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Abstract

Chromosomal translocations involving the mixed lineage leukemia (.MLL) gene are 

associated with infant acute leukemia. There are a large number of translocation partners 

of MLL that share very little sequence similarities, yet their translocations into MLL result 

in the pathogenesis of leukemia. To define the molecular reason why these translocations 

result in leukemogenesis, I purified several o f the commonly occurring MLL chimeras and 

identified a novel Super Elongation Complex (SEC) associated with all chimeras purified. 

SEC consists o f the RNA Pol II elongation factors ELL1-3, P-TEFb, and several frequent 

MLL-translocation partners. SEC is one of the most active P-TEFb complexes and is 

required for the proper expression of MLL chimera target genes and the oncogene, MYC, 

suggesting that the regulation of transcription elongation checkpoint control (TECC) by 

SEC could play essential roles in leukemia.

Paused Pol II has been proposed to be associated with loci that respond rapidly to 

environmental stimuli. My studies in mouse ES cells demonstrated that SEC is required 

for rapid transcriptional activation of genes, many of which contain paused Pol II. 

However, SEC is also required for the activation of the Cyp26al gene, which does not 

contain detectable Pol II, yet responds much more rapidly to retinoic acid than those 

paused genes, suggesting that paused Pol II is not a prerequisite for rapid gene activation. 

Furthermore, E113, a member of the ELL family of proteins, predominately occupies 

poised, active, and inactive enhancers of many developmental genes in ES cells. E113’s 

association with enhancers is required for setting up proper Pol II occupancy at the 

promoter-proximal regions of neighboring genes, providing a yet to be discovered 

mechanism for the transition from ElB ’s presence at poised enhancers in ES cells to E112’s 

role in the release of paused Pol II during gene activation.
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Chapter 1. Introduction

1.1 .Transcriptional elongation control by RNA polymerase II ,

The control of gene expression underlies almost all cellular events such as cell 

signaling and communication in development and pathogenesis. In eukaryotes, the 

regulation o f transcription is a multi-faceted and highly regulated process involving a large 

number o f regulatory factors. Transcription starts with the assembly of the transcriptional 

initiation machinery on the promoter of a gene, followed by transcriptional elongation and 

termination. The initiation process is relatively well characterized and plays pivotal roles 

in transcriptional regulation. Recent evidence, especially genome-wide studies, also 

demonstrated a general and essential role of the elongation stage in regulating the proper 

expression of developmentally controlled genes. This introduction mainly covers the 

transcription o f protein-coding genes by RNA polymerase II, introduces elongation factors 

including the Positive Transcription Elongation Factor b (P-TEFb) and the Eleven-nineteen 

Lysine-rich Leukemia (ELL) family of proteins, and discusses the role of ELL in mixed- 

lineage leukemia (MLL) chimera-induced leukemogenesis.

1.1.1. RNA polymerases in mammals

1.1.1.1. The identification of three mammalian RNA polymerases

DNA-dependent RNA polymerase, which can specifically and efficiently 

synthesize RNA in the presence of ribonucleotide tri-phosphate (rNTP) by using DNA as a 

template, was first discovered by Weiss (Weiss and Gladstone, 1959). In 1959, Weiss’

32group observed the incorporation of [a- P] CTP (Cytidine 5’-triphosphate) into 

ribonucleic acid (RNA) in the rat liver nuclei, and the incorporation efficiency was greatly 

affected upon the addition o f Deoxyribonuclease (DNase) (Weiss and Gladstone, 1959).



One year later, Stevens and Hurwitz also reported that Escherichia coli extracts can 

support the incorporation of ribonucleotides into RNA (Hurwitz et al., 1960; Stevens,

1960). By 1961, the first DNA-dependent RNA polymerase was successfully isolated 

from Micrococcus lysodeikticus (Weiss and Nakamoto, 1961).

In prokaryotes, there is only one RNA polymerase, which consists of four core 

subunits (a2pp5) and one auxiliary factor (8) and is responsible for synthesizing all types of 

RNA (Yura and Ishihama, 1979). In eukaryotic cells, there are three different nuclear 

DNA-dependent RNA polymerases that are responsible for transcribing distinct classes of 

genes. By using Diethylaminoethyl cellulose (DEAE)-Sephadex chromatography, Roeder 

and Rutter first separated the three mammalian RNA polymerases under different 

concentrations of ammonium sulfate and named them as RNA polymerase I, II, and III 

(Roeder and Rutter, 1969, 1970a, b). RNA polymerase I (RNA Pol I) is responsible for the 

transcription of ribosomal RNA (rRNA); RNA polymerase II (RNA Pol II) transcribes all 

the protein-coding genes, microRNA, and most of the small nuclear RNA (snRNA); RNA 

polymerase III (RNA Pol III) synthesizes transfer RNA (tRNA), 5s rRNA, and some small 

RNAs, like small nuclear RNA 7SK and U6 small nuclear RNA (RNU6).

The RNA polymerases are complex and multi-subunit enzymes each consisting of 

12-17 polypeptides with some subunits common to all of the three enzymes (Cramer et al.,

2008). Substrate specificities for each RNA polymerase are partially reflected by these 

complex subunit compositions. Early studies showed that the purified RNA polymerases 

lack the intrinsic capabilities to specifically initiate transcription at the core promoter of a 

specific class of genes (Sentenac, 1985). A variety of transcription factors, including 

general transcription factors and regulatory factors, were later identified to cooperate with 

the enzymes to ensure accurate transcription initiation in these class-specific genes. For



example, in the reconstituted, in vitro transcription system, transcription initiation factors 

IA TIF-IA, -IB, -IC, and UBF (upstream binding transcription factor, RNA polymerase I) 

are required for RNA Pol I to specifically initiate the transcription at the rDNA gene 

promoters (Haltiner et al., 1986; Hanada et al., 1996; Learned et al., 1986; Smale and 

Tjian, 1985); and general transcription factors TFIID, TFIIB, TFIIA, TFIIE, TFIIF, and 

TFIIH for the initiation of RNA Pol II on protein-coding genes (Buratowski et al., 1989; 

Conaway et al., 1987; Conaway and Conaway, 1989a; Conaway and Conaway, 1989b; 

Davison et al., 1983; Dynlacht et al., 1991; Inostroza et al., 1991; Maldonado et al., 1990; 

Matsui et al., 1980; Ohkuma et al., 1990; Samuels et al., 1982; Tanese et al., 1991; Zhou et 

a l, 1991).

1.1.1.2. The structure of RNA polymerase II

RNA polymerase II has been purified to near homogeneity in many eukaryotes, 

including yeast, fly, and human. In mammals, RNA Pol II consists o f 12 evolutionarily 

conserved subunits, including 5 ‘core’ subunits (conserved in all cellular organisms), 5 

common subunits (common in all three Pol I, II, and III), and two other subunits, Rpb4/7 

(DNA-directed RNA polymerase II subunit 4/7) (Cramer et a l, 2008). The necessity o f 

each subunit to the cell’s viability has been well characterized in the model organism 

Saccharomyces cerevisiae. DNA-directed RNA polymerase II subunit 1 (Rpbl), subunit 2 

(Rpb2), subunit 3 (Rpb3), subunit 5 (Rpb5), subunit 6 (Rpb6), subunit 8 (Rpb8), subunit 

10 (RpblO), and subunit 11 (Rpbl 1) are essential for the viability of yeast cells (Young, 

1991). Although the Rpb4/7 and Rpb9 deletion strains are viable, these cells usually grow 

slowly and are sensitive to extreme temperature conditions (Woychik and Young, 1990).

Over the past forty years, much effort has been put into deciphering the mechanism

of RNA Pol II transcription, including the composition and assembly o f the Pol II
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holoenzyme, the enzyme-substrate interaction, and the regulation of accurate transcription 

initiation. In 2001, Komberg and colleagues reported high-resolution atomic structures of 

the free and elongating forms of yeast RNA polymerase II, which is highly relevant to 

mammalian Pol II (Cramer et al., 2001; Gnatt et al., 2001). The 10-subunit core enzyme 

can be divided into four mobile modules, including core module (Rpbl, 2, 3, 10, 11, and 

12), shelf module (Rpbl cleft, Rpbl foot, Rpb5, and Rpb6), clamp (Rpbl clamp core and 

clamp head, Rpb2 clamp), and the jaw-lobe module (Rpbl jaw, Rpb9 jaw, and Rpb2 lobe). 

The positively charged active center cleft is formed by the largest subunits Rpbl and Rpb2 

within the core module. A bridging helix extending from the Rpbl subunit spans over the 

cleft, lining a “pore” in the active center. The entrance o f the cleft is located in the area 

between the “lower” (Rpb5) and the “upper” (Rpb9) jaw. The clamp, which regulates the 

opening and closing of the cleft, controls the entering o f the DNA template into the active 

center. There are two Magnesium ions found within the active center cleft named “metal 

A” and “metal B”. Metal A binds to the highly conserved “aspartate loop” o f Rpbl in the 

active center, and metal B is 5.8 A away from metal A, separated by the Rpbl aspartate 

loop.

In the structure of the transcribing RNA Pol II complex (Gnatt et al., 2001), the 

downstream DNA template enters into the Pol II complex from the entrance, travels along 

the bottom of the clamp, and then passes over the bridging helix in the active center cleft. 

Around 4 base pairs o f the unwound DNA template form the transcription preceding the 

3’-hydroxyl terminus of the synthesizing RNA chain, followed by the 9 base pair o f the 

DNA-RNA hybrid formed in the active center cleft. Once the RNA transcript reaches 10 

residues, it releases from the DNA-RNA hybrid and enters into the groove located at the 

base of the Rpbl CTD, where it exits the polymerase complex. In the active center, the 

bridging helix directly interacts with the coding base of the DNA template, which helps



position the nascent base pair. Furthermore, the extensive contacts between the clamp and 

the DNA-RNA hybrid induce dramatic conformation changes at the base of the clamp, 

possibly leading to the swinging of the clamp over the cleft and then trapping the DNA 

template and the nascent transcript.

The catalytic mechanism of transcription by RNA polymerase II is not very clear. 

Thomas A. Steitz and colleagues proposed the two-metal ion mechanism (Steitz, 1998), 

which is supported by the structures of bacterial and yeast elongating Pol II complexes. In 

this model, in the catalytic active center, metal A and B bind to the phosphate group of the 

3 ’ end o f the RNA and NTP (nucleotide triphosphate) triphosphate moiety, respectively 

(Cramer et al., 2008; Cramer et al., 2001; Westover et al., 2004). The delivery of NTP into 

the insertion site is then induced by the folding of the trigger loop next to the bridging 

helix (Westover et al., 2004).

1.1.1.3. RNA polymerase II large subunit Carboxyl Terminal Domain

Unlike RNA Pol I and III, the largest subunit of RNA Pol II has a unique C- 

Terminal Domain (CTD) consisting of the conserved and tandemly repeated heptapeptides: 

Threonine (Tyrl)- Serine (Ser2)- Proline (Pro3)- Threonine (Thr4)- Serine (Ser5)- Proline 

(Pro6)- and Serine (Ser7) (Corden, 1990). The consensus sequence o f the CTD is 

evolutionarily conserved with variable repeats in different species, such as 26 repeats in 

yeast, 45 in fly, and 52 in mammals (Conaway and Conaway, 1993; Young, 1991). In  

vivo, there are at least two distinct forms of RNA Pol II depending on the phosphorylation 

status of the CTD: 110 for the hyper-phosphorylated form and IIA for the hypo- 

phosphorylated form (Dahmus, 1995). Early ultraviolet (UV) cross-linking studies from 

Dahmus’ group suggested that the 110 form is predominantly associated with the



elongating RNA Pol II, while the initiating Pol II is the hypo-phosphorylated IIA form 

(Dahmus, 1995). Although the CTD is essential for cell viability in yeast, fly, and 

mammals, it is not widely required for the in vitro transcription initiation assay using many 

different promoters like the adenovirus major late (AdML) promoter (Buratowski and 

Sharp, 1990; Kim and Dahmus, 1989; Phatnani and Greenleaf, 2006; Young, 1991).

Ser2, Thr4, Ser5, and Ser7 within the CTD consensus sequence can all be 

phosphorylated both in vivo and in vitro. The Cyclin-Dependent Kinase 7 (CDK7) within 

the TFIIH complex can phosphorylate the CTD Ser5, whereas Ser2 is phosphorylated by 

Cyclin-Dependent Kinase 9 (CDK9) within the positive transcription elongation factor, P- 

TEFb, complex and the recently identified Cyclin-Dependent Kinase 12 (CDK12) complex 

with Cyclin K (Bartkowiak et al., 2010; Blazek et al., 2011; Feaver et al., 1994; Hengartner 

et al., 1998; Liu and Kipreos, 2000; Marshall et al., 1996; Phatnani and Greenleaf, 2006; 

Roy et al., 1994; Serizawa et al., 1995; Shiekhattar et al., 1995; Sun et al., 1998). CDK9 is 

also responsible for the phosphorylation o f Thr4 (Hsin et al., 2011). Genome-wide 

distribution analyses using phosphorylation-specific antibodies indicate that all the Ser2, 

Ser5, and Ser7 phosphorylation forms of Pol II enrich at the active protein-coding genes, 

with Ser5 and Ser7 peaking at the 5’ end and Ser2 phosphorylation at the 3’ end (Kim et 

al., 2010; Mayer et al., 2010; Tietjen et al., 2010).

In the past 15 years, a large number o f studies have demonstrated that the CTD 

phosphorylation might serve as a platform for the recruitment or stable binding of 

regulatory factors to chromatin, coupling nuclear events with transcription (Orphanides 

and Reinberg, 2002; Reed, 2003) (Discussed later). The CTD deletion mutant o f RNA Pol 

II greatly inhibits the RNA processing in vivo, including splicing, 3’-end processing, and 

termination (McCracken et al., 1997). By affinity chromatography, McCracken and



colleagues further demonstrated that the cleavage/polyadenylation factor, CPSF, and the 

cleavage stimulation factor, CSTF, can directly interact with the glutathione S-transferase 

(GST) tagged CTD (GST-CTD) (McCracken et al., 1997). A number o f CTD-interacting 

proteins have been identified so far, mostly by yeast-two hybridization and GST-CTD 

affinity chromatography. Many o f these proteins are involved in various RNA-processing 

or nuclear pathways, including the 5’-end mRNA capping (RNA guanylyltransferase and 

5'-phosphatase (RNGTT), mRNA cleavage/polyadenylation (pre-mRNA cleavage complex 

2 protein (PCF11), cleavage, and polyadenylation specificity factor 160 kDa subunit 

(CPSF 160), cleavage and polyadenylation specificity factor 73 kDa subunit (CPSF73), 

cleavage and polyadenylation specificity factor 30 kDa subunit (CPSF30), protein 

phosphatase 1 (PP1), Symplekin), transcription termination (5'-3? exoribonuclease 2 

(XRN2), Senataxin, SR-related CTD-associated factor 8/4 (SCAF8/4), and dom-3 

homolog Z (DOM3Z)), mRNA export (enhancer o f yellow 2 homolog (ENY2), and 

Aly/REF export factor (ALYREF)), splicing (serine/arginine-rich splicing factor 1 

(SRSF1), and serine/arginine-rich splicing factor 2 (SRSF2)), DNA damage and repair 

(casein kinase 1, epsilon (CSNK1E)), and histone modifications (histone lysine 

methyltransferase Setl, RNA polymerase II-associated factor 1 homolog (PAF1) and Set2) 

(Finkel et al., 2010; Kuehner et al., 2011; Morris and Greenleaf, 2000; Pascual-Garcia et 

al., 2008; Phatnani et al., 2004).

Recent studies from Reinberg’s group demonstrated that the arginine R1810 on the 

Pol II CTD non-consensus repeats is methylated by coactivator-associated arginine 

methyltransferase 1 (CARM1), regulating the expression o f snRNA and snoRNA (small 

nucleolar RNA) genes (Sims et al., 2011). The methylation of R1810 by CARM1 is 

inhibited by Ser2/5 phosphorylation in vitro, leading to the hypothesis that this residue is 

methylated before transcription initiation. However, how R1810 methylation effects the



sn/snoRNA gene expression or transcription initiation on sn/snoRNA genes still remains 

unclear.

Besides the phosphorylation and methylation, CTD can also be glycosylated on the 

serine and threonine residues (Kelly et al., 1993); glycosylation and phosphorylation are 

mutually exclusive. However, no in vivo functional evidence for this modification has 

been reported to date. The unique YSPTSPS consensus sequence suggests that CTD could 

be the substrate of the prolyl isomerase, Pinl (Essl in yeast), which can catalyze the 

c/s/7r<ms,-isomerization of the prolyl-peptide bond after the phosphorylation o f the 

proceeding serine/threonine (Fanghanel and Fischer, 2004; Lu and Zhou, 2007). Studies 

from the Vincent (Albert et al., 1999) and Hanes (Wu et al., 2000) groups indicated that 

indeed both mammalian Pinl and yeast Essl can bind to the phosphorylated Pol II CTD. 

The binding o f Pin l to CTD directly inhibits the CTD phosphatase FCP1-mediated 

dephosphorylation o f RNA Pol II by directly inhibiting the FCP1 activity (Palancade et al., 

2004; Xu et al., 2003). Like CTD glycosylation, however, it is still unclear whether the 

isomerization of phosphorylated Serine/Threonine-Proline can also behave as a platform to 

recruit other factors to regulate transcription, RNA processing, or other nuclear events.

1.1.2. Transcription by RNA polymerase II

1.1.2.1. The assembly of the pre-initiation complex

Transcription by RNA Pol II can be divided into several steps, starting from the 

assembly of the pre-initiation complex (PIC), followed by the activation of initiation, 

promoter clearance, transcription elongation, and termination (Figure 1.1). The assembly 

of the pre-initiation complex involves RNA Pol II, basal transcription factors, and the core 

promoter DNA (Conaway and Conaway, 1993; Roeder, 2005; Sikorski and Buratowski,



2009). Unlike the bacterial RNA polymerase, eukaryotic RNA Pol II cannot accurately 

initiate the transcription from natural templates in vitro (Axel et al., 1973; Gilmour and 

Paul, 1973; Parker et al., 1978). Early studies from Roeder and colleagues demonstrated 

that accessory factors from crude cellular extracts are required for accurate transcription 

initiation by RNA Pol II from the major late viral promoter in vitro (Matsui et al., 1980; 

Weil et al., 1979). Many accessory factors (collectively named as basal/general 

transcription factors) were later biochemically purified by the chromatography 

fractionation, including TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH (Conaway and 

Conaway, 1993; Roeder, 1996; Thomas and Chiang, 2006; Zawel and Reinberg, 1993).

For the core promoter DNA, at least 6 different elements have been identified so far, which 

are required for the proper and accurate assembly of the pre-initiation complex, including 

the TATA box, downstream promoter element (DPE), initiator element (INR), TFIIB 

recognition element (BRE), motif ten element (MTE), and the downstream core element 

(DCE) (Smale and Kadonaga, 2003).

9



CDK7/TFIIH CDK9/P-TEFb
CDK9/P-TEFb

Pol II Pol IIPol Pol II
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Figure 1.1. The RNA Pol II transcription cycle.

Transcription by RNA Pol II can be divided into four steps: assembly of the pre-initiation complex (PIC), 

initiation, elongation, and termination. In general, transcription starts with the assembly of 

hypophosphorylated RNA Pol II with the general transcription factors forming the PIC. The initiating form of 

the Pol II complex is marked by CDK7 within TFIIH-mediated CTD Ser5 phosphorylation, whose level is 

reduced in the elongating form of Pol II. During the transition from initiation into elongation, Ser2 on Pol II 

CTD is further phosphorylated by CDK9 within P-TEFb. leading to the release of Pol II into productive 

elongation. Unlike Ser5 phosphorylation. Ser2 phosphorylation is increased in the gene body and peaks at 

the end of the transcript unit. Threonine 4, involved in the 3 '-end processing of histone genes, can also be 

phosphorylated by CDK9. Pol II falls from the template after the termination of transcription and can be re­

incorporated into the PIC.

Earlier studies from Roeder’s and Sharp’s groups indicated that the assembly o f  the 

initiation complex might follow a multistage or sequential binding process in vitro (Fire et 

al., 1984; Hawley and Roeder, 1985; Samuels and Sharp, 1986). This sequential assembly 

model was further defined by Buratowski and colleagues from the Sharp laboratory at the 

AdML promoter through a native gel electrophoresis DNA binding assay (Buratowski et 

al., 1989). The saddle-shaped TATA-box binding protein (TBP) within the TFIID 

complex first binds to the TATA box located at the minor groove o f the core promoter and 

then bends the promoter DNA around 90 degrees, providing the platform for the assembly 

o f PIC. The TFIID-DNA complex is further stabilized by the entry o f TFIIB directly
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contacting both the TBP and the core promoter BRE sequence with its C-terminus. The N- 

terminus of the TFIIB consisting of a zinc ribbon motif can interact with the RNA Pol II 

subunits Rpbl and Rpb2, and also the RAP30 subunit of the TFIIF complex, facilitating 

the recruitment of RNA Pol II and TFIIF to the TFIIB-TFIID-promoter ternary complex. 

TFIIF contains two subunits, the RNA polymerase II-associating proteins 30 (RAP30) and 

74 (RAP74), which can interact with different subunits of the RNA Pol II complex, 

facilitating the formation and stabilization o f the Pol II-TFIIB-TFIID-promoter complex. 

TFIIF is also necessary for the recruitment of TFIIE and TFIIH, probably by directly 

interacting with TFIIE. Once the TFIIE and TFIIH are recruited to the TFIIF-Pol II- 

TFIIB-TFIID-promoter complex, the assembly of PIC is complete.

1.1.2.2. Early elongation

Upon the addition of rNTP, RNA Pol II synthesizes the first phosphodiester bond. 

Early short transcripts are often unstable and easily released from the promoter, resulting in 

RNA Pol II re-initiating in a process called “abortive initiation” (Dvir, 2002; Hsu, 2002).

It has been suggested that in this stage the Pol II complex will experience three transitions 

called “promoter clearance” including the 4 nucleotide (nt), 10 nt, and 15 nt stages 

(Cramer, 2004). Adenosine 5’-triphoshate (ATP), TFIIE, and TFIIH are continuously 

required at these stages (Kugel and Goodrich, 1998). This early transcribing complex 

becomes stable once the nascent transcript reaches 15 nucleotides.

The TFIIH complex, containing a core module (TFB5, P34, P44, P52, P62, and the 

XPB (xeroderma pigmentosum, complementation group B) and XPD (xeroderma 

pigmentosum complementary group D) helicases) and a CDK-activating kinase (CAK) 

module (CDK7, Cyclin H and MAT1 (menage a trois-1)), was initially purified from rat



liver extracts by the Conaway group (Conaway and Conaway, 1989b; Ranish et al., 2004).

. So far, three distinct enzymatic activities have been observed for the TFIIH complex: 

DNA-dependent adenosine triphosphatase (ATPase), ATP-dependent helicase, and CTD 

kinase activities (Thomas and Chiang, 2006). It has been demonstrated that the DNA- 

dependent ATPase activity of the TFIIH complex is required for opening of promoter and 

synthesizing the first phosphodiester bond (Holstege et al., 1996). Studies from Reinberg’s 

laboratory indicated that TFIIH is also required for efficient promoter escape as, in the 

absence of TFIIH, the transcription complex often pauses at the promoter-proximal region 

(Kumar et al., 1998).

1.1.2.3. Promoter-proximal pausing

During the transition from the pre-initiation to early elongation stage, RNA Pol II 

transcribes 20-40 nucleotides and then pauses at the promoter-proximal region (Fuda et 

al., 2009). At this stage, RNA Pol II is phosphorylated on CTD Ser5 by CDK7. The 

studies from the Svejstrup laboratory showed that the phosphorylated CTD Ser5 can 

disrupt Pol II-mediator interaction, resulting in the release o f the Pol II from the mediator 

complex and possibly further promoting the early transcribing complex escaping from the 

core promoter (Max et al., 2007). The phosphorylated CTD Ser5 is also involved in the 

recruitment of the 5’-end RNA capping enzyme, which is required for the stability o f the 

nascent transcript (Ho et al., 1998; Komamitsky et al., 2000; Schroeder et al., 2000).

Early studies of the bacterial RNA polymerase suggested that destabilization o f the 

DNA-RNA hybrid can cause backtracking of RNA polymerase along the template, which 

is referred to as the back and forth movement of the polymerase along DNA and RNA 

(Komissarova and Kashlev, 1997; Nudler et al., 1997). This backtracking can further
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cause transcriptional pausing or arrest (Cramer, 2004). In the arrested stage, the 3’-end of 

the RNA transcript extrudes and is not properly aligned with the active site o f the 

polymerase (Gilmour, 2009). The transcript cleavage factor, TFIIS, was initially identified 

to promote RNA synthesis by RNA Pol II (Sekimizu et al., 1976). Further in vitro 

evidence and the Pol II-TFIIS structure demonstrated that TFIIS prevents the 

transcriptional arrest through promoting both cleavage of the nascent transcript by RNA 

Pol II and also the realignment of the transcript 3’-end with the active site (Izban and Luse, 

1992b; Kettenberger et al., 2003).

The Drosophila heat shock protein 70 (Hsp70), mammalian v-myc 

myelocytomatosis viral oncogene homolog (.MYC), FBJ osteosarcoma oncogene (FOS), 

and the human immunodeficiency virus (HIV) genes were the first examples to 

demonstrate paused Pol II at their promoter-proximal regions around 20-40 nucleotides 

downstream from the transcription start site (TSS) or with transcriptional elongation blocks 

at the first exon of the gene (Collart et al., 1991; Gilmour, 2009; Krumm et al., 1992; 

Laspia et al., 1989). It is now widely accepted that besides the pre-initiation step, the 

elongation step, especially the releasing o f the polymerase from the paused or arrested 

state, also plays a pivotal role in regulating gene transcription (Levine, 2011; Smith et al., 

201 la). Genome-wide RNA Pol II occupancy analyses from Drosophila embryos and S2 

cells reveal that ~ 10% of the Drosophila genome, mostly developmentally regulated 

genes, are poised or repressed, to be activated at the later developmental stages, largely 

expanding the function of promoter-proximal pausing in transcription control (Muse et al., 

2007; Zeitlinger et al., 2007). Other related studies regarding the Pol II distributions in 

murine embryonic stem cells showed that the vast majority of the protein-coding genes 

contain RNA Pol II at their promoters with peaks at the promoter-proximal regions 

(Guenther et al., 2007). These results have led to the argument that the promoter-proximal



pausing is a general mechanism in controlling the transcription o f all genes, including 

house-keeping genes, stress-responsive, and developmentally regulated genes with 

differences in the frequency o f the RNA Pol II releasing from promoter regions (Nechaev 

and Adelman, 2008).

The establishment o f RNA Pol II pausing

Factors and regulatory elements play central roles in setting up paused Pol II at 

promoter-proximal regions. The importance of regulatory elements in regulating the 

paused Pol II was first shown in early studies analyzing the promoter-proximal architecture 

of the Drosophila Hsp70 gene (Lee et al., 1992). The deletion or mutation o f the GAGA 

element upstream from the Hsp70 promoter significantly reduced the level o f paused Pol 

II, possibly through affecting the recruitment of the nucleosome remodeling factor, the 

Nurf complex, also suggesting the critical function of regulatory element binding factors in 

the regulation of paused Pol II (Gilmour, 2009; Lee et al., 1992; Tsukiyama and Wu,

1995). However, later studies on the Heat shock protein 26 (HSP26) promoter indicated 

that the GAGA factor is also required for the recruitment of basal machinery TFIID, 

arguing that the GAGA factor might actually affect the transcription initiation or both 

(Gilmour, 2009; Lu et al., 1993; O'Brien et al., 1995; Sandaltzopoulos et al., 1995; Wall et 

al., 1995). Other independent studies on thg immunoglobulin Ig Kappa gene indicated the 

importance of regulatory elements in setting up paused Pol II at promoter-proximal regions 

by deleting the intron and C region o f the Ig Kappa gene, which contain enhancer elements 

for this gene (Raschke et al., 1999).

Reduction of long RNA species, but the accumulation of the short capped 

transcripts after the treatment of the ATP analog 5, 6-dichloro-l-p-D-
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ribofuranosylbenzimidazole (DRB), indicates that this small molecule is able to suppress 

productive elongation without affecting initiation (Chodosh et al., 1989). By using DRB to 

inhibit transcriptional elongation, Handa and colleagues identified the factors that 

negatively regulate the elongation stage: the DRB sensitivity-inducing factor (DSIF) and 

the negative elongation factor (NELF) (Wada et al., 1998; Yamaguchi et al., 1999). Both 

DSIF and NELF are required for the induction of the promoter-proximal pausing o f RNA 

Pol II in vitro, while neither DSIF nor NELF alone have this function (Renner et al., 2001; 

Yamaguchi et al., 2002; Yamaguchi et al., 1999). DSIF mediates the interaction between 

NELF and RNA Pol II. NELF is a four-subunit complex and the C-terminus of its E 

subunit contains a RNA recognition motif (RRM), which can bind to RNA (Yamaguchi et 

al., 1999). Mutations of this RRM affect the ability of NELF to repress transcriptional 

elongation without disrupting the formation of the NELF complex and the interaction of 

NELF-DSIF-RNA Pol II. These findings suggested that NELF cooperates with DSIF to 

induce the pausing state of RNA Pol II at the promoter-proximal region through binding to 

RNA Pol II and the nascent transcript (Gilmour, 2009; Yamaguchi et al., 2002; Yamaguchi 

etal., 1999).

This model is supported by the in vivo, protein-DNA cross-linking assays showing 

that DSIF and NELF co-occupy the promoter-proximal regions of many paused genes, for 

example, the Hsp70 gene, the immediate early genes, and the provirus H IV  (Aida et al., 

2006; Andrulis et al., 2000; Ping and Rana, 2001; Wu et al., 2003). Upon induction, NELF 

rapidly dissociates from or remains at the promoter-proximal region of Hsp70 or FOS, 

while DSIF together with Pol II travels into the gene body, supporting the additional 

positive roles of DSIF in elongation (Wu et al., 2005; Yamada et al., 2006). Consistent 

with these observations, genome-wide localization of DSIF and NELF in mouse 

embryonic stem cells demonstrated that these two factors peak at the promoter-proximal
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region with RNA Pol II at both actively transcribed and non-productive genes, while DSIF 

also travels with RNA Pol II into the gene body in actively transcribed genes (Rahl et al., 

2010). Functional studies o f NELF and DSIF demonstrated that depletion of the NELF 

subunit E reduces the paused Pol II levels at the Hsp70 gene promoter and this effect was 

later observed in 115 genes out of the 200 paused Drosophila genes by Chromatin 

immunoprecipitation (ChIP) followed by microarray hybridization (ChlP-chip), and that 

knockdown of Spt5 in the DSIF complex leads to the increase of RNA Pol II levels in the 

gene body (Muse et al., 2007; Rahl et al., 2010; Wu et al., 2003).

