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Abstract 

Innervation of cerebral blood vessels is important for the regulation of vascular tone and 

adequate cerebral perfusion. Alzheimer’s disease (AD) is characterised by a loss of 

cholinergic innervation of the neurovascular unit (NVU). This loss may contribute not only 

to inefficient cerebrovascular perfusion, but also to the failure of removal of amyloid-β 

(Aβ), leading to its accumulation as cerebral amyloid angiopathy (CAA). This hypothesis 

was tested by mimicking loss of cholinergic innervation of the cortex and hippocampus in 

adult male C57BL/6 mice using the immunospecific toxin mu-p75-saporin. Using 

quadruple labelling immunohistochemistry and 3D reconstructions of the NVU, loss of 

perivascular cholinergic innervation was observed at the smooth muscle cells and 

basement membrane in the cortex and hippocampus, with additional perivascular loss at 

the astrocyte endfeet in the cortex.  Arterial spin labelling fMRI revealed no differences in 

resting cerebral blood flow between control and saporin-treated mice in either the cortex or 

hippocampus. However, denervated vessels in the cortex, but not the hippocampus, failed 

to respond to pharmacological stimulation of endothelial nitric oxide synthase (eNOS). 

Further studies revealed a decrease in eNOS expression in the cortex, but an increase in 

eNOS expression and activity in the hippocampus following loss of cholinergic input. No 

differences were noted between control and saporin-treated mice in the efficiency of 

removal of Aβ along perivascular basement membranes in either the cortex or 

hippocampus. Treatment of TetO-APPSweInd mice with saporin resulted in a trend 

towards higher CAA load. These data suggest that there are innate differences between 

NVUs of the cortex and the hippocampus and a difference in their functional response to 

loss of cholinergic input. Loss of cholinergic input at the NVU may contribute to 

accumulation of Aβ; however, this likely requires additional pathological factors for CAA 

to develop.  
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Chapter 1 Main introduction 

 

General Overview 

The brain has a unique vasculature compared to the peripheral system in that it contains a 

blood brain barrier (BBB), a physical barrier created by tight junctions of endothelial cells 

that allows for controlled maintenance of substance entry. While the BBB confers the brain 

with a high degree of selectivity, it does so at the expense of waste removal, which is made 

more difficult by the absence of a traditional lymphatic system for extracellular drainage. 

The cerebrovasculature is increasingly recognised as a contributor towards the pathology 

of Alzheimer’s disease (AD) (Iturria-Medina et al. 2016), and is known to participate in the 

removal of toxic proteins such as β-amyloid (Aβ). Failure of this removal is thought to 

underlie the accumulation of Aβ in the parenchyma and blood vessels as cerebral amyloid 

angiopathy (CAA) in the AD brain. However, the mechanisms that lead to the 

development of CAA are currently unknown. Proper functioning of the cerebral vessels is 

mediated via communication with neurons at the neurovascular unit (NVU). Among these 

neuronal populations, the loss of cholinergic neurons is an early and well-characterised 

feature of AD. The purpose of this thesis is to investigate the effect of loss of cholinergic 

innervation at the NVU on the structure and function of the cerebrovasculature in the 

aetiology of CAA. 

The Neurovascular unit (NVU) 

The NVU is the collective term for the cells that form the interface between the brain 

parenchyma and the peripheral blood that make up the cerebral blood vessels where 

regional control of cerebral blood flow (CBF) is regulated. It is composed of endothelial 

cells, pericytes, smooth muscle cells (SMCs), astrocytes, and neuronal fibres and is 

supported by continuous basement membranes formed of extracellular matrices. The 

composition and morphology of the NVU differs between capillaries, arteries and veins 

(McConnell et al. 2017; Lecrux & Hamel 2011; Iadecola 2004). 

Capillaries 

At the capillary level, the NVU contains a single layer of endothelial cells surrounding the 

vessel lumen. The endothelial cells are irregularly surrounded by pericytes that are 

separated from endothelial cells by a thin cerebrovascular basement membrane (CVBM), 

and the entire structure is surrounded by a layer of astrocyte endfeet (Morris et al. 2014). 

Neurons synapse onto astrocytes and may additionally innervate pericytes and the CVBM 

surrounding endothelial cells (Attwell et al. 2010; Hamilton et al. 2010; Vaucher & Hamel 

1995) (Fig. 1.1 a).  
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Arteries 

The leptomeningeal and pial arteries are found at the surface of the brain and enter into the 

brain surrounded by a Virchow-Robin space (Weller, Boche, et al. 2009). The 

leptomeningeal arteries consist of a multilayer of SMCs, which surround a layer of 

endothelial cells, and the whole structure is covered by a layer of astrocyte endfeet known 

as the glia limitans (Filosa et al. 2016). Each layer of cells is surrounded by a CVBM and 

collectively form the internal elastic media, tunica media and the fibrous adventitia 

(Weller, Boche, et al. 2009). These arteries receive extrinsic innervation (see section 

‘Extrinsic innervation’ under ‘Vascular function’) (Hamel 2006). Within the parenchyma, 

penetrating arteries give rise to parenchymal arterioles that are comprised of an endothelial 

cell layer surrounded by a single layer of SMCs separated by a CVBM and carpeted by 

astrocyte endfeet (Fig. 1.1 b).  These vessels are intrinsically innervated (see section 

‘Intrinsic innervation’ under ‘Vascular function’) by nerve fibres that synapse onto 

astrocytes, or penetrate the adventitia to synapse directly onto SMCs and endothelial cells, 

although the degree of this innervation is low (Vaucher & Hamel 1995).  

Veins 

Parenchymal veins and venules have a large lumen with a thin collagenous CVBM and 

contain a single layer of endothelial cells and have occasional pericytes (Rhodin 1968) but 

lack smooth muscle cells (Zhang et al. 1990). Veins have been shown to receive some 

intrinsic innervation (Vaucher & Hamel 1995) and are surrounded by astrocytic endfeet 

(Fig. 1.1 c). 
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Figure 1.1 The NVU  

The composition of the NVU at (a) capillaries, (b) arteries and (c) veins in the brain parenchyma. Adapted 

from (Nizari et al. 2017). 

Endothelial cells 

Endothelial cells express receptors for vasoactive mediators (Hamel 2006) and form the 

interface of the BBB that restricts movement of substances into and out of the brain 
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(Zlokovic 2005). The BBB is the boundary between the parenchyma and the blood, where 

solute exchange is highly regulated by tight junctions and mediated via paracellular, 

transcellular, transport protein- and receptor-mediated endocytosis and adsorptive 

transcytosis (Abbott 2004; Erickson & Banks 2013). 

Pericytes 

Pericytes are found at capillaries and post-capillary venules (Rhodin 1968) and are 

suggested to have contractile properties, although this is still controversial (Fernandez-

Klett et al. 2010; Hamilton et al. 2010). Pericytes have been demonstrated to display 

spontaneous calcium transients, indicating baseline activity but with an additional ability to 

respond to stimuli (Rungta et al. 2018), which suggests they may be involved in the 

maintenance of vascular tone (Attwell et al. 2016). 

Smooth muscle cells 

Smooth muscle cells are found at the arteries (Hannocks et al. 2018) and contain smooth 

muscle actin allowing them to have contractile properties which enable the distortion of the 

vasculature to change vessel lumen shape, dictating vasodilation or vasoconstriction to 

maintain basal CBF and in response to neuronal activity.  

Astrocytes 

Astrocytes form a carpet of endfeet surrounding the NVU (Kacem et al. 1998) outside of 

the outer CVBM  (Zarow et al. 1997). Perivascular astrocytes have been demonstrated to 

be involved in glucose transport from the blood to the parenchyma as part of their ability to 

meet the metabolic demands of the NVU and surrounding tissue (Rouach et al. 2008). 

Astrocytes also modulate CBF following neuronal stimulation (Mulligan & MacVicar 

2004) and as a response to hypercapnia (Howarth et al. 2017). Astrocytes have also been 

demonstrated to regulate vascular tone based on pressure flow feedback from the 

vasculature, leading to bidirectional feedback with pyramidal neurons in the cortex (Kim et 

al. 2015; Kim et al. 2016; Filosa et al. 2016).  

Microglia 

Microglia are the second largest glial cell population in the brain that in addition to being 

expressed throughout the parenchyma, also contact the CVBM of cerebral vessels as 

‘juxtavascular’ microglia. Although the exact function of this microglial population is not 

known, juxtavascular microglia have been reported to play a role in immune surveillance  

and maintenance of the BBB (Lou et al. 2016). They have also been suggested to secrete 

matrix metalloproteases and contribute to vascular remodelling after injury (Könnecke & 

Bechmann 2013). Parenchymal microglia can become reactive and ramified in pathogenic 

circumstances (Filosa et al. 2016) and have been demonstrated to have motile processes 
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which can change from a resting state to respond to sites of injury through immune 

surveillance and phagocytic activity (Nimmerjahn et al. 2005). 

Innervating neurons 

Neuronal innervation is essential for the maintenance of vascular tone and neurovascular 

coupling  (Hamel 2006). Contact from nerve fibres has been described as ‘abutting’ from 

electron microscopy studies (Vaucher et al. 1997) and signalling at the NVU can occur 

within the vascular walls by means of ‘intramural vascular signalling’ (Iadecola 2004) and 

are described further below in section ‘Intrinsic innervation’ under ‘Vascular function’. 

Vascular function 

 

Even though it only makes up 2% of  body mass, the brain requires 20% of the body’s 

energy produced when in resting state (Mishra 2016; Attwell et al. 2010). As such, it is one 

of the most highly perfused organs in the body and is therefore in need of constant and 

stable CBF (Ainslie & Brassard 2014). Moreover, the brain needs to be able to ensure an 

adequate supply of oxygen and glucose in response to fluctuating neuronal activity, a term 

referred to as functional hyperaemia, flow-metabolism or neurovascular coupling (NVC).   

Cerebral autoregulation 

Cerebral autoregulation is the process by which a consistent CBF is maintained over a 

wide range of changes in peripheral arterial pressures (60-150 mmHg) (Van Lieshout et al. 

2003).  This is mediated by innervation from the sympathetic nervous system, whereby 

ganglia of nerves from outside of the parenchyma release vasodilators or vasoconstrictors 

to maintain the upper limit of blood pressure (Hamel 2006) (see section ‘extrinsic 

innervation’ below, Fig. 1.2). This allows a vascular tone, the degree to which a blood 

vessel is constricted relative to its maximal dilation, to be maintained. This is essential in 

ensuring a constant and global perfusion for the brain, which in a healthy adult is about 

71.8±12.0 ml/100g/min in the grey matter at rest (Bertsch et al. 2009).  

Neurovascular coupling  

Once sufficient resting perfusion is achieved, CBF needs to be distributed within the brain 

to the areas that are most active. NVC is achieved via intrinsic innervation (See section 

‘intrinsic innervation’) (Hamel 2006; Duchemin et al. 2012; Filosa 2010). Focal increases 

in CBF are induced via depletion of metabolic factors including glucose, oxygen and ATP, 

leading to increased energy demand (Attwell et al. 2010).  

Extrinsic innervation 



21 

 

As suggested above, cerebral autoregulation is maintained largely through extrinsic 

innervation. Extrinsic innervation is further divided into the sympathetic, parasympathetic 

and sensory systems, which are comprised of nerve fibres which have peripheral ganglia 

originating in the superior cervical ganglion, trigeminal ganglion, the otic ganglion and the 

sphenopalatine ganglion (Fig. 1.2) (Itakura et al. 1977; Baeres et al. 2004). These neurons 

control the degree of vasodilation and constriction by releasing a variety of peptides and 

neurotransmitters including neuropeptide Y, acetylcholine (ACh), vasoactive intestinal 

peptide, serotonin (5-hydroxytryptamine, 5-HT) and noradrenaline (NA) (Lincoln 1995; 

Hamel 2006; Baeres et al. 2004; Bleys et al. 1996). The control of neurotransmission has 

been shown to be determined by CO2  as demonstrated by hypercapnia experiments (Toda 

et al. 1996) or by pH (Liu et al. 2012). As extracerebral vessels pass through the Virchow-

Robin space into the parenchyma and become parenchymal arteries and arterioles, they 

lose innervation from these nerve fibres (Itakura et al. 1977; Filosa et al. 2016; Hamel 

2006). 

 

Intrinsic innervation 

In the parenchyma, NVC is regulated by intrinsic innervation, that is, nerve fibres that 

originate from intracerebral nuclei (Fig. 1.2).  These neuronal cell bodies are mostly 

located in the nucleus basalis (cholinergic system), the locus coeruleus (noradrenergic 

system) and the raphe nucleus (serotoninergic system) (Hamel 2006). Acetylcholine 

(ACh), serotonin (5-HT) and noradrenaline (NA) are the principal neurotransmitters 

involved in the regulation of vascular tone in the hippocampus and cortex (Hamel 2006). 

At the NVU, nerve fibre terminals have been shown to be <1.0 µm from vessel walls 

(Tong & Hamel 1999) and can regulate vascular tone by either synapsing directly on 

smooth muscle and endothelial cells or via pericytes and astrocytes as well as interneurons 

(Mulligan & MacVicar 2004; Chen et al. 2014; Toribatake et al. 1997; Hamilton et al. 

2010; Hamel 2006).  
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Figure 1.2 Intrinsic and extrinsic innervation  

Pial and leptomeningeal vessels are extrinsically innervated by the sympathetic nervous system that regulates 

cerebral autoregulation. Parenchymal vessels receive intrinsic innervation from neurons within the 

parenchyma which act with astrocytes to mediate NVC. 

 

Cholinergic innervation 

Cholinergic neurons in the basal forebrain form the ‘Ch4’ complex, which includes the 

nucleus basalis, diagonal and horizontal bands of Broca and medial septum (Mesulam & 

Geula 1988; Mesulam 2013; Mesulam, E. J. Mufson, et al. 1983). The nerve fibre 

projections from this population of cholinergic neurons have been demonstrated to 

innervate the cortex and hippocampus (Selden et al. 1998) which in rodents, have been 

shown to have a small population (Consonni et al. 2009), and in humans there is evidence 

for some ACh-positive pyramidal cells in the cortex (Mesulam & Geula 1988). The main 

source of innervation to the hippocampus is from the horizontal and vertical bands of 

Broca and the medial septum (Mesulam 2013). Cholinergic innervation of the cortex arises 
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mostly from the nucleus basilis (Mesulam, Elliott J. Mufson, et al. 1983; Rye et al. 1984; 

Sato et al. 2002) but it is also innervated via thalamo-cortical projections (Hallanger et al. 

1987) and from the brainstem (Mesulam, E. J. Mufson, et al. 1983; Mesulam 2013) (Fig. 

1.3).  

Other major cholinergic nuclei include those found in the striatum and the 

pedunculopontine and laterodorsal tegmental nuclei of brain stem, which tracer studies 

have shown to provide projections to the thalamus  (Metherate & Ashe 1993). The 

cholinergic neurons of the striatum have also been found to receive a small amount of 

innervation from the Ch4 region in addition to its own cholinergic neuronal population 

(Mesulam & Geula 1988).  

Cholinergic neurons of the basal forebrain express the p75 receptor for neurotrophic 

growth factor (NGF), a growth factor that is transported via retrograde transport and is 

essential for basal forebrain maintenance (Boskovic et al. 2014). This receptor is not found 

in other cholinergic neuronal populations (Sobreviela et al. 1994) (Fig. 1.3). However, the 

p75 receptor has been found on a small subpopulation of astrocytes in the dendrite gyrus 

(Dougherty & Milner 1999) and to be expressed on glial cells following injury (Cragnolini 

& Friedman 2008). 

ACh, the neurotransmitter released by cholinergic neurons, is synthesised from choline and 

acetyl coenzyme A, in a reaction that is catalysed by the enzyme choline acetyltransferase 

(ChAT). ACh is transported to the nerve terminal via vesicular acetylcholine transporter -

(VAChT) for release and is then broken down in the synapse by acetylcholine esterase for 

reuptake and recycling (Perry 1980). Therefore, ChAT and VAChT are widely used as 

markers of cholinergic neurons (Kuznetsova & Schliebs 2013; Berger-Sweeney et al. 

2001).  

As discussed above, release of ACh at the NVU usually induces vasodilation and increased 

CBF, although in vitro studies have shown that ACh can have vasoconstrictive properties 

at high concentrations (Furchgott & Zawadzki 1980).  ACh actions at the NVU are 

mediated principally via binding to the muscarinic acetylcholine receptors (mAChR) that 

are located on perivascular astrocytes (subtypes m1-5AChR), smooth muscle cells (subtypes 

m1,2, 3 and 5AChR),  and endothelial cells (subtypes m1,2 and 5AChR), (Badaut et al. 1997; 

Luiten et al. 1996; Edvinsson et al. 1977; Elhusseiny et al. 1999). Stimulation of 

cholinergic neurons in the basal forebrain has been demonstrated to increase cortical CBF 

without affecting peripheral blood pressure, highlighting the influence of neuronal control 

of this pathway (Sato et al. 2004; Biesold et al. 1989; Iadecola & Zhang 1996). Moreover, 
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Adachi et al found that while hypercapnia increased blood flow in both pial and cortical 

arteries, stimulation of the basal forebrain increased CBF only in the cortex (Adachi et al. 

1992).  

ACh is known to cause increased CBF through vasodilation via the nitric oxide (NO) 

pathway (Vaucher et al. 1997).  At the astrocyte endfeet, direct activation of AChRs or 

indirect activation of mAChRs on interneurons by ACh leading to glutamate release and 

activation of metobotropic glutamate receptors (mGLUR) on astrocyte endfeet (Cauli et al. 

2004), can lead to increased levels of intracellular calcium (Ca2+). This stimulates 

activation of calmodulin, a co-factor of endothelial and neuronal nitric oxide synthase 

(eNOS and nNOS, respectively) activity (Shu et al. 2015). Activation of eNOS via 

Ca2+/calmodulin or phosphorylation by the Akt/PI3K pathway (Dimmeler et al. 1999) 

leads to the conversion of L-Arginine into L-citrulline, releasing NO as a by-product which 

can diffuse across into SMC and induce relaxation, leading to vasodilaton (Fig. 1.3) 

(Duchemin et al. 2012).  

 

Figure 1.3 The NO pathway  

eNOS and nNOS are activated following Ca2+/calmodulin phosphorylation initiated by ACh signalling. eNOS 

can be additionally activated through the PI3K/Akt pathway. 
 

Increasing intracellular calcium can also lead to vasodilation by inducing hyperpolarisation 

of SMCs via increased production of arachidonic acid and activation of cyclooxygenase-2 

(COX2) and release of epoxyeicosatrienoic acid (EET) (Fig. 1.4). However, increased 

arachidonic acid levels can also counter excessive vasodilation by eliciting 
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vasoconstriction via 20-HETE activation (Stella et al. 1994; Stobart et al. 2013; 

Gebremedhin et al. 1992; Liu et al. 2012).  

In the endothelial cell, increases in levels of intracellular Ca2+ can be induced by activation 

of AChR or shear stress (Raignault et al. 2017) which can also lead to vasodilation via 

eNOS activation or production of arachidonic acid and prostacyclin (Fig. 1.4) (Duchemin 

et al. 2012). However, prostacyclin can be inhibited by peroxynitrite, a product caused by 

the combination of reactive oxidative species (ROS) and excessive NO under pathological 

conditions  (Zou & Ullrich 1996) (Fig. 1.4). 
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Figure 1.4 ACh induced CBF signalling pathways at the NVU  

Vasodilatory and vasoconstrictive signalling pathways through cholinergic perivascular innervation at the 

NVU. AChR activation at the astrocyte endfeet or endothelial cell lead to intracellular Ca2+ elevation, leading 

to arachidonic acid or eNOS mediated vasodilation at the SMC. ROS production in combination with excess 

NO can lead to peroxynitrite inhibition of vasodilation. nNOS from ACh innervated interneurons can also 

lead to vasodilation at the SMC. Shear stress caused by CBF can also lead to endothelial cell-led vasodilation 

(COX1/2, cyclooxygenase 1/2, EET, epoxyeicosatrienoic acid, cAMP, cyclic adenosine monophosphate, 

PGE-2, prostaglandinE2, 20-HETE, 20-hydroxyeicosatetranoic acid).  
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Other intrinsic neurotransmitter pathways that regulate CBF in the cortex and 

hippocampus  

Noradrenergic nerve fibres originate from nuclei in the locus coeruleus (Sato & Sato 1995; 

Edvinsson et al. 1977) in the brainstem (Fig. 1.5). These fibre projections innervate the 

hippocampus and cortex, hypothalamus, amygdala and thalamus (Wainer et al. 1993) and 

contain the enzyme tyrosine hydroxylase that is involved in the synthesis of NA from 

dopamine (Hardebo et al. 1980). NA leads to vasoconstriction by binding to α2 adrenergic 

receptors (Högestätt et al. 1989) in response to hyperaemia (Bekar et al. 2012).  NA can 

also stimulate NO-mediated vasodilation (Thorin 2001) via noradrenergic β2 receptors 

(Court & Perry 2003; Lincoln 1995).  NA has been suggested to have vasoconstrictive and 

vasodilatory effects depending on vessel type (Sercombe et al. 1990; Lincoln 1995).   

Serotoninergic nerve fibre projections originate from the raphe nucleus in the brainstem 

(Court & Perry 2003) to innervate parenchymal and pial arteries and arterioles in the cortex 

and hippocampus (Bonvento et al. 1990; Itakura et al. 1985). The pattern of serotoninergic 

innervation has been demonstrated to be similar to NA fibres (Jackowski et al. 1988). 5-HT 

is synthesised from the conversion of L-tryptophan in a series of reactions that are 

catalysed by tryptophan hydroxylase and aromatic L-amino acid decarboxylase (Cohen et 

al. 1992; Lincoln 1995). Serotonergic neurons can also be identified by the expression of 

the 5-HT transporter, which participates in the reuptake of 5-HT from the synapse into 

presynaptic neurons.   Binding of 5-HT1 and 5-HT2 receptors leads to vasoconstriction 

(Hamel et al. 1988; Lincoln 1995) while binding to 5-HT1B causes vasodilation (Elhusseiny 

& Hamel 2001).  This effect is dose-dependent, causing vasodilation at lower 

concentrations, and vasoconstriction at higher concentrations (Elhusseiny & Hamel 2001; 

Harper & MacKenzie 1977).  
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Figure 1.5 Cholinergic, noradrenergic and serotonergic fibre pathways in the mouse brain  

Schematic representation of ascending cholinergic, noradrenergic and serotonergic pathways from the 

brainstem and basal forebrain to the cortex and hippocampus and thalamus. Adapted from (Woolf & Butcher 

2011; Mesulam, E. J. Mufson, et al. 1983; Wainer et al. 1993). 
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Other vasoactive modulators 

In addition to ACh, NA and 5-HT, vasodilation and vasoconstriction of cerebral blood 

vessels is also regulated through a variety of compounds, including glutamate, GABA, 

lactate, derivatives of arachidonic acid, potassium and hydrogen ions, carbon dioxide, 

oxygen, adenosine and NO (Vaucher et al. 1997; Frahm et al. 1996; Iadecola 1993).  

As discussed above, activation of NOS and release of NO plays a crucial role in 

maintaining a baseline vascular tone. Iadecola and Xu have shown that pharmacological 

inhibition of NOS decreases CBF without affecting glucose consumption (Iadecola & Xu 

1994). In addition to the expression of eNOS in endothelial cells and astrocytes, two other 

NOS isoforms are present in the brain, neuronal (nNOS) and inducible (iNOS) NOS. 

nNOS is constitutively expressed in neurons and astrocytes (Yuan et al. 2004) while iNOS 

is expressed in the endothelium (Jeynes & Provias 2009) during pathological events such 

as ischaemia (Jiang et al. 2014). 

Although much of the role of NO at the NVU is mediated by the activity of eNOS, the 

importance of nNOS in regulating CBF has been highlighted by Lovick et al who have 

suggested that nNOS from a subpopulation of interneurons in the hippocampus is 

responsible for moderating NVC in response to metabolic demand (Lovick et al. 1999). 

nNOS has also been shown to contribute to increased CBF elicited by hypercapnia, as 

inhibition of nNOS activity resulted in decreased CBF responses to CO2 in the rat (Harada 

et al. 1997). Glutamate-stimulated increases in CBF in vivo have also been shown to be 

dependent on activation of nNOS (Lourenço et al. 2014). Cholinergic neurons originating 

from the basal forebrain also synapse on nNOS-containing GABAergic interneurons in the 

cortex (Cauli et al. 2004; Vaucher et al. 1997), which adds an additional layer of 

complexity to the regulation of NVC. 

CBF 

As suggested above, individual cells of the NVU, including endothelial cells, pericytes, 

SMCs and astrocytes, contribute to the regulation of CBF under basal and stimulated 

conditions (Hamel 2006). 

Endothelial cells and pericytes 

As outlined above, activation of endothelial cells by binding of ACh or via shear stress can 

induce relaxation of SMCs through production of NO, cAMP or the activity of potassium 

channels (Hannah et al. 2011). Pericytes contain smooth muscle actin that confers 

contractile properties (Hamilton et al. 2010; Attwell et al. 2016) and have been shown to 

respond to cholinergic signalling in retinal capillaries (Wu et al. 2003) and cerebral 
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microvessels (Oishi et al. 2007). Pericytes have also been shown to display spontaneous 

calcium transients, indicating baseline activity but with an additional ability to respond to 

stimuli (Rungta et al. 2018), which suggests they are involved in vasomotion and 

maintenance of vascular tone. However, using optogenetics to induce vasoconstriction, 

Hill et al. have shown that only vessels with smooth muscle cells and not pericytes were 

able to respond to light stimulus, suggesting that capillaries do not contribute to the 

regulation of CBF (Hill et al. 2015). 

 

Smooth muscle cells 

There is little evidence to suggest that SMCs in parenchymal vessels express ACh 

receptors unlike those which are extrinsically innervated (Edvinsson et al. 1977; Luff 

1996), and ACh-mediated dilation of SMCs is thought to be mediated predominately by 

endothelial cells (Manicam et al. 2016). However, studies have identified the presence of 

nAChRs and mAChRs on SMCs in the cortex and the hippocampus (Clifford et al. 2008; 

Elhusseiny et al. 1999; Ferreira-Vieira et al. 2016) and it has been suggested that nNOS 

upregulation in SMCs is able to compensate for decreases in eNOS to maintain vascular 

tone (Ward et al. 2005). Contraction of SMCs is also believed to underlie vasomotion, the 

spontaneous contraction of arteries that is thought to be independent of neuronal activity,  

although this independence has been questioned (Rivadulla et al. 2011; Pradhan & 

Chakravarthy 2011). 

 

Astrocytes 

In addition to neurons, astrocytes also contribute to the regulation of the vascular tone of 

parenchymal arterioles (Kim et al. 2015). Astrocytes can mediate NVC (Gordon et al. 

