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 Abstract  

 

Cell wall biosynthesis is an important target of antimicrobial peptides (AMPs), which in light 

of the imminent shortage of antibiotics are considered promising candidates for future 

treatment of infections. Yet, numerous Gram-positive bacteria have developed specific 

resistance systems against many AMPs. These systems feature so-called BceAB-like ATP-

binding cassette transporters consisting of ten transmembrane helices and a characteristic 

extracellular domain of around 200 amino acids.  

So far, the mechanisms behind substrate recognition and binding as well as the nature of the 

physiological substrate of the transporters remained elusive. This is a major impediment to 

our understanding of the resistance mechanism, and multiple theories have been proposed 

regarding these important questions. The targets of AMPs are crucial membrane-anchored 

intermediates of the lipid II cycle. One hypothesis suggests that the transporters expel the 

AMP from the membrane, in which case the physiological substrate should be the AMP itself 

or the AMP bound to its cellular target. Alternatively, the transporters may flip the drug 

target to the cytoplasmic face of the membrane to remove it from access by the AMP. 

Here, we investigate the substrate specificity of the transporter BceAB of Bacillus subtilis. We 

focus on characterising the binding capacity of its large extracellular domain in vitro and 

further aim to identify the physiological substrate of BceAB using in vivo approaches. 

Combining the findings of biochemical, biophysical and physiological assays conducted for 

this study, we propose the complex formed between the AMP and its cellular target to be 

the physiological substrate of BceAB, rather than the unbound AMP or the drug target alone.  

Considering this result in the context of previous findings and the literature enabled us to 

gain valuable insights into the potential resistance mechanism of BceAB-like transporters 

that play such a crucial role in antimicrobial resistance.  
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1. Antimicrobial peptides as promising candidates to combat 

antimicrobial resistance. 

1.1 Emerging antimicrobial resistance is a global threat. 

Infectious diseases like tuberculosis, pneumonia and diphtheria were the leading causes of 

death in humans for a long time (Zaffiri et al., 2012). Over the course of the last century, 

advances in sanitation and hygiene, but mainly the development and clinical use of 

antibiotics and vaccinations, helped to tackle the impact of infectious diseases and majorly 

contributed to the extraordinary reduction of morbidity and mortality associated with those 

illnesses (Alanis, 2005, Zaffiri et al., 2012). Antibiotics kill bacteria by impeding vital metabolic 

processes including the cell wall biogenesis or nucleic acid or protein biosynthesis, thereby 

inhibiting their growth and replication (Anderson, 2012). Originating from naturally-occurring 

microbial products, more antibiotics were discovered in the 1950s and 1960s and soon 

chemically synthesised (Davies, 2006). This has paved the way for impactful application of 

antimicrobial agents against acute bacterial infections, and has increased the health and 

longevity of humans. 

Yet, humankind is at risk of being thrown back into the dark age of the pre-antibiotic era. 

Naturally, bacteria continuously evolve to resist antibiotics, making treatments less powerful 

or often totally ineffective (Alanis, 2005). As a result, common bacterial infections like food-

borne illness, let alone sepsis, meningitis and the diseases mentioned above, can become 

life-threatening again (World Health Organization, 2019).  

Antibiotic resistance is on the rise, with new resistance mechanisms emerging and spreading 

globally. Every year, several hundred thousand people worldwide die because of infections 

caused by antimicrobial resistant bacteria (O’Neill, 2014). Future scenarios predict 

antimicrobial resistance to even claim around 10 million lives every year by 2050 (O’Neill, 

2014). But antimicrobial resistance has the potential to undermine public health even 

further. To prevent bacterial infections in immuno-suppressed patients or other risk groups, 

antibiotics are often administered prophylactically. Secondary implications of antimicrobial 

resistance would thus make routine surgery like caesarean sections or joint replacements 

precarious procedures, and cancer treatments even more worrisome (O’Neill, 2014).  
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Although the development of antimicrobial resistance is evolutionarily inevitable, 

combatting antimicrobial resistance promptly is crucial to avoid a ‘post-antibiotic’ global 

health crisis (O’Neill, 2014). 

 

1.2 Strategies to tackle antimicrobial resistance 

To tackle the emerging threat of antimicrobial resistance, several strategy papers have been 

compiled (World Health Organization, 2015, O’Neill, 2016, European Commission, 2017).  

Some of the proposed policies aim at reducing the occurrence of antimicrobial resistance and 

preventing spreading of infections. Examples include improved sanitation and hygiene and 

better surveillance of drug resistance. To avoid unnecessary administration of antibiotics in 

humans and agriculture, regulations on their medical use and as food additives should be 

implemented and novel rapid diagnostic tools developed. Taken together, these measures 

are meant to maximise the life span of current antibiotics. At the same time, the action plans 

demand the discovery and clinical development of new antimicrobial agents as well as the 

further advancement of existing antibiotics and the investigations of underlying resistance 

mechanisms (O’Neill, 2016).  

In the quest for new antibiotics, antimicrobial peptides (AMPs) have raised attention. AMPs 

are short, often cationic peptides that are produced by virtually all life forms, and are also 

known as host-defence peptides (Hancock & Sahl, 2006). In higher organisms, AMPs can 

modulate the innate immune response of the host to infections, while prokaryotes produce 

AMPs to gain an advantage over other microbes, competing for the same environmental 

niche and resources (Mahlapuu et al., 2016). Aiming at the development of a novel 

therapeutic strategy, these host-defence peptides without direct antimicrobial activity are a 

promising research focus. They are able to adjust the innate immunity response and thereby 

can potentially indirectly promote pathogen clearance (Hancock & Sahl, 2006, Mahlapuu et 

al., 2016). 

Yet, with several in clinical trials, AMPs are first in line to potentially become future 

therapeutics for infection treatment (Hancock & Sahl, 2006, Mahlapuu et al., 2016). The 

reasons as to why AMPs are regarded as propitious are plenty. Many AMPs possess a direct 

and fast-acting antimicrobial potency (Hancock & Sahl, 2006). Generally, they have a 

broader-than-average target spectrum, preferring several low-affinity targets over a single 

high-affinity one. It is thus difficult for bacteria to accomplish resistance by developing only 

a single defence strategy (Lai & Gallo, 2009, Mahlapuu et al., 2016). 
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AMPs act by disrupting the physical integrity of the microbial cell envelope or by translocating 

across the membrane into the cytoplasm to act on intracellular targets (Hancock & Sahl, 

2006, Mahlapuu et al., 2016). This membrane interference is often effectuated by the 

cationic and amphipathic characteristics of AMPs. Bacteria have a significant amount of 

anionic phospholipids displayed on the cell surface. AMPs thus mainly interfere with the 

negatively charged bacterial membrane via electrostatic forces (Andersson et al., 2016). 

Differences in lipid composition and distribution are thought to be responsible for the 

selectivity of AMPs for bacterial membranes. Plasma membranes of many mammalian cells 

have an asymmetrically-distributed lipid composition (Quinn, 2002). For example, 

phospholipids with negatively-charged head groups like phosphatidylserine are primarily 

featured in the inner leaflet of the plasma membrane of human erythrocytes. The outer face 

of the plasma membrane mainly consists of phospholipids with zwitterionic properties and a 

neutral net charge, such as phosphatidylethanolamine, phosphatidylcholine, and 

sphingomyelin (Quinn, 2002, Andersson et al., 2016). 

Many structures of membrane and cell wall synthesis are non-proteinaceous and procedures 

often well-conserved, posing a challenge to bacteria to develop resistance against AMP stress 

while still having to secure functionality and structural integrity of the cell wall (Lai & Gallo, 

2009). As the interaction with the bacterial membrane seems to be a key factor for the 

antimicrobial activity of AMPs, features and characteristics of the bacterial cell envelope are 

described in the following section.  

Despite their considerable potential, there are several obstacles to overcome in the 

development of AMPs for clinical use (Marr et al., 2006). These drawbacks include for 

example the high cytotoxicity and haemolytic activity displayed by certain AMPs against 

human cells (Maher & McClean, 2006, Mader & Hoskin, 2006). In addition, AMPs or host-

defence molecules can be immunogenic and even lead to allergic reactions (Mader & Hoskin, 

2006). Further, some AMPs only display poor serum stability and show degradation by 

proteases or inactivation by high salt concentrations (Marr et al., 2006). Although the broad 

substrate activity of AMPs can be listed as an asset of AMPs, at the same time the broad-

range activity can lead to complications in clinical use by disrupting the indigenous host 

microbiome (Aoki & Ueda, 2013).  

For these reasons, most AMPs that have been applied in health care so far have found use as 

topical medication. Further research and development are required to target the stability, 

safety, and efficacy of AMPs. One example of a promising candidate from the family of 

lanthionine-containing antibiotics is nisin. The lantibiotic is already used as food preservative 
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and treatment in animal care due to its broad potency against Gram-positive bacteria, 

including drug-resistant microbes and the causative agents of food spoilage (Dischinger et 

al., 2014, Shin et al., 2016). Recent bioengineering approaches have aimed at increasing the 

antimicrobial activity of nisin against Escherichia coli and other Gram-negative bacteria (Zhou 

et al., 2016, Li et al., 2018) and improving nisin’s resistance against protease degradation 

(Field et al., 2018). Based on these and other advances, nisin is hoped to be applied in future 

infection treatment, oral health and possibly even cancer treatment of humans (Shin et al., 

2016). 

 

2. The cell envelope protects bacteria from the environment. 

The cell envelope is a bacterium’s multi-layered, protective barrier to the environment. 

Based on the differences and characteristics of their complex cell envelopes, bacteria can 

generally be divided into two major groups, Gram-positive and Gram-negative bacteria 

(Silhavy et al., 2010). In Gram-positives, the cytoplasmic membrane is surrounded by 

numerous layers of peptidoglycan, forming a thick cell wall. Gram-negative bacteria in 

contrast only possess a few peptidoglycan layers. They are additionally surrounded and 

protected by another membrane containing lipopolysaccharides (Silhavy et al., 2010, Lin & 

Weibel, 2016). The two membranes of Gram-negative bacteria are referred to as ‘inner’ and 

‘outer’ membrane, the space between them is named the periplasm.  

 

2.1 Bacterial membranes comprise many phospholipids with anionic net charge. 

The composition of bacterial membranes is not only highly variable between different 

species, bacteria are also able to modify their membrane composition in response to 

environmental changes, such as temperature, salinity and pH (Lin & Weibel, 2016). 

Cytoplasmic membranes of both, Gram-positive and Gram-negative bacteria, can be 

described as fluid bilayers containing oriented globular proteins and phospholipids (Singer & 

Nicolson, 1972). The proteins occurring in cytoplasmic membranes are either ‘peripheric’ and 

only weakly-attached, or ‘integral’ proteins that intercalate into the membrane and often 

contain a high content of α-helices (Singer & Nicolson, 1972).  

The (glycero-)phospholipids of bacterial membranes generally contain two fatty acid chains 

and a variable polar phosphate headgroup. The phospholipid acyl chains determine the 
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membrane viscosity and permeability, and by this, influence many membrane-associated 

functions, including transport and protein–protein interactions (Zhang & Rock, 2008). Most 

abundant in many bacterial species are phosphatidylethanolamine, phosphatidylglycerol and 

cardiolipin, but also phosphatidylinositol and phosphatidylserine, or even lipids that lack a 

phosphate group can be found, but usually to a lesser degree (Sohlenkamp & Geiger, 2016). 

While phosphatidyl-ethanolamine is zwitterionic, phosphatidylglycerol and cardiolipin are 

both negatively charged, causing the overall anionic net charge of the bacterial membrane.  

Phospholipids are heterogeneously distributed along the cytoplasmic membrane and form 

specific lipid domains with particular functions (Strahl & Errington, 2017). For example, it has 

been hypothesised that the formation of anionic phospholipid lipid domains is involved in 

the initiation of DNA replication and cell division (Mileykovskaya & Dowhan, 2005). Yet, this 

hypothesis is still subject to debate and not generally accepted. Antimicrobial compounds, 

like the cationic AMPs described above, can also affect the membrane environment, and vice 

versa, the phospholipid composition can affect the efficacy of AMPs (Epand & Epand, 2009, 

Epand et al., 2016).  

Highly conserved in most bacteria, but prevalent to a lesser degree in the cytoplasmic 

membrane, are poly-isoprenoid carriers (C55). Their role is the translocation of activated 

sugar intermediates that are required for envelope biogenesis (Raetz & Dowhan, 1990). Their 

structure and function will be further described in I.2.2.2. 

 

Gram-negative specifications: the outer membrane 

The outer membrane of Gram-negative bacteria functions as selective permeability barrier 

and protects the cell against harsh environmental conditions. The phospholipids of the outer 

membrane are restricted to the inner leaflet. The outer leaflet consists of lipopolysaccharides 

that extend into the extracellular space and can serve as virulence factor in pathogens 

(Silhavy et al., 2010, May & Silhavy, 2017). The outer membrane further contains mainly two 

types of proteins. These are either bilayer-anchored lipoproteins or β-barrel transmembrane 

proteins responsible for nutrient uptake or efflux of waste products (May & Silhavy, 2017).  

 

Gram-positive specifications: teichoic acids 

In contrast, Gram-positive bacteria lack an outer membrane and a distinct periplasm. The cell 

envelope of Gram-positive bacteria is heavily modified by the incorporation of carbohydrate-

based anionic polymers, so-called teichoic acids (Weidenmaier & Peschel, 2008, Silhavy et 

al., 2010). Lipoteichoic acids are linked to the outer face of the membrane via a lipid anchor 
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(Percy & Grundling, 2014). Wall teichoic acids are covalently attached to peptidoglycan 

(Brown et al., 2013). Both polymer types are highly complex polysaccharides, based on either 

polyribitol- or polyglycerol phosphate and vary for each bacterial strain (Silhavy et al., 2010). 

Together, both structures extend from the bacterial cell surface beyond the outermost layers 

of the cell wall. Accounting for as much as 60 % of the molecular composition of the cell wall, 

teichoic acids can influence membrane permeability and cell envelope stability majorly, and 

serve as scaffolds for extracytoplasmic enzymes required for cell wall growth and 

degradation (Weidenmaier & Peschel, 2008, Silhavy et al., 2010). 

 

2.2 The cell wall of Gram-positive bacteria and its biosynthesis 

In Gram-positive bacteria, the cell wall is the principal barrier to environmental stresses, and 

its integrity is of critical importance to cell viability. The cell wall ensures osmotic stability 

and, because of its rigidity, determines the cell shape. With between 30 and 100 nm in width, 

the multi-layered cell wall of Gram-positives is drastically thicker than the sometimes only 

single-layered cell wall of Gram-negatives (Silhavy et al., 2010).  

The cell wall is made up by a mesh-like polymer called peptidoglycan (Vollmer et al., 2008). 

The basic structure of peptidoglycan is similar in most bacteria except Mycoplasma and few 

other species that lack a cell wall. Peptidoglycan consists of long, about parallel glycan strands 

that in rod-shaped cells are thought to run perpendicularly to the long axis of the bacterium 

(Vollmer et al., 2008). Glycan strands are assembled and polymerised from alternating 1,4-

linked N-acetylglucosamine (GlcNAc) - N-acetylmuramic acid (MurNAc) disaccharide units 

(Scheffers & Pinho, 2005). Glycan strands are cross-linked with adjacent strands via the 

pentapeptide side chains of the MurNAc units, which connects the peptidoglycan sacculus to 

one very large polymer. The composition of the so-called stem peptide can vary between 

bacterial species, but the most common pentapeptide is L-alanine-D-glutamate-meso-

diaminopimelic acid (mDPA)-D-alanine-D-alanine (Scheffers & Pinho, 2005, van Heijenoort, 

2007). The cell wall synthesis is a highly complex process that can be divided into three 

stages. Their details will be described in the following sections. 

 

2.2.1 Peptidoglycan precursor synthesis in the cytoplasm 

The first stage of bacterial cell wall synthesis takes place in the cytoplasm where the 

nucleotide sugar-linked precursors are synthesised (Fig. 1.1). The leading enzymes of this 

stage are a series of Mur enzymes (El Zoeiby et al., 2003).  
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Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) is synthesised from fructose-6-

phosphate in several steps (van Heijenoort, 1998). UDP-GlcNAc is not only required for 

assembly of lipid II in the second stage of cell wall synthesis, it also serves as precursor for 

synthesis of uridine diphosphate-N-acetylmuramic acid (UDP-MurNAc). This two-step 

reaction is catalysed by the enolpyruvyl transferase MurA and the flavin-dependent 

reductase MurB (El Zoeiby et al., 2003, Bugg et al., 2011). UDP-MurNAc is then further 

modified by the stepwise addition of the first three amino acid residues of the stem peptide, 

commonly L-alanine, D-glutamic acid and meso-diaminopimelic acid (Fig. 1.1). The residues 

are successively added to the reduced lactyl group of UDP-MurNAc by the ATP-dependent 

synthetases MurC, MurD and MurE, respectively. Finally, a D-alanine-D-alanine dipeptide is 

linked to the UDP-MurNAc-tripeptide in a MurF-catalysed step, bringing the last soluble 

peptidoglycan precursor UDP-MurNAc pentapeptide to completion (Fig. 1.1, van Heijenoort, 

1998, El Zoeiby et al., 2003, Bugg et al., 2011). 

 

2.2.2 Precursor translocation via the lipid II cycle is the bottleneck of cell wall synthesis. 

The next steps of the cell wall synthesis involve membrane-anchored lipid intermediates and 

begins at the inner leaflet of the cytoplasmic membrane, before the peptidoglycan 

precursors are translocated across the membrane to its outer face (Fig. 1.1). As the 

membrane-anchored lipid carrier is recycled to take up another peptidoglycan precursor, this 

stage of the cell wall synthesis is known as the lipid II cycle. 

 

The membrane-anchored lipid carrier: undecaprenyl phosphate 

The membrane carrier that accepts the UDP-MurNAc pentapeptide and later translocates it 

across the membrane is called undecaprenyl phosphate (UP, Fig. 1.1), also known as 

bactoprenol. UP belongs to the ubiquitous, functionally highly diverse family of isoprenoids 

(Ogura et al., 1997). The shortest isoprenoid unit is isopentenyl pyrophosphate (IPP), which 

consists of five carbon atoms and an allylic pyrophosphate group (C5-PP, IPP). This 

fundamental building block results from acetyl-CoA via the mevalonate pathway (Thorne & 

Kodicek, 1966), or the non-mevalonate MEP pathway (Desai et al., 2016). Isoprenoids with 

longer carbon chains are assembled from IPP via head-to-tail condensation reactions 

catalysed by prenyl transferases (Ogura et al., 1997). The synthesis of the lipid carrier takes 

place on the cytoplasmic face of the membrane and is catalysed by the enzyme undecaprenyl 

pyrophosphate synthase (UppS, Fig. 1.1, Takahashi & Ogura, 1982, Apfel et al., 1999). UppS 
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catalyses consecutive reactions of a farnesyl pyrophosphate (C15-PP, FPP) with eight IPP units. 

The resulting undecaprenyl pyrophosphate (C55-PP, UPP) is then dephosphorylated by 

undecaprenyl phosphatases to produce UP (Manat et al., 2014, Liu & Breukink, 2016). 

 

Lipid I formation  

In the first step of the lipid II cycle, the membrane-associated translocase MraY catalyses the 

ligation of the phosphoryl-MurNAc pentapeptide moiety onto the lipid carrier UP (Fig. 1.1, 

Bouhss et al., 2004). This results in the formation of undecaprenyl-pyrophosphoryl-MurNAc-

pentapeptide, typically referred to as lipid I (van Heijenoort, 1998, Liu & Breukink, 2016). 

 

Lipid II formation  

The second step at the inner leaflet of the membrane is the synthesis of undecaprenyl-

pyrophosphoryl-1,4-MurNAc-pentapeptide-GlcNAc, better known as lipid II (Fig. 1.1, Liu & 

Breukink, 2016). The reaction between lipid I and UDP-GlcNAc, the first precursor formed in 

the cytoplasm, is catalysed by the glycosyltransferase MurG. Lipid II carries the final substrate 

for the polymerisation of peptidoglycan strands (van Heijenoort, 1998, Manat et al., 2014).  

 

Lipid II translocation  

Lipid II is subsequently translocated from the inner side of the membrane to the outer face 

(Fig. 1.1). The identity of the flippase that is responsible for lipid II translocation has been 

much-debated (Young, 2014, Ruiz, 2015, Scheffers & Tol, 2015, Zhao et al., 2017). For a while, 

the SEDS (shape, elongation, division and sporulation) family protein FtsW was believed to 

be a lipid II flippase (Mohammadi et al., 2011). However, more recent evidence discounted 

this idea (Sham et al., 2014, Meeske et al., 2015) and supported the original hypothesis 

proposed by Ruiz (2008). According to these studies, MurJ in E. coli and MurJ and its homolog 

Amj in Bacillus subtilis serve as lipid II flippases (Sham et al., 2014, Meeske et al., 2015). 

Recently, insights into the underlying flipping mechanism emerged. MurJ directly binds lipid 

II in vitro, likely by recognising the GlcNAc-MurNAc-pentapeptide moiety (Bolla et al., 2018). 

The crystal structure of MurJ in the absence of its substrate revealed 14 transmembrane 

helices that form a closed-gate, inward-open conformation with a distinct central cavity 

(Zheng et al., 2018). MurJ was thus proposed to translocate lipid II across the membrane 

according to an alternating-access mechanism, in which MurJ alternates between an inward-

open, then outward-open conformation. Structure-guided cysteine crosslinking indicated 

that MurJ is able to adopt both conformations, supporting the rocker-switch model for lipid 
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II transport (Kumar et al., 2018, Zheng et al., 2018). Once on the outer face, the GlcNAc-

MurNAc-pentapeptide moiety of lipid II is incorporated into already existing glycan strands 

as described in 2.2.3. 

 

Lipid carrier recycling  

When the GlcNAc-MurNAc-pentapeptide moiety of lipid II is incorporated, the lipid carrier is 

released as undecaprenyl pyrophosphate (UPP). This is the same pyrophosphate form of the 

lipid carrier that results from de novo synthesis (Manat et al., 2014). To be recycled for 

membrane translocation of peptidoglycan precursors, UPP is dephosphorylated to UP. This 

reaction is catalysed by UPP phosphatases (El Ghachi et al., 2005, Manat et al., 2014). In B. 

subtilis, two phosphatases can catalyse this reaction, UppP and BcrC (Bernard et al., 2005, 

Zhao et al., 2016). Both enzymes are located in the cytoplasmic membrane, but it is currently 

unknown whether their catalytic activity takes place at the inner or outer face of the 

membrane. UppP and BcrC form a synthetic lethal pair, which means that one phosphatase 

becomes essential in the absence of the other, suggesting that their function is 

interchangeable to some degree (Zhao et al., 2016, Radeck et al., 2017a). Yet, BcrC seems to 

play a more important role during growth and particularly when facing antimicrobial stress, 

whereas UppP was found to be crucial for sporulation (Radeck et al., 2017a).  

Further, UPP is localised in the outer membrane leaflet, and thus needs to translocate back 

into its cytoplasmic face (Manat et al., 2014). Not much is known about this reverse flippase 

reaction. Due to the chemical properties of UP, the translocation of the lipid carrier is thought 

to be actively facilitated (Zhao et al., 2017). A spontaneous flipping reaction of UP across the 

membrane is considered too slow for the high turnover rates of the lipid II cycle (de Kruijff et 

al., 2008). It is further unknown if such a flippase would translocate UP, UPP, or potentially 

would be able to translocate both forms of the lipid carrier (Manat et al., 2014).  
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Figure 1.1: The three stages of bacterial cell wall synthesis. I: Cell wall synthesis begins in 

the cytoplasm with the assembly of peptidoglycan precursors. These precursors are 

transferred onto membrane-anchored lipid carriers and translocated across the cytoplasmic 

membrane in the so-called lipid II cycle (II). III: The incorporation of peptidoglycan precursors 

into the existing glycan strands and the cross-linking between stem peptides takes place in 

the extracellular space. Glycan strands can be further modified, e.g. by incorporation of wall 

teichoic acids. These modifications are not depicted in this schematic. The lipid carrier UPP 

is recycled by dephosphorylation to UP and imported back into the cell. UPP can also be 

formed by de novo synthesis, which is catalysed by UppS. Enzymatic reactions are indicated 

by enzyme names in turquois boxes, where known. Enzymes involved in transglycosylation 

and transpeptidation are not listed individually for clarity. Green hexagon: N-

acetylglucosamine (GlcNAc), yellow hexagon: N-acetylmuramic acid (MurNAc), black circle: 

phosphate group, two black circles: pyrophosphate group, orange circle: amino acids that 

form the stem pentapeptide. UP: undecaprenyl phosphate, UPP: undecaprenyl 

pyrophosphate, Lipid I: undecaprenyl-pyrophosphoryl-MurNAc-pentapeptide, Lipid II: 

undecaprenyl-pyrophosphoryl-1,4-MurNAc-pentapeptide-GlcNAc. 
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The lipid II cycle as bottle neck of cell wall synthesis 

Efficient lipid carrier recycling and quick re-introduction into the cell wall synthesis are crucial 

to ensure growth and cell wall integrity. UP and its derived lipid II cycle intermediates exist 

only in very limited amounts in bacterial membranes (van Heijenoort, 1998). The lipid II cycle 

is thus thought to have an extremely high turnover rate, with one to three transits per second 

per molecule (van Heijenoort, 1998, Breukink & de Kruijff, 2006). The lipid carrier is further 

involved in other cell wall pathways, like wall teichoic acid synthesis and capsular 

polysaccharide synthesis (Manat et al., 2014, Liu & Breukink, 2016). The synthesis of the 

different intermediates is thus tightly regulated and temporally coordinated (Breukink & de 

Kruijff, 2006, Liu & Breukink, 2016). Nevertheless, the rate-limiting factor seems to remain 

UP availability.  

Direct measurement of these pool levels remains challenging. Hence, indirect measurements 

like the analysis of in vivo peptidoglycan synthesis using radiolabelled UDP-GlcNAc were used 

to approximate the number of lipid intermediates (Kramer et al., 2004). In E. coli, pool levels 

of  UPP are estimated to lie around 1.2 x 105 molecules per cell (Barreteau et al., 2009), the 

peptidoglycan precursor-carrying lipid I and lipid II are thought to be very small with maximal 

700  and 2000 molecules per cell, respectively (van Heijenoort et al., 1992). Further, the ratio 

between the soluble precursor UDP-MurNAc pentapeptide and lipid I is greater than 100:1 

(van Heijenoort, 1998), stressing that the availability of the lipid carrier is the limiting factor 

of cell wall synthesis.  

Pool levels of lipid carrier intermediates seem to vary between bacterial species. The cell wall 

of Gram-positive bacteria contains higher amount of peptidoglycan. In agreement, the pool 

levels of lipid carrier intermediates are increased in Gram-positives (van Heijenoort, 2007). 

Listeria monocytogenes and Micrococcus sp. were found to contain around 2 x 105 molecules 

per cell of the lipid carrier forms UP or UPP (Storm & Strominger, 1974, Kramer et al., 2004). 

Staphylococcus aureus was shown to contain maximal 5 x 104 lipid II molecules per cell (van 

Heijenoort, 2007). In comparison, the rod-shaped Bacillus subtilis has even lower lipid II levels  

(Qiao et al., 2017) and the lipid II levels of Bacillus megaterium were estimated to lie around 

3.4 x 104 molecules per cell (van Heijenoort, 2007).  

The lipid II cycle is therefore considered to be the bottleneck of the cell wall synthesis. Due 

to low lipid carrier pool levels and high turnover rates, even small discontinuities can lead to 

major disruptions of cell wall synthesis. The lipid II cycle is thus particularly susceptible to 

antimicrobial action (Schneider & Sahl, 2010, Bugg et al., 2011). Amongst all enzymes and 

lipid intermediates involved, lipid II is regarded as the Achilles’ heel of the cycle, due to the 
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particularly small pool size and the (at least at times) localisation at the extracellular face of 

the membrane. Numerous antibiotics and AMPs have been described to directly recognise 

and bind lipid II, thereby inhibiting its action (Breukink & de Kruijff, 2006, de Kruijff et al., 

2008, Scheffers & Tol, 2015, Ng & Chan, 2016). The group of lanthionine-containing 

antibiotics (lantibiotics) seem to comprise particularly many lipid II-binding agents and will 

be discussed in the next main section of the introduction (I 3.1). 

 

2.2.3 Peptidoglycan polymerisation and cross-linking in the extracellular space 

The third stage of the cell wall biosynthesis takes place at the outer side of the cytoplasmic 

membrane and involves the incorporation of the peptidoglycan precursors from lipid II into 

the growing cell wall mesh via two reactions called transglycosylation and transpeptidation 

(Fig. 1.1). 

The principal enzymes of this stage are penicillin-binding proteins (PBPs) that belong to the 

family of acyl serine transferases (Scheffers & Pinho, 2005). PBPs can be subdivided into high 

molecular weight PBPs and low molecular PBPs (Sauvage et al., 2008, Sauvage & Terrak, 

2016). The latter are mono-functional peptidases required for transpeptidation. High 

molecular weight PBPs are composed of two modules. The C-terminal module harbours the 

penicillin-binding domain, which catalyses the transpeptidase reaction. The N-terminal 

domain of this type of PBPs links it to the outer face of the cytoplasmic membrane. The 

catalytic properties of this domain allow the subdivision high molecular weight PBPs further 

into two major groups, simply termed class A and class B PBPs. While class B PBPs only 

possess peptidase activity, class A PBPs (aPBPs) are bi-functional enzymes (Scheffers & Pinho, 

2005, Sauvage et al., 2008). Their N-terminal module comprises a transglycosylase site, which 

enables aPBPs to perform both, transglycosylation and transpeptidation (Scheffers & Pinho, 

2005, Sauvage et al., 2008).  

 

Transglycosylation: glycan strand formation 

In the first extracellular step of cell wall synthesis, the reducing end of MurNAc of a nascent 

glycan strand is connected with the lipid II-linked GlcNAc-MurNAc-pentapeptide moiety. 

Hereby, the peptidoglycan precursor gets polymerised into the glycan strand and the lipid 

carrier is released (Scheffers & Pinho, 2005). Until recently, this step called transglycosylation 

was known to be performed by two classes of enzymes, mono-functional transglycosylases 

and aPBPs, with aPBPs considered as the principle transglycosylases (Zhao et al., 2017). 
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The amount of different aPBPs varies between bacterial species, depending on the 

availability of proteins with redundant function and cell shape (Scheffers & Pinho, 2005, 

Sauvage et al., 2008). The Gram-positive model organism B. subtilis was shown to possess 

four aPBPs (PBP1a, PBP4, PBP2c, PBP2d, McPherson & Popham, 2003, Scheffers & Pinho, 

2005). Despite some differences in their membrane localisation, these aPBPs seem to be 

functionally redundant to a certain degree (Pedersen et al., 1999, Scheffers & Pinho, 2005).  

Recently, the SEDS protein RodA of B. subtilis was shown to possess transglycosylase activity 

(Meeske et al., 2016, Emami et al., 2017). This also answered the long-standing question as 

to why B. subtilis was viable when all aPBPs had been removed, despite the lack of traditional 

mono-functional transglycosylases (McPherson & Popham, 2003). 

 

Transpeptidation: cross-linking of glycan strands via their stem peptides 

During the second step, transpeptidation, the newly built glycan strands are cross-linked via 

their stem peptides. Peptidases recognise and form a complex with the D-Ala-D-Ala amino 

acids of the stem peptide. A serine residue in the enzyme’s active site interacts with a carbon 

atom of the terminal D-Ala, which leads to an acyl-enzyme intermediate and the concomitant 

release of the C-terminal D-Ala residue (Sauvage et al., 2008). This is followed by the 

deacylation of the enzyme, by which a peptide bond between the penultimate D-Ala residue 

and the amino acid at position 3 of a different stem peptide (often meso-diaminopimelic acid 

or L-lysine) is formed. The transpeptidation reaction can be mediated by both, bi-functional 

aPBPs or mono-functional transpeptidases of class B PBP (Scheffers & Pinho, 2005, Sauvage 

et al., 2008). The peptide bonds cross-link the glycan strands with their neighbouring ones in 

all directions, resulting in a mesh-like network that is responsible for the shape and rigidity 

of the bacterial cell (Scheffers & Pinho, 2005, Silhavy et al., 2010).  
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3. The cell wall synthesis is a major target for antibiotics. 