Factors involved in reducing transient pausing

Several factors involved in reducing transient pausing have been biochemically 

purified based on their abilities to promote the catalytic activities of RNA Pol II on naked 

DNA templates in vitro, including TFIIF, Elongin, and ELL (Aso et al., 1995; Bradsher et 

al., 1993a; Bradsher et al., 1993b; Flores et al., 1989; Izban and Luse, 1992a; Price et al., 

1989; Shilatifard et al., 1996; Tan et al., 1994). The early studies performed in bacteria 

suggested that the destabilization of the DNA-RNA hybrid causes the backtracking of 

RNA polymerase (Komissarova and Kashlev, 1997; Nudler et al., 1997), which will induce 

the transcriptional pausing or arrest. Therefore, it is possible that the proper alignment of 

the 3’ end of the RNA transcript with the active site o f RNA Pol II would prevent 

transcriptional pausing or arrest. Indeed, in vitro evidence demonstrated that TFIIF, 

Elongin, and ELL can increase the catalytic rate of transcription elongation by Pol II by 

suppressing transient pausing (Shilatifard et al., 2003). In the following section, the 

current understanding of the in vivo functional evidence for the involvement o f TFIIF, 

Elongin A and ELL in transcriptional elongation control will be discussed.
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TFIIF

TFIIF is essential for the assembly of the pre-initiation complex (Price et al., 1989; 

Thomas and Chiang, 2006). Although both Drosophila and mammalian TFIIF have the 

ability to promote the elongation rate of RNA Pol II, the TFIIF mutant, which lacks the 

elongation activity, shows the defect in reducing the frequency of abortive transcription 

initiation by Pol II (Yan et al., 1999). In addition, genome-wide ChlP-sequencing (ChlP- 

seq) analysis of TFIIF in yeast revealed that TFIIF almost exclusively occupies the 

promoter, but not the coding region, supporting the major role of TFIIF in modulating 

initiation and early elongation events (Rhee and Pugh, 2012). The function o f TFIIF in 

elongation was recently further substantiated by the finding that the Pol II tightly 

associated, repressing factor, Gdownl, competes with TFIIF for binding with Pol II, and 

thus, causes the pausing of RNA Pol II at promoter-proximal regions (Cheng et al., 2012; 

Jishage et al., 2012).

Elongin A

The Elongin complex, consisting of the active module, Elongin A, and the E3 

ubiquitin ligase, Elongin B/C, is responsible for the polyubiquitination and further 

degradation of the RNA Pol II larger subunit I in response to DNA damage signals in both 

yeast and human (Harreman et al., 2009; Ribar et al., 2007; Yasukawa et al., 2008). It is 

possible that Elongin is needed to remove the polymerase from where it pauses under 

stress conditions. In Drosophila, it has also been demonstrated that Elongin A relocalizes 

to the heat shock puff sites upon stress and is required for the proper induction o f the 

Hsp70 gene (Gerber et al., 2005a).

ELLs

The ELL gene was originally identified in patients suffering from acute myeloid

leukemia (AML) as one of the frequent fusion partners of the MLL gene (Shilatifard et al.,
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2003; Smith et al., 201 lb; Thirman et al., 1994). The characterization of ELL as a 

transcription elongation factor has led to the proposal that the misregulation o f the 

elongation stage of transcription could play an important role in MLL chimera-mediated 

leukemogenesis (Shilatifard et al., 1996). In mammals, there are three ELL family 

members, ELL 1-3, all showing activities of stimulating transcription elongation in vitro 

(Figure 1.2). Northern blot analyses indicated that both ELL1 and ELL2 are ubiquitously 

expressed in all kinds of tissues, while ELL3 shows testis specific expression (Miller et al., 

2000; Shilatifard et al., 2003).
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Figure 1.2. Sequence alignment of the ELL family of proteins.

In mammals, there are three ELL family proteins, ELL1, ELL2, and ELL3, with a conserved N-terminal 

elongation stimulation domain and a C-terminal occludin homology domain. All o f the three ELL 

proteins have stimulating activities on transcription elongation by RNA Pol II in vitro. ELL1 and ELL2 

are expressed ubiquitously; whereas ELL3 shows testis-specific expression by Northern blot analysis.

The ELL family contains a conserved N-terminal domain and a C-terminal

occludin homology domain. The N-terminus o f ELL can interact with RNA Pol II and

ELL-associated factor 1/2 (EAF1/2) and is essential for stimulating transcriptional

elongation(Kong et al., 2005). The binding o f EAF1/2 to ELL greatly enhances the

elongation activity o f ELL in vitro (Kong et al., 2005). EAF1 and ELL co-localize at the

Cajal bodies, and this colocalization is transcription-dependent as the inhibition o f

transcription by a-amanitin or DRB disperses their localizations into the whole nucleus
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(Polak et al., 2003). It has been suggested that Cajal bodies are the sites for snRNA genes 

transcription and RNA processing (Gall et al., 1999), indicating a potential role of 

ELL/EAF on snRNA transcription or RNA processing. The N-terminus o f ELL can also 

interact with tumor protein p53 (Shinobu et al., 1999), possibly mediating ELL 

overexpression-induced programmed cell death (Johnstone et al., 2001). ELL inhibits both 

p5 3-dependent transcriptional activation and repression through sequence-dependent and 

independent manners, respectively (Shinobu et al., 1999). In turn, p53 can also inhibit 

ELL’s stimulatory activity on Pol II elongation.

In the MLL-ELL translocation (further discussed in section 1.2), the extreme C- 

terminal (497-621aa), but not the N-terminal (l-373aa), region o f ELL is necessary and 

sufficient to immortalize the primary murine hematopoietic progenitor cells in a colony 

formation assay (DiMartino et al., 2000). Interestingly, engineered MIl-Eafl can also 

induce AML (Luo et al., 2001), suggesting an important role of EAF1 in MLL-ELL- 

mediated leukemogenesis. Although the p53 interaction region o f ELL is not necessary for 

MLL-ELL-mediated leukemogenesis, MLL-ELL inhibits p53-mediated apoptosis and also 

cyclin-dependent kinase inhibitor 1A activation (CDKN1A) (Wiederschain et al., 2003). It 

is likely that the inhibition of p53-mediated apoptosis by MLL-ELL could in turn promote 

its induction o f leukemia.

In Drosophila, there is only one ELL homologous protein, dEll, encoded by the

Suppressor o f  triplo lethal (Su(Tpl')) gene (Shilatifard et al., 2003). Mutations o f dEll are

recessively lethal and the heteroallelic combinations o f these mutations cause embryonic

segmentation defects (Eissenberg et al., 2002). Subsequent truncation analyses o f dEll

demonstrated that the N-terminus of dEll is sufficient for its localization to

transcriptionally active puff sites, while the overexpression of its C-terminus can rescue the
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recessive lethality phenotype o f dEll mutations (Gerber et al., 2005b). The first in vivo 

evidence that Ell might serve as an elongation factor came from Drosophila studies. 

Polytene staining indicated that dEll is associated with phosphorylated Pol II at many 

actively transcribed loci (Eissenberg et al., 2002). Like P-TEFb, dEll is also rapidly 

relocalized to the heat shock puff sites upon stress and required for the proper induction of 

the Hsp70 gene in the Drosophila salivary gland. This result provides in vivo evidence for 

the possible role of ELL in reducing paused Pol II (Smith et al., 2008).

In addition, RNAi studies in Drosophila indicated that dEll is required for the 

global Ser2 phosphorylation on Pol II CTD, which is visualized by polytene staining 

(Smith et al., 2008). Interestingly, reduction of Cdk9, which is required for the Ser2 

phosphorylation in flies, also affects the chromatin localization o f dEll (Eissenberg et al.,

2007). These results suggested that CTD-phosphorylated Pol II is required for the 

recruitment of dEll to chromatin, while the localization of dEll to chromatin can further 

enhance Pol II phosphorylation by Cdk9.

Besides Drosophila and human, ELL is also found in other metazoan species, 

including cow, cat, dog, pig, sheep, marmoset, chicken, and fish (Thirman et al., 1994). 

Recent studies from the Conaway group indicated that the lower eukaryote 

Schizosaccharomyces pombe expresses ELL (spELL) and EAF (spEAF) homologs (Banks 

et al., 2007). Like their mammalian homologs, spELL and spEAF can also stimulate the 

transcriptional elongation by RNA Pol II. However, the deletion mutants of both spELL 

and spEAF are viable. Like many transcription elongation factors, the spELL mutant is 

sensitive to the 6-azauracil.
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1.1.2.4. P-TEFb and productive elongation

Following the hypothesis that the early elongation complex might be both 

negatively and positively regulated, Price and colleagues identified the positive 

transcription elongation factor, P-TEFb, which can promote the rate o f long transcript 

synthesis by RNA Pol II (Peterlin and Price, 2006). P-TEFb is a two-subunit complex, 

composed o f CDK9 and cyclin Tl/2. In vitro elongation assays demonstrated that P-TEFb 

can eliminate the inhibitory effect of DSIF and NELF on elongation, possibly by 

phosphorylating Pol II CTD on the Ser2 and E subunit of NELF (Fujinaga et al., 2004;

Kim and Sharp, 2001; Renner et al., 2001; Yamada et al., 2006). DSIF also contains the 

consensus repeats Gly-Ser-Arg/Gln-Thr-Pro in its C-terminus, which is similar to the Pol II 

CTD consensus repeat and can be phosphorylated by P-TEFb (Yamada et al., 2006). The 

phosphorylation of DSIF is required for the induction of the immediate early gene FOS by 

the epidermal growth factor (EGF) and also for the travel of Pol II into the gene body. 

Therefore, it has been proposed that P-TEFb can phosphorylate Pol II CTD, NELF, and 

DSIF resulting in the dissociation of NELF from the promoter-proximally paused Pol II 

and the further release of the paused Pol II into productive elongation (Zhou et al., 2012).
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The co-existence of both the active and inactive forms of the P-TEFb complexes in 

vivo allows the transition of P-TEFb from one state to another to reach the functional 

equilibrium, as required by the 

cellular real time needs (Zhou et 

a l, 2012) (Figure 1.3). The 

majority o f the P-TEFb complex 

is stored within the inactive 7SK 

snRNP complex. The 7SK/P- 

TEFb complex contains 

hexamethylene bisacetamide- 

inducible protein 1/2 

(HEXIM1/2), La-related protein,

LARP7, and the 7SK methyl 

phosphate-capping enzyme,

MePCE. HEXIM1/2, the RNA- 

binding protein, can bind to 7SK 

RNA, and the resulting 7SK- 

HEXIM1/2 complex can further interact with the phosphorylated T-loop region o f CDK9, 

keeping the P-TEFb complex in an inactive state (Li et a l , 2005). 7SK snRNP (small 

nuclear ribonucleoprotein) is diffused into the nucleus, providing the P-TEFb complex to 

any active chromatin loci (Zhou et a l, 2012). However, studies on the H IV  promoter 

indicated that the P-TEFb complex can be recruited to the promoter within the inactive 

7SK snRNP complex, leading to the inhibition of elongation (D'Orso and Frankel, 2010). 

This result also suggested that the transition from an inactive to active state o f the P-TEFb 

complex could happen at the promoters o f genes.

7SK/P-TEFb Brd4/P-TEFb

Figure 1.3. Distinct forms of P-TEFb-containing complexes.

P-TEFb is a two-subunit complex, consisting o f cyclin- 

dependent kinase 9 (CDK9) and cyclin Tl/2. P-TEFb can 

phosphorylate Serine 2 on Pol II CTD, NELF, and SPT5, 

resulting in the release of paused Pol II from the promoter- 

proximal region. In vivo, the majority o f the P-TEFb complex is 

stored within the inactive 7SK snRNP complex. The co­

existence o f both active (BRD4/P-TEFb) and inactive (7SK/P- 

TEFb) forms o f the P-TEFb complexes allows the transition of  

P-TEFb from one state to another to reach functional 

equilibrium.
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Bromodomain-containing 4 (BRD4) was found to form an active complex with P- 

TEFb, which can phosphorylate the Pol II CTD at the Serine 2 residues in vitro (Jang et al., 

2005; Yang et al., 2005). BRD4 is recruited to the paused HIV-1 LTR {Long terminal 

repeats) promoter. However, BRD4 is only required for the basal expression, but not the 

Tat-mediated transactivation of LTR. Overexpression of BRD4 results in the suppression 

o f the Tat-mediated transactivation as BRD4 competes with Tat for binding with P-TEFb 

(Bisgrove et al., 2007). BRD4 is required for MYC gene expression, and that the depletion 

o f BRD4 reduces the localization of CDK9 to the chromatin (Yang et al., 2008). It is 

possible that the main function of P-TEFb within the BRD4 complex is involved in 

regulating the basal expression of genes. However, it still remains elusive which P-TEFb- 

containing complex is responsible for the release of paused Pol II during rapid gene 

activation.

1.1.2.5. Transcriptional elongation-coupled RNA processing

Ser2 phosphorylated Pol II CTD is one of the critical marks for productive 

elongation and itself can also serve as a recruitment platform for some of the 

elongation/RNA processing-related complexes, which are able to facilitate the smooth 

travelling of the elongating Pol II throughout the transcript unit by creating an open 

chromatin environment or promoting RNA processing and/or maturation. There is much 

evidence that has demonstrated that RNA processing is tightly coupled with the Pol II 

transcribing process, starting from the addition of a 7-methylguanosine cap at the 5’ end, 

splicing of introns, and lastly, the cleavage and polyadenylation of nascent transcript at the 

3’-end.
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RNA capping

The 7-methyl G5’ppp5’N cap o f the nascent Pol II transcript occurs soon after the 

nascent RNA reaches a length of 25-30 nt, emerging from the exit channel o f Pol II 

(Shuman, 1997). The capping process requires the sequential enzymatic actions catalyzed 

by three different enzymes RNA tri-phosphatase, guanylyltransferase (GT), and the 

guanine-7-methyltransferase (MT). Both GT and MT enzymes can specifically bind to the 

CTD phosphorylated form of Pol II (Bentley, 2002). In vivo studies from yeast 

demonstrated that Kin28, which can phosphorylate Ser5 at Pol II CTD, is required for the 

recruitment o f all three capping enzymes (Komamitsky et al., 2000; Schroeder et al.,

2000). Further in vitro studies with synthetic CTD peptides also indicated that the Ser5, 

but not Ser2, phosphorylated Pol II CTD can stimulate the activity of GT by inducing the 

allosteric change of GT (Ho and Shuman, 1999). The RNA tri-phosphatase Pctl and GT 

can also bind to the SPT5 subunit of the DSIF complex, which in turn stimulates the 

capping (Wen and Shatkin, 1999). The link between nascent transcript capping and early 

elongation suggests a ‘checkpoint’ mechanism exists to ensure the proper capping before 

Pol II enters into the productive elongation (Bentley, 2002).

Pre-mRNA splicing

A number of studies have demonstrated that the pre-mRNA is at least partially 

spliced during the transcriptional process as a significant amount of spliceosome assembles 

at the spliced sites o f transcribing genes (Carrillo Oesterreich et al., 2011). The first 

example of co-transcriptional splicing was observed in Drosophila; it is when nascent 

chorion gene transcripts are shortened during transcription (Beyer and Osheim, 1988). 

Also, the electron microscopy imaging Of the spread chromatin showed the assembly of 

ribonucleoprotein particles at spliced sites of nascent transcripts (Osheim et al., 1985). 

Recent nascent RNA-sequencing studies in yeast provide genome-wide evidence that the
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majority of yeast transcribing genes are co-transcriptionally spliced (Carrillo Oesterreich et 

al., 2010). However, it still remains unclear whether introns are completely removed 

during transcription.

It has been suggested that Pol II elongation rates can influence the alternative 

splicing. Pol II mutations or drug inhibition, which slows down the elongation rate of Pol 

II, results in the distinct alternative exon inclusion (Carrillo Oesterreich et al., 2011). 

Supporting this observation, the hyperphosphorylated Pol II CTD can interact with splicing 

factors, like SR protein SF2/ASF and SC35, leading to the recruitment o f key splicing 

factors to the elongation complex, and possibly, the further assembly of a spliceosome 

complex (Zhou et al., 2012). Interestingly, recent experiments by increasing the active 

pool of P-TEFb complexes demonstrated that the reduction of the inactive P-TEFb 

complex component LARP7 or MePCE promotes the inclusion of the alternative exon 

(Barboric et al., 2009). It is possible that the increased active pool of the P-TEFb 

complexes enhances the levels o f Ser2 phosphorylation and also the Pol II elongation rate, 

which in turn elevates the SR protein-mediated assembly of the splicing complex at exons.

3 ’ end processing

Poly (A)-dependent and Sen 1-dependent termination pathways are two, well- 

characterized pathways for Pol II-transcribed protein-coding and non-coding genes, 

respectively (Kim et al., 2006; Shandilya and Roberts, 2012). In eukaryotes, most o f the 

protein-coding genes contain poly (A) signal (55- AAUAAA-3,) and GU rich sequences 

after the cleavage site. Multiple lines o f evidence have indicated that Ser2 phosphorylated 

Pol II CTD can serve as a platform to recruit termination factors, including CPSF and 

CstF, promoting the transcription-coupled 3’-end processing (Ahn et al., 2004). CPSF is 

recruited through its interaction with the body of Pol II of the transcribing complex, while
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the further recruitment o f CstF is dependent on Ser2-phosphorylated Pol II CTD (Nag et 

al., 2007; Shell et al., 2007). In vivo studies from Martinson’s laboratory demonstrated 

that Pol II reduces the elongation rate after transcribing through the poly (A) signal and 

thus pauses after the poly (A) site (Park et al., 2004). Therefore, it is possible that the 

binding of CPSF to the AAUAAA signal on the transcripts can induce the pausing o f Pol 

II, which is released by the subsequent binding of CstF with the GU-rich sequences and the 

further recruitment of other 3 ’-end processing factors like the Ratl-Rail-Rttl03 complex 

(Kuehner et al., 2011). Paused Pol II per se does not necessarily cause the transcriptional 

termination. The “Torpedo” model has been proposed. In this model, the interaction of 

Rtl03 with Pol II CTD recruits the 5’-3’ exoribonuclease, Rati, which cleavages nascent 

RNA from the uncapped end generated by other 3’-end endoribonuclease towards the RNA 

exit channel on Pol II, chasing down Pol II, and thus inducing transcriptional termination 

(Kuehner et al., 2011). Recently, CDK9-mediated Thr 4 phosphorylation on Pol II CTD 

was also found to be required for the 3’-end processing of histone genes by recruiting the 

CPSF-100 and stem loop binding protein (SLBP) (Hsin et al., 2011).

The Sen 1-dependent termination pathway is required for the termination o f snRNA, 

small nucleolar RNA (snoRNA) and Cryptic Unstable Transcripts (CUTs) in S. cerevisiae 

(Arigo et al., 2006; Finkel et al., 2010; Kim et al., 2006; Thiebaut et al., 2006). However, 

the depletion of Senl does not seem to affect the 3’-end processing o f the snRNA genes in 

mammals (Suraweera et al., 2009). Instead, the integrator complex was found to mediate 

this process (Baillat et al., 2005). The association of the integrator complex with snRNA 

genes requires the Ser7 phosphorylated Pol II CTD (Egloff et al., 2007). Disruption o f 

Ser7 on Pol II CTD affects the 3’-end processing and also termination of snRNA genes, 

but not protein-coding genes, for example, the housekeeping gene, Actin.
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Recently ELL2 has also been shown to regulate the polyadenylation site selection 

of the immunoglobulin heavy chain (Igh) gene in plasma cells through directing the 

localization of the polyadenylation factor, CstF-64, to the Igh locus (Martincic et al.,

2009). Depletion of ELL2 by shRNA reduces the ratio of secretory (shorter): membrane- 

specific (longer) Igh transcripts. Further, reporter assays indicated that the reduction of 

ELL2 might affect the exon skipping, resulting in the use of the promoter-proximal poly 

(A) site. It is possible that the depletion o f ELL2 slows down the elongation rate of RNA 

Pol II, and therefore, provides enough time for the assembly of the splicing machinery at 

the weaker alternative splice site.

1.2.MLL rearrangement-mediated leukemogenesis

The pathogenesis of cancer is a multi-step process initiating from chromosomal 

translocations and genetic mutations, which generally provide a proliferation advantage to 

the cancer-initiating cells, but impair their ability to undergo terminal differentiation and 

apoptosis. Early studies demonstrated that chromosomal translocations, resulting in the 

activation of proto-oncogenes or more often the novel fusion genes with acquired 

functions, can be a causative factor in hematopoietic malignancies (Rowley, 2001; Showe 

and Croce, 1987). For example, the t(8; 14) (q24; q32) translocation, which predominates 

in Burkitt lymphoma, results in the activation of oncogene MYC as it is juxtaposed to a 

highly active immunoglobulin heavy-chain locus in B cells (Showe and Croce, 1987; Taub 

et al., 1982). Translocations involving the MLL gene are found frequently in de novo and 

secondary leukemias, representing 80-90% of infant acute lymphoid leukemia (ALL) and 

-40%  of infant acute myeloid leukemia (Meyer et al., 2009). Almost all MLL 

translocations produce functional chimera proteins, consisting o f the amino terminus of 

MLL fused to the carboxyl terminus of fusion partners. Mice transplanted with MLL-
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translocated stem/progenitor cells or in vivo knock-in with MLL translocations develop 

leukemia after 3~6 months o f latency. However, the mechanisms underlying how MLL 

translocations lead to leukemogenesis are as diverse as its fusion partners.

1.2.1. MLL encodes a histone H3 lysine 4 methyltransferase 

1.2.1.1. MLL is a homolog of the Drosophila trithorax gene

The Trithorax group and polycomb group o f proteins are functionally and 

genetically connected, controlling the activation and repression of genes during 

differentiation (Ringrose and Paro, 2004). Mutations in trithorax (Trx) cause the homeotic 

transformation defects in Drosophila, which phenocopy the defects observed in the 

mutants of homeotic genes antennapedia and ultrabithorax (Breen and Harte, 1993; 

Castelli-Gair and Garcia-Bellido, 1990; Eissenberg and Shilatifard, 2010; Sheam, 1989; 

Wedeen et al., 1986). MLL, encoding a 3,969 amino acid (aa) protein, is structurally 

homologous to the Drosophila trithorax. Knockout studies demonstrated that the deletion 

of MLL or its SET domain causes the axis skeleton defects in mice through regulating the 

expression of the Hox cluster genes (Terranova et al., 2006; Yagi et al., 1998; Yu et al., 

1995). However, unlike the MLL deletion, SET domain deletion mice are viable, 

suggesting additional important functions o f MLL in development besides the roles of the 

SET domain in regulating Hox gene expression. MLL knockout mice also showed the 

defects in hematopoietic systems, possibly affecting the development o f hematopoietic 

stem cells in a Hox gene-dependent manner (Yagi et al., 1998).
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A
AT hooks CXXC PHD FYRN TAD FYRC SET domain

MLL

Breakpoint Cleavage sites

Wild type MLL

MLL fusion MLL/Fusion partner gene

Figure 1.4. Schematic model of key structural domains in wild-type MLL and MLL chimera protein.

(A) MLL is a 3,969 amino acid protein which contains several identified domain structures, including the 

methyltransferase SET domain, several PHD fingers, DMT homology CXXC domain, and AT hooks. AT 

hooks and CXXC domains can bind to DNA and are responsible for the recruitment o f MLL or MLL 

chimera proteins. (B) Wild-type MLL can be cleaved and forms a heterodimers of MLL N-terminus and 

MLL C-terminus through FY-rich FYRN and FYRC domains. Recently, the PHD fingers were also shown 

to be involved in the dimerization o f MLL protein. (C) MLL chimeras are formed by the in-frame fusion of 

the N-terminus of MLL to the C-terminus of its translocation partners. The AT hook and CXXC domains of 

MLL are retained in all chimeras. MLL rearrangements mostly occur in the breakpoint cluster region (BCR) 

between exons 8 and 11. To date, more than 60 fusion partners have been identified with low to no 

sequence similarities.

MLL contains sequence-independent DNA binding motifs at the N-terminus,

including three AT-hook domains binding to the AT-rich sequences and CXXC motifs

binding to CG-rich sequences (Birke et ah, 2002; Zeleznik-Le et al., 1994) (Figure 1.4).

The first 50 aa of MLL, which can interact with MENIN encoded by the multiple

endocrine neoplasia 1 (MEN1) gene, together with AT-hook domains and CXXC motifs

are required for the recruitment of MLL to the chromatin (Yokoyama and Cleary, 2008). It

has also been reported that CXXC motifs of MLL can interact with the PAF1 complex,

resulting in the recruitment of MLL (Milne et al., 2010; Muntean et al., 2010). Besides

these two motifs, the N-terminus of MLL also contains several PHD fingers (Plant Homeo

Domain). It has been reported that the third PHD finger can bind to the di-and

trimethylated histone H3 lysine 4, possibly regulated by cyclophilin CyP33 (Wang et al.,
30



2010b). The recognition of the MLL PHD finger on the histone H3 Lysine 4 

trimethylation (H3K4me3) mark is essential for its transcriptional activities towards 

homeoboxA9 (HOXA9), A10 (HOXAIO), and the Meis homeobox 1 (MEIS1) genes, but not 

its localization to chromatin (Chang et al., 2010). The C-terminus of MLL contains a 

methyltransferase enzymatic domain, the SET domain, which was named after the 

Drosophila SET domains containing proteins Su(var)3-9, Enhancer o f zeste (E(z)), and Trx 

(Milne et al., 2002; Nakamura et al., 2002).

Wild-type MLL is cleaved by taspase 1 into MLL-NT and MLL-CT fragments that 

form a heterodimer endogenously through the interaction of FYRN and FYRC domains, 

respectively (Hsieh et al., 2003; Yokoyama et al., 2002) (Figure 1.4). Recent studies 

indicated that the PHD fingers are also required for the dimerization of MLL (Yokoyama 

et al., 2011). In vivo, the free MLL-NT and -CT fragments are subjected to different 

degradation pathways (Yokoyama et al., 2011). The MLL-CT is required for the stability 

o f the MLL-NT fragment. However, it remains unclear if  the proteolysis o f mammalian 

MLL is necessary for some of its biological functions. In Drosophila, the mutant of 

Trithorax that contains a deletion spanning the cleavage sites by taspase 1 affects the 

maturation of the Trx protein and also the antennapedia, but not the bithorax, gene 

expression (Mazo et al., 1990). Mice with the deletion mutant of taspase 1 show the 

homeotic transformation phenotype (Takeda et al., 2006). Also, the deletion o f taspase 1 

affects the progression of cell cycle, possibly through regulating cell cycle genes that are 

targets of MLL.
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1.2.1.2. MLL forms a COMPASS-like complex

Yeast Setl, sharing the homologous SET domain with mammalian MLL and 

Drosophila Trx, is the first identified histone H3 Lysine 4 (H3K4) methyltransferase 

(Miller et al., 2001; Shilatifard, 2012). Setl within its complex COMPASS (complex of 

proteins associated with Setl) is capable of mono-, di-, and trimethylating the H3K4 both 

in vivo and in vitro (Krogan et al., 2002; Miller et al., 2001). Unlike yeast, there are at 

least six functionally nonredundant H3K4 methyltransferases found in human, including 

SET domain-containing 1A/1B, SETD1A/B, and MLL 1-4. Biochemistry characterization 

o f complexes together with functional studies indicated that SETD1A and SETD1B 

complexes, which are responsible for the bulk levels of H3K4 trimethylation, are the direct 

homologs of yeast COMPASS with the similar composition (Lee and Skalnik, 2005; Lee et 

al., 2007; Wu et al., 2008). MLL1-4 form COMPASS-like complexes sharing core 

subunits with human COMPASS (Cho et al., 2007; Goo et al., 2003; Hughes et al., 2004; 

Nakamura et al., 2002). Retinoblastoma-binding protein 5 (RbBP5), WD repeat domain 5 

(WDR5), ash2 (absent, small, or homeotic)-like (ASH2L), and DumPY30 (DPY30) are the 

four SET domain-interacting core subunits, with each of them having conserved roles in 

modulating the H3K4 methyltransferase activities from yeast to human (Dou et al., 2006; 

Steward et al., 2006).

Besides these core subunits, COMPASS and COMPASS-like also contain unique 

components, which are now believed to be required for the diverse recruitment of these 

different complexes to chromatin. MENIN and lens epithelium-derived growth factor 

(LEDGF) interact with the N-terminus of MLL 1/2, forming a ternary complex 

respectively, which is required for the recruitment o f the complex to the chromatin and 

also transcription of its target genes (Wang et al., 2009; Yokoyama and Cleary, 2008).
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Recent studies demonstrated that both MENIN and LEDGF are essential for the MLL 

chimera-induced leukemogenesis (Agarwal et al., 1999; Yokoyama and Cleary, 2008). 

However, the expression of MLL2 chimeras, which also contain the interaction domain 

with MENIN and LEDGF, in hematopoietic stem/progenitor cells, cannot induce leukemia, 

suggesting the unique function of MLL in leukemogenesis (Bach et al., 2009).

In both Drosophila and mammals, COMPASS and COMPASS-like complexes 

show different activities on the substrate H3K4 in vivo and regulate the expression of 

distinct subset of genes (Shilatifard, 2012). COMPASS-like MLL3/4 complexes mediate 

the activation of hormone receptor responsive genes (Lee et al., 2009). MLL1 regulates 

the expression of Hox genes and also cell cycle regulatory genes (Liu et al., 2009; Mohan 

et al., 2010b). Our recent studies further demonstrated that Mil-mediated H3K4 

trimethylation is only required for the expression of a small subset o f genes in MEFs, 

including many Hox genes and genes involved in the Wnt signaling pathway (Wang et al., 

2009). Interestingly, it has also been reported that the Wnt signaling pathway is required 

for the self-renewal of leukemia stem cells of AML induced by a MLL chimera (Wang et 

al., 2010a; Yeung et al., 2010).

1.2 .2 . Characteristics ofMLL-translocated leukemia

1.2.2.1. 11 q23 rearrangements

The MLL gene was initially identified and cloned from the breakpoint of 

chromosome 1 lq23 translocations by several groups in 1992 (Djabali et al., 1992; Gu et 

al., 1992; Tkachuk et al., 1992). The majority of MLL rearrangements occur within an 8.3 

Kb region spanning from exons 8 to 13, named ‘Breakpoint Cluster Region 

(BCR)’(Rowley, 1998). Early studies indicated that the chemotherapy treatment with
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epipodophyllotoxins, an inhibitor o f DNA topoisomerase II (Topo II), often induces 1 lq23 

translocations in cancer patients (Hunger et al., 1993; Pui et al., 1989; Super et al., 1993), 

suggesting a possible role o f an inappropriate repair of DNA double-strand break in 

chromosome translocations (Zhang and Rowley, 2006). BCR contains the Topo II 

cleavage sites, DNase I hypersensitive sites and also the scaffold attachment regions 

(SARs), all o f which might contribute to the chromosomal rearrangements at 1 lq23 

(Broeker et al., 1996). Currently, the “transcription factories” model has also been 

suggested to explain the translocations of MLL with a diverse range of fusion partners 

(Rowley, 2008).