2008) and have been suggested to respond to perfusion-induced changes in blood pressure 

(Blanco et al. 2008; Kim et al. 2015) in order to redirect CBF. However, it has been argued 

that astrocytes are unable to mediate signalling to arterioles and only do so via pericytes in 

the capillaries (Mishra et al. 2016). Xu et al. have suggested that astrocytes also contribute 

to hypercapnia-induced vasodilation of pial arterioles (Xu et al. 2004),  

Assessment of CBF  

Invasive imaging techniques 

In order to measure CBF, invasive techniques such as the intravenous injection of 

radiotracers such as [15O]H2O or [18F]fluoxyglucose can be used to estimate CBF and/or 

metabolic activity either in vivo or post-mortem (Cholet et al. 1997). Animal models used 

to carry out real-time imaging also include thinning the skull in order to create a surface 
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through which imaging of cortical vessels can be carried out using laser speckle or laser 

Doppler imaging which measures CBF based on detection of red-blood-cell induced shifts 

in light waves (Huang et al. 1994; Duncombe et al. 2017; Anenberg et al. 2015). Recently, 

Lourenço et al have combined laser Doppler probes with oxygen and NO detecting 

microsensors, allowing CBF measurements of the hippocampus to be made (Lourenço et 

al. 2017; Lourenço et al. 2014; Lourenço et al. 2018). Another technique of exposing the 

cerebrovasculature is by creating a cranial window through which fluorescent labelling of 

the cerebrovasculature and genetically fluorescently-tagged components can be observed 

using laser microscopy (Tajima et al. 2014; Klohs et al. 2014). Recently, this has been 

combined with using optical coherence tomography, which allows label-free imaging of 

CBF using light scattering in deep brain tissue (Park et al. 2018). Deep tissue imaging has 

also been achieved by inserting an objective as a probe and using an Argon laser for light 

scattering in order to measure CBF (Kuga et al. 2009; Devor et al. 2012).  

Non-invasive imaging techniques 

To visualise NVC non-invasively, changes in blood flow and oxygenation can be imaged 

using functional magnetic resonance imaging (fMRI). Mapping of neuronal activity is 

routinely assessed using blood oxygen level dependent (BOLD) contrast signalling, which 

is generated from the change in the magnetic field surrounding oxygenated and de-

oxygenated red blood cells. BOLD-weighted MRI sequences can therefore be used as a 

proxy for oxygen utilisation based on the metabolic activity of the neurons and provide a 

high signal-to-noise ratio and good temporal resolution signal (Ogawa et al. 1990; Attwell 

& Iadecola 2002). However, the interpretation of changes in the BOLD signal can be 

complicated by variations in the rate of oxygen metabolism, blood volume and magnetic 

field strength which can be affected by age and disease (Liu & Brown 2007). 

Perfusion fMRI based on arterial spin labelling (ASL) offers a useful complement to 

BOLD fMRI. This technique magnetically ‘tags’ water within the blood in peripheral 

blood vessels, such as the carotid arteries, and detects changes in the magnetisation as the 

blood passes into the brain tissue. By calculating changes against a baseline image, a 

measurement of CBF in millilitres of blood per 100g of tissue per minute can be estimated  

(Wierenga et al. 2014).  

Alzheimer’s disease 

Dementia is a chronic and progressive neurodegenerative disease which leads to the loss of 

numerous higher cognitive functions (World Health Organisation 2011). Alzheimer’s 

disease (AD) is the most common form of dementia, with more than 850,000 individuals 

affected in the UK alone (Prince et al. 2014). The World Alzheimer Report 2015 estimates 
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that 46.8 million people are currently living with dementia globally, and predict this figure 

to increase to 74.7 million by 2030 (Alzheimer’s Disease International  2015).  

Clinical symptoms of AD 

AD presents as progressively worsening memory loss with cognitive impairment and 

psychotic symptoms (López & DeKosky 2008). AD has been characterised as occurring in 

three stages; the first being asymptomatic with subclinical pathology, the second being 

prodromal, which is associated with mild cognitive impairment (MCI) and includes early 

cognitive abnormalities such as episodic memory impairment before being lastly defined 

as AD dementia (Jack et al. 2010), where patients have severe cognitive impairments and 

require help with daily activities (López & DeKosky 2008).  

Pathological changes in AD 

AD is characterised pathologically by the extracellular deposition of amyloid-β (Aβ)-

containing plaques, the intracellular accumulation of tau-positive tangles and neuronal loss 

(Braak & Braak 1991). The development of both plaques and tangles occurs in stages, 

wherein Aβ deposits are first deposited in the isocortex and the basal areas of the frontal, 

temporal and occipital cortex, eventually becoming established in the hippocampus (Braak 

& Braak 1991). Neurofibrillary changes in AD occur in six stages, beginning with the 

accumulation of intracellular neurofibrillary tangles and neuropil threads in the entorhinal 

cortex (EC), which spread throughout the hippocampus and isocortex in the later stages 

(Braak & Braak 1991). Neuronal cytoskeletal dysfunction is associated with  

hyperphosphorylated tau (P-Tau) (Grundke-Iqbal et al. 1986) and leads to neuronal and 

synaptic loss (Serrano-Pozo et al. 2011; Weller et al. 2008; Tarasoff-Conway et al. 2015). 

However, the cortical beginnings of this disease have recently been challenged by a 

longitudinal MRI study which suggests that significant changes in grey matter volume of 

individuals who went on to develop AD occurred firstly in the basal forebrain before 

affecting the EC. This study suggested that Aβ1-42 was detected in the CSF of 

asymptomatic individuals after damage to the basal forebrain, and that clinical impairments 

developed when there was degeneration of the basal forebrain and EC (Schmitz et al. 

2016).  

The variation of the spread of tangle pathology within the brain was first suggested to 

represent three subtypes of AD (Murray et al. 2011) which was associated with different 

amounts of grey matter atrophy (Whitwell et al. 2012). This was more recently developed 

in a cluster analyses study by Poulakis et al, who identified 5 different subtypes of spatially 

differing pathology including minimal atrophy, limbic predominant, hippocampus sparing 
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and two diffuse subtypes, each of which had different cognitive and symptomatic 

variations with hippocampal sparing being the most severe (Poulakis et al. 2018). 

Cerebrovascular changes in AD  

In addition to pathological changes in the parenchyma in AD, increasing evidence suggests 

that alterations of the cerebrovasculature contribute to the aetiology and /or progression of 

AD. In fact, vascular pathology has been suggested to be the earliest indicator of the 

development of AD (Jack et al. 2010; Iturria-Medina et al. 2016). One-third of AD cases 

present with vascular pathologies (Kalaria 1999). Examples of these include the presence 

of ‘string vessels’, indicating collapsed capillaries (Hunter et al. 2012), and thickening of 

the CVBM (Attems et al. 2004) possibly due to increased amounts of collagen I, III and IV 

(Kalaria & Pax 1995).  Other changes in the biochemical composition of the CVBM in AD 

include increased levels of laminin and heparan sulphate proteoglycans (HSPG) compared 

to age matched controls (Christov et al. 2008; Kalaria 1999). Pericyte degeneration and 

BBB breakdown associated with leakage have also been found to be significantly increased 

in AD tissue (Halliday et al. 2016). 

CAA 

The most common form of cerebrovascular pathology associated with AD is CAA. CAA is 

defined as the presence of Aβ deposits in the walls of cerebral blood vessels (Vinters 

1987). It is present in up to 98% of AD cases (Jellinger 2002) and also in the non-

demented elderly, where it has been shown to be present in 10-38% of individuals over the 

age of 70 (Jellinger 2002).  Although the majority of cases of CAA occur sporadically with 

age being a significant risk factor (Tanzi & Bertram 2005), an autosomal dominant form of 

CAA, called hereditary cerebral haemorrhage with amyloidosis-Dutch type (HCHWA-D), 

has been identified in the Dutch population (Kamp et al. 2014). Other forms of hereditary 

CAA include the HCH-WA Italian type, Iowa mutation, Flemmish, Piedmont and Arctic 

mutations which are characterised by specific fibrillar formations and specific APP 

mutation sites (Miravalle et al. 2000; Grabowski et al. 2001; Brooks et al. 2004; Obici et 

al. 2005), and the Icelandic form where the non-amyloid beta cystatin-c protein leads to 

CAA (Pezzini et al. 2009). 

 

CAA topography 

CAA is diagnosed post mortem, but individuals may also be classified as having ‘probable 

CAA’ from MRI imaging using the Boston criteria for diagnosis of CAA (Knudsen et al. 

2001). In CAA, Aβ deposits predominantly in leptomeningeal arteries and cortical 

arterioles, less frequently in capillaries and is rarely observed in veins (Attems et al. 2011). 
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Within the arteries, Aβ is proposed to deposit in the basement membrane of the tunica 

media, eventually killing and replacing the underlying multicellular layer of SMCs 

(Preston et al. 2003; Keable et al. 2015). CAA presents initially in the occipital lobe, 

followed by the temporal, frontal and parietal lobes, then in the hippocampus and EC and 

is observed in thalamus and cerebellum only in the late stages of the disease (Tian et al. 

2003; Pfeifer et al. 2002; Attems et al. 2011).  

 

Allen et al recently set out a classification system for 4 types of CAA as shown in Table 

1.1 (Allen et al. 2014). CAA severity has been found to be more correlated with missense 

mutations and duplication of the gene that encodes for the amyloid precursor protein (APP) 

and ApoEε4 homozygosity than with sporadic AD (Mann et al. 2018), suggesting it to be 

associated with failure of Aβ waste management. Interestingly, Buss et al recently found 

that although the presence of additional copies of the APP gene increased the risk of CAA-

associated intracerebral haemorrhage, the presence of 3 copies of the APP gene as found 

with Down’s syndrome decreased this risk, suggesting some protection through an 

unknown mechanism (Buss et al. 2016). 

Table 1.1 CAA types 1-4 as classified by Allen et al (Allen et al. 2014) 

Type 1 2 3 4 

Gender 

prevalence 

Female Male No difference No difference 

Presence of 

senile plaques  

Present  Present Present Very few, 

sparse 

CAA location Mainly 

leptomeningeal 

Deeper 

penetrating, 

intracortical 

arteries 

Mainly 

capillary CAA 

Leptomeningeal 

& cortical 

arteries and 

capillaries 

Clinical characteristics of CAA 

CAA is most frequently associated with intracerebral haemorrhages (ICH). A study by 

Meretoja and colleagues found that 20% of ICH treated patients at the Helsinki University 

Central hospital were found to have CAA, which was the second highest cause of stroke in 

the study (Meretoja et al. 2012). Also, the Rotterdam study has recently demonstrated that 

during a follow-up of patients identified with microbleeds, the risk of having new strokes 

was highest for patients who had had microbleeds in areas associated with CAA (Akoudad 

et al. 2015). In individuals with HCHWA-D, ICH in patients is the main symptom and 
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CAA load is associated with reduced vascular function (Kalaria 2001; van Opstal et al. 

2016; Kamp et al. 2014; Fotiadis et al. 2016). 

 

An independent effect of CAA on cognitive decline, separate from other AD pathologies, 

has also been demonstrated by regression analysis of data from the Religious Orders study 

(Arvanitakis et al. 2011). Recently, white matter hyperintensities, including enlarged 

perivascular spaces, have also been found to occur in younger age groups, and may be a 

predicting factor for the development of CAA (Ishikawa et al. 2018). The cognitive deficits 

associated with severe CAA are also associated with neocortical CAA but not with 

hippocampal CAA (Arvanitakis et al. 2011). 

 

In animal models of CAA,  a loss of contact of astrocytic endfeet and decreased expression 

of potassium channels and dystrophin-1 (Wilcock et al. 2009), along with a loss of SMCs 

has been associated with CAA-affected vessels (Haglund et al. 2006). Vasoreactivity in the 

Tg2576 mouse model of CAA has been demonstrated to be reduced due to elevated 

reactive oxidative species (Han et al. 2015), and additionally in the TgSwDI mouse model, 

where oxidative stress contributed to reduced CBF responses to functional hyperaemia 

prior to CAA pathology (Park et al. 2014). 

 

There is also evidence that CAA affects CBF in humans with AD. Vasoreactivity has been 

measured in humans in different ways, including hypercapnia (Maggio et al. 2013) and by 

blood oxygen level dependent time to peak (BOLD-TTP) MRI, where visual cues are used 

to measure NVC. Interestingly, it has been demonstrated that resting CBF, does not differ 

between CAA and non-CAA patients (Dumas et al. 2012). However, a recent study found 

that patients both with sporadic CAA or HCHWA-D showed poor vascular reactivity in 

response to  BOLD-TTP MRI (Fotiadis et al. 2016), indicative of impaired NVC. Hypo-

perfusion has been noted in the temporal and also the hippocampal regions of individuals 

diagnosed with early AD (Alsop et al. 2008). Interestingly, the hippocampus, striatum and 

amygdala, have been found to be hyper-perfused in MCI affected patients in comparison to 

control patients (Dai et al. 2009). MCI patients have also been found to have hypo-

perfusion in the precuneus and cuneus regions of the brain (Xu et al. 2007; Dai et al. 2009), 

consistent with regions affected during symptomatic AD (Miners et al. 2015). MCI patients 

who went on to develop dementia were shown to have significantly poorer perfusion in the 

parietal and frontal cortices in relation to decreased hippocampal volume as detected by 

MRI (Chao et al. 2010).  
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The precuneus and parietal regions have also been noted to be hypo-perfused in AD in 

addition to the posterior, temporal, orbitofrontal lobes, hippocampus, striatum and 

amygdala, and as the disease progresses, the frontal cortex (Brown et al. 1996; Hu et al. 

2010; Dai et al. 2009). Hu et al also found areas of significant hyper-perfusion in AD 

patients in the frontal and lateral temporal lobes, where AD pathology is known to occur in 

the severe stages of the disease (Hu et al. 2010), suggestive of a possible compensatory 

mechanism. Changes in perfusion in vulnerable areas has led to the ‘Critically Attained 

Threshold of Hypoperfusion’(CATCH) hypothesis proposed by de la Torre (de la Torre 

2000) who suggest that once innate age-related decreases in cerebral perfusion and 

pathology arising from risk factors associated with vascular dementia reaches a threshold, 

this leads to pathological hypo-perfusion. 

 

Aetiology of CAA 

The mechanisms that underlie the aetiology of CAA remain unknown. The presence of Aβ 

in the walls of the cerebrovasculature is thought to principally result from impaired 

clearance of neuronally-produced Aβ (Goedert 1987), although in vitro cultures of smooth 

muscle cells also produce Aβ (Davis-Salinas et al. 1995). It has also been suggested to 

accumulate through age-related failure of removal of Aβ either across the BBB into the 

bloodstream (Mackic et al. 1998) and/or along the walls of the blood vessels. 

Aβ production  

Aβ is naturally produced in the brain by the processing of amyloid precursor protein 

(APP), a transmembrane glycoprotein that is highly expressed in neuronal membranes. 

APP can be processed through two different pathways; in the non-amyloidogenic pathway, 

APP is cleaved by α secretase into a soluble sAPPα fragment and a CTF83 carboxy 

terminal fragment (Fig. 1.6).  CTF83 is then cleaved by the γ secretase enzyme into CTF59 

and P3 fragments which do not contain the full-length Aβ sequence. In the amyloidogenic 

pathway, APP is cleaved first by β secretase, generating the sAPPβ fragment and a 

remaining CTF99 fragment (Fig. 1.6). It is the cleavage of the latter fragment by γ 

secretase which generates the neurotoxic species of Aβ (Puzzo et al. 2015) (Fig. 1.6). 
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Figure 1.6 APP processing  

Schematic of APP processing via the non-amyloidgenic pathway, leading to the production of sAPPα, or the 

amyloidogenic pathway, leading to Aβ production.   
 

The Aβ peptide can be of varying lengths, predominantly 39-42 amino acids long. Aβ1-42 is 

more prone to aggregation and aggregates more quickly than the Aβ1-40 fragment (Jarrett et 

al. 1993; Sinha & Lieberburg 1999). Parenchymal plaques in AD are composed 

predominantly of Aβ1-42, while Aβ1-40  deposits primarily in CAA (Suzuki et al. 1994). This 

is supported by analysis of cerebrospinal fluid (CSF), where there is a significant decrease 

in both Aβ1-40 and Aβ1-42 CSF levels in CAA, compared to AD, where only a decrease in 

Aβ1-42 CSF levels is detected with disease progression (Verbeek et al. 2009). 

 

Aβ clearance 

In healthy individuals, Aβ production is balanced by its removal. Isotype labelling 

experiments have estimated that Aβ synthesis occurs at a rate of 7.6%/hour and exogenous 

Aβ is removed from the brain parenchyma and vasculature at a rate of 8.3%/hour as 

calculated from the ratio of labelled Aβ produced compared to unlabelled Aβ in CSF over 

time (Bateman et al. 2006). Four main clearance mechanisms by which Aβ is removed 

from the brain have been identified including i) degradation by enzymes, ii) uptake by 

perivascular macrophages and microglia, iii) transcytosis across the BBB, and iv) drainage 

along blood vessels (Fig. 1.7). 
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Figure 1.7 Aβ clearance routes 

 Schematic representing the main routes of Aβ removal from the parenchyma  

Enzymatic degradation 

Aβ is cleared from the brain following degradation by enzymes including neprilysin (Iwata 

et al. 2001; Hafez et al. 2011), insulin-degrading enzyme (Farris et al. 2003), angiostensin-

converting enzyme (ACE) (Miners et al. 2008) and endothelin-converting enzyme (ECE) 

(Palmer et al. 2010). Knockout of the neprilysin gene in a transgenic mouse model has 

been shown to increase Aβ levels in the plasma and hippocampus, as well as increase CAA 

pathology (Farris et al. 2007). ACE and ECE-1 are expressed in cerebrovascular vessels 

and astrocytes (Palmer et al. 2010; Miners et al. 2014) and ACE has been shown to be 

increased in AD, possibly to compensate for increased Aβ deposition (Miners et al. 2008). 

 

Perivascular macrophages and microglia 

Microglia, the primary inflammatory cells of the brain, have been shown to position 

themselves around sites of brain injury such as following damage to the BBB (Nimmerjahn 

et al. 2005). Microglia have been implicated in Aβ clearance following immunization with 

anti-Aβ antibodies, potentially through a phagocytotic mechanism (Wilcock et al. 2004). It 

Aβ Enzyme degradation

Perivascular 

macrophages/microglia
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the BBB
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Glymphatic

drainage



39 

 

has also been suggested that microglia become activated by dystrophic neurons (Streit 

2004). A recent publication by Bachstetter and colleagues on human brains suggested that 

there are five different morphologies of microglia which are specific to age-related 

diseases, such as AD and hippocampal sclerosis (Bachstetter et al. 2015). However, it has 

been noted that increased dystrophic microglia also correlates with age, suggesting a 

possible effect on age-related changes in the inflammatory profile of the normal brain 

(Streit et al. 2004). 

  

Perivascular macrophages, which are peripherally-derived macrophages that reside within 

the perivascular spaces surrounding leptomeningeal and large penetrating arteries, have 

been shown to be localised to CAA-affected vessels (Klohs et al. 2014; Pey et al. 2014). 

Activation of perivascular macrophages has been shown to decrease in vascular Aβ1-42 in 

the transgenic TgCRND8 mouse model of CAA (Hawkes & McLaurin 2009). 

 

Transcytosis across the BBB 

Receptors that have been shown to transport Aβ across the BBB include the receptor for 

advanced glycation end-products (RAGE) (Mackic et al. 1998), LDL receptor-related 

protein-1 (LRP-1) (Shibata et al. 2000), p-glycoprotein (p-gp) (Qosa et al. 2014), and ATP 

binding cassette transporter proteins (ABC) ABCG2 and ABCG4 (Do et al. 2012). LRP-1 

has been shown to transport Aβ1-40 and Aβ1-42  from the parenchyma into the vessel lumen 

with Aβ1-40 cleared at a faster rate than Aβ1-42  (Bell et al. 2007). Shibata et al showed that 

LRP-1 expression decreases with age in mice and that levels of LRP-1 are decreased in AD 

brains (Shibata et al. 2000).  Inhibiting the transporter protein p-gp on the abluminal side 

has also been shown to inhibit transcytosis of Aβ across the BBB. Hartz et al found p-gp to 

be downregulated in Tg2576 mice, and the restoration of p-gp levels lead to a reduction in 

Aβ1-40 and Aβ1-42 in cerebral capillaries (Hartz et al. 2010). Conversely, RAGE acts to 

transport Aβ from the blood into the brain (Mackic et al. 1998).  

 

Clearance along blood vessels 

In addition to clearance across the BBB, evidence suggests that blood vessels can also act 

as conduits along which Aβ is removed from the brain.  Two pathways have been 

identified, the glymphatic and perivascular pathways.  

Glymphatic pathway 

The glymphatic clearance hypothesis proposes a principal role for CSF in the clearance of 

Aβ (Iliff et al. 2012). Experimental evidence from mice suggests that that CSF enters the 
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brain from the subarachnoid space along the periarterial space surrounding penetrating 

arteries (Iliff et al. 2013). Following exchange of solutes between the CSF and the 

parenchymal ISF, Aβ contained within the CSF is removed from the brain along 

paravenous spaces and is returned to the blood. This is dependent upon glial water influx 

mediated through the astrocyte aquaporin 4 (AQP4) water channel. This water exchange is 

believed to drive ISF and solutes from the parenchyma through exchange with paravenous 

CSF or CSF in the subarachnoid space and is driven by convective flow. Deletion of AQP4 

in transgenic mice led to poor removal of intracerebrally injected Aβ, suggesting an 

obstruction of glymphatic drainage (Iliff et al. 2012; Jessen et al. 2015). Nedergaard and 

colleagues have also suggested that sleep and anaesthesia play an important role in 

clearance, and found that the rate of clearance was increased in animals during sleep (Xie 

et al. 2013).  

 

However, findings from recent in silico and in vivo experiments have challenged several 

aspects of this hypothesis. Calculations based on known concentrations of ions in the ISF 

and CSF have shown that unidirectional water movement is not possible under 

physiological conditions. Moreover, clearance of solutes by convective or bulk flow does 

not match the rates of solute clearance that are observed in experimental conditions (Smith 

et al. 2017; Abbott et al. 2018; Smith & Verkman 2018; Hladky & Barrand 2014). It has 

also been demonstrated that tracers injected into the CSF move out of the brain along per-

arterial pathways and not the venous paravascular routes suggested by the glymphatics 

hypothesis (Albargothy et al. 2018). Smith et al have reported that AQP4 deletion did not 

hinder clearance of tracer from the parenchyma and Gakuba et al have found that solute 

clearance is higher during states of wakefulness (Gakuba et al. 2018; Smith et al. 2017). A 

recent report has also suggested that there is minimal entry of CSF into the brain under 

normal conditions and that entry along peri-arterial spaces may be a post-mortem artefact 

(Ma et al. 2018). 

 

Perivascular drainage 

Perivascular drainage (PVD) aka intramural perivascular arterial drainage has been 

proposed as another pathway of clearance of Aβ from the brain (Fig. 1.8).  In this model, 

Aβ secreted into the ISF moves through the parenchyma and enters the CVBM of 

capillaries which invaginate the extracellular space (Morris et al. 2014). Aβ eventually 

moves into the CVBMs of the tunica media of cortical and leptomeningeal arteries, and is 

ultimately cleared into the cervical lymph (Hawkes et al. 2014; Weller, Djuanda, et al. 
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2009; Abbott 2004). Disruption in the efficiency of perivascular drainage is proposed to 

lead to the disruption in parenchymal homeostasis, causing a rise in soluble Aβ, which 

triggers tau pathology and initiates neuronal death (Weller, Preston, et al. 2009). 

 

Figure 1.8 Perivascular drainage  

Diagram depicting perivascular drainage of Aβ through the cerebrovascular basement membrane of the 

capillary into the basement membranes of the artery.  
 

Evidence to support this hypothesis comes from the observation that tracers injected in the 

deep grey matter of the brain were found in capillaries and arteries and minimally in veins, 

which matches the pattern of CAA observed in humans (Preston et al. 2003; Keable et al. 

2015). Furthermore, injected Aβ and dextran have been shown to co-localise with the 

CVBM (Carare et al. 2008; Dorr et al. 2012; Hawkes et al. 2011) in the same pattern as 

that observed in human brains (Keable et al. 2015; Attems et al. 2011). These data suggest 

that the CVBM may play a role in PVD, and that changes to the CVBM may contribute to 

impaired removal of Aβ from the brain (Morris et al. 2014).  

Although experimental evidence suggests movement of ISF in the direction opposite to 

blood flow (e.g. from capillaries to arteries), the mechanisms by which this movement is 

generated are currently unknown. The flow of ISF has been suggested to be pulse-

dependent, as this movement has been seen to be decreased following middle cerebral 

artery occlusion in mice (Arbel-Ornath et al. 2013) and ceases following cardiac arrest 

(Carare et al. 2008) and stroke (Garcia-Alloza et al. 2011).  Using labelled dextran injected 

into the deep grey matter and monitoring its progress at varying timepoints, Carare et al 
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observed tracers in the CVBM of leptomeningeal cortical arteries by 5 min post injection.  

Dextran was no longer detectable in vessel walls after 3 h (Carare et al. 2008). Such 

findings have also been replicated using fluorescently-labelled human Aβ1-40 (Hawkes et al. 

2012; Hawkes et al. 2011; Hawkes et al. 2013). Ball et al. reported that Aβ1-40 could be 

detected in the olfactory bulb of rats within 10 min of injection into the inferior colliculus, 

suggesting a very rapid movement of ISF (Ball et al. 2010). ISF clearance via PVD was 

also shown in real time using multi-photon microscopy (Arbel-Ornath et al. 2013).  This 

study demonstrated ISF drainage within the CVBM around smooth muscle cells in a ‘bi-

exponential mode’, suggesting that there is a driving force behind PVD, and it is unlikely 

to occur by diffusion alone.  

Mathematical modelling by Schley et al hypothesised that the force for ISF movement 

could be generated during cardiac pulse cycles, where vasoconstriction is followed by 

vasorelaxation and could propel the movement of ISF in the direction opposite to blood 

flow (Schley et al. 2006). However, recent modelling of ISF drainage by Diem et al 

suggest that the arterial pulsatility is not strong enough to match the rapid flow rate of 

experimental data (Diem et al. 2017; Carare et al. 2008). 

Vasomotion, the spontaneous contraction of arteries, has been linked to ultraslow 

oscillations of neuronal activity and is thought to ensure maintenance of oxygen levels, 

under resting state and during stimulation (Mateo et al. 2017). A recent study using 

diffusion tensor imaging suggested that vasomotion drives ‘perivascular fluid movement’ 

that was linked to heart rate (Harrison et al. 2018). However, the data from that study was 

derived from the circle of Willis, which is extrinsically innervated (Bleys & Cowen 2001), 

and may therefore not be reflective of vasomotion control from the intrinsically innervated 

parenchyma. Recent computational analyses by Aldea et al have suggested that the forces 

driving PVD may be generated from neuronally-induced relaxation and dilation of the 

cerebrovasculature, most likely propagated by contractions of SMCs (Aldea et al. 2018).  

 

Does loss of intrinsic innervation play a role in the aetiology of CAA? 

As discussed in section ‘Intrinsic innervation’ under ‘Vascular function’, innervation of the 

NVU by cholinergic neurons contributes to the regulation of CBF and NVC. A large body 

of evidence has demonstrated that there is significant death of cholinergic neurons in AD. 

Loss of cholinergic innervation, including nerve fibres, decreased ChAT activity and lower 

expression of muscarinic and nicotinic ACh receptors are observed in individuals with 



43 

 

MCI and at the earliest stages of AD (Kuznetsova & Schliebs 2013; Mann et al. 1984; 

Svensson et al. 1992; Geula et al. 2008; McNeely et al. 2015). 

The loss of cholinergic neurons as one of the earliest features of AD gave rise to the 

cholinergic hypothesis of AD, which suggests that cholinergic denervation plays a 

significant role in the aetiology of AD and underlying dementia (Francis et al. 1999; Bartus 

et al. 1982; Van Beek & Claassen 2011; Schliebs & Arendt 2011; Terry & Buccafusco 

2003; Perry et al. 1995)  This hypothesis is supported by the correlation between loss of 

cholinergic neurons and increased Aβ plaque deposition and CAA severity (Tong & Hamel 

1999; Roher et al. 2000; Perry 1980; Ramos-Rodriguez et al. 2013; Perez et al. 2007; 

Laursen et al. 2013).  