The cytoplasmic membrane and the membrane-embedded cell wall biosynthesis are major 

targets for numerous classes of antibiotics (Schneider & Sahl, 2010, Mahlapuu et al., 2016).  

Localised on the extracellular side of the membrane, and thus first in line as antibiotic targets 

are penicillin-binding proteins (PBPs). PBPs serve as targets for most commercially available 

β-lactam antibiotics, including cephalosporins, carbapenems, monobactams, and the famous 

group of penicillins (Sauvage & Terrak, 2016). As the name ‘penicillin-binding protein’ implies, 

PBPs can bind to β-lactam antibiotics, because the antibiotics have a high structural similarity 

to the C-terminal D-Ala-D-Ala moiety of the peptidoglycan stem peptide (Tipper & 

Strominger, 1965). In doing so, the antibiotics seem to irreversibly bind to the serine residue 

of the active site of the transpeptidase domain, resulting in inhibition of peptidoglycan cross-

linking (Sauvage et al., 2008).  

Further, the moenomycin family of antibiotics was shown to inhibit PBP function (Ostash & 

Walker, 2010). In contrast to penicillins, moenomycin A binds to the enzymatic cavity of the 

transglycosylase module of bi-functional aPBPs (Lovering et al., 2007). This leads to the 

blocking of conserved consensus motifs that are important for substrate recognition and 

thus, prevents cell wall biosynthesis at the step of transglycosylation (Sauvage & Terrak, 

2016).  

 

3.1 Lipid II serves as a target for numerous classes of AMPs. 

3.1.1 Non-ribosomally synthesized antimicrobial peptides that bind lipid II. 

Highly conserved membrane-embedded lipid II cycle intermediates, like lipid II, are also 

among popular targets of antibiotics, including numerous antimicrobial peptides (AMPs).  

AMPs fall into two different classes, based on whether they are synthesised by standard 

transcription and translation on the ribosome or whether the AMPs are produced non-

ribosomally on multi-enzyme complexes (Hancock & Chapple, 1999). The vast class of non-

ribosomally synthesized AMPs contains many examples that interfere with lipid II (Breukink 

& de Kruijff, 2006, Oppedijk et al., 2016). Members of the mannopeptimycins and katanosins 

AMP subfamilies have been shown to directly interact with lipid II (Ruzin et al., 2004, Lee et 

al., 2016). Another example is the glycopeptide vancomycin that was shown to bind lipid II 

at its C-terminal D-Ala-D-Ala moiety (Breukink & de Kruijff, 2006, Wang et al., 2018). 

Furthermore, the recently discovered teixobactin directly binds to lipid II (Ling et al., 2015). 
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The lipoglycopeptide ramoplanin was shown to target any variant of lipid II cycle 

intermediates, as long as they contained a pyrophosphate (Walker et al., 2005).  

 

3.1.2 Ribosomally-synthesised AMPs that target lipid II. 

The other major class of antimicrobial peptides are ribosomally-synthesised and often 

undergo extensive post-translational modifications (Hancock & Chapple, 1999). These 

modifications lead to the introduction of characteristic features that are often essential for 

the antimicrobial activity of the AMPs and are used for their further classification (Cotter et 

al., 2013).  

Amongst those heavily-modified AMPs that often interfere with lipid II cycle intermediates is 

the subgroup of lanthionine-containing antibiotics. These so-called lantibiotics (Schnell et al., 

1988) are heat-stable molecules with a molecular weight below 4 kDa that were shown to be 

active in a nanomolar range (Cotter et al., 2005). Yet, their main distinction from other 

ribosomally-synthesised AMPs is due to their high content of unusual amino acids, 

synthesized by extensive post-translational side-chain modifications. The most prominent 

and name-giving examples are the thioether amino acids lanthionine and β–

methyllanthionine (Bierbaum & Sahl, 2009, Cotter et al., 2013). These unusual residues form 

covalent thioether bridges between amino acids, which result in internal ‘rings’ and give 

lantibiotics their characteristic structural features (Cotter et al., 2005). Additionally, many 

lantibiotics contain other rare amino acids, like didehydroalanine or didehydrobutyrine. 

Lantibiotics are mainly produced by Gram-positive bacteria of the Firmicutes or 

Actinomycetes phyla and target other microbes, while the producer is protected by specific 

immunity mechanisms (Colin et al., 2008, Alkhatib et al., 2012). The activity spectra of 

lantibiotics are mainly directed against other low-GC content Gram-positive species, 

including multi-resistant bacterial strains (Dischinger et al., 2014). Numerous lantibiotics are 

known to directly interact with lipid II (Breukink & de Kruijff, 2006). Yet, the mode of target 

binding and the mechanism by which certain groups of lantibiotics inhibit the cell wall 

synthesis differ. 
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Class I lantibiotics: lipid II binding and subsequent pore formation. 

Class I lantibiotics often have a dual mode of action, based on target binding and subsequent 

pore formation (Wiedemann et al., 2001, Parisot et al., 2008). They can form pores and 

increase membrane permeability by interacting non-specifically with negatively charged 

phospholipids or via a highly specific, lipid II-targeted mechanism (Kordel et al., 1989, Brötz 

et al., 1998b, Breukink & de Kruijff, 2006). 

The class I lantibiotic nisin was first described over 90 years ago (Rogers, 1928). Since then it 

has been studied extensively and is a well-known lantibiotic representative due to its 

application as a food preservative (Dischinger et al., 2014). Nisin is a 34-residue-long, 

elongated lantibiotic that is produced by Lactococcus lactis. It contains five lanthionine or β-

methyllanthionine rings and exhibits an overall positive charge (+5, Fig. 1.2 A, Draper et al., 

2015). The lantibiotic is the holotype for other nisin-like lantibiotics, including nisin 

derivatives and the B. subtilis ATCC6633-produced AMP subtilin (Fig. 1.2 B). All nisin-like 

lantibiotics are very similar in size and charge, and contain several highly conserved and 

structurally important residues (Dischinger et al., 2014).  

At high concentrations, nisin was shown to interact non-specifically with phospholipids of the 

cytoplasmic membrane, likely due to its highly cationic nature (Wiedemann et al., 2001). In 

doing so, nisin leads to the deformation the membrane, destabilising membrane curvature, 

symmetry and lipid packing density and pore formation (Wiedemann et al., 2001, Prince et 

al., 2016). In addition to these unspecific effects, nisin was shown to specifically interact with 

lipid II. In vitro binding experiments with phospholipids and model membrane vesicles 

showed that the affinity of nisin for lipid II was much higher (2 × 107 M–1, Breukink et al., 

1999) than for membranes containing anionic phospholipids (1.8 × 103  M–1,Breukink et al., 

2000). In addition, membrane permeability assays using vesicles with and without lipid II 

revealed a 1000-fold higher nisin activity in the presence of lipid II (Breukink et al., 1999, 

Breukink & de Kruijff, 2006).  

By binding lipid II, nisin inhibits the sequestration of lipid II to the cell division site and block 

the cell wall biosynthesis (Wiedemann et al., 2001, Hasper et al., 2006). Nisin recognises and 

binds to the pyrophosphate group, the MurNAc moiety and the first isoprene unit of lipid II 

(Hsu et al., 2004). The interaction is mediated via the structurally well-conserved N-terminus. 

The lanthionine rings A and B of nisin are thought to interact with the pyrophosphate via 

hydrogen bonds, and in doing so form a pyrophosphate cage which explains why nisin also 

interacts with lipid I (Fig. 1.2 A). Except for some well-conserved amino acids, the backbone 

scaffold of the cyclic structures seems to play a more important role than the side chain 
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composition of nisin (Hsu et al., 2004). The pyrophosphate cage-binding mechanism thus also 

applies to other lipid II binding class I lantibiotics (Fig. 1.2 A).  

Lipid II binding is also the first step towards the second mode of action of this type of 

lantibiotics: specific lipid II-mediated pore formation (Brötz et al., 1998b, Wiedemann et al., 

2001). Once bound, four lipid II-nisin complexes assemble together and recruit four 

additional nisin molecules (Breukink et al., 2003, Hasper et al., 2004). This very stable ‘pore 

complex’ enables nisin to insert perpendicularly into the membrane and span the 

phospholipid bilayer via its C-terminus (Willey & van der Donk, 2007, Oppedijk et al., 2016). 

During this process, nisin undergoes drastic conformational changes. Recent studies 

demonstrated the configuration of the C-terminal and the hinge region between lanthionine 

ring C and D seem to be particularly flexible and responsive to environmental changes (Fig. 

1.2 A), indicating their importance to adapt to the target membrane of a given bacterium 

(Medeiros-Silva et al., 2018). Pore formation leads to an immediate efflux of cytoplasm 

followed by rapid cell death (Wiedemann et al., 2001, Hasper et al., 2004).  

 

Class II lantibiotics: inhibition of cell wall biosynthesis by lipid II-binding 

Class II lantibiotics usually also target lipid II to inhibit the cell wall synthesis, but they often 

lack a nisin-like targeted pore formation mechanism. The paradigm of this group is 

mersacidin. The peptide is a 19 amino acid long lantibiotic, which contains four lanthionine 

ring structures and is produced by B. subtilis HIL Y-85,54728 (Fig. 1.2 C, Bierbaum et al., 1995). 

Unlike class I lantibiotics, mersacidin is a globular peptide and does not possess a positive net 

charge. In contrast, a conserved, functionally crucial glutamate residue at position 17 within 

lanthionine ring C gives mersacidin an anionic net charge (Breukink & de Kruijff, 2006). 

Structurally similar to mersacidin, also actagardine and its derivatives that are produced by 

Actinoplanes liguriae contain the conserved negatively-charged residue (Fig. 1.2 D, 

Dischinger et al., 2014). Thus, they were classified as mersacidin-like lantibiotics.  

Mersacidin was shown to inhibit the cell wall synthesis at the stage of transglycosylation by 

binding to lipid II, albeit with a lower affinity than nisin (Brötz et al., 1997, Brötz et al., 1998a). 

However, this interaction does not lead to pore-formation. As mersacidin binding includes 

the GlcNAc moiety of lipid II, it specifically recognises lipid II but not lipid I (Oppedijk et al., 

2016).  

A lipid II-binding motif is conserved in all mersacidin-like lantibiotics, comprising the 

lanthionine-ring structure around the glutamate residue (Fig. 1.2 C, D, Brötz et al., 1998a). As 

lipid II is mostly negatively charged, direct charge interactions between mersacidin and lipid 
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II seem unlikely. Mersacidin-like lantibiotics were found to be more active in a calcium-rich 

environment (Böttiger et al., 2009). These divalent cations are thought to form a bridge 

between the glutamate of the peptide and lipid II. 

Despite the lack of perpendicular membrane insertion, the conformation of mersacidin was 

found to be highly flexible and crucial for its antimicrobial activity (Hsu et al., 2003). A small 

hinge region (Ala-12-Abu-13) allows the lantibiotic to modulate the accessibility of the 

charged residues upon lipid II binding (Fig. 1.2 C, Hsu et al., 2003). This reinforces the 

indications that electrostatic interactions play an important role in the lantibiotic-target 

interaction (Breukink & de Kruijff, 2006, Oppedijk et al., 2016).  
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Figure 1.2: Schematic structures of representative class I and class II lantibiotics that bind 

lipid II. A: Nisin. B: Subtilin. C: Mersacidin. D: Actagardine. Lanthionine and methyllanthione 

rings are indicated by letters A-E. Nisin and subtilin share a conserved lipid II binding motif 

(blue box). Mersacidin and actagardine contain a different conserved lipid II binding motif 

(blue circle). Hinge regions are indicated for all lantibiotics. The cleavage site of the NSR 

peptidase is indicated in the nisin molecule (A). Grey: no charge, red: negatively charged, 

blue: positively charged, green: post-translationally modified amino acids: Dhb: 

didehydrobutyrine, Dha: didehydroalanine, Abu: aminobutyric acid. Ala: alanine, Gly: glycine, 

Val: valine, Ser: serine, Leu: leucine, Ile: isoleucine, Pro: proline, Phe: phenylalanine, Tyr: 

tyrosine, Trp: tryptophan, Met: methionine, Gln: glutamine, Glu: glutamate, His: histidine, 

Lys: lysine, Asn: asparagine. Figures are based on Willey and van der Donk (2007), Staron et 

al. (2011), Knerr and van der Donk (2012). 
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3.2 The cyclic dodecapeptide bacitracin targets undecaprenyl pyrophosphate. 

The peptide antibiotic bacitracin was shown to disturb the cell wall synthesis by interfering 

with the lipid carrier intermediates. Yet, bacitracin does not target lipid II, but the lipid carrier 

in its undecaprenyl pyrophosphate form (Stone & Strominger, 1971).  

Bacitracin is a cyclic peptide antibiotic, produced by B. subtilis or B. licheniformis strains 

(Johnson et al., 1945). It is active against many Gram-positive bacteria, including pathogens 

of the Staphylococcus, Streptococcus and Clostridium genera (Ming & Epperson, 2002). It is 

thus not surprising that bacitracin has been applied in human and veterinary medicine as 

topical ointment to prevent infection or administered orally against gastrointestinal 

infections (Ming & Epperson, 2002).  

Bacitracin is synthesised by non-ribosomal peptide synthases as mixture of closely related 

derivatives (bacitracin A, B, D, F and variations thereof), with bacitracin A being the most 

antimicrobially potent, and the oxidised form, bacitracin F, being the least active (Storm & 

Strominger, 1973). Bacitracin A consists of twelve amino acid residues (L-Ile1-L-Cys2-L-Leu3-

D-Glu4-L-Ile5-L-Lys6-D-Orn7-L-Ile8-D-Phe9-L-His10-D-Asp11-L-Asn12), of which residue 1 and 2 

form a thiazoline ring at the N-terminus (Fig. 1.3 A). The condensation of the C-terminal 

asparagine and the lysine at position 6 results in a lariat-shaped structure, typical for cyclic 

peptides (Ming & Epperson, 2002).  

The antimicrobial activity of bacitracin is based on specifically binding the undecaprenyl 

pyrophosphate lipid carrier (UPP), and in turn preventing its dephosphorylation (Stone & 

Strominger, 1971, Storm, 1974). This inhibits the recycling of the lipid carrier and arrests the 

lipid II cycle. While bacitracin binds UPP and other pyrophosphate-containing isoprenoids 

with a Kd of around 1 μM, it has much lower affinity to the dephosphorylated form, UP (Storm 

& Strominger, 1973). 

Bacitracin requires divalent metal cations for its antimicrobial activity. Its activity has been 

shown to increase in the presence of Mg2+, Ca2+ and Cu2+ ions, amongst others. In complex 

with Zn2+ ions, bacitracin was shown to be in its most active state (Stone & Strominger, 1971).  

The crystal structure of bacitracin in complex with both, zinc ions and the shorter geranyl 

pyrophosphate as surrogate for UPP, was solved recently giving an excellent insight into the 

target recognition and binding (Economou et al., 2013). Bacitracin binds tightly to the 

pyrophosphate moiety by forming a closed, dome-like structure around it (Fig. 1.3 C). Direct 

interactions between bacitracin and the phosphate groups of the lipid, as well as indirect 

interactions mediated via Zn2+ and Na+ ions were observed. Upon UPP binding, bacitracin 
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undergoes an extensive conformational change (Economou et al., 2013). Remarkably, target-

bound bacitracin has a truly amphipathic configuration, with almost all polar residues 

interacting with the pyrophosphate group and facing the membrane surface (Fig. 1.3 B). All 

non-polar residues are buried towards the membrane environment and some of them are 

thought to interact with the adjacent isoprenoid unit (Economou et al., 2013). The structural 

insights also give an explanation as to why, in contrast to other antimicrobial peptides, 

bacitracin does not target lipid II. The sugar and peptide moieties attached to the 

pyrophosphate are simply too large to fit into the tight amphipathic shell formed by 

bacitracin (Fig. 1.3 C, Economou et al., 2013).  
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Figure 1.3: Bacitracin adopts an amphipathic configuration upon target binding. A: 

Schematic structure of bacitracin A, indicating the amino acid residues. Grey: no charge, red: 

negatively charged, blue: positively charged. Leu: leucine, Glu: glutamate, Ile: isoleucine, Lys: 

lysine, Orn: ornithine, Phe: phenylalanine, His: histidine, Asp: aspartate, Asn: asparagine. B: 

Amphipathic configuration of bacitracin. The peptide backbone is coloured yellow, 

hydrophilic side chains are coloured blue, and hydrophobic side chains are coloured red 

(Economou et al., 2013). C: Opaque surface representation of bacitracin bound to geranyl 

pyrophosphate from different angles. This depiction highlights the almost complete burial of 

the pyrophosphate group (Economou et al., 2013).  
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4. Resistance and self-protection against AMPs in Firmicutes 

Similar to resistance against other classes of antibiotics, bacteria have evolved different 

defence strategies to circumvent growth inhibition or even death caused by antimicrobial 

peptides. Further, the producer strains of AMPs of course need to protect themselves from 

the antimicrobial action of their products. Among these adaptations are modifications of the 

cell wall and the cell membrane or the destruction of AMPs. Furthermore, different variants 

of transporters or specific resistance proteins have been described (Draper et al., 2015, 

Revilla-Guarinos et al., 2014, Joo et al., 2016). Numerous mechanisms of immunity and 

resistance against AMPs could be discussed, but the following paragraphs focusses on 

examples of resistance mechanisms of low GC content Gram-positive bacteria, also known 

as Firmicutes.  

 

4.1 Modifications of cellular targets to evade AMP action 

Modifications of the cellular targets of AMPs can include alterations of membrane charge or 

fluidity or structural modifications of the targets to avoid interaction with AMPs.  

One example of phospholipid modifications is the lysinilation of membrane phospholipids 

(Peschel et al., 2001). In S. aureus and other Gram-positives, the phosphatidylglycerol lysyl-

transferase MprF modifies the membrane lipid phosphatidylglycerol with L-lysine, thereby 

neutralising the anionic net charge of the membrane (Draper et al., 2015). MprF-mediated 

AMP resistance is thus most likely based on repulsion of cationic AMPs.  

Another well-described example is the D-alanylation of lipo- and wall teichoic acids (Neuhaus 

& Baddiley, 2003, Revilla-Guarinos et al., 2014). Facilitated by the dltABCD operon, a D-

alanine residue is added onto a free hydroxyl group of the repeating sugars of lipo- and wall 

teichoic acids (Perego et al., 1995). The D-Ala esterification leads to the incorporation of 

positive residues into the cell envelope and higher resistance against many cationic AMPs 

(Draper et al., 2015). Moreover, also vancomycin resistance in several Gram-positive strains 

is caused by target alteration. These strains contain operons encoding enzymes that are able 

to modify the stem peptide of lipid II (Courvalin, 2006). In the presence of vancomycin stress, 

these enzymes are produced and alter the C-terminal D-Ala residue to D-lactate or D-serine. 

As vancomycin only targets the D-Ala-D-Ala moiety of the lipid II stem peptide (Wang et al., 

2018), it has much lower affinity to the modified stem peptide, and thus cannot block the cell 

wall synthesis anymore (Courvalin, 2006).  
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Target alteration further plays a role in bacitracin resistance. Bacitracin targets the 

pyrophosphate moiety of undecaprenyl pyrophosphate (UPP), but has significantly lower 

affinity to UP (Storm & Strominger, 1973). In B. subtilis, the dephosphorylation reaction of 

UPP to UP is catalysed by the UPP phosphatases BcrC and UppP (Bernard et al., 2005, Zhao 

et al., 2016, Radeck et al., 2017a). By removing a phosphate group the phosphatases 

contribute to resistance against bacitracin. To adjust the levels of UPP dephosphorylation, 

BcrC production is regulated by the extracytoplasmic function (ECF) σ factors, σM and σX (Cao 

& Helmann, 2002). In the presence of antimicrobial stress, including bacitracin, the 

production of BcrC is upregulated, providing additional protection against bacitracin.  

 

4.2 Inactivation or degradation of AMPs in the extracytoplasmic space 

While the just described resistance mechanisms focus on modifications of the cellular target, 

most more specific defence strategies involve a direct interaction with the AMP. In many 

cases, resistance determinants neutralise the AMP by degradation or inactivation in other 

ways.  

An example for inactivation of an AMP in the extracellular space is the phospholipid-shedding 

mechanism, observed in Agr-defective Staphylococcus aureus mutants, resulting in 

resistance against the last-resort lipopeptide antibiotic daptomycin (Pader et al., 2016). 

Daptomycin targets the bacterial cell membrane and leads to inhibition of the cell wall 

synthesis and decrease of the membrane potential by rearrangement of lipid domains 

(Muller et al., 2016). In response to daptomycin, S. aureus cells are thought to release 

phospholipids from the membrane that bind daptomycin, and thereby inactivate the 

antibiotic (Pader et al., 2016).  

As an alternative to inactivation via binding the AMPs in the extracellular space, many Gram-

positive bacteria produce extracellular proteases that degrade the AMPs by proteolysis. In 

general, AMP degrading proteases possess a broad substrate range and can either be 

secreted into the extracellular space or attached to the outer face of the cytoplasmic 

membrane (Nawrocki et al., 2014).  

The nisin resistance protein NSR is an example for peptidases that specifically provide 

resistance against nisin and potentially also closely-related lantibiotics (Sun et al., 2009). 

Conserved nsr operons are present in various Gram-positive species, including human 

pathogens (Khosa et al., 2013, Khosa et al., 2016b). NSR is a 35 kDa lipoprotein and anchored 
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to the cytoplasmic membrane via an N-terminal hydrophobic transmembrane helix (Khosa et 

al., 2013).  

Nisin and other lantibiotics are generally well-protected against proteolysis by their stable 

lanthionine and methyllanthionine rings. Nevertheless, NSR peptidases that belong to the 

family of C-terminal processing serine peptidases inactivate the AMPs by degradation. The 

mechanism of nisin degradation has been revealed for NSR of Lactococcus lactis TS1640 (Sun 

et al., 2009). NSR cleaves the peptide bond between the methyllanthionine residue at 

position 28 that builds the methyl-lanthionine ring E and the serine at position 29. In doing 

so, nisin loses its six amino acids-long C-terminal tail, and in turn its antimicrobial potency 

decreases 100-fold (Sun et al., 2009).  

The structure of NSR of Streptococcus agalactiae has recently been revealed and showed 

that NSR forms a central, hydrophobic tunnel, which likely harbours both, the substrate 

binding domain and the active site required for peptidase activity (Khosa et al., 2016a). The 

core domain of NSR exhibits a ‘TASSAEM’ motif, which is highly conserved within the NSR 

superfamily and contains the catalytically active serine at position 236, facing the inside of 

the tunnel. The serine residue lies in close vicinity of a conserved histidine residue, and jointly 

they form the active site responsible for nisin cleavage (Khosa et al., 2016a). A structural 

model suggests the C-terminal lanthionine rings D and E of nisin to play a major role in 

substrate recognition as well as for the orientation and accurate positioning of the peptide 

in the active site of NSR. Accordingly, residues asparagine, methionine and isoleucine at 

positions 172 to 174 seem to form a hydrophobic pocket to accommodate rings D and E of 

nisin (Khosa et al., 2016a).  

 

4.3 Transport of AMPs as immunity and resistance strategy 

A well-known strategy to mediate resistance against antibiotics as well as AMPs is by 

transport. In the superfamily of ATP-binding cassette (ABC) transporters, several subgroups 

contain members involved in either resistance or immunity against AMPs in Firmicutes 

(Gebhard, 2012). Here, ‘resistance’ is defined as the protection against exogenously-

produced compounds, while ‘immunity’ describes the self-protection of producer strains 

against their own product. 
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4.3.1 LanFEG-type transporters mainly mediate self-protection in lantibiotic producers. 

LanFEG transporters consist of two permeases of 200 to 250 amino acids. Each permease 

comprises six transmembrane helices and is linked to one ATPase (Fig. 1.4 A, Gebhard, 2012). 

Most of the transporters described in this family are involved in self-protection of producer 

strains against lantibiotics, and co-produced in the biosynthesis gene cluster of the 

corresponding lantibiotic (Colin et al., 2008, Alkhatib et al., 2012). Well-studied examples 

include the immunity to nisin in L. lactis, conferred by NisFEG (Stein et al., 2003) and self-

protection against subtilin in B. subtilis ATCC6633 provided by SpaFEG (Stein et al., 2005). 

Generally, the substrate specificity of LanFEG transporters was found to be very narrow and 

specifically directed against the endogenously produced lantibiotic or structurally very 

closely related derivatives (Gebhard, 2012). The transporter EpiFEG can recognise the highly 

similar class I lantibiotics epidermin and gallidermin, but does not confer protection against 

nisin (Otto et al., 1998). Consistently, no cross-immunity has been observed for nisin and 

subtilin by SpaFEG and NisFEG, respectively (Stein et al., 2003, 2005).  

In contrast to immunity-conferring transporters, the transporter CprABC of Clostridium 

difficile is not associated with a biosynthesis cluster typical for lantibiotics, and thus it 

provides resistance to exogenously-produced antimicrobial peptides rather than self-

protection (McBride & Sonenshein, 2011, Gebhard, 2012). Interestingly, the substrate range 

of CprABC seems to be broader than observed for lantibiotic immunity transporters. CprABC 

confers resistance to nisin and gallidermin (McBride & Sonenshein, 2011). 

The direction of substrate transport has been determined for several LanFEG-type 

transporters. Studies using peptide release assays or transport studies with fluorescently-

labelled lantibiotics concluded unambiguously that the substrate is exported away from the 

membrane, where the targets of lantibiotics, lipid II cycle intermediates, are located (Otto et 

al., 1998, Stein et al., 2003, Stein et al., 2005, Okuda et al., 2008).  

 

4.3.2 BcrAB-type transporters are ancestors of LanFEG-type transporters. 

BcrAB-like transporters consist of one permease of around 230 amino acids with six predicted 

transmembrane helices and one ATPase (Fig. 1.4 B, Gebhard, 2012). To be functional, this 

type of transporters forms an A2B2 dimeric transporter. A well-characterised member is 

BcrAB of B. licheniformis ATCC10716, a bacitracin producer strain. The genes encoding BcrAB 

are clustered within the bacitracin biosynthesis locus (Neumüller et al., 2001). Thus, it is not 

surprising that BcrAB confers immunity against the antimicrobial peptide bacitracin 
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(Podlesek et al., 1995, Podlesek et al., 2000). A second characterized transporter is BcrAB of 

Enterococcus faecalis (Manson et al., 2004). In this case, BcrAB is not associated with 

bacitracin production, but confers high levels of resistance against the cyclic peptide in 

numerous Enterococcus species including clinical isolates (Manson et al., 2004, Matos et al., 

2009).  

The transport mechanism of this group remains elusive. BcrAB of B. licheniformis was 

proposed to act akin to the mammalian multidrug transporter P-glycoprotein, which binds 

its substrate directly in the hydrophobic membrane environment and expels it from the 

membrane into the extracellular space (Higgins & Gottesman, 1992, Gottesman & Pastan, 

1993, Podlesek et al., 1995). This hypothesis, however, has never been proven 

experimentally for BcrAB. Experimental evidence for AMP expulsion from the membrane is 

only available for LanFEG-type transporters that have been shown to descend from BcrAB 

transporters (Gebhard, 2012). Thus, a similar transport mechanism is likely.  

 

4.3.3 BceAB-like transporters confer resistance against a broader substrate range. 

BceAB-like transporters comprise two proteins, one ATPase and one large permease of 

approximately 650 amino acids (Fig. 1.4 C, Gebhard, 2012). The permease consists of ten 

predicted transmembrane helices with a large extracellular domain of around 200 amino 

acids, located between helices 7 and 8 (Fig. 1.4 C). In contrast to other ABC transporters, the 

permeases of BceAB-like transporters do not further dimerise. Yet, BceB-like permeases 

possibly form ‘pseudo heterodimers’ with themselves, as they were found to contain 

conserved domains (TMH1-4, TMH7-10, Khwaja et al., 2005, Dintner et al., 2014).  

BceAB-like transporters are, with some exceptions, not associated with the biosynthesis gene 

clusters of AMPs (Gebhard, 2012). In contrast to the described LanFEG- and BcrAB-type 

transporters, BceAB-like transporters were shown to generally possess a broader substrate 

range by conferring resistance against several AMPs (Gebhard, 2012). The substrates of 

BceAB-like transporters are often structurally very different from each other and not 

restricted to the group of lantibiotics, but can also include cyclic peptides, glycopeptides or 

β-lactam antibiotics. Furthermore, BceAB-like transporters provide protection against 

defensins and cathelicidins of mammalian origin (Dintner et al., 2011, Gebhard & Mascher, 

2011, Staron et al., 2011, Gebhard, 2012).  

For this type of transporter, the transport mechanism remains puzzling. Several opposing 

hypotheses have been proposed, but only a few are supported by direct experimental data 
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(Ohki et al., 2003, Rietkötter et al., 2008, Kingston et al., 2014, Reiners et al., 2017). 

Furthermore, the molecular mechanism of substrate recognition and specificity are currently 

unknown.  

The characteristic large extracellular domain of BceAB-like transporters poses a major 

difference to the domain architectures of the other here described transporters that confer 

resistance or immunity against AMPs in Firmicutes (Fig. 1.4 C). As BceAB-like transporters 

showed a much broader substrate range, this extracellular domain could be responsible for 

substrate recognition and specificity. The extracellular domain was shown to be essential for 

transporter function (Rietkötter et al., 2008, Coumes-Florens et al., 2011). Further, domain 

swap experiments between two S. aureus transporters led to an exchange of substrate 

specificity and indicated that the domain was likely responsible for the determination of the 

substrate specificity (Hiron et al., 2011).  

 

4.4 Sequestration of AMPs by resistance and immunity proteins 

In an alternative mechanism to transport, many Gram-positives produce proteins that 

sequester AMPs in the extracellular space to counteract their antimicrobial effect on the cell 

surface. 

One example of a protein that is secreted into the extracellular environment and confers 

resistance against AMPs by sequestration is SIC (Streptococcal inhibitor of complement) of 

Streptococcus pyogenes (Neuhaus & Baddiley, 2003). This hydrophilic protein acts by binding 

AMPs, including α-defensin and LL-37. In doing so, SIC keeps the AMPs away from the 

membrane, and in turn inhibits their antimicrobial activity against the bacterium (Frick et al., 

2003).  

Other proteins that bind specific AMPs in the extracytoplasmic space, but are anchored or at 

least tethered to the membrane, are LanI or LanH immunity proteins. As described before, 

self-protection against lantibiotics is generally conferred by LanFEG-type ABC transporters. 

In addition, lantibiotic biosynthesis loci regularly contain genes encoding LanI or LanH 

lipoproteins (Fig. 1.4 A, Colin et al., 2008, Alkhatib et al., 2012). 

 

4.4.1 The LanI proteins SpaI and NisI directly bind their substrates. 

Among the best-described LanI immunity proteins are NisI and SpaI, which protect their 

corresponding lantibiotic producer strains against nisin or subtilin, respectively. Both 

proteins mediate some level of immunity when produced in the absence of the LanFEG 
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transporters, but full protection was only achieved when NisI or SpaI and the cognate 

immunity transporter were both present (Stein et al., 2003, Stein et al., 2005). As the effect 

of both immunity determinants was additive, the immunity is thought to be provided by two 

independent protection mechanisms, rather than by a cooperative mode of action (Stein et 

al., 2003, 2005).  

NisI and SpaI both interact directly with their substrate (Stein et al., 2003, Takala et al., 2004, 

Stein et al., 2005). They were not shown to modify or degrade the lantibiotic and are thus 

thought to confer immunity by sequestration of the lantibiotic (Khosa et al., 2016b). Although 

subtilin and nisin are similar peptides, no cross-immunity against the other lantibiotic is 

provided by either of the proteins, pointing towards a highly specific mode of substrate 

recognition. Additionally, the two LanI proteins seem to differ significantly in size and were 

found to only have little sequence homology (Christ et al., 2012a, Hacker et al., 2015b).  