1.2.2.2. MLL chimera lacks the conserved enzymatic SET domain

The translocations of MLL result in the loss of the methyltransferase SET domain, 

the dimerization FY-rich FYRN and FYRC domains, and the PHD fingers (Figure 1-4). 

Although MLL translocations lose the methyltransferase activity, the germline copy of 

MLL is normally recruited to its target genes, including HOXA9 and MEIS1, and is also 

required for the induction o f leukemia by MLL chimeras (Thiel et al., 2010). Inclusion of 

the PHD fingers prevents MLL chimera-mediated leukemogenesis (Muntean et al., 2008), 

possibly by inhibiting the dimerization of MLL chimeras. However, there is no evidence 

showing the existence of the dimerization between MLL chimera and germline MLL.

The MENIN/LEDGF interaction domain, AT-hooks, and CXXC domain at the N- 

terminus of MLL are retained in MLL translocations (Birke et al., 2002; Slany et al., 1998; 

Zeleznik-Le et al., 1994). The MLL fragment of the translocations is required for the 

recruitment of the chimera complex to chromatin, while the fusion fragment of the
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translocations can recruit elongation factors and chromatin modifiers, or induce the 

dimerization o f MLL chimeras, resulting in leukemogenesis.

1.2.2.3. Gene expression signature

Early expression array analyses indicated that the expression profiles of MLL- 

rearranged leukemia cells are significantly distinct from ALL or AML cells with germline 

MLL (Armstrong et al., 2002; Rozovskaia et al., 2001). About 200 highly up-regulated 

genes were identified in this study, including both lymphoid and myeloid specific genes, 

suggesting the multi-lineage gene expression pattern o f MLL-rearranged leukemia cells 

(Armstrong et al., 2002). Several homeobox-containing genes, such as HOXA9 and 

MEIS1, are consistently up-regulated in most of the MLL-rearranged leukemia cells 

(Armstrong et al., 2002; Rozovskaia et al., 2001). Co-expression of Hoxa9 and M eisl, but 

not the Hoxa9 or M eisl alone, in hematopoietic stem cells (HSC) can induce acute myeloid 

leukemia (Kroon et al., 1998). The exact functions o f HOXA9 and MEIS1 in MLL 

chimera-induced leukemogenesis are not very clear. It is likely that the overexpression of 

a cohort of Hoxa cluster genes and Meis genes are important for the proliferation o f 

leukemia cells or the phenotypes of leukemia, but not the development of MLL chimera 

induced leukemia (Ayton and Cleary, 2003; Kumar et al., 2004; So et al., 2003b; Zeisig et 

al., 2004).

Besides homeobox-containing genes, MLL chimera might also activate some 

developmental regulators involved in the self-renewal o f leukemia stem cells (LSCs) 

(Cleary, 2009). MLL-ENL can induce leukemia from committed myeloid progenitors, 

granulocyte macrophage progenitors (GMP), suggesting that the expression o f MLL-ENL 

can somehow reactivate some key regulators involved in the sternness and self-renewal of
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HSC (Cozzio et al., 2003; So et al., 2003a). The leukemic induction of MLL-ENL on 

GMP is not directly mediated through the activation o f Hoxa9 and M eisl genes, as the co­

expression of these two proteins was shown not to be able to induce leukemia from GMP, 

but HSC (Kroon et al., 1998). ChlP-seq studies demonstrated that the chimera protein 

MLL-AF4 occupies a subset of genes, which are differentially expressed in HSC, in MLL- 

AF4-rearranged leukemia cells (Guenther et al., 2008).

1.2.2.4. The transcriptome of MLL LSC is more akin to ESC than HSC

MLL LSCs were first reported in mouse AML induced by MLL-AF9 (Somervaille 

and Cleary, 2006). The transcription profile of MLL LSC is more related to embryonic 

stem cells (ESC) when compared with adult stem cells, HSC (Krivtsov et al., 2006; 

Somervaille et al., 2009). Unlike ESCs, Nanog, POUclass 5 homeobox 1 (Pou5fl), and 

the SRY-box-containing gene 2 (Sox2) are not required for the self-renewal o f LSCs. 

Instead, Hoxa and Meis are required for the proliferation of LSCs. Interestingly, the co­

expression of the myeloblastosis oncogene (Myb), high mobility group box 3 (Hmgb3), and 

chromobox 5 (Cbx5), which are expressed in both ESC and LSC, can induce 

immortalization of myeloid progenitors in a Hoxa9/Meisl -independent manner. These 

data indicated that at least two parallel or cooperative programs contribute to MLL 

chimera-mediated leukemogenesis. It is possible that MLL chimera might induce myeloid 

progenitor cells into a pre-leukemia stem cell (preLSC) stage through the Myb, Hmgb3, 

and Cbx5 activation program, while the further transition into and maintaining the LSC 

stage requires the Hoxa and Meis program.

36



1.2.3. Diverse mechanisms for MLL chimera-mediated gene expression

To date, more than 60 different MLL fusion partners have been identified with little 

or no obvious sequence similarities (Meyer et al., 2009). Some of them can be simply 

classified into different groups based on their different cellular localizations, ranging from 

nuclear to cytosol and membrane-associated proteins (Krivtsov and Armstrong, 2007; 

Meyer et al., 2009). Translocations with nuclear proteins are found in the majority of 

MLL-rearranged leukemias (Figure 1.5). For example, fusion partners like the ALL1- 

fused gene from chromosome 4 protein (AF4/ AFF1), ALL 1-fused gene from chromosome 

9 protein (AF9), eleven-nineteen leukemia (ENL), ALL 1-fused gene from chromosome 10 

protein (AF10), ELL, and the ALL 1-fused gene from chromosome 17 protein (AF17) are 

all nuclear proteins and are the most frequent translocation partners with different 

frequencies in different types of leukemia (Mohan et al., 2010b). It is not clear whether 

MLL translocations involving proteins within the same group will induce leukemia in a 

similar manner or whether translocations with nuclear proteins will involve different 

mechanisms from fusions with cytosol or membrane-associated proteins during the 

induction of leukemogenesis. Currently, several models have been proposed o f how MLL 

chimera oncoproteins can lead to leukemogenesis or how these oncoproteins activate the 

gene expression program involved in leukemogenesis.
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Figure 1.5. The most common MLL chimeras in acute leukemia.

(A) Several o f the most frequent translocation partners are listed. (B) The distribution o f MLL chimeras 

in Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML). In MLL-rearranged 

ALL, AFF1, AF9, ENL, and AFJO account for 90% of all the translocations, while in AML, 70% of 

MLL translocations involve AF9, ENL, AF10, ELL, and AF17 (Meyer et al. 2009a). MLL-AFF1 is the 

most frequent MLL translocation protein.

1.2.3.1. Transcriptional Elongation Checkpoint Control (TECC) in leukemia

ELL was the first functionally characterized MLL fusion partner. The

identification of ELL as a RNA Pol II elongation factor leads to the hypothesis that

transcriptional elongation might play an essential role in MLL chimera-mediated

leukemogenesis (Shilatifard et al., 1996) (Figure 1.6A). However, the transcriptional

activation domain and the Pol II binding domain of ELL do not require the transformation

activity of MLL-ELL (DiMartino et al., 2000). It is likely that the C-terminus o f ELL is

sufficient to recruit other transcriptional regulators to activate target genes controlled by
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MLL-ELL, as demonstrated by the Drosophila genetic assay that the C-terminal fragment 

of dEll can rescue the lethality phenotype of the dEll mutant (Gerber et al., 2005b).

Besides ELL itself as an elongation factor, other nuclear fusion partners were found 

to associate with transcriptional elongation factors, suggesting a general role of 

transcriptional elongation control in MLL chimera-mediated gene activation. For example, 

the most common translocation partner, AF4/AFF1, and its paralog, the ALLl-fused gene 

from the chromosome 5q31 protein (AF5q31/AFF4), a rare fusion partner, have been 

shown to interact with the transcription elongation complex P-TEFb (Bitoun et al., 2007; 

Estable et al., 2002). AFF1 and AFF4 belong to a functionally unknown AF4/FMR2 

protein family with conserved domain structures at the N- and C-terminus (Bitoun and 

Davies, 2005). LAF4/AFF3 (Lymphoid nuclear protein related to AF4), another member 

of this family of proteins, is also a MLL translocation partner. In addition, the protein- 

protein interaction assays identified the common translocation partners AF9/ENL as the 

interaction proteins of the AF4 family o f proteins (Erfurth et al., 2004). Interestingly, 

perturbation of the interaction between MLL-AF4 and AF9 by the AF4-mimetic peptide, 

PFWT, inhibits the proliferation of MLL-AF4 leukemia cells, thus resulting in necrotic cell 

death (Palermo et al., 2008; Srinivasan et al., 2004). Therefore, it is possible that many o f 

these nuclear fusion partners belong to a macromolecular complex containing P-TEFb.

The translocation of MLL with any of the subunits might mistarget the P-TEFb complex to 

chromatin, resulting in the activation of its target genes.

1.2.3.2. DOTlL-mediated H3K79 methylation

DOT1L (disruptor of telomeric silencing) is the sole histone H3 lysine 79 (H3K79)

methyltransferase, which plays important roles in transcriptional control(Mohan et al.,
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2010b). The yeast two-hybrid experiments identified DOT1L as the interacting protein of 

the MLL fusion partner AF10 (Okada et al., 2005). The interaction of MLL-AF10 and 

DOT1L recruits DOT1L to its target genes, like HOXA9, resulting in the induction of 

H3K79 methylation (Figure 1.6B). Genome-wide studies further indicated that many of 

the MLL chimera target genes are marked by highly methylated H3K79 (Krivtsov et al.,

2008). These preliminary data have stimulated great interest in investigating the exact role 

o f DOT1L in MLL fusion-mediated leukemogenesis, although whether the H3K79 

methylation by DOT1L is necessary and sufficient for MLL chimera-induced leukemia is 

still controversial.

Recent purifications of ENL-containing complexes suggested a general association 

of DOT1L with many o f the most common fusion partners including AFF1, AF9, ENL, 

AF10, AF17, and AFF4 (Mueller et al., 2007). Besides DOT1L, P-TEFb was also found in 

this purification. However, whether the ENL-containing macromolecular complexes truly 

represent a single complex or whether there are actually several different ENL-containing 

complexes needs to be further addressed by tagging different subunits of the complexes or 

conventional column chromatography analysis.

1.2.3.3. Dimerization of MLL chimeras

Early studies using the MLL-GAS7 (growth arrest specific 7) and MLL-J3- 

galactosidase (lacz) knock-in mice models demonstrated that oligomerization o f MLL 

chimeras mediated by fusion partners is necessary and sufficient for their leukemogenic 

transformation (Dobson et al., 2000; So and Cleary, 2004; So et al., 2003a) (Figure 1.6C). 

Such a dimerization model was also observed in other MLL chimeras involving 

cytoplasmic fusion partners including epidermal growth factor receptor pathway substrate
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15 (EPS 15), gephyrin, septin 6 (SEPT6), and FK5 06 binding protein (FKBP) (Liedtke and 

Cleary, 2009). Unlike MLL-AF9 and MLL-ENL, this group of MLL chimeras induces 

leukemia with a longer latency (Krivtsov and Armstrong, 2007). Interestingly, like MLL- 

nuclear protein translocations, engineered MLL chimera carrying synthetic dimerization 

modules can also activate Hoxa gene expression (So et al., 2003a). However, the 

mechanism underlying how the dimerization of the MLL chimera contributes to the 

activation of downstream target genes remains elusive. Examination of histone 

modifications revealed that the activation of Hoxa9 by the oligomerization group o f MLL 

chimera MLL-FKBP does not induce H3K79me2, suggesting a diverse mechanism for 

transcriptional activation (Milne et al., 2005).

1.2.3.4. Other possible mechanisms

In addition to the potential roles of chromatin modifier DOT1L in a subset of MLL 

chimeras, other histone modification enzymes like E l A binding protein p300 and CREB 

binding protein (CBP) were directly found as MLL fusion partners (Meyer et al., 2009). 

Recently, it has also been reported that protein arginine methyltransferase 1 (PRMT1) is 

recruited to a rare MLL fusion MLL-EEN (extra eleven-nineteen leukemia fusion) targeted 

loci, like Hoxa9, mediated by SAM68 (Src-associated in mitosis o f 68 kDa) (Cheung et al., 

2007) (Figure 1.6D). PRMT1 directly methylates histone H4 arginine 3 (H4R3) and thus 

further promotes histone acetylation by p300/CBP (Cheung et al., 2007; Huang et al., 

2005). Direct fusion o f MLL-PRMT1 wild-type, instead o f the catalytic mutant version of 

PRMT1, results in the transformation of primary myeloid progenitors, suggesting an 

essential role of protein arginine methylation in MLL fusion-induced leukemia.
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Figure 1.6. Proposed mechanisms of MLL chimera-induced leukemogenesis.

(A) Transcription elongation control. ELL was the first functionally characterized MLL fusion partner.

The identification of ELL as a RNA Pol II elongation factor leads to the hypothesis that transcriptional 

elongation might play an essential role in MLL chimera-mediated leukemogenesis (Shilatifard et al., 1996).

(B) DOTlL-mediated H3K79 methylation. The model was initially proposed based on the findings that 

MLL-AF10 directly interacts with DOT1L and recruits it to HOXA9 and HOXAIO loci, resulting in the 

aberrant histone H3K79 methylation. Recently, the purification of ENL-containing complexes identified 

many MLL fusion partners including DOT1L, leading to a plausible conclusion that these proteins exist in a 

single complex with DOT1L, thus putting H3K79 methylation at the center of MLL chimera induced 

leukemogenesis. (C) Dimerization of MLL chimeras. Several cytosol MLL fusion partners, including 

GAS7, contain the dimerization domain. The artificial MLL chimera protein MLL-Lacz, which dimerizes 

through the C-terminal Lacz domain, can also lead to leukemia. (D) Histone arginine methylation. The 

arginine methyltransferase 1 (PRMT1) is recruited to the MLL chimera MLL-EEN-targeted loci, like Hoxa9, 

mediated by SAM68, methylating histone H4 arginine 3. The methylated H4R3 can further stimulate the 

acetylation of histone H4 by p300.
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1.3. Aims of my proj ects

Studies on MLL fusion partners have led to several hypotheses for the mechanism 

underlying leukemogenesis induced by MLL chimeras as mentioned above. However, it is 

possible that different MLL chimeras might share similar pathways for the onset of 

leukemia as the up-regulation of HOXA9 and MEIS1 are found in almost all types of 

leukemia with MLL translocations. The aim of this project is to explore the potential 

regulatory mechanism(s) responsible for the up-regulation of MLL chimera target genes. 

To examine if  there are common factors shared by different MLL chimeras, I have directly 

isolated the protein complexes of several of the most frequent MLL chimeras and 

compared the compositions of these complexes. To further understand the roles of these 

factors during development and disease, I have combined ChIP and expression profile 

studies to analyze their downstream gene targets in mouse embryonic stem cells and 

leukemia cells, which will lay the foundation for the identification of key leukemic genes 

and serve as potential targets for leukemia treatment.
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Chapter 2. Materials and Methods

Molecular biology techniques were based on the “Molecular cloning: a laboratory 

manual” described by Sambrook et al. (1989). Oligonucleotides were synthesized by 

Integrated DNA Technologies (IDT). Enzymes were supplied by New England Biolabs 

(NEB) and Invitrogen unless otherwise stated. Transfection reagents were obtained from 

Roche and Invitrogen. Standard buffer solutions and media were prepared by the Core 

Facility o f SIMR.

2.1. Antibodies

For the homemade antibodies, antigens were expressed as Histidine-tag fusion 

proteins in PET-16b, purified on nickel-nitriloacetic acid (Ni-NTA)-agarose according to 

Qiagen’s protocol and sent to Pocono Rabbit Farm and Labs for immunization into rabbits, 

except for dAFF4 which was injected into guinea pigs. Drosophila Rpbl antibody was 

raised in rabbits against the synthetic peptide ERLMKKVFTDDVIKEMTDSG(C) 

conjugated via cysteine to keyhole limpet hemocyanin (KLH). The Rabbit anti-human 

RNA polymerase Rpbl antibody was generated by immunization with the synthetic 

peptide: ERALRRTLQEDLVKDVLSNGC conjugated to KLH. All o f the antibodies used 

in the thesis are listed in Table 2.1.
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T a b le  2 .1 . L is t  o f  a n tib o d ie s  u se d  in  th is  th e s is .

Homemade
antibodies

Commercial
antibodies

Names Rabbit No. Antigens Names Cat. No. Company

hELLINT 4373/74 1-194
Pol II 

(8wgl6) MMS-126R Covance

hELLlCT 4373/74 431-621 Pol II (N20) sc-899 Santa Cruz
hELL2NTl 4067/68 1-297 Pol II (4H8) ab5408 Abeam

hELL2NT2 4067/68 1-157 Pol II (H5) MMS-129R Covance

hELL2CT 4067/68 426-640 Pol II (HI4) MMS-134R Covance

hELL3NT 939/940 1-248 AFF4 sc-107134 Santa Cruz

hELL3CT 941/942 255-397 CDK9 ab10874 Abeam

hAFF4NT 3592/93 76-237 Heximl ab25388 Abeam

hAFF4CT 3566/67 761-931 Cyclin T1 ab2098 Abeam

hAF4/AFFlNT 4063/64 73-264 pS2 ab5095 Abeam

hAF4/AFFlCT 3603/04 763-917 pS5 ab5131 Abeam
dLilliCT 2268/69 1431-1673 H3K4me2 ab7766 Abeam

dELL 308 Full length H3K4me3 ab8580 Abeam
hCDK9CT 146/147 204-372 Histone H3 abl791 Abeam

dRpbl ERLMKKVFTDDVIKEMTDSG BRD4 A301-985A B ethyl

hRpbl ERALRRTLQEDLVKDVLSNGC TFIIB SC-225 Santa Cruz

Smcl A300-055A Bethyl

Smc3 ab9263 Abeam

MLL 1-NT A300-086A Bethyl

MLL1-CT A3 00-3 74A Bethyl

2.2. Stable cell line generation

MLL-ELL cDNA was previously described (DiMartino et al. 2000). MLL-AF9, 

MLL-AFF1, and MLL-ENL cDNAs were a gift from Dr. Jay Hess (University of 

Michigan). AFF1, AFF2, AFF3, AFF4, CDK9, and BRD4 cDNAs were obtained from 

Open Biosystems. ELL1, ELL2, and ELL3 cDNAs were previously described (Johnstone 

et al., 2001). Flag-tagged cDNAs were cloned into pCDNA5/FRT-TO vector (Invitrogen) 

modified with a N-terminal flag tag. The plasmids were then transfected into 293 Flp-in- 

TRex cells and selected by hygromycin. The single clones were picked and cultured up to 

3 liters. The 293 Flp-in-TRex cells were grown in suspension with CD 293 medium
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(Invitrogen) as described by the manufacturer or Dulbecco's Modification o f Eagle's 

Medium (DMEM) medium with 10% fetal bovine serum (FBS).

2.3.ES Cell Culture and Differentiation

Mouse embryonic stem cells (KH2 and V6.5) were cultured on irradiated mouse 

embryonic fibroblast (MEF) feeder layers in 0.1% gelatin-coated tissue culture flask. Cells 

were grown in DMEM (D6546, Sigma) supplemented with 15% ES-certified fetal bovine 

serum (Hyclone), 2 mM L-glutamine, 0.1 mM nonessential amino acids (NEAA), 0.1 mM 

P-mercaptoethanol, and recombinant Leukemia Inhibitory Factor (LIF) (Millipore). For 

ChIP and RNA analysis, cells were grown for one passage of feeders on tissue culture 

plates for 30 minutes. Embryoid bodies (EBs) were formed by culturing 150,000/ml ES 

cells in ES medium without LIF (ES differentiation medium) on non-adhesive 

bacteriological petri dishes for indicated days (Kurosawa, 2007). Media were changed 

daily after two days. For neural differentiation, day-5 EBs were plated on laminin-coated 

6-well tissue culture plate in ES differentiation medium with 1 mM all-trans retinoic acid 

(ATRA) (Sigma) for additional 14 days. Media were changed every other day. On day 14, 

the RA-treated EBs were immunostained by anti-pIII-Tubulin (Covance).

2.4. Lentivirus-based RNAi and Tissue Culture

Lentiviral particle preparation and infection were performed as previously 

described (Lin et al., 2010). Briefly, around 70% confluent 293T cells in 150 mm tissue 

culture plates were co-transfected with 8pg of the shRNA construct or Non-targeting 

control shRNA, 6 pg of PsPAX2 packaging plasmids and 2 pg o f pMD2.G envelope 

plasmids using FuGENE 6 or X-tremeGENE 9 (Roche). The media was replaced with 

fresh DMEM supplemented with 10% FBS after 16 hours of transfection. The lentiviral



supernatants were collected 48 and 72 hours after the transfection, filtered through 0.45 pm 

filters and concentrated at 18K rpm for 2 hours.

MV4-11 cell line was a gift from Dr. Mike Thirman (U. Chicago, IL) and the 

Jurkat, SEM and REH cell lines were obtained from the ATCC. Kopn-8, ML-2, and EOL- 

1 cell lines were obtained from the DSMZ. These leukemia cell lines were grown 

according to the ATCC’s or DSMZ’s instructions. All cells were maintained at 37 °C 

under 5% CO2 . For lentiviral infection of MV4-11 leukemia cells, 1x10s cells were seeded 

in RPMI 1640 media. Polybrene (Sigma) was added at a final concentration o f 8pg/ml. 

After adding 50 pi lentiviral particles (MOI —10), spin transduction was performed at 2000 

RPM for 120 minutes at 32° C. 6 hours after infection, the media was replaced with 100 pi 

of RPMI 1640 media supplemented with 10% FBS and 5 ng/ml recombinant human 

granulocyte M-CSF (GM-CSF) (Prospect Protein Specialist). Cells were incubated at 37°C 

for four days before RNA extraction and RT-PCR as described for the siRNA experiments.

HCT-116 cells were grown in McCoy’s 5A medium supplemented with 10% FBS. 

For the AFF4 and ELL2 knockdown analysis, shRNA plasmid targeting the human ELL2 

mRNA (V2THS_28741 from Open Biosystem), human AFF4 mRNA (V2THS_197522 

from Open Biosystem) and a non-targeting control plasmid (RHS4743 from Open 

Biosystem) were used. HCT-116 cells were plated in 6-well plates at 2 X 105 cells per 

well and infected with viral supernatants in the presence o f 4 pg/ml o f Polybrene (Sigma) 

for 4 hours. The infected cells were selected with 2 mM of puromycin and induced with 1 

ug/ml of Doxycycline for 4 days before harvesting for Western blot analysis.

Murine V6.5 ES cells were cultured under mouse ES complete medium

(Dulbecco’s modified Eagle medium supplemented with 15% fetal bovine serum
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(Hyclone), 1000 U/ml leukemia inhibitory factor (Millipore), nonessential amino acids, L- 

glutamine, Penicillin/Streptomycin and |3-mercaptoethanol) on irradiated mouse embryonic 

fibroblasts (MEFs). For the ELL2, ELL3, Smcla, and Smc3 knockdown analysis, shRNA 

plasmid targeting the mouse ELL2 mRNA (TRCN0000188411 from Open Biosystem), 

ELL3 mRNA (RMM4534-NM_145973), mSmcla (RMM4534-NM_019710 ), and mSmc3 

(RMM4534-NM_007790), and a non-targeting control plasmid (SHC002 from Sigma) 

were used. The lentiviral particles were resuspended in 125 ul of DMEM. For lentiviral 

infection of V6.5 cells, 4x105 cells were seeded in ES complete media and directly 

infected with 20 pi lentiviral particles in the presence of 8pg/ml of Polybrene (Sigma). 24 

hours after infection, the ES cells were subjected to selection with 2 ug/ml o f puromycin 

for an additional 48 hours.

2.5.Flag purification, MudPIT analysis, and size-exclusion chromatography 

Nuclear extracts were prepared and subjected to anti-Flag agarose immunoaffinity 

chromatography. Trichloroacetic acid-precipitated protein mixtures from purifications 

were digested with endoproteinase Lys-C and trypsin (Roche) as previously described. 

Peptide mixtures were loaded onto triphasic 100-mm fused silica microcapillary columns 

as described previously. Loaded microcapillary columns were placed in-line with a

Quaternary Agilent 1100 series high-pressure liquid chromatography pump and a Deca-XP\

ion trap mass spectrometer (Thermo Fisher) equipped with a nano-LC electrospray 

ionization source. Fully automated multidimensional protein identification technology 

(MudPIT) runs were carried out on the electrosprayed peptides. Tandem mass spectra were 

interpreted by using SEQUEST against a database containing Homo sapiens protein 

sequences downloaded from the National Center for Biotechnology Information. In 

addition to estimate false discovery rates, each sequence was randomized (keeping the
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same amino acid composition and length), and the resulting “shuffled” sequences were 

added to the “normal” human database and searched at the same time. Peptide/spectrum 

matches were sorted and selected using DTASelect, keeping false discovery rates at 2% or 

less, and peptide hits from multiple runs were compared using CONTRAST. To estimate 

protein levels, spectral counts o f nonredundant proteins were normalized by using the in- 

house-developed script NSAF7.

For the size exclusion analysis, the eluate from the Flag purification o f AFF2, 

AFF3, and CDK9 or nuclear extracts was individually subjected to a Superose 6 HR size- 

exclusion chromatography column (GE Healthcare) containing size-exclusion buffer (40 

mM HEPES [PH 7.5], 350 mM NaCl, 10% glycerol and 0.1% Tween-20). The fractions 

were analyzed by silver-staining, Western blotting, and MudPIT.

2.6. Immunoprecipitations and kinase assays

Approximately 107 cells for each assay were collected, washed with phosphate- 

buffered saline once, and lysed in high-salt lysis buffer (20 mM HEPES [pH 7.4], 10% 

glycerol, 0.35 M NaCl, 1 mM MgC12, 0.5% Triton X-100, 1 mM dithiothreitol (DTT)) 

containing proteinase inhibitors (Sigma). After incubation at 4°C for 30 min, the lysate was 

cleared twice by centrifugation at 4°C. The balance buffer (20 mM HEPES [pH 7.4], 1 

mM MgC12, 10 mM KC1) was added to the resulting supernatant to make the final NaCl 

concentration 300 mM. The lysate was then mixed with antibodies and protein A beads or 

with anti-Flag agarose (Sigma). After incubation at 4°C for 4 h, the beads were spun down 

and washed three times with wash buffer (10 mM HEPES [pH 7.4], 1 mM MgC12, 300 

mM NaCl, 10 mM KC1, 0.2% Triton X-100) before eluting by boiling in SDS gel sample 

buffer. Kinase assays done as previously described (Bitouin et al. 2007).
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2.7. Western Blots

Whole cell extracts from Hela, 293 T, or ES Cells were prepared by 0.5% NP-40 

buffer containing proteinase inhibitors (P8340, Sigma). Proteins were resolved by SDS- 

PAGE gel and developed with Western Lightning Plus-ECL from Perkin. Primary 

antibodies used: AFF4 (1:2000), AFF1 (1:2000), ELL (1:1000), 0-tubulin (Sigma-E7, 

1:10000), Smcla (A300-055A, Bethyl, 1:2000), Smc3 (ab9263, abeam, 1:2000), 8wgl6 

(Covance, 1:2000), H5 (Covance, 1:2000) andH14 (Covance, 1:2000). HRP-conjugated 

secondary antibodies from Sigma were used with a dilution o f 1:5000.

2.8.Alkaline Phosphatase Characterization

Alkaline phosphatase levels were measured with the Alkaline Phosphatase 

substrate Kit 1 (Vector Laboratories, SK-5100) by following the manufacturer’s 

instructions.

2.9.Chromosome Conformation Capture (3C) assay

The 3C assay was performed as previously described with minor modifications

(Hagege et al., 2007). Briefly, 1 x 107 cells were crosslinked with 2% of

paraformaldehyde at room temperature for 10 min, followed by glycine quenching and cell

lysis. The nuclei were digested with Hindlll overnight at 37 °C and then ligated with T4

DNA ligase at 16 °C for 4h. DNA was purified by phenol-chloroform extraction. Primer

efficiencies were monitored by serial dilution. Digestion efficiencies were examined by

primer pairs amplifying genomic regions spanning or devoid o f Hindlll sites. A bacterial

artificial chromosome (BAC) containing the entire Hoxa locus (RP23-20F21) was digested

with Hindlll and religated to prepare the control template. To compare results between

samples, the 3C signals were normalized to a control locus Ercc3.
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2.10. Electron microscopy

Sperm were fixed in 4% paraformaldehyde/0.01% glutaraldehyde (PBS) and 

embedded in 3% gelatin. Samples were infiltrated with 2.3 M sucrose at 4°C overnight, 

and then mounted on aluminium stubs, frozen and sectioned. Thin sections (5 0 -7 0  nm) 

were picked up in drops of 2.3M sucrose and collected on formvar and carbon coated mesh 

grids. After blocking in 1% BSA in PBS, the sections were incubated with primary 

antibodies and subsequently incubated with secondary antibody conjugated to 6 nm and/or 

12 nm gold particles (Jackson ImmunoResearch Laboratories, Inc). The sections were 

fixed in 1% glutaraldehyde and stained with ice cold 0.4% uranyl acetate/1 % methyl 

cellulose (pH 4) and dried. The samples were viewed in a FEI Tecnai transmission electron 

microscope operated at 80kv.

2.11. Affymetrix Microarray Analysis

Affymetrix Mouse 430 v2 arrays were analyzed in R, version 2.11.1, using the 

packages affy (Gautier et al., 2004), version 1.26.1, and limma (Smyth et al., 2005), 

version 3.4.3. Normalization was done using rma. Annotation information for the probes 

was taken from Ensembl 62.

2 .1 2 . RNAi, RT-PCR, and Total RNA-Seq analysis

AFF1, AFF2, AFF3, and AFF4 SMARTpools from Dharmacon were used for all 

siRNA experiments. RNA was extracted with RNeasy from Qiagen and RNA levels were 

measured with QiagenSYBR green 1-step RT-PCR reagent. cDNAs were synthesized 

with High Capacity RNA-to-cDNA Kit from Applied Biosystems. The expression levels 

were measured with iQ SYBR Green Supermix from Bio-Rad on MylQ (Bio-Rad).
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Relative expression to housekeeping genes was calculated assuming 2-fold primer 

efficiencies.