Relationships between basal forebrain degeneration and Aβ load in the cortex have been 

documented in non-demented elderly brains (Grothe et al. 2014) and basal forebrain 

atrophy has been suggested to predict cortical Aβ burden (Teipel et al. 2014). More 

recently, a longitudinal study reported a significant loss of volume in the basal forebrain 

preceding pathological changes in the entorhinal cortex of individuals who went on to 

develop AD (Schmitz et al. 2016). Administration of donepezil, a cholinesterase inhibitor 

approved for the treatment of AD, has been shown to increase CBF in the middle and 

posterior cingulate cortices, part of the medial cholinergic pathway of the brain, and is 

linked to an improvement in cognitive function (Li et al. 2012). A recent study where 

donepezil was given to prodromal AD patients showed a reduction in the rate of atrophy of 

the basal forebrain (Cavedo et al. 2017). 

NOS expression has been found to be stably expressed across a wide range of ages 

(Sobreviela & Mufson 1995) but has been shown to be affected in AD and CAA.  A loss of 

nNOS-positive cells has been found to correlate with plaque pathology in the EC in AD 

brains (Thorns et al. 1998). Levels of  eNOS have also been found to be decreased in AD 

(Jeynes & Provias 2009), although in other studies eNOS and iNOS expression has been 

found to be elevated in AD (Dorheim et al. 1994).   

Given the contribution of ACh in the regulation of CBF via NOS signalling, early loss of 

cholinergic input at the NVU may disrupt the structure and/or function of the 

cerebrovasculature. This may induce a consequent reduction in the force of ISF clearance 

from the brain and thereby contribute to the accumulation of Aβ as CAA.  
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Hypothesis 

This PhD project has investigated the hypothesis that loss of cholinergic innervation at the 

NVU contributes to the development of CAA by decreasing the clearance of Aβ along 

perivascular pathways.  To do so, the following aims were carried out:   

 

1. To replicate the death of cholinergic neurons in the basal forebrain and fibre 

projections to the cortex and hippocampus of adult male wildtype mice using the 

immunotoxin mu-p75-saporin.  

2. To evaluate the loss of perivascular innervation at the NVU in the cortex and 

hippocampus using quadruple labelling immunohistochemistry and 3D 

reconstruction. 

3. To determine how loss of cholinergic innervation affects CBF in the cortex and 

hippocampus using fMRI and investigate the effects on NOS expression and 

activity.  

4. To analyse the effect of cholinergic degeneration on PVD of Aβ from the cortex 

and hippocampus of wildtype mice.   

5. To examine the consequences of the death of cholinergic neurons on CAA severity 

in the TetO-APPSweInd mouse model of AD.  
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Chapter 2 : Main Materials and Methods 

 

Materials 

mu-p75-saporin was purchased from Advanced Targeting Systems (San Deigo, USA), the 

human Aβ1-40 HiLyte Fluor™ 555 and Aβ1-40 HiLyte Fluor™ 488 labelled was obtained 

from AnaSpec (Fremont, USA) and optimal cutting temperature compound (OCT) was 

from Fisher Scientific (Loughborough, UK).   Vectastain™ ABC kit was obtained from 

Vector Laboratories Ltd (Peterborough, UK) and all other chemicals were purchased from 

Sigma-Aldrich (Dorset, UK) or Fisher Scientific (New Hampshire, US).  A list of antibody 

sources is provided in Table 2.1.  

Table 2.1 List of Antibodies used, their properties and source 

Antigen Antibody 

host 

Working 

dilution 

Antigen retrieval Source 

Primary Antibodies     

Anti-Aβ1-40 Rabbit 

(IgG) 

1:100 70% Formic acid 

(v/v) (45 s at RT) 

Merck 

Millipore 

(Temecula, 

USA) 

Anti-Aβ1-42 Rabbit 

(IgG) 

1:100 70% Formic acid 

(v/v) (45 s at RT) 

Merck 

Millipore 

(Temecula, 

USA) 

Anti-CD31 Rat (IgG2a, 

κ) 

1:50 1 mg/ml Pepsin in 

0.2 M HCl (30 s 

at 37⁰ C) 

BD Pharmingen 

(San Jose, 

USA) 

Anti-ChAT goat IgG 1:75 (IHC) 

1:500 (WB) 

- Millipore 

(Temecula, 

USA) 

Anti-Collagen IV Rabbit 

(IgG) 

1:100 1 mg/ml Pepsin 

(sigma) in 0.2 M 

HCl (30 s at 

37⁰ C) 

Abcam 

(Cambridge, 

USA) 

Anti-Collagen IV mouse IgM 1:250 1 mg/ml Pepsin in 

0.2 M HCl (30 s 

at 37⁰ C) 

Sigma-Aldrich 

(Dorset, United 

Kingdom) 

Anti-eNOS Rabbit 

(IgG) 

1:5000 

(WB) 

-  Cell Signalling 

(Danvers, USA) 

Anti-GAPDH Rabbit 

(IgG) 

1:5000 

(WB) 

-  Sigma-Aldrich 

(Dorset, UK) 

Anti-GFAP Chicken 

IgG 

1:500 -  Abcam 

(Cambridge, 

USA) 

Anti-Iba1 Rabbit 

(IgG) 

1:500 0.01 M Sodium 

Citrate 0.01% 

tween pH 6 (15 

min at ~90⁰ C) 

Abcam 

(Cambridge, 

USA) 
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Anti-Laminin Rabbit 

(IgG) 

1:350 1 mg/ml Pepsin in 

0.2 M HCl (30 s 

at 37⁰ C) 

Sigma-Aldrich 

(Dorset, United 

Kingdom) 

Anti-nNOS Rabbit 

(IgG) 

1:250 (WB) -  Cell Signalling 

(Danvers, USA) 

Anti-p75NTR Rabbit 

(IgG) 

1:400 -  Merck 

Millipore 

(Temecula, 

USA) 

Anti-Serotonin 

transporter (5-HTT) 

Rabbit 

(IgG) 

1:250,000 Tris-EDTA 

0.01% tween pH 

9 (0.01 M) Tris, 

0.0013 M EDTA) 

(15 min at 

~90⁰ C) 

Immunostar 

(Hudson, USA) 

Anti-SMA-FITC 

conjugated 

mouse 

IgG2a 

1:350 - Sigma-Aldrich 

(Dorset, United 

Kingdom) 

Anti-Tyrosine 

hydroxylase (TH) 

Rabbit 

(IgG) 

1:100 - Millipore 

(Temecula, 

USA) 

Anti-Total NOS Mouse 

(IgM) 

1:200 -  Novus 

Biologicals 

(Abingdon, UK) 

Anti-Tryptophan 

Hydroxylase 

Goat IgG 1:100 - Abcam 

(Cambridge, 

USA) 

Secondary antibodies     

Anti-chicken 

AlexaFluor®633 

Goat-anti-

Chicken 

IgY 

1:200 - AlexaFluor®, 

Molecular 

Probes 

(Rockford, 

USA) 

Anti-goat 

AlexaFluor®488 

Donkey-

anti-goat 

IgG 

1:200 - AlexaFluor®, 

Molecular 

Probes 

(Rockford, 

USA) 

Anti-mouse 

AlexaFluor®633 

Goat-anti-

mouse IgG 

1:200 - AlexaFluor®, 

Molecular 

Probes 

(Rockford, 

USA) 

Anti-rabbit 

AlexaFluor®488 

Goat-anti-

rabbit IgG 

1:200 - AlexaFluor®, 

Molecular 

Probes 

(Rockford, 

USA) 

Anti-rabbit 

AlexaFluor®633 

Goat-anti-

rabbit IgG 

1:200 - AlexaFluor®, 

Molecular 

Probes 

(Rockford, 

USA) 
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Animals 

C57BL/6 mice were obtained from The Open University (OU, Milton Keynes, UK) or 

C57BL/6 mice were obtained from the University of Southampton (Southampton, UK). 

TetO-APPSweInd mice carrying the Swedish (KM670/671NL) and Indiana (V717F) 

mutations in the human amyloid precursor protein (APP) (Jankowsky et al. 2005) were 

obtained as a generous gift from Dr JoAnne McLaurin (Sunnybrook Research Centre, 

Toronto, Canada) and bred at the OU. All animal work was approved by and carried out in 

accordance to guidelines set up by the Animal Welfare and Ethics Research Boards 

(AWERB) at the OU, University of Southampton and UCL in accordance with Home 

Office regulations and approved project licences (PPL 70/8507 and PPL 30/3095) under 

the Animals Scientific Procedures Act (1986). All animals were housed on a 12 hour 

light/dark cycle. Food and water were provided ad libitum.  

Cholinergic denervation 

Mice were anesthetised under isoflurane gas (induction at 5% in medical air, maintenance 

at 1.5 - 2% in medical air) and placed into a stereotaxic frame (Kopf instruments, CA, 

USA). Topical anaesthetic (Cryogesic (ethyl chloride), Acorus Therapeutics Ltd, Chester, 

UK) was applied to the scalp before the head was shaved. A midline incision was made 

and the skull cleaned.  A small burr hole was drilled over the left and right lateral 

ventricles and 0.5 µL of mu-saporin (0.596 µg/µl) or 0.9% saline was injected into each 

ventricle (coordinates from Bregma: AP=-0.4 mm, ML=-/+1.0 mm, DV=-2.3 mm) at a rate 

of 0.2 µl/min using a 32 G Hamilton syringe (Esslab, Hadleigh, England).  The needle was 

left in situ for 2 minutes after the injection to allow for diffusion.  The skin incision was 

sutured and mice returned to their home cages after recovery from anaesthesia. Analgesia 

was administered intraperitoneally at the time of surgery (Carprieve, 5% w/v, 0.32 ml/kg, 

Norbrook, Northamptonshire, UK) and mice were able to self-administer sugar free jelly 

(Hartley, Histon sweet spreads Ltd, Leeds, UK) containing Carprofen (250 µg in 500 µl 

jelly per mouse, Zoetis, London, UK) for 1 week post-surgery. 

Immunohistochemistry 

Mice were deeply anesthetised with an overdose of sodium pentobarbitone (20% w/v IP, 

Animalcare, York, UK) and perfused intracardially with 0.01 M phosphate buffered saline 

(PBS) followed by 4% paraformaldehyde (PFA) at a rate of 5 ml/min. The brains were 

post-fixed in 4% PFA overnight and left in 30% sucrose for one week before being 

embedded in OCT for cryosectioning. Brains were sectioned at 20 µm thickness using a 

cryostat and collected onto slides or as free-floating coronal sections that were stored in 
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anti-freeze storage solution (30% glycerol, 30% ethylene glycol, 40% 0.01 M PBS) at -

20C.  

For all immunohistochemistry experiments, a general procedure was carried as detailed 

below. Sections were washed three times in 0.01 M PBS, before being blocked for 

endogenous peroxidase activity by incubation with 3% hydrogen peroxide (H2O2) (Sigma-

Aldrich, Dorest, UK) diluted in methanol for slide mounted sections or in 0.01 M PBS for 

free floating sections for 15 min at room temperature (RT). If necessary, antigen retrieval 

was carried out (see Table 1), followed by 3 x 5 min washes in PBS, after which sections 

were then blocked in 15% normal donkey serum (NDS) (Sigma-Aldrich, Dorset, UK), 

diluted in 0.01M PBS for 15 min to prevent background staining, followed by primary 

antibody incubation overnight at 4°C (see Table 1 for antibody concentrations used). 

Antibodies were diluted in 0.01 M PBS + 0.1 – 0.5% Triton-x100 for free-floating 

sections, or 0.01 M PBS + 0.01% Tween-20 for slide mounted sections.  

Enzyme-linked immunohistochemistry 

Following incubation with primary antibody, sections were washed 3 x 5 min in 0.01 M 

PBS before incubation for 1 h in a biotinylated secondary antibody raised against the host 

of the primary antibody, diluted in 0.01 M PBS+0.01% v/v Triton-x100 at 1:400. Sections 

were then washed 3 x 5 min in PBS before being incubated in Vectastain™ ABC kit 

(Vector Laboratories Ltd, Peterborough, UK) (1:200) diluted in 0.01M PBS+0.01% v/v 

Triton-x100 for 1 h. Staining was developed using DAB chromagen (Sigma-Aldrich, 

Dorset, UK) with glucose oxidase enhancement, which was followed by slide mounting 

and dehydration through a series of alcohols and xylenes. Slides were then coverslipped 

using DPX (Fisher Scientific, Loughborough, UK).  

Immunofluorescence 

For single labelling immunofluorescence, after incubation with the primary antibody, 

sections were washed 3 x 5 min in 0.01 M PBS before being incubated in the appropriate 

secondary antibody (AlexaFluor®, Molecular Probes Rockford, USA) at 1:200 for 2 h at 

RT (Table 1).  Following 3 x 5 minute washes in 0.01 M PBS, sections were coverslipped 

using Mowiol® (Sigma, Dorset, UK) containing 0.1% v/v Citifluor (Citifluor ltd, London, 

UK) mounting media. For multiple labelling immunohistochemistry, primary antibodies 

raised in different hosts were applied either sequentially or simultaneously incubated 

depending on the conditions that ensured non-specific staining (see individual chapters for 

details). 
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Thioflavin S (Sigma-Aldrich, Dorset, UK) staining to identify fibrillar Aβ  (Kelényi 1967) 

was carried out by incubating tissue in 1% Thioflavin S in dH2O (w/v) for 5 min, before 

differentiating in 70% ethanol (v/v) for 5 min and then washing 3 x 5 min with 0.01 M 

PBS before mounting in Mowiol® (Sigma, Dorset, UK) containing 0.1% v/v Citifluor 

(Citifluor Ltd, London, UK). 

Photomicrographs from DAB-stained tissue were obtained using a Nikon Eclipse 80i light 

microscope and Picture Frame Software. Images were analysed using Image J. 

Photomicrographs from fluorescently-labelled tissue were obtained using a Leica SP5 

confocal microscope and LAS software. Imaging was carried out at either x10 or x20 

magnification (air) or at x100 (oil immersion) for images to be used for Imaris software 

processing. Images were captured using multiple sequential z-stacks and then 

reconstructed using maximum projection. 

Functional Magnetic Resonance Imaging (fMRI) 

Surgeries to induce cholinergic loss were carried out in male C57BL/6 mice as described 

above at the University of Southampton and 0.9% saline or mu-saporin-treated mice were 

shipped to UCL 1 week before imaging to allow for acclimatisation (Home office license 

PPL 30/3095). 45 days post-surgery, mice were assessed for CBF using fMRI at the UCL 

Centre for Advanced Imaging.  A 9.4 T VNMRS horizontal bore scanner (Agilent Inc., 

Santa Clara, CA, USA) with a 72 mm inner diameter volume coil and 2 channel array head 

coil (Rapid Biomedical, Columbus, OH, USA) was used for radio frequency transmission 

and signal detection. Mice were initially anaesthetised under 2% isoflurane in medical air 

and were maintained under 1.5% during imaging. A rectal probe and a pressure pad (SA 

Instruments, Stony Brook, NY, USA) were used to measure core temperature and monitor 

respiration throughout the procedure. Heated water tubing and a warm air blower using a 

feedback system (SA Instruments, Stony Brook, NY, USA) was used to regulate the 

temperature of the mice to 37⁰ C.  Arterial spin labelling fMRI was carried out using 5% 

CO2 to induce hypercapnia in 5 min periods to increase CBF. Increased CBF via eNOS-

mediated mechanisms were induced using the Rho-kinase inhibitor Fasudil hydrochloride 

(Tokyo Chemical Industries, Tokyo, Japan). 15 brain image slices were acquired with a 

thickness of 1 mm and an ‘in-plane’ resolution of 0.28 mm per mouse per experiment. 

Analyses of acquired images were processed as described in Chapter 4.  

Assessment of Perivascular drainage of Aß 

45 days after treatment with mu-saporin or saline, male C57BL/6 mice were injected with 

human Aβ1-40 HiLyte Fluor™ 555 labelled (AnaSpec, USA) (50 µM) into the left 
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hippocampus (0.5 µL; co-ordinates from Bregma: AP=-1.9 mm, ML=1.5 mm, DV=-1.7 

mm) or was injected into the right cortex (0.25 µL; co-ordinates from Bregma AP=-2 mm, 

ML=-1.5 mm , DV=-0.5 mm) at a rate of 0.2 µL/min. using a Hamilton precision syringe 

with a 32 G needle (Esslab, Hadleigh, England).  For injections into the hippocampus, the 

needle was left in situ for 2 min after the injection to prevent reflux and mice were 

overdosed with sodium pentobarbitone (20% w/v IP, Animalcare, York, UK) five minutes 

post-injection and then perfused intracardially with 0.01 M PBS followed by 4% w/v PFA. 

For mice that received cortical injections, the needle was also left in situ for a total of 2 

min 30 s before being overdosed and perfused in the same way. The brains were post-fixed 

in 4% PFA overnight and dehydrated in 30% w/v sucrose before being embedded in OCT 

for cryosectioning.  

Tissue collection for Western blotting and the NOS activity assay 

45 days post-surgery with either mu-p75-saporin or saline, C57BL/6 mice were 

intracardially perfused with 0.01 M PBS at a rate of 5 ml/min following an overdose using 

20% sodium pentobarbitone (Animalcare, York, UK). Brains were removed and regionally 

dissected for septum, striatum, hippocampus, and cortex before being snap frozen on dry 

ice and stored at -80⁰ C until use.  

Western blotting  

Brain tissues were homogenised in RIPA lysis buffer (20 mM Tris pH 8.0, 0.15 M NaCl, 

1.27 mM EDTA, 1 ml Igepal, 0.1% SDS, 50 mM NaF, 1.48 mM NaVO3 containing 1:100 

Protease inhibitor cocktail Set III, EDTA free (Merck Millipore, Darmstadt, Germany)) 

using ultrasound sonication (Fisher Scientific™ Model 120 Sonic Dismembrator, Fisher 

Scientific, Loughborough, UK ). Cortices were homogenised on ice for 20 s at 25 amps 

and immediately briefly afterwards for 7 s at 20 amps, and the hippocampal and striatal 

tissue were homogenised for 15 s at 25 amps. The homogenate was then centrifuged at 

8000 rpm at 4⁰ C for 10 min and the supernatant was collected. Protein concentration of 

the supernatant was assessed using the Thermo Scientific™ Pierce™ BCA™ Protein assay 

kit (ThermoFisher Scientific, MA, United States). Tissue supernatent was loaded at 30 g 

or 40 g, diluted in 2 x or 4 x Tris-glycine sample buffer (250 µM Tris, 40% glycerol, 4% 

SDS, 2% bromophenol blue) under non-reducing conditions.  Samples were run on 4-12% 

tris-glycine gels (Novex™ WedgeWell™ Tris-Glycine Mini Gel, Invitrogen MA, USA) 

and transferred onto 0.2 m nitrocellulose membranes (GE Healthcare, Little Chalfont, 

UK). Membranes were then blocked in 8% milk diluted in 1x Tris buffered saline (TBS) 

containing 2% Tween (TBST)  for one hour before being incubated with the primary 

antibody (Table 1)  diluted in 8% milk overnight at 4⁰ C. Membranes were then washed in 



51 

 

TBST before being incubated in their respective HRP-conjugated secondary antibody 

(Table 1) for 1 h at room temperature. Membranes were washed in TBST, developed using 

an enhanced chemiluminescence kit (GE Healthcare, Little Chalfont, UK) and visualised 

using the Geldoc system (G:box, Syngene, Cambridge, UK). Membranes were then 

stripped and re-probed with anti-GAPDH (Table 1) to ensure equal protein loading.   

NOS activity assay 

Brain tissues were homogenised in ice cold homogenisation buffer (25 mM Tris-HCl pH 

7.4, 1 mM EDTA, 1 mM EGTA containing 1:100 Protease inhibitor cocktail Set III, EDTA 

free (Merck Millipore)). Homogenates were centrifuged (13000 rpm, 25 min, 4⁰ C), 

supernatant was collected as the nNOS-enriched fraction and the pellet was resuspended in 

150 μl homogenisation buffer including protease inhibitor cocktail and collected as the 

eNOS-enriched fraction.   

The NOS assay was carried out as per manufacturer’s instruction (Cayman Chemical, Ann 

Arbor, MI, USA). Briefly, the homogenate was added to a reaction mixture (see Table 2 

for composition) containing radiolabelled [3H] L-Arginine monohydrochloride (50.5 

Ci/mmol, 1µCi/µl, Perkin Elmer, Llantristant, UK). The reaction was incubated at room 

temperature (22⁰ C) for 30 min allowing the active endogenous NOS in the tissue 

homogenate to convert the [3H] L-Arginine into [3H] L-citrulline, following which stop 

buffer (50 mM HEPES and 5 mM EDTA, pH 5.5) was added. The reaction was then 

pipetted onto resin which bound any unconverted [3H] L-Arginine, which was then 

separated from the rest of the mixture using a glass pipette under gravity filtration. 

Scintillation fluid (Emulsifier-safe, Packard Instrument Company, CT, USA) was then 

added to this mixture and radioactivity was measured using a liquid scintillation and 

luminescence counter (1450 microbeta Wallac Trilux, Perkin Elmer). Background counts 

(reaction mixture, stop buffer and resin without homogenate) and total counts (reaction 

mixture and stop buffer only) were also obtained. 

 

Table 2.2 Reaction mixture components for NOS assay 

Component Concentration Source 

2 x reaction buffer 50 mM Tris-HCl pH 7.4, 6 

µM tetrahydrobiopterin 

(BH4), 2 µM Flavin adenine 

dinucleotide, 2 µM 

Riboflavin 5′-monophosphate 

sodium salt hydrate 

Sigma (Dorset, UK) 

NADPH 10 mM prepared in 10 mM Sigma (Dorset, UK) 
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Tris-HCl pH 7.4 

[3H] L-Arginine 

monohydrochloride 

50.5 Ci/mmol, 1 µCi/µl Perkin Elmer (Waltham, 

MA, US). 

Calcium Chloride 6 mM Sigma (Dorset, UK) 

Statistics 

Data were analysed using GraphPad Software (La Jolla, US). Following the Kolmogorov-

Smirov normality test for normal distribution, data was analysed using Student’s t-test or 

ANOVA if normally distributed, and Mann-Whitney U-test or the Kruskal-Wallis test if 

not non-parametric (see individual chapter methods for exact test used). 
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Chapter 3 : Cholinergic denervation and the effect on the 

structure of the NVU 
 

Introduction 

The loss of cholinergic neurons in the basal forebrain and the areas innervated by their 

fibre projections is a hallmark of AD (Whitehouse et al. 1982; Francis et al. 1999). 

Decreased cholinergic innervation in the hippocampus and cortex is associated with 

memory impairment, decreased MMSE scores and behavioural changes (Damasio et al. 

1985; Perry 1980; Tong & Hamel 1999; Garcia-Alloza et al. 2005), suggesting that loss of 

cholinergic neurotransmission contributes significantly to AD dementia (Francis et al. 

1999; Bartus et al. 1982; Van Beek & Claassen 2011; Terry & Buccafusco 2003; Schliebs 

& Arendt 2011). Recently, a longitudinal study demonstrated that volume loss in the basal 

forebrain as detected by MRI imaging was an early event in the onset of sporadic AD 

(Schmitz et al. 2016), further supporting this hypothesis.  

 

Numerous experimental models have been used to ablate cholinergic neurons in the  basal 

forebrain, including injection of ibotenic acid into the substantia innominate (Vaucher & 

Hamel 1995), lesioning of the fimbria fornix (van der Staay et al. 1989) and electric pulse 

ablation of the medial septum (Scheiderer et al. 2006; Nelson et al. 2014). However, these 

models caused widespread degeneration and did not specifically target cholinergic cell 

populations. The discovery that cholinergic neurons in the basal forebrain express the 

p75NTR receptor, while other populations of cholinergic neurons (e.g. in the striatum and 

brainstem) do not (Steininger et al. 1993), allowed for the development of the targeted 

immunotoxins such as 192IgG-saporin. 192IgG-saporin’s mouse analogue, mu-p75-

saporin, is a ribosome inhibitor that is conjugated to an antibody against the p75NTR 

receptor. In vivo administration of mu-p75-saporin has been shown to selectively kill 

cholinergic neurons in the medial septum, horizontal and diagonal band of Broca and 

nucleus basalis of Meynert and cause withdrawal of cholinergic projections in the cortex 

and hippocampus (Berger-Sweeney et al. 2001; Hunter et al. 2004; Ramos-Rodriguez et al. 

2013; Hamlin et al. 2013; Kerbler et al. 2013; Laursen et al. 2013). Although recent 

genetically-driven technologies such as optogenetics and designer receptor exclusively 

activated by designer drug (DREDD) have led to more targeted approaches to silence 

specific cholinergic populations (Zhang et al. 2017; Hangya et al. 2015), it is not clear if 

those techniques replicate the loss of cholinergic innervation that is seen in AD. 
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The NVU is also a target of cholinergic innervation, which can occur at multiple sites, 

including astrocytes, smooth muscle and endothelial cells (Vaucher & Hamel 1995). Loss 

of cholinergic contact with blood vessels has been reported in the cortex of AD brains 

(Tong & Hamel 1999) and in transgenic mouse models of AD (Kuznetsova & Schliebs 

2013; Michalski et al. 2017). However, those studies were done on 2D sections, and 

without investigating cholinergic contact with specific components of the NVU, thereby 

limiting the information that can be gained about the impact of cholinergic loss at blood 

vessels.  

In these first set of experiments, the saporin model was used to mimic the loss of 

cholinergic neurons that is observed in AD. Quadruple labelling immunohistochemistry 

and 3D reconstruction were carried out to characterise specific points of contact between 

cholinergic fibres and various components of the NVU and to compare this pattern 

between the cortex and the hippocampus.  

Materials and methods 

Mouse model of cholinergic denervation 

8-10 week old C57BL/6 mice received a stereotaxic injection of saline (n=25) or mu-

saporin (n=25) as outlined in Chapter 2 section ‘Cholinergic denervation’ page 45.  Mice 

were fix-perfused with 4% PFA and their brains processed for immunohistochemistry at 15 

days (n=9), 30 days (n=8) and 45 days post-surgery (n=33). Experiments were carried out 

in compliance with guidelines of the AWERB at the OU and the University of 

Southampton and with approval from the Home Office (PPL 70/8507; PPL 30/3095).  

Immunohistochemistry 

Brain tissue was sectioned and collected in a free-floating manner as described in Chapter 

2 section ‘Immunohistochemistry’ page 45. Sections were stained with anti-ChAT, anti-

tyrosine hydroxylase, anti-5HTT and anti-tryptophan hydroxylase antibodies as outlined in 

Chapter 2 (Table 2.1, page 43). In the case of double labelling with anti-p75 NTR and anti-

ChAT, sections underwent antigen retrieval using pepsin (1 mg/ml, 30 s) before sequential 

staining using anti-p75NTR overnight followed by anti-ChAT the following day. For 

quadruple labelling, sections were incubated with anti-ChAT, followed by simultaneous 

staining with anti-collagen IV and anti-SMA-FITC, and incubation with anti-GFAP to 

visualise the cholinergic nerve endings, basement membrane, smooth muscle cells and 

astrocytes, respectively. 

