
Open Research Online
The Open University’s repository of research publications
and other research outputs

A systematic mapping study of API usability evaluation
methods
Journal Item
How to cite:

Rauf, Irum; Troubitsyna, Elena and Porres, Ivan (2019). A systematic mapping study of API usability evaluation
methods. Computer Science Review, 33 pp. 49–68.

For guidance on citations see FAQs.

c© 2019 Elsevier Inc.

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.cosrev.2019.05.001

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1016/j.cosrev.2019.05.001
http://oro.open.ac.uk/policies.html

A Systematic Mapping Study of API Usability
Evaluation Methods

Irum Raufa,∗, Elena Troubitsynab, Ivan Porresc

aCentre for Research in Computing, The Open University, United Kingdom
bKTH – Royal Institute of Technology, Stockholm, Sweden

cÅbo Akademi University, Dept. of Information Technologies,Turku, Finland

Abstract

An Application Programming Interface (API) provides a programmatic inter-

face to a software component that is often offered publicly and may be used by

programmers who are not the API’s original designers. APIs play a key role

in software reuse. By reusing high quality components and services, developers

can increase their productivity and avoid costly defects. The usability of an

API is a qualitative characteristic that evaluates how easy it is to use an API.

Recent years have seen a considerable increase in research efforts aiming at eval-

uating the usability of APIs. An API usability evaluation can identify problem

areas and provide recommendations for improving the API. In this systematic

mapping study, we focus on 47 primary studies to identify the aim and the

method of the API usability studies. We investigate which API usability fac-

tors are evaluated, at which phases of API development is the usability of API

evaluated and what are the current limitations and open issues in API usability

evaluation. We believe that the results of this literature review would be useful

for both researchers and industry practitioners interested in investigating the

usability of API and new API usability evaluation methods.

Keywords: API Usability, Usability Evaluation Methods, API Developers,

Usability factors, Cognitive Dimensions

∗Corresponding author
Email addresses: irum.rauf@open.ac.uk (Irum Rauf), elenatro@kth.se (Elena

Troubitsyna), ivan.porres@abo.fi (Ivan Porres)

Preprint submitted to Journal of LATEX Templates June 25, 2019

1. Introduction

An Application Programming Interface (API) provides a programmatic in-

terface to a software component or service. APIs play a key role in software

reuse: they allow programmers besides the original designers to use a certain

component or service.5

Although the concept of API is not new, there is currently a renewed interest

in creating, publishing and consuming APIs as well as improving methods for

carrying out these tasks. APIs have a prominent role in software engineering

because they support three main tasks.

First, APIs enable software reuse by defining the interfaces of software com-10

ponents. This has traditionally been the main use of APIs. It supports the

well-established concept of software modularity [70].

Second, APIs are also interfaces to software services offered over a network.

They facilitates an interoperability of computing systems. In recent years, we

have seen an exponential growth of the use of APIs to connect web applica-15

tions and services over the Internet. Currently, many web applications use

authentication or storage services from Google, Facebook or Dropbox thanks to

their public APIs. Cloud providers such as Amazon Web Services (AWS) offer

self-provision and management interfaces through an API. Additionally, mobile

applications for smartphones connect and interoperate with web applications20

using APIs. Currently, there are more than 18,000 public web APIs1.

Finally, APIs enable publication of open data. Many public organizations

from all around the world are publishing vast amounts of data that can be ac-

cessed through the Internet using an API. As an example, the Finnish Ministry

of Finance currently offers 1766 different datasets2.25

An API is a result of a design process performed by humans. Designers of

an API are programmers who decide which features should be included in it,

and how to use these features and document them. API users are also program-

1http://www.programmableweb.com/apis/directory
2http://www.avoindata.fi/

2

mers. They must study the API documentation and, in some cases, its source

code, and use the API to create new programs or interconnect existing ones.30

APIs have many different quality attributes such as functionality, reliability,

and availability [19]. However, the focus of this study is an often neglected but

equally important characteristic of an API: its usability.

The usability of an API is a qualitative attribute that indicates us how easy

it is, for developers, to use an API in a certain context and learn it. APIs35

with good usability can increase programmers’ productivity and satisfaction

[59]. Over the years, developers have realized the importance of creating usable

APIs to attract and retain their users. However, once an API is published, it

is difficult to change it since there can be many programmers who are using it

already. Therefore, it becomes necessary to evaluate and review the usability of40

an API before it is offered publicly.

In this systematic mapping study, we summarize the body of knowledge cre-

ated in the field of evaluating API usability. We evaluate and categorize different

approaches, systematically analyze their features and discuss the future trends

in the area of evaluating API usability. This work targets both researchers45

from academia and practitioners who are interested in evaluating the usability

of APIs.

The paper is organized as follows. Section 2 discusses API usability and how

it is defined in the literature. Section 3 presents our review protocol and the

research questions. Section 4 presents answers to the research questions. Section50

5 discusses previous systematic literature reviews. Section 6 and 7 discuss the

challenges of existing works and conclude our findings correspondingly.

2. API Usability

APIs offer software services to wider audiences who can use the functionality

offered by APIs in ways beyond the imaginations of the original developers. For55

example, API offered by Google Maps [1] is being used today by thousands

of applications in a variety of unique and innovative ways. AirBnB [2] has

3

effectively used Google Maps API to revolutionize the lodging market. The

cab hiring companies like Uber [3], with the help of Google Map API, have

completely changed the way cab hiring is done today. APIs that are developed60

with its users in mind and provide good usability encourage users to continue

using them. On the other hand, users easily leave the APIs that they are not

comfortable with [79].

Well-designed APIs encourage programmers to use them in productive and

satisfying way in using them [39]. However, not all APIs are equally usable, and65

some APIs may not offer ease-of-use to its users as other APIs do. Similarly to

the graphical user interfaces that are convenient to use, provide easy access to

information and increase user’s productivity by easing out the cognitive load,

the API users also select and continue the use of an API that provides them

easy access to information and improves their time-to-develop.70

API users choose an API by reading its documentation and analysing how

to use it by doing small tasks [4]. If API user does not perceive ease-of-use and

satisfaction with it, they will either not choose it or discontinue its use after an

initial trial [79]. For an API provider, loss of API users incurs a loss of revenue

and reputation [54]. For an API user, a choice of a badly designed API results75

in an increase in time, efforts and money to build applications using such an

API [54]. It thus becomes essential for API providers to evaluate the usability

of their APIs before releasing it because once an API is released it becomes

difficult to change it since there may be many developers using it.

Usability is a qualitative attribute of the design of a product. The impor-80

tance of usability lies in the fact that it significantly contributes to the accep-

tance of the product by its users. However, since usability is a subjective term,

it has been defined and used differently by different usability standards and

researchers. For example, we can find three different definitions of usability in

three different ISO standards. ISO/IEC 9126 Software engineering (Product85

quality) [45] defines usability as “a quality characteristic defined as the capabil-

ity of the software product to be understood, learned, used and to be attractive

to the user when used under specified conditions”.

4

ISO/IEC 25010 defines usability as characteristic of having the following

attributes: “learnability, flexibility, accessibility, and context conformity”.90

ISO 9241 [44] provides a relatively broad view on usability. It terms software

usable “when it allows the user to execute his task effectively, efficiently and with

satisfaction in the specified context of use”.

Other usability experts have also proposed different usability models. The

work by Nielsen and Nielsen [66] and Loranger [67] define usability as five qual-95

ity components: “learnability, efficiency, memorability, errors and satisfaction”.

Abran et al. [5] took ISO 9241-11 as a baseline for their consolidated model

and proposed extensions to it with the following two attributes: “learnability”

and “security”. The work of Quesenbery [75] defines “effectiveness, efficiency,

engagement, error tolerance, and ease of learning” as quality attributes of a100

usable product.

Seffah et al. [88] proposes a consolidated model built upon the analysis of

the usability measurement literature. This model includes ten usability factors:

efficiency, effectiveness, productivity, satisfaction, learnability, trustfulness, use-

fulness, safety, accessibility and universality.105

Figure 1 presents a word cloud formed from the key definitions of usability

used often in the literature (given above). A word cloud provides a composition

of words in which the size of the words shows the frequency of their occurrence.

It demonstrates that usability can be referred to as a collection of different

quality attributes with different experts giving one attribute preference over110

the other. Learnability, however, comes out to be the most common attribute

selected by experts for defining usability, followed by satisfaction and efficiency.

Although there is a large body of knowledge that defines usability and pro-

vides methods to evaluate usability of information artefacts [53], the usability115

definitions, models and evaluation methods do not cover the unique nature of

API and its usability. An API offers programmatic interfaces that exhibit in-

formation in a different manner than the interfaces of software designed for

non-programmers, e.g., GUIs (Graphical User Interfaces). The concerns that

5

Figure 1: Word cloud formed from key usability definitions in literature

contribute to the usability of an API may not be applicable to that of a GUI.120

APIs offer non-graphical interfaces that provide additional cognitive load to its

users compared to GUIs [36]. In addition, API users have different needs from

an API than that from a GUI by a non-programmer. For example, programmers

need to reuse codes, easily write new software applications using an API and

quickly find errors when compiling their codes. These and other such charac-125

teristics of APIs make them different from traditional software with GUIs.

With the widespread adoption of APIs, there is a considerable increase in

efforts to evaluate usability of APIs as traditional approaches do not fill in

the gap adequately. It thus becomes necessary to conduct a systematic study

to analyse how the usability of API is studied in the current literature, and130

identify the limitations of the existing work and define the directions of future

work in the area of API usability evaluations.

3. Systematic Mapping Approach

We present a systematic mapping study of the existing API usability eval-

uation methods. We conduct systematic mapping study (SMS) following the135

6

rigorous protocols developed for such studies [71], [50]. An SMS analyses an

evidence in a domain at a high level of granularity [50] with an aim to study

research trends. The research questions in SMS sought answer to the general

questions like a trend of publications over the time and topics studied in a spe-

cific research area [71]. On the other hand, systematic literature review (SLR)140

studies the research questions in detail with very specific goals, e.g., answering

questions like whether a particular intervention is of practical use to the indus-

try [71]. The details of differences between SMS and SLR can be found in [71]

and [50].

We found SMS more appropriate to systematically study and analyse exist-145

ing literature relevant to API usability evaluation methods, since our research

objective for such a study was of a broad nature. Our research objective was

to discover research trends over time by posing general research questions that

would classify the primary studies in different categories like publication trend

over time, topics covered in the literature, etc. [71].150

Both SLR and SMS require a rigorous selection process which is transpar-

ent and exhaustive in order to identify as many as possible relevant research

articles within the scope of the review. Our review protocol is based on the

guidelines proposed by Kitchenham et al. [50]. The review protocol consists of

three main phases for a systematic mapping study: Planning, Conducting and,155

Reporting the Review. The first phase starts with the review planning stating

the motivation presented in Section 2 and formulating the research questions

based on the motivation to do an SMS (presented in Section 3.1). The second

phase of conducting the review consists of identifying and selecting the primary

studies, assessing the quality of the studies, extracting data and synthesizing it160

(presented in Sections 3.2 - 3.5). The review is concluded by writing this review

report based on the results of the study.

3.1. Research Questions

We have identified the following four research questions with an aim to

provide a picture of the current research efforts in the area of API usability165

7

evaluation in the interests of researchers and practitioners:

• RQ 1:What are the different methods used to evaluate the usability of an

API? A wide range of usability evaluation methods exists ([53] [38]). This

question aims at identifying which usability evaluation methods are used

in the existing literature to evaluate the usability of APIs.170

• RQ 2: What is the aim of the existing research efforts on API usability

evaluation? This research question identifies and categorizes the existing

articles based on their research aims. Answering this research question

will help us to analyze the state of the art in this area.

• RQ 3: In which phase of API development does the API usability eval-175

uation method apply? The usability evaluation can be done at various

stages of development. By answering this research question we can help

researchers and API developers by directing them to appropriate stud-

ies that address usability evaluation at a particular phase and learn the

applicability of different API usability evaluation methods at different de-180

velopment phases from them.

• RQ 4: What are the usability factors identified and evaluated by the

existing studies? The term usability encompasses a rather broad set of

concepts. Various researchers use different perspectives of usability to

evaluate an API. With this research question, we study which usability185

factor is addressed by the researchers when evaluating the usability of an

API.

3.2. Study Selection Strategy

The study selection strategy is critical to find and select complete and rele-

vant literature. Therefore, this step has to be carefully designed and validated190

in order to provide rigor to the systematic review.

8

3.2.1. Identify Search Terms and Define Search String

We built our search string by 1) First identifying major keywords based

on our research questions. The major keywords that we identified were: API,

usability and evaluation. 2) As a second step, we identified the alternative195

keywords by finding the synonyms. 3) In the third step, we combined the major

terms with the Boolean AND operator and the alternative keywords with the

Boolean OR operator.