SpaI is a 16.8 kDa lipoprotein that is attached to the surface of the cytoplasmic membrane 

via a covalent diacylglycerol anchor (Fig. 1.4 A). The positively-charged N-terminus forms a 

flexible linker between the lipid anchor and the SpaI core domain. When in the membrane 

environment, the N-terminus is thought to form an amphipathic helix. The structured part of 

SpaI mainly consists of β-strands and α-helices that assemble to a novel three-dimensional 

fold. They form a twisted antiparallel β-sheet, which is flanked by an unusually long β-hairpin 

(Christ et al., 2012a, 2012b).  

The exact subtilin binding site of SpaI remains puzzling. Two possibilities have been proposed: 

a hydrophobic patch surrounded by negatively charged residues facing the periplasm, or the 

surprisingly negatively charged surface in vicinity to the likewise negatively charged 

membrane. This anionic surface is thought to bind the overall positively charged subtilin, 

either by competing with the pyrophosphate moiety of lipid II as alternative target for subtilin 

or by binding the two positively charged residues within the C-terminus of lipid II-bound 

subtilin (Christ et al., 2012a, 2012b). In agreement, also the structures of the LanI homologs 

EntI and EriI revealed this negatively charged surface, indicating it is important for binding 

the positively charged lantibiotics, entianin and ericin, respectively (Christ et al., 2012a).  

NisI consists of two independent domains (12.7 and 14 kDa), connected by a flexible linker 

(Fig. 1.4 A, Hacker et al., 2015a, Hacker et al., 2015b). Interestingly, the three-dimensional 

fold of both domains is highly similar to each other, and to the core domain of SpaI. Despite 

their structural similarity, the two NisI domains possess quite different surface properties. 

Similar to SpaI, the surface of the N-terminal domain is positively charged and was shown to 

interact with the membrane. The C-terminal domain of NisI is highly negatively charged, as 
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is the core region of SpaI. The anionic C-terminal domain was shown to harbour the nisin 

binding site (Hacker et al., 2015b). The amino acids thought to be responsible for nisin 

binding are located in proximity to the N-terminal domain and are involved in interaction 

between the domains in the absence of nisin. NisI binds nisin with a Kd in the micromolar 

range (Takala et al., 2004). The low-affinity interaction is surprising, considering that nisin 

has antimicrobial activity in the low nanomolar range. This finding led to the idea that the 

immunity mechanism of NisI might not be the simple sequestration of nisin from the 

extracellular environment, but might involve the membrane-anchored target, lipid II (Hacker 

et al., 2015b). Supporting this argument, a possible lipid II binding site of NisI was determined 

recently (Jeong & Ha, 2018). 

 

4.4.2 NukH and NukFEG use a cooperative immunity mechanism. 

A direct binding interaction between substrate and the extracytoplasmic immunity 

determinant was also observed for the LanH immunity protein, NukH (Colin et al., 2008). 

With three predicted transmembrane helices, NukH is located at the cytoplasmic membrane 

(Fig. 1.4 A), and structurally different from the LanI proteins described above (Okuda et al., 

2005). NukH provides protection against the class II lantibiotics nukacin ISK-1 and lacticin 481 

and was shown to directly recognise and capture nukacin ISK-1 via its C-terminus (Okuda et 

al., 2008). Interestingly, NukH in combination with the LanFEG-type transporter NukFEG 

provided a much higher degree of immunity than the sum of both together, suggesting a 

cooperative immunity mechanism (Aso et al., 2005). It was thus proposed that NukH acts as 

substrate binding protein for NukFEG, and that nukacin ISK-1 is being transported away from 

the membrane by NukFEG after being sequestered by NukH (Okuda et al., 2008).  

  



 

Chapter I: Introduction  35 

 
 

4.4.3 PepI seems to sequester the cellular target rather than the lantibiotic. 

Yet, not all Lan immunity proteins seem to work by sequestration of the lantibiotic (Colin et 

al., 2008). Immunity of Pep5-producer Staphylococcus epidermidis against this class I 

lantibiotic is solely mediated by PepI, as it has not been found to be associated with a LanFEG-

type transporter. PepI is located and functions at the outer face of the cell membrane (Fig. 

1.4 A, Reis et al., 1994, Hoffmann et al., 2004). It consists of a hydrophobic, likely membrane-

associated N-terminus, and a hydrophilic C-terminus that is essential for mediation of 

immunity (Fig. 1.4 A, Hoffmann et al., 2004). The C-terminal region contains multiple 

positively charged residues, which makes it unlikely to directly interact with the likewise 

cationic Pep5 (Kaletta et al., 1989). Instead, PepI was proposed to bind the cellular target of 

the lantibiotic, shielding the target from the inhibitory effect of Pep5. The exact target of 

Pep5 has not yet been determined (Oppedijk, 2017), but it is likely to be an anionic compound 

of the cell envelope, which could then directly be bound by the positively charged stretches 

of PepI (Hoffmann et al., 2004, Colin et al., 2008).  

 

While the described LanI and LanH immunity proteins all seem to either sequester the 

lantibiotic or bind the cellular target to shield it from inhibition by the AMP, their structural 

and other characteristic features are highly variable and also the immunity mechanisms seem 

to differ between Lan immunity proteins. These examples demonstrate the enormous variety 

of resistance and immunity strategies bacteria are able to develop to confer resistance, even 

against AMPs, the promising candidates for new therapeutics.  
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Figure 1.4: Schematic domain architectures of ABC transporters subfamilies that mediate 

resistance or immunity against AMPs. A: LanFEG-like transporters are encoded in a lanFEG 

operon and are composed of two ATPase units (LanF) and two permeases (LanE and LanG), 

containing six TMHs each. LanFEG-like transporters are often co-produced with LanI or LanH 

immunity proteins. These proteins have variable domain architectures with some examples 

depicted. These immunity proteins are not in all cases associated with LanFEG transporters. 

B: BcrAB-like transporters are encoded in a bcrAB operon and are composed of two ATPase 

units (BcrA) and two permeases (BcrB), containing six TMHs each. C: BceAB-like transporters 

are encoded in a bceAB operon and are composed of two ATPase units (BceA) and one 

permease (BceB), containing ten TMHs. A characteristic large extracellular domain (around 

200 amino acids) is located between TMH7 and TMH8.   
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5. Substrate recognition of regulatory and resistance proteins 

It is of great importance to investigate and understand the immunity and resistance 

mechanisms bacteria already have developed, including the molecular details behind 

substrate recognition. AMPs can then be modified to escape the resistance determinants, 

while still maintaining their antimicrobial potency. A recent example is the development of a 

nisin variant in which the serine residue at position 29 was replaced with a proline. The nisin 

variant S29P upheld the level of antimicrobial activity against a variety of target strains, and 

revealed increased activity against strains producing the NSR resistance protein (Field et al., 

2018). The reason for the decrease in resistance of the NSR producing strain is that the serine 

peptidase NSR could not cleave off the six C-terminal amino acids as it requires the serine for 

this action (Sun et al., 2009). Thus, NSR could not confer its usual level of resistance against 

nisin S29P.  

 

5.1 How do regulatory proteins sense AMPs in the extracytoplasmic space? 

Substrate recognition is the initial step of any resistance mechanism that involves direct 

interaction with AMPs. Additionally, many resistance determinants are regulated by sensory 

proteins, which can perceive their stimulus by direct binding of the AMPs, and subsequently 

facilitate the production of the resistance determinant. This task is often performed by two-

component regulatory systems, comprising a sensor kinase and a response regulator, or 

regulators that combine both functions in a single protein. When stimulus perception and 

signal transfer of these regulatory proteins are impaired, the response of bacteria against 

antimicrobial stress cannot be upregulated, leaving the cell vulnerable. Understanding the 

mechanistic details of substrate recognition of regulatory proteins is thus as important as 

understanding the resistance mechanism itself. As most AMPs target the cell envelope of 

bacteria, the following focusses on stimulus perception in the extracytoplasmic space or 

membrane interface.  
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5.1.1 Prototypical periplasmic-sensing histidine kinases detect AMPs via an 

extracytoplasmic domain. 

Many LanFEG-type transporters like NisFEG or SpaFEG are associated with and their 

production regulated by LanRK systems (NisRK and SpaRK, respectively, Alkhatib et al., 2012). 

The sensor kinases LanK have been shown to act by auto-inducing lantibiotic biosynthesis 

and immunity in response to the extracellular lantibiotic itself (Kleerebezem, 2004, Gebhard, 

2012). The induction of LanK is highly-specific to the corresponding lantibiotic, and with 

detection of the lantibiotic in the picomolar range, also highly sensitive (Kuipers et al., 1995). 

LanK kinases are classified as prototypical periplasmic-sensing histidine kinases (Mascher et 

al., 2006, Gebhard, 2012). The N-terminal stimulus-perceiving input domain of these kinases 

consists of two transmembrane helices, connected via a 50 to 300 amino acid-long 

extracytoplasmic domain. Their C-terminal cytoplasmic transmitter domain contains a 

conserved histidine residue for autophosphorylation, followed by the highly conserved 

catalytic domain (Mascher et al., 2006). The extracellular domain has been shown to be 

important for substrate recognition and specificity by domain swap experiments between 

SpaFEG and NisFEG (Kleerebezem, 2004). The domains are thought to directly bind the 

lantibiotic, but the details behind the binding mechanism remain enigmatic (Kleerebezem, 

2004).  

The related prototypical periplasmic-sensing histidine kinase PhoQ is involved in regulation 

of antimicrobial peptide resistance in many Gram-negative bacteria (Bader et al., 2005, 

Mascher et al., 2006). The substrate binding mechanism of PhoQ, mediated by its periplasmic 

sensory domain, is well-understood and serves as example of substrate recognition of AMP-

sensing kinases. PhoQ is activated by low concentrations of cations and upon increasing 

concentrations of various AMPs, yet is repressed when divalent cations are abundant in high 

amounts (Bader et al., 2005). The periplasmic sensory domain of PhoQ does not contain a 

cavity or discrete binding pocket for substrate binding, but a rather flat and negatively 

charged surface on one side of the protein. This anionic surface is located in close proximity 

to the likewise negatively charged cytoplasmic membrane. In its repressed state, the sensory 

domain of PhoQ is tethered to the membrane by ionic interactions mediated by divalent 

cations (Bader et al., 2005). Recognition of cationic AMPs that often target the cell membrane 

disrupt the bond between the membrane and the kinase domain, as does the decrease of 

cations to low levels. As a result, the periplasmic domain is lifted off the negatively charged 

membrane. The concomitant structural rearrangement is transmitted via the 
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transmembrane helices and ultimately results in auto-phosphorylation of PhoQ and 

subsequent signal transfer (Bader et al., 2005, Mascher et al., 2006).  

 

5.1.2 The formation of hydrophobic pockets allows substrate recognition in the 

membrane. 

Two-component regulatory systems containing kinases that lack such periplasmic sensory 

domains often perceive the stimulus at or within the membrane interface (Mascher et al., 

2006). In the phylum of Firmicutes, several types of such ‘intramembrane’-sensing kinases 

were found to be involved in AMP sensing (Gebhard, 2012). These kinases can be responsible 

for regulation of resistance determinants (I 6.2). However, some examples instead regulate 

AMP production, often by a quorum sensing regulatory mechanism.  

Quorum sensing-based systems enable communication within a bacterial species, which is 

used to coordinate their collective behaviour (Miller & Bassler, 2001). The involved histidine 

kinases are thus classified as peptide quorum sensor kinases and contain six transmembrane 

helices, but lack a prominent extracellular domain (Mascher et al., 2006). When a certain 

threshold concentration of AMPs in the extracellular environment is reached, the 

corresponding kinase can detect them. Stimulus detection by these quorum sensor kinases 

involve substrate binding and recognition in the membrane environment. The 

transmembrane helices of such kinases form a hydrophobic pocket between them, in which 

a first non-sequence specific interaction with the substrate takes place. Subsequently, a 

sequence-specific interaction with one of the kinase’s extracellular loops triggers the 

signalling cascade (Mascher et al., 2006, Gebhard, 2012). Via the cognate response regulator, 

AMP production is upregulated, which ultimately results in a positive feedback loop (Mascher 

et al., 2006). 

In multiple cases, the production of antibiotic resistance is regulated by members of the 

xenobiotic response elements (XRE) regulator family, which include DNA-binding 

transcriptional regulators containing a helix–turn–helix motif (Gebhard, 2012). Bacitracin 

resistance of E. faecalis conferred by BcrAB, for example, is regulated by such a one-

component regulatory system. The transcriptional repressor BcrR is responsible for both, 

direct stimulus perception and signal transfer to the DNA-binding domain, which then 

facilitates the appropriate response to counteract the antimicrobial stress (Manson et al., 

2004, Gebhard et al., 2009). The N-terminus of BcrR contains the DNA binding domain. This 

region of BcrR was shown to be constitutively bound to two inverted repeat regions of the 
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bcrA promotor DNA in vitro, irrespectively of the presence or absence of the stressor 

(Gauntlett et al., 2008). The C-terminus is located in the cytoplasmic membrane and 

predicted to comprise four transmembrane helices, but lacks longer extracellular domains 

(Gauntlett et al., 2008). BcrR thus seems to be associated with its target DNA while localised 

in the membrane. This would require the respective DNA locus to be pulled towards the cell 

membrane. Yet this hypothesis has not been addressed further. 

BcrR was shown to directly bind the AMP bacitracin when it is in complex with Zn2+ ions 

(Gebhard et al., 2009). As bacitracin is unlikely to be imported into the cell due to its 

amphipathic nature, and because of BcrR’s lack of obvious input domains, bacitracin binding 

was suggested to potentially take place at the membrane interface (Gebhard et al., 2009). In 

agreement, a recent study suggested the putative bacitracin binding site in the second 

extracellular loop of the C-terminal transmembrane domain (Darnell et al., 2019). Further 

investigations are required to shed light on the details of the binding interaction between 

BcrR and bacitracin. Yet, also here substrate recognition in a hydrophobic pocket, formed 

between membrane-spanning helices, seems plausible.  

 

5.2 How do transporters recognise and bind AMPs in the extracytoplasmic space? 

On the grounds of recent structural studies, we have gained valuable insights into the 

substrate recognition of LanI-type immunity proteins (I 4.4.1) and other resistance proteins 

(I 5.1, Christ et al., 2012a, Hacker et al., 2015b, Khosa et al., 2016a, Jeong & Ha, 2018). 

However, little is known about how the resistance transporters described above recognise 

and bind their substrates in the extracytoplasmic environment, nor about which factors 

influence substrate specificity or binding affinity. Similar to prototypical periplasmic-sensing 

kinases, extracytoplasmic domains also seem to play an important role in substrate 

recognition and specificity of other resistance transporters. 

  



 

Chapter I: Introduction  41 

 
 

5.2.1 The periplasmic domains of RND-type multi-drug efflux pumps harbour the 

substrate binding sites. 

A well-described example is the resistance-nodulation-division (RND)-type multidrug efflux 

pump AcrB of E. coli (Pos, 2009, Du et al., 2018). acrB encodes a membrane-embedded 

transporter that forms a tripartite efflux pump by interacting with the periplasmic adapter 

protein AcrA (Murakami et al., 2002). The adapter molecule in turn stabilises the interaction 

with the outer membrane channel TolC, granting efflux across the outer membrane. 

Characteristically for multidrug pumps, AcrAB confers resistance against a vast number of 

lipophilic and amphipathic molecules including drugs, dyes and detergents (Elkins & Nikaido, 

2002). Conversely, the RND-family multidrug efflux pump AcrD has a fairly narrow substrate 

range and transports mainly hydrophilic substrates like aminoglycosides (Aires & Nikaido, 

2005).  

Both efflux pumps possess two characteristic large extracellular domains per protomer 

(Elkins & Nikaido, 2002). In domain swap experiments, in which the periplasmic loops of AcrB 

and AcrD were exchanged, Elkins and colleagues (2002) demonstrated that AcrDloop(AcrB) 

acquired the broader AcrB-like substrate specificity, while the substrate range of AcrBloop(AcrD) 

narrowed down to substrates characteristic for AcrD, confirming that the periplasmic loops 

were responsible for substrate specificity in RND-type multidrug efflux pumps.  

The periplasmic loops of AcrB form a so-called ‘pore’ domain on top of the central cavity that 

is located between the transmembrane domains (Murakami et al., 2002). The four 

subdomains of the pore harbour the main substrate binding sites. Access to these binding 

pockets is possible through several channel pathways, allowing the transporter to bind 

substrates directly from the periplasm, the periplasm-membrane interface or through the 

central cavity (Aires & Nikaido, 2005, Zwama et al., 2018). Proximal and distal binding pockets 

of this highly flexible domain are equipped with various polar, aromatic and hydrophobic 

residues, which makes them eminently suitable for binding a wide range of substrates 

(Nakashima et al., 2011). Conformational changes driven by the proton-motive force lead to 

substrate extrusion to the extracellular space via a funnel-like structure and the outer 

membrane channel TolC (Pos, 2009, Du et al., 2018), and thus to resistance against the 

transported molecule. The pore domain of the AcrB transporter is an excellent example for 

extracytoplasmic substrate binding domains that recognise substrates located in the 

membrane and feature a broad substrate range due their conformational flexibility.  
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5.2.2. Extracytoplasmic domains of ABC transporters are important for substrate 

interactions. 

Stressing their importance in substrate recognition and binding even further, 

extracytoplasmic binding domains are also important in ATP-binding cassette (ABC) 

transporters, which are closer related to the AMP resistance and immunity transporters 

described above (I 4.3).  

The ABC transporter MacB is known to form a tripartite efflux pumps with its adapter 

molecule MacA and the outer membrane channel TolC in various Gram-negative bacteria 

(Rouquette-Loughlin et al., 2005, Fitzpatrick et al., 2017, Crow et al., 2017, Okada et al., 

2017). With only four transmembrane helices and dimerisation instead of trimer formation, 

MacB has a very different membrane architecture to AcrB-type tripartite efflux pumps 

described above. Further, MacB contains only one large periplasmic domain between TMH1 

and TMH2. MacB confers resistance against macrolide antibiotics like erythromycin 

(Kobayashi et al., 2001) and is involved in secretion of enterotoxins (Yamanaka et al., 2008). 

Recently, MacB was also shown to mediate resistance against the AMPs bacitracin and 

colistin (Crow et al., 2017). Extensive site-directed mutagenesis revealed a cluster of 

mutations in the periplasmic domain that reduced antibiotic resistance to erythromycin as 

well as bacitracin and colistin in vivo. The mutation of eight polar and aromatic residues that 

lie in close proximity to each other and are located at the interior interface of the dimeric 

periplasmic domains had the most prominent effect on antibiotic resistance (Crow et al., 

2017). This region was therefore concluded to play a role in substrate recognition and 

binding. ATP-dependent dimerisation of the nucleotide binding domains (NBD) of MacB 

induces the opening and closing of the periplasmic domains via conformational changes of 

the transmembrane segments (Crow et al., 2017). By this, the substrate is thought to be 

extruded from its binding domains into the extracellular space, via the MacA-TolC efflux duct. 

Yet, extracytoplasmic domains are not only involved in AMP recognition and binding. LolCDE 

is an ABC transporter comprising a homodimer of the ATPase subunit LolD and one of each 

membrane-located proteins LolC and LolE forming a heterodimer (Yakushi et al., 2000). LolC 

and LolE both possess four transmembrane helices with a large extracellular domain between 

TMH1 and TMH2. In contrast to MacB, LolCDE does not form a tripartite drug efflux pump. 

Instead, LolCDE is crucial for the extraction of lipoproteins that are specific for the outer 

membrane of Gram-negative bacteria from the cytoplasmic membrane (Yakushi et al., 2000, 

Narita & Tokuda, 2017). Substrate binding of particular lipoproteins by LolCE was shown to 
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take place in the outer leaflet of the inner membrane. While the exact mechanism is 

controversial (Okuda & Tokuda, 2009, Mizutani et al., 2013, Crow et al., 2017), it is known 

that the hydrophobic lipoprotein is passed on to the periplasmic chaperone LolA (Taniguchi 

& Tokuda, 2008). The lipoprotein is then transferred to LolB, which facilitates its 

incorporation into the outer membrane. The recently determined structure of the 

periplasmic domain of LolC revealed a similar fold to the MacB substrate binding domain 

(Crow et al., 2017). Further, ATP binding by LolD, but not its hydrolysis, was shown to release 

the substrate from the LolCDE-substrate complex (Ito et al., 2006, Narita & Tokuda, 2006). 

These analogies to MacB suggest a similar role of the periplasmic domains in substrate 

binding and similarities in the transport mechanism.  

Moreover, FtsEX is a widely conserved protein among bacteria. Although it possesses an ABC 

transporter-like structure (Schmidt et al., 2004), FtsEX does not seem to play a role in drug 

efflux or substrate transfer. Its responsibility revolves around the coordination of 

peptidoglycan hydrolysis with cell division in numerous Gram-positive and Gram-negative 

bacteria (Yang et al., 2011, Sham et al., 2013, Meisner et al., 2013, Mavrici et al., 2014) or 

sporulation initiation in B. subtilis (Garti-Levi et al., 2008). FtsX contains a large 

extracytoplasmic loop, located between TMH1 and TMH2 of its four transmembrane helices. 

Several in vitro and in vivo studies of FtsX of various bacteria have shown that this domain 

directly interacts with its respective binding partner, proteins involved in peptidoglycan 

hydrolysis (Yang et al., 2011, Sham et al., 2013, Mavrici et al., 2014). Structures of FtsX of 

Mycobacterium tuberculosis revealed that the extracellular domain forms two flexible lobes 

with a hydrophobic cleft between them (Mavrici et al., 2014). Exposing four phenylalanine 

residues, the cleft was proposed to be the interaction site with the binding partner. Due to 

flexible hinge regions, the domain can acquire different conformations, thereby opening and 

closing the cleft (Mavrici et al., 2014). The signal inducing the structural readjustment to an 

activated state of FtsX is thought to be passed on from the ATPase FtsE (Mavrici et al., 2014). 
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6. The Bce system of B. subtilis is the paradigm for AMP resistance 

in Firmicutes. 

6.1 The Bce-like systems of the Gram-positive model organism B. subtilis 

To gain further insights into the substrate specificity of ABC transporters in Firmicutes and to 

ultimately elucidate their resistance mechanism against AMPs, we here focus on 

investigations on a resistance system of Bacillus subtilis 168 (from here onwards referred to 

as B. subtilis, if not further specified).  

B. subtilis serves as model organism of the phylum of low-GC content Gram-positive bacteria. 

The rod-shaped, soil-dwelling organism is amongst the best-characterised prokaryotes with 

regards to molecular and cell biology (Graumann, 2007). B. subtilis is non-pathogenic, and 

thus safe to work with, while closely related Bacillus species like B. cereus or B. anthracis are 

the cause of food-borne illness or anthrax, respectively. Full genome sequences (Kunst et al., 

1997, Barbe et al., 2009), and lists of essential genes and correlating gene deletion libraries 

of non-essential genes are available (Kobayashi et al., 2003, Peters et al., 2016, Koo et al., 

2017), as well as databases from other systems approaches (Moszer et al., 2002, Michna et 

al., 2014, Zhu & Stulke, 2018). Several ever-developing vector systems and toolboxes have 

been established for B. subtilis, facilitating molecular work (Radeck et al., 2013, Popp et al., 

2017, Radeck et al., 2017b, Liu et al., 2018). B. subtilis has thus also drawn attention as a 

chassis for synthetic biology approaches and as workhorse in biotechnology. Over decades, 

endless studies have shed light on the physiology, metabolic processes and the numerous 

differentiation strategies of B. subtilis, which include sporulation, cannibalism and 

competence (Lopez & Kolter, 2010). It is thus not surprising that also the resistance against 

AMPs via BceAB-like resistance transporters is best understood in B. subtilis.  

Three AMP sensing and resistance transporters of this type were found in B. subtilis. The 

YxdLM transporter is induced by the cathelicidin LL-37, while PsdAB mainly responds to 

lantibiotics, including nisin, subtilin, gallidermin and actagardine, but also the non-lantibiotic 

enduracidin (Staron et al., 2011). The name-giving paradigm of these transporters is BceAB, 

which senses and confers resistance against mersacidin, actagardine and the fungal AMP 

plectasin (Staron et al., 2011). Yet, the transporter is mainly known to act as the primary 

resistance determinant in the bacitracin resistance network of B. subtilis (Radeck et al., 

2016b).  
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6.2 The flux-sensing mechanism of BceAB-BceRS ensures need-based supply of 

resistance. 

Production of BceAB-like transporters is regulated via two-component regulatory systems. 

More than 200 BceAB-like transporters were found to be associated with such systems, 

consisting of a BceS-like histidine kinase and a BceR-like response regulator (Dintner et al., 

2011). A phylogenetic analysis classified BceB-like permeases and BceS-like kinases and 

revealed that they have co-evolved to form unique, self-sufficient resistance systems against 

AMPs in Firmicutes bacteria (Dintner et al., 2011). Yet, the distribution of resistance systems 

into phylogenetic groups did not allow further predictions of the function or substrate range 

of uncharacterised transporters, neither did the sequence analysis of their extracellular 

domains (Dintner et al., 2011).  

Signalling within the BceAB-BceRS system of B. subtilis operates according to a flux sensing 

mechanism (Fritz et al., 2015). The transmembrane segment of BceS-like kinases consists of 

two transmembrane helices, but lacks an obvious extracellular input domain (Mascher et al., 

2006). Classified as ‘intramembrane’ sensing histidine kinase, BceS cannot perceive the 

stimulus directly (Mascher et al., 2006, Mascher, 2014). Its N-terminus instead acts as a signal 

transfer domain. Even in the absence of antimicrobial stress, the kinase BceS interacts 

directly with the transport permease BceB, forming a sensory complex for the detection of 

AMPs (Dintner et al., 2014). As BceB was shown to directly bind bacitracin in vitro, the 

transporter is thought to have dual function and acts as both, the true sensor of AMPs as well 

as the resistance-mediating determinant against them (Dintner et al., 2014). 

In this novel way of sensing, the monitored parameter is the transport activity of BceAB 

resistance transporters. BceAB acts as a ‘flux sensor’, which passes information on its current 

transport rate on to the kinase BceS, rather than sensing the antibiotic concentration or 

downstream effects on the bacterial physiology (Fritz et al., 2015). BceAB transmits the signal 

onto BceS, which leads to intramolecular signal conversion and enables the ATP-dependent 

auto-phosphorylation of the highly conserved histidine residue of the kinase (Mascher, 

2014).  

Subsequently, the phosphate group is transferred onto an aspartate residue of the cognate 

response regulator BceR, which in turn binds to its target promotor PbceA. By this, expression 

of the bceAB operon is initiated and the ABC transporter BceAB is produced and incorporated 

into the cell membrane. This flux sensing mechanism allows the cell to constantly assess its 

current detoxification capacity and cost-efficiently adjust its level of transporter de novo 
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synthesis to the required level of protection (Fritz et al., 2015). The BceAB-BceRS system is 

the paradigm for more than 200 systems (Dintner et al., 2011) and recently other BceS-like 

kinases have been found to directly interact with their associated transporters (Randall et al., 

2018). It is thus likely that this type of signalling is wide spread in the regulation of 

antimicrobial resistance among the phylum of Firmicutes.    
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Figure 1.5: The BceAB-BceRS resistance system operates according to a flux-sensing 

mechanism. The schematic depicts the auto-regulation of the BceAB-BceRS system. The 

transporter BceAB (blue) and the histidine kinase BceS (red) form a sensory complex in the 

membrane (grey). BceAB acts as flux sensor and perceives the stimulus by a not yet 

understood mechanism (question mark). BceAB passes the signal on to BceS, which in turn 

triggers a signal cascade and activates its cognate response regulator BceR (red). BceR binds 

to the PbceA promotor region and activates transcription of bceAB (operon indicated by black 

and blue arrows), resulting in adjusted resistance levels. Dark blue crescent: bacitracin, UPP: 

undecaprenyl pyrophosphate. Arrows indicate the signal transfer and de novo production of 

BceAB.  
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6.3 The resistance mechanism and substrate specificity of BceAB remain unclear. 

While the insights into the communication between BceB and BceS taught us a lot about the 

regulation of BceAB-like transporters, the mechanism of resistance is not yet understood. 

Several different hypotheses have been proposed, which range from BceAB acting as an 

importer that internalises the AMP for degradation to BceAB exporting the AMP (Ohki et al., 

2003, Rietkötter et al., 2008). Recently, first indications were obtained that another BceAB-

like system might confer resistance by expulsion of the AMP away from the membrane into 

the extracellular space (Reiners et al., 2017). If and how such a mechanism could effectively 

provide protection from antimicrobial action has been subject to debate. 

It is further not known how the resistance transporters recognises or binds its substrate, and 

which features allow them to distinguish between them. While many BceAB-like systems are 

known to confer resistance against several AMPs, the basis of their substrate specificity 

remains elusive, with no pattern detected or prediction possible so far.  

The PsdAB-PsdRS system of B. subtilis is, for example, able to recognise structurally different 

AMPs like the lantibiotic nisin and the lipoglycopeptide enduracidin, but not ramoplanin, 

which is closely related to enduracidin (Gebhard & Mascher, 2011, Staron et al., 2011). PsdAB 

further confers resistance against actagardine, but not mersacidin, which is structurally very 

similar to actagardine. Within the same bacterial strain, however, BceAB recognises both, 

actagardine and mersacidin, but is not induced by nisin. Then again, BceAB also provides 

protection against bacitracin, which even targets a different molecule in the cell (Gebhard & 

Mascher, 2011, Staron et al., 2011). In contrast, a BceAB-like transporter of S. aureus has 

been found to mediate resistance against both, bacitracin and nisin (Hiron et al., 2011).  

To add to the confusion, it has been proposed that the transporter might not actually use the 

AMP as its physiological substrate. Instead, the transporter may import the cellular target of 

AMPs (Kingston et al., 2014), or was suggested to recognise the AMP in complex with its 

cellular target only (Mascher et al., 2003, Bernard et al., 2007). 

Extracytoplasmic domains often seem to play a key role in substrate recognition by kinases 

and resistance transporters that sense membrane-targeting AMPs. Due to its exposed 

location at the extracellular face of the membrane and its requirement for bacitracin sensing 

and resistance, the large extracellular domain of BceAB was proposed as potential binding 

domain (Rietkötter et al., 2008, Coumes-Florens et al., 2011). In S. aureus, this domain was 

shown to be responsible for the substrate specificity (Hiron et al., 2011). Yet, sequence 

analysis of all known extracellular domains did not reveal any correlations to a certain 
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substrate specificity (Dintner et al., 2011). Hence, the molecular bases and mechanisms 

behind substrate specificity and AMP binding remain unclear.  

The goal of this study was to understand the substrate specificity of BceAB and to test the 

role of its extracellular domain as the substrate binding domain. We also aimed to identify 

the true physiological substrate of BceAB. In doing so, we hope to shed light onto the 

controversies around the mechanism of the AMP resistance transporter BceAB. 
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7. Aims and objectives of this study 

The overall aim of my PhD project was to explore the substrate specificity of the antimicrobial 

resistance transporter BceAB of B. subtilis. Deciphering the underlying substrate specificity 

and recognition is enormously valuable to ultimately understand the resistance mechanism 

by which BceAB-like transporters confer resistance against AMPs. This knowledge can be 

used as a stepping stone to develop AMPs that are able to escape this type of resistance 

determinant as future therapeutics. The development of potent antimicrobial agents 

combined with tighter regulations of their use is crucial to counteract the emerging 

antimicrobial crisis, and to implement and secure global health.  

As we here investigate the substrate specificity of BceAB using both in vitro and in vivo 

approaches, the study was divided into two main sections, based on the nature of the 

experiments involved. 

 

7.1 In vitro characterisation of the binding capacity of BceB-ECD 

In the first part of this study, we focussed on the characterisation of the binding capacity of 

the putative binding domain of BceAB, its large extracellular domain (ECD). To this end, we 

used in vitro biochemical and biophysical techniques. The main objectives were:  

 

 To gain further insights into the predicted structural features and potential substrate 

binding sites by conducting an in silico analysis of BceB-ECD.  

 To facilitate the in vitro characterisation of BceB-ECD by establishing an optimised 

protocol for the overproduction and purification of this domain. 