Photomicrographs of coronal brain sections containing the medial septum, striatum, raphe 

nucleus, and locus coeruleus were captured using the x10 objective, while sections of the 
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hippocampus and cortex were imaged at x20 on an SP5 Leica scanning laser confocal 

microscope (Milton Keynes, Buckinghamshire). Blood vessels in the hippocampus and 

cortex were imaged on the Leica SP5 confocal using the x100 oil immersion objective. Z 

stacks with ≤ 2 µm spacing between slices were acquired sequentially. Vessels in the 

hippocampus were pseudo-randomly selected due to bias from the dominant location of 

large vessels along the centre of the region. Vessels in the cortex were randomly acquired 

from the same regions analysed for cholinergic nerve fibre density, primarily the 

somatosensory cortex. Maximum projection images were deconvolved and converted into 

Imaris-compatible files using AutoQuant X3 version X3.0.4 (MediaCybernetics Inc, 

Rockville MD) software. 

Western blotting 

8-10 week old C57BL/6 male mice received intraventricular injections of either 0.9% 

saline (n=8) or 0.596 µg mu-saporin (n=6) as described in chapter 2, section ‘Cholinergic 

denervation’ page 45. 45 days following surgery, mice were overdosed with sodium 

pentobarbitone and perfused intracardially with 0.01M PBS. Brains were immediately 

dissected and snap frozen on dry ice and stored at -80⁰C. Tissue was then homogenised 

and protein content was quantified and gels were run. Blots were incubated in anti-ChAT 

(1:500) and visualised using HRP-conjugated anti-goat secondary and an enhanced 

chemiluminescence kit, as described in chapter 2, section ‘Western blotting’ page 48. 

Membranes were then stripped and re-probed for the loading control anti-GAPDH (see 

chapter 2, Table 2.1, section page 43) and optical densities of bands corresponding to the 

estimated molecular weight of ChAT were quantified using Image J. 

Analysis 

Density of cell bodies and fibres 

The density of neuronal cell bodies and fibres in each region of interest was quantified 

from low magnification images by calculating the percentage area covered by staining 

using Image J software (NIH. Maryland, USA). The threshold values used to detect 

specific staining for each antibody are listed in Table 3.1. For quantification of staining in 

the hippocampus, overlapping images were stitched together and the free-hand draw tool 

was used to select and specify the area containing the hippocampus to be analysed. For 

quantification of densities in the hippocampus and striatum, values of regions from both 

the ipsilateral and contralateral hemispheres were averaged and treated as n = 1. For 

quantification of images from the cortex, six random non-overlapping spanning the 

somatosensory cortex of the ipsilateral cortex to the somatosensory cortex of the 

contralateral cortex were averaged and analysed. 
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Table 3.1 Threshold values for analysis of percentage area covered 

Label Minimum grey value Maximum grey value 

Anti-ChAT 44 255 

Anti-p75NTR 94 255 

Anti-TH 77 255 

Anti-5HTT 33 255 

Anti-TrypH 100 255 

Parameters of the NVU and cell-cell contacts 

To quantify the parameters of each component of the NVU, deconvolved images were 

processed using Imaris software (Bitplane ®) and surfaces were created for each 

component of the NVU (Table 3.2). Examples of individual surfaces generated from 

staining of collagen IV, smooth muscle actin, and astrocytes in a reconstructed artery are 

shown in Fig. 3.1 and Fig. 3.2. For each vessel, the following measurements were 

acquired: the total area of a selected surface (µm2), the volume of a selected surface (µm3), 

the length of the vessel imaged (µm) and the average diameter of the vessel (µm) in the 

space of the z stack. The total area of contact between two selected surfaces (e.g. ChAT 

nerve fibres contacting collagen IV) was calculated using the Imaris Xtension ‘Surface to 

Surface Contact Area’ (Imaris V8.31, ImarisXT Bitplane Inc. created by Matthew J 

Gastinger, Bitplane). Only surfaces that made direct contact with each other (i.e. 0 µm 

distance apart) were quantified. Vessels were classified as capillaries if they were <10 µm 

in diameter, arteries were identified as having a diameter of >10 µm and positive for SMA, 

while veins were identified as having a diameter >10 µm but lacking SMA. A total of five 

capillaries, five arteries and three veins were quantified for each mouse and the average 

values per mouse were used for statistical analysis.      

Table 3.2 Surface creation values for 3D reconstruction using Imaris 

Surface Surface detail 

Threshold 

(Absolute 

Intensity) 

Manual threshold 

value B 

ChAT 0.250 μm 24.9693 290.359 

SMA 0.303 µm  35.0000 220.254 

Collagen IV 0.35 µm  84.0000 289.379 
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GFAP 0.300 µm  92.7983 423.268 

 

Figure 3.1 3D reconstructed artery  
Representative image of a 3D reconstructed artery stained for collagen IV (dark blue), smooth muscle actin 

(green), astrocytes (turquoise) and cholinergic nerve fibres (red).  
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Figure 3.2 3D reconstructed artery regions of measurement  
Original reconstructed vessel (a). (b and c) Yellow outlines indicate the surfaces created of collagen staining 

(b) and of smooth muscle actin (c) in the artery shown in (a). (d) Contacts between astrocyte endfeet and 

collagen along the artery are outlined in yellow. (e-h) As indicated by the white arrows and enlarged in insert, 

surface area contact between cholinergic nerve fibres and collagen (e) or smooth muscle (f) was calculated 

for each individual vessel. Similarly, the surface area contact between astrocytes and collagen IV (g) and 

between cholinergic fibres and perivascular astrocytes (h) was also determined for each vessel. Scale bar = 

(a-d) 20 µm, (e, f) 5 µm, (g, h) 10 µm. 
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Western blotting 

The optical density (OD) of bands on Western blots were quantified using Image J (NIH, 

Maryland) and were normalised to the corresponding OD of GAPDH. The mean ratio of 

two blots per antibody was then used for statistical analysis. 

Statistics 

Data was tested for normality using the Kolmogorov-Smirov test. For normally distributed 

data, comparisons between two groups were carried out using two-tailed Student’s t test. 

Where there were more than two groups, one-way or two-way ANOVA was used followed 

by Sidak’s post-hoc test unless otherwise stated in the results. The ROUT test was used to 

identify any outliers. For data that was not normally distributed, the Mann-Whitney U test 

or Kruskal-Wallis test with Dunn’s post-hoc test was used. Data represents mean ±SEM 

and p<0.05 was considered to be statistically significant. 

Results 

Cholinergic loss in the medial septum, hippocampus and cortex following saporin 

administration 

In agreement with previous reports (Mesulam, Elliott J. Mufson, et al. 1983; Rye et al. 

1984; Berger-Sweeney et al. 2001), ChAT and p75NTR-positive cholinergic neurons were 

observed by double labelling immunohistochemistry in the medial septum, horizontal and 

vertical limbs of the diagonal band of Broca and the nucleus basalis of Meynert of control 

mice (Fig. 3.2 a-c). Cholinergic nerve fibre density was found to be significantly higher in 

the hippocampus compared to the cortex in control mice (Fig.3.3). To determine the time-

course of degeneration following saporin administration, the percentage area of cholinergic 

staining of the medial septum was quantified in control and saporin-treated mice at 15, 30 

and 45 days following injection. No significant differences were detected between the two 

groups at 15 and 30 days post-surgery, but significantly less ChAT and p75NTR staining 

was detected in the medial septum of saporin-treated mice at 45 days post-surgery (Fig. 3.2 

d-g). Therefore, the 45-day time point was used in all subsequent experiments and 

analyses. The density of ChAT-positive neurons in non-injected mice did not differ from 

control mice (Fig. 3.2 g), indicating that the surgery itself did not induce changes in ChAT 

expression. Although behaviour was not assessed in this study, it was noted that unlike 

control treated mice, saporin treated mice were less likely to form and maintain nests from 

available nesting material throughout the 45 day period.  
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Figure 3.3 Timecourse of cholinergic cell loss in the MS following mu-p75-saporin treatment 

(a-c) Neuronal cell bodies that are positive for ChAT (a, green) and p75NTR (b, red) are co-localized (c, 

yellow) in the medial septum and diagonal band of Broca of control mice. (d-f) Loss of ChAT (d) and 

p75NTR-positive (e) neurons is observed following administration of saporin. p75NTR-negative cholinergic 

neurons in the striatum are not affected by saporin treatment. (g) Quantification of ChAT staining in the 

medial septum and diagonal band of Broca at 15 (control n=4, saporin n=5), 30 (control n=4, saporin n=4) 

and 45 (control n=17, saporin n=16) days after saporin treatment showed a statistically significant decrease at 

the 45 day timepoint. **p<0.01, Scale bar = 100 µm. 
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Figure 3.4 Regional comparison of cholinergic innervation and denervation with saporin treatment 

Regional comparison of % area of ChAT positivity shows that the hippocampus has more nerve fibre 

coverage than the cortex, although this is lost with saporin treatment (control n=6, saporin n=6). *p<0.05. 

 

The loss of cholinergic neurons in the medial septum was accompanied by a significant 

decrease in cholinergic nerve fibre density in the hippocampus (Fig 3.4 a-g), which was 

confirmed by Western blotting (Fig. 3.4h). A similar pattern was observed in the cortex 

(Fig 3.5 a-h). Analysis of the density of cholinergic cells bodies in the striatum confirmed 

that p75NTR-negative cholinergic neurons were not affected by saporin treatment (Fig. 3.6 

a-h).  
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Figure 3.5 Saporin induced cholinergic denervation in the hippocampus 

 (a-c) Neuronal fibres that are positive for ChAT (a, green) and p75NTR (b, red) are co-localised (c, yellow) 

in the hippocampus of control mice. (d-f) Loss of ChAT (d, f) and p75NTR-positive (e, f) fibres is observed 

following administration of saporin. (g-h) Quantification of ChAT staining (control n=7, saporin n=6) (g) and 

levels of the ChAT protein (control n=8, saporin n=6) (h) in the hippocampus showed a statistically 

significant decrease in saporin-treated mice 45 days after injection. **p<0.01, ***p<0.001. Scale bar = 100 

µm. 
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Figure 3.6 Saporin induced cholinergic denervation in the cortex 

(a-c) Neuronal fibres that are positive for ChAT (a, green) and p75NTR (b, red) are co-localised (c, yellow) 

in the cortex of control mice. (d-f) Loss of ChAT (d, f) and p75NTR-positive (e, f) fibres is observed 

following administration of saporin. (g-h) Quantification of ChAT staining (control n=7, saporin n=6) (g) and 

levels of the ChAT protein (control n=8, saporin n=6) (h) in the cortex showed a statistically significant 

decrease in saporin-treated mice 45 days after injection. *p<0.05, ***p<0.001. Scale bar = 100 µm. 
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Figure 3.7 Saporin induced cholinergic denervation in the striatum 

(a-c) Cell bodies in the striatum that are positive for ChAT (a, green) do not express the p75NTR (b, red) and 

are not co-localised (c, yellow) in control mice. (d-f) Saporin treatment does not induce loss of ChAT-

positive cell bodies in the striatum. (g, h) Quantification of ChAT staining (control n=7, saporin n=6) (g) and 

levels of the ChAT protein (control n=8, saporin n=6) (h) in the striatum showed no loss with saporin-treated 

mice 45 days after injection. Scale bar = 100 µm. 

The effect of cholinergic loss on other neurotransmitter pathways 

Collateral growth of surviving, non-cholinergic nerve fibres has previously been reported 

following ablation of cholinergic neurons (Szot et al. 2006; Nelson et al. 2014; Scheiderer 

et al. 2006; McGinty et al. 1982). To determine if saporin treatment induced a change in 

the expression of serotonergic and noradrenergic neurons and their fibre projections, tissue 

sections from control and saporin-treated mice were stained for 5-HTT and TH as markers 
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of serotonin and noradrenaline respectively. No differences were noted in the density of 

serotoninergic nerve fibres in the hippocampus or in the cell bodies in the raphe nucleus of 

control versus saporin mice (Fig. 3.7 a and b). Similarly, saporin treatment did not affect 

the density of noradrenergic nerve fibres in the hippocampus (Fig. 3.7 c) or cell bodies at 

the locus coeruleus (Fig. 3.7 d).    

 

Figure 3.8 The effect of cholinergic loss on noradrenergic and serotoninergic innervation 

(a-d) No significant differences were found in the density of serotonergic (control n=6, saporin n=6) (a) or 

noradrenergeric (control n=6, saporin n=6) (c) fibres in the hippocampus (a, c) or serotoninergic cell bodies 

in the Raphe nucleus (control n=7, saporin n=4) (b) and noradrenergic cell bodies in the Locus coeruleus 

(control n=7, saporin n=5) (d) between control and saporin-treated mice.  

Characterisation of cholinergic loss at the NVU in the hippocampus and cortex 

Cholinergic nerve fibres are known to innervate blood vessels in the hippocampus and 

cortex (Vaucher & Hamel 1995). To characterise the precise effects of saporin treatment at 

the NVU, vessels in the cortex and hippocampus were stained for cholinergic fibres and 

three components of the NVU (the basement membrane, smooth muscle cells and 

astrocytes), and then reconstructed using 3D modelling software. The surface area of 

ChAT contact with each component of the NVU (standardised to vessel length) was 

analysed across capillaries, arteries/arterioles and veins/venules from control and saporin-

treated mice.  

a b

dc
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In blood vessels of the hippocampus, a significant decrease in the contact of cholinergic 

nerve fibres to the basement membrane was found in arteries of saporin-treated mice 

compared to controls (Fig. 3.8). A similar trend was also observed in the capillaries and 

veins, but this did not reach statistical significance (Fig. 3.8).   

 

Figure 3.9 Perivascular cholinergic innervation at the basement membrane - hippocampus 

(a-f) Representative images of the 3D reconstructions of capillaries (a and b), arteries (c and d) and veins (e 

and f) in the hippocampus of control (a, c, e) and saporin-treated mice (b, d, f). ChAT-positive fibres are 

shown in red, collagen IV is shown in blue and smooth muscle actin is shown in green. There is a significant 

reduction in the amount of contact between ChAT-positive fibres and collagen IV in the arteries of saporin-

treated animals (g). A similar but non-significant trend is also observed in capillaries and veins. (Control n=7, 

saporin n=6), *p<0.05. Scale bar = 20 µm. 
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Analysis of perivascular innervation at the smooth muscle level of arteries of the 

hippocampus found that there was a significant decrease in the surface area contact in 

saporin treated animals (Fig 3.9). However, the surface area contact of cholinergic fibres 

and GFAP-positive astrocytes was similar between control and saporin-treated mice across 

all vessel types (Fig. 3.10 a-g). 

 

Figure 3.10 Perivascular cholinergic innervation at the SMC - hippocampus 

(a-c) Representative images of a 3D reconstruction of a hippocampal artery from control (a) and saporin-

treated (b) mice. ChAT-positive nerve fibres are shown in red and smooth muscle cells are shown in green.  

There is a significant decrease in cholinergic innervation of smooth muscle cells in the saporin-treated mice 

(c). (Control n=7, saporin n=6), *p<0.05 Scale bar = 20 µm.  
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Figure 3.11 Perivascular cholinergic innervation at the astrocyte endfeet - hippocampus 

(a-f) Representative images of the 3D reconstructions of capillaries (a and b), arteries (c and d) and veins (e 

and f) in the hippocampus of control (a, c, e) and saporin-treated mice (b, d, f). ChAT-positive fibres are 

shown in red, collagen IV is shown in blue and GFAP is shown in turquoise. No significant differences were 

found in the amount of surface area contact of cholinergic nerve fibres to GFAP-positive astrocytes between 

control and saporin-treated mice (g). (Control n=7, saporin n=6), scale bar = 20 µm 
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In the cortex, cholinergic innervation of the basement membrane was significantly 

decreased in arteries, but not capillaries or veins, following saporin treatment (Fig. 3.11 a-

g). A significant decrease was also observed in the surface area contact between ChAT and 

smooth muscle cells in arteries of saporin mice compared to controls (one-tailed t-test, Fig. 

3.12). A significant decrease was also found in cholinergic contact to GFAP-positive 

perivascular astrocytes in arteries of the cortex (Fig. 3.13). 
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Figure 3.12 Perivascular cholinergic innervation at the basement membrane - cortex 

(a-f) Representative images of the 3D reconstructions of capillaries (a and b), arteries (c and d) and veins (e 

and f) in the cortex of control (a, c, e) and saporin-treated mice (b, d, f). ChAT-positive fibres are shown in 

red, collagen IV is shown in blue and smooth muscle actin is shown in green. There is a significant reduction 

in the amount of contact between ChAT-positive fibres and collagen IV in the arteries of saporin-treated 

animals (g). (Control n=11, saporin n=10), *p<0.05. Scale bar = 20 µm. 
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Figure 3.13 Perivascular cholinergic innervation at the SMC - cortex 

(a-c) Representative images of a 3D reconstruction of a cortical artery from control (a) and saporin-treated 

(b) mice. ChAT-positive nerve fibres are shown in red and smooth muscle cells are shown in green.  There is 

a significant decrease in cholinergic innervation of smooth muscle cells in the saporin-treated mice (c). 

(Control n=11, saporin n=10), *p<0.05. Scale bar = 20 µm.  
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Figure 3.14 Perivascular cholinergic innervation at the astrocyte endfeet - cortex 

(a-f) Representative images of the 3D reconstructions of capillaries (a and b), arteries (c and d) and veins (e 

and f) in the cortex of control (a, c, e) and saporin-treated mice (b, d, f). ChAT-positive fibres are shown in 

red, collagen IV is shown in blue and GFAP is shown in turquoise. A significant difference was found in the 

amount of surface area contact of cholinergic nerve fibres to GFAP-positive astrocytes between control and 

saporin-treated mice at the arterial level (g). (Control n=11, saporin n=10), **p<0.01. Scale bar = 20 µm 
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Does loss of perivascular innervation vary between the hippocampus and cortex?  

As cholinergic nerve fibre density was found to differ between the hippocampus and 

cortex, innervation of the NVU in control and saporin-treated mice was compared between 

the two regions. Cholinergic innervation at the basement membrane and smooth muscles 

was found to be significantly decreased with saporin in arteries in both the hippocampus 

and the cortex as shown in Fig. 3.8, 3.9, 3.11 and 3.12, but no regional differences in 

innervation were found (Tables 3.3 and 3.4). However, regional differences were noted in 

the amount of perivascular innervation at the astrocytic end feet, with significantly less 

innervation of the cortex in comparison to the hippocampus at the capillaries of the control 

group and at the veins of the saporin group (Table 3.5, p<0.05).  

Table 3.3 Regional comparisons of loss of perivascular cholinergic contact at the basement membrane 

across vessel types 

Mean area of 

contact/length 

(µm2/µm) 

±SEM 

Hippocampus Cortex 

 
Capillaries Arteries Veins Capillaries Arteries Veins 

Control 
2.77±1.0 

 
11.57±5.1♦  

 
2.71±0.8  

 
1.10±0.3  

    
3.83±1.4♦  

 
1.32±0.3  

 

Saporin 
0.54±0.2  

 
2.32±1.4♦ 

 
0.95±0.2  

 
0.69±0.2  

 
2.01±1.2♦  

 
0.83±0.3 

 

♦p<0.05, control vs. saporin  

Table 3.4 Regional comparisons of loss of perivascular cholinergic contact at the smooth muscle cell 

across arteries 

Mean area of contact/length  

(µm2/µm) ±SEM 
Hippocampus Cortex 

Control 10.03±4.1♦ 6.08±4.0♦ 

Saporin 0.90±0.5♦ 2.37±1.8♦ 

♦p<0.05, control vs. saporin  

Table 3.5 Regional comparisons of loss of perivascular cholinergic contact at the astrocyte endfeet 

across vessel types 

Mean area of 

contact/length 

(µm2/µm) 

±SEM 

Hippocampus Cortex 

 
Capillaries Arteries Veins Capillaries Arteries Veins 

Control 
3.05±1.2▲ 

    
14.9± 7.5 

 
4.77±2.7  

 
0.039±0.02▲ 

 
3.26±0.9♦ 

 
0.23±0.1  

 

Saporin 
1.14±0.3  

 
8.87±5.0  

 
4.29±1.2▲ 

 
0.23±0.1  

 
0.98±0.2 ♦ 

 
1.31±0.6 ▲ 

 

♦p<0.05, control vs. saporin; ▲p<0.05 hippocampus vs. cortex  
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Does loss of perivascular innervation alter the components of the NVU? 

To determine if loss of cholinergic innervation induced changes in components of the 

NVU, the volume of collagen IV and smooth muscle cells as well as the area of GFAP-to-

collagen contact as a measure of astrocyte end feet coverage was evaluated in vessels of 

control and saporin-treated mice. Because cholinergic degeneration appeared to be more 

extensive in the cortex than in the hippocampus, regional comparisons between the cortex 

and hippocampus were also carried out.     

As shown in Table 3.6, no significant difference in collagen volume was found between 

control and saporin treated regions in each vessel type, although across vessel types both 

control and saporin treated arteries were observed to have higher collagen volume 

compared to capillaries and veins in the cortex. Interestingly, the volume of collagen IV 

was significantly higher in veins in the hippocampus than veins in the cortex in both the 

control and saporin-treated mice (p<0.05 and p<0.001 respectively) (Table 3.6). 

Table 3.6 Regional comparison of volume of basement membrane across vessel type 

 

Basement 

membrane 

Mean 

volume/length 

(µm3/µm) 

±SEM 

Hippocampus Cortex 

 
Capillaries Arteries Veins Capillaries Arteries Veins 

Control 
33.28±6.2 124.08±29.0 179.93±34.7

▲ 
20.96±2.7  

    
111.88±28.9 70.07±25.2 

▲ 

Saporin 
30.76±4.8 101.96±22.2 151.15±24.9

▲ 
18.71±3.2 72.43±15.4 34.80±6.4 

▲ 

▲p<0.05 hippocampus vs. cortex  

Although there was a significant reduction in perivascular innervation of smooth muscle 

cells in both the cortex and hippocampus, the volume of smooth muscle cells was not 

different between the cortex and hippocampus and there was no effect with saporin 

treatment (Table 3.7).  

Table 3.7 Regional comparison of volume of smooth muscle cells in arteries  

SMA Volume/length 

(µm3/µm) ±SEM 
Hippocampus Cortex 

Control 59.72±9.5 45.76±11.9 

Saporin 33.10±7.4 39.54±9.0 
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GFAP was used as a marker of astrocytic end feet of the neurovascular unit, and so the 

contact between GFAP and collagen basement membrane of 3D reconstructed NVUs was 

calculated. In the hippocampus, a significantly greater area of contact between the 

astrocytes and the basement membrane was seen in comparison to the cortex in control 

mice (p<0.01), and this difference was not affected by saporin treatment (p<0.001). 

Although the arteries of the cortex had higher values suggesting more astrocyte endfeet 

coverage compared to capillaries and veins, this was not significant (Table 3.8).  

Table 3.8 Area of astrocyte coverage of basement membrane 

Astrocyte end 

feet coverage 

of basement 

membrane 

Area of 

contact/length 

(µm2/µm) 

±SEM 

Hippocampus Cortex 

 Capillaries Arteries Veins Capillaries Arteries Veins 

Control 8.88±2.9 44.60±11.2 
93.34±17.0 

▲ 
2.11±1.1 

 
19.61±10.1 

7.78±4.5 

▲ 

Saporin 15.26±3.5 52.54±12.0 
84.35± 4.14  

▲ 

4.22±1.8 
 

21.05±6.6 
8.57±5.3 

▲ 

▲p<0.05 hippocampus vs. cortex  

Discussion  

 mu-p75-saporin treatment induced significant loss of cholinergic cell bodies in the 

MS 45 days after administration. 

 Cholinergic nerve fibre projections in the cortex and hippocampus were also killed 

following saporin administration, while p75NTR-negative cholinergic neurons in 

the striatum were unaffected. 

 The noradrenergic and serotonergic pathways were not affected by mu-p75-saporin 

treatment. 

 In the hippocampus, loss of perivascular cholinergic nerve fibres was observed at 

the BM and SMCs of the arteries, but not at the astrocyte endfeet. 

 In the cortex, loss of perivascular cholinergic nerve fibres was seen at the BM, 

SMC and the astrocyte endfeet of the arteries. 

 Significantly less cholinergic innervation was found at the astrocytic endfeet of 

cortical capillaries and veins compared to the hippocampus. 

 Hippocampal veins had endogenously significantly higher volume of collagen IV-

labelled basement membrane and astrocytic endfeet coverage compared to veins in 

the cortex. 
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Loss of cholinergic neurons in AD has been described extensively, however the effect of 

this loss on the NVU is not well characterised.  Moreover, previous studies that have 

looked at perivascular innervation by cholinergic nerve fibres have largely been carried out 

using 2D images obtained from double or triple labelling immunohistochemistry or 

immuno-EM experiments (Itakura et al. 1977; Tong & Hamel 1999; Kuznetsova & 

Schliebs 2013). By combining quadruple labelling immunohistochemistry with 3D 

reconstruction, the current study allowed not only for individual components of the NVU 

to be assessed under basal and pathological conditions, but also for perivascular 

innervation to be quantified along multiple components of the NVU around the entire 

surface of the blood vessel. 

In the current study, administration of mu-saporin led to a significant and specific loss of 

p75NTR-positive cholinergic neurons in the basal forebrain at 45 days post-surgery. The 

fibre projections from these neurons were also lost in the hippocampus and cortex. These 

findings are in agreement with previous studies that have used saporin to induce death of 

cholinergic neurons in the basal forebrain of mice, rats and non-human primates (Lehmann 

et al. 2002; Hawkes et al. 2005; Birthelmer et al. 2003; Lin et al. 1999; Ramos-Rodriguez 

et al. 2013; Leanza 1998; Berger-Sweeney et al. 2001; Scheiderer et al. 2006; Fine et al. 

1997). Other major populations of cholinergic neurons that do not express the p75NTR, 

including those in the striatum (Yeo et al. 1997) were not affected by saporin treatment. 

Although previous studies have reported decreased serotoninergic fibres and sprouting of 

noradrenergic fibres alongside ChAT-depleted vessels (Chen et al. 2000; Palmer et al. 

1987; Arai et al. 1984; Reinikainen et al. 1990; Heider et al. 1997; Szot et al. 2006; Nelson 

et al. 2014; Birthelmer et al. 2003; Scheiderer et al. 2006) no differences in serotoninergic 

or noradrenergic cell density were found following saporin administration. However, as 

only one timepoint was used in the current experiments, it is possible that changes in 

noradrenaline or serotonin may occur at a later time, and would be a consideration for 

future studies.  

Using 3D reconstruction of blood vessels, ChAT-positive fibres were found to innervate 

capillaries, arteries and veins in the hippocampus and cortex, although the majority of the 

innervation was observed at arteries, in agreement with previous electromicrograph studies 

(Vaucher & Hamel 1995; Chédotal et al. 1994; Kuznetsova & Schliebs 2013; Luiten et al. 

1996). Innate regional differences were observed between the NVU of the hippocampus 

and cortex. This included a significantly thicker basement membrane in the veins of the 

hippocampus and greater coverage of the basement membrane by astrocyte endfeet of the 

veins in the cortex. These two observations are likely related, given that astrocytes and 
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endothelial cells are the main sites of basement membrane production. Expression of 

collagen IV has been shown to be significantly upregulated in capillaries and arteries 

during normal ageing as well as in AD (Kalaria & Pax 1995; Christov et al. 2008; Farkas 

& Luiten 2001; Magaki et al. 2018), however some studies have found no significant 

change with AD or CAA (Keable et al. 2015; Merlini et al. 2016). Although much less 

studied, age-related collagenosis in the venous wall has also been reported (Brown et al. 

2002).  Thickening of the basement membrane and alterations in basement membrane 

composition has been hypothesised to precede the development of CAA in capillaries and 

arteries. However, given that veins are the vessel type least likely to be affected by CAA, 

the significance of the current findings for CAA are currently unclear. It is possible that the 

increased basement thickness in veins of the hippocampus make them less likely to be 

deformed by pressure changes to help ensure a consistent cerebral perfusion (Zócalo et al. 