The search string was refined through the iterative process along with deep-

ening our understanding of existing work during a search of different repositories.200

The final search string was:

{((API OR framework) AND (usability OR usable) AND

(evaluat* OR assess* OR measur* OR tool OR test* OR automat*))

< in abstract, keywords, and title > }

3.2.2. Identify Repositories205

The search repositories that we selected were: IEEE Xplore, ACM Digital

Library, Web of Science(WS), SpringerLink(SL) and ScienceDirect(SD).

We used IEEE Xplore and ACM Digital Library since they cover almost all

important workshops, conferences and journal papers that are published by ei-

ther IEEE or ACM. The other three repositories were selected since they show210

journal papers from leading software engineering journals. We also manually

searched the conferences and journals publishing work on human-computer in-

teraction and human-centric computing. We selected the following journals:

International Journal of Human-Computer Interaction, ACM Transactions on

Computer Human Interaction , Advances in Human-Computer Interaction, IEEE215

Transactions on Human-Machine Systems, Interacting with Computers, Inter-

national Journal of Human-Computer Interaction and Journal of Usability Stud-

ies. We also manually searched the proceedings of IEEE Symposium on Vi-

sual Languages and Human-Centric Computing (VL/HCC). We selected these

peer-reviewed venues based on their relevance to our topic. We also searched220

9

http://apiusability.org to find relevant research articles that we might have

missed and searched profiles of researchers actively working on API usability.

3.2.3. Study Selection

Our study selection process is based on steps presented in Table 1. Initially,

we searched electronic repositories using our search string. The found papers225

were filtered by reading their titles, keywords, and abstracts using our inclu-

sion and exclusion criteria (presented later in this section). We then manually

searched some of the journals and conferences mentioned above. From [99], we

adapted the snowball strategy in our selection process. We adopted the last

three steps (out of 5) of the snowball strategy since we had already selected an230

initial set of papers with automatic search and manual search. We adopted and

applied the following three steps of the snowball strategy:

1. The initial set of papers consisting of 76 research articles was taken as an

input to perform backward snowballing. The references of these articles

were thoroughly looked at to identify any potential primary studies in235

addition to authors’ own previous works that they may have conducted

in this area. The results of this step were also used as an input in the

following steps.

2. The selected studies became a subject to forward snowballing by looking

at the papers that cited these selected studies. As recommended [99], we240

used Google scholar because it indexes a collection of databases.

3. If no new papers were found by iterating steps 1-2, we searched personal

homepages of authors or databases of their research institutes and in some

cases, some active authors in this area were contacted via email to identify

any potential missing articles. If new papers were found, then we looped245

back to Step 1.

Step: 3

Table 1 shows summary of our selection process.

10

http://apiusability.org

Table 1: Summary of Selection Process

WS IEEE ACM SL SD Total

Search results 801 73 164 4446 2041 6487

After reviewing titles/keywords 32 12 14 9 4 70

After manual search 34 13 15 10 4 76

Snowballing 38 17 21 12 4 92

After reading abstracts 32 15 15 9 3 75

After skimming/ 29 12 12 4 2 59

reviewing

After Discussion-Final 21 10 11 3 2 47

3.2.4. Study Quality Assessment (SQA)

Assessing the quality of a research article is an important part of the selection250

process. We selected two criteria to classify papers based on their quality. Our

first criterion was to select papers that were more than 5 pages in IEEE double-

column format or more than 7 pages in LNCS single-column format. The second

criterion was to select papers based on their research impact, i.e., the citation of

the paper. This criterion is justified by the argument that the research articles255

that were cited less or not at all, after many years, did not have much research

impact [65]. We adopted this approach and ranked papers for their quality

by computing the difference between the Google Scholar(GS) citation number

of the paper and the value obtained from the formula, 2n-2, where n is the

number of years since that paper had been published. This formula, taken from260

the work of Nguyen et al. [65], takes into consideration the fact that a paper

may get cited less often in the first two years of its publication. Hence, such an

approach becomes less restrictive on the study selection. The papers published

in 2017 and 2018 are not evaluated based on this citation criteria as papers have

fewer citations in the first two years. Thus, the formula adopted to calculate265

study quality assessment (SQA) score is calculated by subtracting (2n-2) from

GS citation number, i.e. GS citation number - (2n-2).

11

Figure 2: Study Quality Assessment for Primary Studies

Figure 2 shows that most of the primary studies have good research impact,

although most of them are recent researches implying API usability evaluation is

an active research area. The detailed tables are attached in Appendix A. Table270

A.2 and Table A.3 show the SQA assessment results of all the primary studies

along with the comparison of the article length. We did not find any research

article less than 7 pages long in LNCS single-column format so in Table A.2

and Table A.3 the column less than 5 pages suggest the articles only in IEEE

double-column format.275

A SQA greater than 0 implies that the article has a significant research

impact over the years and an SQA score less than 0 implies the opposite. The

classification serves to show significant API usability evaluation studies and less

common or emerging API usability evaluation studies.

3.2.5. Inclusion Criteria280

In our systematic literature review, we have included works published before

and in the year 2018. In section 1, we have discussed what we infer from

API usability. The usability of an API has a diverse definition and hence, we

explicitly defined our inclusion and exclusion criteria as follows:

12

• the papers that explicitly discussed evaluating the usability of APIs.285

• the papers that used both the words API and Usability as keywords for

paper identification

• the papers that provided or used approaches that evaluate the usability

of an API.

3.2.6. Exclusion Criteria290

Initially, we excluded papers that were duplicates of the papers already found

in the other repository/ repositories. We have, then, excluded the works accord-

ing to the following criteria:

• the papers not written in English

• in case more than one paper addressed the same approach, we included295

the latest version of the approach that contained the complete description

of the work. For example, we selected the extended journal version [87]

over the shorter conference papers ([84], [86], [85])

• the papers that focused on how to improve API documentation in itself

but did not provide information on how their study assesses the usability300

of the API. The detailed study of existing tools that are used for API

documentation generation can be found at [68]

• the papers that provided a usage analysis of APIs to study usage trends,

e.g., [82].

• the papers that studied the use of a program by its users in order to305

study non-functional properties other than usability, e.g., maintainability

([74],[51], [73])

3.3. Extract Data

A total of 47 primary studies were selected.

The papers from the final list of primary studies were read in full to under-310

stand the state of the art in evaluating API usability. At this phase, we collected

13

0

7.5

15

22.5

30

WebOfScience IEEEXplore ACM SpringerL ScienceDirect

Unique Duplicate

Figure 3: Selection from repositories

the relevant data from primary studies that would help us in answering our re-

search questions.

The data we collected from each paper consisted of the following items: the

year of publication, the number of citations, the method used, tool availabil-315

ity, the aims of usability evaluation, factors evaluated for usability, and the

development phase at which the usability evaluation was done.

3.4. Phase: 3 - Data Analysis

After extracting the relevant data from the primary studies, we analyzed

the collected data to find answers to our research questions. The articles were320

analyzed and classified by the first and last authors of this review.

Figure 3 depicts the selection of studies from the repositories. It shows

that the majority of the studies were found in Web of Science and the smallest

amount were found in ScienceDirect. However, many of the studies found in Web

of Science can also be found in the other repositories. A search in the ACM325

database yielded the most unique studies. Figure 4 shows the ratio between

Journal and Conference articles in the primary studies.

Figures 5 and 6 present the trend of research studies in the area of API

usability over the years. Figure 5 shows the trend of publishing in the con-

ferences and journals separately, and Figure 6 shows the trend of publishing330

14

Figure 4: Journal and Conference Ratio in Primary Studies

over the years for the total number of publications (including both journal and

conference publications). The figures show that research on API usability has

gained momentum only after 2007. The work of Bore and Bore [16] appeared in

2005, but does not score well for its quality as shown in Table A. 2 - was only

2 pages long and had a negative citation score (defined above). At the begin-335

ning, more research publications can be found in conferences, which showed the

initial research efforts. Gradually, as the research efforts matured, the journal

publications also gained momentum. Some of the journal articles contained a

more detailed and mature version of other previous studies of the same authors

that appeared previously as conference/ workshop papers. We did not include340

previous conference/ workshop papers of such journal papers in the primary

studies. However, they are included in trend analysis shown in Figures 5 and 6

to get a better view of how research in API usability evaluation progressed over

time.

3.5. Threats to Validity345

One fundamental issue that can affect the validity of our results is the selec-

tion of right keywords. In addition to our initially selected keywords, we have

15

Figure 5: Trend Analysis of Primary Studies - Conferences and Journals Separately

also used their synonyms and alternate keywords in order to find as many stud-

ies as possible. When our understanding of the existing work improved, we also

iteratively refined the keywords. The search string has to be comprehensive to350

result in finding as many relevant studies in the electronic repositories as possi-

ble. However, defining a search string that is comprehensive enough is difficult

in this field of study due to the variety of terms used in different papers. We

tried to address this issue by also analyzing the references given on the selected

papers to find any additional papers that we might have missed. It resulted in355

finding some additional papers (explained in 3.2.3). There could still be some

relevant papers that we might have missed, however, we used our best efforts

to identify all the relevant literature.

The choice of the electronic repositories that we searched is also critical. We

used the repositories mentioned above because they cover almost all important360

workshops, conferences and journal papers in our field of study. We also searched

journal papers from the leading software engineering journals.

In addition, we also manually searched some of the conferences and journals

since they publish work on human-computer interaction and human-centric com-

puting. This was done to ensure, to the best of our efforts, that we did not miss365

16

Figure 6: Trend Analysis of Primary Studies - Total Number of Publications

out any important work that did not appear with our search query. We also

searched the references of the papers and web pages of the authors manually in

order to find any relevant papers that we might have missed.

The classification of the research studies in different categories has been done

by the first and last authors of this review. The classification is subjective,370

however, it has been done independently and the results compared between

the two reviewers. In case of any conflict of opinion, the classifications were

discussed until a common agreement was reached.

3.6. Research Results

Based on our inclusion and exclusion criteria, 47 articles are included in our375

SMS(listed in Appendix B - Tables B.4, B.5, and B.6).

4. Answering Research Questions

4.1. RQ 1: What are the different evaluation methods used to evaluate the us-

ability of an API?

We can find in the literature two main categories of API Usability Evaluation380

methods: the analytic methods that have as an object of study an API specifica-

tion itself and the empirical methods that focus on studying how developers use

17

Figure 7: Object of Study

an API. This categorization is done to better understand the existing literature

and identify different evaluation methods used to evaluate the usability of an

API.385

The literature review has revealed the following analytic methods:

• Metrics: An API design is measured using different software metrics and

the measurements are compared against predefined thresholds.

• Reviews: Experts study an API design and its documentation in order

to assess its usability and provide feedback on how to improve it. The390

reviews are usually conducted following a review protocol containing the

heuristics or design guidelines and take as input the original API and

its requirements. However, it is possible to conduct reviews that do not

follow any specific guidelines and are solely based on the judgment and

experience of the reviewers.395

The empirical methods focus on studying how developers use an API in

practice. We have identified mainly three empirical approaches to evaluate API

usability in the literature :

18

• Task-Based Usability Tests: In a usability test, the subjects perform one

or more predefined tasks using the API under evaluation. The subjects400

are observed while performing the tasks or questioned/surveyed after their

completion. The output of their tasks may also be examined.

• Controlled experiments: The subjects perform one or more predefined

tasks using different treatments such as different APIs. The effects of ap-

plying systematically the different treatments to each task are then com-405

pared. Ideally, the study contains a rigorous experiment design with clear

hypothesis formulation, randomization or blocking of undesired factors,

statistical hypothesis testing and analysis of threats to validity.

• Surveys and Repository Mining focus on the study of developer’s past ex-

periences using an API. This can be accomplished by inquiring developers410

directly via surveys or by mining issue tracking and defect databases and

source code repositories that document the results of previous projects

using the API.

Figure 7 shows that majority of the studies evaluate the usability of an API

using empirical methods, i.e., 72%(n=31) of studies evaluate the usability of415

an API by studying how the users of the API are using it and 36%(n=17) of

studies evaluate the usability of an API using API specifications in the absence

of its users. The two categories are not mutually exclusive as some of the studies

use both empirical and analytic methods to evaluate the usability of an API

(Grill et al. [37], Scheller and Kühn [87], Murphy-Hill et al. [62], Mosqueira-420

Rey et al. [60]). Also, some empirical studies have been carried out to validate

the analytic methods. Appendix C contains tables that summarize the primary

studies in these categories. Table C.7 shows a summary of papers that use API

specifications as the object of the study and Table C.8 presents a summary of

papers that evaluate the usability of an API based on how they are used by the425

users.