 To examine the substrate binding ability of isolated and purified BceB-ECD in vitro by 

using biophysical approaches.  

 To investigate the substrate specificity and binding affinities of BceB-ECD for several 

antimicrobial peptides, as well as their cellular targets or surrogates thereof.  
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7.2 In vivo determination of the physiological substrate of BceAB 

In the second part of this study, we aimed to identify the physiological substrate of BceAB 

using in vivo approaches. To this end, we had the following objectives: 

 

 To examine the effect of BceAB on growth of B. subtilis and whether the transporter 

has an affinity to undecaprenyl pyrophosphate by performing growth and 

competition assays in the presence of different levels of BceAB.  

 To determine the variables that lead to changes in BceAB transport activity by using 

a PbceA luminescence reporter assay as proxy for transport activity and monitoring its 

response to varying concentrations of antimicrobial peptides, alterations of the 

amounts of cellular targets of AMPs available in the cell, or both.  
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1. Chemicals 

Media and buffer components and other materials used in this project were purchased from 

Merck, Sigma-Aldrich®, VWR® or Thermo Fisher Scientific Inc., if not stated otherwise. The 

antibiotics used in this study were purchased from Sigma-Aldrich®. Reagents used for 

molecular microbiological techniques (e.g. enzymes) were purchased from New England 

BioLabs Inc., unless stated otherwise. 

 

2. Bacterial strains and growth conditions 

E. coli and B. subtilis strains were routinely grown at 37 °C with agitation (180 – 200 rpm) in 

lysogeny broth medium (LB; 1 % (w/v) tryptone, 0.5 % (w/v) yeast extract, 1 % (w/v) sodium 

chloride, Bertani (1951)) or Müller-Hinton medium (MH, 0.2 % (w/v) beef extract, 1.75 % 

(w/v) acid hydrolysate of casein, 0.15 % (w/v) starch). Solid media contained 1.5 % (w/v) agar. 

Where required, B. subtilis strains were supplemented with 0.2 % (w/v) xylose. 

Selective media for E. coli strains contained ampicillin (100 µg/ml), chloramphenicol (30 

µg/ml) or spectinomycin (20 µg/ml). For B. subtilis strains chloramphenicol (5 µg/ml), 

kanamycin (10 µg/ml), spectinomycin (100 µg/ml), tetracycline (10 µg/ml) or erythromycin 

(1 µg/ml) and lincomycin (25 µg/ml, macrolide-lincosamide-streptogramin B, MLS) were used 

for selection.  

Bacitracin was purchased as zinc-salt from Sigma-Aldrich®. Mersacidin and deoxy-

actagardine B (for convenience hereafter actagardine) were kindly provided by Cantab Anti-

infectives Ltd. Stock solutions of antimicrobial peptides used for this study were prepared in 

dH2O+HCl (bacitracin), dH2O (nisin) or 100 % methanol (mersacidin, actagardine) at 

concentrations of 10 mM for in vitro and 10 mg/ml for in vivo experiments.  

Determination of the optical density at 600 nm wavelength (OD600) of liquid cultures was 

performed using a spectral photometer (Jenway 6320D, Bibby Scientific Limited) in cuvettes 

with a 1 cm light path length. All bacterial strains used in this study are listed in tables S1 and 

S2 (supplement).  
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3. DNA manipulations and transformations 

Vectors, plasmids and oligonucleotides involved in this study are depicted in tables S3, S4 

and S5 (supplement).  

 

3.1 Polymerase chain reaction 

Polymerase chain reactions (PCRs) for general cloning were performed using Q5® High-

Fidelity DNA polymerase (0.02 U/µl) according to the manufacturer’s instructions. The PCR 

reaction contained final concentrations of 1 × reaction buffer, 200 µM dNTPs, 0.5 µM forward 

primer, 0.5 µM reverse primer and up to 1 ng of plasmid DNA, when filled to final volume of 

50 µl with deionised H2O. PCR reactions were carried out in a PCR cycler (Biometra TPersonal, 

LABGENE Scientific SA) with a typical reaction cycle of: 30 s at 98 °C for initial denaturation, 

35 cycles of 10 s at 98 °C, 30 s at 58-60 °C and 30 s/kb at 72 °C. A final extension step was 

performed for 2 minutes at 72 °C. The resulting DNA fragments were separated by agarose 

gel electrophoresis (1 % w/v) in 0.5 × TAE buffer (20 mM Tris, 10 mM acetic acid, 0.5 mM 

EDTA, pH 8.0) containing 0.1 µl SYBR® Safe DNA gel stain (Thermo Fisher Scientific Inc.) per 

ml agarose solution for detection of bands using the ChemiDocTM XRS imaging system (Bio-

Rad Laboratories, Inc.). PCR products were purified using the E.Z.N.A® Cycle-Pure Kit (Omega 

Bio-tek) or extracted from an agarose gel using Monarch® DNA Gel Extraction Kit (New 

England BioLabs Inc.). Where genes were commercially synthesised, the procedure was 

performed by GenScript®. The downstream cloning was carried out as usual.   

 

3.2 DNA digest and ligation 

PCR products and vectors were digested with the respective enzymes as instructed by the 

manufacturer. Incubation was carried out at 37 °C for at least one hour. To avoid re-ligation, 

digested vector fragments were dephosphorylated by addition of alkaline phosphatase and 

incubated at 37 °C for another hour. Digested DNA fragments were purified using E.Z.N.A® 

Cycle-Pure Kit (Omega Bio-tek). Concentrations of purified DNA fragments and vectors were 

quantified by agarose gel electrophoresis. Generally, ligations were performed for one to two 

hours at room temperature or overnight at 4 °C in an at least 3:1 ratio of insert to vector and 

by using T4 DNA Ligase (final amount 400 units/reaction) following to the manufacturer’s 

instructions.  
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3.3 Plasmid extraction and verification of cloning 

Plasmids were extracted using a GeneJET Plasmid MiniPrep Kit (Thermo Fisher Scientific Inc.) 

or via alkaline lysis. For this, cells were harvested from an overnight culture and resuspended 

in 300 μl buffer P1 (50 mM Tris/HCl, 10 mM EDTA, 100 μg/ml DNase-free RNase, pH 8.0). 300 

μl lysis buffer were added (P2, 0.2 M NaOH, 1 % (w/v) SDS) as well as after inversion of the 

tubes, 300 μl buffer P3 for precipitation of chromosomal DNA (3 M potassium acetate, 5 % 

formic acid). The mixture was centrifuged and the supernatant transferred into a fresh tube. 

For precipitation of plasmid DNA, 0.7 volumes of 100 % isopropanol were added and after 

another centrifugation step, the pelleted DNA was washed with 70 % ethanol, air-dried and 

dissolved in dH2O. 

The correct insertion of the fragment was either verified by colony PCRs using OneTaq® 2 × 

Master Mix, following the manufacturer’s instructions or by restriction digest. Sequencing of 

plasmid DNA was performed by Eurofins Genomics GmbH, according to the instructions. The 

resulting sequences were analysed in silico using the freewares BioEdit (version 7.0.0, Hall, 

1999, Hall et al., 2011) and SerialCloner (version 2.5). 

 

3.4 Bacterial transformations 

3.4.1 Transformation of E. coli strains 

For transformations regarding general cloning, chemically competent cells of E. coli DH5α 

from the laboratory stock were used. Transformations for protein overproduction was 

carried out using E. coli BL21(DE3), purchased commercially from New England BioLabs Inc. 

Cells were gently defrosted and incubated with ~150 ng plasmid DNA on ice for at least 20 

minutes. A heat shock was performed at 42 °C for 90 s, followed by 2 minutes recovery on 

ice. Cells were further incubated in 1 ml LB for roughly 1 hour at 37 °C with agitation. Cells 

were gently harvested, the cells resuspended and plated on selective medium. Plates were 

incubated overnight at 37 °C. 

 

3.4.2 Transformation of B. subtilis 

B. subtilis transformations were performed using a modified version of the Paris protocol 

(Kunst & Rapoport, 1995). Overnight cultures of recipient strains were grown in 500 µl Paris 

medium (60 mM K2HPO4, 44 mM KH2PO4, 1 mg/ml trisodium citrate, 1 % (w/v) glucose, 0.4 

% (w/v) potassium L-glutamate, 0.1 % (w/v) casamino acids, 2.2 µg/ml ferric ammonium 
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citrate, 3 mM MgSO4, 25 µg/ml tryptophan) at 37 °C with aeration (180 rpm). Day cultures 

were inoculated 1:50 in fresh, pre-warmed Paris medium and grown for 3 hours (37 °C, 180 

rpm). 50 µl of isolated genomic DNA were added to each transformation reaction. Genomic 

DNA was isolated by mixing an overnight culture 1:1 with SC buffer (150 mM NaCl, 10 mM 

sodium citrate, pH 7.0) and harvesting the cells by centrifugation (5 min, 13000 × g). The 

pellet was resuspended in SC buffer and incubated with lysozyme at 37 °C for 15 minutes. 

The solution was mixed 1:1 with 5 M NaCl and filter sterilised. Transformation cultures were 

grown for another 5 hours and plated on selective media. For MLS or chloramphenicol 

resistance, cultures were pre-induced to a 1:40 final concentration of the respective 

antibiotic one hour before plating. 

 

4. Overproduction and purification of BceB-ECD 

4.1 Overproduction of BceB-ECD 

Overnight cultures were inoculated in LB with fresh transformants and grown at 37 °C shaking 

incubation. Cultures for overproduction of BceB-ECD were inoculated 1:100 from an 

overnight culture of E. coli BL21(DE3) carrying the respective plasmid. Cells were incubated 

at 37 °C with agitation (180 – 200 rpm). Gene expression was induced with 1 mM isopropyl 

β-D-1-thiogalactopyranoside (IPTG, Thermo Fisher Scientific Inc.) during the exponential 

growth phase (OD600 of 0.5 – 0.6). The cultures were further incubated at 16 °C, 180 – 200 

rpm for 18 – 24 h. Depending on the culture size, cells were either harvested at by 

centrifugation in an Avanti® J-25 centrifuge (Beckman Coulter, Inc., JLA-10.500) at 18,600 × 

g for 10 min or in a Centrifuge 5804R (Eppendorf AG, A-4-44) at 4500 × g for 20 min. Both 

centrifugation steps were performed at 4 °C. Pellets were stored at - 80 °C until further use. 

 

4.2 Cell lysis 

Cell pellets were defrosted in lysis buffer (1 ml/g pellet; 50 mM Tris/HCl [pH8], 0.5 M NaCl, 5 

mM dithiothreitol (DTT), 0.1 mM n-dodecyl-β-D-maltoside (DDM, GLYCON Biochemicals 

GmbH), 0.2 U/ml Benzonase® nuclease (Sigma-Aldrich®), lysozyme and protease inhibitor 

cocktail (cOmpleteTM ULTRA Tablets, EDTA-free, Roche). Cells were lysed by sonication (30 s 

for every 5 ml of cell suspension). The supernatant was separated from debris by 

centrifugation using an Avanti® J-25 centrifuge (Beckman Coulter, Inc., JA-25.50, 75600 × g, 
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30 min, 4 °C). The pellet was stored at - 80 °C and used for SDS PAGE and attempts of refolding 

protein from inclusion bodies. The supernatant was filtered (0.45 µm) and immediately used 

for downstream purification steps. 

 

4.3 Refolding BceB-ECD from inclusion bodies 

Pellets of lysed cells were defrosted and resuspended in wash buffer (4 ml/g pellet, 50 mM 

Tris/HCl [pH8], 0.5 M NaCl, 1 % (v/v) Triton X-100). Inclusion bodies were harvested using a 

pre-cooled centrifuge at 4500 × g for 20 min. The wash and centrifugation steps were 

repeated until the pellet appeared white. The pellet was split and transferred into 

microcentrifuge tubes labelled with the weight of the sample. Inclusion bodies were stored 

at -40 °C until further use. For refolding attempts, the pellets were resuspended in 

solubilisation buffer (50 mM Tris/HCl [pH8], 50 mM NaCl, 0.1 mM DDM, 8 M urea) to a 

concentration of 100 mg/ml and incubated at room temperature for 30 - 60 minutes. The 

suspension was centrifuged (17000 × g, 30 min, 4 °C) to remove any insoluble parts. The 

supernatant was diluted 1:10 – 1:100 in solubilisation buffer and dialysed overnight at 4 °C 

into refolding buffer (20 mM Tris/HCl [pH8], 20 mM NaCl, 0.1 mM DDM) using SnakeSkinTM 

(7 kDa molecular weight cut off). Purity and presence of BceB-ECD were confirmed by SDS-

PAGE and mass spectrometry. 

 

4.4 Protein purification techniques 

4.4.1 Immobilized metal affinity chromatography 

The first purification step was an immobilized metal affinity chromatography (IMAC) using a 

1 ml HisTrap FF column (GE Healthcare Life Sciences) connected to an ÄKTAstart purification 

system (GE Healthcare Life Sciences). All buffers were freshly prepared and filtered (0.45 µm). 

Buffers and protein samples were kept at 4 °C or on ice at all times. Buffers A and B contained 

50 mM Tris/HCl [pH8], 0.5 M NaCl, 0.1 mM DDM and 10 mM imidazole or 1 M imidazole, 

respectively. All purification and wash steps were performed at a flow rate of 1 ml/min and 

attention was paid to pressure limits. The sample was loaded using a 50 ml superloop (GE 

Healthcare Life Sciences). The protein was washed and eluted with 0, 10, 20, 30 and 100 % 

buffer B over 10 column volumes per concentration at a flow rate of 1 ml/min. The collected 

fractions were analysed by SDS-PAGE. Fractions containing the protein of interest were 
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dialysed (SnakeSkinTM, 7 kDa molecular weight cut off) into 20 mM Tris/HCl [pH8], 20 mM 

NaCl, 0.1 mM DDM overnight at 4 °C. 

 

4.4.2 Anion exchange chromatography 

Where necessary, further purification by anion exchange (AEX) chromatography was 

performed using a HiTrap Q HP column (1 ml, GE Healthcare Life Sciences). Buffers QA and 

QB contained 20 mM Tris/HCl [pH8], 20 mM NaCl or 1 M NaCl, respectively, 0.1 mM DDM. 

Proteins were eluted in a 20 column volumes gradient from 0 % to a final concentration of 

100 % buffer QB at a flow rate of 1 ml/min and analysed by SDS-PAGE. The samples 

containing pure protein were dialysed (SnakeSkinTM, 7 kDa molecular weight cut off) 

overnight at 4 °C into 20 mM Tris/HCl [pH8], 20 mM NaCl, 0.1 mM DDM.  

 

5. Protein visualisation and quality determination 

5.1 Sodium dodecyl sulphate - polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE) was performed 

using precast polyacrylamide gels (10 %; RunBlue, Expedeon) and 1 × RunBlue SDS Running 

Buffer (Expedeon). Gels were run at 120 V for roughly 60 minutes. For visualisation of protein 

bands, gels were stained with Coomassie staining solution (45 % (v/v) methanol, 10 % (v/v) 

acetic acid, 0.25 % (w/v) Coomassie Brilliant Blue G-250) and destained by using destaining 

solution (45 % (v/v) methanol, 10 % (v/v) acetic acid). Alternatively, InstantBlue™ Protein 

Stain (Expedeon) was used. 

 

5.2 Western blot 

Western blot analysis was performed using polyvinylidene fluoride (PVDF) membranes 

(Merck Millipore, activated in 100 % MetOH). Membranes, SDS-PAGE gels and Whatman 

filter paper were soaked in transfer buffer (1 × RunBlue SDS Running Buffer, Expedeon, 20 % 

(v/v) methanol) prior to blotting. The transfer was performed at 75 mA for 70 minutes using 

a PerfectBlueTM SedecTM Semi-Dry Electroblotter (Peqlab). For Western Blot analysis of 

His•tag®-constructs, the membrane was blocked with 7.5 % (w/v) skimmed milk powder in 

PBST (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 [pH7.4], 0.1 % (v/v) Tween 

20) overnight at 4 °C, gently shaking. Membranes were washed three times with PBST (15 

https://en.wikipedia.org/wiki/Disodium_phosphate
https://en.wikipedia.org/wiki/Monopotassium_phosphate
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ml), each step taking 5 to 10 minutes with gentle shaking. Subsequently, the PDVF membrane 

was incubated for two hours at room temperature in 10 ml 1 % (w/v) bovine serum albumin 

containing the primary antibody (Penta·His Antibody, QIAGEN®, 1:4000 dilution). After 

another three wash steps with PBST, the membrane was incubated in milk containing the 

secondary antibody (Peroxidase-AffiniPure Goat Anti-Rabbit IgG, Jackson ImmunoResearch 

Europe Ltd, 1:4000) for at least an hour at room temperature and washed three times with 

PBST (see above). PierceTM ECL Western Blotting Substrate (Thermo Fisher Scientific Inc.) was 

used as enhanced chemiluminescence substrate to enable detection of peroxidase activity. 

The Western blots were exposed for 3 s using a Qiagen CCD camera with Fusion software. 

 

5.3 Mass spectrometry 

Sample preparation and mass spectrometry analysis of protein bands cut out of SDS-PAGE 

gels were performed by the proteomics unit of the Chemical Characterisation and Analysis 

Facility of the University of Bath. The protein ID was determined by nanoLC-MS/MS and 

results were compared to both E. coli and B. subtilis database entries.  

 

5.4 Determination of protein concentration 

Protein concentrations were determined by absorbance spectroscopy using a 1 cm optical 

pathway quartz cuvette. According to the Beer-Lambert law (𝐴 = ε ∗ c ∗ l), the absorbance 

A at 280 nm wavelength and the molar extinction coefficient for BceB-ECD (ε =

7450 𝑀−1 𝑐𝑚−1) were used to determine the protein concentration. 

 

5.5 Dynamic light scattering 

Protein solutions were filtered (0.45 μM) or centrifuged to remove contaminants like dust 

and insoluble aggregates prior to experiments. Protein solutions (100 μl) transferred into a 

black quartz cuvette. Dynamic light scattering (DLS) experiments were performed using a 

Zetasizer Nano S controlled by the Malvern Panalytical Software (Malvern Panalytical Ltd). 

Measurements were taken at 20 °C. Measurements with a count rate (kcps) below 200 were 

disregarded due to poor quality of the result. Z-average and polydispersity index were 

provided by the Malvern Panalytical Software. The reported average diameter in nm was the 

result of at least three independent measurements based on the size distribution by volume 

rather than by intensity.  
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6. In vitro characterisation of BceB-ECD using biophysical methods 

6.1 8-Anilino-naphthalene-1-sulphonic acid fluorescence spectroscopy 

8-Anilino-naphthalene-1-sulphonic acid (ANS) and protein solution were diluted from stock 

solutions into buffer (20 mM Tris/HCl [pH8], 20 mM NaCl, 0.1 mM DDM) to a final 

concentration of 100 µM ANS and 4 µM protein (1 ml volume). Substrates were added 

gradually from 10 mM stock solutions to final concentrations between 0 and 50 µM. Where 

substrate was administered in a single step, final concentrations of 50 µM bacitracin, 500 µM 

GPP or a premixture of 50 µM bacitracin and 500 µM GPP were used. To ensure steady-state 

measurements, samples were left to equilibrate in a quartz cuvette (optical pathway: 10 mm) 

for at least three minutes before initial measurements and after every addition of substrate. 

Fluorescence measurements were performed at 20 °C using the fluorescence spectrometer 

LS 55 (PerkinElmer®). The following settings of the FL WinLab software were used: Excitation 

wavelength: 380 nm, slit width: 3 nm, mean of three repeats. Where substrate 

concentrations were added in a single step, the mean of ten measurements was used for 

further analysis. Spectra were determined from 400 – 640 nm and exported into the freeware 

Spekwin32 (Menges, 2016) and Microsoft Excel for further analysis. Fluorescence emission 

was determined by addition of the intensity values of the spectra. To measure specific rather 

than total binding, the spectra were buffer corrected (Motulsky & Christopoulos, 2004). 

Results were set relative to 1 = 0 µM substrate and averaged across independent 

measurements as indicated in figure legends. Non-linear single site binding curves were 

plotted to the equation:  

 

1 +  
𝐵𝑚𝑎𝑥 ∗ 𝑥

𝐾𝑑 + 𝑥
 , 

 

where possible, using Graphpad Prism® (Motulsky & Christopoulos, 2004). Kd values were 

determined using the same software. Where applicable, data were approximated with a 

linear regression fit (Motulsky & Christopoulos, 2004).  

 

6.2 Circular dichroism spectroscopy 

Circular dichroism (CD) spectroscopy experiments were performed at 10 °C using a Chirascan 

qCD spectrometer (Applied Photophysics Ltd.). Purified protein at a final concentration of 4.5 
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µM in 20 mM Tris/H2SO4 [pH8], 20 mM NaCl, 0.1 mM DDM was either measured alone or in 

the presence of a potential substrate. Bacitracin and nisin were added to a final 

concentration of 50 or 90 µM, respectively. GPP and premixed [GPP-BAC] were added to final 

concentrations of 500 µM GPP, or 50 bacitracin and 500 µM GPP, respectively. To ensure 

steady-state measurements, samples were left to equilibrate in a quartz cuvette (optical 

pathway: 1 mm) for at least three minutes before initial measurements. Spectra of the 

ellipticity (mdeg) were obtained from 195 or 200 to 260 nm wavelength with a spacing of 1 

nm and five repeats per cuvette. Experiments were carefully performed without exceeding 

an HT (voltage) value of 700 V. Spectra were buffer corrected and moving averages (n=5) 

were applied manually. Spectra obtained from independent measurements were averaged. 

For the secondary structure estimation, the online circular dichroism analysis tool Dichroweb 

was used. (Whitmore & Wallace, 2004, Whitmore & Wallace, 2008). CD spectra of BceB-ECD 

were approximated using the CONTIN-LL algorithm (Provencher & Glockner, 1981) and the 

reference set 4 (Sreerama & Woody, 2000).  

For determination of the 222/208 nm ratios the values at 222 were divided by the respective 

value at 208 nm. The ratios were averaged across independent measurements and the 

standard deviation determined. Values were set relative to 222/208 nm ratio of BceB-ECD. 

Statistical analyses were performed using Graphpad Prism®.  
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7. In vivo characterisation of the physiological substrate of BceAB. 

7.1 Growth assays for determination of the fasted doubling time. 

For the determination of the fastest doubling time, overnight cultures of the strains of 

interest were diluted 1:1000 into fresh LB. 100 μl of each diluted culture were dispensed into 

96-well microtiter plates. All wells around the edge of the plates were filled with water to 

reduce evaporation. Cultures were grown at 37 °C with shaking incubation (180 rpm) using a 

Tecan® Spark® microplate reader controlled by the SparkControl™ software (Tecan Trading 

AG, Switzerland). The optical density (OD600) was measured every 5 min at 600 nm over 8 

hours. Growth curve measurements were corrected against blank wells that only contained 

media. log(OD600) values were plotted against time using Microsoft Excel. From this, the 

fastest doubling time (td) during exponential growth phase was calculated for each strain 

using the equation: 

 

𝑡𝑑 =  
𝑙𝑛(2)

𝑘
 , 

 

where ln is the natural logarithm and k is the growth rate (Powell, 1956). Doubling times of 

independent measurements were averaged from at least six biological replicates. Mean and 

standard deviation are depicted in results figures and specific values given in accompanying 

tables.  

 

7.2 Competition assays as measure of relative fitness 

To compare the relative fitness of strains in competition assays, overnight cultures of each 

strain to be competed were grown and their optical density was determined. Based on the 

OD600 measurements, two strains were mixed in a 50:50 ratio. 1:1000 dilutions of the mixed 

cultures were prepared in 2 ml of LB broth, and cultures were incubated at 37 °C with 

agitation (180 rpm). To determine the initial amount of colony forming units (CFUs) in the 

cultures, serial dilutions of the mixed culture were plated onto selective and non-selective LB 

agar plates in two technical replicates. After 24 h of incubation of the plates at 37 °C, colonies 

were counted and CFUs/ml determined. Experiments in which the initial 50:50 ratio deviated 

more than 40:60 were excluded. Every 24 hours, the mixed cultures of the competing strains 

were diluted 1:1000 into fresh LB and further incubated. The CFUs were determined after 24 
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and 72 hours of growth as described. The CFU concentrations were used to calculate the 

competition index (CI) of the competing pairs after 24 hours and 72 hours incubation.  

 

𝐶𝐼 =  

𝑐𝑓𝑢 𝑚𝑙−1 𝑜𝑓 𝑚𝑢𝑡𝑎𝑛𝑡 (𝑡𝑓)

𝑐𝑓𝑢 𝑚𝑙−1 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑡𝑓)

𝑐𝑓𝑢 𝑚𝑙−1 𝑜𝑓 𝑚𝑢𝑡𝑎𝑛𝑡 (𝑡𝑖)
𝑐𝑓𝑢 𝑚𝑙−1 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑡𝑖)

 

 

The mutant strain refers to the deletion mutant which contains an extra gene for antibiotic 

selection over the reference strain in the competing pair. ti refers to the initial CFU 

concentration, tf refers to the CFU concentration after 24 hours of incubation (Auerbuch et 

al., 2001, Wiser & Lenski, 2015).  

 

7.3 Determination of the minimal inhibitory concentration of bacitracin 

The sensitivity of B. subtilis strains to bacitracin was determined using the minimal inhibitory 

concentration (MIC). For this, dilutions of Zn+-bacitracin were prepared in 2 ml of Müller-

Hinton medium and inoculated 1:500 from overnight cultures. Cultures were incubated 

overnight (37 °C, 180 rpm) and examined for growth after 24 h. The MIC was determined as 

the lowest concentration at which no visible growth was detected. All experiments were 

performed in biological triplicates.  

 

7.4 Luminescence reporter assay for determination of BceAB transport activity  

LB or MH (10 ml) were inoculated 1:1000 from overnight cultures of each strain to be tested. 

Day cultures were grown at 37 °C with agitation (180 rpm) to an optical density at OD600 of 

around 0.5, to ensure exponential growth. Cultures were then diluted to an OD600 of 0.01 and 

dispensed into 96 well microplates (Corning®, black, clear flat bottom), with 100 µl culture 

volume per well. All wells around the edge of the plates were filled with water to reduce 

evaporation. Luciferase activity of strains was determined in a Tecan® Spark® microplate 

reader controlled by the SparkControl™ software (Tecan Trading AG, Switzerland). Cells were 

grown in the microplate reader for 5 hours with continuous shaking incubation (37 °C, 180 

rpm, circular motion, intensity: 3). After 1 hour of incubation, cells were challenged with 5 µl 

of freshly diluted antibiotic stock solutions per well to make up the desired concentration. 

The OD600 and the corresponding luminescence (relative luminescence units, RLU) were 
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measured every 5 minutes. Luminescence output was normalized to cell density by dividing 

each data point by its corresponding blank-corrected OD600 value (RLU/OD). For dose 

response curves, RLU/OD values were determined from the average of three measurements 

(25, 30 and 35 min). Data are shown as mean ± standard deviation of at least three biological 

replicates. 
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1. Introduction 

The mechanism by which the BceAB-BceRS detoxification system confers resistance against 

AMPs is still not entirely understood. It is however known that the regulatory two-

component system (TCS) BceRS requires the active transporter BceAB for the detection of 

the AMP (Bernard et al., 2007). In the absence of BceAB, or when transport activity was 

impaired, the resistance system did not only lose its ability to provide protection against 

AMPs, but also could not induce the signalling cascade through the TCS (Bernard et al., 2007, 

Rietkötter et al., 2008). The histidine kinase BceS lacks an extracellular input domain, which 

is a characteristic feature for sensor kinases to perceive their stimulus (Mascher, 2014). 

Instead, the kinase was shown to form a sensory complex with the transporter even in the 

absence of bacitracin (Dintner et al., 2014). The transporter BceAB was therefore proposed 

to be entirely responsible for substrate recognition and interaction. In recent work, Dintner 

and colleagues (2014) showed that purified BceB was able to bind bacitracin with a steady-

state Kd of 60 nM, using surface plasmon resonance spectroscopy. However, the exact site of 

interaction between the transporter and its substrate remains unknown.  

One conserved feature of all BceB-like permeases is a large extracellular domain located 

between transmembrane helices (TMH) 7 and 8 (Dintner et al., 2011). Generally, these 

domains were found to consist of approximately 180 to 230 amino acids (Dintner et al., 

2011). The extracellular domain of BceB (BceB-ECD) was shown to be essential for resistance 

against and sensing of bacitracin, as replacing the ECD with a truncated version resulted in a 

non-functional protein (Rietkötter et al., 2008, Coumes-Florens et al., 2011) and thus, was 

suggested as the substrate binding domain of BceB. In support of this, Hiron and colleagues 

(2011) found these large extracellular domains of resistance transporters to be responsible 

for substrate specificity in S. aureus. A domain-swap experiment between the ECDs of the 

closely related permeases VraG and VraE was performed, resulting in a chimeric VraFG 

transporter that had its native ECD replaced by the VraE-ECD (VraFGloop(VraE)). Interestingly, 

the hybrid transporter conferred resistance against bacitracin, which is usually the substrate 

of VraDE, but not any longer against colistin, the original substrate of VraFG. In other words, 

the resistance conferred by the transporter changed accordingly to its ECD, suggesting the 

ECD to be responsible for substrate recognition.  

In a phylogenetic analysis of all known Bce-like detoxification systems, the transporters could 

be distributed into eight different groups. However, the ECD sequences had been removed 
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for this analysis. Less than 10 % pairwise sequence identity and low sequence similarity had 

led to very poor alignments across that region (Dintner et al., 2011). Similar results were 

found in an independent study by Coumes-Florens and colleagues (2011). The extracellular 

domains of the most closely related transporters were their least conserved regions. Further, 

no correlation between the phylogenetic group of the transporter and their substrate 

specificity could be drawn (Dintner et al., 2011). Even when ECDs of transporters that provide 

resistance against the same AMP, for example bacitracin, were aligned, hardly any sequence 

conservation was found (Fig S3.1, blue box). When comparing the secondary structure 

predictions of the ECDs however, Dintner and colleagues (2011) discovered a conserved 

arrangement of α-helices and β-sheets across all phylogenetic groups, according to α-β-α-β2-

3-α-β3-4-α-β-α1-2 pattern. Despite the poor sequence alignments, some conserved residues 

could be identified. These were mainly hydrophobic residues and found in close proximity of 

the central α-helix or the penultimate β-sheet (Dintner et al., 2011).  

Our analysis of this domain’s secondary structure revealed that parts of the ECD lack a fixed 

or ordered three-dimensional structure, which suggested that regions of the protein are 

intrinsically disordered (Fig. 3.1). An analysis of BceB using several different disorder 

prediction tools showed the extracellular domain to be comparatively flexible in contrast to 

the transmembrane domains of BceB and also its other loops (III 2.1). Unanimously, the 

region between amino acid residues 370 to 385 was found to be particularly disordered (see 

below for details).  

Only over the last few decades, our understanding of binding interactions deviated from the 

traditional linear sequence-to-structure-to-function paradigm and intrinsically disordered 

proteins (IDPs) moved into focus (Wright & Dyson, 1999). Many IDPs were characterised, and 

their importance in signalling and regulatory pathways through specific protein-protein, 

protein-nucleic acid and protein-ligand interactions became clear (Dunker et al., 2008b). 

Numerous IDPs were shown to fold in a disorder-to-order transition manner upon binding 

their substrate (Wright & Dyson, 2009). The substrate-induced coupled folding and binding 

mechanism of IDPs has several advantages over binding mechanisms of structurally-ordered 

proteins. Benefits include the binding diversity that is mediated by high conformational 

flexibility. Their unstructured regions allow flexible domains to interact with a variety of 

targets, whereas ordered enzymes are thought to select their substrates based on the classic 

key-lock theory (Fischer, 1894, Koshland Jr., 1995). Yet, disorder-to-order transitions that 

IDPs can undergo upon substrate binding still assure a high substrate specificity (Kriwacki et 

al., 1996). As BceB-ECD contains intrinsically disordered regions, a substrate-induced coupled 
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folding and binding mechanism is also conceivable for BceAB. Such a mechanism could also 

explain the broad but highly specific substrate range of BceAB. Aside from bacitracin, BceAB 

also confers resistance against other AMPs, including plectasin, mersacidin and actagardine, 

but not to the lipid II-binding AMP nisin (Staron et al., 2011).  