2013; Thorin-Trescases et al. 2018) and to maintain a driving force for clearance of solutes 

in the CSF and/or ISF. This may also have implications for regional differences in CBF. 

We also observed that although total cholinergic fibre density was higher in the 

hippocampus, the amount of direct cholinergic contact did not differ between the 

hippocampus and cortex at the basement membrane or the SMC at the arteries where 

significant loss of perivascular innervation was observed. In contrast to previous studies 

that have classified perivascular innervation to be within a distance of 3 µm from the BM 

(Vaucher & Hamel 1995), in the current study, only direct contact between ChAT fibres 

and BM or SMC was quantified. Thus, additional quantifications could be carried out to 

determine if the higher degree of cholinergic innervation in the hippocampus reflects a 

greater influence at the NVU compared to the cortex. This is supported by our findings that 

innervation of astrocyte endfeet tended to be higher in the hippocampus across all vessel 

types and was significantly higher at capillaries compared to the cortex.   

Saporin treatment significantly reduced the amount of cholinergic contact with the 

basement membrane of arteries in both the cortex and hippocampus, while capillaries and 

veins where unaffected. This may reflect the proportional endogenous degree of 

cholinergic innervation between vessel types. However, perivascular loss of cholinergic 

fibre contact has been previously reported at microvessels including capillaries in the 

fronto-parietal cortex following ablation of the substantia innominate (Vaucher & Hamel 

1995). Although the reason for this discrepancy is unknown, it may be due  to 

methodological differences including the injection of ibotenic acid into the substantia 

inominata, which may have induced a stronger death and a more focalised loss in the 

cortex (Vaucher & Hamel 1995).  
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Regional differences were also observed in the degree of cholinergic loss at the NVU. 

While saporin treatment induced a loss of cholinergic contacts only at the basement 

membrane and SMCs of arteries in both regions, there was additional loss of cholinergic 

innervation astrocyte endfeet of cortical arteries. Again, this is may be related to the lower 

endogenous level of astrocyte innervation in the cortex, which may make cortical vessels 

more susceptible than those in the hippocampus to loss of cholinergic innervation. The loss 

of innervation seen at the smooth muscle level is important as smooth muscle cells are 

important in mediating vascular reactivity by responding to NVC by deforming the vessel 

lumen in order to modulate CBF (Hill et al. 2015). They also express the LRP-1 receptor 

involved in the transcyctotic removal of Aβ across the BBB (Kanekiyo et al. 2012) and 

localised contraction of smooth muscles has recently been proposed to generate the force 

that drives perivascular drainage (Aldea et al. 2018).  

Similarly, astrocytes also play a key role in mediating NVC and stimulation of the nucleus 

basilis has been shown to drive calcium wave signalling in cortical astrocytes via binding 

to mAChRs (Chen et al. 2012). However, Mishra et al have recently suggested that that 

arteriolar dilation is achieved by a interneuron-dependent pathway independent of 

intracellular calcium increases (Mishra et al. 2016). A limitation of this study is that only 

innervation of the endfeet was quantified, but innervation could also occur at other parts of 

the astrocyte which may have also changed with cholinergic loss. Moreover, GFAP is 

known to label only ~15% of all astrocyte populations (Bushong et al. 2002) and other 

markers of astrocyte endfeet (e.g. AQP4) may have been differentially altered by saporin 

treatment that were not quantified in this study. Nevertheless, retraction of endfeet, loss of 

GFAP and decreased AQP4 expression has been reported in astrocytes in the presence of 

CAA (Wilcock et al. 2009), suggesting dysfunctional contact with the NVU.  

Collectively, the current results suggest that cortical arteries are more strongly affected by 

cholinergic denervation than arteries in the hippocampus. This may have implications for 

both the relative vulnerability of the cortex and hippocampus to ACh-mediated changes in 

CBF and the efficiency of clearance of Aβ from the brain that map onto brain regions that 

are more and less likely to develop CAA.   
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Chapter 4 : The implication of cholinergic loss on cerebral blood 

flow and the role of NOS 
 

Introduction 

The brain is one of the most highly vascularised and perfused organs in the body (Farkas & 

Luiten 2001). Hypo-perfusion is a known characteristic of AD and impaired CBF has been 

suggested to be a biomarker of AD, as well as a driver of amyloidogenic pathology in AD 

(Ramirez et al. 2015). However, hyper-perfusion has been reported in areas known to 

affected in the late stages of AD, including the frontal and lateral temporal lobes (Hu et al. 

2010). In MCI patients, the hippocampus and amygdala have also been found to be hyper-

perfused (Dai et al. 2009), but become hypo-perfused in AD (Alsop et al. 2008).  A recent 

study by Williams et al found a reduction in the latency and duration of the haemodynamic 

response in the motor cortex in cases of probable CAA compared to healthy control 

patients (Williams et al. 2017). Similar findings were also indicated by a study comparing 

pre-symptomatic and symptomatic patients with the hereditary CAA HCHWA-D (van 

Opstal et al. 2016).   

Recent studies have suggested that loss of cholinergic innervation in AD precedes 

pathological changes in the cortex (Schmitz et al. 2016), and may contribute to hypo-

perfusion in AD. On the other hand, changes in CBF may also affect cholinergic neuronal 

function (Román & Kalaria 2006) and cholinergic neurons have been shown to naturally 

decline with age (Perry 1980). The saporin model of cholinergic denervation has 

previously been used to investigate the link between loss of cholinergic input and CBF in 

rats. An early study found that saporin-treated animals had decreased baseline CBF in the 

cortex as determined by autoradiography (Waite et al. 1999). However, Sorger et al. 

reported no effect of cholinergic loss on CBF in either the hippocampus or cortex (Sorger 

et al. 1999). More recently, a study using laser Doppler flow has reported a decrease in 

CBF in the cortex of denervated rats only when challenged with whisker deflection 

(Lecrux et al. 2017). Therefore, the effect of loss of cholinergic input from the medial 

septum on baseline and evoked CBF remains undetermined.   

As discussed in the main introduction, ACh causes vasodilation primarily by inducing the 

production of nitric oxide (NO) in endothelial cells via activation of eNOS (Furchgott & 

Zawadzki 1980). Although cholinergic neurons originating in the basal forebrain have been 

shown to innervate both eNOS-containing endothelial cells (Vaucher & Hamel 1995) and 

nNOS-containing inter-neurons in the cortex (Cauli et al. 2004; Vaucher et al. 1997), 
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experimental data suggests that increased cortical CBF following direct stimulation of the 

basal forebrain is mediated primarily through activation of eNOS (Zhang et al. 1995).  

Decreased expression of eNOS has been reported in the occipital cortex in AD (Jeynes & 

Provias 2009), a region that is most commonly affected by CAA (Attems et al. 2011) and 

which has been shown to be hypo-perfused in AD (Brown et al. 1996). Conversely, eNOS 

and iNOS activity have been shown to be significantly increased in the temporal and 

frontal cortices of AD patients (Dorheim et al. 1994), in association with hyper-perfusion 

(Hu et al. 2010).  eNOS deficiency has also been implicated in AD pathology, as increased 

levels of APP, Aβ1-40 and errors in performance of a radial maze arm test were found in 

eNOS deficient mice compared to control mice (Austin et al. 2013). In addition, a study by 

Tan et al reported increased CAA in a mouse model of partial eNOS deficiency (Tan et al. 

2015). These data support the importance of eNOS in regulating cerebral perfusion and 

suggest a possible link between eNOS deficiency and vascular pathology in AD. 

The aim of this study was to determine the effect of cholinergic loss on CBF in our model 

and to identify whether there were regional variations between the cortex and 

hippocampus. We also investigated whether changes in CBF were associated with 

underlying changes in eNOS and nNOS signalling.  

Materials and methods 

Functional Magnetic resonance imaging (fMRI) 

8-10 week old male C57BL/6 mice that received an ICV injection of mu-saporin (n=7) or 

saline (n=7) as detailed in Chapter 2 (section ‘Cholinergic denervation’, page 45) were 

imaged at the UCL Centre for Advanced Biomedical Imaging (CABI, London) 45 days 

after surgery. Arterial spin labelling fMRI was carried out using a 9.4 T VNMRS 

horizontal bore scanner (Agilent Inc., Santa Clara, CA, USA). A diagram of the imaging 

procedure is shown in Fig. 4.1. In each 5 minute imaging block, 5 coronal slices of the 

mouse brain were acquired. Hypercapnia was induced using 5% CO2 through a mask after 

baseline CBF was acquired and 15 minutes after administration of Fasudil hydrochloride 

(10 mg/kg IP, Tokyo Chemical Industries, Tokyo, Japan).   

Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac. uk/spm/) was applied to 

perfusion-weighted acquired ASL images (Wells et al. 2015). Acquired images were 

processed using a Matlab (Mathworks, MA, USA) customised script. Regions of interest 

(cortex, hippocampus, striatum) were then manually traced on a single slice and quantified 

using a Matlab script which converted pixel intensity into CBF (ml/100g/min). The Matlab 

script was written and run by Dr Jack Wells (Wells et al. 2015). At the end of the imaging 



81 

 

experiments, mice were perfusion fixed with 4% PFA and their brains collected for 

immunohistochemistry. 

 

Figure 4.1 Timeline of fMRI imaging protocol 

Baseline CBF was obtained for 5 mins, following which hypercapnia (5% CO2) was induced for 5 mins after 

which there was a 5 min recovery period.  Mice were then injected with fasudil hydrochloride and imaged 10 

minutes later, followed by a repeated application of hypercapnia and recovery.   

Immunohistochemistry 

To assess eNOS expression in the cortex, hippocampus and striatum, brains collected from 

mice that underwent fMRI imaging were sliced on a cryostat and free-floating sections 

were collected. Sections were sequentially stained using double-labelling 

immunohistochemistry with antibodies against the endothelial cell maker CD31 and total-

NOS (see Chapter 2, Table 2.1 for antibody concentrations). Images were captured using a 

Leica SP5 confocal microscope and degree of colocalisation between CD31 and NOS was 

determined using the Manders correlation (Bolte & Cordelieres 2006) in Image J (JaCop 

plug-in). For quantification of co-localisation in the hippocampus, values from both the 

ipsilateral and contralateral hemispheres were averaged and treated as n = 1. For 

quantification of images from the cortex, six random non-overlapping spanning the 

somatosensory cortex of the ipsilateral cortex to the somatosensory cortex of the 

contralateral cortex were averaged and analysed. 

Western blotting 

In order to ascertain protein levels of NOS enzymes, brains were collected from a separate 

cohort of 8-10 week old C57BL/6 mice that received an ICV injection of  mu-saporin 

(n=6) or saline (n=7) 45 days earlier.  Homogenates from the cortex, hippocampus and 

striatum were probed using antibodies against eNOS and nNOS (see Chapter 2, section 

‘Western blotting’, page 48). Membranes were stripped and re-probed for GAPDH as a 

loading control. Optical density (OD) of the bands corresponding to the estimated 

molecular weight of the eNOS and nNOS proteins were quantified using Image J and 

calculated as a ratio of the OD of GAPDH per corresponding sample.   
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NOS activity assay 

To assess levels of NOS activity in control and saporin-treated mice, brain homogenates 

from control and saporin-treated mice (n=5/group) were processed to isolate the membrane 

and soluble fractions. Brain tissues were homogenised in ice cold homogenisation buffer 

(25 mM Tris-HCl pH 7.4, 1 mM EDTA, 1 mM EGTA containing 1:100 Protease inhibitor 

cocktail Set III, EDTA free (Merck Millipore)). Homogenates were centrifuged (1300 rpm, 

25 min, 4⁰ C), supernatant was collected as the nNOS-enriched fraction and the pellet was 

resuspended in 150 μL homogenisation buffer and collected as the eNOS-enriched 

fraction.   

The NOS assay was carried out as per manufacturer’s instruction (Cayman Chemical, Ann 

Arbor, MI, USA). Briefly, the tissue homogenate was added to a reaction mixture (see 

Chapter 2, Table 2.2, page 49, for composition) containing radiolabelled [3H] L-Arginine 

monohydrochloride (50.5 Ci/mmol, 1 µCi/µl, Perkin Elmer, Llantristant, UK). The 

reaction was incubated at room temperature (22⁰ C) for 30 min to allow the active 

endogenous NOS to convert the [3H] L-Arginine into [3H] L-citrulline, following which 

stop buffer (50 mM HEPES and 5 mM EDTA, pH 5.5) was added. To determine the 

relative activity of specific NOS isoforms, tissue homogenates were pre-incubated with the 

selective nNOS inhibitor 7-Nitroindazole (7-NI, 1 µM final concentration, Tokyo 

Chemical Industry Co. (Tokyo, Japan)) or the pan-NOS inhibitor Nitro-L-arginine Methyl 

Ester Hydrochloride (L-NAME, 10 µM final concentration, Tokyo Chemical Industry 

Co.). Fig. 4.2 shows a diagram of the sites of action of fasudil hydrochloride, L-NAME 

and 7-NI on the eNOS stimulation pathway. 

The reaction mixture was then pipetted onto resin which bound any unconverted [3H] L-

Arginine, which was then separated from the rest of the mixture using a glass pipette under 

gravity filtration. Scintillation fluid (Emulsifier-safe, Packard Instrument Company, CT, 

USA) was then added to this mixture and radioactivity was measured using a liquid 

scintillation and luminescence counter (1450 microbeta Wallac Trilux, Perkin Elmer). 

Background counts (reaction mixture, stop buffer and resin without homogenate) and total 

counts (reaction mixture and stop buffer only) were also obtained. 

The relative proportion of eNOS and nNOS activity in the total reaction was calculated as 

follows:   

 

 

= % NOS activity 

blocked by inhibitor 

1 –  rate of citrulline production in presence of NOS inhibitor 

rate of endogenous citrulline production 

x 100 

Equation 4.1: % activity blocked by total NOS inhibition (L-NAME) - % activity blocked by 

inhibition of nNOS (7-NI) = % activity blocked by inhibition of i/eNOS.  
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Figure 4.2 Pharmacological manipulation of eNOS/nNOS activity 

Pathway of eNOS and nNOS-mediated vasodilation and sites targeted pharmacologically. Acetylcholine 

(ACh) stimulates eNOS and/or nNOS by inducing Ca2+/calmodulin signalling. nNOS can be inhibited using 

the drug 7-NI. L-NAME inhibits both eNOS and nNOS (Iadecola et al. 1994). Fasudil hydrochloride is a rho-

kinase (ROCK) inhibitor, which prevents ROCK from inhibiting the PI3K/Akt pathway, allowing it to 

activate eNOS, which can then convert L-Arginine into L-citrulline, releasing the vasodilatory by-product 

NO. 

 

Statistics 

Data was tested for normality using the Kolmogorov-Smirov test. Statistical analysis of 

CBF in saporin vs control mice at each time point was carried out using a paired two-tailed 

Student’s t tests with Holm-Sidak correction for multiple comparisons. Comparisons 

between control and saporin-treated mice for Western blot and immunohistochemistry data 

were analysed using two-tailed Student’s t-test. To analyse differences of NOS activity 

data, one-way ANOVA with Newman-Keuls post-hoc test was used to assess differences 

between brain regions and treatment groups, and two-tailed t-test was used to analyse 

differences between saporin and control groups. In all cases, significance was set at p<0.05 

and data are displayed as mean ±SEM. 

Results  

Effect of cholinergic loss on regional cerebral blood flow 

ACh

Ca2+/Calmodulin

nNOS

Fasudil
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ROCK

PI3K/Akt

eNOS
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In order to assess the effect of loss of perivascular cholinergic innervation from the basal 

forebrain on CBF in the cortex and hippocampus, in vivo arterial spin labelling fMRI was 

used to image cerebral perfusion the brains of control and saporin-treated mice. 

In the hippocampus, baseline CBF did not differ between control and saporin-treated mice 

(Fig. 4.3 a). To determine if denervated vessels were responsive to a general vasodilatory 

stimulus, control and saporin-treated mice were administered 5% CO2 to induce 

hypercapnia.  Administration of hypercapnia increased CBF, which was significantly 

higher than baseline in saporin-treated mice. To determine if loss of cholinergic input 

affected eNOS-mediated vasodilation, mice were then administered the Rho-kinase 

inhibitor Fasudil hydrochloride. No differences in CBF were noted between control and 

saporin mice after administration of fasudil hydrochloride, suggesting that both groups of 

animals responded equally to eNOS stimulation (Fig. 4.3 b). Fasudil hydrochloride 

administration did not affect the hypercapnia-induced increase in CBF in either control or 

saporin mice in the hippocampus (Fig. 4.3 b).    
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Figure 4.3 CBF fMRI data of control and saporin-treated mice from the hippocampus 

(a) In the hippocampus, there was no significant difference in resting CBF or response to hypercapnia 

between control and saporin groups. (b) Administration of fasudil hydrochloride increased CBF equally in 

both groups and both groups responded to the subsequent hypercapnia challenge. Grey box between 300 s – 

600 s indicates administration of 5% CO2. (Control n=7, saporin n=5), error bars are shown as ±SEM 

 

In the cortex, similarly to the hippocampus, no differences in CBF were noted between 

control and saporin-treated animals at baseline (Fig. 4.4 a). Both control and saporin-

treated mice showed a significant increase in CBF in response to hypercapnia compared to 

baseline CBF (p<0.05), and no differences were noted between control and saporin 

animals. After administration of fasudil hydrochloride, CBF was significantly higher in the 
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control group compared to the saporin treated animals (Fig. 4.4 b) (p<0.05), suggesting 

that saporin-treated mice did not respond to stimulation of the eNOS pathway. Fasudil 

hydrochloride administration did not affect hypercapnia-induced increase in CBF in either 

control or saporin mice (Fig. 4.4 b).  

 

Figure 4.4 CBF fMRI data of control and saporin-treated mice from the hippocampus 

(a) In the cortex, baseline CBF was similar between control and saporin-treated groups and no differences 

were noted in their response to hypercapnia. (b) Following administration of fasudil hydrochloride, the 

saporin-treated animals had significantly lower CBF compared to the control group (p<0.05). However, both 

groups responded to equally to subsequent hypercapnia. Grey box between 300 s – 600 s indicates 

administration of 5% CO2. (Control n=7, saporin n=7), error bars are shown as ±SEM 
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Because saporin does not induce loss of cholinergic neurons in the striatum, resting and 

evoked CBF were also assessed in the striatum as a negative control. The profile of CBF 

was similar to that observed in the hippocampus, in that there was no difference between 

control and saporin-treated mice in resting CBF or response to hypercapnia (Fig. 4.5 a). 

However, administration of fasudil hydrochloride did not appear to significantly increase 

CBF in either control or saporin animals and the response to hypercapnia was muted in this 

area (Fig. 4.5 b).   
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Figure 4.5 CBF fMRI data of control and saporin-treated mice from the striatum 

(a) In the striatum, there was no significant difference between the groups. (b) There was no differences post 

fasudil hydrochloride treatment between the groups. Grey box between 300 s – 600 s indicates time during 

which 5% CO2 was used as hypercapnia. (Control n=4, saporin n=7), error bars are shown as ±SEM.  

Effect of cholinergic loss on regional NOS protein levels  

To determine whether regional differences in eNOS-mediated increased CBF were due to 

differences in levels of NOS proteins, tissues from the cortex and hippocampus of control 

and saporin-treated mice were processed by Western blotting using antibodies against 
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eNOS and nNOS, and by double-labelling immunohistochemistry using a pan-NOS 

antibody and anti-CD31 to label endothelial cells. 

As shown in Fig. 4.6 a, in the hippocampus, levels of eNOS were significantly higher in 

saporin-treated mice than controls as determined by Western blotting (p<0.05). However, 

NOS expression in CD31-positive endothelial cells was not altered by saporin treatment 

(Fig. 4.6 b). No differences were noted in the levels of nNOS between control and saporin 

mice (Fig.4.6 c).  

 

Figure 4.6 The effect of cholinergic loss on protein levels of eNOS and nNOS in the hippocampus 

(a) Protein levels of eNOS as detected by Western blotting in the hippocampus were significantly increased 

in the saporin group compared to control (control n=8, saporin n=6). (b) Photomicrographs of NOS (blue) 

and CD31 (red) staining in the hippocampus (control n=7, saporin n=7). (c) Levels of nNOS did not differ 

between control and saporin mice (control n=8, saporin n=6). Error bars are shown as ±SEM.*p<0.05. 

 

In the cortex, levels of total eNOS were significantly lower in saporin-treated animals 

compared to the control group (Fig. 4.7 a) (p<0.05). These results were confirmed by 
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immunohistochemistry, where NOS expression in CD31-positive cells was significantly 

decreased in the cortex of saporin mice (Fig. 4.7 b) (p<0.05). By contrast, levels of nNOS 

were not altered by saporin treatment (Fig. 4.7 c).   

 

Figure 4.7 The effect of cholinergic loss on protein levels of eNOS and nNOS in the cortex 

(a) Levels of eNOS in the cortex were significantly decreased compared to control mice (control n=8, saporin 

n=6). (b) Photomicrographs of NOS (blue) and CD31 (red) showed decreased levels of colocalisation in the 

saporin group compared to control (control n=7, saporin n=7). (c) Levels of nNOS were not significantly 

different between saporin and control groups (control n=8, saporin n=6). Error bars are shown as ±SEM. 

*p<0.05. 
 

Levels of eNOS and nNOS in the striatum did not differ between control and saporin 

groups (Fig. 4.8 a and b).  
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Figure 4.8 The effect of cholinergic loss on protein levels of eNOS and nNOS in the striatum 

(a and b) Protein levels of eNOS (a) or nNOS (b) in the striatum were not significantly affected by saporin 

treatment (control n=8, saporin n=6). Error bars are shown as ±SEM. 

Effect of cholinergic loss on NOS activity  

To determine whether changes in levels of NOS expression were associated with 

alterations in enzyme activity, tissue homogenates enriched for eNOS (membrane fraction) 

or nNOS (soluble fraction) were processed using a radioactivity assay in which the rate of  

3H-L-Citrulline production is reflective of enzyme activity.  

To first determine if there was regional variation in endogenous NOS activity, 

concentrations of 3H-L-Citrulline in the cortex and hippocampus from control mice were 

compared. As shown in Fig. 4.9, endogenous NOS activity was significantly higher in the 

hippocampus compared to the cortex, with concentrations of 3H-L-Citrulline 

approximately 4-6 times greater in the membrane fractions in the supernatent (Fig. 4.9 a) 

and pellet (Fig. 4.9 b) fractions of the hippocampus compared to the cortex, respectively 

(p<0.01, p<0.001).  

Control Saporin

eNOS

GAPDH

Levels of eNOS in the 

striatum
a

Control Saporin

nNOS

GAPDH

Levels of nNOS in the 
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Figure 4.9 Endogenous NOS activity in the hippocampus and cortex 

(a-c) Endogenous NOS activity in the hippocampus and cortex of control mice as measured by the rate of 

production of [3H]L-Citrulline in the nNOS-enriched supernatant (a), eNOS-enriched membrane fraction (b) 

and in the combined fractions (c). (control n=5, saporin n=5) **p<0.01; ***p<0.001. Error bars are shown as 

±SEM. 

 

Analysis of 3H-L-Citrulline concentrations in the membrane and soluble fractions of 

control and saporin mice in the hippocampus did not show differences between the 

treatment groups (Table 4.1). Similarly, no differences were noted between control and 

saporin mice in concentrations of 3H-L-Citrulline in the cortex (Table 4.2) or in the 

striatum (Table 4.3).   

To determine if residual expression of eNOS and nNOS in the respective soluble and 

membrane fractions may have masked potential differences between control and saporin 

treatments, the NOS activity assay was repeated in the presence of pharmacological 

inhibitors. Because eNOS-specific inhibitors are not available, samples were incubated 

with the general NOS inhibitor L-NAME (Iadecola et al. 1994; Wang et al. 2013; 

Antošová et al. 2015) and the nNOS specific inhibitor 7-NI (Moore et al. 1993). eNOS 

activity was interpolated from the difference between total NOS inhibition and inhibition 

of nNOS. 

a b

c
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The rate of 3H-L-Citrulline production in hippocampal samples in the presence of L-

NAME and 7-NI are shown in Table 4.1. Inclusion of the pan NOS inhibitor L-NAME 

significantly reduced enzyme activity by approximately 52-58% and 75-79% in the 

membrane and soluble fractions, respectively, of both control and saporin samples. There 

was a trend towards greater inhibition of total NOS activity in the soluble fraction of 

saporin-treated mice (p=0.059). In the membrane fraction, the amount of total NOS 

inhibition was significantly higher in control samples (p=0.033), suggesting that there was 

more NOS activity in the eNOS-enriched fraction in saporin samples. Inhibition of nNOS 

activity also induced a decrease in 3H-L-Citrulline production in the soluble fraction of 

control and saporin mice (53-55% reduction from baseline), but no differences were noted 

between treatment groups. In the membrane fraction, inhibition of nNOS caused a smaller 

decrease in the rate of citrulline production in the saporin samples (48.3% control vs. 

25.8% saporin, p=0.0582), suggesting that there is either less nNOS or that that its activity 

was higher in the saporin-treated mice. In the membrane fraction, the estimated reduction 

in enzyme activity following inhibition of i/eNOS was greater in control vs. saporin mice 

(3.05  6.72% control vs. 25.8  12% saporin), suggesting that eNOS activity was higher 

in saporin treated animals, however this difference was not statistically significant 

(p=0.137).     
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Table 4.1 NOS activity in the hippocampus  

 

In the cortex, incubation with L-NAME resulted in an almost complete reduction of 3H-L-

Citrulline production in samples from both control and saporin mice (91-99% reduction 

from baseline, Table 4.2). No significant differences in nNOS activity were observed 

between the saporin and control groups in either the soluble or membrane fractions, 

although the reduction was greater in the soluble fraction (~95%) compared to the 
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membrane fraction (49 – 56%) (Table 4.2).  The estimated reduction in enzyme activity 

following inhibition of i/eNOS in the membrane fraction was smaller in saporin-treated 

mice compared to controls (39.3% saporin vs. 73.3% control; p=0.052), suggesting less 

i/eNOS activity after saporin treatment. 

Table 4.2 NOS activity in the cortex 

 

In the striatum, there was marked reduction in general NOS activity in the presence of L-

NAME in both the membrane and soluble fractions (75 – 80% reduction from baseline), 
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but no differences were noted between control and saporin groups (Table 4.3). Decreased 

nNOS activity was also evident with incubation with 7-NI, but again no differences were 

observed between the experimental groups. No differences were observed in the estimated 

reduction in enzyme activity following inhibition of i/eNOS. 

Table 4.3 NOS activity in the striatum 
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Discussion  

 Loss of cholinergic innervation did not affect baseline or hypercapnia-induced 

increase in CBF in either the cortex or the hippocampus. 

 CBF in the cortex was not affected by administration of fasudil hydrochloride in 

saporin-treated mice, which was associated with a decrease in eNOS levels and 

activity.  

 Mu-p75-saporin-treated mice remained responsive to fasudil hydrochloride-induced 

increase in CBF in the hippocampus which was associated with increased eNOS 

levels with a trend towards increased eNOS activity. 

AD is characterised by loss of cholinergic innervation, alterations in CBF and decreased 

levels of NOS. However, the direct interrelationship between these factors has not been 

investigated. The aim of the experiments in this chapter was to investigate the effects of 

loss of perivascular cholinergic innervation on CBF via the NOS pathway.  