For total RNA-seq analyses, 2.5 pg of total RNA were depleted of ribosomal RNA 

with the Ribo-Zero kit from Epicentre. The ribosomal RNA-depleted samples were 

amplified with a TruSeq RNA Sample Prep Kit (Illumina) for the further next-generation 

sequencing.

Reads from two biological replicates for each sample were aligned to the mouse 

genome UCSC mm9 and to gene annotations from Ensembl 65 using TopElat v 1.4.1 

(Trapnell et al., 2009). Cuffdiff vl.3.0 was used to quantify Reads Per Kilobase of 

transcript per Million (RPKM) values, to perform differential expression analysis at FDR < 

0.05, and to assess statistically sufficient read coverage for each gene (Trapnell et al., 

2010). As indicated in the figure legends, some analyses used a subset of genes, which 

contained the Cuffdiff status “OK” to exclude genes which were not expressed or not 

reliably covered to perform meaningful analysis. RNA-seq reads were not extended for 

track figures and are shown at single base resolution.

2.13. ChlP-qPCR and ChlP-Seq Analyses

Chromatin immunoprecipitation (ChIP) was performed according to previously 

described protocols (Lin et al., 2010). Briefly, cells were cross-linked with 1% 

paraformaldehyde and incubated with gentle rotation for 10 min at room temperature; 

cross-linking was quenched by the addition of glycine. Fixed cells were sonicated in lysis 

buffer using Bioruptor (Diagenode). Sonicated lysates equivalent to 5x l06 cells were used 

for ChIP assay. ChIP products were analyzed by qPCR using SYBR green on MylQ
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thermal cycler (Bio-Rad). The comparative cycle threshold method was used to determine 

enrichment from replicate PCR reactions at E113 or Pol II-binding sites relative to the level 

of input. For ChlP-Seq, 5x10 cells were used per immunoprecipitation according to the 

previously described protocol (Lee et al., 2006). ChlP-Seq libraries were prepared with 

Illumina's ChlP-Seq sample prep kit.

Sequencing data was acquired through default Illumina pipeline using Casava v l .8. 

Reads were aligned to the mouse genome (UCSC mm9) using the Bowtie aligner vO.12.7 

allowing uniquely mapping reads only and allowing up to two mismatches (Langmead et 

al., 2009). Reads were extended to 150 bases toward the interior of the sequenced 

fragment and normalized to total reads aligned (reads per million; RPM). The average 

coverage in 25 bp bins was computed across the genome and rendered in the UCSC 

genome browser. External sequencing data was acquired from GEO as raw reads and 

aligned in the same way as internally sequenced samples (uniquely mapping reads only; 

two mismatches; 150 bp extension length). External data tracks were also binned in 25 bp 

intervals for track diagrams.

Peak detection was done using MACS vl.4.1 for all samples except H3K27me3 

and H3K36me3. For all samples analyzed by MACS in this study, associated control 

samples were used to determine statistical enrichment at a FDR < 0.05. The broad domain 

peak detector SICER was used to call enriched regions for H3K27me3 and H3K36me3 at 

the FDR < le-10, window size o f200, and gap size o f 600.

The high-confidence enriched regions were used to depict ChlP-Seq enrichment

profiles. Regions of interest are shown for each factor as a binary value o f enriched/not

enriched and rows were sorted by the shortest distance of an E113 peak to an annotated
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TSS. Regions spanning 50 kb on either side of feature indicated were binned into 200 bp 

windows. Regions showing 5 kb on either side of the feature indicated were binned into 

25 bp windows. Clustering analysis was performed using Cluster 3.0 (distance measure: 

Euclidean; linkage: Pairwise single-linkage; k-means:k=3) and visualized using Java 

TreeView. Canonical gene start sites were used for clustering analysis. Ordering for 

ChlP-seq enrichment profiles shown in Fig ID was done by first annotating the nearest 

gene to each E113 peak. All peak regions were ordered by the position relative to the 

nearest gene and then the minimum distance of either end of an E113 peak to either end of 

the nearest gene. E113 regions shown are oriented 5’ to 3’ corresponding to the orientation 

of the nearest gene. The ‘S’-curve profiles shown are ordered by the position of an E113 

peak region relative to its nearest gene (downstream, TSS/inside, upstream), and then 

sorted by the distance to the gene. Fig 2A was ordered based on the position and minimum 

distance of each E113 nearest gene to the nearest E113 peak. The enriched ChlP-Seq signals 

for E113, Pol II and the histone modifications are shown within 50 kb around the TSS of 

these genes. Each line represents a gene, and color indicates enrichment. Each cluster was 

individually sorted based on the position and minimum distance of E113 to the nearest 

TSS. Each cluster was ordered independently. Gene regions are shown 5’ to 3’.

Gene annotations and transcript start site information were from Ensembl 65.

Bound genes were called if an enriched region of the factor occurred within lkb o f the start 

site of any isoform of the gene. GO analysis was performed using the regions indicated in 

GREAT v2.0.1 or with the gene list indicated at DAVID (accessed April 4 2012).

Data generated for this study (GEO accession number GSE38148) includes ChlP-

seq data for E113, Pol II_NonT_shRNA and Pol II_E113_shRNA (the two Pol II samples

were used for Pol II gain/loss analysis). GSE38148 also includes RNA-seq data generated
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for this study: ES_NonT_shRNA, ES_E113_shRNA, and EB5_NonT_shRNA. Other data 

sets come from previously published studies. p300, H3K4mel and H3K27ac ChlP-seq 

data are from GEO accession number GSE24164 (Creyghton et al., 2010). Nipbl, Smcl, 

Smc3, M edl, Med 12 and Ctcf ChlP-seq data are from GEO accession number GSE22557 

(Kagey et al., 2010). ChlP-seq data for E112, Aff4, as well as the Pol II that was used in 

track diagrams and for clustering, comes from GEO accession number GSE30267 (Lin et 

al., 2011). Oct4 and H3K36me3 ChlP-seq data comes from GEO accession number 

GSE11724 (Marson et al., 2008). H3K4me3 and H3K27me3 ChlP-seq data are from GEO 

accession number GSE12241 (Mikkelsen et al., 2007). Ell ChlP-seq data are from GEO 

accession number GSE32120 (Smith et al., 201 lb).

2.14. Track Figures

Read coverage information in the track figures was created using R by extending 

the reads 150 bases toward the interior of the sequenced fragment and then by computing 

the number of extended reads in 25 bp windows as the count of extended reads per million 

reads sequenced (RPM; counts/million). The resulting coverage object was exported and 

visualized using the UCSC genome browser (Kent et al., 2002).

2.15. Histogram and Heatmap Figures

Histogram representations of ChlP-seq binding for Pol II and SEC-members were 

analyzed using R. First, all gene annotations and enriched peak regions were loaded. For 

each gene region, +/- 5 kb surrounding the transcription start site was calculated. Using 

50bp windows tiling the 10 kb regions, enriched peak regions were used to label a tile 

either enriched or not enriched. The resulting data structure contained 200 columns, the 

number of rows equals the number of annotated genes in the genome, and a one or zero in 

each position of the matrix indicating enrichment.
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The heatmap representation of the microarray expression values was also done in R 

using all probes that had at least a two-fold change in expression, up or down, at six hours 

o f induction versus no induction. For each time-point and replicate depicted (2, 4, and 6 

hour), expression values were converted to fold-changes relative to the 0 hour (wild-type) 

time-point. Log2 fold-changes were then binned into nine equally spaced groups from 

greater than 2 to less than -2, in 0.5 value increments. The three replicates for all of the 

three time-points were combined into a matrix, and then sorted based on the total sum of 

bin magnitudes.

2.16. Pol II occupancy Analysis

The Pol II ChlP-seq analysis comparing non-targeting shRNA and E113 shRNA 

treated samples were rank normalized as described (Rahl et al., 2010). Using 25bp bins 

tiling the mouse genome (UCSC mm9), we computed the total extended read (fragment) 

coverage for each bin, sorted the bins by greatest to least fragment coverage, and replaced 

the coverage value for both sample bins at the same rank as the mean value o f coverage 

between the samples (NonT shRNA and E113 shRNA). Thus, each bin in the genome was 

given a value of rank normalized counts. For all Pol II bound genes, the isoform’s start 

site with the maximum Pol II occupancy was selected as the TSS o f that gene. Metagene 

plots in Fig. 3D show 5kb on either side of the TSS as the average rank normalized counts 

for the Pol Il-bound genes within gene subset indicated. All transcription start sites for 

each nearest gene were computed.

56



Chapter 3. The Identification of the Super Elongation Complex 
(SEC) and its role in leukemogenesis

3.1. Introduction

The MLL translocation-based leukemia involves a large number o f fusion partners, 

many o f which share little sequence or known functional similarity. Recent studies 

showed that the nuclear subgroup proteins, AF4, AF9, AF10, and ENL may exist in the 

same complex and interact directly or indirectly with H3K79 methyltransferase, DOT1, 

leading to the suggestion that Dotl-mediated methylation o f H3K79 was central to 

leukemogenesis in patients with MLL translocations (Bitoun et al., 2007; Krivtsov et al.,

2008; Mueller et al., 2007; Mueller et al., 2009; Okada et al., 2005; Zhang et al., 2006). 

However, at this time, there is little evidence, and no mechanistic understanding, for how 

H3K79 methylation by Dotl could lead to gene activation.

The report o f ELL 1 being a Pol II elongation factor was the first biochemical and 

molecular characterization of any o f the MLL partners in leukemia, and to date, ELL1 is the 

best functionally characterized o f the MLL partners(Shilatifard et al., 1996). It has been 

postulated that perhaps other MLL partners may also function in the regulation o f transcription 

elongation as well (Shilatifard et al., 2003). Furthermore, ELL1, one notable translocation 

partner of MLL, which is a focus of my studies and has a demonstrated role in transcription 

elongation, was not reported to be a part of the D otll complexes (Mueller et al., 2007; Mueller 

et al., 2009). In this chapter, I will show the biochemical search for the identification of 

commonalities in the disparate MLL-fusions by epitope tagging some o f the most common 

MLL fusion partners.
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3.2.Results

3.2.1. AFF4 is a shared subunit of several common MLL fusion protein 
complexes.

In order to begin to understand how the misregulation of gene expression is caused 

by MLL-fusion proteins, I

, _ , Table 3-1. MudPIT analysis of MLL chimera purifications.
expressed some of the most

common MLL fusion 

proteins, MLL-ELL1, MLL-
Protein

MLL-
NT

dNSAF
AVG

MLL-
ELL1

dNSAF
AVG

MLL-
AFF1

dNSAF
AVG

MLL-
AF9

dNSAF
AVG

MLL-
ENL

dNSAF
AVG

ENL, MLL-AFF1, and MLL-
NT 0.050949 0 0 0 0

MLL-AF9, in 293 cells with MLL-
ELL1 0 0.084755 0 0 0

a Flag epitope tag under an MLL-
AFF1 0 0 0.012444 0 0

inducible promoter, each MLL-
AF9

0 0 0 0.051766 0

integrated at the same site
MLL-
ENL

0 0 0 0 0.06576

within the genome.
Menin 0.21546 0.088819 0.04613 0.053286 0.151354

LEDGF 0.000885 0.000533 0.000192 0.001115 0.001327

Expression and purification AFF4 0 0.001971 0.000831 0.000593 0.000127

D otlL 0 0 0 0.001484 0.000048

of the MLL-N-term inal

region most frequently found in MLL-fusion proteins resulted in the isolation of Menin, 

which is known to associate with the N-terminus of MLL and LEDGF, an interactor o f 

Menin (Table 2)(Yokoyama and Cleary, 2008). Following the biochemical isolation o f 

MLL-ELL1, MLL-AFF1, MLL-AF9, and MLL-ENL (Figure 3-1A), these purified 

complexes were subjected to Multidimensional Protein Identification Technology 

(MudPIT) to carry out proteomic analyses for each complex. While the MLL-AF9 and 

MLL-ENL identified a few o f the proteins previously described as ENL-associated 

proteins, including AFF1, AFF4, and Dotl (Mueller et al., 2007; Mueller et al., 2009), the 

MLL-ELL1 and MLL-AFF1 chimera complexes included AFF4, but notably, not Dotl 

(Table 2). In fact, AFF4, which itself is a rare translocation partner of MLL, is a shared
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subunit for all of the purified MLL chimeras (Table 2).

3 .2 .2 . AFF4 forms the Super Elongation Complex (SEC) with ELLs and 
P-TEFb.

Given the unexpected observation of finding this largely uncharacterized protein 

associating with the MLL chimeras, I, therefore, generated a cell line expressing Flag 

epitope-tagged AFF4 and identified associated proteins (Figure 3.1B-C). Surprisingly, all 

three ELL proteins were found in the isolated complexes. In turn, expressing and isolating 

Flag-tagged ELL1, ELL2, and ELL3 revealed AFF4 associating with each ELL (Figure 

3.1B-C). Furthermore, the ELL and AFF4-containing complexes also consist of additional 

MLL partners, AFF1, ENL, and AF9 (Figure 3.1C). Another subunit o f the AFF4 -  ELL1 

complex is the component of the Pol II C-terminal domain (CTD) kinase, P-TEFb, 

consisting o f Cdk9 with cyclin T l, T2a, or T2b (Figure 3-1C). I also detected the 

previously identified ELL-associated factors, EAFs (Simone et al., 2003; Simone et al., 

2001), in the AFF4, ELL2, and ELL3 complexes (Figure 3.1C). Since the purification of 

the ELL1 complexes were performed with ELL1 lacking the first 50 amino acids (missing 

in the MLL-ELL1 chimera and required for interactions with EAFs), I did not detect any of 

the EAFs in the ELL1 purifications. Given the fact that EAFs enhance the in vitro 

transcription elongation properties of ELLs (Kong et al., 2005), it is interesting that I also 

observe these factors with the AFF4-containing complexes.
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Figure 3.1. AFF4 is a shared subunit of several of the MLL chimeras and associates with known 

RNA polymerase II elongation factors.

(A) Flag-tagged MLL-ELL1, MLL-ENL, MLL-AFF1, and MLL-AF9 were purified using the FLAG- 

affinity purification method and analyzed by silver staining and mass spectrometry. Arrows indicate the 

position o f the Flag-tagged proteins. (B-C) Purification o f ELL 1, ELL2, ELL3, and AFF4 complexes. 

Arrow heads in (B) indicate the position of the Flag-tagged subunit. ELL1 and its paralogs, ELL2 and 

ELL3, were separately purified and demonstrated a similar set o f associated proteins as found in the AFF4 

purification. (C) AFF4 (dark red) was found in all of the Flag-ELL purifications indicating that it is a 

component o f a novel RNA polymerase II elongation complex. (D-F) Confirmation o f an interaction o f  

AFF4 with the MLL chimeras and components of the P-TEFb elongation factor by Flag and/or 

endogenous immunoprecipitations. Arrowheads show the position of the protein probed by Western 

analysis. (D) Flag immunoprecipitations of MLL chimeras demonstrate an association of AFF4 with all 

chimeras, but not with a Flag-tagged MLL-N-terminal domain common to all chimeras. (E) Western blot 

analyses o f ELL 1, ELL2, ELL3, AF9, ENL, and AFF4 immunoprecipitations confirm the observed 

interactions o f Cyclin T1 and CDK9 with these factors. (F) The endogenous association o f P-TEFb with 

AFF4 and ELL1. (G) Size exclusion chromatography o f HeLa nuclear extracts. Fractions corresponding 

to 1.5 MDa and 670 kDa are indicated with arrowheads and referred to as the Super Elongation Complex 

(SEC). The MudPIT analysis was done by the collaboration with Michael, Laurence, and Selene from the 

Proteomics Center.
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The observed interactions between ELL 1-3, AFF4, and the components of P-TEFb 

were also confirmed by Flag and endogenous co-immunoprecipitations (Figure 3.1 D-F).

In different preparations and with
Table 3-2. MudPIT analysis of ELL1-3 and AFF4

different tagged subunits, the ..00 ’ purifications.

relative amounts of some subunits 

in the isolated complexes can vary 

(e.g. see ELL1 and AFF4 levels in 

Figure 3.1 D-E). Therefore, it is 

important to tag and purify 

multiple subunits to get a clear 

picture of the complexes in vivo.

Indeed, nrevious interpretations' ± r

that Dotl, AFF1, and AFF4 exist 

in a single complex were primarily 

based on these proteins co- 

purifying with a single subunit,

ENL (Mueller et al., 2007; Mueller 

et al., 2009). I also find that ENL 

associates with AFF1, AFF4, and Dotl, but importantly, I find that Dotl is not associated 

with AFF1, AFF4, or the ELL complexes indicating that ENL is part o f at least two 

distinct complexes (Table 3-2).

To further characterize the AFF4-containing complexes, I analyzed nuclear extracts

by their application to size exclusion chromatography, followed by SDS-PAGE and

Western analysis o f AFF4 and the components of the P-TEFb elongation complex (Figure
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ELL1
dNS
AF

AVG

ELL2
dNSAF
AVG

ELL3
dNSAF
AVG

AFF4
dNSAF
AVG

ELL1 0.185
148 0.000385 0.003368 0.006379

ELL2 0.000
542 0.054255 0 0.004369

ELL3 0 0 0.111228 0.006603

AFF4 0.004
663 0.006674 0.015106 0.03917

AFF1 0.001
422 0.001296 0.003659 0.00077

AF9 0.001
334 0.00052 0.002346 0.005846

ENL 0.001
637 0.000988 0.003198 0.011151

CDK9 0.005
979 0.002635 0.007835 0.029597

CCNT1 0.001
24 0.000513 0.001316 0.021903

Cyclin T 2a 0.000
261 0.000071 0.001236 0.003648

Cyclin T 2b 0.000
237 0.000065 0.001122 0.003313

EAF1 0 0.072906 0.02451 0.000652

EAF2 0 0.002226 0.002792 0



3.1G). These studies clearly indicate that a small portion of P-TEFb co-purifies with the 

AFF4 large complex at about 1.5 MDa (Figure 3.1G, fraction 11-13), which I call the 

Super Elongation Complex (SEC) due to the presence of multiple Pol II elongation factors 

(Figure 3.2). Overall, these studies reveal that many of the MLL partners found in 

leukemia, which have very little sequence or seemingly functional similarities, are found in 

large macromolecular complexes associated with the Pol II elongation factors ELL and P- 

TEFb.

(EAF1/2

i ELL1/2/3
 i  AF9/ENL \

-
/  ■ x ...• , AFF4M , )( M B *

Super Elongation Complex 
(SEC)

Figure 3.2. Schematic representation of the Super Elongation Complex (SEC).

The SEC is a P-TEFb-containing complex that contains various combinations o f four types of 

proteins: the ELL1-3; EAF1-2; AFF1 and AFF4; and AF9 and ENL. P-TEFb itself consists o f 

Cdk9 and CycTl/2 and is best characterized as a RNA Pol II C-terminal domain (CTD) kinase.

3 .2 .3 . SEC is one o f the most active P-TEFb-containing complexes.

P-TEFb is a CTD kinase involved in the regulation of transcription elongation by

Pol II and can exist in both active and inactive forms (Peterlin and Price, 2006). To

determine whether the purified ELL and AFF4-containing complexes contain active P-

TEFb, I tested the kinase activity of these purified complexes towards the GST-Pol IIC -

terminal domain fusion protein (GST-CTD). The ELL1, ELL2, ELL3, and AFF4

complexes were assayed in the presence and/or absence of ATP and the GST-CTD (Figure

3.3A). The resulting products were subjected to SDS-PAGE followed by Western analysis

with antibodies specific to Pol II CTD either phosphorylated on serine 2 (pS2) or serine 5

(pS5) (Figure 3.3A). I also tested the autophosphorylation of CDK9 and the possible
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phosphorylation of AFF4 by P-TEFb (Figure 3.3A). From these studies, it appears that the 

purified ELL and AFF4-containing complexes are active as a Pol II CTD kinase. These 

results also suggest that AFF4 is phosphorylated by P-TEFb (Figure 3.3A), a phenomenon 

observed previously for AFF1 (Bitoun et al., 2007). Sequence alignment further 

demonstrates similarly repeated Serine-Proline (SP) motifs among AF4 family proteins 

(Figure 3.3B). Similar CTD kinase activities are found in ELL1 and MLL-fusion protein 

complexes (Figure 3.3C).
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Figure 3.3. SEC can phosphorylate Pol II CTD in vitro.

(A) Pol II C-terminal domain (CTD) Kinase assays with the ELL1, ELL2, ELL3, and AFF4-containing 

complexes were performed with GST-Pol II C-terminal domain fusion protein (GST-CTD). ELL1, ELL2, 

ELL3, or AFF4 complexes were assayed in the presence of ATP and/or the GST-CTD and subjected to 

Western blot analyses with antibodies specific to Pol II CTD phosphoserine 2 (pS2), phosphoserine 5 

(pS5), CDK9, and AFF4. Consistent with previous observations, serine 2 and serine 5 o f Pol II CTD are 

good substrates for the P-TEFb complexes in vitro. CDK9, itself, is also known to be auto- 

phosphorylated, resulting in a shift in gel migration in SDS- PAGE (indicated by star, while an arrow 

indicates the faster migrating unphosphorylated form). AFF4 shows a similar gel mobility shift as CDK9, 

also indicated by an asterisk, suggesting that it is a substrate for P-TEFb as well. See Figure SI for 

additional kinase assays. (B) Sequence alignment o f a potential site for multiple phosphorylation o f  

AFF4-related proteins bearing SP motifs favored by P-TEFb. (C) MLL-NT, lacking a fusion partner, 

MLL-ELL1 and MLL-ENL were incubated with ATP and in the presence or absence of GST-CTD and 

probed for CTD phosphorylation on Serine 2.
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Multiple P-TEFb-containing complexes exist in mammals, but they function 

differently according to their regulatory subunits, such as HEXIM1/7SK, BRD4, and AFF4 

(Luo et al., 2012b). In order to compare the kinase activities o f these different P-TEFb- 

containing complexes, we fractionated the affinity-purified CDK9 complexes by size- 

exclusion chromatography (Figure 3.4A) and analyzed the fractions by western blot and 

MudPIT. Each fraction was first titrated by Western blotting to determine the level o f the 

CDK9 protein to ensure that similar amounts of CDK9 were used to perform Pol II CTD 

kinase assays (Figure 3.4A). The reaction mixtures were then subjected to SDS-PAGE 

followed by autoradiography. Fractions 11-13, which contain SEC, (Figure 3.4A), show 

the strongest kinase activities in vitro towards Pol II CTD (Figure 3.4B, please compare 

activities in fractions 11-13 to fractions 16-18). Overall, although a small amount o f the P- 

TEFb is found in these large SEC-containing complexes, the majority o f the CTD kinase 

activity of P-TEFb is associated in these fractions suggesting that the most active forms of 

P-TEFb are found within the SEC family.
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Figure 3.4. The kinase activities of different P-TEFb-containing complexes.

(A) Purification and size exclusion chromatography of P-TEFb complexes. P-TEFb complexes were isolated 

from Flag-CDK9 expressing HEK293T cells by Flag purification. Size exclusion chromatography was used 

to separate different P-TEFb complexes including SEC (peak from Fraction 10 to 14); BRD4/P-TEFb 

complex (peak in Fraction 14 and 15); and the HEXIMl/7SK/P-TEFb complex (peak from Fraction 15 to 

19). The fractions were analyzed by silver staining and western blot. (B) Pol II CTD kinase activity analyses 

of the fractionated P-TEFb complexes. The amount of each fraction used was adjusted to ensure that similar 

amounts o f CDK9 were present in each assay with y-32P-ATP and recombinant Pol II CTD. The reaction 

was then subjected to SDS-PAGE and autoradiography to assess the phosphorylated Pol II levels in each 

reaction. This figure was done by the collaboration with Dr. Zhuojuan Luo and Nima.

3 .2 .4 . AFF4 is a central component o f SEC.

To determine which of the components of the AFF4 complex are required for

complex stability and association with the P-TEFb kinase, I reduced the levels of several

components of the complex using RNAi (Figure 3.5A-B). I observed that the reduction of

the AFF4 homologue AFF1 does not alter ELL1 and P-TEFb stability in these cells (Figure

3.5B). However, the loss o f AFF4 results in the instability of ELL1 with no significant

effect on the stability of the P-TEFb components (Figure 3.5B). My studies so far indicate
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that the AFF4-containing complex associates with a small portion of the P-TEFb 

components either when the AFF4 complex is purified (Figure 3.1B-F), or when nuclear 

extracts were analyzed by size exclusion chromatography (Figure 3.1G). I, therefore, 

tested for the association of P-TEFb with the AFF4/ELL complex in the absence of AFF4 

(Figure 3.5C). Nuclear extracts from cells treated with AFF4 RNAi were subjected to size 

exclusion chromatography and the fractions were analyzed by SDS-PAGE, followed by 

Western analyses using antibodies specific to Pol II, CDK9, Cyclin T l, and Hexim 1 

(Figure 3.5C). This biochemical analysis demonstrated that reduction in AFF4 levels 

results in the loss of association of CDK9 and Cyclin T l with the large AFF4-containing 

complex (Figure 3.5C fractions 11-13), but not the Hexim 1-containing P-TEFb complexes 

(Figure 3.5C) (Peterlin and Price, 2006). Together, these results demonstrate that AFF4 is 

a central component of the P-TEFb/ELL complexes.
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Figure 3.5. AFF4 is required for the assembly of SEC-containing ELLs, P-TEFb, and MLL partners.

(A-B) AFF4, and not AFF1, is required for stability o f the large elongation complex containing ELL1, P- 

TEFb, and MLL-partners in HeLa cells. Western blot analysis of ELL1, CDK9, and Cyclin T l was 

performed in the presence and absence o f AFF1 or AFF4. Nuclear extracts from the siRNA-mediated for 

AFF4 or AFF1 were analyzed by SDS-PAGE and Western blot analysis. Arrows indicate increasing protein 

loads. Bulk protein levels o f ELL1 are reduced in AFF4, but not AFF1 knockdown in these cells. Bulk 

protein levels o f P-TEFb were not affected by AFF1 or AFF4 RNAi. Global H3K4 and H3K79 methylation 

levels were not affected by AFF4 knockdown. Tubulin serves as a loading control. (C) Gel filtration 

analyses o f nuclear extracts from control and AFF4-directed siRNA treated cells. Larger P-TEFb-containing 

complexes (fractions 10-14 also seen in Figure 1G and indicated by underlining in red) are reduced in AFF4 

knockdown cells, indicating that the presence of AFF4 is required for the assembly o f this complex.

3 .2 .5 . SEC functions as a transcriptional elongation complex.

The first in vivo characterization of ELL as a transcription elongation factor was in 

Drosophila, where there is only one ELL-like protein, dELL (Eissenberg et al., 2002; 

Gerber et al., 2001). Indeed, the first hint of a connection between P-TEFb and ELL was 

the RNAi-mediated knockdown of Cdk9 and the loss o f dELL from chromatin (Eissenberg 

et al., 2007). Additionally, although it took years to identify the affected genes, dELL and 

the sole Drosophila homologue of AFF4 (Figure 3.6) were part of a small set o f genes 

isolated in a screen for Ras signaling components (Eissenberg et al., 2002; Neufeld et al.,
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1998; Su et al., 2001; Tang et al., 2001; Wittwer et al., 2001). Based on our new findings, 

I was interested to extend these intriguing links between ELL, P-TEFb, and AFF4 in 

Drosophila.
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Figure 3.6. Alignment of the AFF1 and AFF4 proteins with Drosophila AFF4 (dAFF4).

(A) AF9 and ENL binding region of AFF1/AFF4 (Erfurth et al., 2004). (B) AFF1 C-terminal homology 

domain alignment of AFF1 and AFF4 from several vertebrates with the sole Drosophila member of this 

family, dAFF4, encoded by the lilli gene (Su et al., 2001; Tang et al., 2001; Wittwer et al., 2001). The blue 

boxed region shows the SP rich region from Fig. 2B that contains potential phosphorylation sites for P- 

TEFb.

Since many Drosophila Pol II elongation factors have been shown to associate with 

elongating Pol II on chromatin and relocalize to heat shock loci upon stress (Ardehali et 

al., 2009; Eissenberg et al., 2002; Gerber et al., 2001; Gerber et al., 2005a; Gerber et al., 

2005b; Smith et al., 2008; Tenney et al., 2006), we generated polyclonal sera to dAFF4 

and performed colocalization studies o f dAFF4 with dELL and the elongating form o f Pol
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II. dELL and the elongating form o f Pol II colocalize extensively with dAFF4 (Figure 

3.6A-B), not seen with preimmune sera (data not shown). The Hsp70 loci in Drosophila 

have been used as a model system for studying transcription elongation. The Hsp70 loci 

contain poised polymerase, which upon heat shock is phosphorylated at Serine 2 in the 

CTD repeats by P-TEFb, allowing productive transcription (Boehm et al., 2003). We 

assayed the presence of dAFF4 at Hsp70 after heat shock and observe that indeed dAFF4 

colocalizes with dELL and the elongating form of Pol II on polytene chromosomes at 

major heat shock loci, including the Hsp70 genes at 87A and 87C (Figure 3.7C-E). 

Chromatin immunoprecipitation of dAFF4 shows that it becomes associated with Hsp70 

upon heat shock, and is present throughout the transcribed unit (Figure 3.7F), similar to 

what was previously observed for P-TEFb (Boehm et al., 2003).
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Figure 3.7. The Drosophila ortholog of AFF4 colocalizes with ELL and the elongating form of Pol II 

on Drosophila polytene chromosomes.

(A and B) Polytene chromosome preparations from 3rd instar larval salivary glands were probed with 

antibodies to dELL (A, red) or the H5 monoclonal antibody recognizing the Ser-2 phosphorylated (P-Ser2), 

elongating form of Pol II (B, red). Both antibodies show substantial colocalization with dAFF4 (A and B, 

green). Chromosomes were counterstained with DAPI (A and B, blue). (C and D) Polytene chromosomes 

were prepared from heat shocked 3rd instar larvae and stained as in (A and B). Phase contrast images show 

positions of the 87 A, 87C, and 93D major heat shock loci. dAFF4 is recruited along with dELL at these loci 

after heat shock, associated with the P-Ser2 form of RNA Pol II. See Figure S4 for additional images. (E) 

Chromatin immunoprecipitation o f dAFF4 and RNA Pol II large subunit (Rpbl) at Hsp70 before and after 

10 minutes o f heat shock at 37° C. While Rpbl is present at Hsp70 prior to heat shock, dAFF4 can only be 

detected at Hsp70 after heat shock, where it is found throughout the transcription unit along with Pol II. 