Figure 8 shows how primary studies have used these evaluation methods to

evaluate the usability of APIs. The first two columns (from left) show usage

19

Figure 8: Evaluation Methods

of analytical methods in the primary studies, i.e., metrics and reviews, and the

last three columns show usage of empirical methods in primary studies, i.e.,430

usability tests, control experiments and surveys and repository mining.

The most used methods are usability testing and control experiments. This

is because usability is often envisioned and studied with real users in mind.

Human computer interaction (HCI) studies are rich with literature that studies

how real users (in laboratory settings or outside) use and perceive an infor-435

mation or a software artefact. It then becomes quite obvious that researchers

use the well-practiced usability evaluation methods to evaluate the usability of

APIs as well. However, API differs from traditional software in many ways

that makes the use of traditional empirical approaches like control experiments

and user studies less-optimal for the API evaluation. APIs mostly have wide440

user-base, can be used in circumstances beyond the initial intent of the design-

ers, are extensible, i.e., functionalities can be removed/ added throughout its

lifecycle and are mostly open-source, hence, inviting developers from unknown

backgrounds to update the code. These features require automated, scalable

and time-efficient methods to evaluate the usability of an API. The least ad-445

dressed evaluation methods, as shown in Figure 8, i.e., metrics (for analytical

methods) and repository mining (for empirical methods) have the most poten-

20

tial to address these unique features of API and facilitate automated, scalable

and time-efficient usability evaluation of APIs.

We do not discuss articles in details here. The articles in each of these450

categories are further categorized according to the aims of the studies, in RQ 2

(next), and further discussed therein.

4.2. RQ 2: What is the aim of the existing research efforts on API usability

evaluation?

We categorized the selected studies according to their main research aims.455

We believe that this will help researchers and practitioners to understand the

existing work and identify unexplored areas. The aims fall under four categories:

• New Approach: The article proposes and uses a new approach, that was

not used previouly in literature, to evaluate the usability of an API.

• Fundamental Results: The main aim of the article is either a set of usabil-460

ity recommendations, guidelines or concepts that have been generalized

beyond the concrete examples mentioned in the article.

• API Evaluation Study: The article evaluates the usability of a particular

API with an aim to study how usable the API under study is. These

articles can be of great value when planning new usability studies.465

• Software Tool: The main aim of the article is a presentation of a software

tool that is used to evaluate the usability of an API in an automated

manner.

4.2.1. New Approach

The articles in this category add a new approach to evaluate the usability470

of an API in the research literature. The work of Ratiu [78], Scheller and Kühn

[87], Rama and Kak [76], Hou et al. [43] and Stylos and Myers [92] propose

new metrics to evaluate the usability of an API and use them to evaluate the

usability of API/ APIs to demonstrate their applicability. While the works of

21

Stylos and Myers [92],Rama and Kak [76] and Scheller and Kühn [87] define475

metrics using programming constructs of API specifications, Ratiu [78] and

Hou et al. [43] take a different approach to define metrics. Ratiu and Jurjens

[77] use ontological analysis of API under study to define metrics. They map

the ontology of the domain to an ontology of API that represents it and then

define metrics that explicitly link the domain concepts to the program elements480

in the API. This explicit representation captures the complexity of concepts

implemented in API.

Hou et al. [43] conducted scattered concern analysis focusing on the con-

ceptual units that can help in understanding program code. In this method,

the concerns that are scattered in the design are identified and either refactored485

or redocumented. They did a pilot study of the Java Swing JTree, identified

concerns in it and evaluated them using the model-view-controller (MVC) ar-

chitecture. Their work found that most of the concerns conformed to the MVC

architecture. However, four design flaws negatively affected the usability of

JTree that can be fixed to improve its usability.490

The work of Watson [95], Farooq and Zirkler [30], Faulring et al. [31], Grill

et al. [37], Lee et al. [55], Macvean et al. [57] and Mosqueira-Rey et al. [60]

provided new approaches to review APIs in order to evaluate their usability.

Watson [95] applied technical communication in the initial design of an API

in order to improve its usability. Based on heuristics taken from design guide-495

lines by Cwalina and Abrams [23], he evaluated the usability of an API from a

documentation perspective and analysed the API elements for their consistency.

The suggestions were incorporated by the development team and corrections

were made to make APIs more usable. Farooq and Zirkler [30] presented a

usability assessment method based on peer reviews in order to evaluate API500

usability. The review included four interdisciplinary roles: “feature owner“,

“feature area manager“, “usability engineer,“ and 3-4 reviewers. They selected

reviewers to categorize defects in the API according to the cognitive dimen-

sion framework. The result showed that compared to usability tests, API peer

reviews provided a more extensive usability test coverage.505

22

Faulring et al. [31] performed two usability evaluations: one based on an in-

spection and the other based on a cognitive walk-through. They used a heuristic

evaluation technique by involving experts who examined the user interfaces and

gave their opinions based on an initial set of heuristics. They also conducted

a study in which a SAP team used the SAP NetWeaver gateway service to510

develop common business use cases and did a cognitive walk through of their

development activity. An important aspect of this study was to integrate HCI

techniques with agile development. The work done by Grill et al. [37] used 16

design guidelines taken from factors identified by Zibran [100]. Their usability

study comprised a heuristic-based inspection, a developer workshop and inter-515

views. During inspection, reviewers were recruited and asked to find, analyse

and categorize problems in an API according to a list of heuristics. Lee et al. [55]

presented an API design process that included API reviewers as a part of the

design process. API reviewers reviewed APIs and its documentation based on

the API guidelines and documentation guidelines. Macvean et al. [57] provided520

a lightweight, distributed and scalable API design review process that aimed at

improving the usability of Google’s APIs. The key stakeholders of the review

process were defined to be the API owner, design reviewer, design review team,

shadow design reviewer and moderator. The reviews by each of the stakehold-

ers were documented in a collaborative online document that allowed feedbacks525

from each stakeholders on each others review. This facilitated open dialogue

and a single source for discussion. Their work was evaluated on 43 APIs with

high satisfaction results from all the stakeholders of the API.

Mosqueira-Rey et al. [60] presented a set of heuristics and guidelines based

on a usability model and context-of-use. These are used to analyse the usability530

of a sleep medicine API by integrating them in the heuristic evaluation with

usability experts and subjective analysis by the users of the API. The main

characteristic of their approach is the explicit integration of context-of-use into

API usability evaluation.

Murphy-Hill et al. [62] presented a new analysis technique along with a tool535

for API usability evaluation. Compared to previous works that cover API us-

23

ability issues at scale using surveys [80], online forums [42] or defect repositories

[101], Murphy-Hill et al. [62] analysed the snapshots of successive edits (saved)

by the developer and based on collective analysis of snapshots of different de-

velopers analysed the problem areas of the API.540

Controlled experiments and usability studies are carried out to observer di-

rectly the use of an artefact (API in our case) by its users. Although, these

techniques are not new when studying Human-Computer Interaction (HCI),

some researchers have approached them in a novel way to study API usability.

Nanz et al. [63] presented a design of the study that can be used to compare545

ease of learning of two different concurrent programming languages by its users.

They present a study template for learning a new concurrent language, set

of test questions and evaluation scheme for interpreting their answers. The

study design can be used to analyse the two programming languages side-by-side

without losing the control over bias introduced due to variation in developers550

programming skills.

The work of Rauf et al. [79] introduced the analysis of users’ perceptions

about API and its usage by combining the use of Expectation-Confirmation

theory [11] with control experiments.

The aim of the API usability study by Grill et al. [37] is to explore different555

HCI methods used for usability evaluation and compare the applicability of

these methods in finding usability problems in an API. The usability issues

discovered in each phase were classified in a number of categories that ranged

from documentation to structural problems in an API.

Clarke 2004 was the first to use cognitive analysis in conjunction with usabil-560

ity studies aiming at making developers aware of their APIs and knowing the

difficulties which the users face when using an API. O’Callaghan 2010 evaluated

how well an API matches the user mental model using the API walkthrough

method in order to study understanding of the code by its users.

Gerken et al. 2011 studied and identified usability issues and learning barri-565

ers that surface over time with a longitudinal study. The longitudinal study was

carried out considering the learning of an API as a continuous process which

24

cannot be effectively measured in few hours of study.

The work of Picconi et al. 2013 studied the effort required to understand

semantics of API features and how an API can be learnt easily and incremen-570

tally.

Bhaskar et al. [10] investigated the usability of an API by combining the use

of agile methodologies with the concepts of cognitive dimension framework.

4.2.2. Fundamental Results

The articles in this category evaluate the usability of an API using differ-575

ent methods like controlled experiments, usability studies, surveys, repository

mining, etc. and based on their analysis provide recommendations or guidelines

that can be applied to the development of other APIs to improve their usability.

Nasehi and Maurer 2010 proposed to use unit tests as API usage examples.

Authors showed that writing good unit tests with common usage scenarios in580

mind can ease the learning of difficult APIs. They conducted a controlled ex-

periment to study the API of Apache POI and showed that their unit tests were

helpful in learning the API. Before starting the actual experiment, pilot study

was performed on two students in order to determine the level of difficulty of

the task descriptions.585

Robillard [81] survey aimed to find problems that developers face when they

are learning an API and present the important questions that come in develop-

ers’ mind when they are using unfamiliar APIs. Their work identifies missing

areas in documentations that come with APIs. By answering the questions

raised in the study, developers can create more usable APIs. Zibran et al. [101]590

studied 1,513 defects reports across five different defect repositories and anal-

ysed them quantitatively and qualitatively. The aim of the study was to identify

API usability issues that API users reported in the defect repositories and find

significance of factors identified in his earlier work [100]. Using the results of

the quantitative studies they ranked the factors based on how frequently they595

appear in the defect repositories.

Hou and Li [42] manually collected and analysed 172 newsgroup discussions

25

from the Swing forum. They studied each case in detail and, based on their

analysis, presented a list of different obstacles programmers face when using an

API.600

Gerken et al. 2011 studied and identified usability issues and learning barri-

ers that emerged over time with a longitudinal study. Their work was motivated

by the concern that the usability of an API cannot be grasped in few hours of

study, as learning an API is a continuous process.

Duala-Ekoko and Robillard [27] conducted usability studies with 20 pro-605

grammers and observed problems that programmers face when they encounter

unfamiliar APIs. Based on their studies, they identified 20 different types of

questions that developers ask when they are learning to use a new API.

4.2.3. API Evaluation Study

When it comes to evaluating usability of specific APIs, we found two types of610

studies. The first type evaluated a particular API giving information only about

the usability of that particular API (e.g., [47], [16]) or evaluating a particular

usability concept proposed by the authors (e.g., [52], [93]). The results of the

former studies to evaluate API usability are not applicable to other APIs (e.g.,

[16], [9], [47], [21], [17], [52], [56], [83]) or result in validating a fundamental615

concept that can be used to improve the usability of APIs in the future (e.g.,

[93], [91], [72], [52]). Such studies are useful in studying how API usability can

be evaluated.

The second type of studies evaluates the usability of a specific type of API,

e.g., security APIs [35, 6] and static type systems[89], and then generalize their620

findings that are applicable to other APIs of that particular type. Such studies

are included in two categories. One is under API Evaluation Study and the

second category is one of the other three categories defined above, depending

on the aims of that article. For example, the work of Mayer et. al [58], Endrikat

et, al [29] and Spiza and Hanenberg [89] evaluate the usability of example APIs625

from static type systems against those of dynamic type systems and generalized

their findings for all APIs of static type systems. The work of Cave et. al [21]

26

compares library approach with a language approach. Both these approaches

are used in task-parallel programming models. The library-based approach does

not require any change in the tool-chain, e.g., in compilers or IDEs. However,630

they they may lead to code which is hard to understand. On the other hand,

the language-based approaches may require the standardization of new language

constructs but are easier to understand and express intent of programmers [21].

Their work concludes that common users with little knowledge on parallelism

were more comfortable with a language approach, whereas advanced users found635

library approach to be more readable. The work of Acar et al. [6] evaluates

the usability of security APIs and concluded that usability of APIs is a major

hindrance to the adoption of security APIs.

The work of Jugel [47] conducts a theoretical discussion aiming at demon-

strating the usability of the smart wrapper libraries generated through their640

model-driven approach. An informal review by the end-users for its usability

assessment was also mentioned. However, real evaluation of it usability was

not carried out. Cavé et al. [21] discuss and compare the usability of two pro-

gramming models, library-based approach and language-based approach, for

task parallelism. The discussion is built upon the authors’ expert opinion and645

experience in teaching both the models.

4.2.4. Software Tool

Software tools exist only for evaluation methods that use metrics to evalu-

ate API usability. In their work, de Souza and Bentolila [24] presented a tool,

Metrix, that parses API definition and provides a visual representation of APIs650

with respect to their complexity. They used complexity metrics proposed by

Bandi et al. [8] to evaluate API usability. Rama and Kak [76] provided nine

API usability metrics based on the design structure. They presented different

mathematical formulas to measure values of these metrics. The metrics can be

computed automatically using their proprietary tool. They measured and anal-655

ysed seven software systems to see how these systems scored for various metrics.