Given that stimulation of the basal forebrain has been demonstrated to lead to an increase 

in cortical CBF (Iadecola & Zhang 1996; Hotta et al. 2011), which can be inhibited by 

AChR antagonists (Biesold et al. 1989), we first determined whether decreased cholinergic 

innervation affected resting CBF. We found that loss of cholinergic innervation of blood 

vessels in the cortex and hippocampus did not affect baseline CBF in either region. These 

findings are consistent with recent findings by Lecrux et al who demonstrated that 

cholinergic denervation decreased the CBF response to whisker deflection, without 

affecting resting CBF (Lecrux et al. 2017). 

Responsiveness to hypercapnia was also unaltered between control and saporin-treated 

mice. Hypercapnia is known to cause a global increase in CBF by inducing relaxation of 

smooth muscle cells and is detected by chemoreceptors that are sensitive to the pH and 

pCO2 of the blood (Yoon et al. 2012). Traditional vasoactive peptides (e.g. neuropeptide Y, 

vasoactive intestinal peptide and neurotransmitters) have not been directly implicated in 

hypercapnia-induced CBF, although the control of neurotransmission can be influenced by 

pCO2 (Toda et al. 1996; Liu et al. 2012). Our findings are consistent with the idea that ACh 

does not play a significant role in the CBF response to hypercapnia and suggest that the 

degree of cholinergic death induced in this study does not impair the ability of the cerebral 

vessels to respond to a general vasodilatory stimulus.  

At the NVU, ACh stimulates vasodilation by activating eNOS to convert L-Arginine into 

L-Citrulline which releases NO as a by-product (Shin et al. 2007). Phosphorylation of 

eNOS on serine/tyrosine activates the enzyme and leads to its translocation to the plasma 
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membrane, where the majority of NO production occurs (Qian et al. 2010; Fulton et al. 

2004; Dimmeler et al. 1999). Release of ACh from basal forebrain neurons that synapse 

onto interneurons can also influence CBF through activation of nNOS, which has been 

suggested to induce vasodilation in vessels > 70 µm from the source in the hippocampus 

(Lovick et al. 1999). We observed that denervated vessels in the cortex did not respond to 

treatment with the ROCK inhibitor fasudil hydrochloride, suggesting that the 

responsiveness of the eNOS pathway was impaired in the cortex. However, vessels in the 

hippocampus remained responsive to eNOS stimulation. This corresponded with decreased 

levels of eNOS in the cortex and increased expression of eNOS in the hippocampus of 

saporin-treated mice, while levels of nNOS were not affected by saporin treatment in either 

brain region.  

It has previously been reported that nNOS expression is higher in the cortex than the 

hippocampus of the adult mouse brain (Gotti et al. 2005). The regional distribution of 

eNOS has been found to be similar in both the hippocampus and cortex of the rat brain 

(Sessa et al. 1993). Although we did not directly compare the expression of eNOS in the 

cortex and hippocampus of control mice, endogenous activity of NOS in both the nNOS 

and eNOS-enriched fractions was significantly higher in the hippocampus compared to the 

cortex, as previously reported (Sehba et al. 2000). This proportional expression was 

maintained following saporin treatment. This suggests that the capacity to induce 

vasodilation and increase CBF is higher in the hippocampus than the cortex of wildtype 

mice. Moreover, despite a more dramatic loss of cholinergic input in the cortex (Chapter 

3), levels of eNOS were significantly upregulated in the hippocampus, but not in the 

cortex, of saporin-treated mice. This suggests that the hippocampus may regulate eNOS 

expression more tightly than the cortex and may therefore be better able to maintain CBF 

when challenged. This hypothesis is supported by previous reports that changes in CBF in 

the hippocampus were more proportional to changes in nNOS activity than in the cortex 

(Lourenço et al. 2014) and that the cortex is more sensitive to inhibition of nNOS activity 

than the hippocampus (Kalisch et al. 1996).    

Although these experiments were carried out in wildtype mice, they may have implications 

for regional variations in CBF that are also observed in AD. Several studies have reported 

decreased CBF in the cortex, but not hippocampus, of MCI and AD patients (Lacalle-

Aurioles et al. 2014; Wirth et al. 2017; Alsop et al. 2008). Significantly less eNOS has 

been found in the occipital cortex of AD cases compared to age-matched controls (Jeynes 

& Provias 2009) and a ‘sparing’ of NOS positive neurons has been reported in the 
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hippocampus of AD cases (Hyman et al. 1992). However, other studies have found 

increased levels of levels of iNOS and eNOS and higher NOS activity in cortical 

microvessels isolated from the brains of individuals with AD compared to control 

(Dorheim et al. 1994). Taken together, these studies suggest a higher sensitivity of the 

cortex than the hippocampus to loss of cholinergic innervation on CBF, but that this 

difference may be dependent on vessel type and disease progression. While further studies 

are needed to understand the relationship between regional expressions of NOS, changes in 

CBF and disease progression, the current findings suggest that a differential response to 

loss of cholinergic innervation may contribute to regional differences in regional CBF 

observed in AD.     
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Chapter 5 : Effect of cholinergic loss on perivascular drainage of 

Aβ 

Introduction 

CAA is characterised by a build-up of Aβ in the walls of the cerebrovasculature. Aβ is 

constitutively produced in the brain and cleared away through multiple mechanisms 

including enzymatic cleavage, clearance by microglia and astrocytes as well as receptor-

mediated clearance across the BBB (Miners et al. 2008; Iwata et al. 2001; Hafez et al. 

2011; Farris et al. 2003; Palmer et al. 2010; Wilcock et al. 2004; Mackic et al. 1998). Aβ is 

also hypothesised to be removed from the brain along the walls of the capillaries and 

arteries via PVD (Carare et al. 2008) or around the walls of the veins via glymphatic 

drainage (Iliff et al. 2012).  

The PVD hypothesis of Aβ clearance is based in part on experimental observations that 

nanoparticles and solutes including dextrans and Aβ injected into the ISF of deep brain 

structures localise to CVBMs in dorsal cortical and leptomeningeal vessels (Ichimura et al. 

1991; Carare et al. 2008; Arbel-Ornath et al. 2013). This process occurs very rapidly, 

within 5-10 minutes of injection (Ball et al. 2010; Hladky & Barrand 2014; Hladky & 

Barrand 2018; Rennels et al. 1985). Anatomical studies suggest that there is continuity 

between the extracellular matrix of the parenchyma and the CVBMs of capillaries (Morris 

et al. 2016). Solutes are then hypothesised to travel to the CVBM of cortical and 

leptomeningeal arteries before exchanging with CSF at the VRS and subarachnoid space, 

ultimately draining to cervical lymph nodes (Ball et al. 2010; Ma et al. 2018; Louveau et 

al. 2015).  Because the pattern of distribution of solutes closely mimics that of Aβ 

accumulation in CAA and other angiopathies (Roher et al. 2003; Jeffrey & González 2007; 

Tikka et al. 2009; R. O. Carare et al. 2013), failure of this process is thought to contribute 

to CAA pathology.  

As the movement of solutes along CVBMs is counter to the direction of blood flow, the 

driving force that underlies PVD is still unknown. Initial calculations suggested that this 

force could be generated by the refractory wave that follows an arterial contraction (Schley 

et al. 2006). However, recent mathematical models have demonstrated that arterial 

pulsations are not sufficient to generate drainage velocities that match the experimental 

observations (Diem et al. 2017). Alternatively, oscillating pulsatile flow generated by the 

focal contraction and relaxation of arteries has been proposed to mediate perivascular 

drainage (Sharp et al. 2016) and is supported by experimental in vitro data (Partyka et al. 

2017). Localised arterial dilatation and contraction can occur both spontaneously (e.g. 
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vasomotion) and in response to neuronal activity (e.g. NVC) and both mechanisms have 

been shown to be decreased in AD (Di Marco et al. 2015; Rivera-Rivera et al. 2016; Simic 

et al. 2014). Application of ACh has been used to induce localised vascular contractions 

(Sercombe et al. 1990; Zhang et al. 1995; Librizzi et al. 2000) and increased cholinergic 

tone using AChEI has been shown to increase CBF in response to NVC in the barrel cortex 

(Lecrux et al. 2017). This suggests that in addition to regulating blood flow, the action of 

ACh at the NVU may also contribute to clearance of Aβ from the brain.    

In the previous chapter, loss of perivascular cholinergic innervation was found to be 

associated with altered CBF in the cortex, but not the hippocampus. The aim of this 

chapter was to determine if cholinergic denervation affects the efficiency of PVD of Aβ 

and if this differs between the cortex and hippocampus.  

Materials and methods 

PVD of human Aβ in control and saporin-treated mice 

The saporin model was used to induce cholinergic denervation as described in Chapter 2 

(section ‘Cholinergic denervation’ page 45). 45 days after ICV injection of saline or mu-

saporin, male C57BL/6 mice received an injection of human Aβ1-40 HiLyte Fluor™ 555 

(50 µM, AnaSpec, USA). For experiments assessing PVD in the hippocampus, n=16 

control and n=14 saporin mice were injected with 0.5 µL Aβ1-40 into the left hippocampus 

(coordinates from Bregma: AP=-2mm, ML=1.5mm, DV=-1.7mm) and mice were 

sacrificed 5 minutes later with an overdose of sodium pentobarbitone (20% w/v; 

Animalcare, York, UK). For PVD in the cortex, n=8 control and n=7 saporin mice received 

0.25 µL Aβ1-40 into the right cortex (coordinates from Bregma: AP=-2mm, ML=1.5mm, 

DV=-0.5mm) and mice were overdosed 2.5 minutes later.  All injections were carried out 

at a rate of 0.2 µL/min using a 32 G Hamilton syringe (Esslab, Hadleigh, England).  For 

both hippocampal and cortical injections the needle was left in situ for 2 minutes (inclusive 

of drainage times) after the injection to allow for diffusion. Mice were perfused 

intracardially with 0.01 M PBS followed by 4% PFA, brains removed and post-fixed for 24 

hours in 4% PFA before processing.  

Immunohistochemistry  

Brain tissue sections (20 m) were collected onto glass slides and in a free-floating manner 

in alternating sections. Free-floating sections were used to confirm cholinergic loss in the 

medial septum, hippocampus and cortex using anti-ChAT (1:100) as described in chapter 

2, section ‘Immunohistochemistry’, page 45. They were also used to assess microglial 

activation using anti-Iba1 (1:500 with sodium citrate buffer antigen retrieval) and astrocyte 
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reactivity using anti-GFAP (1:500) labelling as described in Chapter 2 (Table 2.1, page 

43). For quantification of densities in the hippocampus, values of regions from both the 

ipsilateral and contralateral hemispheres were averaged and treated as n = 1. For 

quantification of images from the cortex, six random non-overlapping spanning the 

somatosensory cortex of the ipsilateral cortex to the somatosensory cortex of the 

contralateral cortex were averaged and analysed. 

For assessment of PVD, slide mounted sections were used to confirm the site of injection 

and ensure that the ipsilateral hemisphere could be identified. Tissue sections were 

processed for double-labelling immunohistochemistry as described in Chapter 2 and were 

simultaneously incubated with anti-laminin (1:350) and FITC-conjugated anti-SMA 

(1:350) antibodies at 4C overnight. Sections were then incubated with anti-rabbit 

AlexaFluor 633 (1:200) and sections were coverslipped in Mowiol with citifluor anti-

fading agent. Preliminary experiments to determine optimal conditions for assessment of 

PVD were carried out with 50 µM human Aβ1-40 HiLyte Fluor™ 488 (AnaSpec, USA). 

Quantification of PVD 

Sections containing the injection site as identified by the bolus of the injected Aβ-555 were 

noted and sections 400 µm from that point were imaged for assessment to avoid potential 

biases at the site of injection, as per previously published protocols (Hawkes et al. 2013; 

Hawkes et al. 2012). These sections were imaged using a Leica SP5 confocal microscope 

and LAS software (Milton Keynes, Buckinghamshire). Sections were imaged at x 20 

magnification and then stitched together using Image J (NIH, Maryland, USA). Arteries 

were defined as SMA-positive vessels with a lumen diameter of >10 µm, veins were 

defined as vessels with a dimeter of >10 µm that are negative for SMA and capillaries 

were defined as vessels with a lumen <10 µm (Roxana Octavia Carare et al. 2013; Hawkes 

et al. 2011). Vessels containing Aβ were manually counted and the number of Aβ-positive 

arteries, veins and capillaries per tissue area was calculated by dividing the number of 

vessels by the total area analysed (mm2). 

Quantification of glia and blood vessel density 

The percentage area containing microglia, astrocytes and blood vessels was calculated 

using Image J using the threshold values listed in Table 5.1. Additionally, for anti-laminin 

staining, in order to quantify density by vessel type, a mask was set to select small and 

large-diameter vessels on calibrated images using the ‘Analyse particles’ function. The 

mask settings for a capillary were defined by an area of 10 µm x 10 µm and were therefore 

set as 0-100 µm for capillaries, 100-infinity µm for arteries and veins, and 0-infinity µm 

for all vessels.  
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Table 5.1 Threshold values for analysis of percentage area covered 

Label Minimum grey value Maximum grey value 

Anti-Iba1 68 255 

Anti-GFAP 86 255 

Anti-laminin 98 255 

Statistical analysis 

Data was tested for normality using the Kolmogorov-Smirov normality test. For groups of 

two, a two-tailed Student’s t-test was used to assess significance. Other data was analysed 

using two-way ANOVA with Sidak’s post-hoc test. Data is shown as mean ±SEM and 

p<0.05 was considered to be significant. 

Results 

Loss of cholinergic innervation was confirmed in the hippocampus and cortex of saporin-

treated mice as previously shown in Chapter 3 (Fig. 5.1 a-d).  

 
Figure 5.1 Loss of cholinergic nerve fibres using saporin in the hippocampus and cortex 

a-d: Representative images of ChAT-stained nerve fibres (green) in the hippocampus of control mice (a) and 

saporin treated mice (b) and the cortex of control (c) and saporin (d) treated mice. Scale bar = 100 µm. 

 

Immunohistochemistry demonstrated that hippocampal blood vessels 400 µm away from 

the injection site contained AlexaFluor555-conjugated Aβ within 5 min after injection (Fig. 

5.2 a-d). Quantification of the number of Aβ-positive vessels revealed that similar amounts 

of Aβ were present in the CVBM of capillaries and arteries in control and saporin mice 

(Fig. 5.2 e). As per previous reports (Hawkes et al. 2011; Arbel-Ornath et al. 2013; Maki et 

al. 2014; Albargothy et al. 2018) significantly fewer hippocampal veins contained Aβ 
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compared to arteries and capillaries (p<0.05). 

 

Figure 5.2 Perivascular drainage of injected Aβ in the hippocampus with saporin treatment  

(a-e) Representative photomicrographs of blood vessels in the hippocampus stained with anti-laminin (blue; 

a, d), anti- smooth muscle actin (green; b and d), and fluorescently labelled injected Aβ (red; c, d). An 

artery containing Aβ is highlighted by the white arrow (a-d). (e) Quantification of the number of vessels 

containing Aβ showed no difference between control and saporin-treated mice (control n=16, saporin n=14). 

Image is taken 400 µm away from injection site. Scale bar = 100 µm.  

 

Preliminary assessment of PVD in the cortex using the same parameters as that in the 

hippocampus (0.5 L + 5 min clearance) revealed a much smaller bolus of Aβ at the site of 

injection (Fig. 5.3 a and b) and very few Aβ-positive vessels were visible at 400 µm away 
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from the injection site compared to the hippocampus (Fig. 5.2 c and d). Because this 

difference may have been due to technical issues relating to the proximity of the cortex to 

the surface of the brain, a series of differing volumes (0.25 µL to 0.5 µL) and drainage 

times (2.5 to 5 mins) were trialled in the cortex (Fig. 5.3 e-g). The injection protocol of 

0.25 µL with 2.5 mins drainage (Fig. 5.3 g) was found to most closely replicate the pattern 

of PVD observed in the hippocampus and was therefore used to assess PVD in the cortex. 

 

 

 

Figure 5.3 Preliminary investigation of perivascular drainage in the cortex compared to the 

hippocampus 

a-g: Representative images showing the bolus of human Aβ1-40 (555, red) injected into the hippocampus (a, c) 

and into the cortex (b, d) at the site of injection (a and b) at a volume of 0.5 µL and a diffusion time of 5 min. 

(c and d) show the distribution of Aβ at 400 µm away from the injection site in the hippocampus (c) and in 

the cortex (d). (e-g) Representative images of the distribution of Aβ1-40 (488, green) at 400 µm away from the 

injection site following injection of 0.5 µL plus 2 min 30 s drainage (e), 0.25 µL plus 5 mins drainage (f), or 

0.25 µL plus 2 min 30 s drainage (g). Scale bar = 100 µm. 

 

 Quantification of Aβ-containing vessels in the cortex revealed no differences in the 

number of capillaries, arteries or veins between control and saporin-treated mice (Fig. 5.4 

a-e). Cortical capillaries contained significantly more Aβ compared to the arteries and 
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veins, regardless of saporin treatment (p<0.05). 

 

 

Figure 5.4 Perivascular drainage of inject Aβ in the cortex with saporin treatment 

(a-d) Photomicrograph of blood vessels in the cortex stained with anti-laminin (blue; a, d), anti- smooth 

muscle actin (green; b and d), and fluorescently labelled injected Aβ (red; c, d).  A cortical artery containing 

Aβ is indicated by a white arrow, and a capillary highlighted by the yellow arrow.  (e) Quantification of the 

number of vessels containing Aβ showed no difference between control and saporin-treated mice (control 

n=8, saporin n=7). Scale bar = 100 µm.  

 

To determine if there was a difference in the density of vessels between the hippocampus 

and cortex, the percent area covered by small and large-diameter laminin-positive vessels 

was quantified in both brain areas. A significantly higher density of arteries/veins and 

capillaries was noted in the cortex of control mice compared to the hippocampus (Fig. 5.5 

a-c, p<0.05). This difference was maintained following saporin treatment (Fig 5.5 a-c).  
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Figure 5.5 Regional variation in vascular density between the hippocampus and cortex 

(a and b) Representative photomicrographs of laminin staining (green) in the hippocampus (a) and cortex (b). 

(c) Quantification of laminin density showed significantly higher capillary density in the cortex in both the 

saporin and control groups compared to the hippocampus. Arterial density was also significantly higher in the 

cortex then in the hippocampus of control mice. No differences were detected between the density of arteries 

and veins between control and saporin-treated mice (control n=7, saporin n=6) (two-tailed t-test) (c). 

*p<0.05; **p<0.01; ***p<0.001. Scale bars = 100 µm. 

In order to assess whether microglial and/or astrocyte activation may have impacted the 

drainage of Aβ, sections of the hippocampus and cortex were stained for Iba1 and GFAP. 

Quantification of Iba1 staining revealed no effect of saporin treatment on microglial 

coverage of the hippocampus or cortex (Fig. 5.6 a-g). However, regional analyses showed 

that the hippocampus had significantly more microglial coverage than the cortex (Fig. 5.6 

g).  

a Hippocampus Cortexb

c
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Figure 5.6 Regional variation in microglial density between the hippocampus and cortex 
(a-d) Representative photomicrographs of microglial density as assessed by Iba1 staining (green) in the 

hippocampus (a, b) and cortex (c, d) of control (a, c) and saporin-treated mice (b, d). (e-g) Quantification of 

Iba1 density showed no difference between saporin and control groups in the hippocampus (control n=17, 

saporin n=16) (e) and the cortex (control n=7, saporin n=5) (f). Regional comparison showed significantly 

more Iba1 coverage in both the control and saporin groups in the hippocampus compared to the cortex (g). 

*p<0.05. Scale bars =100 µm.  
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GFAP staining was also similar between control and saporin groups in both the 

hippocampus and the cortex (Fig. 5.7 a-g). As with the microglia, regional analyses 

showed that the hippocampus had significantly more astrocytic coverage than the cortex 

which was unaffected by cholinergic loss (Fig. 5.7 g). 

 

Figure 5.7 Regional variation in astrocyte density between the hippocampus and cortex 

(a-d) Representative photomicrographs of astrocyte density as assessed by GFAP staining (green) in the 

hippocampus (control n=7, saporin n=5) (a, b) and cortex (control n=6, saporin n=5) (c, d) of control (a, c) 

and saporin-treated mice (b, d). (e-g) No differences in astrocyte density was noted between control and 

saporin-treated mice in the hippocampus (e) or the cortex (f), but regional analysis revealed significantly 

more GFAP coverage in the hippocampus compared to the cortex (g) as previously noted in Chapter 3. 

*p<0.05; **p<0.01. Scale bars = 100 µm. 
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Discussion  

 Cholinergic loss did not affect PVD of injected human Aβ1-40 in either the 

hippocampus or cortex. 

 The cortex was found to have an endogenously higher vascular density than the 

hippocampus. 

 The hippocampus was found to have an endogenously higher area coverage of 

microglia and astrocytes, which was not affected by mu-p75-saporin treatment. 

Results from this chapter demonstrate that loss of cholinergic innervation does not have a 

significant impact on PVD of Aβ from either the cortex or the hippocampus. However, 

endogenous differences were noted in blood vessel density and glial coverage between the 

hippocampus and cortex, further highlighting the heterogeneity between the two brain 

regions.  

Previous studies have suggested that arterial pulsations are required for drainage to occur 

along blood vessels, especially against the direction of CBF (Arbel-Ornath et al. 2013; 

Schley et al. 2006; Carare et al. 2008; Iliff et al. 2013), although this pulsation is unlikely 

to contribute to bulk flow of ISF and CSF (Bedussi et al. 2018; Hladky & Barrand 2014). It 

has been demonstrated that the vasoreactivity of vessels in patients with AD is improved 

following treatment with AChEIs (Rosengarten et al. 2006; Rosengarten et al. 2009). This 

suggests that cholinergic denervation may contribute to poorer reactivity of the vasculature 

in AD, and may therefore affect the ability of the vasculature to generate sufficient force to 

remove Aβ that is contained within the ISF and CSF. In Chapter 4, we observed that loss 

of ChAT innervation did not affect baseline CBF but lead to reduced responsiveness to 

eNOS-specific stimulation in the cortex but not the hippocampus. We hypothesised that 

PVD is related to CBF and that saporin-treated mice would show decreased PVD in the 

cortex, but not in the hippocampus, compared to control mice. However, the current set of 

experiments found no differences in PVD of Aβ between control and saporin-treated mice 

in either brain region.   

There are several possible explanations for this observation. It is possible that there is no 

relationship between vasoreactivity and PVD and that other mechanisms are responsible 

for generating the force to remove solutes along the CVBMs. Alternatively, the extent of 

cholinergic denervation in our model may not have been sufficient to alter the force of 

arterial contractions to an extent that there could be appreciable difference in PVD. In 

addition, because basal CBF was not affected by saporin treatment, it may be that loss of 

ChAT input in itself may not be sufficient to affect drainage, and that an additional eNOS-
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specific challenge or NVC may be needed to observe differences in PVD between control 

and saporin mice as well as between brain regions.   

Age may also play a role in the current observations. PVD has been demonstrated to be 

negatively affected by increased age, which is associated with changes to the morphology 

and composition of the basement membrane (Hawkes et al. 2011). Regional differences in 

PVD with impairment of drainage of Aβ1-40 have been reported in the hippocampus but not 

the thalamus, which correlated with age-related decrease in collagen IV in the 

hippocampus (Hawkes et al. 2013). Therefore, because the mice used in the current study 

were relatively young, they may have been able to maintain adequate PVD in the absence 

of cholinergic innervation that may not be possible in the aged brain.   

Interestingly, regional differences were also noted in the PVD of Aβ from the hippocampus 

versus the cortex, as both the diffusion time as well as the volume of Aβ injected into the 

cortex had to be halved to be able to detect a sufficient number of vessels to assess 

drainage. This may have been due to technical limitations that are associated with 

intracerebral injections into the cortex; an injection site of -0.5 mm dorsal to ventral was 

chosen to ensure sufficient distance from the corpus callosum and the subarachnoid space. 

However, this depth may not be sufficient to avoid flooding the subarachnoid space when 

using the 0.5 µL bolus of Aβ. On the other hand, we observed that the cerebrovascular 

density was significantly higher in the cortex compared to the hippocampus, which has 

also been reported in other studies (Oomen et al. 2009; Dorr et al. 2007). This suggests that 

there may be a larger surface area for solutes contained within the ISF to be removed from 

the cortex either across the BBB or along peri/paravascular routes, resulting in more rapid 

elimination from the brain under normal conditions.  Under conditions of impaired 

drainage, this increased density may also provide additional opportunity for accumulation 

of Aβ as CAA and contribute to the topography of CAA. 

In addition to clearance via the vasculature, both microglia and astrocytes are also known 

to mediate uptake of Aβ (Wilcock et al. 2004; Bouvier et al. 2016). To determine if saporin 

treatment induced a difference in the expression of glial cells, expression of Iba1 and 

GFAP was assessed in the cortex and hippocampus of control and saporin-treated mice.  

Unlike previous studies which have found increased microglial activity after 7 days in the 

saporin model (Hunter et al. 2004), no differences in microglial or astrocyte density were 

noted between saporin and control mice in the cortex and the hippocampus at the 45 day 

timepoint. This different is likely due to the lower concentration of saporin and longer 

timeframe used in the present study, which may have induced an attenuated inflammatory 
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response to loss of cholinergic neurons. Interestingly, a higher density of Iba1 and GFAP-

positive cells was noted in the hippocampus compared to the cortex in both control and 

saporin-treated mice. The finding of a lower density of astrocytes in the cortex compared 

to the hippocampus has previously been reported in mice (Emsley & Macklis 2006), and a 

more pronounced age-related increase in reactive astrocytes has been observed in the 

hippocampus than in the cortex of rats (Amenta et al. 1998). Increased expression of glial 

cells in the hippocampus may provide additional mechanisms to clear waste products and 

may compensate for the lower vascular density. However, a limitation of this study is that 

only GFAP was used to label astrocytes, and it has been reported that not all astrocytes 

express GFAP (Emsley & Macklis 2006; Kimelberg 2004), therefore the results presented 

in this chapter cannot be assumed for all astrocyte populations.  

It would therefore be of interest to follow up this study by examining the impact of 

cholinergic denervation in the presence of additional factors including old age, and to 

determine how different astrocyte subpopulations and NVC affect the efficiency of PVD 

from different brain regions.   

 

 

  



113 

 

Chapter 6 : Implication of cholinergic loss on CAA severity in a 

transgenic AD mouse model 
 

Introduction 

Transgenic (Tg) mouse models are a useful tool for studying AD. More than a hundred Tg 

AD mouse models are available, expressing various pathological and behavioural 

characteristics of AD and CAA (Jankowsky & Zheng 2017), although none completely 

replicate the complexity of the disease. 

The effect of cholinergic loss on A pathology has been previously studied in several Tg 

mouse models. Using the APP/PS1 model, Ramos-Rodriguez found that saporin treatment 

did not alter CAA severity, but did lead to increased Aβ deposition and exacerbated 

memory and learning impairments (Ramos-Rodriguez et al. 2013). A similar study in the 

same mouse model using saporin also found significantly increased plaque load in both the 

hippocampus and the cortex (Laursen et al. 2013). Saporin-induced cholinergic loss in the 

3xTg AD model also led to increased levels of soluble monomeric Aβ and P-Tau in the 

hippocampus (Härtig et al. 2014). However, neither of these latter studies evaluated the 

impact of saporin treatment on CAA severity. Thus, although these studies suggest that 

loss of cholinergic innervation increases AD pathology in the parenchyma, the impact on 

CAA is still unclear.   

