophysiology and patch clamp recording

Recordings were made from NSC-derived neurons, differentiated between 

passages 20-25. Seals between electrodes and cells were established in a bath 

solution consisting of (in mmoles/I): 138 NaCI, 2 CaCh, 5.4 KCI, 1 MgCk, 10 

glucose and 10 HEPES, pH 7.4 with NaOH; the pipette (intracellular) solution 

contained (in millimolar): 140 KCI, 2 MgCI2, 10 EGTA, 10 HEPES, 5 Mg-ATP, pH 

7.3-7.4 with KOH. The pCLAMP software (version 10.0.2) was used for data 

acquisition and analysis.

Ionic currents were recorded under voltage-clamp conditions using the patch- 

clamp whole-cell configuration at room temperature (20-24°C) with an Axopatch
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200B patch-clamp amplifier (Axon Instruments, Burlingame, California, USA). For 

Ionic currents recording the following protocol was applied: from an holding 

potential of -90 mV, a short (50 ms) pulse to -100 mV followed by a series of 

progressively increasing depolarizations (from -100 mV to +40 mV) of 50 ms 

duration, before a final 50 ms step to -100 mV was applied. Data were filtered at 5 

kHz and sampled at 50 kHz. Capacitance currents were compensated by analog 

circuitry and subtracted on-line by using a p/-4 protocol from a subtracting holding 

potential of -100 mV.

Electron Microscopy (EM) and immuno-gold analysis

Cells were washed with PBS and fixed at room temperature in 0.05% 

glutaraldehyde (Polysciences, Warrington, Pennsylvania, USA) dissolved in 0.2 M 

Hepes buffer (pH 7.4) for 30 minutes at room temperature. Then, cells were 

scraped off the dish, pelletted by centrifugation and postfixed for 2 hours in 1% 

Os04 (Polysciences, Warrington, Pennsylvania, USA) in the same buffer. After en- 

bloc staining with 1% uranyl acetate for 1 hour and ethanol dehydration, cells were 

embedded in Epon-812 (Fluka, Ronkonkoma, New York, USA) and polymerized at 

60°C for 72 hours. Thin sections were cut at the Leica EM UC6 and counterstained 

with uranyl acetate and lead citrate. Images were acquired from thin sections using 

a Philips Tecnai-12 electron microscope equipped with an ULTRA VIEW CCD 

digital camera (Philips, Eindhoven, Netherlands).

For immuno-gold HeLa and CF7 cells were fixed with a mixture of 4% 

paraformaldehyde and 0.05% glutaraldehyde, labeled with a monoclonal antibody
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against LAMP1 according the gold-enhance protocol, embedded in Epon-812, and 

cut as described previously (Polishchuk et al. 2003). EM images were acquired 

from thin sections using a Philips Tecnai-12 electron microscope equipped with an 

ULTRA VIEW CCD digital camera (Philips, Eindhoven, Netherlands). Quantification 

of vacuolization was performed using the AnalySIS software (Soft Imaging Systems 

GmbH, Muenster, Germany). Evaluation of lysosome distance from the PM was 

done in EM images using the iTEM software (Soft Imaging Systems GmbH). 

Selection of cells for quantification was based on their suitability for stereologic 

analysis, i.e., only cells sectioned through their central region (detected on the 

basis of the presence of Golgi membranes) were analyzed.

Alcian Blue staining

Undifferentiated cells, glia and neurons were stained with 1% Alcian blue 

(Sigma, St. Louis, Missouri, USA) in hydrochloric acid. The counterstaining was 

performed for 2 minutes with Nuclear-Fast red (Sigma, St. Louis, Missouri, USA).

After the perfusion of the animals with PBS, the tissues were collected and 

fixed in methacarn solution (30% chloroform, 60% methanol and 10% acetic acid) 

for 24 hours at 4°C. The next day, the tissues were embedded in paraffin (Sigma, 

St. Louis, Missouri, USA) after their dehydration with a 70-100% ethanol gradient. 

Finally, the tissues were sectioned into 7 mm thick serial sections on a microtome. 

Sections of paraffin-embedded tissues were stained with 1% Alcian blue (Sigma, 

St. Louis, Missouri, USA) and counterstained with Nuclear-Fast red (Sigma, St. 

Louis, Missouri, USA).

123



GAG quantitative assay

The protein extracts were assayed with the dimethylmethylene blue-based 

spectrophotometry of glycosaminoglycans (de Jong et al. 1989). The samples were 

read at 520 nm and the GAG concentrations were determined using the heparan 

sulfate standard curve (Sigma, St. Louis, Missouri, USA). Tissue GAG amount was 

expressed as yg GAG/pg protein.

GAG pulse-and-chase analysis

Cells were grown in differentiation medium in presence of 7pCi/ml 3H- 

glucosamine hydrochloride (37.75 Ci/mmol, Perkin Elmer, Massachusetts, USA) for 

24 hours, washed extensively with PBS and then chased. At the end of the chasing 

time, cells were harvested, homogenized and subject to chromatography on 

Sephadex G-25 columns (GE Healthcare, Sweden) to eliminate unincorporated 3H- 

glucosamine hydrochloride. The amounts of incorporated or secreted radioactivity 

was measured by liquid scintillation in a Beckman LS6500 counter (Beckman 

Instruments, Fullerton, CA, USA).