The work of Scheller and Kühn [87], provides a promising direction in the auto-

27

Figure 9: Aim of the Studies (API Use)

mated measurement of API usability, as they provide a number of metrics and

studies that evaluate API usability objectively. However, an automated tool

that measures API usability based on these metrics is not available.660

Another notable tool, StopMotion Murphy-Hill et al. [62], analyses the file

history of developers using a particular API. The tool looks for similar patterns

in the snapshots saved during the work history of the developer. Based on the

analysis of similar patterns of method changes, i.e., what methods are users

changing often, it identifies API usability issues.665

The categories discussed above are not mutually exclusive as some articles

have more than one aim. Figures 9 and 10 show the number of primary studies

according to their research aims categorized according to the objects of their

study, i.e., API use or API specifications. A summary of this classification is

attached in Appendix C, in Tables C.7 and C.8.670

Figure 9 shows the aim of the research articles that use empirical methods

to evaluate API usability. Their goal is to provide fundamental results, i.e.,

recommendations, guidelines or general principles, that can be used by API

designers and developers to improve or evaluate API usability. These approaches

mostly learn from API users in (relatively) small settings and then generalize675

28

Figure 10: Aim of the Studies (API Specifications)

their results. Figure 10 shows that articles employing API specifications as

an object of study, mostly do not aim to generalize their results but rather

to provide novel ways to evaluate API usability in the absence of its users.

This trend shows a pressing need for API usability evaluation approaches that

scale up, without needing users, as engaging users for such activities can be680

expensive and time-consuming. However, among all the studies, only a few

aimed at providing usability evaluation tools, out of which most are proprietary

and not available for general use.

4.3. RQ 3: In which phase of API development does the API usability evaluation

method apply?685

Just like any software, an API goes through typical development phases of

a software development lifecycle: analysis & design phase, development phase

and post-development phase. Each phase of development feeds next phases with

a set of constraints and directions of development upon which the next process

of development is carried out. Researchers and practitioners advocate ’best690

practices’ that consider incorporating an usability feature into API development

from initial phases, since incorporating it as an afterthought may not yield the

best possible results [39]. In addition, evaluating the usability of an API after it

is developed, though useful, can be a time-consuming and expensive task since

the results of the evaluation may require changes that can be costly to fix once695

29

Figure 11: API Usability Evaluation Methods Applied at Development Phases

it is developed. Moreover, if an API is published already, changing an API

due to its usability concerns can affect its reputation and other applications

that use the API. Although researchers have provided tools and techniques that

can help the developers to write code with relative ease [68], in this research

question we study what approaches are available that developers can use to700

evaluate the usability of their API during different phases of development. This

can help developers to identify the usability issues at an appropriate time and

take appropriate measures when needed.

Figure 11 shows the number of primary studies according to the phase of API

development they address when evaluating the usability of API. It is evident705

from Figure 11 that most of the usability evaluation methods used for APIs

target the post-development phase. The summary of primary studies classified

according to phases of API development is presented in Appendix D.

Only two approaches are available in the current literature that address the

evaluation of API usability from the design phase. The work of Lee et al. [55]710

and Macvean et al. [57] address incorporating API usability evaluation strategies

starting from the design phase, so that its usability is continuously monitored

and addressed throughout the development phase. These approaches can be of

advantage in a team environment, where APIs are developed collaboratively.

30

Figure 12: Word Cloud for Usability factors considered in Primary studies

However, for small teams where roles within teams are not clearly defined,715

adaptation or iteration of such approaches would be needed.

In the development phase, the work of researchers and practitioners can

learn from the works of Clarke [22], O’Callaghan [69], Farooq and Zirkler [30],

Ratiu and Jurjens [77], Watson [95], Faulring et al. [31] and Bhaskar et al. [10].

Most of these approaches can be used iteratively between the development and720

post-development phases.

The most concentrated efforts to evaluate API usability are done in the phase

of post-development, showing a general trend towards API usability evaluation

as an afterthought. Although an increase in research efforts to evaluate API

usability is encouraging, it also points out that research in this phase is still at725

an early stage and more efforts are needed to help the developers evaluate the

usability of their API when they design and develop their APIs.

4.4. RQ 4 :What are the usability factors addressed by the existing API usability

evaluation studies?

We discussed in section 2 that usability is a subjective term and different730

usability standards and researchers have defined it differently. We investigate

31

existing literature to study what are the usability factors that are considered by

the researchers when evaluating API usability. Our study reveals that usability

is defined and evaluated differently by different researchers. Figure 12 a shows

word cloud of different terms used in primary studies to define and evaluate735

API usability. Appendix E contains tables that summarize research studies

according to the usability factors they address. We have selected these usability

factors based on the terms used by the authors. However, in some studies the

authors use synonym words to define the same usability factor. Such papers

were classified under one term. For example, Mayer et. al [58] defines the740

time required to fulfill a certain task as Effort in programming, whereas in other

papers([28, 87, 61, 94]) it is mostly defined as efficiency. We categorized this

API usability factor identified by Mayer et. al [58] as efficiency. Productivity

is considered to be different from efficiency. While efficiency measures the time

required to fulfill a task, productivity is defined differently by different authors.745

Similarly, Ellis et. al [28] identified debuggability as a usability factor. It is

also called better debugging in the work of Nanz et al. [63]. In our review, we

categorize these views under the same category: usability factor debuggability.

There is also contradiction regarding how different authors define the same

usabiltity factor, for example, Farooq and Dieter[30] defined productivity as750

ratio of the mean number of bugs per test/session iteration [30], while Fisher

and Stefan [33] defined productivity as a number of tasks completed in a given

time. Below, we give a brief summary of usability factors addressed in the

literature and shown in Appendix E. These usability factors are not mutually

exclusive, as usability factors are subjective in nature.755

• Learnability: measures the capability of software to be learnt by its de-

velopers with ease [88].

• Efficiency: defines how much software enables its users to use the right

amount of resources to complete a task in a specific context [88].

• Understandability: measures how well a user can understand the code760

without confusion.

32

• Effectiveness: defines how much software enables its users to complete

their tasks correctly [88].

• Readability: measures the level to which a code written with the API is

readable by its users, such that they are able to follow it logically.765

• Satisfaction: provides subjective response of the users about their comfort

with software and positive feelings after using it [88].

• Debuggability: measures the level to which a user is able to find errors in

code and debug it.

• Productivity: defines to what level software enables its users to complete770

their tasks accurately with respect to the resources expended [88].

• Reusability: measures the level to which parts of code written with the

API can be reused in other contexts.

• Abstraction: Lopez et. al [56] defines it as: Abstraction is the ability of

the API to guarantee that programmers can use the API with proficiency775

without requiring specific knowledge or assumptions in relation to its im-

plementation details.

• Expressiveness: Lopez et. al [56] defines it as: the ability of inferring

readily the purpose of an entity.

• Initial-Writability: measures how easy it is for the developers to write a780

simple initial code using the API [91].

• Unambiguousity: Lee et. al [55] defines it as: The function of an API is

figured out by its name. The name conforms to the coding conventions.

• Primitiveness: Lee et. al [55] defines it as: An API provides a single

function. If the function can be provided by the combination of other785

APIs, it does not meet primitiveness.

33

• Convenience: Lee et. al [55] defines it as: The parameters in an API are

minimally defined, and order and type of parameters keep consistency.

• Specificity: Bore and Bore [16] defines it as: percentage of API elements

that address application functionality.790

• Simplicity: Bore and Bore [16] defines it as: how easily a developer can

translate their required application functionality into API elements.

• Clarity: Bore and Bore [16] defines it as: how obvious is purpose from the

name.

• Layered-APIs: Bore and Bore [16] defines it as: measuring collective effect795

of different layers in an API (components, interfaces in the component,

functions in interfaces etc.).

Cognitive analysis of information artefacts and software products measure

the mental process of how the users of the system understand the system. There

is a range of studies that use different cognitive theories to analyze the API800

usability. These are:

• Zibran’s GL: Guidelines (GL) to create usable APIs are given by Zibran

et. al [101] and then used by others in their work. They are: 1) easy to

learn 2) easy to remember 3) easy to write client code 4)easy to interpret

client code and 5) difficult to misuse.805

• Bloch’s Guidelines (GL): Guidelines to create usable APIs are given by

Bloch [14] and then used by others in their work. They are: 1) easy to

learn, 2) easy to use, 3) hard to misuse 4) easy to read and maintain the

code that uses it, 5) sufficiently powerful to satisfy requirements 6) easy to

extend and 7) appropriate to audience.810

• Cognitive Dimension Framework (CDF) [36]: The work of Green et. al

[36] presents the cognitive dimension framework for analyzing usability of

34

visual programming environments. It captures the psychology of the pro-

gramming by providing a set of vocabulary that can capture Cognitve rela-

tion among different aspects of programming structure. These terms are:815

Abstraction Gradient, Closeness of mapping, Consistency, Diffuseness,

Error-proneness, Hard mental operations, Hidden dependencies, Prema-

ture commitment, Progressive evaluation, Role-expressiveness, Secondary

notation, Viscosity and Visibility.

• Cognititive Dimension Framework (CDF) [22]: The work of Clarke [22]820

adapted CDF by Green and Petre [36] to suit API usability. These in-

clude: Abstraction level, , Learning style, Working framework, Work-step

unit, Progressive evaluation, Premature commitment, Penetrability, API

elaboration, API viscosity, Consistency, Role expressiveness and Domain

correspondence.825

• Conceptual F/W: Fischer’s conceptual framework [32] outlines reuse and

redesign strategies to describe different software tools. His framework

identifies design tasks as translation of users’ problems to a formal system

model supported by programmer’s cognitive perspective of the problem.

• Cognitive Walkthrough (CWT) [12]: Blackmon et. al [12] presents steps830

for conductive cognitive walkthrough of the web.

• ECT: Expectation-Confirmation Theory [11] measures perceived ease of

use, perceived ease of learning, perceived confirmation, intention to con-

tinue, and satisfaction of API users.

The cognitive dimension framework presented by Green and Petre [36] has835

been widely used in the usability analysis of different software systems. Inter-

estingly, it has also been used much for analyzing the usability of an API.

Clarke [22] used CDF by Green and Petre [36] as a data analysis method in

usability tests and adapted them to suit API usability. These works ([22] and

[36]) on cognitive dimensions for API usability have been used alternatively by840

35

different researchers when using cognitive dimension frameworks for studying

API usability (e.g., [94] and [91], [72], [10], etc.) (See Table 5).

However, Diprose et. al [25], [10],[9], [93] used the original work on Cognitive

Dimensions framework by Green and Petre [36] to analyze usability of an API

in his work.845

The work of Hou and Li [42] used Fisher’s conceptual framework [32] to

organize their results into cognitive stages.

Faulring et. al [31] used work of Blackmon et. al [12] for conductive cognitive

walkthrough of the tool under study to evaluate its usability.

The work of Rauf et. al [79] used expectation-confirmation theory (ECT)850

and adapted it to suit the evaluation of API usability. Expectation-Confirmation

Theory (ECT) theory is widely accepted in the information systems research

[41]. It shows a strong correlation between users’ intentions to continue and

users’ satisfaction and other cognitive beliefs [11].

Although different cognitive analysis methods have been used to study API855

usability, the work of Green and Petre [36] and its adaptation to API usability

by Clarke [22] have been used widely in the existing literature in this area. The

work of Wijayarathna et al. [96] also builds on the work of Clarke [22] and

presents a generic questionnaire for evaluating the usability of security APIs.

However, this work is not included in our primary studies since the empirical860

evaluation of the usability of security APIs based on this questionaire is a part

of their future work at this point in time.

When comparing the word cloud generated for the terms used in the primary

studies (Figure 12) to the word cloud generated for the terms used in existing

non-API specific usability literature to define usability, we see some distinct865

similarities and differences. Learnability is considered the most emphasized

factor for measuring usability. 49% of primary studies studied learnability of

developers in order to evaluate the usability of an API, followed by efficiency

and understandability. More focused research efforts are needed to study other

factors to evaluate API usability. The word ‘context’ is also very important870

when defining usability in standards and models. However, the primary studies

36

do not consider ‘context’ when evaluating API usability, except the latest work

by Mosqueira-Rey et al. [60], which uses the concept and taxonomy of ‘context-

of-use’ for evaluating API usability.