For IDPs, high substrate specificity is complemented by low affinity binding (Kriwacki et al., 

1996, Huang & Liu, 2009). Specific protein-ligand interactions can thus easily come apart, 

which is not only important in regulatory interactions (Dunker & Obradovic, 2001), but might 

also be advantageous in transport reactions.  

While some IDPs have been described to be entirely unstructured prior to and during the 

binding event, most IDPs were suggested to comprise so-called molecular recognition 

features or elements (MoRFs, Mohan et al., 2006, Dunker et al., 2008a). With around 10 – 70 

amino acid residues, these relatively short amphipathic motifs are found within longer 

regions of disorder. Upon interaction with their substrate, these motives can obtain helical, 

β-strand or different non-regular structures. Often IDPs even acquire a different structure on 

binding different substrates (Wright & Dyson, 2009). Short MoRFs were identified in the 

unstructured regions of BceB-ECD (III 2.1), which highlighted this region again as potential 

binding domain of the transporter. 

The so-called ‘fly casting’ model suggests the flexible region of some IDPs to comprise a 

greater capture radius than orderly-structured proteins do (Shoemaker et al., 2000, Huang & 

Liu, 2009). That way, the IDP can partially and weakly bind to targets from a larger distance. 

The IDP then fully ropes its substrate in while simultaneously undergoing a disorder-to-order 

structural transition. This model is based on the observations that IDPs generally have faster 

binding rates than structured proteins and encounter a substrate less often before they can 

bind it (Huang & Liu, 2009). In addition, IDPs possess lower binding energy barriers, which 

makes it easier for them to reach transition state (Shoemaker et al., 2000, Huang & Liu, 2009). 

A fly-casting mechanism, in which the highly flexible BceB-ECD reels in bacitracin thereby 

removing it from its target, is also imaginable for substrate binding by BceAB. 

Thus, we hypothesise that the highly-flexible extracellular domain of BceB acts as the 

substrate binding domain and hypothesise that the binding mechanism functions according 

to a ‘fly-casting’ mechanism, in which BceB-ECD undergoes conformational changes upon 

substrate binding. To test this, we overproduced and purified BceB-ECD using different 

protein purification strategies, including immobilised metal affinity and anion exchange 

chromatography and refolding BceB-ECD from inclusion bodies. We then characterised the 

binding reaction between BceB-ECD and its substrate using biochemical and biophysical in 



 

Chapter III: In vitro characterisation of the binding capacity of BceB-ECD 72 

 
 
vitro methods, including fluorescence spectroscopy and circular dichroism spectroscopy. As 

no interaction was measured between the BceB-ECD and the AMPs alone, our approaches 

re-focussed on BceB-ECD potentially binding the AMPs in complex with their cellular target 

as suggested previously (Bernard et al., 2007, Kingston et al., 2014).  

 

2. Results 

2.1 In silico characterisation reveals high flexibility and partial intrinsic disorder 

of BceB-ECD. 

To begin investigations on BceB-ECD, we performed in silico analyses to find out the 

characteristics of the protein. The domain architecture of BceB was analysed using SMART 

database (Letunic et al., 2015, Letunic & Bork, 2018). As described before (Rietkötter et al., 

2008), the large extracellular domain of BceB is located between the transmembrane helices 

7 and 8 and predicted to consist of 213 amino acids from S313 to G525. The molecular weight 

(24043.27 Da) and further parameters, including the theoretical isoelectrical point and the 

extinction coefficient were determined using the ExPASy ProtParam tool (Fig. 3.1 A, Gasteiger 

E., 2005). These parameters were used to select suitable purification methods and determine 

the protein concentration via absorbance spectroscopy.  

Alignments of the ECD revealed low sequence conservation in a phylogenetic analysis 

(Dintner et al., 2011, Coumes-Florens et al., 2011). Even within their phylogenetic groups, 

the ECDs showed very low sequence identity. Here, we aligned the BceB from B. subtilis with 

sequences of several BceB-like permeases that were known to either sense bacitracin or 

confer resistance against it (Fig. S3.1). Permeases from Staphylococcus aureus (Hiron et al., 

2011, Yoshida et al., 2011), Listeria monocytogenes (Collins et al., 2010), Streptococcus 

mutans (Tsuda et al., 2002, Ouyang et al., 2010), Streptococcus pneumoniae (Becker et al., 

2009) and Enterococcus faecalis (Gebhard et al., 2014) were included in the analysis. The 

alignment was performed using the integrated ClustalW application (Thompson et al., 2003) 

of the sequence alignment editor BioEdit (Hall, 1999, Hall et al., 2011). A threshold of 75 % 

was set for shading of identical residues and or amino acids with similar characteristics. 

Although the permeases were not part of the same phylogenetic groups, the transmembrane 

domains were comparatively well-conserved (8 % sequence identity, 27 % sequence 

similarity, Fig. S3.1). In contrast to this, hardly any identical or even similar residues were 
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found within the ECD. A proline (P) residue at position 340 seems best-conserved but is 

missing in BceB. Most other shaded amino acids have hydrophobic side chains like tyrosine 

(Y), valine (V), and isoleucine (I, Fig S3.1), which agreed with previous findings (Dintner et al., 

2011).  

The secondary structure of BceB-ECD was predicted using JPred4 (Drozdetskiy et al., 2015) 

and I-TASSER (Roy et al., 2010). Our results confirmed the conserved α-β-α-β2-3-α-β3-4-α-β-α1-

2 secondary structure pattern described previously (Dintner et al., 2011). The secondary 

structure of BceB-ECD was predicted to comprise a combination of α-helices (22.8 %) and β-

strands (25 %), with a considerable amount of unstructured regions (52.2 %).  

I-TASSER and UCSF Chimera were used to predict a 3D model of the BceB-ECD secondary 

structure (Fig. 3.1 B, Roy et al., 2010, Yang & Zhang, 2015, Zhang et al., 2017, Pettersen et 

al., 2004). In this model, the blue and red residues depict the beginning and the ending of 

the ECD, where the extracellular region would usually be linked to transmembrane helices 

(Fig. 3.1 B). This model also clearly illustrated non-structured elements within the 

extracellular domain (Fig. 3.1 B, particularly disordered regions are highlighted in green and 

yellow). The flexibility of BceB was analysed using several disorder prediction tools (IUPred 

(Dosztanyi et al., 2005a, Dosztanyi et al., 2005b), DisEMBL (Linding et al., 2003), PONDR® 

(Molecular Kinetics, Inc.), prDOS (Ishida & Kinoshita, 2007)). The disorder probability of the 

ten transmembrane regions was consistently under 5 %, thus these domains were concluded 

to be fairly rigid. The flexibility of the shorter cytoplasmic and extracellular domains was also 

not increased, with the exception of the cytoplasmic linker between TMH 8 and 9 that had 

disorder probabilities of up to 30 % (amino acid residues 544 – 580).  

The large ECD between TMH 7 and 8 was found to be the most flexible region of BceB, with 

one major peak at residue 381 (Fig. 3.1 C). The region between amino acid 370 and 385 was 

predicted to be intrinsically disordered (threshold: > 0.5). Two minor peaks of high flexibility 

were found to lie at amino acid residues 432 and 471. In further agreement with this, the 

domain architecture prediction tool SMART describes the region between residues 386 and 

401 as region of low complexity (Letunic et al., 2015, Letunic & Bork, 2018).  

Proteins with intrinsically disordered regions often contain so-called molecular recognition 

features (MoRFs). These short elements are involved in the molecular recognition of binding 

partners and undergo disorder-to-order transitions upon binding (Mohan et al., 2006). 

Further supporting the idea of BceB-ECD comprising the substrate binding domain of the 

resistance transporter, BceB-ECD was also predicted to contain such MoRFs. The MoRF 
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prediction tool found potential binding sites from amino acid residues 377 to 384 and 

between residues 432 and 435 (Fig. 3.1 B, green, yellow, Disfani et al., 2012).  

Taken together, the findings of the in silico characterisation suggested BceB-ECD to contain 

some unstructured regions that might be involved in the substrate binding mechanism and 

potentially undergo a conformational change upon binding. Therefore, the protein domain 

was further investigated in vitro using techniques that are typical for the characterisation of 

intrinsically disordered proteins, including circular dichroism and fluorescence spectroscopy 

(Dunker et al., 2001, Wright & Dyson, 2009).  
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Figure 3.1: In silico characterisation reveals BceB-ECD to be highly flexible with an 

intrinsically disordered region. A: Characteristics of the extracellular domain of BceB 

determined by the ProtParam prediction tool. B: I-TASSER secondary structure model 

predicted BceB-ECD to consist of mainly α-helices, some β-strands and unstructured regions. 

The N- and C-terminal domains that were membrane-bound in native BceB are coloured in 

blue and red, respectively. The disordered regions that contain a molecular recognition 

feature (MoRF) are shown in green and yellow. C: Analysis of flexibility and intrinsic disorder 

of full-length BceB (top) and BceB-ECD (bottom) using several disorder prediction tools. The 

consensus of the prediction is depicted in blue. The extracellular domain was found to be 

highly flexible compared to any other domains of BceB. The peak around amino acid residue 

380 suggested this part of BceB-ECD to be intrinsically disordered.  
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2.2 In vitro characterisation of purified BceB-ECD does not imply bacitracin 

binding activity. 

2.2.1 Initial attempts of overproduction and purification of BceB-ECD using plasmid 

pSG1601 

To characterise the isolated ECD, we first needed a strategy to overproduce and purify the 

BceB-ECD. Previous work had pointed out plasmid pSG1601 (pET-16b-bceB-ECD) as a suitable 

starting point for overproduction of BceB-ECD (Fig. 3.2 A). This plasmid contained the 

nucleotide sequence for BceB-ECD, encoding amino acids A310 to G525 of BceB. Expression 

from the vector pET-16b led to a fusion protein with an N-terminal histidine decapeptide 

(His10-tag, Franke & Hruby, 1993). First overproduction attempts were made using the 

expression strain E. coli BL21(DE3) (Wood, 1966). Exponentially growing cells were induced 

with 1 mM IPTG. After overnight growth at 16 °C, cells were lysed and protein purified from 

the soluble fraction using immobilised metal affinity chromatography (IMAC) purification 

with a linear elution gradient. Fractions were then analysed by SDS-PAGE. Most of the 

overproduced BceB-ECD was found in the insoluble pellet fraction, displayed as a single band 

at 26 kDa (Fig. 3.2 B). This was consistent with the predicted molecular weight of this 

construct of 26.7 kDa (ExPASy ProtParam, Gasteiger E., 2005). Some BceB-ECD was eluted at 

around 200 mM imidazole, alongside other proteins (not shown). As the BceB-ECD produced 

from pSG1601 had a theoretical isoelectric point of 6.52 (ExPASy ProtParam, Gasteiger E., 

2005) and hence, probably possessed a negative surface charge at pH 8.0, the second 

purification method used was an anion exchange (AEX) chromatography. SDS-PAGE analysis 

of the eluted fractions showed BceB-ECD as a double band at around 26 kDa (Fig. 3.2 B). 

Although mass spectrometry analysis of the two bands confirmed the presence of BceB-ECD 

in both bands (not shown), comparison with the insoluble fraction led to the conclusion that 

the lower band resulted from a degraded version of BceB-ECD or a contaminant. With around 

1 mg of purified protein per 10 L of culture also the yield of the overproduction and 

purification was poor and restricted the in vitro characterisation of BceB-ECD.  
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Figure 3.2: Initial purification attempts of BceB-ECD from pSG1601 result in a double band 

on SDS-PAGE. A: Schematic of the plasmid pSG1601. bceB-ECD was expressed with an N-

terminal His10-tag from the IPTG-inducible vector pET-16b. B: SDS-PAGE analysis of pellet 

fraction and supernatant after cell lysis. kDa: kilodalton, M: marker, P: pellet (diluted, 1:10 or 

1:100), S: supernatant (diluted, 1:10). BceB-ECD purification from soluble fraction by IMAC 

(not shown) and AEX chromatography resulted in double band (red box) at around 25 kDa on 

a Coomassie-stained SDS-PAGE gel.  
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2.2.2 Improvements on the purification of BceB-ECD and refolding the ECD from 

inclusion bodies 

To obtain higher quantities of BceB-ECD and an improved degree of purity, improvements on 

the purification protocol or even alternative strategies were required.  

As shown in Fig. 3.2 B, most of the overproduced BceB-ECD was found in the insoluble pellet 

fraction after cell lysis. The large amounts of non-native protein that result from 

overproduction of recombinant plasmid-encoded proteins in heterologous systems like E. 

coli often induce a stress response in the host (Villaverde & Carrio, 2003). This consequently 

leads to production of heat-shock proteins or other chaperones and often also results in the 

aggregation of the encoded protein in inclusion bodies. These are particles of insoluble and 

densely-packed denatured or partially folded protein molecules. Generally, the recombinant 

protein aggregated in inclusion bodies was shown to be highly enriched and homogenous 

with only few other contaminants like chaperones (Singh & Panda, 2005, Singh et al., 2015). 

Refolding of inclusion bodies to recover the bio-active forms of protein in vitro has therefore 

been regarded as alternative strategy for protein overproduction and purification (Rudolph 

& Lilie, 1996, Villaverde & Carrio, 2003).  

To obtain higher amounts of BceB-ECD, refolding of BceB-ECD from inclusion bodies was 

attempted using a protocol based on the considerations of Tsumoto et al. (2003), and Singh 

et al. (2015). The recovery included the isolation of inclusion bodies by centrifugation with 

several wash steps, followed by the denaturation and solubilisation of the protein by 

chaotropic reagents, in this case 8 M urea. The solution was then diluted and BceB-ECD 

refolded by slowly removing the denaturants by dialysis.  

SDS-PAGE analysis of the refolded samples revealed large quantities of BceB-ECD (Fig. 3.3 A). 

The main band at 29 kDa was confirmed to contain BceB-ECD by mass spectrometry (data 

not shown). BceB-ECD was found to be almost pure even before further purification steps 

had been performed, with only one other band at 26 kDa. This double band was observed 

before (2.2.1). The slight up-shift in protein mass is likely an artefact due to the use of a 

different protein standard. While refolding of proteins from inclusion bodies brings several 

advantages over soluble expression of proteins, this method can result in poor recovery of 

the bio-active form of the protein, as the protein might not take on its native fold after harsh 

treatment. To resolve this concern, we aimed to compare and validate the secondary 

structure of the refolded protein with the soluble version.  
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For this, we sought to improve overproduction and purification of soluble BceB-ECD in a 

parallel approach. To this end, we first focussed on improvements of cell lysis. Longer 

sonication pulses and the use of different types and higher amounts of DNAse or Benzonase® 

seemed particularly efficient. This led to enhanced overall protein yield and also simplified 

the sample handling during centrifugation and purification steps. These changes, however, 

affected the purity of protein after IMAC and AEX chromatography. To counteract, the 

culture volume was reduced from 10 L to 2 L, while maintaining the same volumes for cell 

lysis buffers and purification buffers, and higher salt concentrations were used in all 

purification buffers. Further, several changes to the purification protocol were undertaken 

to retain pure protein, e.g. the use of increased amount of protease inhibitor cocktail 

(cOmpleteTM ULTRA Tablets). It also seemed beneficial to use freshly transformed cells and 

to not store the cell pellet longer than overnight at – 80 °C. 

These modifications to the purification protocol resulted in a split of the elution of the protein 

that made up the typically observed BceB-ECD double band on SDS-PAGEs (Fig. 3.2 B). The 

protein of the former top band was eluted as faint band in a pure fraction at a concentration 

of 200 mM imidazole or higher (29 kDa, red box). The protein that made up the lower band 

(26 kDa, blue box) was eluted earlier from the column, together with other proteins. 

Downstream purification using AEX chromatography led to a fairly pure and concentrated 

protein sample. Mass spectrometry was used to confirm the identity of the proteins. Only 

the former top band (red box) seemed to contain the desired BceB-ECD, whereas the second 

analysed band (blue box) was found to result from the E. coli protein SlyD.  

SlyD is a well-described enzyme that is ubiquitous in bacteria and has dual function (Löw, 

2012). Aside from acting as peptidyl-prolyl cis-trans isomerase, SlyD also possesses 

chaperone activity (Scholz et al., 2006). Chaperones assist in the folding mechanism of other 

proteins. In SlyD, this chaperone activity is performed by a so-called ‘inserted-in-flap’ domain 

that was shown to have high affinity to unfolded polypeptide chains (Weininger et al., 2009). 

During overproduction of recombinant proteins, the host cells often upregulate chaperone 

production to deal with the large amount of unfolded protein (Villaverde & Carrio, 2003). 

Production of BceB-ECD might have acutely induced this stress response. In agreement with 

this, SlyD seemed far less abundant in expression trials using an empty pET-16b vector that 

did not contain the bceB-ECD coding region (data not shown). SlyD consists of 196 amino 

acids, which results in a molecular weight of around 22 kDa (P0A9K9, UniProtKB, Boutet et 

al., 2007). Its size and molecular weight were similar to BceB-ECD, which led to the narrow 

double band on SDS-PAGE gels (Fig. 3.2 B). 
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Intriguingly, SlyD was categorised as metallochaperone and shown to be highly enriched in 

histidine (Löw, 2012). The C-terminal tail that harbours the metal binding domain (amino 

acids 150 to 196 in E. coli) contains a total of 15 histidine residues and can bind divalent 

cations via a conserved HGHXH motif. The chaperone was shown to bind Ni2+ ions with a Kd 

of 1.8 μM (Hottenrott et al., 1997, Kaluarachchi et al., 2009). This characteristic explained 

why SlyD is so often co-purified as contaminant during IMAC purification of recombinant 

proteins (Bolanos-Garcia & Davies, 2006). Just like the His10-tagged BceB-ECD, SlyD could bind 

the nickel-charged IMAC column and co-purify. Due to a comparable theoretical isoelectrical 

point to BceB-ECD (4.81, ExPASy ProtParam, Gasteiger E., 2005), SlyD was eluted at a similar 

salt concentration to BceB-ECD during AEX chromatography (Fig. 3.2 C). 

Refolding BceB-ECD from inclusion bodies and the described improvements to the 

purification protocol were two successful approaches to obtain higher quantities of BceB-

ECD with a higher degree of purity. Hence, the in vitro characterisation of a potential binding 

reaction between bacitracin and BceB-ECDref or BceB-ECDsol, respectively, could proceed. The 

AMP bacitracin was shown to require zinc ions in a 1:1 ratio for biological activity (Stone & 

Strominger, 1971), and thus was applied as bacitracin zinc-salt throughout this study. In 

metal selectivity studies, SlyD was shown to also bind Zn2+ ions with high affinity in the sub-

micromolar range (Kaluarachchi et al., 2011). This makes SlyD likely to also bind the Zn2+ ion 

of bacitracin and the metallochaperone was therefore included in our in vitro assays as a 

positive control.  

 

  



 

Chapter III: In vitro characterisation of the binding capacity of BceB-ECD 81 

 
 

 

Figure 3.3: Improvements on overproduction and purification BceB-ECD from pSG1601 and 

refolding from inclusion bodies lead to increased yield and purity. A: SDS-PAGE analysis of 

diluted BceB-ECD samples, refolded from inclusion bodies using urea and slow removal 

thereof by dialysis. A clear band at 29 kDa was detected and confirmed as BceB-ECD by mass 

spectrometry. A minor band was revealed just below. M: marker, dilutions of refolded 

protein: 1:10, 1:50, 1:100. B: Improved cell lysis and changes to the purification protocol 

resulted in the separation of the usually observed double band by SDS-PAGE. IMAC 

purification using a 1 ml HisTrap led to elution of pure BceB-ECD at concentrations higher 

than 100 mM imidazole (former top band, red box). Follow-up AEX chromatography of the 

100 mM fraction led to almost pure elution of SlyD, a metallochaperone with metal ion 

binding capacity (former bottom band, blue boxes). kDa: kilodalton, M: marker, S: 

supernatant, FT: flow through, W: wash, 100: 100 mM imidazole elution step. Proteins were 

visualised on SDS-PAGE gels using Coomassie staining solution or InstantBlue™ Protein Stain 

as indicated in II 5.1. 

 

  



 

Chapter III: In vitro characterisation of the binding capacity of BceB-ECD 82 

 
 

2.2.3 ANS fluorescence spectroscopy experiments suggest no conformational change of 

BceB-ECD in the presence of bacitracin. 

A common approach to investigate binding reactions of highly dynamic proteins in vitro is 

the use of fluorescence spectroscopy (Wright & Dyson, 2009). To examine whether BceB-ECD 

comprised the substrate binding domain of the resistance transporter that interacts with the 

AMPs, ANS-based fluorescence assays were performed. 8-anilino-1-naphthalenesulphonic 

acid (ANS) is an organic compound with fluorescing properties that binds to hydrophobic 

regions on the surface of proteins (Gasymov & Glasgow, 2007). The dye has been extensively 

used to monitor conformational changes upon substrate binding. One example is the 

induced-fit binding mechanism between MurA, a crucial enzyme of the cell wall biosynthesis, 

and its substrate UDP-GlcNAc (Schonbrunn et al., 1998). Upon conformational changes 

during substrate binding, the hydrophobic residues on the surface of the protein of interest 

alter their position. These hydrophobic residues are likely to be either more or less exposed 

to ANS, which results in an increase or quenching of the fluorescence signal during steady-

state spectroscopy. Hence, experiments with BceB-ECD in the presence and absence of the 

substrate should allow conclusions on changes in the protein conformation, and thus on a 

binding interaction. This indirect assay was chosen as BceB-ECD does not contain any 

tryptophan residues and thus lacks sufficient auto-fluorescent properties to do direct 

measurements (Chen & Barkley, 1998). Yet, the indirect ANS measurement has potential 

drawbacks. The substrates to be tested in this assay are peptides and if they expose 

hydrophobic patches, they might also interact with ANS. This can lead to unspecific signal, 

and in case the substrate undergoes conformational changes upon binding, further 

experiments are required to investigate whether it is the AMP or BceB-ECD that rearranged 

its conformation. 

Purified refolded or soluble BceB-ECD (BceB-ECDref, BceB-ECDsol) or SlyD, respectively, were 

pre-mixed with ANS, before different AMPs were added in a stepwise fashion up to a 

concentration of 50 µM. The emission spectra were determined from 400 – 640 nm after 

excitation at 380 nm, and buffer corrected. Representative spectra of BceB-ECDref, BceB-

ECDsol and SlyD without substrate (0 µM) and at 50 µM for each substrate are depicted in Fig. 

3.4 A, B, C. As expected from its previously described Zn2+-binding ability, addition of Zn2+-

bacitracin resulted in an increased fluorescence emission for SlyD. The increased signal 

served as an indicator for the conformational changes that SlyD underwent upon binding 

Zn2+-bacitracin, from which we concluded that our ANS fluorescence assay was functional 
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and suitable to detect binding reactions. The relative change in fluorescence emission was 

plotted against the substrate concentration and the data were modelled according to a 

saturating single-site binding curve (Fig. 3.4 D). From this, the dissociation constant Kd for 

Zn2+-bacitracin was determined to be 9.89±2.45 µM. As nisin is not a substrate of BceAB and 

neither has divalent cations bound for biological activity, the lantibiotic served as negative 

control in these assays to identify potential unspecific binding. In agreement with our 

expectations, nisin did not cause any change in fluorescence emission, and therefore no 

binding reaction was detected when added to SlyD. Also the binding properties to mersacidin 

and actagardine were tested as they are substrates of BceAB. Their addition did not lead to 

changes in fluorescence emission which suggested no binding interaction between the AMPs 

and SlyD. Both AMPs require Ca2+ ions for biological activity, but SlyD was not shown to have 

affinity to calcium ions during metal selectivity studies (Kaluarachchi et al., 2011). 

Addition of bacitracin to BceB-ECDref and BceB-ECDsol did not result in changes of the 

fluorescence emitted by ANS that could be fitted with a saturating single-site binding curve 

(Fig. 3.4 E, F). Although the fluorescence signal of the sample containing BceB-ECDsol 

decreased upon addition of bacitracin the data was best approximated with a linear 

regression fit (Fig. 3.4 E). A non-saturating, linear proportionality equates a non-specific 

binding reaction (Motulsky & Christopoulos, 2004). The data for BceB-ECDref could also be 

approximated with a linear regression fit.  

The graphs of panels E and F indicate that BceB-ECDref and BceB-ECDsol potentially show 

different behaviour. This can however be redeemed, as BceB-ECDref and a shorter version 

BceB-ECDsol showed highly similar CD spectra in III 2.2.3. The decline of ANS signal in panel E 

is likely an artefact caused by subtracting the buffer control containing only ANS and 

bacitracin. This distortion can be caused by inaccurate ANS or bacitracin concentrations in 

the cuvette, or a slightly different positioning of the cuvette in the spectrometer. Further, 

the graphs result from only two independent experiments each. Additionally, no decline or 

unspecific binding was observed in experiments with the shorter version of BceB-ECDsol (III 

2.2.3), supporting the linear decline in panel E to be an artefact.  

These results suggested that BceB-ECD did not undergo a conformational change upon 

addition of bacitracin or that the ANS based assay was not able to reveal this interaction.  
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Figure 3.4: ANS fluorescence spectroscopy experiments suggest no conformational change 

of BceB-ECD in the presence of bacitracin. Soluble or refolded BceB-ECD, SlyD or buffer, 

respectively, were pre-mixed with 100 μM ANS in a 1 cm quartz cuvette (4 μM protein 

concentration). Potential substrates were added to final concentrations of 5, 10, 15, 20, 30 

and 50 μM. To ensure steady-state measurements, cuvettes were incubated in the 

spectrometer at 20 °C for 3 minutes after mixing and prior to each measurement. ANS 

fluorescence emission was measured every 0.5 nm wavelength over a spectrum from 400 to 

640 nm, after excitation at 380 nm. Measurements were taken in triplicates with an 

automated average calculated. For each spectrum, the ANS emission at each determined 

wavelength was added up. Buffer measurements containing the respective concentration of 

substrate were subtracted from protein-containing samples. A+B+C: Representative buffer-

corrected ANS fluorescence spectra of A: SlyD, B: BceB-ECDsol and C: BceB-ECDref (grey) before 

stepwise addition of AMPs to a final concentration of 50 μM (bacitracin: blue, nisin: green, 

mersacidin: red, actagardine: orange). Spectra generally comprised a single emission peak at 

wavelength of 470 nm. Specific protein-substrate interaction that result in a conformational 

change should alter the ANS emission, as observed for the positive control SlyD in the 

presence of bacitracin. Spectra were smoothed with LOWESS smoothing for illustration. D: 

Dose response curve showing the relative change of ANS fluorescence in the presence of SlyD 

upon addition of AMPs. Bacitracin data were fit with a non-linear single-site binding curve, 

while all other data were approximated with a linear regression fit. E+F: Dose response curve 

of E: BceB-ECDsol and F: BceB-ECDref showing the relative change of ANS fluorescence upon 

addition of bacitracin. Best fits of data were approximated with linear regression. Bacitracin 

data result from at least two independent measurements.  

  



 

Chapter III: In vitro characterisation of the binding capacity of BceB-ECD 86 

 
 

2.2.4 CD spectroscopy experiments with refolded BceB-ECD do not show 

conformational changes upon addition of bacitracin. 

As a non-ANS based alternative approach to investigate the potential binding reaction 

between BceB-ECD and its substrate, circular dichroism (CD) spectroscopy experiments were 

performed.  

CD spectroscopy is a frequently used method to examine intrinsically disordered proteins. 

Aside from conformational changes upon substrate binding, far-UV CD spectroscopy also 

gives insights into structural properties of proteins in solution (Dunker et al., 2001). CD 

spectroscopy provides information on the secondary structure of a compound based on its 

ability to absorb left- and right-handed circularly polarized light (Kelly et al., 2005, Greenfield, 

2006). The difference in absorption of UV-light by the compounds is recorded in CD spectra. 

From the characteristic CD spectra of proteins with representative secondary structures, 

approximations of the secondary structure of a protein can be made. Far-UV CD spectra of 

prominent structural elements have been reported and representative spectra are depicted 

in Fig S3.2, modified from Greenfield (2006). An all-α-helical protein was reported to have 

two minima of similar magnitude at 222 and 208 nm, while it possesses very positive 

ellipticity at around 190 nm (black). A protein consisting of only antiparallel β-sheet has its 

minimum between 210 and 220 nm (red), and a maximum at around 195 nm. Random coils 

and intrinsically disordered proteins were described to have a very negative minimum at 

around 200 nm (green, Greenfield, 2006). According to secondary structure predictions in III 

2.1, BceB-ECD was expected to contain a combination of all structural elements mentioned. 

A potential binding reaction between BceB-ECD and bacitracin should lead to a change of this 

secondary structure disclosed by a change in the CD spectra.  

The experiments were performed on refolded BceB-ECD in absence and presence of AMPs, 

again using the E. coli protein SlyD as a positive control. The far-UV CD spectra were recorded 

from 195 or 200 to 260 nm wavelength and the respective spectra of buffer controls with or 

without AMPs were subtracted.  

The spectra of purified SlyD without AMPs revealed the maximum of the spectrum at 195 nm 

with an extended minimum between 210 and 220 nm (Fig. 3.5 A, grey). Comparison with the 

exemplary spectra (Fig. S3.2) suggested a high content of antiparallel β-sheet, which is in 

agreement with the reported solution structure of SlyD obtained by nuclear magnetic 

resonance and CD spectroscopy (Weininger et al., 2009, Martino et al., 2009). As expected, 

the addition of nisin did not result in changes to the CD spectra. Also addition of mersacidin 
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and actagardine did not lead to changes of the CD spectra (data not shown). Upon addition 

of bacitracin, the ellipticity of SlyD increased at around 208 nm to a less negative value (Fig 

3.5 A, blue). The minimum at 220 nm remained unaltered. The ellipticity at 222 and 208 nm 

is known to serve as an indicator for helicity (Hirst & Brooks, 1994, Wang et al., 2006). A 

change of ellipticity towards a more positive value implies a loss, a more negative value 

suggests an increase of helicity. The comparison of the 222/208 nm ratio of a protein in the 

absence and presence of the substrate could thus be used to identify conformational changes 

upon substrate binding. For SlyD, the 222/208 nm ratio changed to a value significantly higher 

than 1 in the presence of bacitracin (Fig. 3.5 B), which suggested a loss in helicity. This finding 

is consistent with CD data for SlyD, which were interpreted as an increase of β-turn upon 

binding Ni2+ ions (Hottenrott et al., 1997, Martino et al., 2009). As the performed assay 

showed the structural rearrangements of SlyD upon binding the Zn2+ ions of bacitracin and 

did not suggest unspecific binding activity, we concluded the assay to be suitable for 

investigations on binding reactions that involve conformational changes. 

The CD spectra recorded for refolded BceB-ECD displayed two minima at 208 and 222 nm 

(Fig. 3.5 grey). While the minima indicated some α-helical content, the minimum at 208 nm 

was more negative than the shoulder at 222 nm, which likely resulted from the predicted 

disordered content (III 2.1). CD measurements of BceB-ECDref in the presence of bacitracin 

resulted in a slight overall shift of the spectra to more positive values. However, the 

comparison of the 222/208 nm ratio of BceB-ECD without and with bacitracin did not result 

in a significant change of helicity. The shift might be the result of inaccuracies in protein or 

substrate concentrations in the cuvettes. This suggested that the secondary structure of 

refolded BceB-ECD was not altered in the presence of bacitracin.  

These results were consistent with the findings of the ANS fluorescence assays (III 2.2.3), and 

indicated that refolded BceB-ECD did not undergo a conformational change upon addition of 

bacitracin. A possible explanation for the observed results was that refolding BceB-ECD from 

inclusion bodies did not recover biological activity during the failure-prone refolding process.  