Hsp70 primers have been previously described (Boehm et al., 2003). Error bars represent standard 

deviations. This figure was performed by Dr. Smith Edwin.

Using chromatin immunoprecipitation, human AFF4 levels were also measured 

across the HSP70 gene before and after heat shock in HeLa cells (Figure 3.8A and 3.5B). 

Upon heat shock, AFF4 is found at the HSP70 promoter and throughout the transcribed
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region along with RNA Pol II (Figure 3.8B-D). Interestingly, ELL2 is also recruited to the 

5’ end of HSP70, but are not significantly enriched as far into the body of the gene as 

AFF4 (Figure 3.8E). This could reflect different sensitivities of the antibodies employed 

or conceivably to differential usage o f the elongation factors in this complex at distinct 

steps o f transcription elongation.

The effect of AFF4 recruitment to HSP70 was assessed by siRNA-mediated 

knockdown o f AFF4. Knockdown o f AFF4 leads to a defective heat shock response, 

showing reduced induction of HSP70 compared to control siRNA-treated cells (Figure 

3.8F). While HSP70 is used as a model gene for studying transcription elongation, I 

recognize that other factors, not known to directly stimulate transcription elongation, also 

travel with the polymerase, such as components o f the exosome (Andrulis et al., 2002). 

However, based upon the proven in vitro stimulation of transcription elongation by ELL1, 

the requirement for AFF4 in the stability of the P-TEFb-AFF4-ELL complex, the 

association of AFF4 with HSP70 upon heat shock, and its requirement for the full 

expression of HSP70,1 propose that AFF4 is a central component of the SEC complex.
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Figure 3.8. AFF4 is required for proper HSP70 induction.

HeLa cells were heat shocked by incubation at 42° C for 2 hours. Non-heat shocked and heat-shocked cells 

were used in chromatin immunoprecipitation-quantitative PCR (ChlP-qPCR) assays with AFF4, ELL2, 

general Pol II, and the H14 monoclonal antibody recognizing the Serine 5 phosphorylated form o f Pol II (B- 

F). (A) Position or primer pairs used for QPCR along the HSP70 gene are indicated. (B-E) AFF4 is 

recruited to the HSP70 gene after heat shock along with ELL2 and RNA polymerase II. (F) Knockdown o f  

AFF4 in HeLa cells by RNAi inhibits HSP70 induction. Control and AFF4 siRNA-treated cells were heat 

shocked as in (A) and HSP70 mRNA levels were assessed by quantitative RT-PCR and normalized to 

GAPDH mRNA levels. Non-heat shock control and AFF4 siRNA-treated cells are shown for comparison. 

Expression levels were measured by quantitative RT-PCR and normalized to 18S rRNA. Error bars 

represent standard deviations.

3 .2 .6 . AFF4 is required for the proper expression o f MLL chimera target 
genes.

To begin to investigate the role of AFF4 as a common component o f complexes 

formed by MLL chimeras, I assessed the recruitment of AFF4 to HOXA9 and HOXA10 

loci in the MV4-11 cell line from a patient with a MLL-AFF1 translocation. As with many 

MLL translocations, HOXA9 and HOXA10 are up-regulated in these cells (Guenther et al.,

2008). Indeed, chromatin immunoprecipitation with antibodies corresponding to the C-
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terminal portion of AFF1, which is contained in this MLL chimera, shows recruitment to 

HOXA9 in the MV4-11 cells (Figure 3.9A), as well as in another MLL-AFF1-rearranged 

leukemia cell line, SEM, but not in an unrelated leukemia cell line, REH (Figure 3.9B). 

Interestingly, AFF4 is also recruited to HOXA9 and HOXAIO in the MV4-11 and SEM 

cells, despite the fact that it is the related AFF1 gene that is involved in the MLL 

translocation in these cells (Figure 3.9A and 3.9B). The antibody to AFF4 was raised 

against an amino-terminal portion not found in MLL chimeras, ruling out cross-reaction 

with the related AFF1 protein that is part of the MLL chimera. Besides AFF4, other 

components of SEC, such as CDK9 and ELL2, are also found at HOXA9 and HOXAIO loci 

in SEM, but not REH cells (Figure 3.9C and 3.9D).
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Figure 3.9. AFF4/SEC is recruited to MLL chimera target genes in leukemic cells.

Recruitment of SEC to genes induced by the MLL-AFF1 chimera in MV4-11 and SEM cells, but not the 

control cell line REH bearing wild-type MLL. (A-B) Antibodies to the C-terminal domain o f AFF1 found in 

the MLL chimera and antibodies raised against the N-terminal domain of AFF4 were used in ChlP-qPCR 

assays at HOXA9 and HOXAIO loci, known targets o f the MLL chimera found in human leukemia. As 

expected AFF1, shows recruitment to HOXA9 and HOXAIO in MV4-11 and SEM. AFF4 is also recruited 

to HOXA9 and HOXAIO, consistent with its co-purification with the MLL-AFF1 chimera in Figure 1A and 

Table 1. (C-D) Other components of SEC, including CDK9 and ELL2, are also found at HOXA9 and 

HOXAIO genes in MLL-rearranged SEM cells. The beta globin gene (HEMO), which is not expressed in 

MV4-11, SEM, and REH cells, is used as a negative control in (A-D).

To assess the functional significance o f AFF4 recruitment to MLL-AFF1 target 

genes, I performed lentiviral delivery o f AFF4 shRNA to the MV4-11 cells (Figure 

3.10A). Significant reductions of HOXA9 and HOXAIO are observed upon knockdown of 

AFF4 in these cells (Figure 3.1 OB). These findings lend support to our hypothesis that 

AFF4, a very rare translocation partner of MLL, is nonetheless a component o f many 

MLL-fusion protein complexes and participates in leukemogenesis.
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Figure 3.10. AFF4 is required for the proper expression of MLL chimera target genes in leukemic 

cells.

(A) Knockdown of AFF4 in MV4-11 by retroviral introduction o f a shRNA targeting AFF4. (B)

Reduction o f HOXA9 and HOXAIO expression in MV4-11 cells after AFF4 knockdown. GFP shRNA is 

used as a non-targeting control shRNA. Expression levels were measured by quantitative RT-PCR and 

normalized to 18S rRNA. Error bars represent standard deviations.

3.2.7. AFF4 is also required for the proper MYC gene expression in 
leukemia cells.

Recent studies have shown that MYC plays an important role in the self-renewal of 

leukemia stem cells and that the anti-leukemic effect of the BRD4 inhibitor, JQ1, are due 

to the subsequent reduction of MYC expression (Dawson et al., 2011; Delmore et al., 2011; 

Zuber et al., 2011). However, this effect was only seen in AML cells, with ALL cells 

being insensitive to JQ1 treatment (Zuber et al., 2011). It has also been reported that 

MED26, which is involved in the recruitment of SEC, regulates MYC gene expression in 

293 cells (Takahashi et al., 2011). To investigate the requirement of AFF4 in MYC  gene 

expression in leukemic cell lines, we performed AFF4 ChIP in both AML and ALL cell 

lines. Interestingly, as shown in Figure 3.11 A, AFF4 localizes at the MYC locus in the cell 

lines tested. Knockdown of AFF4 further indicates that AFF4 is required for MYC  gene 

expression in leukemic cells (Figure 3.1 IB and 3.11C). Taken together, the above results 

suggest that as a direct upstream regulator o f the MYC  gene, AFF4 could be a novel drug 

target for leukemia, functioning in a broader spectrum than BRD4 inhibitors.
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Figure 3.11. MFC expression in leukemia cells is regulated by AFF4.

(A) AFF4 is recruited to the MYC gene in different leukemia cell lines. ChIP of AFF4 in ALL cell 

lines (Jurkat and Kopn-8) and AML cell lines (EOL-1 and ML-2) demonstrates the recruitment of  

AFF4 to the MYC gene in these cell lines. (B) RT-qPCR analysis showing the efficiency o f AFF4 

knockdown in leukemia cell lines SEM (human ALL with MLL-AFF1 translocation) and ML-2 

(human AML cells). (C) RT-qPCR analysis o f MYC mRNA levels upon AFF4 knockdown in leukemic 

cell lines. SEM and ML-2 were transfected with NonT or AFF4 shRNA. 72 hours after transfection 

and puromycin selection, total RNA was extracted and MYC mRNA levels were assessed by RT- 

qPCR. Expression is relative to GAPDH. Error bars represent standard deviations. This figure was 

done by the collaboration with Dr. Zhuojuan Luo.

3.3.Discussion

Previous studies have provided evidence for links among different MLL 

translocation partners. ENL, AF9, and AF10 have been linked to the histone 

methyltransferase Dotl; and it was suggested that a common mechanism of MLL
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translocation-based leukemia was through H3K79 methylation by Dotl (Bitoun et al., 

2007; Krivtsov et al., 2008; Mueller et al., 2007; Mueller et al., 2009; Okada et al., 2005). 

However, the most common translocation partner of MLL is AFF1, which my present 

studies show does not associate with D otl. Other studies suggesting a physical interaction 

between Dotl and AFF1 were based on the isolation o f these two proteins in ENL 

immunoprecipitates and through building a network of 2 -hybrid and other interactions.

My studies, (Lin et al., 2010) together with our recent purification of the DOT1L- 

containing complex (Mohan et al., 2010a), indicate that ENL participates in two distinct 

complexes, one with Dotl and one within the SEC. MLL-AFF1 does not physically 

associate with Dotl, so a role for Dotl at genes up-regulated in MLL-AFF1 leukemias may 

be subsequent to gene activation by this MLL chimera. Our lab has recently shown that 

Dotl-mediated H3K79 methylation is linked to cell cycle control in yeast (Schulze et al.,

2009) and that methylation by Dotl could also have some roles in transcriptional 

enhancement in leukemogenesis. In contrast, MLL-AFF1 co-purified the SEC complex 

containing ELL1 and P-TEFb, two proven transcription elongation factors in vitro and in 

vivo, each with demonstrated abilities to activate transcription through transcription 

elongation. An important area for future investigation is to define the relative 

contributions of these two types of complexes to leukemogenesis.

O f the most common MLL partners in leukemia, AFF1, AF9, ENL, and ELL1 were

purified as part of the SEC, as was AFF4, a rare MLL partner (Lin et al., 2010). The SEC

also contains three other well-known elongation factors: ELL2, ELL3, and the positive

transcription elongation factor b (P-TEFb); and the ELL-associated factors, EAF1 and

EAF2 (Lin et al., 2010). The three ELL family proteins share a conserved C-terminal

occludin domain, which is required for the MLL-ELL chimeras to induce leukemia

(DiMartino et al., 2000). The co-purification of ELL1, ELL2, ELL3, AFF1, AFF4, and P-
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TEFb from the SEC and the evidence linking them to the control of the transcription 

elongation checkpoint (TEC) suggests that MLL chimeras (like MLL-AFF1) activate 

MLL target gene expression through the SEC, perhaps by bypassing normal TEC steps 

(Lin et al., 2010; Mohan et al., 2010b; Smith et al., 201 la) (Figure 3.12). Indeed, 

knockdown of the central SEC component AFF4 in MLL-AFF1 leukemia cells causes a 

reduction in the expression o f HOXA9, a key mediator o f leukemogenesis (Lin et al., 

2010).

S E C  a t I f  o x  a9  a n d  I f  o x  a lO  th rou gh  th e  M L L -ch im eras

Figure 3.12. Model for SEC in MLL-rearranged leukemia.

In normal hematopoiesis, genes such as HOXA9 and HOXAIO are under strict transcriptional control. 

Translocation of the SEC subunits, such as ENL, ELL, and AFF1 to the MLL N-terminus (MLLn) 

localizes SEC to these genes and also stabilizes MLL-SEC locally, leading to release o f the paused Pol II 

on these genes without appropriate checkpoints.

One o f the direct target genes of SEC identified in the present study is MYC, which

is a master regulator of cell cycle and proliferation, and is overexpressed in many human

cancers, thereby implicating SEC in the control of cell proliferation (Eilers and Eisenman,

2008; Meyer and Penn, 2008). MYC is one of a few well-characterized genes which are

mainly regulated at the level of transcription elongation by promoter- proximal paused Pol

II (Krumm et al., 1993; Spencer and Groudine, 1990). Recent findings have indicated that

BRD4 is also a critical player in the maintenance of AML through regulating the

expression of the MYC gene. Knockdown of BRD4 by a specific shRNA or
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pharmacological inhibition of the BET bromodomain by the small molecule JQ1 leads to 

selective suppression of the MFC-regulated transcriptional network, prompting cell cycle 

arrest and apoptosis in AML cell lines, but not ALL cell lines (Dawson et al., 2011; 

Delmore et al., 2011; Zuber et al., 2011). The proven association o f SEC components with 

leukemogenesis, together with our finding that SEC is required for the expression of MYC 

in both AML and ALL leukemia cells, suggests that AFF4/SEC is a potential therapeutic 

target for the treatment o f leukemia or other types of cancers associated with MYC 

overexpression. However, it needs to be further investigated that if  the depletion of AFF4 

or SEC will affect the transformation activity o f MLL chimera proteins in vivo.

Both AFF1 and AFF4 copurify with the ELL proteins and another AFF protein, 

AFF3, which is also a rare translocation partner with MLL (von Bergh et al., 2002). The 

related AFF2 gene {fragile X  mental retardation 2, FMR2) is silenced in a form o f mental 

retardation (Knight et al., 1993), thus implicating all members of this family in human 

diseases (Bitoun and Davies, 2009). P-TEFb itself is involved in a number of 

malignancies and developmental diseases (Romano and Giordano, 2008), and it will be 

intriguing to determine which of these processes involve SEC or SEC-like complexes (Luo 

et al., 2 0 1 2 a).

Collectively, the results of this study identify AFF4 as a component of the Pol II 

elongation complexes consisting of ELLs, P-TEFb, and several o f the common MLL 

fusion partners. These findings could prove critical for understanding the etiology o f MLL 

translocation-based leukemias and for identifying additional targets for the treatment o f the 

hematological malignancies resulting from these translocations, as well as for 

understanding fundamental aspects of transcription elongation control in development.
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Chapter 4. P-TEFb within SEC Regulates Rapid Transcriptional 
Activation in the Presence or Absence of Paused Pol II

4.1. Introduction

Transcriptional regulation by RNA polymerase II (Pol II) is a multi-faceted process 

requiring the concerted action of a large number of factors for the steadfast synthesis of 

full-length messenger RNA (Boettiger and Levine, 2009; Bres et al., 2008; Shilatifard et 

al., 2003; Sims et al., 2004; Workman and Kingston, 1998). Transcription by Pol II is 

divided into four stages: initiation, promoter clearance, elongation, and termination. The 

initiation stage of transcription requires nucleosomal remodeling around the enhancer and 

promoter regions followed by the recognition o f the promoter elements by the basal 

transcription machinery and Pol II. Once the basal factors and Pol II are recruited to the 

promoter elements, the catalysis o f the first phosphodiester bond marks the initiation of 

transcription (Shilatifard, 1998; Sims et al., 2004). For many years, it was considered that 

transcription initiation was the rate-limiting step to the transcription process as a whole. 

However, a large number of studies demonstrated that the elongation stage o f transcription 

catalyzed by a number o f factors is essential for productive transcription (Levine, 2011; 

Shilatifard et al., 2003; Sims et al., 2004). In support o f a vital role for the elongation stage 

of transcription in development, it has been demonstrated that the perturbation o f this stage 

of transcription or the factors involved in this process results in the pathogenesis o f human 

diseases including cancer (Mohan et al., 2010b; Shilatifard et al., 2003).

In addition to the control of the productive elongation stage o f transcription by Pol 

II elongation factors, many developmentally regulated genes are marked by stalled or 

paused Pol II at their promoter-proximal regions (Boettiger and Levine, 2009; Core et al.,
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2008; Muse et al., 2007; Rahl et al., 2010; Zeitlinger et al., 2007). Such polymerases have 

already been initiated and are awaiting proper developmental signals to enter the 

processive stage of transcription elongation (Rougvie and Lis, 1988). Some studies have 

suggested that marking such developmentally regulated genes by paused Pol II could 

enhance their ability to be induced rapidly in a robust manner (Nechaev and Adelman, 

2008). Other studies, however, have proposed that the presence of paused Pol II at 

developmentally regulated genes allows for a synchronous induction of the same set of 

genes in distinct cell populations at the appropriate stage of development (Boettiger and 

Levine, 2009).

Multiple factors have been identified to achieve proper promoter clearance and the 

processive elongation stage of transcription during development. These factors include 

Elongin A, DSIF, NELF, P-TEFb, and ELL (Bres et al., 2008; Jones and Peterlin, 1994; 

Levine, 2011; Peterlin and Price, 2006; Shilatifard et al., 2003; Sims et al., 2004). Both 

Elongin A and DSIF are capable o f increasing the catalytic rate of the productive 

transcription by Pol II, however, in addition to its role in this process, DSIF also works 

with NELF to regulate Pol II arrest (Cheng and Price, 2007; Shilatifard et al., 2003; 

Yamaguchi et al., 1999). Such arrested Pol IIs are released by the Cdk9 kinase activity of 

P-TEFb, which phosphorylates the CTD of Pol II and many o f the other transcription 

factors signaling the release of the stalled Pol II into productive transcription (Fuda et al., 

2009; Jones and Peterlin, 1994). ELL was purified based on its catalytic properties to 

increase the Vmax rate of transcription elongation by Pol II (Shilatifard, 1998; Shilatifard et 

al., 1996). Translocation o f ELL involving the mixed lineage leukemia gene, MLL, is 

associated with the pathogenesis of childhood leukemia and the misregulation of 

developmental genes (Thirman et al., 1994).
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P-TEFb participates in a variety o f complexes, both active and inactive (Bres et al., 

2008; He and Zhou, 2011). Both Brd4 and Myc-containing P-TEFb complexes have been 

considered to be major regulators of transcription elongation (Donner et al., 2010; Rahl et 

al., 2010; Zhou and Yik, 2006; Zippo et al., 2009). To investigate to what degree SEC 

functions genome-wide in transcription elongation control, I performed ChlP-seq studies in 

both mouse embryonic stem (ES) cells in response to retinoic acid induction and human 

HCT-116 cells in response to serum stimulation. My studies in mouse ES cells identified 

gene targets for SEC, many of which are developmental regulators with paused Pol II that 

were rapidly induced to high, but relatively uniform, levels. My studies in human HCT- 

116 cells found that SEC is also a major regulator o f immediate early genes induced by 

growth factors.

Together, these findings suggest that the presence o f paused Pol II at promoter- 

proximal regions and recruitment of SEC upon activation may represent a major cellular 

mechanism for rapid and uniform induction of gene expression upon exposure to key 

developmental signals. Intriguingly, my global genomic studies in ES cells also identified 

a requirement for SEC at cytochrome P450 26A1 (Cyp26al), a gene which does not bear 

paused Pol II at its promoter-proximal region, yet responds dynamically to RA in an even 

more rapid manner than other genes that have paused Pol II at their promoter-proximal 

regions. My findings suggest that the recruitment of SEC allows genes to respond in a 

rapid and dynamic manner to developmental signals in different cell types in mammals, 

and that SEC is involved in transcriptional induction that is both dependent and 

independent of the presence of paused Pol II.
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4.2.Results

4.2.1. Genome-wide occupancy analyses of SEC components 

To investigate a possible role of SEC in the control of developmental genes poised 

for activation in early development, I developed antibodies to the SEC components and 

performed a genome-wide 

occupancy analysis of the SEC 

components in mouse ES cells 

using ChlP-seq of AFF4, ELL2,

CDK9, and RNA Pol II. These 

SEC components co-occupy 

many of the same genes, 

including highly expressed 

housekeeping genes such as the 

histone genes (Figure 4.1), 

however, SEC is only found at a 

subset of highly transcribed 

genes (Figures 4.2A-4.2B). SEC components are enriched at the transcription start site 

(TSS) regions of these genes and within the gene body similar to the Pol II distribution 

(Figures 4.2C-D). I notice that the distribution pattern of ELL2 is more 5’-end bias 

compared with the distribution of AFF4. It is possible that ELL2 and AFF4 could function 

in different steps of transcription but with a coordinated way. The co-occupancy o f the 

AFF4 and ELL2 components of SEC correlates with a high level o f expression of genes in 

mouse embryonic stem cells (Figure 4.2D) suggesting that SEC is frequently associated 

with highly transcribed regions.
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Figure 4.1. SEC enriched at highly transcribed genes such as 

the histone loci.

SEC subunits are enriched at the transcription start sites (TSS) of  

these genes, but can also travel with Pol II into the gene body.
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Figure 4.2. Global occupancy of the SEC subunits in mouse embryonic stem cells.

(A) Genome-wide analysis o f SEC components AFF4, ELL2, and CDK9 by ChlP-seq in ES cells finds 

SEC enriched at a subset o f actively transcribed genes. Shown are two genes with high levels o f 

expression in ES cells. Left panel: The Pdkl gene is occupied by the SEC subunits ELL2 and AFF4. Right 

panel: The D egsl gene does not have significant levels o f the SEC components AFF4 and ELL2. 

H3K36me3 and H3K79me2 data from (Marson et al. 2008) are shown as markers o f actively transcribed 

genes. (B) Venn diagram analysis o f AFF4 and ELL2 occupied genes. Around 50% of AFF4-enriched 

genes are also occupied by ELL2, demonstrating that in mouse ES cells, these two proteins share a similar 

global occupancy. (C) Histogram of the genome-wide occupancy o f AFF4, ELL2, and Pol II. The 

canonical TSS of each gene in the genome was used to measure the distance to the nearest bound region, 

which is plotted if  falling within 5kb of the TSS. This analysis shows that SEC components are enriched 

over the TSS, similar to Pol II occupancy. (D) AFF4 and ELL2 co-occupy highly transcribed genes. The 

dark lines in the boxplots, and the number above the line, indicate the median level o f expression for the 

gene subset indicated. The number below the line indicates the number of Affymetrix probe sets that 

correspond to the gene subset. Probe sets for ELL2 and AFF4 co-bound genes show significantly higher 

expression compared to all Pol II-bound and active genes (p<le-16 by Wilcoxon two-sample rank sum 

test). The gene subset containing neither AFF4 nor ELL2 also shows some highly expressed genes. Genes 

were called active if  they were determined present on the array by the MAS5 algorithm. The genome-wide 

data was done by the collaboration with Alexander Garrus.
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4.2 .2 . SEC is recruited to paused Hoxa cluster genes upon RA treatment in 
ES cells.

The SEC was discovered based on the purification of several of the MLL chimeras 

that are commonly found in MLL-rearranged leukemias (Lin et al., 2010). It is not 

currently known why SEC components are so frequently found to be translocation partners 

with MLL. One possibility is that the downstream target genes misregulated by MLL 

chimeras, such as the HOX  genes, are also regulated by SEC during normal hematopoietic 

development. In MLL translocated leukemias, these genes become misregulated due to the 

inappropriate recruitment or misregulation of SEC by MLL chimeras, resulting in the 

premature activation of transcription by releasing paused Pol II (Lin et al., 2010; Mohan et 

al., 2010b; Smith et al., 201 lb). For example, the MLL-AFF1 translocation can relocalize 

SEC to the HOXA9 and HOXA10 genes. Many developmentally regulated genes in flies 

and mammals have paused Pol II at the TSS before their activation during development 

(Muse et al., 2007; Zeitlinger et al., 2007). In mammalian stem cells, these genes are 

characterized by a bivalent mark of both H3K4 and H3K27 trimethylation on the same 

gene (Bernstein et al., 2006). Looking within the Hox clusters in ES cells, we find bivalent 

marks co-occurring with Pol II and the general transcription factors at the TSS at four o f 

the Hoxa cluster genes, Hoxal, Hoxa3, Hoxa4, and Hoxa7, but not at the promoters o f the 

Hoxb genes (Figure 4.3).
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Figure 4.3. The H oxal promoter is preloaded with Pol II and recruits SEC after RA treatment in ES 

cells.

(A) Bivalent marks, paused Pol II and SEC recruitment to the Hoxa cluster. In ES cells, the whole Hoxa 

cluster is highly enriched for H3K27me3, and also contains H3K4me3 at the promoters o f a subset o f genes, 

including Hoxal, a3, a4 and a7. These regions are pre-loaded with Pol II (bars indicate regions which have 

both a bivalent mark and Pol II). (B) Bivalent marks and paused Pol II are both largely absent from the Hoxb 

genes, which do not recruit SEC after 6 hour RA treatment. While H3K27me3 marks the whole cluster o f  

Hoxb genes, only Hoxb4, b7, andb9  contain H3K4me3 at their promoters and can be considered bivalent. 

There is no significant Pol II detected on the promoters o f the Hoxb genes in ES cells. The bar marks a peak 

of significant Pol II that doesn't correspond to a known gene feature. Before RA treatment, there is no 

detectable AFF4 and ELL2 signal on the Hoxa or Hoxb cluster genes. Both AFF4 and ELL2 are recruited to 

the Hoxal, but not the Hoxbl, gene promoter after exposure to RA for 6 hours. Blue boxes highlight the 

Hoxal and Hoxbl genes. Expanded views of the Hoxal and Hoxbl regions are shown in Figure 4.4.

The regulation of gene transcription at the level of paused Pol II, and its controlled

release, has been best studied at the heat shock genes such as HSP70, as well as in the

control of HIV transcription, and both processes require SEC (He et al., 2010; Lin et al.,

2010; Sobhian et al., 2010). Genes with paused Pol II such as HSP70 are transcriptionally
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engaged but paused at the 30-40 nucleotides downstream of the TSS, waiting for the 

proper signals or environmental cues to trigger their rapid transcriptional activation 

(Giardina et al., 1992; Gilmour and Lis, 1986; Lis, 1998; Rasmussen and Lis, 1993, 1995). 

These genes contain basal transcriptional machinery at their promoters, have a form of Pol 

II phosphorylated on Ser5, but not Ser2, o f the CTD, and the Pol II is associated with 

DSIF/NELF and TFIIB (Nechaev and Adelman, 2011). By all o f these criteria, Hoxal, but 

not Hoxbl, is occupied and engaged by paused Pol II (Figure 4.4).

This led me to ask whether SEC was differentially recruited to Hoxal and not 

Hoxbl upon induction by RA treatment. I performed AFF4, ELL2, and Pol II ChlP- 

sequencing after 6  hours o f RA treatment of mouse ES cells. Pol II was recruited to both 

Hoxal and Hoxbl promoters after exposure to RA for 6  hours (Figure 4.3). Interestingly, 

AFF4 and ELL2 were only recruited to Hoxal, and not Hoxbl, by 6  hours of RA treatment 

(Figure 4.3). However, I cannot rule out the possibility that SEC was not detected at 

Hoxbl due to lower levels o f Pol II, and a concomitant decrease in SEC that falls below 

the detection level. My genome-wide analyses suggest that my ability to detect SEC 

occupancy on a gene is not strictly dependent on levels of Pol II or transcription levels 

(Figure 4.2A right panel and Figure 4.2D).
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Figure 4.4. H oxal, but not H oxbl, contains the pausing form of RNA Polymerase II in untreated 

mouse ES cells.

(A) The Hoxal promoter was preloaded with the S5, but not S2, phosphorylated form of Pol II indicative of 

TFIIH activity. Also present on Hoxal are DSIF (represented by Spt5) and NELF (represented by

NELF A). In contrast, Hoxbl is devoid of any o f these factors. ChlP-seq data are from (Rahl et al., 2010).

(B) The general transcription factor TFIIB is present at the Hoxal before RA treatment, but not at the 

Hoxbl promoter, by ChIP analysis. However, little or no TBP was detectable on the Hoxal and Hoxbl gene 

promoters. Gapdh is a highly expressed gene and H bal is a non-transcribed gene in mES cells and these 

serve as positive and negative controls, respectively. Error bars represent the standard deviation.

4.2 .3 . SEC is required for the rapid induction of H oxal.

Promoter proximally paused Pol II has been proposed to allow for a more rapid 

induction of genes upon differentiation cues (Nechaev and Adelman, 2008). Therefore, we
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assayed the induction kinetics of Hoxa and Hoxb cluster genes by RT-qPCR after RA 

treatment from 2-24 hours (Figure 4.5A-B). We found that Hoxal and Hoxbl were the 

first genes rapidly induced within their respective clusters, followed more slowly by other 

members o f the clusters in general agreement with the co-linearity of expression that 

occurs during normal embryonic development (Duboule and Dolle, 1989; Graham et al., 

1989; McGinnis and Krumlauf, 1992). The Hoxal and Hoxbl paralogs functionally 

synergize in regulating the hindbrain pattern formation and cranial nerve patterning 

(Gavalas et al., 2001). During normal mouse development, Hoxal is the first Hox gene 

expressed in neural tissue directly induced by RA through a retinoic acid response element 

(RARE) located at its 3’-end. It is closely followed by RA-mediated induction of Hoxbl 

through a similar 3’ RARE. Hoxal also participates in the proper activation o f Hoxbl by 

binding to H o xb l’s auto regulatory element (ARE) located at its 5’ region, and Hoxbl 

further stimulates transcription of its own gene (Popperl et al., 1995; Studer et al., 1998). 

Indeed, when looking within the first six hour window of RA treatment of mouse ES cells, 

we observe that Hoxal is induced more rapidly than Hoxbl, mirroring their normal 

kinetics of induction in neural development (Figure 4.5A-B, blue boxes). The more rapid 

induction of the Hoxal locus compared with Hoxbl could result from the presence of 

paused Pol II before RA treatment.
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Figure 4.5. SEC is required for the rapid induction of the H oxal gene.