It is interesting to note that while the work of Mosqueira-Rey et al. [60] and875

Gorski and Iacono [35] have attempted to summarise the existing body of knowl-

edge into existing usability models and taxonomies, we see new terms emerging

from API usability literature which may not be adequately represented by plac-

ing them under general models to define usability, for example, debuggability,

initial-writability, expressiveness, etc. Many of the terms from existing usabil-880

ity taxonomies used in the work of Mosqueira-Rey et al. [60] do not represent

usability of an API, for example, safety, aesthetics, etc. Similarly, the work

of Gorski and Iacono [35] does not mention how physical interface and logical

interface from the adopted usability model of Winter et al. [97] will differ for an

API.885

5. Previous Literature Reviews

The systematic studies are conducted to perform a methodical assessment

of a subject using some predefined plan, i.e., focusing on some particular re-

search questions [46]. In the field of API analysis, we found systematic mapping

study by Burns et al. [18]. He published a summary of 28 papers in the field of890

API usability. Their goal was to identify different methodologies used in these

papers and the kinds of recommendations they provide. Keeping in mind the

continuously evolving nature of research in APIs and its usability for program-

mers, there is a need for renewed analysis in this area. Our work differs from

their work in answering previously unanswered questions and presenting qual-895

ity assessment of primary studies. In addition, our detailed approach includes

new research articles that were not included previously either due to the limited

scope of their review or being published afterwards. Our work, thus, covers the

state of the art in the area of API usability evaluation.

The work of Mosqueira-Rey et al. [60] and Gorski and Iacono [35] also at-900

37

tempted to analyze existing literature. Although we acknowledge a positive

impact of their work, we believe that our work differs from their in the follow-

ing key areas. They do not conduct a formal systematic mapping study based

on a formal protocol and do not answer the research questions answered in our

work. Both the approaches adopt existing usability models, Gorski and Iacono905

[35] adopts work of Winter et al. [97], and Mosqueira-Rey et al. [60] adopts

usability taxonomy from the work of Alonso-Ŕıos et al. [7]. Instead of adopting

existing usability taxonomies and models, our work learns from existing litera-

ture and emphasizes the need for unique terms and concepts that are specific to

API usability. In addition, many unique features of API cannot be adequately910

captured by generalized usability factors and may lose their meaning and sig-

nificance to the developer when classified under usability factors that are too

general.

6. Discussion

The earliest work that explicitly highlights the importance of evaluating API915

usability from the perspective of programmers comes from the work of McLellan

et al. [59]. After that, we see a range of research efforts in this area.

We observed an increasing trend (Figure 5) in the research efforts to evaluate

API usability using multiple methods often aiming at different usability factors.

32 out of 47 studies reviewed in this article appeared from 2010 to 2018, i.e.,920

in the span of the last 8 years, compared to the other 14 studies that appeared

from the year 1998 to 2009, i.e., a span of more than 10 years. The trend of

increased efforts to evaluate API usability can be attributed to the exponential

growth of APIs due to advancements in the Internet and digital technologies.

Our systematic analysis of the existing body of knowledge not only shows925

an increase in efforts to evaluate API usability but also demonstrates that as

the research in API usability gets relatively mature over a period of more than

a decade, researchers are building upon this literature and extending it for

adoption in other specific aspects, e.g., security APIs. Earlier research on API

38

usability evaluation, researched the evaluation of API usability with results that930

can be generalized or novel methods to evaluate all kinds of APIs. Some research

studies under the category of API usability evaluation, applied API usability

evaluation approaches to study the usability of APIs for different scenarios, e.g.,

task parallelism [21], static type systems [58], etc. or for different domains, like

interactive public display applications [20], concurrent programming languages935

[63], etc. However, in recent years we see increasing interest in evaluating API

usability for security APIs, i.e., APIs that provide security features to protect

data confidentiality, integrity and availability [15]. We see a steep increase in

efforts to evaluate usability of security API, i.e., work of Gorski and Iacono [35]

in 2016, Acar et al. [6] and Wijayarathna et al. [96] in 2017 and work of Murphy-940

Hill et al. [62] in 2018. Wijayarathna et al. [96] adapt cognitive dimension

framework from API usability literature to evaluate usability of security APIs.

Similarly, the work of Gorski and Iacono [35] builds on a consolidated view

of the existing research on API usability and based on that, proposes eleven

characteristics to evaluate usability of security APIs. We attribute this trend945

firstly to relative maturity of API usability such that it can be used as a baseline

for the new areas of research. Secondly, misuse of APIs leads to security flaws

that can be crucial for the users of applications developed using these APIs and

also for the API providers and the application providers who may suffer from

security flaws in the applications. We consider this a good use of API usability950

evaluation work.

However, our analysis of current literature shows that research on API us-

ability evaluation still has many limitations and open research avenues that

need further exploration. We thus found the following limitations and research

opportunities in the existing literature.955

6.1. Software Tools to Evaluate API Usability

The analysis of the current body of knowledge domain revealed five types

of evaluation methods that we have categorized into analytical and empirical

methods. Most work in recent years has focused on the empirical methods.

39

The research efforts to evaluate API usability using metrics, i.e., an analytical960

method, started only a decade ago and has gained the attention of researchers

aiming at an objective evaluation of API usability without involving its users.

The use of the analytical methods provides efficient ways to evaluate API usabil-

ity in a fast-pace digital world. Metrics, compared to other empirical methods,

can be time and cost efficient provided that proper tools are available. We,965

however, observed that there is a lack of actual tools that can calculate the

metrics automatically. Only three tools were mentioned in the literature, two

of them have not been released and the other one is not being maintained.

In their work, de Souza and Bentolila [24] took API usability as a function

of its complexity and presented a tool, Metrix, that parses API definition and970

provides a visual representation of APIs with respect to their complexity.

An evaluation tool for measuring API usability was also presented by Doucette

[26]. However, as this work is not presented in a peer-reviewed scientific venue,

it is not part of our primary studies. The tool is created in Java and gives statis-

tics on Java APIs based on 12 metrics. These metrics were created from existing975

guidelines, heuristics and qualitative studies about API usability present in the

literature.

A tool to increase API usability has been presented by Stylos [90]. Although

the studies on which this tool is built are included in our primary studies, i.e.,

[92, 91, 93], the tool [90] is not a part of our primary studies as it does not980

evaluate API usability, and only helps in API discovery and writing a better

code.

Rama and Kak [76] provided nine API usability metrics based on the design

structure. They presented different mathematical formulas to measure values

of these metrics. These metrics can be computed automatically using their985

proprietary tool. They measured and analysed seven software systems to see

how these systems scored for various metrics.

The work of Scheller [87] presented metrics that can be used to build tools

and calculate the usability of APIs in an automated manner. It builds on his

previous works ([84], [86], [85]). Although the work of Scheller et. al [87] is a990

40

promising direction in the automated measurement of API usability, an auto-

mated tool that measures API usability based on these metrics is not available.

The current software tools, briefly mentioned in this section, only use soft-

ware metrics to quantify and evaluate the usability of API. The methods and

tools for evaluating API usability can greatly benefit from integrating data995

driven approaches, such as machine learning [98]. Nowadays there are large

volumes of data that can be collected about different aspects of using APIs. By

relying on machine learning techniques, it would be possible to identify certain

trends in using APIs. For instance, machine learning can shed a light on the

most preferential architectural and documentation style of APIs, differences be-1000

tween using APIs in different application domains and development platforms,

programmers preferences based on their experience etc. This opens promising

perspective towards building the adaptive APIs, i.e., the APIs that are can be

continuously improved and easier adapted to task at hand. Adaptive software

development [40] presents the concept of continuous adaptation of task-in-hand1005

using a collaborative approach. Hence, this would allow the API developers

to be better informed about the user’s needs and consequently cater to them

already during the API development.

6.2. Defining API Usability Factors

Our analysis of existing literature shows an inconsistent use of terms to define1010

usability. Specifically, literature shows confusion in terms like factors, character-

istics and guidelines. Henning [39] presented 8 guidelines to design good APIs.

Bloch [14] defined five characteristics of a good API. He also provided 39 design

recommendations to achieve these factors.

Zibran [100] defined five characteristics for a usable API. He further identified1015

22 factors that affect these API characteristics based on his literature review. In

[101], Zibran studied 1,513 defect reports across five different defect repositories

based on characteristics identified in his previous work [100].

Grill et. al [37] used 16 heuristics from the work of Zibran [100] to categorize

different problem areas in APIs identified during heuristic evaluation of APIs.1020

41

Although Zibran [100] terms these heuristics as factors, Grill et al. [37] terms

them as heuristics. For preparing the interview questions, the authors use five

characteristics of a good API defined by Bloch [14] and term them usability

factors.

Bore and Bore [16] also provided factors that contribute to API usability.1025

They built their work on the basic programming guidelines by Kernighan et al.

[49], [48].

This confusion between researchers on using a standard set of usability fac-

tors and using different terms like factors, characteristics, guidelines, etc. inter-

changeably to evaluate API usability, makes understanding of existing literature1030

difficult.

In addition, different usability evaluation studies have used either different

terminologies to define the same parameters, e.g., Mayer et al. [58] defined the

time required to fulfill a certain task as effort in programming whereas the work

of Ellis et al. [28] defined it as efficiency. Ellis et al. [28] identified debuggability1035

as a usability factor and Nanz et al. [63] terms it as better debugging. Some stud-

ies have used the same term with different meanings, e.g., Farooq and Zirkler

[30] defined productivity as a ratio of the mean number of bugs per test/session

iteration and Fischer and Hanenberg [33] define productivity as number of tasks

completed in a given time.1040

Interestingly, we also observed that the correspondence between different

features of API and API usability factors is often based on authors’ own opinions

lacking any evidence for such a correspondence based on empirical studies or

expert reviews.

For example, de Souza and Bentolila [24] assumed that APIs that are com-1045

plex are hard to use and then presented the tool that provided a visual rep-

resentation of the complexity of an API and Jugel [47] assumed that smaller

number of choices for methods usually improves readability.

This inconsistency in usage of terms to define and evaluate usability stems

from the inherent subjective nature of the term usability that encompasses a1050

broad set of concepts. A distinct divide in the work of researchers in the areas of

42

software engineers and behavioral sciences also adds to the ambiguity in defining

API usability. There is a wealth of literature that defines usability better and

strategies to evaluate it using empirical and non-empirical studies. The evalu-

ation of API usability can be studied better by studying the inter-relationship1055

between the behavioral sciences and modern technologies in software engineer-

ing.

7. Conclusion

The provision of usable APIs is an important area since with the advent

of ubiquitous computing and proliferation of APIs, the development of software1060

systems does not remain the job of a selected few who are expert in programming

and technical skills. It has, therefore, become important to develop APIs with

good usability. APIs with poor usability may reduce programmers’ productivity

and can lead to an increased number of defects. On the other hand, APIs with

good usability can increase programmers’ productivity and satisfaction.1065

In this systematic mapping study, we attempted to analyze state of the art

in the area of evaluation methods for API usability. We were interested in

studying how the research in evaluating API usability evolved and provided an

analysis of the existing literature. Our study shows that research on evaluating

API usability is gaining momentum and is getting mature with more and more1070

researchers contributing towards evaluating API usability in novel ways. Based

on our analysis of existing literature, we identified certain limitations in the

current body of knowledge and identified the following open issues and future

research directions in this domain that can improve the way API usability is

evaluated.1075

• Usability has an inherently subjective nature since it involves human inter-

pretation. We have identified a lack in the synergy of efforts that define

and evaluate API usability. This is evident by a large number of API

usability factors addressed by the researchers and inconsistent use of us-

ability terminologies by the different authors. Some studies review API1080

43

usability literature and attempt to model it with general usability models.

However, in doing so some unique characteristics of API are compromised

and many redundant factors are introduced that are not applicable to the

evaluation of API usability. In answering RQ4, we have shown emergence

of new terms from our study of the literature. There is a need for consoli-1085

dated approaches to define usability models for API to provide a standard

approach to evaluate API usability.

• Usability is a broad term with many interpretations. The analysis of re-

search in API usability evaluation shows that most of the research studies

focused on evaluating learnability of an API. This points towards an im-1090

portant aspect of API usability evaluation, i.e., researchers are interested

in evaluating how quickly or easily different types of users are able to

learn and use the API. It also points at the interest in knowing how API

is learnt in different contexts. With widespread adoption of APIs, APIs

are being used by a wide variety of users in several different and well-1095

known contexts. Using empirical methods with limited number of users

in lab settings to evaluate API usability does not adequately reveal the

real picture of how API is learnt by the ‘masses’, i.e., a large number of

users from different backgrounds. Novel approaches are required to evalu-

ate learnability of an API using technological advances in the areas of big1100

data, adaptive software engineering and machine learning approaches.

• Although learnability contributes significantly to the usability of an API,

other usability factors also play an important role in API usability but

have received considerably less attention. There is a need for research

efforts that focus on other factors of API usability, besides learnability, in1105

order to evaluate API usability with greater confidence.