CD spectra for BceB-ECDsol were not obtained, as ANS fluorescence assays (III 2.2.3) 

suggested that there was no bacitracin binding activity. In contrast to refolded BceB-ECD, the 

amounts of pure BceB-ECDsol were very low and restricted further experiments.  
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Figure 3.5: CD spectroscopy experiments with refolded BceB-ECD do not show 

conformational changes upon addition of bacitracin. Protein solutions (4 µM) or buffer were 

freshly mixed with potential substrates (90 µM) or buffer in a 1 mm quartz cuvette. Far-UV 

CD spectra were measured between wavelengths 195 or 200 and 260 nm. Five technical 

repeats were taken for each cuvette and averaged. The respective buffer controls were 

subtracted to unveil changes in the spectra of the protein sample. Vertical dotted lines mark 

the wavelengths 222 nm and 208 nm that are important indicators for helicity of a protein. 

A+C: Representative spectra of SlyD and refolded BceB-ECD in the absence (grey) or presence 

of bacitracin (blue) or nisin (green). B+D: The 222/208 nm ratio was determined from CD 

spectra and depicted relative to the 222/208 nm ratio of the protein sample without any 

potential substrates. Depicted are mean and standard deviation of three (SlyD) or two 

(refolded BceB-ECD) independently measured repeats.  

  



 

Chapter III: In vitro characterisation of the binding capacity of BceB-ECD 89 

 
 

2.3 A shortened version of BceB-ECD does not possess bacitracin binding 

capability in vitro. 

2.3.1 Reduction of flexible ends increases yield and solubility of recombinant BceB-ECD. 

The ECD of BceB as encoded on the so far used plasmid pSG1601 started at residue A310, 

which according to the in silico characterisation of BceB-ECD conducted for this chapter, was 

still predicted to be located in the membrane (III 2.1). In the full-length protein, the ends of 

the ECD are attached to transmembrane helices anchored in the membrane. The newly-

acquired flexibility (Fig. 3.1 C) might lead to unspecific interactions and result in aggregation 

of the protein. This was possibly not only a cause for poor soluble production of BceB-ECD, 

but also could have resulted in preventing the binding activity of this domain.  

To exclude that the highly-mobile ends interfered with biological activity, we produced 

shorter versions of BceB-ECD. We shortened the BceB-ECD encoding sequence of pSG1601 

on both sides by taking away the nucleotides that encoded for either five or ten amino acids. 

This resulted in four different His10-tagged constructs (pCKET1601, pCKET1602, pCKET1603, 

pCKET1604, schematic depicted in Fig. 3.6 A). 

Overproduction in E. coli and cell lysis were performed according to the improved protocol 

described in III 2.2.2. Analysis of the cell lysate using SDS-PAGE revealed an additional band 

above the 25 kDa marker in the fractions of all shortened constructs (Fig. 3.6 B (3, 4, 5, 6)). 

The analysed lysate of the empty vector control and the original construct did not show any 

obvious additional bands (Fig. 3.6 B (E, B)).  

For further work on BceB-ECD, the construct encoding BceB-ECD-3 was chosen (pCKET1601), 

which lacked the first and last five amino acids. Culture volumes for overproduction of BceB-

ECD-3 were reduced to 50 – 200 ml and only a single IMAC purification step was performed. 

The eluted fractions resulted in a clear single band at 28 kDa, when analysed by SDS-PAGE 

(Fig. 3.6 C). Mass spectrometry (data not shown) and Western blot analysis (Fig. 3.6 D) 

confirmed that this band resulted from BceB-ECD. Taken together, shortening the flexible 

ends of BceB-ECD led to around 40-times higher yields of the protein, while maintaining high 

purity in a simple one-step purification. Reducing the length of the ECD also decreased the 

aggregation of BceB-ECD into inclusion bodies and greatly increased solubility.  

To further investigate the quality of the protein, dynamic light scattering (DLS) experiments 

were performed. DLS is an established technique for the determination of particle size and 

homogeneity of a sample and therefore suitable to investigate protein aggregation (Li et al., 

2011, Stetefeld et al., 2016). DLS on BceB-ECD led to a single peak that suggested the average 
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diameter of BceB-ECD to lie at around 20 nm (volume distribution, data not shown). If the 

BceB-ECD was a perfectly globular protein, with its predicted size of 26 kDa (including His10-

tag), it should theoretically have a minimal diameter of around 4 nm (Erickson, 2009). While 

the high flexibility of BceB-ECD indicated that BceB-ECD could have a larger diameter, it was 

still likely that BceB-ECD aggregated to a low degree in solution. Yet, the polydispersity index 

(PdI) was determined to be 0.270, which suggested a monodisperse size distribution of BceB-

ECD with few bigger aggregates, and thus can be considered as homogenous sample.  

While protein aggregates might have reduced or no biological function, aggregation is often 

reversible (Cromwell et al., 2006). Soluble aggregates in particular have generally only weak 

interactions with each other that can be reversed when encountering a binding partner with 

higher binding affinity. As the aggregates were formed in a purified sample, the aggregation 

of BceB-ECD is likely the result of self-association, which describes the non-specific 

interaction with the same type of protein (Wang et al., 2010). Self-associating proteins are 

likely to directly aggregate or oligomerise in their folded state, without any unfolded 

intermediates. We concluded from these considerations that despite low degree 

aggregation, purified BceB-ECD could be tested for its binding activity. 
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Figure 3.6: Reducing the length of flexible ends of BceB-ECD increases yield and solubility 

drastically. A: Schematic of the N- and C-terminal amino acid sequence of original and 

shortened BceB-ECD constructs. B: original BceB-ECD sequence as produced from pSG1601. 

3-6: Nucleotide sequence of bceB-ECD was shortened to encode five or ten fewer amino acids 

on either side of the ECD (3: pCKET1601, 4: pCKET1602, 5: pCKET1603, 6: pCKET1604). B: 

Overproduction of shortened BceB-ECD proteins. Unpurified cell lysate supernatants of E: 

empty vector control, B: original construct, 3-6: shorter versions of BceB-ECD as depicted in 

A. Additional bands can be identified in fractions 3-6, but are absent in E and B. C: SDS-PAGE 

of samples after IMAC purification of BceB-ECD-3 resulted in a pure band in fractions 

containing 200 mM imidazole or more. Proteins were visualised on SDS-PAGE gels using 

InstantBlue™ Protein Stain as described in II 5.1. D: Western blot analysis of samples 

described in C using an α-His antibody. kDa: kilodalton, M: marker, E+: empty vector control, 

IPTG-induced, 3+, lysate of cells with construct BceB-ECD-3, FT: flow through, W: wash, 100, 

200, 300: imidazole concentration in mM, 1M: 1 M imidazole.  
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2.3.2 Spectroscopy experiments on BceB-ECD with increased solubility do not unveil 

bacitracin-induced conformational changes. 

To investigate the bacitracin-binding properties of the shortened construct, the steady-state 

ANS fluorescence spectroscopy assay was repeated. As described before, purified BceB-ECD 

was pre-mixed with ANS, and bacitracin was added in steps until a final concentration of 50 

µM was reached. Addition of bacitracin to the BceB-ECD-ANS solution did not result in a 

change of fluorescence emission (Fig. 3.7 A + B).  

This particular experiment was only performed once. Further measurements on purified 

BceB-ECD were conducted at a final concentration of 50 µM only (III 2.4.1). As these 

experiments did also not indicate conformational changes of BceB-ECD in the presence of 

bacitracin, the step-wise titration performed here was not repeated. 

Further, the potential interaction between BceB-ECD and bacitracin was examined by far-UV 

CD spectroscopy in the presence and absence of bacitracin. The spectra of soluble BceB-ECD 

revealed a shoulder at 222 nm and an absolute minimum at 208 nm (Fig. 3.7 C). With an 

ellipticity value of 0.68 mdeg, the spectra hardly reached into positive ellipticity at 195 nm. 

To calculate the secondary structure content from experimental data, the spectra were 

analysed using DichroWeb (Whitmore & Wallace, 2004, Whitmore & Wallace, 2008). The 

experimental data were approximated using the CONTIN-LL algorithm (Provencher & 

Gloeckner, 1981, Sreerama & Woody, 2000). BceB-ECD was found to consist of 10.5 % helical 

content, 34 % β-strand and of 55.5 % non-regular, unordered structures. The high percentage 

of disordered content (> 50 %) is consistent with the in silico predictions of the secondary 

structure of BceB (III 2.1). The values found for regular structures differed from predictions 

(α-helix: 10.5 % versus 22.8 %, β-strand: 34 % versus 25 %). Explanations for the difference 

could be deviations in the approximations of the data (NRMSD (normalised root mean square 

deviation): 0.106), and only few known similar structures that online tools can base their 

secondary structure predictions on.  

The addition of nisin, which was used as negative control, did not result in changes of the CD 

spectra of Bce-ECD (Fig. 3.7. C, green). In the presence of bacitracin, the BceB-ECD spectra 

(Fig. 3.7 C, blue) were found to be almost identical to the ‘BceB-ECD only’ spectra (Fig. 3.7 C, 

grey). Also the 222/208 nm ratio did not show significant changes (Fig 3.7 D). These findings 

indicate that BceB-ECD did not undergo a conformational change. This led to the conclusion 

that also the shorter version of BceB-ECD was unlikely to bind bacitracin, unless the binding 

mechanism did not involve structural changes.  
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It is also possible that the quality of purified BceB-ECD was too poor and the protein could 

not adopt its native, biologically-active fold. Increased solubility and monodispersity argue 

against this explanation. Further, the recorded far-UV CD spectra of the refolded and the 

soluble BceB-ECD were not significantly different and reproducible throughout different 

protein samples. 

Another explanation for the lack of apparent binding could be that free bacitracin was not 

the physiological substrate of BceAB. It has been shown previously that the full-length BceAB 

transporter bound bacitracin (Dintner et al., 2014). Nevertheless, it could not be excluded 

that bacitracin was recognised as it was bound to its target in the outer face of the 

membrane, co-solubilised undecaprenyl pyrophosphate (UPP). A direct interaction of BceAB 

with the UPP-bacitracin ([UPP-BAC]) complex has been discussed by several studies (Mascher 

et al., 2003, Bernard et al., 2007) and even UPP alone was proposed to be the physiological 

substrate of BceAB (Kingston et al., 2014).  

  



 

Chapter III: In vitro characterisation of the binding capacity of BceB-ECD 94 

 
 

 

Figure 3.7: Spectroscopy experiments on BceB-ECD with increased solubility do not exhibit 

bacitracin-induced conformational changes. ANS fluorescence and CD spectroscopy 

experiments were performed as described before (Fig. 3.4 + Fig. 3.5), but with the shortened 

version of BceB-ECD. A: ANS fluorescence spectra of BceB-ECD in the presence or absence of 

different concentrations of bacitracin, as indicated. Spectra were smoothed with LOWESS 

smoothing or illustration. B: Dose response curve of ANS emission upon addition of bacitracin 

to BceB-ECD. Data points were approximated using a linear regression fit. C: Representative 

spectra of BceB-ECD in the absence (grey) or presence of bacitracin (blue) or nisin (green). 

B+D: The 222/208 nm ratio was determined from CD spectra and depicted relative to the 

222/208 nm ratio of the protein sample without any potential substrates. Depicted are mean 

and standard deviation of three independently measured repeats.  
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2.4 The complex formation of [GPP-BAC] masks a potential binding reaction of 

BceB-ECD. 

2.4.1 A potential increase of ANS fluorescence emission upon addition of [GPP-BAC] is 

subject to high variation. 

We thus investigated the proposal that the bacitracin-target complex in the membrane was 

the physiological substrate of BceAB (Bernard et al., 2007, Fritz et al., 2015), rather than free 

bacitracin. Further, we sought to examine whether the cellular target alone could act as 

substrate (Kingston et al., 2014) and characterise a potential BceB-ECD binding activity in 

vitro. 

In a previous study, bacitracin was shown to bind tightly around the pyrophosphate group 

and to interact with only the first prenyl group (Economou et al., 2013). The crystal structure 

of bacitracin was obtained in complex with geranyl pyrophosphate (GPP). With only two 

isoprenoid units (C10), GPP has a shorter lipid chain compared to UPP (C55), and thus better 

solubility in the aqueous buffers used in our experiments. We therefore chose GPP as 

artificial bacitracin target to examine a potential binding reaction between BceB-ECD and 

either the GPP-bacitracin ([GPP-BAC]) complex or GPP alone. 

Bacitracin undergoes a conformational change when binding its membrane-located target 

(Economou et al., 2013). Hence, to avoid an overlay of signal, we had to make sure that most 

bacitracin in the assay was already in complex with its target. To test at which concentration 

the complex formation between bacitracin and its target GPP was saturated, ANS 

fluorescence-based titration assays were performed.  

Titration of GPP or bacitracin alone to an ANS-containing buffer resulted in a linear increase 

of the ANS fluorescence signal (Fig. S3.3 A, B), which corresponds to a non-specific binding 

reaction (Motulsky & Christopoulos, 2004). When GPP was gradually added to 50 µM 

bacitracin that had been pre-incubated with ANS, the fluorescence signal plateaued from 

around 150 µM GPP onwards. The data could be approximated with a non-linear regression 

fit, indicating the specific binding interaction between bacitracin and GPP and the saturation 

of the [GPP-BAC] complex formation (Kd = 90 µM, Fig. S3.3 C). Thus, for the reverse 

experiment, a GPP concentration of 200 µM was chosen. Bacitracin was gradually added to 

the GPP and showed saturation of the fluorescence signal at around 50 µM bacitracin (Fig 

S3.3 D). Again, the data could be approximated with a non-linear single site binding curve. 

These findings suggested that at concentrations of 50 µM bacitracin and 200 µM GPP, most 

bacitracin is in complex with GPP. Addition of bacitracin to concentrations higher than 50 µM 
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led to a linear increase in fluorescence (Fig S3.3 D grey, linear regression fit), which resulted 

from the unspecific binding between excess free bacitracin and ANS. As we aimed to avoid 

free bacitracin in our assays, we ensured an excess of GPP by using 500 µM GPP for further 

experiments.  

Rather than a gradual increase of the substrate concentration as described in III 2.2.3, the 

steady-state ANS fluorescence assay was performed in the absence and presence of final 

concentrations of bacitracin (50 µM), GPP (500 µM) or the premixed [GPP-BAC] complex (50 

µM + 500 µM GPP).  

As shown before (III 2.3.2), ANS fluorescence experiments between BceB-ECD and free 

bacitracin did not result in a significant change of the fluorescence intensity (Fig. 3.8). 

Further, the addition of GPP did not affect the signal, suggesting that BceB-ECD did not 

undergo a GPP binding-induced conformational change. In the presence of the premixed 

[GPP-BAC] complex, the ANS fluorescence signal was seemingly increased (Fig. 3.8 A). 

However, statistical analysis of the relative ANS fluorescence did not show a significant 

difference between the fluorescence emission of the BceB-ECD sample without and with 

[GPP-BAC] added (Fig. 3.8 B). The measurements in the presence of [GPP-BAC] were subject 

to high variation in both, samples containing BceB-ECD and respective buffer controls. 

Despite efforts to account for the variations, they were likely caused by structural changes 

resulting from the complex formation between GPP and bacitracin. It is therefore unclear 

whether this non-significant trend was caused by a conformational change of BceB-ECD upon 

binding [GPP-BAC] or whether it was an artefact from [GPP-BAC] complex formation. 
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Figure 3.8: Potential increase of ANS fluorescence emission upon addition of [GPP-BAC] is 

subject to high variation. Steady-state ANS fluorescence experiments of BceB-ECD and 

potential substrates were performed as described in Fig. 3.4. In this assay, ten technical 

repeats were measured and averaged for each cuvette. Rather than gradual addition, 

substrates were administered in a single step to a final concentration of 50 μM bacitracin, 

500 μM GPP or 50 μM + 500 μM pre-mixed [GPP-BAC]. A: Representative ANS fluorescence 

spectra of BceB-ECD (grey) before addition of potential substrates (bacitracin: blue, GPP: red, 

[GPP-BAC]: purple). Spectra were smoothed with LOWESS smoothing for illustration. B: 

Change in ANS emission relative to the signal for BceB-ECD without any potential substrates 

added. Bar graphs show the mean ± standard deviation of at least two independent 

measurements, BceB-ECD alone and in the presence of [GPP-BAC] were measured at least in 

four independent repeats. 
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2.4.2 CD spectra of BceB-ECD remain inconclusive due to high variation of the [GPP-

BAC] signal. 

To further examine the potential binding reaction between the shortened BceB-ECD and the 

[GPP-BAC] in a non-ANS based assay, far-UV CD spectroscopy was used. CD spectra of BceB-

ECD in the absence of any potential substrate were found to be consistent with the spectra 

described in 2.3.2 (Fig. 3.9 A, grey). Addition of free GPP or free bacitracin, respectively, 

resulted in similar curves to the spectra without any potential substrates added (Fig. 3.9 A, 

blue, red). In line with the findings of ANS fluorescence spectroscopy, these observations did 

not indicate any conformational changes induced by GPP or bacitracin. Slight changes in the 

spectra as displayed in the representative curves for bacitracin lie within experimental error 

and were not reproducible. In agreement with this, the analysis of the 222/208 ratio did not 

show significant changes (Fig. 3.9 B).  

The addition of [GPP-BAC] to BceB-ECD resulted in highly variable CD spectra (spectra of eight 

independent measurements are depicted in Fig. 3.9 C). The shapes of the spectra differed 

considerably from spectra that had been determined for BceB-ECD before. Instead of the 

absolute minimum at 208 nm and a shoulder 222 nm, the spectra measured in the presence 

of [GPP-BAC] comprised a minimum at 222 nm and a peak at 200 nm, or an absolute 

minimum at 200 nm (Fig. 3.9 C, purple). At wavelength 200 nm, CD spectra for BceB-ECD-

[GPP-BAC] even fluctuated between minimal and maximal ellipticity values of -5 and 5 mdeg. 

This variation could be explained by the structural change bacitracin undergoes upon 

complex formation with GPP (Economou et al., 2013). CD spectra of free GPP and unbound 

bacitracin by themselves only showed little or moderate CD signal intensity, respectively (Fig. 

3.9 D, red, blue). CD spectra of the [GPP-BAC] complex revealed a stark increase in amplitude, 

with positive ellipticity of almost 5 mdeg at 222 nm and a negative absolute minimum of 

nearly -20 mdeg at 200 nm wavelength (Fig. 3.9 D, purple). The combination of GPP and 

bacitracin ([GPP-BAC]) clearly resulted in a larger ellipticity signal than simple addition of the 

spectra determined for free bacitracin and free GPP. This super-additive effect confirmed the 

changes of the secondary structure upon [GPP-BAC] complex formation.  

Due to the increased magnitude of the around 5-times stronger ellipticity signal, variations 

of the protein and substrate concentrations in the cuvette were more pronounced. Even 

slightest differences in [GPP-BAC] concentration between buffer controls and cuvettes 

containing the BceB-ECD-[GPP-BAC] mix or between repeats led to substantial variation of 

the spectra and inaccurate buffer subtractions. As this variation masked any potential 
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conformational change of BceB-ECD, we could not conclude on whether this domain 

interacted with the [GPP-BAC] complex.  

 

 

 

 

 

Figure 3.9: CD spectra of BceB-ECD remain inconclusive due to high variation of the [GPP-

BAC] signal. Far-UV CD spectroscopy experiments were performed as described before (Fig. 

3.5) at a final concentration of 50 μM bacitracin, 500 μM GPP or 50 μM + 500 μM pre-mixed 

[GPP-BAC]. A: Representative CD spectra of BceB-ECD alone (grey) and after addition of 

potential substrates (bacitracin: blue, GPP: red). B: The 222/208 nm ratio was determined 

from CD spectra and depicted relative to the 222/208 nm ratio of the protein sample without 

any potential substrates. Depicted are mean and standard deviation of six independently 

measured repeats. C: CD spectra of eight independent measurements of BceB-ECD in the 

presence of [GPP-BAC] after buffer subtraction. D: Representative CD spectra of the potential 

substrates (blue: bacitracin, red: GPP, purple: [GPP-BAC]), normalised against buffer.   



 

Chapter III: In vitro characterisation of the binding capacity of BceB-ECD 100 

 
 

3. Discussion 

In this chapter, we focussed on investigating whether the large extracellular domain of BceB 

(BceB-ECD) is the binding domain of the resistance transporter. Due to low sequence 

conservation of BceB-ECD (Dintner et al., 2011, Coumes-Florens et al., 2011), the function of 

BceB-ECD, which is thought to be responsible for substrate specificity (Hiron et al., 2011), is 

likely to be conserved on a structural level rather than by sequence. This idea was reinforced 

by the in silico analysis of BceB-ECD performed in this chapter (III 2.1). BceB-ECD was found 

to contain an intrinsically disordered region with a so-called molecular recognition feature 

(MoRF). MoRFs have been shown to play an important role in binding interactions, which 

often involve a conformational change with a disorder-to-order transition (Mohan et al., 

2006). We therefore proposed BceB-ECD to undergo substrate-induced coupled binding and 

folding, similar to a ‘fly-casting’ mechanism (Shoemaker et al., 2000). To test this hypothesis 

using biochemical and biophysical methods, we first successfully established an optimised 

protocol for the overproduction and purification of BceB-ECD. The isolated domain was then 

tested for in vitro binding activity using ANS fluorescence and far-UV circular dichroism (CD) 

spectroscopy techniques.  

 

3.1 BceB-ECD does not undergo a conformational change in the presence of 

bacitracin or GPP. 

ANS fluorescence and CD spectroscopy-based experiments were performed on refolded and 

soluble recombinant BceB-ECD. Despite the use of several techniques and different BceB-

ECD constructs, the domain did not seem to undergo a significant conformational change in 

the presence of bacitracin. These results suggested that purified BceB-ECD did not bind 

bacitracin in vitro, unless the highly-flexible domain did not undertake a detectable structural 

transition upon binding bacitracin. As an alternative to assays that were mainly based on the 

detection of conformational changes, preliminary isothermal titration calorimetry (ITC) 

experiments were performed. This powerful method is based on the direct measurement of 

the heat absorbed or released by a binding event and can not only give information on the 

binding constant (Kd) but also on enthalpy, entropy and reaction stoichiometry (Pierce et al., 

1999, Leavitt & Freire, 2001). However, the results were inconclusive (data not shown), due 

to technical challenges including problems to equalise the buffer concentrations and pH 
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between the cell containing the protein solution and the concentrated bacitracin in the 

injection syringe, which required a more acidic pH to stay soluble.  

Although the quality and solubility of the recombinant BceB-ECD seemed suitable for an in 

vitro binding characterisation, no binding activity between BceB-ECD and bacitracin was 

discovered with the methods used. It was, however, possible that free bacitracin alone was 

not the physiological substrate of BceAB. It is well-known that BceAB confers resistance 

against bacitracin (Ohki et al., 2003), and it has also been demonstrated that the full-length 

BceB transport permease interacted with bacitracin (Dintner et al., 2014). However, the 

experiments could not exclude that the physiological substrate was bacitracin in complex 

with its target undecaprenyl pyrophosphate (UPP) in the outer face of the membrane. The 

identity of the true substrate of BceAB has been a much-debated question, with various 

proposed hypotheses. While recognition and transport of the free AMP seemed most 

intuitive, the UPP-bacitracin ([UPP-BAC]) complex as physiological substrate has been 

discussed by several studies (Mascher et al., 2003, Bernard et al., 2007). Furthermore, a 

computational analysis of the signalling dynamics in the Bce system by Fritz and colleagues 

(2015) was based on the hypothesis that BceAB only recognised target-bound bacitracin or 

the complex between bacitracin and UPP as a whole. Kingston and colleagues (2014) took 

this line of reasoning a step further and proposed transport of UPP rather than AMPs. 

ANS fluorescence and CD spectroscopy experiments did not reveal any conformational 

changes of BceB-ECD in the presence of geranyl-pyrophosphate (GPP), which was used as 

surrogate for the cellular target of bacitracin, undecaprenyl pyrophosphate (UPP). These 

findings suggested that also the cellular target alone was not recognised as substrate and 

bound by BceB-ECD in vitro.  

Similar experiments were performed in the presence of the [GPP-BAC] complex. Attention 

was paid to pre-mix both compounds at a ratio that should saturate complex formation. Yet, 

the conformational change that bacitracin undergoes when binding its target led to 

enormous variation in the measurements, even in the absence of BceB-ECD. While ANS 

fluorescence measurements might have indicated a slight conformational change of BceB-

ECD (III 2.4.1), the results derived from CD spectroscopy were too variable to analyse (III 

2.4.2). This made firm conclusions on a potential binding interaction between BceB-ECD and 

the [GPP-BAC] complex impossible. Based on the results of this chapter, also bacitracin in 

complex with UPP could be neither confirmed nor excluded as physiological substrate of 

BceAB.  
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As we sought to investigate if BceB-ECD was the binding domain and worked according to a 

‘fly-casting mechanism’ (Shoemaker et al., 2000, Huang & Liu, 2009), the techniques chosen 

for this chapter were based on detecting conformational changes. Although the methods 

were functional and generally suitable to investigate substrate binding, they were seemingly 

not optimal for BceB-ECD binding assays that included the [GPP-BAC] complex, due to the 

variable background signal during GPP binding by bacitracin.  

We thus attempted to measure binding between BceB-ECD and bacitracin, when it is in its 

amphipathic, ‘bound’ configuration, but in the absence of its target. For this, high pressure 

ANS fluorescence experiments with BceB-ECD and free bacitracin were envisaged. The high 

pressure was thought to potentially constrain bacitracin to the conformation that it adopts 

in complex with GPP (Lullien & Balny, 2002, Maeno & Akasaka, 2015). However, preliminary 

experiments were unsuccessful as the high pressure resulted in irreversible precipitation of 

bacitracin and BceB-ECD (data not shown).  

 

3.2 The membrane environment might be required for recognition of AMPs. 

The idea that proteins require the membrane-association of antimicrobial peptides to be able 

to recognise them as substrate is not unprecedented. Other than potential bacitracin 

recognition by BceAB when in complex with its membrane-bound target (Bernard et al., 

2007, Kingston et al., 2014), several other examples of substrate recognition in the 

membrane environment have been discussed that stand in direct context with this study.  

SdpC (sporulation delaying protein) is an antimicrobial peptide intrinsically-produced by B. 

subtilis (González-Pastor et al., 2003). Described as a cannibalism toxin, SdpC production is 

activated upon nutrient limitation during stationary growth phase in order to kill 

neighbouring B. subtilis cells. As toxin-producing cells are protected by the immunity protein 

SpdI (Ellermeier et al., 2006), survivors can take up the nutrients released by their lysed 

siblings (González-Pastor et al., 2003). The production of SdpI is regulated by the presence of 

the SdpC toxin. SdpC was shown to form a complex with the membrane protein SdpI. In turn, 

the autorepressor SdpR is recruited to the membrane, and expression of the sdpRI operon is 

de-repressed (Ellermeier et al., 2006). It has recently been discovered that SdpC production 

intrinsically activates the Bce system of B. subtilis (Hofler et al., 2016). Despite strong 

induction of the BceR target promotor PbceA by such cannibalism toxins, no contribution of 

BceAB to resistance or immunity against SdpC could be detected (Hofler et al., 2016). 

Although expression of spdC and production of the toxin seemed unimpaired, removal of the 
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immunity protein SdpI resulted in the total loss of the signalling response through BceAB-

BceRS. This indicated that complex formation between SdpI and the toxin in the membrane 

environment is potentially required for SdpC perception by the Bce system (Hofler et al., 

2016), similar to our hypothesis that bacitracin may only be recognised in complex with UPP.  

Moreover, the transcription regulator BcrR of E. faecalis is known to activate transcription of 

the bacitracin resistance operon bcrABDE (I 5.1.2, Manson et al., 2004, Gauntlett et al., 2008). 

In contrast to BceRS-BceAB-like resistance systems, where the stimulus is perceived indirectly 

via the BceAB transporter, here the regulator BcrR directly binds Zn+-bacitracin (Gebhard et 

al., 2009). Though, the distinct AMP binding site has not yet been identified. BcrR is localised 

in the membrane and its four predicted transmembrane helices are connected by short 

extracellular and cytoplasmic linkers, lacking an obvious binding site (Manson et al., 2004, 

Gebhard et al., 2009). Also binding via the cytoplasmic N-terminal DNA binding domain was 

unlikely, as the targets of bacitracin are generally located in the outer face of the membrane. 

Bacitracin was shown to affect the cell membrane not only by interactions with cell wall 

synthesis precursors (Hancock & Fitz-James, 1964, Ming & Epperson, 2002). It was therefore 

proposed that BcrR might recognise and bind bacitracin when the AMP is associated with or 

inserted into the membrane (Gebhard et al., 2009), even in the absence of UPP.  

Further, the LanI-type immunity proteins SpaI and NisI of B. subtilis and L. lactis, respectively 

were discussed to recognise their corresponding substrates in the membrane environment (I 

4.4.1). The exact resistance mechanism by LanI proteins remains puzzling, yet direct binding 

interactions with their substrates subtilin (SpaI) and nisin (NisI) have been demonstrated 

(Stein et al., 2003, 2005, Takala et al., 2004). Both proteins are brought in close contact with 

the negatively charged membrane via their highly positively charged N-terminal domains. 

The substrate binding sites of NisI and SpaI seem to be located on the extracellular regions 

of the lipoproteins, which exhibit negatively charged patches proximal to the membrane 

(Christ et al., 2012a, Hacker et al., 2015b). The immunity proteins might thus sequester their 

substrates when they are associated with the membrane. It is therefore conceivable that also 

substrate binding of BceAB operates according to a similar principle and recognises the 

membrane-bound substrate via its extracellular domain.  

With a binding affinity in the micromolar range, the interaction between NisI and nisin was 

shown to be rather weak (Takala et al., 2004). Considering that nisin is biologically active in 

a nanomolar range, the low affinity raised doubts about how NisI could effectively provide 

resistance. It has therefore been proposed that lipid II might be required in addition (Hacker 

et al., 2015b). The affinity of NisI to its membrane-bound substrate has not yet been 
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determined. In agreement with the potential requirement of lipid II, the crystal structure of 

NisI revealed a deep cleft formed between the N- and C-terminal domains and the flexible 

linker region (Jeong & Ha, 2018). This cleft was proposed to bind the pyrophosphate moiety 

of lipid II, indicating that NisI can specifically recognise both components of the [lipid II-nisin] 

complex.  

The core domain of the immunity protein SpaI was shown to possess a very negatively 

charged surface, which directly faces the likewise negatively charged cytoplasmic membrane 

(Christ et al., 2012a). Homology models of the LanI-type proteins EriI and EtnI that confer 

immunity to ericin S and entianin, respectively, revealed the same membrane-orientated 

negative patches. As their respective substrates have an overall positive charge, it was 

conceivable that the negatively charged surface was responsible for possible interactions 

with membrane-associated lantibiotics (Christ et al., 2012a). It was therefore speculated that 

upon target binding via the N-terminal lanthionine rings, the C-terminal positive residues of 

subtilin are exposed and might serve as binding sites for SpaI (Christ et al., 2012a). 

These examples demonstrate that it is indeed likely that AMPs can be recognised when 

associated with their membrane bound targets rather than in their free form. A common 

feature of bacitracin and class I lantibiotics like nisin and subtilin is that the peptides undergo 

major structural rearrangements when binding their targets (Economou et al., 2013, Hsu et 

al., 2004, Medeiros-Silva et al., 2018). These adjusted ‘bound’ conformations might expose 

structural cues that allow resistance and regulatory proteins to recognise them as substrate.  

Many other AMPs undergo a conformational change when binding their target, membrane-

based lipid II cycle intermediates (Breukink & de Kruijff, 2006, Oppedijk et al., 2016). 

Depending on the surrounding environment, the class II lantibiotic mersacidin can acquire 

various conformations (Hsu et al., 2003). When bound to its target lipid II, the structure of 

mersacidin is distinctly different from its free form. Similar to nisin (Medeiros-Silva et al., 

2018), mersacidin was shown to contain a hinge region with which it can adjust the exposure 

of charges upon binding and in that way adapt to its environment. Containing the same 

hinge-region, similar conformational flexibility was also suggested for actagardine and its 

derivatives (Hsu et al., 2003, Breukink & de Kruijff, 2006). Further, NMR solution structures 

suggest two distinct conformations for the class II lantibiotic nukacin ISK-1 (Fujinami et al., 

2018). In only one of the states nukacin ISK-1 is capable of binding lipid II.  