(A, B) RT-qPCR analysis o f Hoxa and Hoxb cluster genes upon RA treatment. ES cells were treated with 

RA for different time points as indicated. Total RNAs were extracted from these cells and then subjected to 

RT-qPCR analysis using an Applied Biosystems' custom Taqman array card. Hoxal was the first Hox gene 

to be induced by RA. Compared with Hoxal, the induction of Hoxbl was much slower within the first 6 

hours o f RA treatment. The blue boxes indicate the first three RA induction time points. (C) Cdk9 is 

recruited to both the Hoxal and Hoxbl gene promoters. Cdk9 ChIP was performed to measure its 

enrichment on Hoxal and Hoxbl after RA treatment. A hemoglobin gene, Hba (Hemo), serves as a non­

transcribed control gene. (D) ELL2 RNAi inhibits the induction o f Hoxal and Hoxbl by RA. shRNA 

targeting ELL2 or non-targeting shRNA (NonT) was introduced by lentiviral infection for 3 days before 

RA treatment. (E) Knockdown of ELL2 reduces Pol II occupancy at Hoxal and Hoxbl after 6 hours RA 

treatment. Pol II occupancy was assayed by chromatin immunoprecipitation at the start site o f transcription 

and in the open reading frame o f Hoxal and Hoxbl in RA-induced cells. Pol II is reduced in the ORF of  

both Hoxal and Hoxbl, and Hoxbl also shows dramatically reduced levels of Pol II at its promoter after 

ELL2 RNAi. The Hoxal promoter, but not the Hoxbl promoter, has pre-bound Pol II before RA treatment 

(see Figure 4.3). Error bars represent the standard deviation. The Figures 4.5 A and 4.5B were performed 

by Bony De Kumar from Robb Krumlauf laboratory.
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Since SEC was only detected at the Hoxal promoter, and not at the Hoxbl 

promoter, I asked if the Pol II CTD kinase, Cdk9, was also differentially localized to these 

two genes at early induction time points. Direct comparisons of Cdk9 at Hoxal and Hoxbl 

show that Cdk9 is recruited to both genes as early as 6  hours and has increased occupancy 

at 18 hours (Figure 4.5C). When ES cells are induced with RA for various time points, in 

the presence or absence of the Cdk9 inhibitor flavopiridol (Chao and Price, 2001), the 

induction of both Hoxal and Hoxbl are diminished (Figure 4.6). This indicates that Cdk9 

is required for the activation of both genes, even though the kinetics of their induction 

differ. These results also suggest that the recruitment of P-TEFb within SEC, specifically 

to Hoxal, functions in its rapid induction. In support o f this statement, E112 RNAi also 

reduces the induction of Hoxal (Figure 4.5D). E112 is also required for the induction of 

Hoxbl; however, this observation could be explained by the requirement o f the Hoxal 

protein for the full induction o f Hoxbl (Studer et al., 1998).

Accordingly, in the absence of E112 (E112 RNAi), I also detect the loss o f Pol II in 

the body o f the Hoxal gene with no significant change or slight reduction in occupancy of 

Pol II at the Hoxal promoter (Figure 4.5E, upper panel). Furthermore, since H o xb l’s 

expression requires Hoxal activity and lacks prior paused Pol II in ES cells, in the absence 

of E112,1 detect a loss in Pol II occupancy both at the promoter and in the body o f the 

Hoxbl locus (Figure 4.5E, bottom panel). Therefore, Hoxal is likely to be a direct target 

of SEC, and Hoxbl is likely to be an indirect target of SEC. In summary, given the fact 

that Hoxal, and not Hoxbl, possesses paused Pol II and recruits SEC upon a 

differentiation signal, I hypothesized that the recruitment of SEC to genes bearing paused 

Pol II is associated with rapid induction.
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Figure 4.6. CDK9 is required for both H oxal and H oxbl gene activation by RA.

(A) ELL2 mRNA is specifically and significantly knocked down by ELL2 shRNA. Either shRNA targeting 

ELL2 or a non-targeting shRNA (NonT) was introduced by lentiviral infection for 3 days. RT-qPCR was 

used to measure the mRNA levels o f ELL, ELL2, and ELL3. (B) The Cdk9 inhibitor, flavopiridol, inhibits 

the activation o f both Hoxal and Hoxbl by RA treatment. ES cells were induced with RA for 1, 3, and 6 

hours in the presence and absence o f 1 pM of flavopiridol. RT-qPCR was used to measure the mRNA levels 

of Hoxal and Hoxbl at the indicated time points. Error bars represent the standard deviation.

4.2 .4 . SEC is required for the induction of other rapidly induced genes.

Using genome-wide approaches, I asked whether there were other genes that were

regulated similarly to Hoxal. I performed gene expression analyses of ES cells treated for

2-6 hours with RA using Affymetrix expression arrays with probes representing ca. 30,000

genes (Figure 4.7A). Sorting the gene expression data by fold expression over time

showed that only a small number o f genes demonstrated rapid and sustained induction over

this time frame in a manner similar to Hoxal (Figures 4.7A-B). I found that 37 genes were

rapidly induced at least two fold at 2, 4, and 6  hours post induction (Figures 4.7A-B).

Among these genes was H oxbl, which our RT-qPCR data had shown was not as rapidly

induced as Hoxal (Figures 4.7A-B). I, therefore, performed RT-qPCR analyses of other

genes from the top o f this list to confirm their patterns o f induction (Figure 4.7C). These

RT-qPCR studies demonstrated that two o f the genes identified by microarray, Dleu7 and

CsnS (Figure 4.7C, blue), behaved similarly to H oxbl, and were not as rapidly induced as
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H oxal, while two others showed the kinetics o f rapid induction similar to H oxal (Figure 

4.7C, yellow).

Rapidly Recruited SEC 
Induced

Fold Change (log2)

<> Chad  
-$-Csn3  
-*-D leu 7  

Nripl 
*  Cdx1 

Hoxal 
-H-Hoxb1

Figure 4.7. SEC regulates the rapid induction of retinoic acid signaling.

(A) Left panel: microarray analyses of RA induction of ES cells as a function of time (2, 4. and 6 hours) in 

biological triplicate. Differentially-expressed probes (two-fold or more) at the 6th hour post induction 

compared to no induction are shown. Thirty-seven genes were induced 2 fold or more at each of the 2, 4, 

and 6 hour time points (demarcated by the orange bracket). (B) O f the 37 induced genes, 9 o f them 

recruited SEC (ELL2 and AFF4). Newly recruited SEC genes are co-bound at 6 hour post induction and not 

co-bound before induction. (C) RT-qPCR analysis o f some of the induced genes identified from the 

microarray analysis. ES cells were treated with RA for the indicated time points, 0 (TO), 2 (T2), 4 (T4), 6 

(T6), 8 (T8), and 12 (T12) hours. Genes that recruit SEC are shown in yellow and genes that do not recruit 

SEC are shown in blue. Nripl, which doesn't recruit SEC, but is rapidly induced, is shown in green. Error 

bars represent the standard deviation. The microarray analysis in Figure 4.7A was performed by Bony De 

Kumar from Robb Krumlauf laboratory.
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Figure 4.8. SEC is recruited to retinoic acid-induced genes.

(A-C) Examples o f ChlP-seq data showing SEC recruitment to RA-induced genes. Shown are Aqp3,

Cdxl, and E rf 3 of the 9 genes from Figure 4.7B.

Many of the induced genes that recruited SEC had bivalent histone marks and 

paused Pol II prior to RA induction. Genome browser track files for some examples are 

shown in Figure 4.8A-C. Regardless of whether genes are rapidly or more slowly induced, 

Cdk9 was recruited and required for their induction (Figure 4.9). This analysis indicates 

that several genes that recruit SEC with Cdk9 respond more rapidly and uniformly to 

developmental signals than genes recruiting Cdk9 without SEC. However, the existence of 

genes like N ripl, which is induced with similar kinetics to Hoxal (Figure 4.7C, green), 

but does not recruit SEC, suggests that while SEC is a major form of the Cdk9 complexes 

recruited to genes for rapid gene activation, other pathways to rapid gene activation are 

also possible.
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Figure 4.9. The P-TEFb complex is required for all RA highly induced gene activation.

(A) Cdk9 is recruited to all o f the RA highly induced gene promoters. Cdk9 ChIP was performed with ES 

cells in the presence and absence o f RA for 6 and 18 hours (RAO, RA6, and RA8, respectively). (B) The 

Cdk9 inhibitor, flavopiridol (FP), abolished RA-mediated gene activation. ES cells were induced with RA 

for 1, 3, and 6 hours in the presence and absence of 1 pM of flavopiridol. RT-qPCR was used to measure 

the mRNA levels at the indicated time points. Error bars represent the standard deviation.

I tested for the presence o f another P-TEFb interactor, Brd4, on these genes and 

demonstrated that although Brd4 is recruited to these loci upon RA induction (Figure 

4.10A), its reduction by RNAi has very little to do with their activation by RA, except for 

the Aqp3 gene (Figure 4.10B-C). This observation suggests that although Brd4 is also 

recruited to those SEC target sites, it might not play a major role for their activation 

(Figure 4.10A-C). Perhaps, as in the case o f HIV-1 transcriptional regulation, Brd4 has a 

role in maintaining basal levels of transcription, but not in the activation of these genes 

(Yang et al., 2005).

4.2.5 Brd4 is not broadly required for retinoic acid induction of
genes
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Figure 4.10. Brd4 is broadly present, but not broadly required, for retinoic acid induction of 

genes.

(A) Chromatin immunoprecipitation of Brd4 at RA-6-induced genes. Brd4 levels significantly increase 

at all RA-6-induced genes tested. The Hba gene serves as a non-transcribed control gene. (B) shRNA- 

mediated knockdown of Brd4. Two different shRNA constructs targeting Brd4 and a non-targeting 

shRNA (NonT) were introduced by lentiviral infection for 3 days before RA treatment. Brd4 levels 

were significantly reduced by Western analysis. Triangles indicate titrations o f cell extracts. Tubulin 

serves as a loading control. (C) Induction of genes with RA is not broadly affected by Brd4 knockdown. 

Several genes were assayed for expression levels before and after RA treatment. Only Aqp3 showed a 

significant decrease in its induction. Error bars represent the standard deviation

4.2 .6 . SEC is required for the rapid induction of immediate early genes 
(DBG).

Given the small number o f RA-induced genes in the mouse ES system, I sought 

another system to determine to what degree SEC regulates rapid transcriptional responses 

to environmental signals. Therefore, I investigated the role of SEC in the induction of 

genes in response to serum in human cells (Figure 4.11A-C and Figure 4.12). The
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immediate early genes (IEG) induced by growth factors are some of the best-characterized 

genes regulated at the level of the release of paused Pol II (Kong et al., 2005; Simone et al., 

2001). I performed ChlP-seq of SEC and Pol II in HCT-116 cells before and after serum 

stimulation. SEC components are also enriched at TSS in HCT-116 cells, consistent with 

their distribution in ES cells (Figure 42C and Figure 4.12A). SEC was newly recruited to 

55 genes within 30 minutes of serum stimulation (Figure 4.12B). Similarly to what I 

observed in ES cells (Figure 4.2D), genes bound by AFF4 and ELL2 showed higher levels 

of expression than those that lacked SEC (Figure 4.12C-D).
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Figure 4.11. SEC is recruited to serum-induced genes.

(A-C) SEC is recruited to the immediate early genes in HCT-116 cells after serum stimulation, genes 

previously identified as regulated by Brd4-containing P-TEFb complexes.

Previous gene expression analysis of serum inducible genes in HCT-116 cells 

identified 29 genes that were up-regulated 2 fold or more within 30 minutes of serum 

stimulation (Donner et al., 2010), 12 of which recruited both AFF4 and ELL2. I also 

performed RNA-seq analysis in these cells in the presence and absence of serum 

stimulation and identified 6 6  genes, which were induced above 2 -fold, including 26 out of
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the 29 genes identified by Donner et al. To more precisely characterize the induction 

kinetics of these genes, I performed RT-qPCR on 17 serum-induced genes at different 

times after serum stimulation (Figure 4.12E). As I had seen with RA induction, serum 

responsive genes were induced at varying rates, with SEC recruitment frequently occurring 

on the most rapidly induced genes (Figure 4.12D-E). Thus, SEC appears to be one o f the 

major factors in the rapid release of paused Pol II in response to developmental and 

environmental stimuli.
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Figure 4.12. SEC is recruited to rapidly induced immediate early genes (IEGs).

ChlP-seq o f SEC subunits and Pol II in HCT-116 cells was performed before and after serum stimulation. (A) 

Histogram of the occupancy o f AFF4, ELL2, and Pol II genome-wide. The TSS o f each gene in the genome 

was used to measure the distance to the nearest bound region, which is plotted if  falling within 5kb o f the TSS.

(B) Venn Diagram analysis shows that 15 o f the serum-induced genes recruit SEC (AFF4 with ELL2). SEC is 

newly recruited to 55 genes, where both AFF4 and ELL2 are co-bound after serum stimulation and not co­

bound before stimulation. Out of these 55 genes, 15 of them were induced more than 2-fold after serum 

treatment by RNA-seq analysis. The gene numbers reflect all genes of the above criteria, which were not 

annotated with the biotype ‘pseudogene’ or ‘processed_transcript\ (C) Comparison o f RNA-seq expression 

levels after serum stimulation for gene subsets o f all Pol II-bound and active genes. Genes co-bound by SEC 

show a statistically significant difference in expression versus all Pol II-bound and active genes (p < le-9 by 

Wilcoxon rank sum test). Expression is measured as fragments per kilobase of transcript per million reads 

aligned (FPKM) and shown as the log2 (FPKM). Active genes are defined as having an FPKM >= 0.05. (D) 

RNA-seq analysis o f fold-change o f expression after serum stimulation compared to before stimulation for 

gene subsets o f all Pol II-bound and active genes. SEC co-bound genes after serum stimulation show a 

statistically significant difference in fold-change compared to all Pol II-bound and active genes (p < 0.05 by 

Welch’s two sample t-test). (E) RT-qPCR analysis o f the induction kinetics o f 17 serum-inducible genes.

Genes that recruit SEC are shown in yellow and genes that do not recruit SEC are shown in blue. Thus, SEC is 

frequently associated with the most rapidly activated genes after serum stimulation.

99



4.2 .7 . Dynamic and rapid transcriptional induction requires SEC without 
the presence of paused Pol II.

To date, published studies indicate that paused Pol II functions in the rapid and 

robust induction of many developmentally regulated genes (Boettiger and Levine, 2009; 

Muse et al., 2007; Nechaev and Adelman, 2008; Rougvie and Lis, 1988; Zeitlinger et al., 

2007). However, my genome-wide expression and ChlP-seq data identified one gene that 

is extremely rapidly induced by RA, the Cyp26al gene (Figure 4.13). Cyp26al encodes a 

cytochrome P450 that metabolizes retinoic acid (Duester, 2008). The Cyp26al gene bears 

several RAREs in its promoter and it is known to be one of the most rapidly induced genes 

after exposure to RA (Alexander et al., 2009). Loss o f Cyp26al is toxic to development in 

mice, but this toxicity can be rescued by the loss of RA receptor gamma (RARy) (Abu- 

Abed et al., 2001; Sakai et al., 2001). While the Cyp26al gene appears to have high levels 

of H3K27 trimethylation, it contains very low levels of H3K4 trimethylation compared to 

Hoxal (please see Figure 4.13A and Figure 4.2A-B). Also, this gene lacks paused Pol II in 

the untreated ES cells (Figure 4.13A). After RA addition, Pol II and SEC are recruited to 

Cyp26al by 6 hours post induction (Figure 4.13A).
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Figure 4.13. The rapid induction of Cyp26al does not involve pre-loaded Pol II.

(A) Pol II, H3K4me3, and H3K27me3 occupancy analysis o f the Cyp26al gene before RA induction. 

Before RA treatment, the Cyp26al promoter is significantly enriched for H3K27me3 with lower levels o f 

H3K4me3. However, there is no detectable Pol II on the promoter. AFF4, ELL2 and Pol II are newly 

recruited to the Cyp26al gene promoter upon RA treatment. (B) RT-qPCR analysis o f Cyp26al mRNA 

levels upon RA treatment. ES cells were treated with RA for the indicated time points, 0 (TO), 2 (T2), 4 

(T4), 6 (T6), 8 (T8), and 12 (T12) hours. Total RNAs were extracted from these treated cell samples and 

then subjected to RT-qPCR analysis. (C) ELL2 RNAi inhibits the induction of Cyp26al by RA. shRNA 

targeting ELL2 or a non-targeting shRNA (NonT) was introduced by lentiviral infection for 3 days before 

RA treatment. (D) Knockdown of ELL2 reduces Pol II occupancy at Cyp26al after 24 hours RA 

treatment. The Hba gene serves as a non-transcribed control gene. Error bars represent the standard 

deviation.

In mouse ES cells, Cyp26al is more rapidly induced when compared with H oxal 

and Hoxbl (Figure 4.13B; Figure 4.5C). Knockdown of E112 by shRNA treatment causes a 

reduction in Cyp26al activation and also affects the recruitment of Pol II in its promoter 

and gene body (Figure 4.13C-D), wliile flavopiridol completely eliminates Cyp26al

induction, indicating that this gene requires Cdk9 for its rapid induction by RA treatment
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(Figure 4.14). Furthermore, reduction o f the Brd4 level by RNAi did not significantly 

affect Cyp26al induction, suggesting that it is the SEC version of P-TEFb that regulates 

this gene. The dynamic induction of Cyp26al without preexisting paused Pol II suggests 

that there are other mechanisms for rapid induction of transcription during early 

development, which involves SEC.
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b Brd4 shRNA-1 

b Brd4 shRNA-2 

aNonT shRNA+RA 

n Brd4 shRNA-1+RA 

n Brd4 shRNA-2+RA

Figure 4.14. The SEC/P-TEFb complex, but not Brd4/P-TEFb complex, is required for the Cyp26al 

gene activation by RA.

(A) The P-TEFb inhibitor, flavopiridol (FP), abolishes the induction of Cyp26al by RA. ES cells were 

induced with RA for 1, 3, and 6 hours in the presence and absence o f 1 pM o f flavopiridol. RT-qPCR was 

used to measure the Cyp26al mRNA levels at the indicated time points. (B) Induction o f Cyp26al with 

RA is not affected by Brd4 knockdown. Two different shRNA constructs targeting Brd4 and a non­

targeting shRNA were introduced by lentiviral infection for 3 days before RA treatment. Total RNAs were 

extracted from these treated cell samples and then subjected to RT-qPCR analysis. Error bars represent 

the standard deviation.

4.3. Discussion

Our genome-wide analyses of RA-induced gene transcription and SEC recruitment 

have identified three classes of genes, two of which require SEC for induction (Figure 

4.15). One class, which includes H oxbl, lacks paused Pol II and does not recruit SEC 

upon induction (Figure 4.15A). A second class, which includes H oxal, contains paused 

Pol II, recruits SEC, and is induced more rapidly than the first class (Figure 4.15B). A
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third class, exemplified by Cyp26al, recruits SEC, is induced just as rapidly as the second 

class, but to a greater extent than H oxa l, yet lacks paused Pol II at its promoter-proximal 

region before induction and requires SEC (Figure 4.15C).
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Figure 4.15. Diverse mechanisms for rapid activation of genes during development.

Top panel shows that rapidly activated genes can be further subdivided into distinct categories, A-C. (A) 

The Hoxbl gene newly recruits Pol II and general transcription factors (GTFs) in a classical gene activation 

mechanism, where RAR/RXR binds in the presence of RA, and with the help of coactivators, recruits GTFs 

and Pol II. (B) Paused Pol II, with DSIF/NELF, is present at the TSS of developmentally regulated genes, 

such as Hoxal. In the presence of RA, RAR/RXR recruits SEC to stimulate transcription elongation 

through phosphorylation of the DSIF/NELF and the Pol II CTD. (C) Cyp26al, a developmentally regulated 

gene that lacks paused Pol II, is induced by RA in a SEC-independent manner. All o f the same factors are 

present after RA treatment as seen at H oxal. but Cyp26al is induced to higher levels, suggesting that 

paused Pol II may serve to help regulate activation to equivalent levels.

Many developmentally regulated genes are marked by the presence o f bivalent

histone marks, the methylation o f H3K4 and H3K27, DSIF/NELF and paused Pol II at the
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TSS (Bernstein et al., 2006; Rahl et al., 2010; Stock et al., 2007). Since P-TEFb 

complexes, such as the SEC, are proposed to release paused Pol II via phosphorylation of 

the CTD and other general factors within the transcription complex, I asked whether SEC 

is recruited to these genes after induction of differentiation. I first focused on the Hox loci, 

because misregulation o f Hox transcription is strongly implicated in leukemogenesis by 

MLL chimeras. Although a large number o f developmentally regulated genes contain 

bivalent marks and paused Pol II at their promoters, I found that only a subset o f Hox 

genes followed this pattern. Importantly, after induction of differentiation, H oxal was 

induced more rapidly than its paralog Hoxbl (Figure 4.15A-B). The SEC was specifically 

recruited to Hoxal, and not Hoxbl, suggesting that SEC releases paused Pol II for rapid 

induction of transcription during development. This mechanism helps to explain the more 

rapid induction and regulatory roles of Hoxal compared with Hoxbl in early neural 

development (Alexander et al., 2009). Additional examples of rapidly induced genes 

bearing paused Pol II at their promoter-proximal region that also recruited SEC were also 

identified in this study; and many of these were among the most rapidly induced. These 

findings were shown to be more general by studying the recruitment of SEC to the 

immediate early genes in HCT-116 cells after serum induction.

The HSP70, FOS, JUN, and EGR families of genes are well-studied, rapidly

induced, and contain paused Pol II in the unstimulated state, leading to the paradigm that

rapid induction is the primary function of paused Pol II (Donner et al., 2010; Nechaev and

Adelman, 2008). However, paused Pol II is not present on Cyp26al before its rapid

induction to high levels o f transcription, which suggests that paused Pol II is not a

prerequisite for rapid induction, but rather facilitates coordinated and controlled induction.

Studies in Drosophila have shown that developmentally regulated genes that have paused

Pol II are activated in a synchronous manner, while developmentally regulated genes that
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lack paused Pol II have a more stochastic pattern of induction during development 

(Boettiger and Levine, 2009; Levine, 2011). Having preloaded Pol II and GTFs reduces 

the number of steps for productive transcription, and thus, could result in a more 

equivalent and uniform way to induce gene expression. Genes such as Cyp26al, while 

being required for proper development and being induced rapidly to high levels, may not 

need to be as precisely regulated at the earliest time points of induction.

Overall, our studies demonstrate that SEC is involved in many o f the rapid and 

dynamic inductions of gene expression responses to developmental and environmental 

cues. P-TEFb was identified over 15 years ago (Marshall and Price, 1995) and was soon 

shown to be required for HIV transactivation (Mancebo et al., 1997; Wei et al., 1998; Zhu 

et al., 1997). Although the majority of P-TEFb is in the inactive Heximl complex, P-TEFb 

has also been shown to associate with a variety of factors that could help recruit it to 

chromatin in an active form (Bres et al., 2008; He and Zhou, 2011). In this manuscript, we 

have shown that the recently discovered SEC version of P-TEFb is a major regulator of 

rapidly induced genes in development. However, our genome-wide analyses indicate that 

not all rapidly activated genes require the SEC components investigated in this study.

How the different P-TEFb complexes are recruited to regulate distinct sets o f genes will be 

an important area of future investigations.
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Chapter 5. The RNA Pol II Elongation Factor E113 Marks 
Enhancers in ES cells and Primes Future Gene Activation

5.1. Introduction

A full molecular understanding of how transcriptional networks are regulated in a 

pluripotent stem cell, resulting in coordinated differentiation into a complex organism, remains 

as one of the greatest challenges in biology. Enhancers play pivotal roles in modulating gene 

expression in a spatially and temporally specific pattern during development and are renowned 

for their ability to communicate with their associated genes from great distances. Physical 

interactions between an enhancer and a promoter have been proposed to explain how an 

enhancer influences gene activation (Bulger and Groudine, 2011). Several factors including 

cohesin and the CCCTC-binding factor (CTCF) have been shown to be involved in this process. 

CTCF can serve either as a barrier to protect a gene from position effect variegation or as a 

blocker to prevent long-range enhancer-promoter interactions (Engel et al., 2004; Noonan and 

McCallion, 2010; Wendt and Peters, 2009).

Cohesins have been shown to form a ring-like structure to hold segments of 

DNA together and were originally discovered for their role in chromosome 

segregation during mitosis and meiosis (Dorsett, 2011; Haering et al., 2002; Nasmyth 

and Haering, 2009; Skibbens, 2009). Cohesin-mediated long-range DNA interactions 

in transcriptional regulation were first proposed in Drosophila as a result o f screening 

for factors affecting the cut gene’s interaction with its ca. 85 Kb distal enhancer 

(Rollins et al., 1999). Since the discovery of its role in this process, cohesins have 

been shown to be required for long-range DNA interactions at the IFNG, H19/Igf2, 

apolipoprotein, and beta-globin loci from Drosophila to human (Dorsett, 2011; Hadjur
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et al., 2009; Hou et al., 2010; Mishiro et al., 2009; Nativio et al., 2009). Indeed, most 

of what we know about cohesin and gene expression involves the interplay of cohesin 

and CTCF. Recently, a second class of cohesin sites, without CTCF, was described 

(Kagey et al., 2010). The presence of Mediator together with cohesin at enhancers 

was proposed to help bridge interactions between enhancers-bound transcription 

factors and RNA Pol II at the core promoter o f active genes. These studies 

demonstrated the utility o f defining specific classes o f enhancers based on the cohort 

of bound factors.

In order to better predict and define the signatures of cis-regulatory elements 

and modifications functioning as enhancers, genome-wide sequencing analysis of 

genomic DNA and the analysis of chromatin occupancy and histone modifications 

have been used. The analysis of genomic DNA has focused on the identification of 

clusters of transcription factor motifs (Markstein and Levine, 2002) and resulted in the 

identification o f highly occupied transcription (HOT) DNAs functioning as enhancers 

(Gerstein et al., 2010; Kvon et al., 2012; Moorman et al., 2006). Reduced nucleosome 

occupancy has also been used as a signature for enhancer identification (Khoueiry et 

al., 2010). Additionally, genome-wide chromatin modification studies have 

uncovered possible signatures for identifying enhancers. Over 100,000 putative 

enhancers can be identified in the human genome by combining the histone 

modifications and transcriptional coactivator, p300 (Creyghton et al., 2010;

Heintzman et al., 2009). For example, the presence of p300, H3K4mel, and H3K27ac 

is proposed to mark active enhancers, whereas p300 and H3K4mel alone, or with 

H3K27me3, marks poised or inactive enhancers (Creyghton et al., 2010; Heintzman et 

al., 2009; Rada-Iglesias et al., 2011).
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Fundamental transcriptional studies over the past decade have pointed to the 

elongation stage of transcription as a major regulatory step in controlling gene 

expression (Levine, 2011; Sims et al., 2004; Smith et al., 201 la; Smith and 

Shilatifard, 2010). In embryonic stem (ES) cells, many developmentally regulated 

genes have paused Pol II at their promoters (Core et al., 2008; Guenther et al., 2007; 

Rahl et al., 2010). Many of these genes carry a bivalent chromatin mark consisting of 

both H3K4 and H3K27 trimethylation status (Bernstein et al., 2006; Mikkelsen et al., 

2007). Recent studies classifying active and poised enhancers have shown that in ES 

cells, genes neighboring H3K27me3-marked enhancers are enriched for this bivalent 

chromatin mark and have lower expression than genes associated with active 

enhancers (Rada-Iglesias et al., 2011). Although the available genome-wide data has 

been successfully used to categorize enhancers and promoters into a limited number of 

predictive states, how these different classes of enhancers are used to regulate 

developmental gene expression is largely unknown.

Our studies have suggested that individual ELL family members can have 

distinct cellular roles. For example, in mouse ES cells, E112 has a prominent role as a 

component of SEC in the rapid yet synchronous activation of genes in response to 

retinoic acid signaling (Lin et al., 2011). In contrast, Elll is broadly required as a 

component of the Little Elongation Complex (LEC) in regulating snRNA gene 

expression in ES cells (Smith et al., 201 la). In order to define the genomic target 

specificity of E113,1 analyzed its genome-wide occupancy in mouse ES cells. In this 

section, I show a unique role for E113 at enhancers for the regulation of gene activation 

during stem cell specification. I find that E113 occupies enhancers that are in a poised, 

active, or inactive state. E113 has an essential role in setting up paused Pol II at
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developmentally regulated genes in a cohesin-dependent manner, potentially priming 

these genes for later activation by E112 within SEC during development.

5.2.Results

5.2.1. E113 occupies enhancer regions in mouse embryonic stem cells.

In order to further understand the functional diversity of the Ell family of 

proteins, I mapped the genome-wide distribution of E113 by ChlP-sequencing in 

mouse embryonic stem cells. In contrast to the enrichment of Ell 1 at snRNA genes 

and E112 at other highly transcribed genes, E113 is preferentially found at intergenic 

regions (Figures 5.1 A). Examination of well-characterized enhancers, such as the 

Sox2 and left-right determination factor 1 {Lefty 1) enhancers, shows co-occupancy of 

E113 with known enhancer-binding factors such as p300 and octamer-binding protein 4 

(Oct4) (Figure 5.IB).
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Figure 5.1. E1I3 co-localizes with p300 at enhancer regions.

(A) Distinct occupancy profiles of the three Ell family proteins. E113 co-localizes with p300 at 

promoter and distal regions o f the actively transcribed Sox2 gene (green boxes)(Creyghton et al., 

2010). E112 colocalizes with its SEC partner AFF4 and RNA Pol II at the promoter and gene body of 

Sox2. E lll has a prominent presence, along with RNA Pol II, at three copies o f the Rnu5 snRNA 

genes. (B) Genome browser track examples for the occupancy profiles for E113, transcription factor 

Oct4, histone modifications (H3K4mel, H3K27ac, H3K4me3, and H3K27me3), and transcriptional 

coactivator p300 (Creyghton et al., 2010; Marson et al., 2008; Mikkelsen et al., 2007).

Genome-wide analysis identified 5,253 high-confidence regions bound by E113 

with a False Discovery Rate (FDR) < 0.05 (Figure 5.2A). About 90% of these sites 

are enriched for enhancer markers such as p300 and H3K4mel and only -10%  

overlap with Transcription Start Site (TSS) regions occupied by H3K4me3 (Figures 

5.2B and 5.2C), suggesting a global association of E113 with enhancers. Consistent
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with this observation, an analysis o f peak distributions shows that the majority o f E113 

peaks are located long distances (more than 10 Kb) from the core promoter regions 

(Figures 5.2D and 5.2E). Gene Ontology analysis of the nearest genes to the E113 

peaks demonstrated that many of these genes are involved in developmental 

processes, including stem cell development, primary neural tube formation, embryonic 

pattern specification, and regulation o f myeloid leukocyte differentiation (Figures 

5.2F) (Huang da et al., 2009a, b; McLean et al., 2010).
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Figure 5.2. EII3 predominantly associates with enhancer regions in mESC.

(A) Binding profiles for E113, p300, H3K4mel, and H3K4me3 are shown for regions 50 Kb upstream 

and downstream of all 5,253 high-confidence E113 peaks. Color indicates enrichment at FDR < 0.05. The 

majority o f the Ell3-occupied regions are also enriched for the enhancer signature of p300 with 

H3K4mel, but not the Transcription Start Site (TSS)-associated H3K4me3 (Creyghton et al., 2010). (B- 

C) Profiles o f p300, H3K4mel, and H3K4me3 centered on E113 peaks, shown 5 Kb around the E113 peak 

summit. Approximately 91.5% (4806) o f all E113 peaks are found upstream or downstream o f a TSS, and 

these are co-enriched for p300 and H3K4mel. In contrast, only 8.5% (447) of all E113 peaks are found at 

a TSS that is enriched for p300 and H3K4me3. (D) Pie chart showing that the percentages o f E113 peaks 

that are upstream, downstream, within a gene or at a TSS. (E) Upstream and Downstream peaks were 

further categorized by their distance from the TSS. 73% of upstream/downstream E113 peaks are more 

than 10 Kb away from the nearest TSS. (F) Functional annotation of E113-bound non-TSS peaks, as 

reported by GREAT (McLean et al., 2010), indicates enrichment for developmental processes. The 

logarithmic x-axis values correspond to binomial FDR corrected -loglO q-values. The genome-wide data 

was done by the collaboration with Alexander Garrus.
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5.2.2. E113 correlates with active, poised, and inactive enhancers.