• The usability evaluation of API requires evaluation of the cognitive load

on human users of API which is usually done in limited settings with a

relatively small number of users, on the other hand, industrial objective

44

of faster-to-market and catering to large number of users pose new chal-1110

lenges for research and industry alike. We believe that developing APIs

with good usability requires interdisciplinary knowledge that combines

cognitive pychology with software engineering in an efficient manner that

meets industrial objectives of faster-to-market.

• An API, once released, is available for public use and maybe used in sce-1115

narios not evident to API developers. It becomes difficult to change it since

there can be many programmers and programs using it. It is, therefore,

important to evaluate API usability before a public release. The current

literature on API usability shows that API usability is mostly evaluated

after the development of an API. More research efforts are needed to pro-1120

vide approaches that can evaluate API usability during the design and

development phases.

We conclude that although there exist many publications proposing API

evaluation methods, this subject still has many open questions for research.

In particular, we believe that the evaluation of API usability in a time and1125

cost efficient manner poses many interesting research challenges that have not

been addressed in the existing literature. In addition, APIs are increasingly

being used by users of different capabilities and skills. Thus, we believe that

developing APIs with good usability requires interdisciplinary knowledge that

combines cognitive psychology with software engineering. Combining this with1130

the need to develop efficient approaches that evaluate API usability to meet

faster-to-market software development cycles, makes it a challenging research

area. We hope that this review provides both the researchers and practitioners

interested in API usability with the useful ideas about how to develop this

subject further.1135

Appendix A. Study Quality Assessment

Table A.2 and Table A.3 give Study Quality Assessment (SQA) for Primary

Studies.

45

Table A.2: Study Quality Assessment (SQA) for Primary Studies

Type SQA>0 SQA<=0 No

SQA(year<=2017

)

Journals Robillard and De-

line [81],

Jugel [47], López-Fernández

et al. [56]

McLellan et al. [59], Santos and Myers

[83],

Grill et al. [37], Mosqueira-Rey

et al. [60]

Scheller and Kühn

[87],

Nanz et al. [63],

Rama and Kak [76]

Conferences p> 5 Beaton et al. [9], O’Callaghan [69], Murphy-Hill et al.

[62],

Zibran et al. [101], Cardoso and José

[20],

Acar et al. [6],

Macvean et al. [57], Ratiu and Jurjens

[77]

Spiza and Hanen-

berg [89],

Lee et al. [55]

Fischer and Hanen-

berg [33],

Watson [95],

Cavé et al. [21], Diprose et al. [25]

Cardoso and José

[20],

Stylos et al. [93],

Piccioni et al. [72], Hou et al. [43]

Endrikat et al. [29],

Brunet et al. [17],

46

Table A.3: Study Quality Assessment (SQA) for Primary Studies (continued)

Type SQA>0 SQA<=0 No

SQA(year<=2017

)

Conferences p> 5 Mayer et al. [58],

Duala-Ekoko and

Robillard [27],

Nasehi and Maurer

[64],

Gerken et al. [34],

Hou and Li [42]

Stylos and Clarke

[91],

Ellis et al. [28],

Stylos and Myers

[92]

p <= 5 Faulring et al. [31] Bhaskar et al. [10],

Clarke [22], Rauf et al. [79],

Farooq and Zirkler

[30],

Bore and Bore [16],

Ko and Riche [52], Murphy-Hill [61]

Stylos et al. [94],

de Souza and Ben-

tolila [24]

47

Appendix B. Selected Papers

Table B.4, Table B.5 and Table B.6 list the primary studies.1140

Appendix C. Articles Classified according to Subject of Study, Eval-

uation Method and Aim of the Study (UQ= Unique

Papers)

Table C.7 and Table C.8 classify the primary studies according to object of

study, i.e., API specification or API use, respectively.1145

Appendix D. Articles Classified according to Phases of Development

Table D.9 classify primary studies according to Phases of Development.

Appendix E. Usability Factors Addressed in Primary Studies

Table E.10 and Table E.11 classify primary studies according to usability

factors addressed.1150

References

[1] Google Maps Platform -Google Developers. https://developers.

google.com/maps/documentation/. (Accessed on 10/24/2018).

[2] Holiday Homes & Condo Rentals - Airbnb. https://www.airbnb.co.uk/.

(Accessed on 02/11/2019).1155

[3] Uber — Sign Up to Drive. https://www.uber.com/. (Accessed on

02/11/2019).

[4] What Are APIs and How Do They Work? — Pro-

grammableWeb. https://www.programmableweb.com/

api-university/what-are-apis-and-how-do-they-work. (Accessed1160

on 02/11/2019).

48

https://developers.google.com/maps/documentation/
https://developers.google.com/maps/documentation/
https://developers.google.com/maps/documentation/
https://www.airbnb.co.uk/
https://www.uber.com/
https://www.programmableweb.com/api-university/what-are-apis-and-how-do-they-work
https://www.programmableweb.com/api-university/what-are-apis-and-how-do-they-work
https://www.programmableweb.com/api-university/what-are-apis-and-how-do-they-work

Table B.4: Selected Papers

Author(s) Title Year

1 McLellan et al. [59] Building more usable APIs 1998

2 Clarke [22] Measuring API usability 2004

3 Bore and Bore [16] Profiling software API usability for consumer electronics 2005

4 Stylos et al. [93] Comparing API design choices with usability studies: A

case study and future directions

2006

5 Murphy-Hill [61] Improving usability of refactoring tools 2006

6 Stylos and Clarke [91] Usability implications of requiring parameters in ob-

jects’ constructors

2007

7 Ellis et al. [28] The factory pattern in API design: A usability evalua-

tion

2007

8 Stylos and Myers [92] The implications of method placement on API learnabil-

ity

2008

9 Hou et al. [43] Documenting and evaluating scattered concerns for

framework usability: A case study

2008

10 Stylos et al. [94] A case study of API redesign for improved usability 2008

11 Ratiu and Jurjens [77] Evaluating the reference and representation of domain

concepts in APIs

2008

12 Beaton et al. [9] Usability challenges for enterprise service-oriented archi-

tecture APIs

2008

13 de Souza and Bentolila [24] Automatic evaluation of API usability using complexity

metrics and visualizations

2009

14 Watson [95] Improving software API usability through text analysis:

A case study

2009

15 Jugel [47] Generating smart wrapper libraries for arbitrary APIs 2010

16 Cavé et al. [21] Comparing the usability of library vs. language ap-

proaches to task parallelism

2010

17 O’Callaghan [69] The API walkthrough method: a lightweight method for

getting early feedback about an API

2010

18 Nasehi and Maurer [64] Unit tests as API usage examples 2010

49

Table B.5: Selected Papers (continued)

Author(s) Title Year

19 Farooq and Zirkler [30] API peer reviews: a method for evaluating usability of

application programming interfaces

2010

20 Gerken et al. [34] The concept maps method as a tool to evaluate the us-

ability of APIs

2011

21 Hou and Li [42] Obstacles in using frameworks and APIs: An ex-

ploratory study of programmers’ newsgroup discussions

2011

22 Ko and Riche [52] The role of conceptual knowledge in API usability 2011

23 Brunet et al. [17] Structural conformance checking with design tests: An

evaluation of usability and scalability

2011

24 Zibran et al. [101] Useful, but usable? factors affecting the usability of

APIs

2011

25 Faulring et al. [31] A case study of using HCI methods to improve tools for

programmers

2012

26 Grill et al. [37] Methods towards API usability: a structural analysis of

usability problem categories

2012

27 Duala-Ekoko and Robillard [27] Asking and answering questions about unfamiliar APIs:

an exploratory study

2012

28 Mayer et al. [58] An empirical study of the influence of static type sys-

tems on the usability of undocumented software

2012

29 Nanz et al. [63] Design of an empirical study for comparing the usability

of concurrent programming languages

2013

30 Rama and Kak [76] Some structural measures of API usability 2013

31 Piccioni et al. [72] An empirical study of API usability 2013

32 Cardoso and José [20] Evaluation of a programming toolkit for interactive pub-

lic display applications

2013

33 Nanz et al. [63] Design of an empirical study for comparing the usability

of concurrent programming languages

2013

34 Lee et al. [55] An API Design Process in Terms of Usability: A Case

Study on Building More Usable APIs for Smart TV

Platform

2014

35 Endrikat et al. [29] How do API documentation and static typing affect API

usability?

2014

50

Table B.6: Selected Papers (continued)

Author(s) Title Year

36 Spiza and Hanenberg [89] Type names without static type check-

ing already improve the usability of

APIs (as long as the type names are

correct): An empirical study

2014

37 Diprose et al. [25] A human-centric API for programming

socially interactive robots

2014

38 Fischer and Hanenberg [33] An empirical investigation of the effects

of type systems and code completion

on API usability using typescript and

javascript in ms visual studio

2015

39 Scheller and Kühn [87] Automated measurement of API usabil-

ity: The API concepts framework

2015

40 Bhaskar et al. [10] Developing usable APIs with XP and

cognitive dimensions

2016

41 Rauf et al. [79] Perceived obstacles by novice develop-

ers adopting user interface APIs and

tools

2016

42 Macvean et al. [57] API Design Reviews at Scale 2016

43 Santos and Myers [83] Design annotations to improve API dis-

coverability

2017

44 López-Fernández et al. [56] Designing and evaluating the usability

of an API for real-time multimedia ser-

vices in the Internet

2017

45 Acar et al. [6] Comparing the usability of crypto-

graphic apis

2017

46 Murphy-Hill et al. [62] Discovering API Usability Problems at

Scale

2018

47 Mosqueira-Rey et al. [60] A systematic approach to API usabil-

ity: Taxonomy-derived criteria and a

case study

2018

51

Table C.7: Studies included in the review - Part 1 (UQ = Unique Papers)

Object Evaluation n Aim of the Papers

of Study Method Study

API Spec. Metrics 5 New Approach Ratiu and Jurjens [77],Scheller and

Kühn [87], Rama and Kak [76], Hou

et al. [43], Stylos and Myers [92]

(UQ=17) (UQ=8) 3 SW Tool Rama and Kak [76], de Souza and Ben-

tolila [24],Murphy-Hill et al. [62]

36% 2 API Evaluation Study Scheller and Kühn [87], Bore and Bore

[16]

Reviews 7 New Approach Watson [95], Farooq and Zirkler [30],

Faulring et al. [31],Grill et al. [37], Lee

et al. [55] ,Macvean et al. [57]

(UQ=9) Mosqueira-Rey et al. [60]

2 Fund. Results Faulring et al. [31], Cavé et al. [21]

2 API Evaluation Study Jugel [47],Cavé et al. [21]

[5] Alain Abran, Adel Khelifi, Witold Suryn, and Ahmed Seffah. Usability

meanings and interpretations in ISO standards. Software Quality Journal,

11(4):325–338, 2003.

[6] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon1165

Kim, Michelle L Mazurek, and Christian Stransky. Comparing the us-

ability of cryptographic APIs. In Security and Privacy (SP), 2017 IEEE

Symposium on, pages 154–171. IEEE, 2017.

[7] David Alonso-Ŕıos, Ana Vázquez-Garćıa, Eduardo Mosqueira-Rey, and

Vicente Moret-Bonillo. Usability: a critical analysis and a taxonomy.1170

International Journal of Human-Computer Interaction, 26(1):53–74, 2009.

[8] Rajendra K. Bandi, Vijay K. Vaishnavi, and Daniel E. Turk. Predicting

maintenance performance using object-oriented design complexity met-

rics. Software Engineering, IEEE Transactions on, 29(1):77–87, 2003.

[9] Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Stylos, and Brad A1175

Myers. Usability challenges for enterprise service-oriented architec-

52

Table C.8: Studies included in the review - Part 2 (UQ = Unique Papers)

Object Evaluation n Aim of the Papers

of Study Method Study

API Use

(UQ=34)

72%

Usability

Testing,

7 New Approach Grill et al. [37], Clarke [22], O’Callaghan [69], Gerken et al.

[34], Piccioni et al. [72], Bhaskar et al. [10], Mosqueira-Rey

et al. [60]

Walkthrough

(UQ=17)

7 Fund. Results McLellan et al. [59], Ko and Riche [52], Duala-Ekoko and

Robillard [27], Piccioni et al. [72], Clarke [22], Stylos and

Clarke [91], Stylos et al. [93]

9 API Evaluation Study Stylos et al. [93],Beaton et al. [9], Stylos and Clarke [91],

Piccioni et al. [72], Brunet et al. [17], Ko and Riche [52],

Cardoso and José [20], Stylos et al. [94], Diprose et al. [25]

Controlled 2 New Approach Rauf et al. [79], Nanz et al. [63]

Experiments 9 Fund. Results Mayer et al. [58], Scheller and Kühn [87], Endrikat et al.