It is therefore possible that certain resistance proteins are able to distinguish between the 

free and target-bound form of the AMPs. This would bring the advantage that the resistance 

determinant removes the AMP directly from its inhibited target, rather than binding free 



 

Chapter III: In vitro characterisation of the binding capacity of BceB-ECD 105 

 
 
AMPs in the periphery. When UPP and lipid II are released from the inhibitory grip of the 

AMP, they can be transmitted to the next stage in the lipid II cycle. The AMP is often unable 

to recognise the resulting lipid II cycle intermediate or only binds it with much lower affinity, 

and hence the cell wall synthesis can be kept intact.  

Analogously to these resistance proteins, it is quite possible that also BceAB can differentiate 

between the two configurations of its substrates. This would explain, why the data in this 

chapter suggested no interaction between BceB-ECD and bacitracin in its free form, but 

indicated a possible affinity to the [UPP-BAC] complex. Bacitracin might not have adopted 

the correct amphipathic configuration required for binding by BceB-ECD, when it was not 

associated with its target.  

 

3.3 ECDs can combine substrate recognition in the membrane environment with 

a broad substrate range. 

Most of the BceAB-like resistance transporters described so far were shown to confer 

resistance against several substrates (Staron et al., 2011, Gebhard, 2012). LanFEG-type 

transporters were shown to mediate resistance against the same type of substrates as BceB-

like transporters, mostly antimicrobial peptides (AMPs). Yet, LanFEG transporter were 

generally found to only confer resistance against a single specific substrate (Gebhard, 2012). 

Only few exceptions are described where the transporter also binds almost identical 

derivatives of a certain AMP, e.g. EpiFEG that recognises both, gallidermin and epidermin 

(Otto et al., 1998). One explanation for this substrate exclusivity is that LanFEG transporters 

usually protect their host against a specific endogenously produced AMP, and thus confer 

immunity rather than resistance against exogenously stimuli (Stein et al., 2003, 2005, Okuda 

et al., 2008). Notably, LanFEG transporters lack an obvious binding site, while the large 

extracellular domain between TMH7 and TMH8 is one of the main characteristics of the 

BceAB family (Gebhard, 2012, Dintner et al., 2011). It is thus plausible that the large, flexible 

ECD of BceB enables recognition of a broader substrate range, as it is shown for multidrug 

efflux pumps like AcrAB (Chapter I). In this type of transporters, the periplasmic domains are 

responsible for substrate recognition and binding. The conformational flexibility of these 

binding domains facilitates the characteristic broad substrate range of AcrB-like efflux pumps 

(Yu et al., 2003).  

Extracytoplasmic domains also play an important role in the substrate binding of MacB-like 

transporters (for details, refer to Chapter I). MacB is an efflux pump in several Gram-negative 
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bacteria that provides resistance against macrolide antibiotics and AMPs like bacitracin and 

colistin. The ECDs of MacB were suggested to be the substrate binding domains (Crow et al., 

2017). A similar role has been proposed for the ECDs of the lipoprotein extractor LolCDE 

(Crow et al., 2017). Furthermore, the ECDs of FtsEX, prevalent in many Gram-positive and 

Gram-negative bacteria, were shown to be responsible for the direct interaction with the 

respective binding partner of FtsX, after the ECDs have acquired their active conformation 

(Mavrici et al., 2014, Sham et al., 2013). 

These insights suggest that it is also very likely that BceB-ECD acts as the substrate binding 

domain of the resistance transporter, in a similar way to the here described examples. In this 

study, we probably could not show this interaction, as the ECD might have not bound free 

bacitracin, or because the ECD was not functional in isolation without the TMHs.  

The MacB-like proteins described here are all classified as part of the type VII ABC transporter 

family, of which MacB is the holotype. With four transmembrane helices and one large 

extracytoplasmic the described transporters feature a homologous topology (Fig. 3.10). 

Further homologues are found amongst Gram-positive as well as Gram-negative bacteria, as 

recently reviewed by Greene and colleagues (2018).  

Also BceAB of B. subtilis has been proposed to be a member of this family (Greene et al., 

2018). BceAB was shown to consist of two conserved ATPase units (BceA), but only a single 

transmembrane subunit (BceB) with ten predicted transmembrane helices (Dintner et al., 

2014). Some homologues of MacB harbour more than the ‘basal unit’ of four transmembrane 

helices with one large ECD between TMH1 and TMH2 in one monomer (Greene et al., 2018). 

Transmembrane domains with eight or ten transmembrane helices per monomer have been 

described to be the result of gene duplication (Khwaja et al., 2005). Each large monomer 

contains two repeat ‘basal units’ (TMH1-4, TMH5-8). The two additional helices of the 

transmembrane domain with ten predicted TMH seem to have inserted centrally between 

the functional units (TMH5 and TMH6). Further dimerisation of the transmembrane domain 

is not expected, and in the case of BceAB not observed (Dintner et al., 2014), as the two basal 

units were suggested to form a pseudo-heterodimer (Khwaja et al., 2005). In the case of 

BceB-like transporters, a rare intragenic deletion is thought to have led to the loss of the first 

large ECD between TMH1 and TMH2 (Khwaja et al., 2005). Generally, the C-terminal repeat 

unit was found to be better conserved than its N-terminal equivalent. In agreement with this, 

the hydropathy profile of BceB TMH7-10 suggests BceB to have the same topology to MacB-

like transporters (Fig. 3.10).  
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Crystal structures and secondary structure predictions of the extracytoplasmic domain 

revealed a conserved pattern for most MacB-like transporters. The ECDs seem to comprise 

two so-called ‘Porter’ subdomains (β-α-β) at their N- and C-termini, across all tested type VII 

ABC transporters (Crow et al., 2017). All but FtsX-like domains showed a conserved Sabre 

(Small alpha/beta rich extracytoplasmic) subdomain between the Porter domains (Crow et 

al., 2017). Comparison with the predictions for BceB-ECD (Fig. 3.10) and the previously 

discovered secondary structure pattern for most BceB-like extracellular domains (Dintner et 

al., 2011), revealed a very similar secondary structure to MacB. We thus propose that also 

BceB-like ECDs can be differentiated into Porter and Sabre subdomains. The N- and C-

terminal helices predicted in this study and the phylogenetic analysis by Dintner and 

colleagues (2011), are likely the continuation of TMH7 and TMH8 (or TMH1 and TMH2 in 

MacB, respectively) that form the so-called stalk of MacB-like transporters (Crow et al., 

2017). Indeed, secondary structure predictions of full-length BceAB revealed a continuation 

of the membrane-spanning helices 7 and 8 into the extracellular regions (data not shown). 

The homology of the transmembrane regions and the potential structural similarity of BceAB 

and MacB-like transporters indicate a potential mechanistic similarity. This means that BceAB 

possibly recognises its substrate at the interface between the membrane and the 

extracellular space via its large extracellular domain akin to MacB-like proteins.  
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Figure 3.10: BceB (TMH7-10) has the characteristic features of type VII ABC transporters. 

A: Hydropathy profile of members of the type VII ABC transporter family, modified from Crow 

et al. (2017). B: Hydropathy profile of TMH 7-10 of BceB using the online tool TMpred 

(Hofmann, 1993). C: Comparison of the secondary structure of BceB-ECD and the periplasmic 

domain of MacB. Secondary structures were predicted using the JPred online prediction tool 

(Drozdetskiy et al., 2015). Visualisation: red: α-helix, blue: β-sheet, grey: unstructured/coil. 

Porter and Sabre domains are indicated by grey and blue boxes.  
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3.4 The isolated extracellular domain might not be functional in vitro. 

Although seemingly predestined for substrate binding, BceB-ECD could not be confirmed as 

the binding domain in vitro. Despite successful characterisations of in vitro binding by similar 

isolated domains (Mavrici et al., 2014), it was possible that BceB-ECD, overproduced and 

purified as described above, was not functional. 

The requirement of the extracellular domain to sense and confer resistance against 

bacitracin, as it is described in the literature (Rietkötter et al., 2008, Coumes-Florens et al., 

2011), does not necessarily mean that the ECD alone is responsible for substrate binding. It 

is thus possible that BceB-ECD requires another extracellular loop of BceB to recognise and 

bind the substrate together. This is for example the case for protein-protein interactions by 

FtsEX in S. pneumoniae. Extracellular activation of the peptidoglycan hydrolase PcsB does not 

only require the large extracellular domain, which is located between transmembrane helices 

(TMH) 1 and 2. Also the shorter extracellular loop between TMH3 and TMH4 is needed to 

bind the coiled-coil region of PcsB (Sham et al., 2013).  

Random mutagenesis of BceAB has identified several mutations that abolish resistance and 

or signalling activity of BceAB. Two of these mutations are located at the membrane interface 

of two shorter extracellular loops of BceB (Kallenberg et al., 2013). These mutations lie 

between TMH6 and TMH7, and TMH9 and TMH10, respectively. As bacitracin resistance was 

found to be moderately reduced, these extracellular loops might be additionally required for 

substrate binding. 

Alternatively, it is plausible that BceAB interacts with its substrate in the membrane, or 

requires a combination of both, intramembrane interactions and recognition by BceB-ECD. 

The physiological substrate of BceAB has been proposed to consist of the AMP bound to its 

membrane-located target or even to be the target alone (Bernard et al., 2007, Kingston et 

al., 2014). Interactions between BceAB and isoprenoids are likely to take place in the 

membrane, potentially mediated by one or several transmembrane helices. To investigate 

this hypothesis, truncated versions of BceB could be produced as membrane proteins and 

tested for binding activity. Truncation studies are often used to identify the minimal 

functional unit of proteins (Lee et al., 2002, Mavrici et al., 2014, Hacker et al., 2015b). 

Furthermore, the membrane environment was shown to affect in vitro activity of membrane 

proteins (Lee, 2004, Shen et al., 2013). BceB-ECD is natively the soluble domain of a 

membrane-protein, and thus in close proximity to the cytoplasmic membrane. Production of 

BceB-ECD as an isolated soluble protein might have affected its biological activity. To address 
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this issue, BceB-ECD could be reattached to the membrane. So far, we have designed and 

synthesised BceB-ECD hybrid proteins that anchor BceB-ECD onto the membrane by 

unrelated transmembrane helices (TMH) as described in Fig. S3.5 (GenScript, NJ, USA). In 

doing so, we hoped to re-create the natural environment of the ECD, but could still exclude 

other parts of BceB interacting with the substrate. Such a fusion protein has successfully been 

used for the characterisation of a periplasmic loop of similar length to BceB-ECD before (Saaf 

et al., 1995). Initial attempts at overproduction, solubilisation of the membrane proteins in 

detergent and Strep-Tactin®-based purification of one of the BceB-ECD hybrid proteins 

according to a protocol modified from Dintner and colleagues (2014) were successful. 

However, no further binding experiments were performed due to time restrictions. 

Recently, solubilisation of integral membrane proteins using styrene-maleic acid (SMA) 

copolymers has become a widely used method in membrane protein research (Dorr et al., 

2016).  

In contrast to solubilisation of membrane proteins with detergent, SMA copolymers have the 

advantage that they can preserve the native membrane environment around the protein 

(Dorr et al., 2016, Pollock et al., 2018). SMA copolymers form so-called nanodiscs, which are 

SMA lipid particles that encompass the membrane protein and the lipid bilayer. This often 

secures biological activity and stabilises the protein for in vitro characterisation (Stroud et al., 

2018). Attempts to solubilise BceAB or the hybrid proteins in SMA copolymers have not yet 

been successful. Once established, this approach could also be used to investigate whether 

BceAB has affinity to and interacts with certain lipid II cycle intermediates.  

In the ABC transporter superfamily, successful substrate transport is driven by ATP-hydrolysis 

(Locher, 2016). In agreement, various members of the Type VII ABC transporter family were 

found to be non-functional when key motifs of their nucleotide binding domains (NBD) were 

mutated (Frelet & Klein, 2006, Tikhonova et al., 2007, Yang et al., 2011, Crow et al., 2017).  

Conformational changes of FtsX in M. tuberculosis seem to be driven by ATP hydrolysis 

performed by the nucleotide binding domains (NBD) of FtsE. This allows the large 

extracellular domain of FtsX to adopt its active conformation FtsX, which enables it to interact 

with its binding partner (Mavrici et al., 2014).  

BceAB activity was also found to depend on functional NBDs. B subtilis cells carrying 

mutations in the conserved Walker A motif of BceA, which disturbs ATP-binding as well as 

the hydrolysis thereof, were not able to sense bacitracin or confer resistance against it 

(Rietkötter et al., 2008). A BceAB-Walker B mutant, which can bind ATP but not further 

process it, showed minimal in vivo activity in our study (data not shown). Although purified 
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BceB alone was seemingly able to bind bacitracin in vitro (Dintner et al., 2014), ATP binding 

or hydrolysis might be required for the substrate recognition of BceB-ECD (Rietkötter et al., 

2008). 

 

Taken together, the work in this chapter was based on the in vitro characterisation of the 

extracellular domain of BceAB. Because no interaction between BceB-ECD and free bacitracin 

could be detected, BceB-ECD could not be confirmed as the binding domain of BceAB and no 

further investigations into a potential fly-casting binding mechanism could be performed 

(Shoemaker et al., 2000). The target of bacitracin, UPP, had been discussed to potentially be 

at least part of the substrate (Bernard et al., 2007, Kingston et al., 2014). However, due to 

high background signal, in vitro analyses on the [GPP-BAC] complex remained ambiguous. 

The lipid carrier UPP is membrane-bound, and thus also the [UPP-BAC] complex would 

natively located in the membrane. If the [UPP-BAC] complex was the physiological substrate 

of BceAB, it is possible that substrate recognition happens directly in the hydrophobic 

membrane environment (Mascher et al., 2003, Bernard et al., 2007), according to a 

‘hydrophobic vacuum cleaner’ mechanism (Podlesek et al., 1995). Recently, extensive 

evidence has been published demonstrating that extracytoplasmic domains function as 

substrate binding domains in transporters homologous to BceAB (Crow et al., 2017, Greene 

et al., 2018). Despite their extracytoplasmic location, these domains are able to recognise 

and bind substrates from the membrane. A ‘hydrophobic vacuum cleaner’ hypothesis would 

thus be compatible with the indications that BceB-ECD may play a role in substrate 

recognition, but not of free bacitracin itself, which explains the lack of binding activity 

observed in this chapter (Rietkötter et al., 2008, Hiron et al., 2011). Hydrophobic vacuum 

cleaners basically confer resistance by shifting the equilibrium of the AMP binding reaction 

from the membrane more towards the extracellular environment. If BceAB acted according 

to such a mechanism, the ability to differentiate between free bacitracin and the [UPP-BAC] 

complex would be crucial. To gain further insights into the potential mechanism, the in vivo 

identification of the physiological substrate will be addressed in the following chapter. 
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1. Introduction 

While it has been shown that BceAB successfully confers resistance against certain AMPs, 

including bacitracin, mersacidin and actagardine (Staron et al., 2011, Ohki et al., 2003), the 

question of the resistance mechanism remains puzzling, and even the physiological substrate 

is still subject to debate. When first described, the transporter was named Bce for bacitracin 

efflux (Ohki et al., 2003), although no evidence for the direction of transport was given. This 

assumption was based on the suggested self-protection mechanism of the Bcr transporter of 

B. licheniformis ATCC10716 (Podlesek et al., 1995, 2000). The transporter of the bacitracin 

producer was thought to work according to a ‘hydrophobic vacuum cleaner’ model akin to 

the human multidrug resistance transporter P-glycoprotein (Higgins & Gottesman, 1992, 

Gottesman & Pastan, 1993). As it was difficult to envision how a membrane-located ABC-

transporter could effectively confer resistance against AMPs that target molecules at the 

outer face of the membrane, BceAB was speculated to import bacitracin into the cytoplasm, 

where it is subsequently degraded (Rietkötter et al., 2008). This idea was based on the 

differences in protein architecture of the permeases BceB and BcrB. BceB comprises ten 

predicted transmembrane helices and a large extracellular domain, whereas the permease 

BcrB consists of six transmembrane helices, but lacks the extracellular domain (I 4.3.2, 

Podlesek et al., 1995, Rietkötter et al., 2008, Gebhard, 2012). In general, ATP-binding cassette 

(ABC) transporters that are involved in substrate uptake were shown to require 

extracytoplasmic binding proteins (Davidson & Chen, 2004, Dawson et al., 2007). Particularly 

in low GC-content Gram-positive bacteria, these substrate-binding proteins can be fused to 

the transmembrane segments of the transporter (van der Heide & Poolman, 2002). In 

contrast, efflux pumps seem to lack external substrate-binding proteins and acquire their 

substrate directly from the cytoplasm or the inner leaflet of the membrane (Dawson et al., 

2007, Du et al., 2018).  

More recently, several suggestions for the physiological substrate, and subsequently the 

resistance mechanism, have been made. Kingston and colleagues (2014) proposed that the 

transporter acted as a undecaprenyl pyrophosphate (UPP) translocase. BceAB was thought 

to confer resistance by transporting UPP and/or UP (undecaprenyl phosphate) across the 

membrane to the cytoplasmic face, thereby removing the cellular target for bacitracin rather 

than transporting bacitracin itself. In the presence of bacitracin, BceAB was hypothesised to 

bind the [UPP-BAC] complex, which was proposed to act as a transport inhibitor and lead to 
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activation of signalling through the BceRS regulatory two-component system (Kingston et al., 

2014). 

In contrast, Dintner and colleagues (2014) showed that purified BceB was able to bind 

bacitracin with a steady-state Kd of 60 nM using surface plasmon resonance (SPR) 

spectroscopy, which was similar to the bacitracin threshold concentration required to induce 

the target promotor PbceA in vivo. Without excluding the possibility of BceAB recognising the 

[UPP-BAC] complex, this finding stressed the likelihood of the transporter directly interacting 

with and possibly transporting the AMP rather than the lipid carrier. When revealing that 

signalling through BceRS worked according to a novel flux-sensing mechanism, the original 

hypothesis of BceAB acting as a ‘hydrophobic vacuum cleaner’ was proposed again (Ohki et 

al., 2003, Fritz et al., 2015). This model suggests that BceAB recognises the target-AMP 

complex in the membrane (Mascher et al., 2003, Bernard et al., 2007), and in turn removes 

the AMP and releases it in the extracellular space. By this, the cellular targets, which are 

usually lipid II cycle intermediates, are freed from the inhibitory grip of the AMP. This 

unblocks the lipid II cycle, enables recycling of the lipid carrier and secures an intact cell wall. 

For a mechanism like this to work, the transporter would need to be able to specifically 

recognise the target-AMP complex and distinguish it from the unbound versions of both, 

the AMP and the cellular target.  

This would be possible if BceAB specifically bound both components of the target-AMP 

complex as it has been proposed for lipid II-nisin binding by the immunity protein NisI of L. 

lactis (Jeong & Ha, 2018). As discussed in Chapter III, many AMPs including the AMPs BceAB 

confers resistance against (bacitracin, actagardine and mersacidin) were shown to undergo 

extensive conformational changes upon target binding (Hsu et al., 2003, Breukink & de 

Kruijff, 2006, Economou et al., 2013). This rearrangement might expose structural cues that 

can serve as binding site by BceAB. 

It is becoming more apparent that bacterial cells respond differently to antimicrobial stress 

depending on the physiological context and the metabolic state of the cells. Recently, 

aspartate deficiency was shown to reduce peptidoglycan synthesis and to increase the 

susceptibility to cell wall-active antibiotics (Zhao et al., 2018). Further, genetic manipulations 

that disturb the levels of lipid II cycle intermediates were shown to affect antibiotic 

sensitivity. Lee and Helmann (2013) described a mutation in the ribosome-binding site of the 

promoter PuppS, which was proposed to result in lower levels of UppS in the cell, the enzyme 

that catalyses assembly of UPP. Lower levels of UPP led to an increased resistance to 
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antibiotics that target early stages in the cell wall synthesis, whereas the cells responded 

more sensitively to antimicrobial compounds that target later stages, including bacitracin 

(Lee & Helmann, 2013). It is also well-known that the removal of the UPP phosphatases BcrC 

and UppP leads to increased bacitracin susceptibility in B. subtilis (Cao & Helmann, 2002, 

Bernard et al., 2005, Zhao et al., 2016, Radeck et al., 2017a). As both are redundant in 

function to some degree and catalyse the dephosphorylation of UPP to UP, this change can 

likely be explained by an accumulation of the pyrophosphate form of the lipid carrier. In 

addition, Kingston and colleagues (2014) found that accumulation of heptaprenyl 

pyrophosphate (C35-PP) sensitises B. subtilis to bacitracin. This effect was observed following 

deletion of ytpB, when MenA activity was limited at the same time. Both enzymes use C35-PP 

as their substrate. C35-PP was suggested to compete with UPP for translocation by BceAB and 

to potentially inhibit signalling through the two-component system BceRS (Kingston et al., 

2014). In a previous study, bacitracin was shown to bind tightly around the pyrophosphate 

group and to interact with only the first prenyl group (Economou et al., 2013). The association 

constant between UPP and bacitracin was determined to be 1.05 µM-1, but also the shorter 

farnesyl pyrophosphate (C15-PP) was shown to bind bacitracin at a comparable association 

constant (Ka= 0.83 µM-1, Storm & Strominger, 1973). Therefore, it is very likely that bacitracin 

also targets C35-PP.  

If the cellular target of the AMPs was at least part of the physiological substrate of BceAB, 

the described changes in lipid II-cycle intermediate levels should change the effective 

substrate concentration, and thus alter BceAB activity. In this chapter, we aimed to reveal 

the identity of the physiological substrate and the potential role of both, the cellular target 

and the AMPs, by monitoring growth behaviour and BceAB transport activity in cells with 

such variation.  

In contrast to most assays used in Chapter III, in which we focussed on the in vitro 

characterisation of the substrate binding domain, this chapter describes in vivo approaches 

to identify the physiological substrate of BceAB. We used physiological assays, including 

growth and competition assays, to investigate the effect of BceAB on growth to identify a 

potential affinity to UPP. Further, we used a PbceA-lux reporter assay to investigate the BceAB 

transport activity in response to genetic manipulations of genes important to the lipid II cycle. 

Previous data on bacitracin transport assays were used to gain further insights into the 

potential resistance mechanism. Our data suggest that the complex formed between the 

antimicrobial peptide and its corresponding cellular target acts as physiological substrate of 
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BceAB and are in support of a hydrophobic vacuum cleaner-like substrate recognition at the 

membrane interface.  

 

2. Results 

2.1 Investigating a potential interaction between BceAB and UPP using growth 

assays 

2.1.1 Presence of BceAB does not alter the fastest doubling time. 

The lipid II cycle is known to be the bottle neck of cell wall synthesis, with the availability of 

the lipid carrier being the rate-limiting step (van Heijenoort, 1998). It is further thought that 

lipid carrier recycling instead of de novo synthesis is the pacemaker of the lipid II cycle 

(Piepenbreier, Fritz, unpublished). Impairment of UPP recycling thus potentially affects the 

doubling time of during the exponential growth phase of bacteria. In agreement with this, 

Radeck et al. (2016b) found a B. subtilis ∆bcrC mutant to have an a higher doubling time than 

the WT and also detected a growth difference between bceAB+ and bceAB- strains, supporting 

the hypothesis that cell wall synthesis is growth-limiting.  

In several of the proposed resistance mechanisms of BceAB against antimicrobial stress, the 

transporter was suggested to interact with UPP. For example, BceAB was proposed to act as 

UPP importer (Kingston et al., 2014). According to this hypothesis, the lipid carrier would 

serve as the true physiological substrate and even in the absence of bacitracin, the 

transporter should increase the turnover of the lipid II cycle.  

Furthermore, also the ‘hydrophobic vacuum cleaner’ model indicates that BceAB can 

recognise the complex of the cellular target and the AMP (Mascher et al., 2003, Bernard et 

al., 2007). This could mean that BceAB has a certain affinity to UPP alone (Radeck et al., 

2016b). This potential binding interaction might help the transporter to monitor the UPP 

levels in the absence of AMP stress. By interacting with the lipid carrier, BceAB might 

withhold some UPP from cell wall biogenesis. When bound to BceAB, the lipid carrier is 

unlikely to be dephosphorylated and recycled. The interaction between BceAB and the lipid 

II cycle intermediate might therefore lead to a delay in UPP turnover in the absence of 

bacitracin. Thus, the absence of BceAB might be beneficial to growth when resistance to 

bacitracin is not required, as all available UPP can be directly recycled. Supporting this 

hypothesis, a ∆bceAB mutant was shown to have faster doubling times in the absence of 
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bacitracin (Radeck et al., 2016b). While in vitro binding assays between the extracellular 

domain of BceAB and GPP did not indicate such an interaction (Chapter III), it seemed 

reasonable to investigate this interaction in vivo with the whole transporter and the lipid 

carrier in its natural environment. To test if the potential interaction between BceAB and UPP 

leads to benefits or disadvantages for the cell, growth and competition assays were 

performed by a project student (Laura Richardson) under my supervision.  

Growth curves of the wild-type B. subtilis W168 (WT) and a ∆bceAB (SGB575) and a ∆bcrC 

mutant (TMB297), as well as a ∆bceAB ∆bcrC double mutant (SGB01) were obtained by 

recording the OD600. The fastest doubling time (td) during exponential phase was determined 

for each of the strains (Fig. 4.1 A, B). For the WT, a doubling time of 23.50±1.77 minutes was 

calculated. In contrast to observations by Radeck and colleagues (2016b), deletion of ∆bceAB 

did not lead to a significantly different doubling time (23.23±2.28 minutes, p = 0.9913). The 

effect of BceAB on the growth rate was also tested in a ∆bcrC background. Deletion of bcrC 

is expected to lead to UPP accumulation and might highlight a potential interaction between 

BceAB and UPP. In the ∆bcrC mutation strain the doubling time was found to be 25.23±1.51 

minutes, and the doubling time of the ∆bceAB ∆bcrC mutant was recorded as 25.95±1.93 

minutes, which again did not show a significant difference (p = 0.8576). This suggests that 

removal of BceAB had no detectable impact on the fastest doubling times. A possible 

explanation for this was that in the absence of activity-inducing antimicrobial stress, the basal 

level of BceAB might simply be too low to cause a difference. To investigate this further, 

bceAB was expressed ectopically under xylose-inducible control. We hypothesised that if 

BceAB withheld some of the UPP from cell wall synthesis, increasing the amounts of BceAB 

upon xylose induction should lead to slower growth. If BceAB was able to import the lipid 

carrier, it should lead to faster growth. 

Growth behaviour of the WT, a BceAB overproduction strain (SGB576, WT PxylA-bceAB), and 

a BceAB complementation strain (SGB577, ∆bceAB PxylA-bceAB) were re-tested as described 

above. MIC assays showed increased bacitracin resistance when ectopically producing BceAB 

in the presence of 0.2 % xylose (MIC: ∆bceAB PxylA-bceAB -xylose: 16 µg/ml, ∆bceAB PxylA-

bceAB +xylose: 64 µg/ml, WT PxylA-bceAB: 128 µg/ml) confirming the successful production of 

BceAB. Doubling times of all tested strains revolved around 23 minutes (Fig. 4.1 C, detailed 

td in Fig. 4.1 D). None of the tested strains showed any significant difference in their doubling 

time when compared to their corresponding controls that did not overproduce BceAB. These 

findings show that even in the presence of ectopically produced BceAB the growth rate of B. 
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subtilis does not change in the tested conditions. This indicates that BceAB might not interact 

with free UPP. 

 

 

Figure 4.1: The doubling time of exponentially growing B. subtilis seems unaffected by 

presence of absence of BceAB. B. subtilis strains were grown in LB medium at 37 °C shaking 

incubation over 8 hours in a 96-well microplate reader. OD600 measurements were taken 

every 5 minutes. The fastest doubling time for each strain was determined. Bar graphs show 

means ± standard deviation from at least 6 biological replicates. A: Comparison of doubling 

times (td) of WT (W168), a ∆bceAB (SGB575) and a ∆bcrC mutant (TMB297), as well as a 

∆bceAB ∆bcrC double mutant (SGB01), values are listed in panel B. C: Doubling times of 

BceAB overproduction (SGB576, centre) and BceAB complementation strains (SGB577, right) 

in the presence (+) or absence (-) of 0.2 % xylose compared to WT doubling times (left), values 

are listed in panel D. Statistical analysis using a Tukey’s multi comparisons test did not show 

a significant difference upon removal of BceAB. Displayed data were obtained in 

collaboration with Laura Richardson.   



 

Chapter IV: In vivo determination of the physiological substrate of BceAB  121 

 
 

2.1.2 Absence of BceAB seems beneficial to growth in competition assays when 

recycling of UPP is impaired. 

An interaction between BceAB and UPP in the absence of bacitracin might only cause minor 

differences in the doubling times, and it is possible that growth in the 96-well plate might be 

insufficient to resolve these. As a more sensitive approach to investigate if the presence of 

BceAB is beneficial or even a burden on growth, competition assays were performed (Laura 

Richardson).  

In contrast to comparison of the maximal growth rate (Vmax) or the fastest doubling time (td), 

which measure the absolute fitness of a bacterial strain, competition assays are based on 

competing two bacterial strains directly against each other (Wiser & Lenski, 2015). By this, 

the relative fitness of a mutant to its wild type strain is determined and smaller differences 

have a better chance to be established. We hypothesised that if BceAB had an affinity to free 

UPP and withheld some of the lipid carrier from cell wall synthesis, a ∆bceAB strain would 

outcompete strains containing BceAB, like the WT. If BceAB acted as UPP importer and 

accelerated UPP turnover, the WT should outcompete the ∆bceAB strain. To test this, B. 

subtilis strains (WT versus ∆bceAB (SGB575), and ∆bcrC (TMB297) versus ∆bceAB ∆bcrC 

(SGB01)) were inoculated in a 50:50 ratio. A WT versus ∆bcrC pair was used as control, as the 

WT was expected to outcompete the UPP phosphatase deletion mutant (Radeck et al., 

2016b). Mixed cultures were grown in LB medium at 37 °C shaking incubation, and diluted 

1:1000 into fresh broth every 24 hours. Viable cells were counted and the competition index 

(CI) determined for each of the pairs (Auerbuch et al., 2001, Wiser & Lenski, 2015). The CI 

gives indication on whether one strain outcompetes the other, with CI = 1 implying equal 

growth rates, CI < 1 meaning the mutant strain was outcompeted and a CI value > 1 to be 

interpreted as the mutant outcompeting the wild type strain. The WT versus ∆bcrC pair 

revealed a mean CI of 0.76±0.06 after 24 hours, and 0.08±0.52 after 72 hours (Fig. 4.2). These 

results confirm that the WT strain had a growth benefit over the ∆bcrC mutant. It further 

validated the assay to be more sensitive, as this difference in fitness was not observed when 

comparing doubling times (IV 2.1.1). For the ∆bcrC versus ∆bceAB ∆bcrC pair, the CI lies at 

1.52±0.24 after 24 hours and at 3.47±0.31 after 72 hours, suggesting a clear growth 

advantage of the ∆bceAB ∆bcrC double mutant over the ∆bcrC single mutant (Fig. 4.2). The 

CI values of the WT versus ∆bceAB mutant were 1.42±1.08 after 24 hours and 1.16±0.16 after 

72 hours, which did not result in a significant growth difference upon ∆bceAB deletion (Fig. 

4.2). The removal of bceAB appeared to be mainly advantageous when competing in a UPP-
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accumulated environment, but seemed to have little to no impact in the wild-type 

background. This could be explained by BceAB having a low affinity to UPP alone, and upon 

accumulation of UPP it is more likely that this interaction happens. It became apparent that 

the CI became more veritable in the assays performed over 72 hours for both the WT versus 

∆bcrC and the ∆bcrC versus ∆bceAB ∆bcrC pairs. It is possible that a growth difference 

between the WT and a ∆bceAB would take even longer to become detectable. Additionally, 

biological repeats and technical replicates of the CFUs will help to detect smaller differences.  