Our group and others have previously reported that perivascular drainage of dextran, inulin 

and A is impaired in the APP/PS1 and Tg2576 mouse models (Hawkes et al. 2011; Peng 

et al. 2016) suggesting that impaired clearance of A along perivascular pathways may 

contribute to A pathology in TgAPP models. We originally hypothesized that loss of 

cholinergic input would reduce the efficiency of PVD of A from the brain, but as reported 

in Chapter 5, found that this was not the case in wildtype mice. However, we did observe 

that loss of cholinergic innervation was associated with reduced eNOS activity. Decreased 

eNOS expression has been found to correlate with increased AD pathology in human 

brains (Jeynes & Provias 2009) and increased CAA load in mice (Tan et al. 2015). 

Furthermore, clearance of A from the brain is mediated via multiple PVD-independent 

mechanisms that may also contribute to the development and/or progression of CAA such 

as perivascular macrophages, enzymatic digestion and receptor-mediated transcytosis 

across the BBB  (Hawkes & McLaurin 2009; Farris et al. 2007; Kanekiyo et al. 2012). 

Therefore, the current set of experiments were conducted to determine the effect of 
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cholinergic loss on CAA severity using the TetO-APPSweInd mouse model of AD 

(Jankowsky et al. 2005).  

Materials and methods 

TetAPP mice 

Tetracycline-responsive APP-transgenic mice (TetO-APPSweInd) (Jankowsky et al. 2005) 

were kindly gifted by Dr JoAnne McLaurin (Sunnybrook Research Centre, Toronto, 

Canada) and were bred on a C57BL/6 background at the OU in accordance with the 

guidelines set out by the AWREB at the OU and Home Office approval (PPL 70/8507).  

This mouse model expresses the human Swedish (KM670/671NL) and Indiana (V717F)  

mutations APP mutations under the control of a tetracycline-responsive (TET-OFF) 

CaMKIIα promotor (Jankowsky & Zheng 2017; Jankowsky et al. 2005). Aβ plaques can be 

detected in the parenchyma by 8 weeks of age without doxycycline treatment, and 

parenchymal A and CAA pathology is established by 6 months of age, predominantly in 

the cortex and hippocampus (Jankowsky et al. 2005). This model has also been 

demonstrated to show regional spread of pathology from the left entorhinal cortex to the 

parietal cortex (Khan et al. 2014) and develops cognitive impairment by 12-13 months 

(Melnikova et al. 2013). 

Genotyping 

Genotyping was carried out as described by Jankowsky et al with modifications 

(Jankowsky et al. 2005). Briefly, ear punches were digested in 150 µl of digestion buffer 

[50 mM Tris pH 7.5, 200 mM EDTA plus 5.2% 10 mg/ml Proteinase K (in 10 mM Tris pH 

7.5, 20 mM CaCl2, 50% glycerol v/v)] overnight at 55⁰C. Following heat deactivation of 

proteinase K for 30 min at 85⁰C, samples were vortexed and spun down to separate debris. 

The DNA in the supernatant was then measured, diluted to 30 ng/µl and amplified for 

genotyping by PCR. The primers used include the S36 (CCG AGA TCT CTG AAG TGA 

AGA TGG ATG) and the PrP-Antisense-J primer sequence (AGC CTA GAC CAC GAG 

AAT GC) for the APP transgene, TET forward (CGC TGT GGG GCA TTT TAC TTT 

AG) and reverse (CAT GTC CAG ATC GAA ATC GTC) and MAPT forward (CTC AGC 

ATC CCA CCT GTA AC) and reverse (CCA GTT GTG TAT GTC CAC CC) primers as 

in an internal control. The PCR reaction contained 30 ng DNA in a 25 µl Mastermix 

(containing 10 U of Taq polymerase). The PCR reaction was carried out using one cycle at 

94⁰C for 3 min, and 35 cycles of 94⁰C for 30 s, 57⁰C for 1 min and 72⁰C for 1 min, 

followed by 72⁰C for 4 min. Reaction products were run on 2% Agarose gels for 25 mins, 



115 

 

yielding bands at 400bp for APP, 480bp for TET and 200bp for the reaction control (Fig. 

6.1 a).  

 

Figure 6.1 Characterisation of TetO-APPSweInd mice; genotyping and plaque/CAA pathology 

(a): Example of a PCR gel from TetO-APPSweInd mice showing bands corresponding to the APP gene (400 

bp), TET gene (480 bp) and double transgenics (arrows). The 200 bp positive control is also indicated. (b and 

c) Photomicrograph of representative Thioflavin S staining in the cortex of 4- (a) and 6-month-old (b) TetO-

APPSweInd mice, showing the degree of plaque (slim arrows) and CAA pathology (thick arrows). Scale bar 

= 100 µm. 

mu-p75-saporin treatment  

4-month old male and female TetO-APPSweInd mice without doxycycline 

supplementation were used in the study.  Cholinergic loss was induced by bilateral 

administration of mu-saporin into the lateral ventricles as described in Chapter 2, section 

‘Cholinergic denervation’, page 45 (n=6 saline [3 males, 3 females] and n=7 saporin [3 

males and 4 females]).  42 days post-surgery, mice were perfused fixed with 4% PFA. 

Brains were collected and sectioned as free-floating tissue as described in chapter 2 section 

‘Immunohistochemistry’, page 45. 

Immunohistochemistry 

Sections were stained with 1% Thioflavin S for 5 min to label fibrillar A as described in 

Chapter 2 section ‘Immunohistochemistry’, page 45. A separate set of sections were then 

incubated with antibodies against human Aβ1-40 and Aβ1-42 which was visualised using 
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DAB as described in Chapter 2, section: enzyme-linked immunohistochemistry page 46. 

Sections were also stained with anti-ChAT to confirm cholinergic loss, and anti-Iba1 and 

anti-GFAP assess glial changes. Anti-laminin staining was also carried out to assess vessel 

density. Tissue processing procedures and antibody concentrations were the same as those 

described in Chapter 2, Table 2.1, page 43.   

Analysis 

For staining using anti-ChAT, anti-laminin, anti-Iba1 and anti-GFAP, density of staining in 

the MS or cortex was quantified from x 10 magnification images. The hippocampus was 

assessed from stitched images taken at x 20. The percentage area of staining was quantified 

using the threshold parameters as detailed in Table 6.1 using Image J (NIH, Maryland, 

USA). As the Iba1 staining formed clear glial nets around Aβ positive plaques, these were 

excluded from analysis using the free-hand draw tool in Image J. The density of anti-

laminin labelled capillaries and arteries/veins was carried out using the ‘analyse particle’ 

function of Image J as described in Chapter 5. For quantification of the area of staining in 

the hippocampus, values of regions from both the ipsilateral and contralateral hemispheres 

were averaged and treated as n = 1. For quantification of images from the cortex, six 

random non-overlapping spanning the somatosensory cortex of the ipsilateral cortex to the 

somatosensory cortex of the contralateral cortex were averaged and analysed. 

Quantification of Thioflavin S-positive staining was performed by manually counting 

plaques and CAA-positive vessels and dividing the number counted by the total area 

quantified. For quantification of Anti-A staining, x 4 magnification images of the 

hippocampus and cortex were stitched together using Image J software. Images were 

converted to 8 bit greyscale images and the % area covered by CAA and plaques were 

quantified separately using the threshold parameters as outlined in Table 6.1.  

Table 6.1 Antibodies used and analysis parameters 

Label Minimum grey value Maximum grey value 

Anti-ChAT 107 255 

Anti-laminin 98 255 

Anti-Iba1 86 255 

Anti-GFAP 86 255 

Anti-Aβ1-40 0 125 

Anti-Aβ1-42 0 125 
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Statistics 

Data was tested for normality using the Kolmogorov-Smirov test. Two-tailed Student’s t-

test was used to analyse normally distributed data otherwise a Mann-Whitney U test was 

used. For data sets of more than two variables, a two-way ANOVA was used followed by 

Sidak’s post-hoc test. Data represents mean ±SEM and p<0.05 was considered to be 

statistically significant.  

Results 

Cholinergic loss was induced in 4-month old TetO-APPSweInd mice using the saporin 

model characterised in Chapter 3. This age was chosen to ensure that there was a sufficient 

but submaximal degree of A pathology to be able to detect potential effects of saporin on 

CAA severity by the time of analysis (e.g. ~ 5 ½ months old) (Fig. 6.1 b, c).  Unexpectedly 

and in contrast to the observations made in the C57BL/6 mice (Chapter 3), no significant 

differences were noted in the number of ChAT-positive neurons in the medial septum 

between control and saporin-treated mice (Fig. 6.2 a-c). Significant loss of cholinergic 

fibres was observed in the hippocampus following saporin treatment (p<0.05) (Fig. 6.3 a-

c), but similarly to the septum, significant fibre loss was not observed in the cortex after 

administration of saporin (Fig. 6.4 a-c). Moreover, the morphology of fibre staining in the 

TetO-APPSweInd appeared shorter and more punctate than that of cholinergic fibres in the 

C57BL/6 mice (Fig. 6.4 d-e ) Comparison of endogenous ChAT fibre density between 

brain regions showed that the hippocampus had a significantly higher percentage area of 

cholinergic coverage compared to the cortex (p<0.05) (Fig. 6.5). 

 



118 

 

 
Figure 6.2 Cholinergic staining in the MS of control and saporin treated TetO-APPSweInd mice 

(a and b) Photomicrographs of ChAT-positive cholinergic neurons (green) from the medial septum (MS) and 

diagonal band of Broca in TetO-APPSweInd mice injected with saline (a) and saporin (b). (c) Quantification 

showed no statistically significant difference in the percentage area of ChAT staining (control n=5, saporin 

n=4). Scale bar = 100 µm 

  
Figure 6.3 Cholinergic staining in the hippocampus of control and saporin treated TetO-APPSweInd 

mice 

(a and b) Photomicrographs of ChAT-labelled cholinergic nerve fibres (green) in the hippocampus of TetO-

APPSweInd mice treated with saline (a) or saporin (b). (c) Quantification revealed the density of nerve fibre 

coverage to be significantly lower in saporin-treated mice (control n=5, saporin n=4). Two-tailed t-test, 

*p<0.05. Scale bar = 100 µm  
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Figure 6.4 Cholinergic staining in the cortex of control and saporin treated TetO-APPSweInd mice 

(a and b) Photomicrographs of ChAT-labelled cholinergic nerve fibres (green) in the cortex of TetO-

APPSweInd mice treated with saline (a) or saporin (b). (c) No difference in nerve fibre density was found 

between saline and saporin-treated mice (control n=5, saporin n=4). (d and e) Photomicrographs of examples 

of C57BL/6 ChAT labelled cortex from control (d) and saporin treated (e) mice.  Scale bar = 100 µm  
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Figure 6.5 Regional variation in cholinergic nerve fibre density in TetO-APPSweInd mice 

(a) Quantification of cholinergic nerve fibre density showed significantly higher coverage in the 

hippocampus in comparison to the cortex in the control animals (p<0.05) (control n=5, saporin n=4). Two-

tailed t-test, *p<0.05. 

To determine the effects of saporin treatment on fibrillar A, brain tissue sections were 

processed for thioflavin S staining. Numerous plaques and CAA-positive blood vessels 

were observed in the hippocampus of control and saporin-treated mice (Fig. 6.6 a, b). No 

significant differences were noted in plaque density or CAA load between control and 

saporin animals (Fig. 6.6 c). Because thioflavin S staining does not bind to soluble A and 

cannot differentiate between A isoforms, sections were also processed by 

immunohistochemistry using antibodies against human A1-40 and A1-42. Quantification of 

Aβ1-40 staining showed no difference in the percentage area of the hippocampus covered by 

plaques between control and saporin mice (Fig. 6.7 a-c). However, a significant (p=0.0082) 

increase in CAA load was observed in the saporin-treated mice. No difference in 

parenchymal and vascular Aβ was observed for Aβ1-42 staining (Fig. 6.7 d-f).    
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Figure 6.6 Thioflavin S positive Aβ plaque and CAA pathology in the hippocampus of TetO-

APPSweInd mice 

(a and b): Photomicrographs of thioflavin S staining of plaques and CAA in the hippocampus of TetO-

APPSweInd mice treated with saline (a) or saporin (b). (c) No significant differences were observed between 

control and saporin-treated mice (control n=5, saporin n=4). Scale bar = 100 µm  
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Figure 6.7 Aβ1-40 and Aβ1-42 staining in the hippocampus of TetO-APPSweInd mice 

(a-c) Photomicrographs of Aβ1-40 staining of parenchymal plaques and CAA (arrows) in the hippocampus of 

control (a) and saporin-treated mice (b). Quantification of Aβ1-40 staining showed no difference in the 

percentage area of the hippocampus covered by plaques between control and saporin mice (c). Significantly 

increased CAA load was observed in the saporin-treated mice (p=0.0082). (d-f) Photomicrographs of Aβ1-42 

staining of parenchymal plaques and CAA in the hippocampus of control (d) and saporin-treated mice (e). 

Quantification of Aβ1-42 staining showed no difference in the percentage area of the hippocampus covered by 

plaques between control and saporin mice. No difference in Aβ1-42-positive CAA load was observed between 

control and saporin-treated mice (f). (control n=6, saporin n=7), scale bar= 100 µm. 
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In the cortex, no differences in either plaque density or CAA load were observed between 

control and saporin mice for tissues stained with thioflavin S (Fig. 6.8 a-c). Similarly, no 

differences were observed between control and saporin-treated mice in the density of A1-

40 or A1-42-positive plaques or CAA (Fig. 6.9 a-f).  

 

Figure 6.8 Thioflavin S positive Aβ plaque and CAA pathology in the cortex of TetO-APPSweInd mice 

(a and b) Photomicrographs of thioflavin S staining of plaques and CAA in the cortex of TetO-APPSweInd 

mice treated with saline (a) or saporin (b). (c) No significant differences were observed between control and 

saporin-treated mice (control n=5, saporin n=4). Scale bar = 100 µm. 
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Figure 6.9 Aβ1-40 and Aβ1-42 staining in the cortex of TetO-APPSweInd mice 
(a-c) Photomicrographs of Aβ1-40 staining of parenchymal plaques and CAA in the cortex of control (a) and 

saporin-treated mice (b). Quantification of Aβ1-40 staining showed no difference in the percentage area of the 

cortex covered by plaques or CAA between control and saporin mice (c). (d-f) Photomicrographs of Aβ1-42 

staining of parenchymal plaques and CAA in the cortex of control (d) and saporin-treated mice (e). 

Quantification of Aβ1-42 staining showed no difference in the percentage area of the cortex covered by 

plaques or CAA between control and saporin mice (f). (control n=5, saporin n=4), scale bar = 100 µm. 
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Comparison of regional differences showed no significant difference in plaque or CAA 

density stained by thioflavin S between the hippocampus and the cortex (Fig. 6.10 a and b). 

The density of Aβ1-40 and Aβ1-42 positive plaques was similar between the cortex and 

hippocampus in both control and saporin treated mice (Fig. 6.10 c and e). However, 

significantly fewer Aβ1-40 positive vessels were observed in the hippocampus versus the 

cortex of control mice (p<0.01; Fig. 6.10 d), while the density of Aβ1-42 positive CAA did 

not differ between brain regions or treatment groups (Fig. 6.10 f). 

 

Figure 6.10 Regional comparisons of pathology in control and saporin-treated TetO-APPSweInd mice 

(a and b) No differences were found in the density of Thioflavin S-labelled plaques (a) or CAA (b) between 

the hippocampus or cortex in control or saporin-treated mice. (c and d) Regional analysis of Aβ1-40 staining 

showed no difference in plaque coverage (c), but significantly less vessel staining in the hippocampus 

compared to the cortex of control mice (p<0.01) (d). (e and f) Regional analysis of Aβ1-42 staining showed no 

difference in plaque (e) or CAA load (f). (control n=5, saporin n=4), two tailed t-tests, **p<0.01. 

 

In order to identify whether there were any differences in vascular density which may have 

impacted vascular-mediated clearance of Aβ between the groups, vessel density was 
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assessed by quantifying the percentage area of laminin staining in the cortex and 

hippocampus by vessel type. A higher capillary density was noted in the hippocampus of 

both the control (p<0.01) and saporin treated mice compared to the cortex (p<0.05) (Fig. 

6.11 a-e).  

 

Figure 6.11 Regional variation in vascular density in TetO-APPSweInd mice 

(a-d) Photomicrographs of laminin staining in the hippocampus (a and b) and cortex (c and d) of control (a 

and c) and saporin-treated (b and d) mice. (e) Quantification of laminin staining revealed no difference in the 

density of capillaries or large diameter vessels between control and saporin mice in either the hippocampus or 

cortex. However, capillary density was higher in the hippocampus compared to the cortex in both control and 

saporin-treated mice. (control n=5, saporin n=4), two tailed t-test, *p<0.05, **p<0.01 Scale bar = 100 µm. 

 

Analysis was also carried out to assess any changes in glial expression induced by saporin 

treatment. The percentage area of GFAP coverage showed no differences between control 

and saporin mice in either the hippocampus (Fig. 6.12 a) or cortex (Fig. 6.12 b), but 
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regional comparisons indicated that significantly more astrocytic coverage was present in 

the cortex than in the hippocampus in both control (p<0.01) and saporin (p<0.001) groups 

(Fig. 6.12 c). Iba1 staining for microglia revealed no significant change in percent area 

covered between treatments but in the saporin treated mice, the hippocampus had 

significantly more Iba1 staining than the cortex (p<0.05), (Fig. 6.12 d-f). 

 

Figure 6.12 Regional variation in astrocytic and microglial staining in TetO-APPSweInd mice 

(a-c) Astrocyte coverage was not found to be significantly different with saporin treatment in either the 

hippocampus (a) or the cortex (b). Regional comparisons revealed significantly more astrocytic coverage in 

the cortex compared to the hippocampus in both the control and saporin treated mice (c). Microglial coverage 

was not different between the control and saporin groups in either the hippocampus (d) or cortex (e), but 

coverage of the cortex was significantly less than the hippocampus in saporin treated mice (f). (control n=5, 

saporin n=4), two tailed t-test (p<0.05), *p<0.05, **p<0.01, ***p<0.001 scale bar= 100 µm. 
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Discussion  

 Unlike in the C57BL/6 mice, mu-p75-saporin treatment did not induce cholinergic 

neuronal loss in the MS or nerve fibre loss in the cortex of the TetO-APPSweInd, 

but did result in fibre loss in the hippocampus. 

 No difference in Thioflavin or Aβ1-42 -positive plaque density or CAA load was 

observed between control and mu-p75-saporin treated mice, but a significant 

increase in Aβ1-40-positive vessels was observed in mu-p75-saporin-treated animals. 

 Aβ1-40-positive vessels were more prevalent in the cortex of control mice compared 

to the hippocampus. 

 In contrast to the C57BL/6 mice, vascular density was higher in the hippocampus 

compared to the cortex of the TetO-APPSweInd mice, while astrocyte density was 

higher in the cortex compared to the hippocampus.  

Cholinergic loss is known to be an early event in AD, but whether this loss contributes to 

the initiation and/or progression of CAA remains unknown. The purpose of the 

experiments carried out in this chapter was to evaluate the effects of cholinergic loss on 

CAA severity using the TetO-APPSweInd transgenic mouse model.  

Unlike with the C57BL/6 mice used in the previous chapters, saporin treatment did not 

induce cholinergic loss in the medial septum or the cortex, but did significantly reduce 

fibre density in the hippocampus. The reasons for the discrepancies between the two strains 

is not clear, but are likely related to inherent differences in ChAT and p75 expression and 

the effect of A expression on neuronal health. Comparison of ChAT density between 

wildtype and Tg mice found that the percentage area of coverage by ChAT staining in the 

MS was higher in the Tg mice, but fibre density was lower in both the cortex and the 

hippocampus of TetO-APPSweInd mice compared to the C57BL/6 mice. This suggests 

that the development of A pathology in the Tg mice, which is concentrated in the cortex 

and hippocampus, may cause degeneration of ChAT fibres, as suggested by their abnormal 

appearance. This is in keeping with reports from other APP mouse models, where an 

endogenous decrease in cholinergic nerve fibre density has been described in the cortex of 

18 month-old Tg2576 mice (Kuznetsova & Schliebs 2013). In the APP23 model, 

significant cholinergic fibre loss in the neocortex concurrent with A pathology has been 

found without significant loss of basal forebrain cholinergic neurons (Boncristiano et al. 

2002). Although additional experiments are needed to confirm the expression of the p75 

NTR between wildtype and TetO-APPSweInd, it is likely that the lower density in ChAT-

positive fibres reduces the surface area for mu-p75-saporin binding and therefore induces 
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less death than that observed in wildtype mice. The higher density of ChAT-positive fibres 

in the hippocampus compared to the cortex in the TetO-APPSweInd mice may have also 

contributed to the observed regional susceptibility to saporin treatment.   

Although unexpected, the difference in sensitivity to saporin treatment between the cortex 

and hippocampus provided somewhat of an internal control to study the effect of 

cholinergic loss on CAA load. The loss of cholinergic nerve fibres in the hippocampus was 

associated with significantly increased deposition of Aβ1-40 as CAA. By contrast, CAA 

load was not affected in the cortex where cholinergic fibre density was not affected by 

saporin treatment. The fact that the CAA-associated Aβ1-40 isoform, but not Aβ1-42, was 

altered in the hippocampus leads to further support that these alterations were specific to 

the vasculature (Suzuki et al. 1994; Hernandez-Guillamon et al. 2012). This is also 

confirmed by the observation that plaque density did not differ between control and 

saporin mice in either the cortex or the hippocampus. These findings are similar to a study 

using the Tg2576 AD mouse model which found that age-related loss of perivascular 

cholinergic innervation in the cortex did not significantly correlate with increased cortical 

plaque load (Kuznetsova & Schliebs 2013). However, in the APP/PS1 mouse model, 

saporin-induced cholinergic loss was found to increase plaque load (Laursen et al. 2013; 

Ramos-Rodriguez et al. 2013) and a higher plaque load has been associated with decreased 

cholinergic fibres in aged APP/SweInd mice (Foidl et al. 2016). Many factors may have 

contributed to these different observations, including the degree of cholinergic 

degeneration, age of the mice and amount of pre-existing Aβ pathology, ratio of Aβ1-40 

:Aβ1-42 and progression of pathology in the different mouse models. Despite these 

discrepancies, these data support a role for loss of cholinergic innervation on increased Aβ 

pathology.   

In addition to regional differences in ChAT innervation, TetO-APPSweInd mice also 

showed differences in CAA load and the densities of capillaries and astrocytes between the 

hippocampus and cortex. The observation that CAA load was higher in the cortex than the 

hippocampus matches the topography of CAA in humans (Tian et al. 2003; Attems et al. 

2011; Vinters et al. 2018) and may relate to the proportionally lower capillary density, and 

thus reduced surface area for removal of Aβ from the brain, observed in the cortex of 

TetO-APPSweInd mice. The higher astrocyte density found in the cortex may reflect an 

astrogliosis associated with higher CAA (Ongali et al. 2010; Kanekiyo et al. 2012), 

however the fact that this regional difference was maintained after saporin treatment, 

which did not affect CAA or plaque pathology in the cortex, suggests that other factors 

contribute to this difference. We also noted that the regional differences in capillary 
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density and astrocyte coverage seen in the TetO-APPSweInd mice were opposite to those 

observed in the C57BL/6 mice in previous chapters. As the TetO-APPSweInd mice are 

bred on a C57BL/6 background, the underlying causes for these discrepancies are not 

clear. Further characterisation of the effects of APP and TET expression on vascular 

density, ChAT coverage and astrocyte expression are therefore needed. It would also be of 

interest to characterise PVD in the TetO-APPSweInd mice as a function of pathology and 

to determine whether there are inherent age-related changes in cholinergic profile of the 

basal forebrain. 
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Chapter 7 : General Discussion 

Summary of results 

This thesis tested the hypothesis that loss of cholinergic innervation at the NVU 

contributes to the aetiology of CAA. A summary of the findings in wildtype mice are listed 

in Tables 7.1 and 7.2. Administration of the immunotoxin mu-saporin induced a loss of 

cholinergic neurons in the basal forebrain and their nerve fibre projections in both the 

hippocampus and the cortex. fMRI experiments showed no difference in baseline CBF 

between control and saporin-treated mice and response to hypercapnia was functional in 

both groups. However, in saporin-treated animals, cortical CBF did not respond to eNOS 

disinhibition, while hippocampal CBF was increased in response to administration of 

fasudil hydrochloride. This was associated with decreased eNOS levels in the cortex, and 

increased eNOS activity in the hippocampus of denervated mice. PVD of exogenous 

human Aβ1-40 injected into either the cortex or hippocampus was not affected in this model, 

although there was significantly increased CAA load in saporin-treated TetO-APPSweInd 

mice. These results do not support the original hypothesis. However, they suggest that 

there are differences in the responsiveness of the cortex and hippocampus to the loss of 

perivascular cholinergic innervation that might have implications for the topographical 

distribution of CAA, independent of mechanisms related to PVD of Aβ from the brain.  

Table 7.1 Endogenous regional differences between the cortex and hippocampus of wildtype mice 

Endogenous differences Hippocampus Cortex 

Cholinergic nerve fibre 

density 

Higher Lower 

Cholinergic perivascular 

innervation 

No difference at basement 

membrane & smooth muscle 

cells, but higher at the 

astrocytic endfeet of the 

capillary 

No difference at basement 

membrane & smooth 

muscle cells, but lower at 

the astrocytic endfeet of the 

capillary 

Basement membrane Higher volume in veins Lower volume in veins 

Smooth muscle cells volume No difference No difference 

Astrocyte end feet coverage  Highest at veins Highest at arteries 

Baseline CBF Higher  Lower 

Response to hypercapnia Increase in CBF Increase in CBF 

Response to Fasudil 

hydrochloride 

Increase in CBF Increase in CBF 

Endogenous NOS activity Higher Lower 

Vascular density Lower density of capillaries 

and arteries/veins 

Higher density of capillaries 

and arteries/veins 

Microglial density Higher  Lower 

Astrocytic density Higher Lower 
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Table 7.2 Effect of saporin treatment in cortex and hippocampus of wildtype mice 

Response to saporin 

treatment 

Hippocampus Cortex 

Cholinergic nerve fibre 

density 

Significantly decreased Significantly decreased 

Cholinergic perivascular 

innervation 

Significantly decreased at 

basement membrane & 

smooth muscle cells 

Significantly decreased at 

basement membrane & 

smooth muscle cells & 

astrocyte endfeet 

Basement membrane 

volume 

Unaffected  Unaffected 

Smooth muscle cells volume Unaffected Unaffected 

Astrocyte endfeet coverage  Unaffected Unaffected 

Baseline CBF Unaffected  Unaffected 

Response to hypercapnia Unaffected  Unaffected 

Response to Fasudil 

hydrochloride 

Increase in CBF Unaffected   

Endogenous eNOS/nNOS 

protein levels 

eNOS increased, nNOS 

unchanged 

eNOS decreased, nNOS 

unchanged 

Endogenous NOS activity Higher e/iNOS activity in 

membrane fraction, more 

nNOS activity 

Lower e/iNOS activity in 

membrane fraction, overall 

reduction of eNOS activity 

PVD Unaffected  Unaffected 

Vascular density Unaffected  Unaffected 

Microglial density Unaffected  Unaffected 

Astrocytic density Unaffected  Unaffected 

Cholinergic loss in AD  

The loss of cholinergic activity as one of the earliest features of AD, gave rise to the 

cholinergic hypothesis of AD, which suggests that cholinergic denervation plays a 

significant role in the aetiology of AD and underlying dementia (Francis et al. 1999; Bartus 

et al. 1982; Van Beek & Claassen 2011; Schliebs & Arendt 2011; Terry & Buccafusco 

2003; Perry et al. 1995). Cortical cholinergic nerve fibres, mAChRs and nAChRs are 

known to be lost in AD (Tong & Hamel 1999; Perry 1980; Perry et al. 1995) and Aβ 

plaques have been reported in the basal forebrain (Arendt et al. 1988). Binding of Aβ to the 

p75 NTR leads to apoptosis (Yaar et al. 1997) and application of Aβ reduces ACh 

synthesis and release (Kar et al. 2004). The importance of the cholinergic system in AD is 

highlighted by the fact that AChEIs are currently one of only two approved drugs for the 

treatment of AD (Hampel et al. 2018). Moreover, recent studies have demonstrated that 

loss of basal forebrain grey matter occurs before the onset of clinical symptoms (Schmitz 

et al. 2016) and that administration of donepezil during the prodromal stage of AD 

prevented basal forebrain degeneration (Cavedo et al. 2017). The changes in nesting 

behaviour as noted in saporin treated mice (Chapter 3) has been associated with 
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hippocampal pathology (Cunningham et al. 2003) as well as neurovascular dysfunction 

(Faraco et al. 2018). This highlights the significance of basal forebrain degeneration in AD 

and the importance of understanding the cholinergic pathway and function.  