TUN EL assay

Cells apoptosis was detected by TUN EL assay following the manufacturer’s 

manual (Roche, Basle, Switzerland). TUNEL-positive cells were quantitated 

microscopically.
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TUNEL assay on tissue was performed by using the ApopTag Peroxidase In 

Situ Apoptosis Detection kit following the manufacturer’s manual (Oncor, 

Gaithersburg, Maryland, USA).

Transfection and nucleofection

NSCs, HeLa cells and human fibroblasts were transfected using PolyFect 

Transfection Reagent (QIAGEN, Hilden, Germany), according to the 

manufacturer’s protocols. HeLa CF7 stable cell lines was previously described 

(Sardiello et al. 2009). The HeLashMC0LN1 cell line was generated by infection with 

MCOLN1 lentiviral shRNA. NSCs were transfected by using nucleofection (Amaxa, 

Lonza, Walkersville, Maryland, USA).

Staining for Surface LAMP1

Cells were grown on glass coverslips, incubated with anti-rat LAMP1 (1DB4; 

Santa Cruz Biotechnology, Santa Cruz, CA) diluted in PBS 1% BSA at 4°C for 30 

minutes. Cells were washed in PBS and fixed in 4% PFA (Sigma, St. Louis, 

Missouri, USA) for 15 minutes at 4°C, washed in PBS, and incubated with Alexa- 

594 conjugated anti-rat secondary antibodies (Molecular Probes, Eugene, Oregon, 

USA) for 30 minutes at room temperature. Coverslips were mounted on glass 

slides with Vectashield (Vector Laboratories, California, USA). Finally, cells were 

analyzed on a confocal microscope (LSM510; Carl Zeiss, Thornwood, New York, 

USA) equipped with Plan-Neofluar 63x immersion objective.
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Flow Cytometry analysis of surface LAMP1

Confluent cells transfected with TFEB-GFP constructs were trypsinized and 

washed twice with PBS before incubation with PBS for 5 min at 37°C. 109 cells for 

each assay were centrifuged and resuspended in PBS 1% BSA with anti-rat 

LAMP1-1DB4 at 4°C for 30 minutes. Cells were washed in PBS and fixed in 2% 

paraformaldehyde for 15 minutes. Cells were further incubated with Alexa-594 

conjugated anti-rat secondary antibodies (Molecular Probes, Eugene, Oregon, 

USA) for 30 minutes at room temperature. Finally, cells were washed, resuspended 

in 0.5 ml PBS, and analyzed on a FACS Aria Flow Cytometer (Becton Dickinson & 

Co., Mountain View, California, USA). Forward angle scatter, right angle scatter, 

and fluorescence intensity were recorded from 50,000 cells whose forward angle 

scatter fell above a threshold used to distinguish intact GFP-positive cells from both 

non-transfected or damaged cells.

Enzymatic Activities

Enzyme activities were measured with the appropriate fluorimetric or 

colorimetric substrates. Specifically, acid phosphatase and B-hexosaminidase 

activities were measured using the Acid-Phosphatase and 6-N- 

Acerylglucosaminidase assay kit (Sigma, St. Louis, Missouri, USA), repectively. 6- 

galactosidase was measured by a colorimetric assay using 4-methylumbelliferyl-(B- 

D-galactopyranoside as substrate in 0,5M NaAc buffer, pH 5.0. Lactate de

hydrogenase (LDH) activity was measured using the LDH-Cytotoxicity Assay Kit
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(Abeam, Cambridge, Massachusetts, USA). To measure enzyme activities in the 

medium, cells were incubated in medium containing 1% BSA (w/v). Protein 

concentrations were determined using the BCA-assay (Pierce, Rockford, Illinois, 

USA).

Calcium Measurements by Confocal Imaging

TFEB-GFP-transfected cells were treated with FuraRed for 30 minutes in a 

Ca2+ imagin buffer and analyzed according to the manufacturer’s instructions 

(Invitrogen).

Flow Cytometric Calcium Flux Assay

Cell preparation and loading was performed following a protocol already 

described (Schepers et al. 2009) with some modifications. Briefly, cells were 

loaded with Fluo-3AM and FuraRed-AM (Molecular Probes, Eugene, Oregon, USA) 

for 30 minutes at 37°C. After a wash in PBS without Ca2+, the cells were 

resuspended in the appropriate buffer in accordance to the different conditions and 

kept at RT until analysis. Ca2+-entry is prevented by the use of a PBS buffer 

without Ca2+ and containing 1 mM sodium pyruvate, 25 mM HEPES and 5 mM 

EGTA, the latter to exclude remaining traces of Ca2+ contamination. In these 

Fluo3/FuraRed-loaded cells the release of Ca2+ from the intracellular stores can 

be studied. Samples were analysed using the FACS Aria Flow Cytometer (Becton
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Dickinson & Co., Mountain View, California, USA). Following preparation, samples 

were aspirated during 30 seconds to determine the baseline fluorescence of the 

Fluo3 and FuraRed. Then, after the addition of ionomycin (5 pM), the acquisition 

was resumed with changes in Ca2+ concentration being recorded over a 150 

seconds time period. Changes in the fluorescence (FL) intensity of the Fluo3 and 

FuraRed were measured on the FL-1 and FL-2 channels. The ratio of baseline 

Fluo3/FuraRed was plotted. Data are expressed as means ± standard deviation 

(SD). A p-value of less than 0.05 was considered significant.
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