Recent studies have indicated that genes proximal to H3K27ac-bound enhancers 

(active enhancer) have higher gene activity when compared with genes with H3K27me3- 

bound enhancers (poised or inactive enhancer) (Creyghton et al., 2010; Rada-Iglesias et al., 

2011). My finding on the co-occurrences of E113 with H3K27ac on the active enhancers 

and with H3K27me3 on the poised or inactive enhancers suggests that E113 occupies both 

classes of enhancers (Figure 5.3). However, there are significant amounts of E113 and p300 

bound enhancers that do not have either H3K27ac or H3K27me3 (Figure 5.3).
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Figure 5.3. E113 is found at active, poised, and inactive enhancers.

Putative enhancers were selected for analysis based on the presence of p300, H3K4mel, and the 

absence o f H3K4me3. Box plots show the expression levels o f the genes proximal to enhancers with 

p300 and H3K27ac or H3K27me3 in the presence or absence o f E113 (Creyghton et al., 2010). As 

previously shown for p300-bound enhancers, the presence o f H3K27ac at E113-bound enhancers is 

associated with the higher expression of nearby genes, while the presence of H3K27me3 is associated 

with lower expression o f nearby genes. There are 983 of the 2,235 E113-bound putative enhancers 

(44%) that have neither H3K27 acetylation nor H3K27 methylation. Putative E113 enhancers were 

defined as occurrence o f p300 within 100 bp of an E113 peak and not within 100 bp o f H3K4me3. 

Putative p300 enhancers were defined as occurrence of p300 not within 100 bp o f H3K4me3. *, p < 

0.05 and ***, P < 0.0005.
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5.2.3. E113 is not required for stem cell self-renewal.

Since E113 occupies the active enhancer regions o f the critical stem cell self­

renewal genes Sox2, and also Pou5fl and Nanog, I sought to test whether E113 is required 

for stem cell self-renewal by regulating the expression o f these genes. Lentivirus-mediated 

E113 shRNA was used to efficiently knock down the E113 levels in V6.5 ES cells (Figure 

5.4A). Analysis on the mRNA levels of these self-renewal genes shows that the depletion 

of E113 does not have a major effect on their expression (Figures 5.4B). Furthermore, the 

formation o f alkaline phosphatase positive ES colonies was not affected after E113 

knockdown, suggesting that E113 is not essential for stem cell self-renewal (Figure 5.4C).
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Figure 5.4. E113 is not required for the self-renewal of embryonic stem cells.

(A) qRT-PCR analysis o f the Ell3 knockdown efficiency. (B) The expression levels o f the stem cell 

self-renewal genes are largely unaffected after Ell3 knockdown. Expression levels were normalized 

to Actin. The error bar stands for the standard deviation o f three independent measurements. (C) 

Alkaline Phosphatase (AP) staining o f the control and Ell3 knockdown ES cells. ES cells were 

treated with non-targeting (NonT) and Ell3 shRNA for 72 hours before performing the AP staining.
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5.2.4. E113 regulates the steady-state expression of a subset of neighboring
genes.

To identify genes that are regulated by E113,1 performed total RNA-sequencing 

analysis following shRNA-mediated E113 knockdown in mouse ES cells. There are 887 

genes significantly down-regulated with a FDR < 0.05 and fold change > 1.5 in E113- 

depleted ES cells including SRY-box containing gene 9 (Sox9) and ST3 beta-galactoside 

alpha-2,3-sialyltransferase 1 (St3gall).
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Figure 5.5. E113 preferentially regulates the expression of bivalent genes in ES cells.

(A) Cluster diagram o f the 3,272 nearest genes to high-confidence E113 peaks. The non-redundant set of 

E113-associated genes was K-means clustered into three groups, A, B, and C, which are mainly 

distinguished by the profiles o f H3K36me3 and H3K27me3 (Marson et al., 2008; Mikkelsen et al., 2007). 

The enriched ChlP-Seq signals for E113, Pol II, and the histone modifications are shown within 50 kb 

around the TSS of these genes. Each line represents a gene, and color indicates enrichment. Clusters are 

sorted based on the position and minimum distance of E113 to the nearest TSS. All gene orientations are 

5’ to 3’. (B-D) MA plots show the differential expression o f Cluster A-C genes in E113-depleted ES cells 

vs. control cells. The y-axis (M) of each plot is the log2 fold change o f gene expression levels of RNAi 

over wild-type; the x-axis (A) o f each plot is the log2 average fragment per million reads per kb o f exon as 

reported by Cufflinks. (E) Gene expression analyses of control (NonT) and E113-depleted ES cells. Genes 

in Cluster C, but not Cluster A and Cluster B, show a significant decrease in expression after E113 

knockdown. Only genes with statistically sufficient coverage by RNA-seq are included in these plots (see 

Methods). The box indicates the middle quartiles o f the distribution; the line indicates the median value, 

and the whiskers span 1.5 times the inter-quartile distance. *, P < 0.05; **, P < 0.005; and ***, P <

0.0005. The genome-wide data was done by the collaboration with Alexander Garrus.

In order to investigate whether E113 directly regulates the expression o f 

specific classes of genes, we clustered the genes nearest to high-confidence E113 peaks 

based on the association of enrichment for Pol II and the histone modifications 

H3K4me3, H3K36me3, and H3K27me3 within 50 kb of the TSS o f the nearest E113 

genes. The 3,272 genes proximal to E113-occupied peaks were clustered into three 

major classes, A-C (Figure 5.5A). Cluster A (or “Active”) genes, such as Nanog and
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Sox2 (Figures 5.6 A and 5. IB), show enrichment o f Pol II and the active transcription 

marks H3K4me3 and H3K36me3, and have the highest transcription levels (Figures 

5.5A-5.5E). Cluster B (or “Basal”) genes, such as arginine glutamic acid dipeptide 

(RE) repeats (Rere) (Figure 5.6B), are characterized by low or no detectable levels of 

histone modifications H3K36me3 and H3K27me3, and low transcription (Figures 

5.5A-5.5E). Cluster C genes, such as St3gall (Figure 5.6C), which are marked by 

H3K27me3, have an even lower “Constrained” expression level as assayed by RNA- 

seq (Figures 5.5A-5.5E). For all clusters, we only included genes with statistically 

sufficient coverage by RNA-seq for the expression analysis in Figure 5E. 

Interestingly, fold expression levels of Cluster C genes are the most significantly 

down-regulated in E113-depleted cells (Figure 5.5E). Compared with the fold change 

of Cluster A genes, Cluster B genes do show slight reduction, which is statistically 

significant (P < 0.0005) (Figure 5.5E). Consistent with this observation, MA-plots 

also show the most significant reduction of the Cluster C genes after E113 knockdown 

and a slight reduction of Cluster B genes, but no significant effect on Cluster A genes 

(Figures 5.5B-5.5D). Therefore, enhancer-associated E113 mainly affects the 

expression of a subset of the “constrained” genes in mouse ES cells with a subtle 

effect on the basal expression o f Cluster B genes.
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Figure 5.6. Examples of E113-associated genes in ES cells.

(A-C) Genome browser track examples of Groups A-C genes. E113 co-localizes with p300 at enhancer 

regions (blue box). RNA-seq analysis (purple box) shows reduced expression o f the Group C gene, 

St3gall (the RPKM values: 2.99 in Control and 0.62 in E113 knockdown, P=0), upon E113 knockdown.

5.2.5. E113 is required for the activation of genes during stem cell
differentiation.

Many of the bivalent genes can be activated during differentiation (Bernstein et al., 

2006). Since the E113-bound cluster C is enriched for bivalently marked genes, I asked 

whether their induction requires E113. Differentiated, day-5 embryoid bodies (EBs) were 

derived from control and shRNA-mediated E113 knockdown of ES cells for three, five, and 

ten day periods. As shown by quantitative RT-PCR analyses, the activation o f Sox9, 

iroquois homeobox 3 (.lrx3), St3gall, and forkhead box P2 (.Foxp2) were significantly 

reduced in the E113-depleted EBs, especially in day 5 and day 10 EBs (Figures 5.7A-5.7D). 

I also notice that the size of embryoid bodies formed from the E113-depleted ES cells is 

smaller than embryoid bodies formed from the control. Thus, apart from regulating the 

constrained expression of its proximal Cluster C genes, E113 is also required for their 

further activation during development.
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Figure 5.7. EII3 and E112 are both required for the activation of bivalent genes associated with E1I3- 

occupied enhancers.

(A-D) qRT-PCR analyses o f the activation time-course o f four bivalently marked genes in the control 

and E113 knockdown EBs. Control and E113 knockdown ES cells were induced to form EB for 0 (EB0),

3 (EB3), 5 (EB5), and 10 (EB10) days, as indicated. The expression levels were normalized to 

Actin. All four genes showed reduced induction kinetics in the absence o f E113. (E) E112 is recruited to 

the promoters o f E113-regulated genes in 5-day EBs, as shown by ChlP. The Hba gene serves as a non­

transcribed control gene. (F) E112 is required for the activation o f many o f the genes regulated by E113 in 

EBs. The control and E112 knockdown ES cells were induced to form EBs in the petri dishes for 5 days 

before the qRT-PCR analyses. The expression levels were normalized to Actin. The error bar stands for 

the standard deviation o f three independent measurements.

5.2.6. E112 is also required for the activation of some of the E113 responsive
genes.

Previously, I have demonstrated that E112 within SEC plays important roles in

the rapid induction of several developmentally regulated genes in ES cells (Lin et al.,

2011). Many of these E112/SEC-responsive genes contain engaged Pol II at their

promoter-proximal regions in the undifferentiated state. Therefore, I asked if

E112/SEC is required for the activation of E113-regulated genes. Chromatin
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immunoprecipitation in differentiated day-5 EB samples shows that E112 is indeed 

newly recruited to the promoter regions of the Sox9 and St3 gall genes (Figure 5.7E). 

Furthermore, qRT-PCR analysis o f day 5 E112-depleted EBs revealed that E112 is also 

required for the activation of many E113-responsive genes, including Sox9, St3gall, 

and Foxp2 during development (Figure 5.7F). Taken together, these results suggested 

that E113 might function upstream of E112/SEC in transcriptional programs during 

development.
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Figure 5.8. E1I3 binding at enhancers is required for future gene activation by SEC.

(A) Schematic model for E113 pre-binding at enhancers primes future gene activation by SEC. (B) 

E113 binding to enhancers is required for the activation o f Hox genes by retinoic acid (RA). Control 

and E113 knockdown ES cells were untreated (Control) or treated with RA for 24 hours (RA24) before 

harvesting for the qRT-PCR analysis. (C) E113 is required for the recruitment of SEC (Aff4) to the 

Hoxal gene after RA treatment. ChIP signal is normalized to the non-transcribed Hba2 gene. Error 

bars indicate the standard deviation of three independent measurements.

5.2.7. E113 binding at enhancers is required for future gene activation by
SEC.

To further investigate whether the pre-binding of E113 to enhancers is essential 

for the future gene activation through the recruitment of SEC, we first examined the
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requirement of E113 for the activation of Hoxal by retinoic acid (RA), a gene activated 

by SEC (Lin et al., 2011) (Figure 5.8A). Quantitative RT-PCR analysis indicates that 

the activation of Hoxal by RA is reduced after E113 knockdown (Figure 5.8B). In 

addition, the depletion of E113 impairs the recruitment o f Aff4, the central factor of 

SEC, to the Hoxal promoter after 24 hours of RA treatment (Figure 5.8C). Our 

previous biochemical studies indicated that ELL3 can interact with AFF4 and P-TEFb 

to form a complex similar to ELL2-containing SEC in 293 cells (Lin et al., 2010). We 

have also found that E113 can interact with Aff4 and P-TEFb when overexpressed in 

ES cells. Therefore, we propose that E113’s binding to enhancers is required for the 

full assembly of SEC on the promoter o f genes, and thus, future gene activation by 

SEC at the E113 target genes.

5.2.8. E113 binding at enhancers regulates the Pol II occupancy at
promoter-proximal regions of neighboring genes.

E113 was initially identified as a member of the ELL family o f RNA Pol II 

elongation factors, which can increase the transcription elongation rate catalyzed by 

Pol II (Miller et al., 2000). ELL family members can directly interact with Pol II, and 

are proposed to facilitate the proper alignment of the 3’ terminus of the nascent 

transcript with the Pol II active site (Elmendorf et al., 2001; Shilatifard et al., 2003). 

Since E113 binding to enhancers is required for the proper expression of a subset of 

Group B and C genes (Figure 2), we asked whether E113 is required for the proper 

occupancy of Pol II at its nearest genes by performing Pol II ChlP-seq after E113 

knockdown. Loss of E113 leads to reduction of Pol II in many Group C genes, such as 

St3gall, and Group B genes, such as Re re, with a lesser effect on Group A genes, like 

Nanog (Figures 5.9A-C).
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Figure 5.9. E113 regulates Pol II occupancy at promoter-proximal regions of neighboring genes.

(A-C) Genome browser profiles o f Pol II occupancy in control and E113-depleted cells. Pol II levels are

reduced at the Rere and St3gall genes, but not the Nanog gene. (D-G) Average Pol II occupancy plots 

for the top 1,000 highly expressed genes and E113 nearest genes from the Figure 2A group analysis. 

Rank normalized average Pol II levels within 5 kb of the TSS are shown in control (black line) and E113 

knockdown (red line) ES cells. Pol II is reduced at the TSS region of E113-associated genes, with strong 

effects on Group C genes.

In order to further investigate whether E113 differentially regulates the Pol II 

occupancy in Groups A-C genes genome-wide, we directly compared the occupancy 

levels o f Pol II at promoter-proximal regions o f genes nearest to E113-bound peaks in 

control and E113-depleted ES cells. Compared with Group A and B, Group C genes 

show the largest reductions in Pol II occupancy (Figures 5.9D-G). We note that group 

C genes are expressed at a very low level, and it therefore may be easier to observe a 

larger fold change in Pol II occupancy and expression after E113 RNAi than at highly 

expressed genes. However, our data suggest that, during the process of gene 

activation, genes may achieve a state at which they no longer require E113 at their 

enhancers for the maintenance of expression.
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Figure 5.10. The recruitment of basal transcription factor TFIIB is not affected by E113 

knockdown.

A) Knockdown o f E113 reduces the promoter-proximal Pol II occupancy at many bivalent genes, but not 

the actively transcribed histone HI gene, Hist 1 hid. The Hba2 gene serves as a non-transcribed control 

gene. (B) E113 depletion does not affect the recruitment of the basal factor TFIIB. The Hba2 gene serves 

as a non-transcribed control gene. The error bars represent the standard deviation of three independent 

measurements.

To rule out the possibility that E113 might affect the assembly of the basal 

transcriptional machinery at an early stage, the levels of the basal factor TFIIB loading 

was also examined in E113 knockdown cells (Figures 5.10A and 5.10B). I observe that 

the basal transcription factor TFIIB is properly recruited to the promoter regions of 

bivalent genes upon E113 depletion. Thus, E113 is essential for the establishment of 

promoter-proximal pausing of Pol II at many genes in ES cells.

One of the well-accepted models for the regulation of neighboring gene activities 

by enhancers is promoter-enhancer looping (Bulger and Groudine, 2011; Li et al., 2012; 

Lieberman-Aiden et al., 2009; Montavon et al., 2011). It has recently been shown that the 

cohesin and Mediator complexes occupy both the enhancer and promoter regions,

5.2.9. E113-dependent promoter-proximal pausing requires the cohesion
complex.



promoting loop formation between the enhancer - promoter pairs at active genes (Kagey et 

al., 2010). Depletion of the Mediator or cohesin complexes reduces the interactions 

between the enhancer and core promoter o f the Nanog gene in ES cells (Kagey et al.,

2010). Interestingly, the cohesin and Mediator complexes are found on many other E113- 

bound enhancers, including the Lefty 1 and St3gall, as well as the hypersensitivity site 2 

(HS2) enhancer o f the beta globin locus, which is known to be regulated by cohesion in 

erythroid cells (Hou et al., 2010) (Figure 5.11). Beta globin genes are completely silent 

genes in ES cells, suggesting a possible role of the cohesin/Mediator complexes in
/

enhancer-promoter communication at inactive or poised genes.
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Figure 5.11. EU3 co-occupies with cohesin and Mediator at enhancers.

Genome browser profiles for E113, p300, cohesin (Nipbl, Smcla, and Smc3), Mediator components (Medl 

and M edl2), and Ctcf (Kagey et al., 2010). E113 is found to colocalize with cohesin at sites that are 

enriched for Mediator and have low Ctcf occupancy (blue boxes). E113 is not enriched at cohesin sites that 

have high Ctcf and low Mediator occupancy (green box). E113 colocalizes with cohesion and Mediator at 

the HS2 element o f the inactive globin locus.

To explore whether the cohesin complex is also required for the proximal Pol II 

pausing at these genes, Pol II occupancy was first examined in cohesin subunit-depleted 

cells. The structural maintenance of chromosomes 1A (Smcla) and structural maintenance



of chromosomes 3 (Smc3) proteins are significantly reduced by Smcla and Smc3 shRNAs, 

respectively (Figure 5.12A). Smc3 knockdown also leads to a reduction of the protein 

levels o f Smcla, but not the Smcla mRNA levels, suggesting that Smc3 affects Smcla 

protein stability (Figures 5.12A). The depletion of the cohesin complex does not have 

much of an effect on global Pol II levels, whether looking at the total, phosphorylated, or 

unphosphorylated forms (Figure 5.12A). However, the Pol II occupancy at the promoters 

of the genes nearest to E113-bound peaks was greatly reduced after cohesin knockdown as 

shown by ChlP-qPCR (Figure 5.12B), indicating an important role of the cohesin complex 

in promoter-proximal pausing of Pol II at E113 target genes.
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Figure 5.12. E113-mediated promoter-proximal pausing of RNA Pol II requires the cohesin complex.

(A) Knockdown of cohesin components Smcla or Smc3 does not affect cellular Pol II levels. Smcla 

knockdown significantly reduces the Smcla protein level, but not Smc3. However, the depletion o f Smc3 

also reduces the protein level of Smcla. The unphosphorylated (8wgl6 antibody), Ser5 phosphorylated 

(H14), and Ser2 phosphorylated (H5) forms of RNA Pol II levels remain unchanged upon the knockdown 

of cohesin components. Tubulin serves as a loading control. (B) Knockdown of cohesin components 

reduces the promoter-proximal Pol II occupancy at many E113-responsive genes. Histone HI (Histhld) 

and alpha globin (.Hba2) serve as highly expressed and non-expressed control genes. (C) Knockdown of  

Smc3 reduces E113 occupancy at the enhancer regions of E113-responsive genes. The Hba2 gene serves as 

a non-transcribed control gene. The error bar stands for the standard deviation o f three independent 

measurements.

To further assess whether the role of E113 in promoter-proximal Pol II

occupancy is mediated through the cohesin complex, we tested E113 binding profiles

in the cohesin-depleted cells. The results revealed that depletion of the cohesin

complex (Smc3 knockdown) also greatly reduces E113 occupancy at enhancer regions

(Figure 5.12C). This is not due to the reduced expression of the E113 gene, as

quantitative RT-PCR shows that E113 mRNA levels remain unchanged after cohesin
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knockdown (Figure 5.13). Therefore, the cohesin complex is required for the 

localization of E113 on these enhancers and for E113’s effect on RNA Pol II at 

promoter-proximal regions.

A B

0.04 EII3
0.0008

•2 0.03
■s- co

g> 0.0006 - T

Q.
<D
CL

£j 0.02 f t 0.0004
a>>

a>>
w 0.0002

0.0000 ^

n NonT shRNA n Smc1 shRNA e Smc3 shRNA

0.00
Smc1 Smc3

Figure 5.13. Cohesin is not required for the EU3 gene expression in mouse ES cells.

(A) qRT-PCR analysis o f the Smcl and Smc3 knockdown efficiency. (B) The E113 mRNA level is 

not affected by the depletion o f the Cohesin components. Expression levels were normalized to 

Actin. The error bar stands for the standard deviation o f three independent measurements.

It has been suggested that the genome is spatially organized into many three- 

dimensional structures (Cremer and Cremer, 2010; Lieberman-Aiden et al., 2009). 

Recent studies have identified many local chromatin interaction domains, named 

“topological domains” (Dixon et al., 2012). Comparing genome-wide chromatin 

conformation data from ES cells with Pol II occupancy data shows that Pol II can be 

broadly down-regulated after E113 knockdown within structured chromosomal 

domains (Figures 5.14A-C). However, whether and how E113 can work through these 

structured domains to coordinately regulate several neighboring genes needs to be 

further investigated.
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Figure 5.14. Pol II occupancy analysis after E113 knockdown in identified topological domains.

(A-C) Genome browser tracks o f Pol II within the defined three dimensional “topological domains” in 

control and E113-depleted cells. The deepness o f the red color indicates the degree o f intrachromosomal 

interactions by genome-wide chromosome conformation analysis (Dixon et al., 2012) ( 

http://chromosome.sdsc.edu/mouse/hi-c/index.html, accessed on Jun 1st 2012). E113 occupies many 

putative and defined enhancer regions. Reductions of Pol II occupancy throughout the structured 

chromosomal domains were observed after E113 knockdown. The inactive beta globin locus, which has 

E113 at the HS2 enhancer, but which lies in a chromosomal region with low intrachromosomal interactions 

in ES cells, serves as a control.

To further explore if E lB ’s binding at enhancers could stabilize enhancer- 

promoter interactions, we performed a Chromosome Conformation Capture (3C) 

assay by anchoring on an E113 binding site at the Hoxa locus (Figure 5.15). We 

observe a broad domain of interactions at the Hoxa locus in the ES cell state, 

consistent with the published Hi-C data reporting this region as encompassing a 

topological domain (Figures 5.15A-B) (Dixon et al., 2012). Interestingly, after 24 

hours of RA treatment, these interactions become more local and specific, and this 

transition in interactions requires E113 (Figures 5.15C-D).
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Figure 5.15. E113 is required for the specific enhancer-promoter interactions in Hoxa locus 

after induction.

(A) qRT-PCR analysis o f the Smcl and Smc3 knockdown efficiency. (B) The E113 mRNA level is 

not affected by the depletion of the Cohesin components. Expression levels were normalized to 

Actb. The error bar stands for the standard deviation of three independent measurements. (C) 

Genome browser track example for Hi-C results at the Hoxa locus (Dixon et al., 2012) ( 

http://chromosome.sdsc.edu/mouse/hi-c/index.html, accessed on Sep 1st 2012). (D) Genome 

browser track example for the binding profile o f E113 at the Hoxa locus. Primer regions used for 

the Chromosome Conformation Capture (3C) assay were labeled as Pl-15. Green arrow marks the 

anchor point for the 3C assay. (E-F) E113 is required for the specific enhancer-promoter 

interactions after 24 hours of RA treatment. 3C results among different samples were normalized 

to a control locus Ercc3.
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5.2 .10. E113 is essential for stem cell pluripotency and differentiation.

Interestingly, in addition to the above-mentioned Group A-C genes, some 

inactive or “Dormant” lineage-specific genes are also associated with E113/p300- 

bound enhancers, but have no detectable Pol II, H3K4me3, and H3K36me3 in their 

transcription units. For example, E113 and p300 are present at the above-mentioned 

well-characterized HS2 enhancer element of the beta globin locus, which is silent in 

ES cells (Figure 5.11C). Therefore, we consider HS2-like enhancers to be in an 

“inactive/dormant state” or Group D.

To explore if  E113 is required for differentiation of ES cells, we further tested 

the expression levels of lineage-specific markers in the E113 knockdown o f EBs. 

Quantitative RT-PCR analysis shows that many endoderm markers (forkhead box A2 

(.Foxa2), GATA binding protein 4 (gata4), and GATA binding protein 4 (Gata6)), 

mesoderm markers (goosecoid homeobox (Gsc), brachyury (7), and fibroblast growth 

factor 8 (.Fg/8)), and ectoderm specific genes (potassium voltage-gated channel 

subfamily C member 1 (Kcncl), GLI-Kruppel family member (G lil), and 

oligodendrocyte transcription factor 3 (Olig3)) are significantly down-regulated in the 

E113-depleted EB samples compared with the control EB samples (Figures 5.16A- 

5.16C).
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Figure 5.16. E113 is required for the stem cell specification.

(A-C) qRT-PCR analyses o f the activation kinetics of lineage-specific genes in control and E113-knockdown 

EBs. Control and E113-knockdown ES cells were induced to form EB for the indicated time points. 

Expression levels were normalized to Actin. The error bar stands for the standard deviation o f three 

independent measurements

Examination of E113 occupancy shows that E113 associates with many o f the 

inactive or poised enhancers o f these lineage-specific genes (Figure 5.17). Moreover, 

many o f these genes do not contain detectable Pol II at their promoter-proximal regions 

(Figure 5.17). Further RNA-seq analysis on the differentiated day-5 EBs indicated that 

2,862 genes were up-regulated with a FDR < 0.05 and fold change > 1.5. O f these, 510 of 

them contain E113 at their enhancers in the ES state suggesting the involvement o f E113 in 

stem cell pluripotency.
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Figure 5.17. The binding profiles of E113, p300, and Pol II on lineage-specific genes.

E113 and p300 co-occupy enhancer regions of these lineage-specific genes. However, many o f them, 

except Glil, do not contain detectable Pol II at their promoter-proximal regions.
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I next assessed the effect of 

E113 knockdown on neural induction 

by retinoic acid in ES-derived 

embryoid bodies. The p-tubulin III 

positive neural fibers are significantly 

reduced in the E113-depleted EBs 

compared with the control EBs (Figure 

5.18). Taken together, these results 

suggest that although enhancer- 

associated E113 is not required for stem 

cell self-renewal, it is essential for 

stem cell pluripotency and 

differentiation.

5.2.11. E113 is present on the chromatin of germ cells.

The presence of E113 at enhancers in ES cells of many dormant lineage-specific 

genes (both Group C and Group D genes) raises the question of at what stage is E113 

recruited to mark these enhancers. Interestingly, our previous northern blot analyses 

indicated that E113 is highly enriched in testes (Miller et al., 2000). I, therefore, performed 

immunofluorescence staining of mouse sperm and observe that E113 localizes to sperm 

nuclei (Figure 5.19A). Immunogold labeling of E113 in mouse sperm by E113 antibodies 

raised against either the N-terminus or the C-terminus of E113 further validates the nuclear 

localization of E113 in sperm (Figures 5.19B and 5.20). Interestingly, we also detect Pol II 

in sperm nuclei by immunogold labeling (Figure 5.19B). While E113 N- and C-terminal 

antibodies co-localize well (within 5-1 Onm) in sperm nuclei, antibodies to E113 and Pol II

appear to occupy different regions on the sperm cell chromatin (Figures 519B).
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Figure 5.18. E113 is essential for the proper neural 

differentiation of mouse ES cells.

The 5-day differentiated EBs from control and E113- 

knockdown ES cells were further differentiated into 

neural cells by exposure to retinoic acid for 14 days. 

Neural-differentiation competence was visualized by 

immunostaining for the neuronal marker class III, (3- 

tubulin (P-tub III, green), and the DNA marker, DAPI 

(blue).
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Figure 5.19. EII3 and Pol II localization on the chromatin of germ cells.

(A) Immunofluorescence staining of E113 in mouse sperm. Mouse sperm were fixed and stained with 

antibodies raised against the C-terminus o f mouse E113, and then were counterstained with DAPI. (B) 

Immunogold labeling of E113 and Pol II in mouse sperms. Mouse sperms were fixed, cryo-sectioned, 

and double stained with E113 N-terminus and Pol II antibodies. Both E113 (red arrow, 6 nm gold 

particles) and Pol II (blue arrow, 12 nm gold particles) localize in the nucleus of the sperm. Co­

localization o f E113 and Pol II was largely not observed compared to the co-localization o f the N- and 

C-terminally raised E113 antibodies, which are frequently found within 5-10 nm of each other (Figure 

5.20). The electron microscopy study was done by the collaboration with Fengli Guo from Histology 

core facility.
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Figure 5.20. Immunogold labeling of E113 in mouse sperm

Mouse sperm were fixed, cryo-sectioned, and sequentially stained with E113 C-terminal (E113-ct) and N- 

terminal (E113-nt) antibodies. E113-ct (6 nm gold particles) and E113-nt (12 nm gold particles) co- 

localize in the nucleus o f the sperm within 5-10 nm of each other. This figure was done by the 

collaboration with Fengli Guo from Histology core facility.

5.3. Discussion

Regulatory elements play a central role in establishing promoter-proximal engaged

Pol II, as previously demonstrated for the Drosophila Hsp70 gene and the murine Ig kappa

gene (Lee et al., 1992; Levine, 2011; Raschke et al., 1999). The deletion o f the GAGA

element upstream of the Hsp70 core promoter or the deletion of the intron enhancer and C

regions of the Ig kappa gene abolished the occupancy o f Pol II at their respective

promoters. However, whether there are enhancer-associated factors that are more

generally required for the establishment of Pol II at developmental genes was not known.

Here, I show that the elongation factor E113 preferentially binds to enhancers, mediates the

promoter-proximal occupancy of RNA Pol II at many of the developmentally regulated

genes in mouse embryonic stem cells, and is required for their future activation during
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stem cell specification (Figures 5.21A-C) (Lin et al., 2013). The E113-mediated enhancer 

function in promoter-proximal occupancy by Pol II requires the cohesin complex, 

revealing a novel step in the establishment of the “paused Pol II” state that is pervasive in 

ES cells and the regulation of gene activation during early embryo development.

5.3.1. A Model for the enhancer-associated E113 in the coordinated 
induction of transcription by SEC

Cohesin and mediator complexes were initially shown to be involved in the 

enhancer-promoter communication at active genes (Newman and Young, 2010). 

Interestingly, cohesin and mediator are also present at E113-bound “inactive” enhancers in 

ES cells, such as the beta globin locus (Figure 5.21 A). It is possible that during 

differentiation, lineage-specific transcription factors such as GATA1 andNFE2 (Bulger 

and Groudine, 2011; Deng and Blobel, 2010) can interact with enhancer and promoter 

elements to help bridge cohesin and mediator communication with Pol II at the promoter, a 

process that can be further stabilized by E113 (Figure 5.2IB). Setting up looped 

chromosomal domains could form a constrained transcriptional state associated with 

bivalent mark of H3K4 and H3K27 methylation (Bernstein et al., 2006) in a progenitor cell 

before full transcriptional activation. In addition, we find that many o f the genes showing 

reduced paused Pol II after E113 knockdown were also in our Group B, which lacked the 

bivalent mark. Group B genes may constitute a transition state between constrained 

expression of bivalently marked genes and activated transcription (Cui et al., 2009; Zhang 

et al., 2012).