Regional differences of the NVU and response to loss of cholinergic 

innervation 

In mammalian brains, the cortex in known to receive cholinergic innervation from the 

nucleus basalis of Meynert and from p75-negative thalamocortical afferents originating 

from the brainstem, while the hippocampus receives innervation primarily from the 

diagonal and horizontal bands of Broca and the medial septum (Hallanger et al. 1987; 

Selden et al. 1998; Mesulam 2013). Some studies have reported no cholinergic neurons are 

present in the cortex or hippocampus (Mesulam 2013) but Kasashima et al found ChAT-

positive neurons are located in the human cortex (Kasashima et al. 1999) and cholinergic 

cell bodies have been reported in the mouse somatosensory cortex (Consonni et al. 2009). 

192IgG and mu-p75-saporin have been used extensively to model the death of p75 positive 

cholinergic populations and to evaluate the effects on cognitive function and/or AD-like 

pathology in rats and mice, respectively (Berger-Sweeney et al. 2001; Hunter et al. 2004; 

Ramos-Rodriguez et al. 2013; Hamlin et al. 2013; Kerbler et al. 2013; Laursen et al. 2013; 

Perry et al. 2001; Fitz et al. 2008). However, no study has previously examined the effect 

of loss of perivascular cholinergic input at the NVU across brain regions and vessel types. 

In this study, the cortex of wildtype mice was found to have a lower total cholinergic nerve 

fibre density than the hippocampus, as has been previously reported (Kitt et al. 1994). 

However, the amount of endogenous perivascular innervation at the basement membrane, 

smooth muscle cells and astrocytes was similar between the cortex and hippocampus 

across all vessel types. Saporin treatment resulted in a significant loss of overall 

cholinergic innervation in both the cortex and hippocampus and the degree of innervation 

was similar between both regions following treatment. Interestingly, loss of cholinergic 

innervation at the NVU was only observed at arteries in both brain regions. This may relate 

to the finding that the arteries showed a trend towards receiving more innervation than the 

capillaries or veins. A significant decrease in perivascular innervation was observed at all 

levels of the arterial NVU (basement membrane, SMCs, astrocyte endfeet) in the cortex, 

but only at the basement membrane and SMCs in the hippocampus. These data suggest that 

mu-p75-saporin treatment induced a greater loss of cholinergic innervation in the 

parenchyma of the hippocampus, but that loss of innervation at the NVU was greater in the 

cortex.  
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The reason for this variability is unknown. Recent 3D mapping studies have shown that the 

dendritic arbours of basal forebrain neurons that project to the cortex differ from those that 

project to the hippocampus in that single cortical dendrites innervate large areas of the 

neuropil.  It is possible that a similar pattern of innervation exists at blood vessels in the 

cortex such that the loss of one dendritic arbour affects multiple vessels (Li et al. 2017; Wu 

et al. 2014), and may therefore partly explain the greater loss of innervation in the cortex in 

comparison to the hippocampus as seen in Chapter 3. In addition, ChAT expression has 

been found to vary between different layers of the hippocampus and cortex (Cork et al. 

1998; Yeo et al. 1997). Thus, it is possible that by analysing randomly chosen vessels, 

subtle differences in NVU composition between cortical and hippocampal layers may have 

been overlooked.  

Other endogenous differences observed in this study included the presence of a thicker 

basement membrane and more astrocyte endfeet coverage of veins in the hippocampus 

compared to those in the cortex. This difference persisted after saporin treatment. A thicker 

basement membrane, which may be associated with the increased surface area of contact of 

astrocytic endfeet, is suggestive of decreased flexibility of the vein that may prevent vessel 

deformation under sheer stress and help to maintain a constant CBF (Thorin-Trescases et 

al. 2018; Zócalo et al. 2013). Increased collagen content and thicker basement membranes 

in capillaries and arteries are associated with AD and CAA and may precede the 

development of CAA (Wyss-Coray et al. 2000; Zarow et al. 1997; Hawkes et al. 2013),  

but it is unclear whether the thicker basement membranes seen in the veins in this study 

contributes directly to the aetiology of CAA.  

In AD, general loss of parenchymal cholinergic innervation has been found in both the 

hippocampus and cortex (Mesulam 2013; Van Beek & Claassen 2011; Schliebs & Arendt 

2011). Loss of perivascular innervation has been reported in the cortex and hippocampus 

of AD mouse models (Aucoin et al. 2005; Kuznetsova & Schliebs 2013) and in the cortex 

of AD brains (Tong & Hamel 1999). However, to our knowledge no studies have been 

carried out comparing the loss of perivascular cholinergic innervation at the NVU between 

brain regions during normal ageing or in human or mouse models of AD. 

 

The effect of cholinergic loss on CBF and eNOS 

Cholinergic neurons from the basal forebrain are known to play a role in both the 

maintenance of vascular tone and NVC (Hamel 2006). This action is mediated via 

activation of mAChRs and nAChRs  (Hotta et al. 2011; Van Beek & Claassen 2011) that 
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are present on endothelial cells (Badaut et al. 1997), smooth muscle cells (Edvinsson et al. 

1977), astrocytes (Luiten et al. 1996), and interneurons (Cauli et al. 2004). Binding to ACh 

triggers an increase in intracellular calcium in endothelial cells (Estrada et al. 1983; 

Iadecola 2004) that leads to vasodilation via several mechanisms: i) production of 

arachidonic acid metabolites including epoxyecosatrienoic acid (EET) which 

hyperpolarises SMCs by stimulating Ca2+-activated potassium channels on their cell 

membranes, ii) COX1-mediated release of prostacyclin which diffuses across to SMCs, 

leading to cAMP production and iii) activation of calmodulin and/or PI3K/Akt, which 

activates eNOS and leads to the production and diffusion of NO into the SMC 

(Gebremedhin et al. 1992; Zhao et al. 2015; Triggle et al. 2012; Fleming & Busse 2003; 

Faraci & Heistad 1998; Duchemin et al. 2012; Manicam et al. 2016; Freed & Gutterman 

2017). 

In the present study, we hypothesized that loss of ACh input at the NVU would result in 

decreased CBF in the cortex and hippocampus and that this decrease would be more 

pronounced in the cortex because of the greater loss of perivascular innervation. Saporin 

treatment had no effect on resting CBF in either brain region and responsiveness to 

hypercapnia was also similar between control and denervated animals. However, when 

challenged with the eNOS-mediated vasodilator fasudil hydrochloride, CBF in the cortex 

of saporin-treated mice was not altered, while blood flow to the hippocampus was 

increased in both control and saporin-treated animals. Interestingly, endogenous activity of 

eNOS was found to be significantly higher in the supernatant fractions of the hippocampus 

compared to the cortex of control mice. Treatment with saporin resulted in a significant 

decrease in levels of eNOS in the cortex but an increase in eNOS expression and activity in 

the hippocampus.  These findings highlight the importance of ACh-mediated eNOS 

activity in the regulation of vascular reactivity and also suggest that eNOS regulation in the 

hippocampus is more sensitive than in the cortex. eNOS is also present in astrocytes 

(Muñoz et al. 2015), and unlike the cortex, the hippocampus did not lose perivascular 

innervation at the astrocyte endfeet, which may account for the ability to keep regulation of 

eNOS activity with cholinergic loss.  

Our findings are in contrast to those of Waite et al, who found a global decrease in CBF in 

the cortex, parietal and temporal cortices in rats treated with 192IgG saporin (Waite et al. 

1999). However, another study with the same model found no effect of cholinergic loss on 

CBF (Sorger et al. 1999) and the same was found in other models with different tracers 

(Irie et al. 1996; Namba et al. 1991). In another study, where 192IgG saporin induced 

cholinergic loss but did not affect CBF, administration of the NMDA antagonist MK-801 
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lead to an increase in CBF in both control and saporin-treated animals (Willis et al. 2006), 

highlighting a role for ACh in NVC rather than global cerebral autoregulation. This has 

been recently highlighted in a study by Lecrux et al, who found that although baseline CBF 

was not affected, there was a decrease in CBF response to NVC stimulated by whisker 

barrel stimulation in denervated animals compared to control (Lecrux et al. 2017). 

Additionally, stimulation of the substantia inominata during administration of hypercapnia 

does not potentiate the increase in CBF (Dauphin et al. 1991), again suggesting ACh-

mediated vasodilation is coupled to neuronal activity. Taken together, these studies suggest 

that, as seen in this thesis, cholinergic neurons do not contribute significantly to resting 

CBF.  

Regionally, NOS activity itself has been found to be similar in both the hippocampus and 

cortex of the adult human brain (Blum-Degen et al. 1999) and eNOS expression is similar 

in both regions in normal rat brains (Sessa et al. 1993), suggesting that the changes in 

eNOS levels seen in this study are directly linked to cholinergic loss. At the SMCs of the 

NVU, NO-induced vasodilation can be prevented if reactive oxygen species (ROS) are 

present. Available NO is able to react with ROS to form peroxynitrite, which can prevent 

further dilation by depleting available NO and also by inhibiting the production of the 

vasodilator prostacyclin (Iadecola 2004; Zou & Ullrich 1996). NADPH oxidase is a source 

of ROS and has been demonstrated to be upregulated in AD (Shimohama et al. 2000; 

Austin et al. 2015). Peroxynitrite has been found in astrocytes, neurons and vessels co-

localised with iNOS, nNOS and eNOS in AD cases (Lüth et al. 2002), as well as in 

glaucoma, where it has been putatively linked to perfusion abnormalities (Feilchenfeld et 

al. 2008). To our knowledge, no studies have been carried out looking at the direct effect 

of cholinergic loss on peroxynitrite or oxidative stress. Although peroxynitrite was not 

investigated in the current study, the loss of perivascular cholinergic fibre contact to 

astrocytes and the basement membrane concomitant with decreased eNOS levels in the 

cortex may have led to increased peroxynitrite and contributed to the attenuated response 

to fasudil hydrochloride treatment in the cortex.   

It has been suggested that upregulation of nNOS present in SMCs is able to compensate for 

decreases in eNOS and maintain vascular tone (Ward et al. 2005). However, in the present 

study, nNOS levels and activity were not altered by cholinergic loss or as a function of 

eNOS levels, suggesting that other compensatory mechanisms were at play in this model. 

Astrocytes have been found to express mAChRs on their endfeet (Luiten et al. 1996) and 

as shown in this thesis, receive perivascular contact from cholinergic nerve fibres. Neuron 
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to astrocyte communication at the NVU has been established (Zonta et al. 2003) and 

astrocytes are known to buffer glutamate release at the NVU and contribute to the control 

of NVC (Lind et al. 2013; Stella et al. 1994; Gordon et al. 2008; Petzold et al. 2008; 

Mishra 2016). Astrocytes have also been demonstrated to regulate vascular tone based on 

pressure flow feedback from the vasculature, leading to bidirectional feedback with 

pyramidal neurons in the cortex (Kim et al. 2015; Kim et al. 2016; Filosa et al. 2016). As 

loss of cholinergic innervation in the cortex was also observed at astrocyte endfeet, it is 

possible that astrocyte dysfunction may have also contributed to the inability of the cortex 

to respond to the fasudil hydrochloride. 

Activation of mAChRs on interneurons, which is also a potential source of NO (Cauli et al. 

2004), has been shown to be involved in the maintenance of vascular tone and NVC. 

GABA-positive interneurons have been suggested to contribute to the regulation of CBF in 

the cortex (Lecrux et al. 2011; Cauli et al. 2004). In the cortex, it is estimated that 60% of 

interneurons received cholinergic innervation, mainly arising from the basal forebrain 

(Cauli et al. 2004). Thus, loss of cholinergic innervation of interneurons may also have 

contributed to the lack of CBF responsiveness in the cortex. As a heterogeneous 

subpopulation of cholinergic interneurons has recently been demonstrated to synapse onto 

astrocytes at hippocampal arteries (Yi et al. 2015), it would be interesting to investigate the 

potential role of interneurons on ACh-stimulated vasodilation between different brain 

regions.  

In humans, it has been demonstrated that resting CBF does not differ between people with 

and without CAA (Dumas et al. 2012). Using blood oxygen level dependent time to peak 

(BOLD-TTP) fMRI, where visual cues are used to measure NVC, Fotiadis et al showed 

that the BOLD-TTP was significantly longer in people with both sporadic CAA or 

HSHWA-D, in association with cortical thinning and higher Aβ load (Fotiadis et al. 2016). 

Studies in MCI patients have found vascular reactivity to hypercapnia to be impaired in the 

hippocampus (Glodzik et al. 2011). On the other hand, it has been reported that the 

hippocampus of AD patients is hyper-perfused and the cortex is hypo-perfused compared 

to individuals with MCI (Alsop et al. 2008). Other studies have found that basal CBF is 

higher in the hippocampus than in the cortex of non-demented elderly individuals, but that 

hypercapnia produced a bigger increase in CBF in the cortex (Rusinek et al. 2011). Taken 

together, the findings of this thesis and the literature suggest that loss of ACh signalling 

may contribute to failure of NVC in AD and CAA that is differentially affected in the 

cortex and hippocampus.  
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The effect of cholinergic loss on the PVD of Aβ from the brain 

In addition to mediating CBF, the cerebrovasculature is also integral to the removal of Aβ 

from the brain. Three principle vascular-mediated clearance mechanisms have been 

identified to date; transcytosis of Aβ across the BBB, secretion into the CSF that is 

removed along para-arterial and -venular spaces (i.e. glymphatic drainage) and drainage of 

ISF along basement membranes (i.e. PVD) (Agyare et al. 2013; Hladky & Barrand 2018; 

Iliff et al. 2012; Carare et al. 2008; Weller et al. 2008; Hawkes et al. 2014).  

The speed at which clearance of Aβ was observed in the current study suggests that it was 

too fast to be explained by diffusion alone and that there is a mechanism that drives ISF 

movement (Schley et al. 2006). However, this driving force remains unknown. Using 

simulation studies of 3D EM reconstructed images from the hippocampus, Holter et al 

found that the bulk flow rate generated by hydrostatic pressures was not sufficient to 

generate solute movement equivalent to speeds reported from experimental data (Holter et 

al. 2017). They suggest that fluid movement within the brain occurs primarily by diffusion 

and that the speed of diffusion is mainly driven by interstitial concentration gradients. 

Other simulation studies have suggested that movement of fluids by convection-mediated 

bulk flow could not contribute sufficiently to match the observed rate of drainage, and that 

a pulsatile or oscillating force is more likely to contribute to the rapid diffusion observed 

(Asgari et al. 2015; Rey & Sarntinoranont 2018). Recent simulations by Diem et al also 

show that drainage occurring within the periarterial vessel walls occurs at a much faster 

rate than by diffusion alone (Diem et al. 2016) and highlight the need for a valve-like 

mechanism as suggested previously (Schley et al. 2006). Recent modelling has determined 

this valve-like mechanism could be generated by focal arterial contractions during NVC 

(Diem et al. 2018; Aldea et al. 2018).  

We therefore hypothesized that loss of perivascular cholinergic innervation would decrease 

the force that drives PVD and lead to accumulation of exogenously injected Aβ in the 

cortex, but not hippocampus, of saporin-treated mice. However, we did not observe any 

differences in the clearance of Aβ between control and saporin-treated mice in either the 

cortex or the hippocampus. These results suggest that cholinergic innervation of the 

vasculature is not essential for PVD to occur. However, the CBF data suggest that 

disruption of vascular function in denervated mice is only evident when challenged and 

therefore an additional NVC-specific challenge such as whisker barrel cortical stimulation 

(Lecrux et al. 2017) or long term fasudil hydrochloride treatment (Rikitake et al. 2005) 

may be needed to delineate differences in PVD in denervated animals. We and others have 

previously reported that the efficiency of PVD is decreased with ageing, (Hawkes et al. 
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2013), in the presence of the ApoE ε4 allele (Hawkes et al. 2012) or after traumatic brain 

injury (Leclercq et al. 2005).  As the current experiments were carried out in young 

otherwise healthy mice, it is also possible that loss of ACh does not impact on PVD in the 

absence of other factors that increase the risk of developing AD. 

When considering the difference in the regional topography of CAA, such as it being more 

frequently observed in the cortex than in the hippocampus, it is of note that the cortex was 

found to have a significantly higher vascular density of large-diameter vessels and 

capillaries than the hippocampus in wildtype mice. This increased surface area may allow 

for more clearance of Aβ under normal conditions but equally more opportunity for 

accumulation if the clearance fails.  In the current study, the PVD protocol used for 

injections into the hippocampus had to be adapted in order to visualise Aβ-positive vessels 

in the cortex. As discussed in Chapter 5, this may have been due to technical issues related 

to the proximity of the cortex to the subarachnoid space. However, it is possible that the 

rate of PVD from the cortex is faster than PVD from the hippocampus. Our lab has 

previously reported that CAA-vulnerable brain areas are more susceptible than CAA-

resistant areas to age-related decreases in the efficiency of Aβ drainage (Hawkes et al. 

2013). Thus, it is also possible that different brain areas are differentially affected by an 

age-related decline in the clearance of Aβ.  

Implications of cholinergic loss for CAA 

To date, little work has been done to investigate the putative relationship between loss of 

cholinergic innervation and accumulation of Aβ as CAA. Laursen et al carried out a similar 

study using saporin to induce cholinergic loss in the TgAPP/PS1 AD mouse model and 

concluded that cholinergic denervation increased the plaque pathology of AD (Laursen et 

al. 2013). In the TgAPP23 mouse model, death of cholinergic neurons had no effect on 

plaque load (Boncristiano et al. 2002). However, Ramos-Rodriguez et al reported increased 

Aβ deposition in both the hippocampus and cortex with cholinergic denervation in the 

APP/PS1 mouse model, but with no change in CAA load (Ramos-Rodriguez et al. 2013). 

A transcriptome analysis of the cholinergic neurons in TgCRND8 model of AD taken at a 

stage when plaques and CAA were present indicated specific changes in the cholinergic 

system of the basal forebrain (McKeever et al. 2017), and revealed that there was 

differential gene expression in different regions of the brain, highlighting regional 

vulnerabilities which could contribute to the temporal and spatial progression of CAA. 

Taken together, these studies support a general role for loss of cholinergic innervation in 

inducing increased Aβ pathology. 
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Therefore, although saporin treatment did not affect PVD of Aβ, we hypothesized that 

cholinergic loss could contribute to increased CAA severity. Unexpectedly, we found that 

treatment of TetO-APPSweInd mice with the same mu-p75-saporin protocol used in the 

C57BL/6 mice only induced a loss of cholinergic innervation in the hippocampus, while 

the MS and cortex were unaffected. This may be related to the observation that the 

cholinergic fibre density in the cortex of TetO-APPSweInd mice was three times lower 

than that of the C57BL/6 mice, suggesting that there may have been less expression of the 

p75 NTR to which mu-p75-saporin could bind. It is also likely that there is a higher 

expression of p75NTR in the hippocampus than in the cortex, as suggested by the higher 

ChAT fibre density. Interestingly, using APP/PS1 mice with knockout of the p75NTR, 

Qian et al reported decreased plaque pathology in comparison to the normal APP/PS1 mice 

and suggested that this may have been due to increased cholinergic nerve fibres and 

increased vascular drainage (Qian et al. 2018).  

Saporin treatment did not affect the density of Aβ1-40 or Aβ1-42-positive plaques in the 

hippocampus or cortex. No statistical differences were observed between control and 

saporin-treated mice in CAA load, apart from significantly increased Aβ1-40 positive 

vessels in the hippocampus of saporin mice. This suggests that loss of cholinergic 

innervation either does not contribute significantly to the accumulation of CAA or that an 

additional ‘hit’, such as ageing or changes to the CVBM (Hawkes et al. 2013), may be 

required for this loss to contribute to CAA deposition. Using two-photon microscopy, 

Kress et al found that there was a reduction in the pulsatility of cortical penetrating arteries 

>50 µm below the brain surface in aged mice which corresponded with reduced CSF-ISF 

exchange in the subarachnoid space (Kress et al. 2014). Arteriosclerosis, an age-related 

arterial pathology associated with fibrosis, has been associated with increased risk of 

developing CAA and has been found to be most prevalent in the occipital lobe, where 

CAA is most prevalent (Thal et al. 2012; Tian et al. 2004). This suggests that increased age 

could make cortical vessels vulnerable to CAA deposition due to a reduced capacity to 

generate the force to clear Aβ contained within the CSF and/or ISF.  In the current study, 

as functional loss of vasoreactivity was only demonstrated in response to a challenge with 

fasudil hydrochloride, it would be interesting to see whether cholinergic loss could 

potentiate the deficit in drainage caused by increased age, by inducing loss in middle-aged 

mice and comparing the effect of cholinergic denervation on drainage and CBF in both the 

cortex and hippocampus. 

Taken together, the findings from this thesis and from the published literature suggest that 

cholinergic loss may have implications for the development CAA, but that this loss 
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contributes more strongly to the accumulation of Aβ in the presence of additional risk 

factors.   

Limitations of the current studies and additional experiments 

A limitation of using mu-p75-saporin to induce cholinergic loss is that all p75 NTR-

positive cells are killed, including a sub-population of astrocytes in the hippocampus 

(Dougherty & Milner 1999). Therefore, we cannot conclude that the differences that were 

observed in saporin-treated mice were due solely to loss of cholinergic neurons. It is now 

possible to selectively target cholinergic populations using techniques such as designer 

receptor exclusively activated by designer drugs (DREADDs), as in a study where specific 

mutations on m4AChRs block receptor activation by ACh so that the channel is only 

activated by clozapine-N-oxide (Nawaratne et al. 2008). This technique has been recently 

used to specifically target cholinergic neurons in the MS and reduce anxiety in mice in vivo 

(Zhang et al. 2017). This approach may therefore be useful in determining the specific 

effect on regions of the brain innervated by different parts of the basal forebrain.  

Another method to target specific cholinergic neurons is optogenetics, the use of light 

stimulus in conjunction with genetic modification to turn on or off specific genes, allowing 

loss or gain of function studies to be carried out (Lin et al. 2015). Recent studies using this 

technique have highlighted the distinct roles of cholinergic and non-cholinergic neuronal 

input in mediating behaviours such as attention and responses to reward and punishment 

conditions (Hangya et al. 2015). However, whether silencing of cholinergic neurons 

replicates the effect of cell death of neurons in the basal forebrain as seen in AD remains 

unknown. 

As endothelial cells have been suggested to be an important recipient of cholinergic 

innervation (Manicam et al. 2016), it would be interesting to extend the current 3D analysis 

to determine if saporin-induced loss of cholinergic innervation also occurs at endothelial 

cells. A caveat of the 3D modelling system used in this thesis is that it was dependent on 

fluorescence imaging, which in itself can create artefacts due to the amplification of the 

signal from the fluorophore needed to be detected, so for specifically validating the 

perivascular innervation detected in this study, immunolabelling using EM could be used.  

Pericytes, which have increasing implications in the control of CBF (Rungta et al. 2018; 

Attwell et al. 2016), were not evaluated due to the limitation associated with poor 

antigenicity of pericyte markers in fixed tissue. However, additional studies could be 

carried out using transgenic mice which express fluorescently-tagged pericyte markers 

(Fernandez-Klett et al. 2010). 
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In this thesis, fMRI was used to image regional CBF changes in the cortex and 

hippocampus.  This change was assessed across the whole region and as such small or 

localised changes to CBF may have been missed. In addition, constraints of imaging 

anesthetised animals in the MRI machine did not permit us to assess CBF changes in the 

presence of NVC, which is more sensitive than hypercapnia to loss of ACh signalling. We 

are also cautious about the interpretation of CBF results in the presence of fasudil 

hydrochloride, as this is a Rho-kinase inhibitor that is capable of activating eNOS via 

ACh-independent mechanisms. Finally, CBF was measured using ASL, which is less 

sensitive to the metabolic state of the tissue than BOLD imaging. Future experiments could 

therefore be carried out using techniques such as optical coherence tomography with laser 

Doppler imaging that has recently been shown as a novel way of measuring baseline and 

evoked CBF in the hippocampus (Park et al. 2018).  

This study was limited to specifically looking at the loss of cholinergic neurons in the 

brains of young adult mice. However, as age is the major risk factor for both sporadic AD 

and CAA, future studies would aim to investigate the effect of loss of cholinergic 

innervation in aged animals. In addition, PVD was estimated from ex vivo tissues due to 

the current limitations of visualising deep grey matter tissue in vivo.  

Lastly, an unavoidable limitation of the study is that the difference between the surface 

area and white matter content of the human and mouse brain makes it difficult to know if 

the current conclusions about solute movement and PVD are translational. Additional 

limitations of the saporin model is that loss of cholinergic innervation may not occur in the 

same manner as that in the disease, as the mu-p75-saporin model induces retrograde 

degeneration of cholinergic neurons in the basal forebrain, whereas loss of grey matter in 

the basal forebrain has been demonstrated as an early indicator of AD (Schmitz et al. 

2016). Saporin-induced cholinergic death also occurs much more rapidly than the loss of 

neurons in AD which may activate a strong acute inflammatory reaction and/or the 

development of compensatory mechanisms in the animal model that are not present in AD.   

Conclusions:  

The novel observations generated from work done for this PhD project are that: 

1. Treatment with mu-p75-saporin induces loss of cholinergic nerve fibres at the 

basement membrane and smooth muscle cell at the NVU of arteries in both the 

hippocampus and cortex, and additional perivascular loss occurs at the astrocytic 

endfeet in arteries of the cortex.  
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2. Loss of cholinergic innervation did not affect baseline CBF or response to 

hypercapnia 

3. eNOS-mediated increase in CBF was not observed in the cortex of denervated 

mice, while the hippocampal response was preserved. 

4. Loss of cholinergic innervation was associated with decreased eNOS levels in the 

cortex, and increased eNOS levels and a trend towards increased activity in the 

hippocampus.  

5. PVD of human Aβ was not affected by saporin treatment in the cortex or 

hippocampus of wildtype mice. 

6. Loss of cholinergic innervation did not significantly potentiate pre-existing CAA 

severity in the TetO-APPSweInd mouse model of AD.   

 

In conclusion, there is regional heterogeneity between the cortex and hippocampus in 

terms of the amount of cholinergic innervation that is received from the basal forebrain and 

the degree to which the NVU is affected by loss of cholinergic innervation. This loss had 

functional implications for the reactivity of the vasculature, and was dependent on eNOS 

expression, which was differently and oppositely affected in the hippocampus and the 

cortex. This loss in function, however, did not impact PVD. The implications of these 

findings for CAA therefore suggest that cholinergic loss on its own is not sufficient to fully 

contribute to or account for the pathology of CAA and that other contributing factors may 

be necessary for a full pathological effect to take place. 
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