[29], Spiza and Hanenberg [89], Fischer and Hanenberg

[33],Ellis et al. [28],Rauf et al. [79], Stylos and Myers [92],

Nasehi and Maurer [64]

(UQ=13) 7 API Evaluation Study Murphy-Hill [61],Mayer et al. [58], Scheller and Kühn [87]

,Endrikat et al. [29], Spiza and Hanenberg [89], Santos and

Myers [83], Acar et al. [6]

Surveys and

Repository

1 API Evaluation Study López-Fernández et al. [56]

Mining

(UQ=5)

4 Fund. Results Robillard and Deline [81], Hou and Li [42], Zibran et al.

[101],Murphy-Hill et al. [62]

53

Table D.9: API usability Evaluation methods applied at Development Phases

Phase Papers #

Design Lee et al. [55], Macvean et al. [57] 2

Development Clarke [22],O’Callaghan [69],Farooq and Zirkler

[30],Ratiu and Jurjens [77],Watson [95],Farooq and

Zirkler [30], Faulring et al. [31],Bhaskar et al. [10]

8

Post-

development

Watson [95],Clarke [22],Farooq and Zirkler

[30],Stylos et al. [93],McLellan et al. [59],Bore

and Bore [16],Murphy-Hill [61],Stylos and Clarke

[91],Ellis et al. [28],Stylos and Myers [92],Hou et al.

[43],Beaton et al. [9], Stylos et al. [94],de Souza

and Bentolila [24],Jugel [47],Cavé et al. [21],Farooq

and Zirkler [30],Nasehi and Maurer [64],Gerken

et al. [34],Hou and Li [42], Brunet et al. [17],Zibran

et al. [101],Ko and Riche [52],Robillard and Deline

[81],Mayer et al. [58],Grill et al. [37],Duala-Ekoko

and Robillard [27],Nanz et al. [63], Piccioni

et al. [72],Rama and Kak [76],Cardoso and José

[20],Diprose et al. [25],Spiza and Hanenberg

[89],Endrikat et al. [29],Fischer and Hanenberg [33],

Scheller and Kühn [87],Rauf et al. [79],Santos and

Myers [83],López-Fernández et al. [56],Acar et al.

[6],Murphy-Hill et al. [62], Mosqueira-Rey et al. [60]

42

54

Table E.10: Factors Addressed in Primary Studies

Factors % Papers

Learnability 49% McLellan et al. [59],Clarke [22],Stylos and My-

ers [92],Hou et al. [43],Beaton et al. [9],Watson

[95], Farooq and Zirkler [30],Nasehi and Mau-

rer [64],O’Callaghan [69],

Ko and Riche [52], Gerken et al. [34] , Robil-

lard and Deline [81], Zibran et al. [101],Hou

and Li [42], Faulring et al. [31] Duala-Ekoko

and Robillard [27],

Grill et al. [37], Rama and Kak [76], Piccioni

et al. [72] , Cardoso and José [20], Scheller and

Kühn [87], Rauf et al. [79], López-Fernández

et al. [56],

Efficiency 23% Murphy-Hill [61], Ellis et al. [28],Stylos et al.

[94], Farooq and Zirkler [30], Mayer et al. [58],

Grill et al. [37], Endrikat et al. [29],

Spiza and Hanenberg [89], Fischer and Hanen-

berg [33], Scheller and Kühn [87] ,Santos and

Myers [83]

Understandability 16% Ratiu and Jurjens [77], O’Callaghan [69],Ko

and Riche [52],Piccioni et al. [72], Cardoso and

José [20],Nanz et al. [63], López-Fernández

et al. [56], de Souza and Bentolila [24]

Effectiveness 8% Brunet et al. [17],Cardoso and José

[20],Bhaskar et al. [10],Acar et al. [6]

55

Table E.11: Factors Addressed in Primary Studies

Factors % Papers

Readability 8% Stylos and Clarke [91],Jugel [47],Cavé et al. [21] ,Grill

et al. [37],

Satisfaction 8% McLellan et al. [59], Scheller and Kühn [87], Macvean

et al. [57] , Rauf et al. [79],Acar et al. [6]

Memorability 4% Rama and Kak [76],Mosqueira-Rey et al. [60]

Debuggability 4% Stylos and Clarke [91], Nanz et al. [63]

Productivity 4% Farooq and Zirkler [30], Fischer and Hanenberg [33]

Reusability 4% López-Fernández et al. [56], Piccioni et al. [72]

Zibran’s GL 4% Zibran et al. [101],Grill et al. [37]

Bloch’ GL 2% Grill et al. [37]

Cognitive Analysis:

- CDF [22] 9% Clarke [22],Stylos and Clarke [91],Stylos et al. [94], Pic-

cioni et al. [72],

- CDF [13] 9% Stylos et al. [93], Beaton et al. [9], Diprose et al. [25],

Bhaskar et al. [10],

- Conceptual F/W [32] 2% Hou and Li [42]

- CWT [12] 2% Faulring et al. [31]

- ECT [11] 2% Rauf et al. [79]

56

ture APIs. In Visual Languages and Human-Centric Computing, 2008.

VL/HCC 2008. IEEE Symposium on, pages 193–196. IEEE, 2008.

[10] Rahul Kamal Bhaskar, Craig Anslow, John Brosz, and Frank Maurer.

Developing usable APIs with XP and cognitive dimensions. In Visual1180

Languages and Human-Centric Computing (VL/HCC), 2016 IEEE Sym-

posium on, pages 101–105. IEEE, 2016.

[11] Anol Bhattacherjee. Understanding information systems continuance: an

expectation-confirmation model. MIS quarterly, pages 351–370, 2001.

[12] Marilyn Hughes Blackmon, Peter G Polson, Muneo Kitajima, and Clayton1185

Lewis. Cognitive walkthrough for the web. In Proceedings of the SIGCHI

conference on human factors in computing systems, pages 463–470. ACM,

2002.

[13] Alan F Blackwell and Thomas RG Green. A Cognitive Dimensions ques-

tionnaire optimised for users. In Proceedings of the Twelfth Annual Meet-1190

ing of the Psychology of Programming Interest Group, pages 137–152,

2000.

[14] Joshua Bloch. How to design a good API and why it matters. In Compan-

ion to the 21st ACM SIGPLAN symposium on Object-oriented program-

ming systems, languages, and applications, pages 506–507. ACM, 2006.1195

[15] Michael K Bond. Understanding Security APIs. PhD thesis, University

of Cambridge, 2004.

[16] C Bore and S Bore. Profiling software API usability for consumer elec-

tronics. In Consumer Electronics, 2005. ICCE. 2005 Digest of Technical

Papers. International Conference on, pages 155–156. IEEE, 2005.1200

[17] Joao Brunet, Dalton Serey, and Jorge Figueiredo. Structural conformance

checking with design tests: An evaluation of usability and scalability. In

Software Maintenance (ICSM), 2011 27th IEEE International Conference

on, pages 143–152. IEEE, 2011.

57

[18] Chris Burns, Jennifer Ferreira, Theodore D Hellmann, and Frank Maurer.1205

Usable results from the field of API usability: A systematic mapping and

further analysis. In Visual Languages and Human-Centric Computing

(VL/HCC), 2012 IEEE Symposium on, pages 179–182. IEEE, 2012.

[19] Cinzia Cappiello, Florian Daniel, and Maristella Matera. A quality model

for mashup components. In Web Engineering, pages 236–250. Springer,1210

2009.

[20] Jorge Cardoso and Rui José. Evaluation of a programming toolkit for

interactive public display applications. In Proceedings of the 12th Inter-

national Conference on Mobile and Ubiquitous Multimedia, page 6. ACM,

2013.1215

[21] Vincent Cavé, Zoran Budimlić, and Vivek Sarkar. Comparing the usability

of library vs. language approaches to task parallelism. In Evaluation and

Usability of Programming Languages and Tools, page 9. ACM, 2010.

[22] Steven Clarke. Measuring API usability. Doctor Dobbs Journal, 29(5):

S1–S5, 2004.1220

[23] Krzysztof Cwalina and Brad Abrams. Framework design guidelines: con-

ventions, idioms, and patterns for reusable. net libraries. Pearson Educa-

tion, 2008.

[24] Cleidson RB de Souza and David Leonardo M Bentolila. Automatic eval-

uation of API usability using complexity metrics and visualizations. In1225

Software Engineering-Companion Volume, 2009. ICSE-Companion 2009.

31st International Conference on, pages 299–302. IEEE, 2009.

[25] James P Diprose, Beryl Plimmer, Bruce A MacDonald, and John G Hosk-

ing. A human-centric API for programming socially interactive robots. In

Visual Languages and Human-Centric Computing (VL/HCC), 2014 IEEE1230

Symposium on, pages 121–128. IEEE, 2014.

58

[26] Andre Doucette. On API usability: An analysis and an evalua-

tion tool. CMPT816-Software Engineering, Saskatoon, Saskatchewan,

Canada: University of Saskatchewan, 2008.

[27] Ekwa Duala-Ekoko and Martin P Robillard. Asking and answering ques-1235

tions about unfamiliar APIs: an exploratory study. In Proceedings of the

2012 International Conference on Software Engineering, pages 266–276.

IEEE Press, 2012.

[28] Brian Ellis, Jeffrey Stylos, and Brad Myers. The factory pattern in API

design: A usability evaluation. In Proceedings of the 29th international1240

conference on Software Engineering, pages 302–312. IEEE Computer So-

ciety, 2007.

[29] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik.

How do API documentation and static typing affect API usability? In

Proceedings of the 36th International Conference on Software Engineering,1245

pages 632–642. ACM, 2014.

[30] Umer Farooq and Dieter Zirkler. API peer reviews: a method for evalu-

ating usability of application programming interfaces. In Proceedings of

the 2010 ACM conference on Computer supported cooperative work, pages

207–210. ACM, 2010.1250

[31] Andrew Faulring, Brad A Myers, Yaad Oren, and Keren Rotenberg. A

case study of using HCI methods to improve tools for programmers. In

Cooperative and Human Aspects of Software Engineering (CHASE), 2012

5th International Workshop on, pages 37–39. IEEE, 2012.

[32] Gerhard Fischer. Cognitive view of reuse and redesign. IEEE Software, 41255

(4):60, 1987.

[33] Lars Fischer and Stefan Hanenberg. An empirical investigation of the

effects of type systems and code completion on API usability using type-

59

script and javascript in ms visual studio. In ACM SIGPLAN Notices,

volume 51, pages 154–167. ACM, 2015.1260

[34] Jens Gerken, Hans-Christian Jetter, Michael Zöllner, Martin Mader, and

Harald Reiterer. The concept maps method as a tool to evaluate the

usability of APIs. In Proceedings of the 2011 annual conference on Human

factors in computing systems, pages 3373–3382. ACM, 2011.

[35] Peter Leo Gorski and Luigi Lo Iacono. Towards the Usability Evaluation1265

of Security APIs. In In Proceedings of the Tenth International Symposium

on Human Aspects of Information Security and Assurance (HAISA), 2016.

[36] Thomas R. G. Green and Marian Petre. Usability analysis of visual pro-

gramming environments: a cognitive dimensions framework. Journal of

Visual Languages & Computing, 7(2):131–174, 1996.1270

[37] Thomas Grill, Ondrej Polacek, and Manfred Tscheligi. Methods towards

API usability: a structural analysis of usability problem categories. In

Human-Centered Software Engineering, pages 164–180. Springer, 2012.

[38] H Rex Hartson, Terence S Andre, and Robert C Williges. Criteria for

evaluating usability evaluation methods. International journal of human-1275

computer interaction, 13(4):373–410, 2001.

[39] Michi Henning. API design matters. Queue, 5(4):24–36, 2007.

[40] Jim Robert Highsmith. Adaptive software development: a collaborative

approach to managing complex systems. Addison-Wesley, 2013.

[41] Mohammad Alamgir Hossain and Mohammed Quaddus. Expectation–1280

confirmation theory in information system research: A review and analy-

sis. In Information systems theory, pages 441–469. Springer, 2012.

[42] Daqing Hou and Lin Li. Obstacles in using frameworks and APIs: An

exploratory study of programmers’ newsgroup discussions. In Program

60

Comprehension (ICPC), 2011 IEEE 19th International Conference on,1285

pages 91–100. IEEE, 2011.

[43] Daqing Hou, Chandan Raj Rupakheti, and H James Hoover. Documenting

and evaluating scattered concerns for framework usability: A case study.

In Software Engineering Conference, 2008. APSEC’08. 15th Asia-Pacific,

pages 213–220. IEEE, 2008.1290

[44] ISO. Ergonomic requirements for office work with visual display terminals

(VDTs). 1998.

[45] ISO/IEC. Software engineering - Product quality - Part 3: Internal met-

rics. 2003.