The presence of E113 could be particularly important at genes requiring an E112 

version of SEC to release poised Pol II through phosphorylation of DSIF/NELF and the 

Pol II CTD (Figure 5.21C) (Lin et al., 2011; Luo et al., 2012b). Upon differentiation, E112
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within SEC is recruited to the genes with E113-occupied enhancers and is required for their 

activation. This can be attributed to the function of E112 within SEC in releasing paused 

Pol II (Lin et al., 2011). Therefore, in certain circumstances, the ability of E112 and E113 to 

form similar and dynamic complexes could underlie a mechanism for the transition from 

E113’s presence at poised enhancers in ES cells to E112’s role in the release o f paused Pol II 

during gene activation. Enhancer-promoter interactions could facilitate local assembly 

and/or recruitment of functional SEC complexes for rapid, but regulated, gene activation. 

This model is supported by observations that: 1) E113 binding to enhancers is required for 

the recruitment of SEC during differentiation; 2) Mediator occupies E113-bound enhancers; 

and (3) the MED26 subunit is required for the recruitment o f SEC to the HSP70 and MYC  

genes (Kagey et al., 2010; Takahashi et al., 2011).
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Figure 5.21. Model for the enhancer-associated elongation factor E113 in gene activation

A model for the enhancer-associated E113 in coordinated transcriptional induction by SEC. H3K4mel,

p300, Mediator, and cohesin can be found with E113 at inactive, poised, and active enhancers. At inactive 

enhancers, E113 is prebound with Mediator and cohesin, but Pol II is not found at the promoter. In the 

poised state, a subset o f developmental regulators is in a constrained state of expression, with both 

H3K4me3 and H3K27me3 at the promoter. Pol II’s presence at these promoters depends on the 

interactions between cohesin, Mediator, and E113. Bottom panel, upon receiving the proper activating 

signals, SEC is recruited and stabilized at the promoter region through interaction with Mediator and E113. 

SEC phosphorylates RNA Pol II CTD, Spt5, and Nelf, thus resulting in the release o f Pol II and gene 

activation.

5.3.2. E113 as a candidate for priming future gene activation

The activation of the zygotic genome, leading to the control of development by 

both the paternal and the maternal genomes, is a key event during the maternal to 

zygotic transition (MZT) following fertilization. Recent studies have identified the
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zinc finger protein, Zelda, as a factor that marks the promoter and enhancer regions of 

both active and inactive genes in the Drosophila early zygotic genome (Harrison et 

al., 2011; Liang et al., 2008; Nien et al., 2011). The association of Zelda with inactive 

genes is required for their future activation, indicating an essential role of Zelda as a 

“pioneer transcription factor” (Harrison et al., 2011). However, how Zelda binding at 

the promoter and enhancer regions of inactive genes regulates their future expression 

and how the cofactors working together with Zelda to activate the zygotic genome 

remain largely unknown.

In this study, I found that mammalian E113 not only binds to the enhancer 

regions of active genes, but also marks the enhancers of inactive genes in mouse 

embryonic stem cells, many of which are lineage-specific genes, such as beta-globins, 

Gsc and T. The marking of E113 at the inactive enhancers of mammalian cells is 

required for the future activation o f their associated genes, analogous to what has been 

reported for Zelda in Drosophila embryogenesis. There is no Zelda homolog known 

outside of arthropods (Liang et al., 2008), and the mechanism by which E113 is so 

generally recruited to enhancers o f varying chromatin states and transcriptional 

activities is currently unknown. Instead of a single Zelda in mammals, there could 

conceivably be a large family of zinc finger proteins that can recognize various 

enhancer sequences and help recruit E113.

Intriguingly, both E113 and Pol II seem to be associated in the nuclei o f mouse

sperm, but do not co-localize, which might be explained if E113 was occupying

inactive enhancers and Pol II was present at TSS regions, similar to what we observe

by ChlP-seq analyses in the ES cell state. These data suggest that E113 might serve as

an epigenetic marker in germ cells by bookmarking the inactive enhancers o f genes
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for future activation in the embryo. ChlP-sequencing analyses of E113 and Pol II in 

sperm and oocytes will be required to test this model and could reveal interesting 

information on mechanisms of epigenetic inheritance.

5.3.3. A potential role of E113 in cancer pathogenesis 

Many of the SEC components are among the most frequent MLL 

(myeloid/lymphoid or mixed-lineage leukemia) translocation partners found in human 

AML and ALL leukemia patients (Mohan et al., 2010b; Smith et al., 201 la). SEC is 

broadly recruited to MLL chimera target genes in both MLL-SEC and MLL-non- 

SEC-translocated leukemic cells (Lin et al., 2010; Yokoyama et al., 2010). 

Interestingly, many of the commonly and highly mis-regulated genes by different 

MLL chimeras including the Runxl, Ebfl, Cdk6, Meisl/2, and Hoxa cluster genes 

(Dawson et al., 2011; Krivtsov and Armstrong, 2007; Lin et al., 2010) are occupied by 

E113 on their enhancers in the ES state. It is likely that the MLL chimeras bypass the 

tight regulation of these ELL3-associated genes in hematopoietic cells, contributing to 

leukemogenesis. Therefore, investigating the extent to which E113 functions in other 

stem/progenitor cells could have implications in SEC function in other developmental 

pathways and the mis-regulation of SEC in disease.
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Chapter 6. Discussion

Transcriptional elongation has now emerged as a common and rate-limiting 

regulatory step in the process of transcribing genetic information from DNA into 

functional RNA molecules in metazoans, as suggested by the genome-wide data that Pol II 

is paused proximally to the promoters of many developmentally regulated genes, 

associating with a short capped transcript (Levine, 2011; Muse et al., 2007; Nechaev et al., 

2010; Zeitlinger et al., 2007). Release o f Pol II from the pausing site into productive 

elongation is triggered by the coordinated action of the positive elongation factor, P-TEFb, 

and negative elongation factors, NELF and DSIF (Gilmour, 2009; Peterlin and Price,

2006).

In the present studies, the Super Elongation Complex (SEC) was identified through 

biochemical purification and proteomic analyses. SEC contains ELL family members 

(ELL1-3), MLL translocation partners (AFF1, AFF4, ENL, and AF9), and the Pol II 

elongation factor, P-TEFb (Lin et al., 2010) (Figure 1A). It was found here that as one of 

the most active P-TEFb-containing complexes, SEC plays an important role in the 

regulated release of paused Pol II and gene activation in a paused Pol II-dependent and 

independent manner (Lin et al., 2011; Lin et al., 2010; Luo et al., 2012b; Smith et al.,

201 lb). Furthermore, the requirement of MLL-SEC for the aberrant activation o f the MLL 

chimera target genes suggests a critical role for abnormal transcription elongation during 

leukemogenesis (Lin et al., 2011; Lin et al., 2010; Mohan et al., 2010b; Smith et al.,

201 la). In this section, I will generally discuss the current understanding o f the SEC 

family complexes in rapid transcriptional activation o f genes during development. Also, I 

will cover the emerging roles of SEC in cancer pathogenesis.
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6.1. Different P-TEFb-containing complexes

6.1.1. The SEC family of P-TEFb-containing complexes

AFF4, the central protein tethering other components in SEC, belongs to the AFF 

family in mammals, which also includes AFF1, AFF2, and AFF3. All of the members in 

this family are delineated by conserved N- and C-terminal homology regions, a 

transactivation domain rich in serine, and an AF4/LAF4/FMR2 ("ALF") homology domain 

(Bitoun and Davies, 2005). Besides SEC, SEC-like 2 (SEC-L2) and SEC-like 3 (SEC-L3) 

were also identified through biochemically purifying AFF2 and AFF3, respectively (Luo et 

al; 2012). Similar to SEC, SEC-like complexes also contain ENL/AF9 and the kinase 

module P-TEFb (Figure 6.1). However,, the presence of ELL proteins in SEC-L2/3 still 

remains elusive, since ELLs are not observed by the MudPIT analyses. SEC-like 

complexes are also active P-TEFb complexes as shown by in vitro Pol II CTD kinase 

assays(Luo et al., 2012a). Therefore, SEC, in a broader sense, refers to a series o f active P- 

TEFb-containing complexes using different AFF family members as a scaffold in the 

absence or presence of ELL 1-3. In addition, the two YEATS (Ynll07, ENL, AF9, and 

TFIIF small subunit) family members, ENL and AF9, also reside in separate SECs. Many 

versions of SEC generated from different combinations o f these components would expand 

the regulatory ability of the SECs.
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Super Elongation Complexes (SECs) Little Elongation Complex (LEC)

EAF1/2

ELL1/2/3 (AF9/ENL

Ct̂ ( T aFF1/4 }

EAF1/2
(AF9/ENL AF9/ENL'

AFF2

Figure 6.1. Distinct classes of genes are regulated by SEC and LEC families from Drosophila to 

human.

(A) In mammals, the four members of the AFF family (which comprises AFF1, AFF2, AFF3, and AFF4). 

and the three members o f the ELL family of RNA polymerase II elongation factors (which comprises ELL1, 

ELL2, and ELL3) can be found in SEC complexes with compositional and functional diversity. AFF2 and 

AFF3 are the central factors in the formation o f the SEC-like complexes SEC-L2 and SEC-L3, respectively. 

Like SEC, SEC-L complexes also contain the positive transcription elongation factor P-TEFb and ENL or 

AF9. The presence of the ELL family members in these two complexes has not been detected in 

biochemical purifications o f AFF2 and AFF3. SEC containing ELL2 and AFF4 is involved in the 

Transcriptional Elongation Checkpoint Control (TECC) of paused Pol II-dependent and -independent rapid 

transcriptional induction. SEC in Drosophila has a similar subunit composition to mammalian SEC, but 

there is only one homolog for each of the AFF, ELL, EAF 1 and 2 (ELL-associated factor 1 and 2), and 

AF9 or ENL families: Lilli, related to AFF1-4 proteins; dEll, related to ELL1-3; Eaf, related to EAF1 and 

EAF2; and Ear, ENL and AF9-related, respectively. (B) Drosophila LEC contains dEll, Ice 1 and 2 

(Interacts with C-terminus o f ELL 1 and 2) and Eaf, and regulates the transcription of Pol II-transcribed 

snRNA genes. Although there are three members o f the ELL family in mammals, only ELL 1 is found to 

affect snRNA gene transcription as part o f a mammalian LEC complex. It has been demonstrated that the 

ELL-containing SEC is required for rapid transcriptional induction o f genes transcribed by Pol II and that 

the ELL-containing LEC is required for Pol II transcribed snRNA-encoding genes (Lin et al., 2011; Smith 

et al., 2011b).

6.1.2. Gene target specificities of the SEC and SEC-like complexes 

The phosphorylation of the Pol II CTD, DSIF, and NELF by active P-TEFb are 

essential for the release o f Pol II from the promoter-proximal pause sites (Peterlin and 

Price, 2006). Up to now, four different active P-TEFb-containing complexes have been



identified in mammals, including BRD4/P-TEFb, SEC, SEC-L2 and SEC-L3 (Table 6-1). 

In mammalian cells, both inactive and active forms of P-TEFb co-exist in equilibrium. 

Most of P-TEFb is insulated within the inactive 7SK snRNP-containing complex (Table 6- 

1). When the cellular need arises, P-TEFb is dissociated from the inactive pool and 

recruited to the chromatin to stimulate transcriptional elongation through interacting with 

Bromodomain-containing protein 4 (BRD4) or incorporating into SEC or SEC-like 

complexes.

It would be interesting to understand why in a variety of cellular contexts two or 

more of these active P-TEFb complexes coexist and the functional differences among 

them. Firstly, during both basal and activated transcription, the actions of P-TEFb are 

needed to allow paused Pol II to shift into the productive elongation stage. Inhibition o f P- 

TEFb by the CDK9 inhibitor, flavopiridol, not only suppresses the global transcription, but 

also blocks the release of paused Pol II from the promoter-proximal region after several 

hours of treatment, suggesting the central role o f P-TEFb in regulating transcription in the 

resting state (Rahl et al., 2010). Secondly, each of these active P-TEFb complexes could 

have its own specialty in vivo (Luo et al., 2012a). For example, although possessing 

similar CTD kinase activities in vitro, SEC-L2 and -L3 are not recruited to the promoter o f 

the HSP70 gene upon stress and also not required for its proper induction, indicating that 

different P-TEFb-containing complexes may have their own functional target preference. 

This notion was supported by the genome-wide expression data showing that SEC, SEC- 

L2 and SEC-L3 regulate different subsets of genes in vivo, with SEC focusing on these 

immediate response genes. Furthermore, all o f the AFFs are linked to human diseases.

The unique roles of the AFFs in different diseases might be caused by the target 

specificities of the SECs.
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Table 6-1. Different P-TEFb-containing complexes in mammals

7SK
' . . . ■ 
7SK

hnRNP hnRNP

Hexim1/2 Hexim1/2

LARP7 LARP7

MEPCE MEPCE

BRD4 BRD4

AFF1/4 AFF1/4

AFF2 AFF2

AFF3 AFF3

EAF 1/2 EAF1/2

ELL1-3 ELL1-3

AF9/ENL AF9/ENL AF9/ENL AF9/ENL

CDK9 CDK9 CDK9 CDK9 CDK9 CDK9

Cyclin T Cyclin T Cyclin T Cyclin T Cyclin T Cyclin T

It should be noted here that in some cases different P-TEFb complexes could work 

together to fine tune the expression level o f the same gene. One example is the above- 

mentioned HIV-1 LTR. Another example is the regulation o f M YC  gene expression by 

both SEC and BRD4 (Dawson et al., 2011; Delmore et al., 2011; Luo et al., 2012a; Zuber 

et al., 2011). Inhibition ofBRD2/3/4 by inhibitor I-BET151 in leukemia cells not only 

reduces the binding o f BRD2/3/4 to the chromatin, but also dislodges the SEC and PAF1 

complex from the chromatin (Dawson et al., 2011).
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6.2. SEC in rapid gene induction

Proper adaptation to acute stress such as nutrient or temperature variation and 

developmental cues requires efficient activation of immediate response genes, as most of 

these genes encode master regulators controlling the expression of a plethora of down­

stream effectors, which will in turn alter the transcriptional network and physiological 

function o f the cells to maximize the cellular adaptation capacity.

6 .2 .1 . SEC in Pol II-dependent rapid transcriptional activation 

In vitro studies showed that both BRD4/P-TEFb and SEC could phosphorylate Pol 

IICTD (He and Zhou, 2011; Luo et al., 2012a; Smith et al., 201 la). However, the full 

extent of the functional differences between the active versions of the P-TEFb-containing 

complexes is not yet known. Although BRD4 is recruited to the HIV-1 promoter, it only 

affects basal transcription (Jang et al., 2005; Yang et al., 2005). The functional evidence 

from the SEC studies shows that SEC is required for stress-induced HSP70 gene 

expression and Tat-transactivated HIV-1 LTR transcription (He et al., 2010; Lin et al., 

2010; Sobhian et al., 2010).

In mouse embryonic stem cells, SEC components peak at promoter-proximal

regions and travel with Pol II along the gene body on highly transcribed genes (Lin et al.,

2011). In general, rapid induction is now recognized as the main function o f SEC: recent

whole genome studies revealed that the loading of SEC onto many of the retinoic acids

(RA) responsive genes, such as Hoxal, caudal type homeobox 1 (Cdxl), and activating

transcription factor 3 (Atf3), bearing paused Pol II is required for their rapid induction in

response to RA. It should be mentioned here that RA treatment also leads to the

recruitment of Brd4 to the same SEC-occupied genes. However, depletion o f Brd4 via

RNAi has little effect on the activation of most o f these genes, suggesting that SEC, but
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not BRD4/P-TEFb, is one o f the major effectors of rapid induction of gene expression.

The co-recruitment, but differential requirement, of SEC and BRD4/P-TEFb implicates 

that within the transcription cycle each elongation factor has specialized roles, perhaps 

working together in some cellular contexts.

6 .2 .2 . SEC in Pol II-independent rapid transcriptional activation

It has been suggested that promoter proximally paused Pol II creates an advantage 

for efficient gene activation, since the polymerase is already in the right place waiting for a 

proper signal(s) for departure. Based on this point, it has been postulated that promoter- 

proximally paused Pol II is the basis for the rapid transcriptional induction o f immediate 

response genes, including heat shock genes, serum-inducible genes, and certain 

developmentally controlled genes. However, it is not clear whether paused Pol II is always 

a prerequisite for rapid induction. Furthermore, it has also been proposed that the presence 

of paused Pol II is required for the synchronous induction of developmentally regulated 

genes (Gilmour, 2009; Levine, 2011).

In mammalian cells, the first example o f rapid transcriptional induction in the

absence of paused Pol II was shown for the activation of the Cyp26al gene in mouse

embryonic stem cells (mESC) by RA (Lin et al., 2011). The Cyp26al gene encodes a

member of the cytochrome P450 family of enzymes that tightly controls the level and

distribution of RA through oxidative metabolism during embryogenesis (Tang and Gudas,

2011). In the undifferentiated mouse ES cells, the Cyp26al gene is inactive and is covered

by trimethylated H3K27, a mark of transcriptionally silenced chromatin. Furthermore, the

Cyp26al gene does not contain any detectable paused Pol II on its promoter. However,

Cyp26al is much more rapidly induced in the presence of RA than other paused Pol II

bearing RA target genes (Lin et al., 2011) and Pol II and SEC are recruited to the Cyp26al
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gene within a few hours following RA treatment. Disruption of SEC, through either 

shRNA-mediated E112 depletion or inhibition of the kinase module Cdk9 by flavopiridol, 

greatly reduces the RA-activated Cyp26al gene expression. This case indicates that paused 

Pol II is not strictly required for the rapid induction of transcription.

Moreover, in Drosophila, reducing promoter pausing of Pol II at the Hsp70 locus 

by knocking down NELF does not slow the rate of gene activation after heat shock (Ghosh 

et al., 2011; Gilchrist et al., 2008). Based on this and other observations (Hah et al., 2011), 

paused Pol II might not be a prerequisite for rapid transcriptional induction. It could 

instead be that genes having paused Pol II in their promoter-proximal regions could 

respond to an inducing signal in a more synchronous and dynamic manner in the first 

several rounds of transcription, with the stochastic process of de novo Pol II recruitment 

having already been completed. Such a model was proposed to explain the association of 

paused Pol II with synchronous transcriptional induction in developing Drosophila 

embryos (Boettiger and Levine, 2009).

6 .2 .3 . The potential roles of ELLs in transcriptional initiation control

The in vitro biochemistry elongation assays have shown that ELLs can enhance the 

elongation activity of Pol II by reducing transient pausing, which is further supported by 

the requirement o f ELL2 for the release o f paused Pol II from the H oxal promoter. 

However, the studies in mESC also demonstrated that the loss of SEC reduces both the 

proximal and elongating Pol II on the Cyp26al gene, but has no significant effect on the 

paused Pol II on the Hoxal gene (Lin et al., 2011). This phenomenon opens the possibility 

that, apart from participating in Pol II elongation, SEC and its component(s) may also help 

stabilize the rapidly assembled PIC on the Cyp26al gene or those immediate response
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genes without preloaded Pol II. This finding suggests the diverse mechanisms of SEC in 

regulating paused Pol II dependent and independent rapid gene activation.

6.3. Mechanisms for SEC recruitment

Translocations of any of the SEC subunits to the N-terminal DNA-binding domain 

of MLL improperly stabilizes SEC to MLL target genes, including HOXA9 and HOXAIO, 

leading to deviant gene expression and to aggressive acute leukemia (Lin et al., 2010; 

Smith et al., 201 la). Furthermore, the HIV-1 trans-activator of transcription (Tat) recruits 

SEC to activate HIV-1 gene expression (He et al., 2010; Lin et al., 2010; Mohan et al., 

2010b; Sobhian et al., 2010). These findings provoke thoughts of how SEC is normally 

recruited and functions on its diverse target genes.

6.3.1. Recruitment of SEC by DNA-specific factors 

SEC could initially be recruited to specific genomic loci by sequence-specific 

factors, or after specific cellular events such as juxtaposition to MLL via chromosomal 

translocation. DNA-binding factors, whose activities can be triggered by signaling events, 

may recruit SEC to a specific set of genes whose activation will allow the cell fate 

transition. For example, upon RA-induced differentiation of mESC into a neuronal 

lineage, SEC was found to bind to RA receptor (RAR) target genes, including H oxal, 

Cdxl, Cyp26al, and to regulate their expression and initiate a neuronal lineage (Lin et al., 

2011). In this case, it is very likely that RAR, activated by retinoid signaling, is the DNA- 

binding factor that helps recruit SEC to its target genes to promote transcription. 

Subsequently, the DNA-binding factors that deliver SEC to specific loci may boost the 

activity of SEC locally by stabilizing its components or the architecture of the whole 

complex.
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In the case of MLL-SEC translocations, the fusion of AFF1, AFF4, or ELL1 with 

MLL may stabilize each other and increase the residency time of SEC with the HOX  loci, 

leading to increased transcription (Figure 6.2A). In the case of Tat-mediated 

transactivation, Tat not only recruits SEC, but also prevents the polyubiquitination and the 

proteasomal degradation of the SEC components (Bursen et al., 2004; He et al., 2010), 

thereby, increasing the local concentration of fully functional SEC (Figure 6.2B).

6 .3 .2 . DNA-specific factors independent recruitment o f SEC

It should be noted that SEC exists and functions independently o f MLL or Tat.

Recent genome-wide data substantiates this point by using high-throughput ChlP-

sequencing to precisely map the SEC components throughout the mESC genome. In the

cellular context without MLL translocation or HIV-1 infection, many genes such as the

housekeeping histone genes, are co-occupied by multiple SEC components at high

confidence levels (Lin et al., 2011). The question raised here is, under normal

physiological conditions, how is SEC recruited to its gene targets? Proteomic analyses

identified an interaction between the SEC components ELL-associated factor 1/2 (EAF 1/2)

and the N-terminal TFIIS-like domain of the transcriptional coactivator, the Mediator

Complex subunit 26 (MED26) (Takahashi et al., 2011), suggesting a mechanism for the

recruitment of SEC to genes. This notion was validated by manual ChIP assays on

selected genes demonstrating that after MED26 depletion, the occupancy o f the SEC

components was decreased throughout the whole transcribed regions o f the MYC  and

HSP70 genes. In line with this observation, the knockdown o f MED26 also attenuates the

signal of Pol II Ser2 phosphorylation on the two genes, indicating that MED26 is required

for the proper function of SEC on these loci. However, others have proposed modes of

recruitment of SEC that depend on either BRD3/4 complexes (Dawson et al., 2011) or
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interactions between AF9/ENL and the RNA Pol II-associated factor complex (PAFc), 

which promotes mature transcription in multiple ways, including chromatin remodeling, 

elongation, and polyadenylation (He et al., 2011) (Figure 6.2C). Therefore, genome-wide 

profiling of SEC components before and after depletion of the various SEC recruiters is 

essential in determining the relative dependency of these factors for SEC recruitment to 

specific gene targets.
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HOXA9 and HOXA10

C

MYC and HSP70

Figure 6.2. Diverse recruitment mechanisms of SEC in disease.

(A) In normal hematopoiesis, genes such as HOXA9 and HOXAIO are under strict transcriptional control. 

Chromosomal translocations that result in SEC subunits such as ENL, ELL, or AFF1 being fused to the N 

terminus of MLL (MLLn) promote the localization of SEC to HOXA9 and HOXAIO and also stabilize 

MLL-SEC locally, leading to misregulation of the TECC step and premature release of the paused Pol II 

on these genes without appropriate checkpoints. This misregulation of paused Pol II release has been 

proposed to be the molecular reason why translocations of MLL into so many unrelated genes results in 

leukemic pathogenesis. Menin and Lens Epithelial-Derived Growth Factor (LEDGF) are MLLn 

interactors, which are responsible for the recruitment o f MLL chimeras to chromatin. GTF, general 

transcription factors. (B) During active HI V -1 infection, the viral transactivator of transcription, the Tat 

protein, recruits SEC to the HIV -1 long terminal repeat (LTR) to activate expression of the provirus in 

host cells. (C) In wild-type cells, it has been proposed that AFF4-containing SEC is recruited to its target 

genes (for example, MYC or HSP70) by the Mediator complex subunit. MED26, and the PAF1 complex 

to regulate their expression. Depletion of the bromodomain-containing protein, BRD4, another interactor 

of the positive transcription elongation factor, P-TEFb, also affects MYC  expression (see Figure 6.3).

152



6.4. Target specificities o f different elongation factors

As discussed in the Section 6.1.2, different active P-TEFb-containing complexes 

have their own target specificities in vivo. Furthermore, the function of Ell 1 in snRNA 

gene transcription, E112 in rapid gene activation, and E113 marking at enhancers for setting 

up paused Pol II extend this principal: every elongation complex could have its own target. 

LEC contains ELL 1, Interact with C-terminus ELL 1 (ICE1) and 2 (ICE2), in both 

Drosophila and mammals (Figure 6.1)(Smith et al., 201 lb). In Drosophila, there is only 

one ELL protein, dELL. The dELL ChlP-seq combining with the total RNA-seq upon 

dELL RNAi showed that Drosophila dELL predominately regulates the transcription of 

Pol Il-transcribed snRNA genes. However, there are three ELL paralogs in mammals. By 

taking the same strategy, I found that mammalian ELL1, instead of ELL2 and ELL3, is 

predominately involved in the regulation of snRNA genes. This finding suggested that 

different ELL proteins could function in different classes of genes and the specialization of 

LEC for snRNA genes and SEC for mRNA genes.

6.5.Transcription Elongation Checkpoint Control (TECC) and SEC in cancer

Transcription elongation checkpoint control (TECC), which is referred to as the

regulation o f Pol II set up and release from the paused state, is crucial for the regulation of 

gene expression during development and its misregulation can result in the onset of human 

diseases including cancer. As discussed above, the translocation of MLL to any o f the 

SEC subunits can cause re-localization of SEC to the MLL target genes, resulting in an 

aberrant transcriptional elongation checkpoint defect and eventual leukemogenesis. In 

support o f this model, I have demonstrated that AFF4, the platform for other SEC subunits 

association, is required for the complex stability, and that the knockdown of AFF4 in SEC
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in leukemia cell lines reduces the expression o f HOXA9 and HOXAIO, which are known 

targets o f MLL.

A

M YC  in AML cells

M YC  in AML cells

BRD4 inhibitors

Figure 6.3. SEC in cancer progression.

(A) The expression of the MYC  gene is regulated at the level o f transcriptional elongation by paused Pol 

II through a mechanism known as the Transcriptional Elongation Checkpoint Control (TECC). 

AF4/FMR2 family member 4 (AFF4) occupies the entire transcription unit of the MYC  gene and is 

required for its expression. Super Elongation Complex (SEC) containing AFF4 is recruited to the MYC  

locus by the Mediator complex subunit, MED26, and the PAF1 complex, which are both RNA 

polymerase II transcriptional coactivators (Takahashi et al., 2011). Reducing the level o f MED26 or 

PAF1 by RNAi leads to a failure in the proper loading of the SEC components AFF4 and Cyclin- 

dependent kinase 9 (CDK9) to the MYC gene. Depletion of BRD4, another interactor of the positive 

elongation factor, P-TEFb, also affects MYC expression (Yang et al., 2008; Zuber et al., 2011). These 

findings raise the question of how SEC and BRD4 coordinate the regulation of MYC  gene expression.

(B) In cells isolated from patients with acute myeloid leukemia (AML), BRD4 recruits the SEC and 

PAF1 complex to the MYC  loci (Dawson et al., 2011). Inhibition of BRD4 by the small molecule I- 

BET151 leads to the dissociation of the SEC and the PAF1 complex from chromatin and results in the 

down-regulation of MYC gene expression (see the figure). The role of BDR4 in acute lymphoblastic 

leukemia (ALL) is not clear since these cells were insensitive to BRD4 inhibitors. Recently, it has been 

shown that SEC is required for the expression of the MYC gene in both AML and ALL (Luo et al., 

2012a). Therefore, SEC could be a potential target for the treatment o f the cancers with MYC  gene 

overexpression.
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Besides this, the finding that the cancer master gene MYC is a direct target of SEC 

implies that SEC could also function in cancer development and progression (Figure 

6.3 A). MYC is one o f a few well-characterized genes which are mainly regulated at the 

level of transcription elongation by promoter-proximal paused Pol II. Inhibition of BRD4 

by the small molecule JQ1 is able to efficiently arrest AML cell proliferation through 

reducing the MYC expression (Figure 6.3B). However, ALL growth is insensitive to 

BRD4 inhibition. Different from BRD4, the requirement of AFF4 on MYC expression 

was observed in both AML and ALL cells, suggesting that AFF4 could represent a broader 

spectrum target than BRD4 for therapeutic interventions in leukemia. Another target of 

SEC is the ADAM metallopeptidase with thrombospondin type 1 motif, 1 (ADAMTS1) 

gene, which encodes a matrix degrading proteinase, establishing a permissive stromal 

microenvironment for tumor cell growth and migration. Therefore, SEC could function in 

cancer in three aspects: pathogenesis, progression, and metastasis. This positions SEC or 

its central factor, AFF4, as a broad-spectrum target for therapeutic interventions in 

leukemia and other cancers.
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Chapter 7. Future Work

SEC family members have diverse and far-reaching effects on gene expression 

during normal development and during disease pathogenesis. The identification of the 

upstream signals that control the activity or stability of the SECs and deliver different 

SECs to different loci throughout the genome could help explain the differential 

recruitment o f the SECs or SEC-related complexes. In order to delineate the pathways by 

which the SEC family promotes transcription, the identification of additional in vivo 

substrates for these P-TEFb-containing complexes should be considered, as Pol II, NELF, 

and DSIF might just be a fraction of proteins phosphorylated by P-TEFb within SECs. 

Furthermore, it will be of interest to determine the gene targets o f the different SECs 

during development or under diverse conditions. This would also hopefully define the 

gene target selectivity for different Pol II elongation complexes and provide insights into 

how these complexes work together to satisfy the developmental needs. Given the success 

of the development of BRD4 inhibitors that function to disrupt BRD4 recruitment, and to 

reduce SEC-dependent MYC expression, it will be worth trying to develop inhibitors that 

more directly interfere with SEC family organization or stability. These could be used 

both to interrogate the normal function of the SEC family o f complexes and as potential 

cancer therapeutics.
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