[46] Tina Jones and David Evans. Conducting a systematic review. Australian1295

Critical Care, 13(2):66–71, 2000.

[47] Uwe Jugel. Generating smart wrapper libraries for arbitrary APIs. In

International Conference on Software Language Engineering, pages 354–

373. Springer, 2010.

[48] Brian W Kernighan. The practice of programming. Addison-Wesley Pro-1300

fessional, 1999.

[49] Brian W Kernighan and Phillip James Plauger. The elements of program-

ming style. The elements of programming style, by Kernighan, Brian W.;

Plauger, PJ New York: McGraw-Hill, c1978., 1, 1978.

[50] Barbara A Kitchenham, David Budgen, and O Pearl Brereton. Using1305

mapping studies as the basis for further research–a participant-observer

case study. Information and Software Technology, 53(6):638–651, 2011.

[51] Sebastian Kleinschmager, Romain Robbes, Andreas Stefik, Stefan Hanen-

berg, and Eric Tanter. Do static type systems improve the maintainabil-

ity of software systems? an empirical study. In Program Comprehension1310

61

(ICPC), 2012 IEEE 20th International Conference on, pages 153–162.

IEEE, 2012.

[52] Andrew J Ko and Yann Riche. The role of conceptual knowledge in

API usability. In Visual Languages and Human-Centric Computing

(VL/HCC), 2011 IEEE Symposium on, pages 173–176. IEEE, 2011.1315

[53] Panayiotis Koutsabasis, Thomas Spyrou, and John Darzentas. Evaluating

usability evaluation methods: criteria, method and a case study. Human-

Computer Interaction. Interaction Design and Usability, pages 569–578,

2007.

[54] Arnaud Lauret. The Design of Everyday APIs. Manning Publications1320

Co., 2019. ISBN 9781617295102.

[55] Sunghoon Lee, Sanghee Lee, Sumi Lim, Jiyoung Jung, Sangho Choi, Ne-

unghoe Kim, and Jung-Been Lee. An API Design Process in Terms of

Usability: A Case Study on Building More Usable APIs for Smart TV

Platform. In Computer Software and Applications Conference Workshops1325

(COMPSACW), 2014 IEEE 38th International, pages 567–571. IEEE,

2014.

[56] Luis López-Fernández, Boni Garćıa, Micael Gallego, and Francisco

Gortázar. Designing and evaluating the usability of an API for real-time

multimedia services in the Internet. Multimedia Tools and Applications,1330

76(12):14247–14304, 2017.

[57] Andrew Macvean, Martin Maly, and John Daughtry. API Design Reviews

at Scale. In Proceedings of the 2016 CHI Conference Extended Abstracts

on Human Factors in Computing Systems, pages 849–858. ACM, 2016.

[58] Clemens Mayer, Stefan Hanenberg, Romain Robbes, Éric Tanter, and1335

Andreas Stefik. An empirical study of the influence of static type systems

on the usability of undocumented software. In ACM SIGPLAN Notices,

volume 47, pages 683–702. ACM, 2012.

62

[59] Samuel G McLellan, Alvin W Roesler, Joseph T Tempest, and Clay I

Spinuzzi. Building more usable APIs. IEEE software, 15(3):78–86, 1998.1340

[60] Eduardo Mosqueira-Rey, David Alonso-Ŕıos, Vicente Moret-Bonillo, Isaac

Fernández-Varela, and Diego Álvarez-Estévez. A systematic approach to

API usability: Taxonomy-derived criteria and a case study. Information

and Software Technology, 97:46–63, 2018.

[61] Emerson Murphy-Hill. Improving usability of refactoring tools. In Com-1345

panion to the 21st ACM SIGPLAN symposium on Object-oriented pro-

gramming systems, languages, and applications, pages 746–747. ACM,

2006.

[62] Emerson Murphy-Hill, Caitlin Sadowski, Andrew Head, John Daughtry,

Andrew Macvean, Ciera Jaspan, and Collin Winter. Discovering API1350

Usability Problems at Scale. 2018.

[63] Sebastian Nanz, Faraz Torshizi, Michela Pedroni, and Bertrand Meyer.

Design of an empirical study for comparing the usability of concurrent

programming languages. Information and Software Technology, 55(7):

1304–1315, 2013.1355

[64] Seyed Mehdi Nasehi and Frank Maurer. Unit tests as API usage examples.

In Software Maintenance (ICSM), 2010 IEEE International Conference

on, pages 1–10. IEEE, 2010.

[65] Phu H Nguyen, Max Kramer, Jacques Klein, and Yves Le Traon. An

extensive systematic review on the Model-Driven Development of secure1360

systems. Information and Software Technology, 68:62–81, 2015.

[66] Jakob Nielsen. Usability engineering. Elsevier, 1994.

[67] Jakob Nielsen and Hoa Loranger. Prioritizing web usability. Pearson

Education, 2006.

63

[68] Kristian Nybom, Adnan Ashraf, and Ivan Porres. A Systematic Mapping1365

Study on Tools for API Documentation Generation. Technical Report

1180, 2017.

[69] Portia O’Callaghan. The API walkthrough method: a lightweight method

for getting early feedback about an API. In Evaluation and Usability of

Programming Languages and Tools, page 5. ACM, 2010.1370

[70] D. L. Parnas. On the criteria to be used in decomposing systems into

modules. Commun. ACM, 15(12):1053–1058, December 1972. ISSN 0001-

0782.

[71] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for

conducting systematic mapping studies in software engineering: An up-1375

date. Information and Software Technology, 64:1–18, 2015.

[72] Marco Piccioni, Carlo A Furia, and Bertrand Meyer. An empirical study

of API usability. In Empirical Software Engineering and Measurement,

2013 ACM/IEEE International Symposium on, pages 5–14. IEEE, 2013.

[73] Lutz Prechelt and Martin Liesenberg. Design patterns in software mainte-1380

nance: An experiment replication at freie universität berlin. In Replication

in Empirical Software Engineering Research (RESER), 2011 Second In-

ternational Workshop on, pages 1–6. IEEE, 2011.

[74] Lutz Prechelt, Barbara Unger-Lamprecht, Michael Philippsen, and Wal-

ter F Tichy. Two controlled experiments assessing the usefulness of design1385

pattern documentation in program maintenance. IEEE Transactions on

Software Engineering, 28(6):595–606, 2002.

[75] Whitney Quesenbery. Balancing the 5Es of Usability. Cutter IT Journal,

17(2):4–11, 2004.

[76] Girish Maskeri Rama and Avinash Kak. Some structural measures of API1390

usability. Software: Practice and Experience, 2013.

64

[77] Daniel Ratiu and Jan Jurjens. Evaluating the reference and representation

of domain concepts in APIs. In Program Comprehension, 2008. ICPC

2008. The 16th IEEE International Conference on, pages 242–247. IEEE,

2008.1395

[78] Daniel Petrica Ratiu. Intentional meaning of programs. PhD thesis, Tech-

nical University Munich, 2009.

[79] Irum Rauf, Pekka Perälä, Jouni Huotari, and Ivan Porres. Perceived

obstacles by novice developers adopting user interface APIs and tools. In

Visual Languages and Human-Centric Computing (VL/HCC), 2016 IEEE1400

Symposium on, pages 223–227. IEEE, 2016.

[80] Martin P Robillard. What makes APIs hard to learn? answers from

developers. Software, IEEE, 26(6):27–34, 2009.

[81] Martin P Robillard and Robert Deline. A field study of API learning

obstacles. Empirical Software Engineering, 16(6):703–732, 2011.1405

[82] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and

Tristan Ratchford. Automated API property inference techniques. Soft-

ware Engineering, IEEE Transactions on, 39(5):613–637, 2013.

[83] André L Santos and Brad A Myers. Design annotations to improve API

discoverability. Journal of Systems and Software, 126:17–33, 2017.1410

[84] Thomas Scheller and Eva Kühn. Measurable concepts for the usability of

software components. In Software Engineering and Advanced Applications

(SEAA), 2011 37th EUROMICRO Conference on, pages 129–133. IEEE,

2011.

[85] Thomas Scheller and Eva Kühn. Influencing factors on the usability of1415

API classes and methods. In Engineering of Computer Based Systems

(ECBS), 2012 IEEE 19th International Conference and Workshops on,

pages 232–241. IEEE, 2012.

65

[86] Thomas Scheller and Eva Kühn. Usability Evaluation of Configuration-

Based API Design Concepts. In Human Factors in Computing and Infor-1420

matics, pages 54–73. Springer, 2013.

[87] Thomas Scheller and Eva Kühn. Automated measurement of API usabil-

ity: The API concepts framework. Information and Software Technology,

61:145–162, 2015.

[88] Ahmed Seffah, Mohammad Donyaee, Rex B Kline, and Harkirat K Padda.1425

Usability measurement and metrics: A consolidated model. Software

Quality Journal, 14(2):159–178, 2006.

[89] Samuel Spiza and Stefan Hanenberg. Type names without static type

checking already improve the usability of APIs (as long as the type names

are correct): An empirical study. In Proceedings of the 13th international1430

conference on Modularity, pages 99–108. ACM, 2014.

[90] Jeffrey Stylos. Making APIs more usable with improved API designs,

documentation and tools. ProQuest, 2009.

[91] Jeffrey Stylos and Steven Clarke. Usability implications of requiring pa-

rameters in objects’ constructors. In Proceedings of the 29th international1435

conference on Software Engineering, pages 529–539. IEEE Computer So-

ciety, 2007.

[92] Jeffrey Stylos and Brad A Myers. The implications of method placement

on API learnability. In Proceedings of the 16th ACM SIGSOFT Interna-

tional Symposium on Foundations of software engineering, pages 105–112.1440

ACM, 2008.

[93] Jeffrey Stylos, Steven Clarke, and Brad Myers. Comparing API design

choices with usability studies: A case study and future directions. In

Proceedings of the 18th PPIG Workshop, 2006.

[94] Jeffrey Stylos, Benjamin Graf, Daniela K Busse, Carsten Ziegler, Ralf1445

Ehret, and Jan Karstens. A case study of API redesign for improved

66

usability. In Visual Languages and Human-Centric Computing, 2008.

VL/HCC 2008. IEEE Symposium on, pages 189–192. IEEE, 2008.

[95] Robert B Watson. Improving software API usability through text analysis:

A case study. In Professional Communication Conference, 2009. IPCC1450

2009. IEEE International, pages 1–7. IEEE, 2009.

[96] Chamila Wijayarathna, Nalin AG Arachchilage, and Jill Slay. A Generic

cognitive dimensions questionnaire to evaluate the usability of security

APIs. In International Conference on Human Aspects of Information Se-

curity, Privacy, and Trust, pages 160–173. Springer, 2017.1455

[97] Sebastian Winter, Stefan Wagner, and Florian Deissenboeck. A compre-

hensive model of usability. In IFIP International Conference on Engineer-

ing for Human-Computer Interaction, pages 106–122. Springer, 2007.

[98] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data

Mining: Practical machine learning tools and techniques. Morgan Kauf-1460

mann, 2016.

[99] Claes Wohlin and Rafael Prikladniki. Systematic literature reviews in

software engineering. Information and Software Technology, 55(6):919–

920, 2013.

[100] M Zibran. What makes APIs difficult to use. IJCSNS International Jour-1465

nal of Computer Science and Network Security, 8(4):255, 2008.

[101] Minhaz F Zibran, Farjana Zebin Eishita, and Chanchal K Roy. Useful,

but usable? factors affecting the usability of APIs. In Reverse Engineering

(WCRE), 2011 18th Working Conference on, pages 151–155. IEEE, 2011.

67

	Introduction
	API Usability
	Systematic Mapping Approach
	Research Questions
	Study Selection Strategy
	Identify Search Terms and Define Search String
	Identify Repositories
	Study Selection
	Study Quality Assessment (SQA)
	Inclusion Criteria
	Exclusion Criteria

	Extract Data
	Phase: 3 - Data Analysis
	Threats to Validity
	Research Results

	Answering Research Questions
	RQ 1: What are the different evaluation methods used to evaluate the usability of an API?
	RQ 2: What is the aim of the existing research efforts on API usability evaluation?
	New Approach
	Fundamental Results
	API Evaluation Study
	Software Tool

	RQ 3: In which phase of API development does the API usability evaluation method apply?
	RQ 4 :What are the usability factors addressed by the existing API usability evaluation studies?

	Previous Literature Reviews
	Discussion
	Software Tools to Evaluate API Usability
	Defining API Usability Factors

	Conclusion
	Study Quality Assessment
	Selected Papers
	Articles Classified according to Subject of Study, Evaluation Method and Aim of the Study (UQ= Unique Papers)
	Articles Classified according to Phases of Development
	Usability Factors Addressed in Primary Studies