In the way the assay was conducted, it is not entirely clear whether the observed fitness 

advantage of the ∆bceAB ∆bcrC double mutant over the ∆bcrC single mutant is a result of 

faster growth, as the cells are only transferred into fresh medium after 24 h. This means that 

cells will enter various growth stages and accordingly experience alterations of growth rate 

as well as the underlying metabolism. It is thus possible that the competition benefit is a 

result of differential stationary phase survival or differences in outgrowth behaviour from 

lag-phase. To ensure the fitness advantage is due to faster growth, competing cells should 

be constrained to exponential growth as much as possible, rather than being allowed to 

transit into stationary phase. This could for example be achieved by dilution into fresh 

medium every two to three hours.   
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Figure 4.2: The absence of BceAB seems only beneficial upon accumulation of UPP. For 

competition assays, B. subtilis strains were inoculated pairwise in a 50:50 ratio and grown in 

test tubes containing LB medium at 37 °C shaking incubation. Cultures were diluted 1:1000 

into fresh LB medium every 24 h. Samples were taken, diluted and plated on LB agar with 

and without the appropriate selection after 0, 24 and 72 h. CFUs were counted after 24 h of 

incubation at 37 °C. A: Bar graphs show means ± standard deviation from at least 2 biological 

replicates. Comparison of CI values of the following pairs: WT versus a ∆bcrC mutant 

(TMB297, dark blue), WT versus ∆bceAB (SBG575, centre) and ∆bcrC versus ∆bceAB ∆bcrC 

(SGB01, lightest blue) after 24 and 72 h, values are listed in panel B. Displayed data were 

obtained in collaboration with Laura Richardson. 
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2.2 Changing amounts of the [target-AMP] complex has impact on BceAB activity. 

In a second set of studies, we investigated whether the physiological substrate of BceAB was 

the complex of the AMP bound to its cellular target. For this, we first required a strategy to 

quantify transport activity in living cells. It has recently been shown that signalling within the 

Bce system is directly proportional to BceAB transport activity (Fritz et al., 2015). As the 

signalling cascade ultimately leads to activation of the promoter controlling bceAB expression 

(PbceA), the activity of a PbceA-luxABCDE reporter fusion can be taken as a proxy for BceAB 

activity (SGB73, Fig. 4.3 A). Using this approach, we monitored BceAB activity in the WT strain 

under several sub-inhibitory bacitracin concentrations. In agreement with previously 

reported data (Fritz et al., 2015), the threshold concentration to elicit detectable BceAB 

activity was 0.1 µg/ml bacitracin, and the activity gradually increased until maximum levels 

were reached at 30 µg/ml (Fig. 4.3 B). While this experiment showed that the transport 

activity increased with higher bacitracin concentrations, it did not directly allow us to 

distinguish whether the physiological substrate is free bacitracin or the complex between 

bacitracin and its cellular target UPP ([UPP-BAC]). This is because the concentration of [UPP-

BAC] changes proportionally to the concentration of bacitracin added to the culture (Fig. 4.3 

C). 
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Figure 4.3: The flux-sensing mechanism as suitable strategy to monitor BceAB activity. A: 

Schematic of the BceAB-BceRS resistance system. In the presence of bacitracin, the 

transporter BceAB confers resistance against bacitracin. BceAB forms a sensory complex with 

the kinase BceS and the transport activity of BceAB induces a signalling cascade through the 

two component regulatory system BceRS, which ultimately activates transcription from the 

target promotor PbceA. This results in increased production of BceAB, and therefore adjusted 

levels of resistance. As this signalling cascade is directly proportional to the transport activity, 

we can use the target promotor PbceA upstream of a luciferase reporter to monitor the 

transport activity of BceAB. B: Using luciferase activity as a proxy, BceAB activity of wild-type 

B. subtilis W168 carrying the reporter fusion (SGB73) was determined as average of three 

measurements taken 25, 30 and 35 minutes after challenging the cells with sub-inhibitory 

concentrations of bacitracin. Measurements were performed during exponential growth 

phase in LB medium at 37 °C in a microplate reader. All data are depicted as mean ± standard 

deviation of at least three biological replicates. C: Binding reaction between free bacitracin 

and its cellular target UPP. 
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2.2.1 Accumulation of UPP increases BceAB activity at low concentrations of bacitracin. 

To distinguish whether it was [UPP-BAC] or free bacitracin that triggered BceAB activity, we 

required a strategy to change the concentration of [UPP-BAC], while keeping the 

concentration of bacitracin constant. This should be possible by changing the UPP levels in 

the cell. If the [UPP-BAC] complex was the physiological substrate of BceAB, increased 

amounts of UPP should result in higher BceAB activity at the same bacitracin concentration.  

To achieve such an increase in the level of UPP displayed on the extracellular face of the 

membrane, we deleted the UPP phosphatase encoding gene bcrC, which plays a prominent 

role in recycling of UPP to UP during exponential growth (Bernard et al., 2005, Radeck et al., 

2017a, Zhao et al., 2016). By this, we should reduce the rate of UPP dephosphorylation, and 

thus accumulate UPP. This assumption was supported by a computational model prediction 

by our collaborators (Piepenbreier & Fritz, data not shown). As expected from previous data 

(Radeck et al., 2016b), deletion of bcrC resulted in an increased sensitivity to bacitracin, 

indicating an increased amount of UPP available for bacitracin to target. The MIC decreased 

from 160±20 µg/ml in the wild-type to 67±12 µg/ml in the ∆bcrC strain (SGB649). 

Re-testing BceAB activity in the ∆bcrC strain showed that increasing the UPP concentration 

in the cell led to a more than 10-fold reduction in the minimal bacitracin concentration 

required to trigger transport activity (0.003 µg/ml, Fig. 4.4 A, turquoise). Likewise, maximum 

BceAB activity was observed at 0.3 µg/ml bacitracin (Fig. 4.4 A, turquoise), which is 100-fold 

less bacitracin than is required in the WT strain (SGB73) to reach similar activity (Fig. 4.4 A, 

dark blue). Between 0.3 and 30 µg/ml bacitracin the transport activity seemed to have 

reached a plateau. A seemingly decrease of activity with increasing bacitracin concentration 

was not statistically significant (one-way ANOVA with post-hoc test). A two-way ANOVA 

confirmed the variation observed between the two strains was significant (p = 0.0075). The 

huge disparity in BceAB activity between the ∆bcrC and the WT strain became particularly 

clear when comparing activity levels in the presence of 0.1 to 3 µg/ml bacitracin, as the post-

hoc test performed showed p-values lower than 0.0001 at these concentrations. Further, a 

non-linear regression dose response curve was fitted on the normalised BceAB activity of 

each of the strains, allowing determination of the half maximal effective concentration of 

bacitracin (EC50, Fig. 4.4 B). As the maximal activity of the WT strain has been previously 

determined to lie at a concentration around 30 µg/ml bacitracin (Rietkötter et al., 2008, Fritz 

et al., 2015), we assumed this concentration as a suitable end point.  
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The EC50 values, which describe the bacitracin concentration at which the BceAB activity is 

half its maximum, were 3.86 µg/ml in the WT and 0.059 µg/ml in the ∆bcrC mutant (p < 

0.0001). This significant difference further confirmed the increased sensitivity upon UPP 

accumulation.  

To explore if UPP alone could serve as the physiological substrate of BceAB, the activity was 

also compared in the absence of bacitracin. There was no detectable BceAB activity in either 

of the tested strains, which suggested that accumulation of UPP alone was not sufficient to 

trigger transport by BceAB. 

To exclude that the observed sensitivity shift upon UPP accumulation was a result of an 

additional unknown regulatory effect on the PbceA promoter, we uncoupled BceAB production 

from its native regulation. We re-tested the effect of UPP accumulation on BceAB activity in 

a strain lacking the native copy of bceAB, but carrying a xylose-inducible copy of bceAB. 

Ectopic expression of bceAB ensured equal BceAB production levels in all strains, 

independent of signalling activity and other regulatory influences. In agreement with 

previous observations (Kallenberg et al., 2013), bacitracin resistance increased in a ∆bceAB 

single mutant (SGB218) as well as in the ∆bceAB ∆bcrC double mutant background (SGB677) 

upon xylose-induction of PxylA-bceAB (MICs: ∆bceAB PxylA-bceAB -xylose: 20 µg/ml, +xylose: 

43.3±15.3 µg/ml; ∆bceAB ∆bcrC PxylA-bceAB -xylose: < 1 µg/ml, +xylose: 13.3±5.8 µg/ml). This 

confirmed successful BceAB production. The minimal bacitracin concentration to induce 

detectable BceAB activity as well as the concentration at which maximal activity was 

observed were 30-fold lower in the ∆bceAB ∆bcrC double mutant than in the ∆bceAB 

background (Fig. 4.4 C). These findings suggest that the more sensitive response in BceAB 

activity upon UPP accumulation is independent of the level of BceAB produced, and the 

observed activity change therefore unlikely to be due to regulatory effects. 

To further explore the effect of altered UPP levels on BceAB activity, we sought to decrease 

the pool of UPP displayed on the outer face of the membrane. To this end, we overproduced 

BcrC by placing an additional copy of bcrC under control of the xylose-inducible promoter 

PxylA (SGB758). While the difference was not as pronounced as in the ∆bcrC strain, 

overproduction of BcrC still led to a small but consistent increase in MIC (WT: 160±20 µg/ml, 

PxylA-bcrC + xylose: 173±12 µg/ml). Reduction of UPP levels in this way led to overall lower 

BceAB activities (Fig. 4.4 D, turquoise). The threshold concentration required to trigger 

detectable activity was increased three-fold, and even at the maximal concentration tested, 

the activity was less than half of that in the wild type. 
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The dose response curve fitted on the normalised data did not reveal a difference in 

sensitivity. However, the concentrations tested did not allow an adequate conclusion on 

whether 30 µg/ml bacitracin resulted in maximal BceAB activity for the BcrC overproduction 

strain, or if higher activities may have been achieved at even higher but still sub-lethal 

concentrations (Fig. 4.4 E). Therefore, the difference between the PxylA-bcrC and the WT strain 

was shown by a two-way ANOVA (p = 0.0075). Post-hoc analysis revealed a significant 

difference between the WT and the BcrC overproduction strains at the concentrations of 10 

µg/ml (p = 0.004) and 30 µg/ml bacitracin (p < 0.0001, Fig. 4.4 D). This suggests that BcrC 

overproduction and, therefore, reduced levels of the cellular target, are likely to lead to 

decreased BceAB activity. These findings were a first indication that the concentration of 

[UPP-BAC] complexes rather than bacitracin or UPP alone is the critical parameter 

determining BceAB activity.  

 

 

Figure 4.4: Varying the cellular UPP concentration affects BceAB transport activity in the 

presence of bacitracin. Exponentially growing cells were challenged with varying 

concentrations of bacitracin, as indicated. Luminescence activity (RLU/OD) was determined 

as average of three measurements taken 25, 30 and 35 minutes after addition of AMPs. 

Experiments were performed in LB medium at 37 °C shaking incubation in a microplate 

reader. All data are shown as mean ± standard deviation of at least three biological replicates. 

A: Comparison of activities in the WT (SGB73, dark blue) and ∆bcrC strain (SGB649, turquoise) 

with varying bacitracin concentrations. B: Best-fit of dose response of BceAB activity for a 

∆bcrC strain (turquoise) and the respective WT activity (dark blue). Non-linear regression 

curves were fitted on normalised activity data. The EC50 (half maximal effective 

concentration) was determined and statistical analyses performed on the logEC50 (****: p < 

0.0001). C: Effect of ∆bcrC on BceAB activity in strains that carry a xylose-inducible copy of 

bceAB (PxylA-bceAB), instead of the native copy (∆bceAB). Experiments were performed in 

presence of 0.2 % xylose. D: BceAB activity of the BcrC overproduction strain (SGB758, PxylA-

bcrC) in the presence of 0.2 % xylose (turquoise) compared to WT activity (dark blue). For 

data displayed in panel A and D, a Bonferroni’s multiple comparisons test was performed as 

post-hoc analysis after a two-way ANOVA (****: p < 0.0001, ***: p < 0.001, **: p < 0.01, *: 

0.01 < p < 0.05). E: Best-fit of dose response of BceAB activity for a PxylA-bcrC strains and the 

respective WT activity. Non-linear regression curves were fitted on normalised activity data.  
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2.2.2 UPP accumulation does not affect transport activity upon addition of lipid II 

binding AMPs. 

To exclude that the changed susceptibility of the cell caused by varying the levels of UPP 

phosphatase had general effects on BceAB activity, we had to ensure that the observed 

activity was indeed due to changes the amount of [UPP-BAC] in the cell. Therefore, we 

wanted to test if bcrC deletion or overexpression also altered BceAB activity in response to 

AMPs that do not interfere with UPP. To this end, we tested BceAB activity in response to 

two lipid II-binding AMPs, mersacidin and actagardine. If the changed BcrC levels had a 

specific effect on UPP concentrations, the BceAB activity should be the same as in the wild-

type strain when mersacidin or actagardine were added. In contrast, more global effects on 

the cell envelope should result in a change of activity, regardless which AMP was used.  

When re-testing the WT and the ∆bcrC strains (SGB73, SGB649), a gradual increase of BceAB 

activity could be observed with increasing amounts of mersacidin or actagardine (Fig. 4.5 A, 

C). Comparing the activities between the WT and ∆bcrC strains at each AMP concentration 

showed that changing the UPP levels in the cell had no effect on BceAB activity for these two 

AMPs. Statistical analysis using a two-way ANOVA confirmed the significant effect that the 

increased concentration of each AMP had on BceAB activity (p < 0.0001), but further showed 

that there was no significant variation between the two strains tested (p = 0.7466 and p = 

0.9987 for mersacidin and actagardine, respectively). 

As an additional control, the activity of the related B. subtilis transporter PsdAB upon UPP 

accumulation was tested. This transporter is a BceAB paralog and responds to and confers 

resistance against nisin, another lipid II-binding AMP. PsdAB activity was determined using 

the same luminescence-reporter assay as for BceAB, but with PpsdA activity as a proxy for 

transport. As before, transport activity increased significantly with concentration of nisin (p 

< 0.0001, Fig. 4.5 E). The minimal nisin concentration to induce PsdAB activity was 0.1 µg/ml, 

whereas the maximal activity was observed at 10 µg/ml. No difference between the WT 

(SGB74) and ∆bcrC (SGB681) strains at each AMP concentration could be determined (p = 

0.3530). These findings indicate that bcrC deletion only affected the complex formation 

between UPP and bacitracin and did not have a general effect on BceAB or PsdAB function. 

Re-testing transport activity upon addition of mersacidin and actagardine in a BcrC 

overproducing strain seemed to result in an overall decreased BceAB activity compared to 

WT levels (SGB758, SGB73, Fig. 4.5 B, D), similar to the effect seen upon bacitracin addition 

(Fig. 4.4 D). Statistically significant differences between WT and the PxylA-bcrC strain at each 
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tested concentration were only found at 1 and 3 µg/ml mersacidin (p < 0.0001) using post-

hoc analysis. These findings imply that overproduction of BcrC seemed to have a more global 

effect on BceAB activity. For example it could have affected not only UPP but also lipid II 

levels displayed on the extracellular face of the cell. Nevertheless, the largest difference in 

BceAB activity between the WT and the BcrC overproducing strain was seen in the presence 

of bacitracin (IV 2.2.1), hinting towards that the more prominent effect of BcrC 

overproduction is on the UPP pool.  

The findings so far indicate that BceAB activity does not depend on the concentration of free 

antibiotic, but seemed to vary with the amount of the cellular target. This makes it more 

likely that [UPP-BAC], or more general the complex of cellular target and antimicrobial 

peptide is the physiological target rather than the AMP alone. 
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Figure 4.5: Accumulation of UPP does not affect BceAB nor PsdAB transport activity in the 

presence of mersacidin, actagardine or nisin, respectively. Exponentially growing cells were 

challenged with varying concentrations of mersacidin, actagardine or nisin, as indicated. 

Luminescence activity (RLU/OD) was determined as average of three measurements taken 

25, 30 and 35 minutes after addition of AMPs. All data are shown as mean ± standard 

deviation of at least three biological replicates. Bonferroni’s multiple comparisons test was 

performed as post-hoc analysis after a two-way ANOVA (****: p < 0.0001, ***: p < 0.001, **: 

p < 0.01, *: 0.01 < p < 0.05). A+C: Comparison of WT activities (SGB73, dark red/orange) and 

∆bcrC strain (SGB649, light red/orange) with varying mersacidin or actagardine 

concentrations. B+D: BceAB activity of the BcrC overproduction strain (SGB758, PxylA-bcrC) in 

the presence of 0.2 % xylose (light red/orange) compared to WT activity (dark red/orange). 

E: Comparison of PsdAB activities in the WT (dark green) and ∆bcrC strain (light green) with 

varying concentrations of nisin. PsdAB activity was obtained in the same manner as BceAB 

activity.  
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2.2.3 Accumulation of C35-PP in the cell does not alter BceAB activity. 

Manipulations of the isoprenoid biosynthesis pathway have previously been demonstrated 

to lead to accumulation of heptaprenyl diphosphate (C35-PP). This effect occurs upon deletion 

of ytpB, a tetraprenyl-beta-curcumene synthase (Sato et al., 2011), when the activity of 

MenA, a key enzyme in the menaquinone pathway, is simultaneously limited (Kingston et al., 

2014). C35-PP was hypothesised to act as a competitive inhibitor and to block BceAB transport 

activity (Kingston et al., 2014). In this case, BceAB activity should decrease upon C35-PP 

accumulation. 

As bacitracin has been shown to tightly bind the pyrophosphate of GPP (Economou et al., 

2013), the shorter precursor of UPP, it was expected that bacitracin would also bind C35-PP. 

If [UPP-BAC] was the physiological substrate of BceAB, also [C35-PP-BAC] is likely to be 

recognised by BceAB. Then, BceAB activity should not be affected.  

To this end, we re-tested the BceAB activity of a ∆ytpB strain in the presence of bacitracin 

and compared it to wild type activity (SGB73, SGB798, Fig. 4.6). As the available a ∆ytpB MenA 

depletion strain was incompatible with our current luminescence reporter strain, BceAB 

activity experiments as well as MIC assays were performed in MH medium. In contrast to LB 

medium, MH contains lower amounts of tryptophan. In the tryptophan auxotroph B. subtilis 

W168 strain (trpC2), tryptophan depletion de-represses the biosynthesis thereof. 

Tryptophan biosynthesis in this strain is only disabled at the second-to-last step. This leads 

to a higher consumption of the central precursor chorismate, which in turn is thought to lead 

to reduced 1,4-dihydroxy-2-naphthoic acid (DHNA) biosynthesis. MenA uses DHNA as co-

substrate of C35-PP (Suvarna et al., 1998). Depletion of DHNA reduces the activity of MenA, 

which thus mimics a genetic depletion strategy and should lead to C35-PP accumulation 

(Kingston et al., 2014). 

As before, BceAB activity increased gradually with the bacitracin concentration added. The 

minimal concentration to trigger transport activity was 0.1 µg/ml bacitracin, maximal activity 

was observed at 30 µg/ml. There was no detectable difference in BceAB activity between the 

∆ytpB strain and the WT at the same bacitracin concentration (Fig. 4.6).  

This implies that under these conditions, C35-PP or [C35-PP-BAC] did not inhibit BceAB activity 

and suggests that BceAB cannot distinguish between [UPP-BAC] and [C35-PP-BAC]. If BceAB is 

able to recognise both [UPP-BAC] and [C35-PP-BAC] as substrate, the transporter is also likely 

to remove the bacitracin from the heptaprenyl diphosphate. In such case, the transport 
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activity was not expected to decrease. Taken together, these findings contradict that C35-PP 

acts as a competitive inhibitor of BceAB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Accumulation of C35-PP in the cell does not affect BceAB activity in presence to 

bacitracin, but leads to decrease in resistance. Comparison of activities in the WT (SGB73, 

dark blue) and ∆ytpB strain (SGB798, turquoise) in the presence of varying bacitracin 

concentrations. BceAB activities were determined as described in Fig. 4.4, but experiments 

were performed in MH media. Data are shown as mean ± standard deviation of at least three 

biological replicates. A two-way ANOVA did not show any significant contribution to variation 

by the strains.  
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3. Discussion 

In this chapter, we aimed to identify the nature of the physiological substrate of the 

antimicrobial resistance transporter BceAB in the context of the living cell. Using in vivo 

assays combined with genetic manipulations that were expected to alter the levels of key 

players in the lipid II cycle, we intended to investigate changes in the interaction between 

the physiological target with BceAB and effects on its transport activity. The physiological 

substrate of BceAB had previously been proposed to be the target-AMP complex or either 

the AMP or the cellular target alone.  

 

3.1 Our experimental data do not support a ‘UPP import’ model for BceAB. 

A potential interaction between BceAB and the lipid carrier UPP was investigated using 

comparisons of the fastest doubling times and competition assays between strains that 

produced different levels of BceAB or lacked the transporter. In addition, this effect was 

tested in a UPP accumulation background. The absence of BceAB was expected to slow down 

growth in case the transporter acted as UPP importer, because slowed recycling of the lipid 

carrier reduces the rate of cell wall synthesis. In case UPP binding by the transporter could 

branch away some UPP from being recycled by UPP phosphatases, the removal of BceAB 

would facilitate faster growth. Deletion of bceAB imparted neither a benefit nor disadvantage 

on growth as determined by the fastest doubling times. It also did not cause any significant 

difference upon UPP accumulation. We were not able to reproduce the difference in growth 

observed by Radeck and colleagues (2016b) when comparing the fastest doubling time upon 

deletion of ∆bceAB. This can likely be explained by the fact that in the previous study the 

tested strains contained a PbceA luminescence reporter. Luciferase catalyses the oxidation of 

reduced flavin mononucleotides (FMNH2) and fatty aldehydes in the presence of molecular 

oxygen, which might come at a cost for the cell (Park et al., 2013). A strain lacking BceAB 

might have therefore had a growth advantage. In support of this, we consistently observed 

growth differences between the WT (SGB73, bceAB+) and ∆bceAB strains containing the PbceA-

lux reporter during routine growth for transport activity assays in this study (data not shown). 

This is would also be consistent with the hypothesis that cell wall synthesis itself is not rate-

limiting during exponential growth. Cell wall synthesis, cell division, DNA replication and 

other mechanisms in the cell need to be tightly regulated and spatially and temporarily 

coordinated to ensure impeccable growth. Yet, fast-growing bacterial cells were found to 
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have elongated cell shapes (Chien et al., 2012). In B. subtilis, fast-growing cells were only 

elongated and not increased in diameter, which results in a higher surface-to-volume ratio 

(Chien et al., 2012). This indicates that the cell wall synthesis is not growth-limiting. Yet, it is 

unclear if the cell wall consists of as many layers of peptidoglycan as during slower growth, 

or whether fast-growing cells have a thinner cell wall.   

The findings of the more sensitive competition assays suggested the deletion of bceAB to be 

advantageous over a bceAB+ strain when competing in a UPP-accumulated environment, in 

which UPP recycling is diminished (Fig. 4.2). The absence of BceAB did not seem to make an 

obvious difference in the wild type background. This supports an interaction between BceAB 

and UPP, in which the transporter withholds some of the lipid carrier from being recycled. As 

this potential interaction seems to slow UPP turnover mainly when UPP recycling is impaired, 

we suspected a rather low affinity interaction.  

Additionally, accumulation of UPP did not seem to trigger BceAB activity in the absence of 

AMPs, when BceAB transport activity was monitored using a luminescence reporter assay. 

This finding suggests that UPP alone is not enough to induce a signalling response of BceAB. 

This is consistent with the lipid carrier possibly being part of the physiological substrate as it 

is suggested for a ‘hydrophobic vacuum cleaner’ mechanism (Bernard et al., 2007).  

The recycling reaction of the lipid carrier, in which it is transported back across the membrane 

to the cytoplasmic face, is still far from understood. Cytosolic undecaprenyl phosphate (UP) 

stands as lipid carrier at the start of both, peptidoglycan and wall teichoic acid synthesis. Both 

pathways are known to release the lipid carrier in its pyrophosphate form (UPP) in the outer 

leaflet of the membrane after their respective cell wall building blocks have been 

incorporated into the cell wall (Scheffers & Pinho, 2005, Brown et al., 2013). Because of its 

size and charge, UPP is thought to be imported actively rather than to flip spontaneously 

(Zhao et al., 2017). Yet, the identity of the potential flippase remains unknown. It is further 

unclear if the lipid carrier is dephosphorylated before or after it is flipped across the 

membrane. In the search for answers to these fundamental questions, the membrane-based 

transporter BceAB seemed like a suitable candidate for UPP import. BceAB confers resistance 

against the UPP-targeting AMP bacitracin. Importing the lipid carrier back into the cell would 

effectively shelter it from the inhibitory grip of the AMP (Kingston et al., 2014). 

The growth advantage in the absence of BceAB stands against the hypothesis that the 

transporter acts as UPP or UP importer, which was proposed by Kingston et al. (2014). As 

importer, BceAB would increase UPP recycling and therefore lead to accelerated growth. The 
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lack of the transporter should have therefore resulted in a fitness cost, if this hypothesis was 

true.  

Furthermore, BceAB also confers resistance against other AMPs, namely mersacidin, 

actagardine and the fungal defensin plectasin (Staron et al., 2011, Mygind et al., 2005). 

Instead of binding the lipid carrier, these AMPs were found to target lipid II (Breukink & de 

Kruijff, 2006, Schneider et al., 2010). Import of UPP is not an appropriate strategy to provide 

resistance against them. Of course, import of lipid II before its peptidoglycan precursor is 

incorporated into the cell wall is a plausible way to shelter the molecule from AMPs. 

However, import of lipid II runs counter the process of cell wall biosynthesis, where PG 

precursors are required on the surface of the membrane. Lipid II import is therefore a not an 

effective way of protecting the cell from antimicrobial stress.  

Taken together, our data suggest that UPP alone is unlikely to be the true physiological 

substrate of BceAB. Our experimental data and support from previous studies further argue 

against the hypothesis that BceAB acts according to a ‘UPP import’ model. Yet, the findings 

of this chapter are in support of a possible low-affinity interaction between BceAB and UPP 

in the absence of bacitracin. Even if not the signal-inducing agent or transported substrate, 

specific interactions between membrane-based transporters and their phospholipid 

environment are not unusual.  

The tripartite drug efflux pump MacB was shown to specifically bind 

phosphatidylethanolamine molecules (Barrera et al., 2009). The physiological role of this 

interaction is entirely unclear. It could be speculated whether also MacB recognised its 

substrates in a membrane-associated state, as macrolide antibiotics like erythromycin may 

weakly associate with phospholipids of biological membranes (Montenez et al., 1999). 

Further, the surrounding phospholipid environment was shown to affect substrate affinity 

and ATP hydrolysis of integral membrane proteins (Romsicki & Sharom, 1999, Miyamoto & 

Tokuda, 2007). Changes of the phospholipid environment as caused by bacitracin action or 

UPP phosphatase impairment could thus affect BceAB activity in some way. Because BceAB 

likely recognises the UPP-BAC complex, an affinity to the lipid carrier part alone is plausible, 

particularly under UPP accumulating conditions. It is also conceivable that the low affinity to 

the lipid carrier UPP could help BceAB with localisation near cell wall biogenesis sites. Further 

work needs to be carried out to understand the role of this potential interaction. 
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3.2 The target-AMP complex is likely the physiological substrate of BceAB. 

After excluding UPP alone as physiological substrate of BceAB, we sought to determine 

whether the AMP alone was enough to trigger BceAB activity or whether the target-AMP 

complex was the physiological substrate of BceAB. To this end, we monitored the BceAB 

activity not only upon addition of the AMP, but also when levels of lipid carrier in the cells 

were altered by genetic manipulations. Both approaches are thought to alter the amount of 

target-AMP complex formed. We showed that addition of bacitracin as well as changing 

levels of UPP in the presence of bacitracin were able to alter BceAB activity (Fig. 4.4). We 

found this effect on BceAB activity to be specific for [UPP-BAC], as accumulation of UPP did 

not alter BceAB activity in the presence of the lipid II-binding AMPs (Fig. 4.5). These findings 

indicated that the physiological substrate is not bacitracin alone. As the activity changed 

according to two variables, the physiological substrate was suspected to be the complex of 

the AMP and its respective cellular target.  

In an approach independent of alterations of the UPP phosphatase activity in the cell, we 

accumulated C35-PP in the cell by deleting ytpB in an environment where MenA activity was 

reduced by substrate limitation (Sato et al., 2011, Kingston et al., 2014). Heptaprenyl 

diphosphate was expected to be a target of bacitracin, as it was shown that bacitracin only 

requires the pyrophosphate group and one adjacent isoprenoid moiety to bind its target with 

high affinity (Storm & Strominger, 1973, Economou et al., 2013). Previously, C35-PP or [C35-

PP-BAC] were proposed to interact with BceAB and to inhibit its activity (Kingston et al., 

2014). Our experimental data suggested that BceAB activity did not decrease significantly 

upon C35-PP accumulation (Fig. 4.6). From this, we excluded C35-PP or [C35-PP-BAC] to have 

inhibitory function on BceAB. Our data rather indicated that BceAB cannot distinguish 

between [UPP-BAC] and [C35-PP-BAC] and therefore might also recognise and process [C35-

PP-BAC] as a substrate. In contrast to BceAB being inhibited by C35-PP, we thus propose that 

upon recognition of [C35-PP-BAC], BceAB removes bacitracin from C35-PP according to a 

‘hydrophobic vacuum cleaner’ mechanism (Ohki et al., 2003, Bernard et al., 2007). Removal 

of bacitracin from the lipid II cycle intermediate UPP helps towards the turnover of the lipid 

II cycle and thus, towards cell wall biosynthesis. Releasing of C35-PP from the grip of 

bacitracin, however, does not contribute to resistance against AMPs, as it is involved in 

sesquarterpene synthesis (Sato et al., 2011). In agreement with this, deletion of ytpB led to 

an increased sensitivity to bacitracin (Kingston et al., 2014). The effect was most prominent 

when the ∆ytpB strain was tested on solid medium, where bacitracin had a bacteriolytic 
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effect and led to early lysis. A moderate decrease of MIC was also observed in liquid culture 

(Kingston et al., 2014). Our own MIC data from liquid cultures showed no noticeable 

difference between the ∆ytpB and the WT strain. The OD600 measurements from plate reader 

experiments, however, confirmed a slightly higher susceptibility of the ∆ytpB strain to 

bacitracin (data not shown).  

The changes in sensitivity to bacitracin indicate that at the C35-PP accumulated at the outer 

face of the membrane, where it is accessible to bacitracin. Membrane localisation of C35-PP 

is expected due to its long isoprenoid chain. This is further supported, as C35-PP is a precursor 

for some membrane-associated sesquarterpens and menaquinone-7 (Bramkamp & Lopez, 

2015, Farrand & Taber, 1974). Yet, it remains puzzling whether C35-PP is abundant at either 

face of the membrane or distributed asymmetrically.  

Hence, it is possible that the ∆ytpB strain did not have enough C35-PP accumulated at the 

outer face of the membrane at time the experiment was performed. It is therefore 

recommended to repeat the assay in a minimal medium containing even less tryptophan. 

Alternatively, BceAB activity should be re-tested in a ∆ytpB menA depletion strain, in which 

MenA activity is reduced by lower gene expression levels, rather than limited by substrate 

availability (Kingston et al., 2014).  

The findings of this chapter suggest the physiological substrate of BceAB to be the complex 

of cellular target and the AMP, rather than the free AMP or the target alone. Alternatively, it 

is also possible that the transporter only interacts with the bound version of the AMP alone, 

as these peptides are known to undergo conformational changes upon binding their target 

(Hsu et al., 2003, Economou et al., 2013). These structural changes might expose certain 

features required for substrate recognition by BceAB. The approaches used in this chapter 

were not laid out to distinguish between those two options. 
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3.3 The ‘hydrophobic vacuum cleaner’ model as proposed mechanism for BceAB. 

The conclusions of this chapter are in support of a ‘hydrophobic vacuum cleaner’ model of 

BceAB action (Ohki et al., 2003, Bernard et al., 2007). Our proposed hypothesis is consistent 

with all previously published data on the mechanism of BceAB that we are aware of. 

Nevertheless, the identification of the physiological substrate does still not allow unwavering 

conclusions on the resistance mechanism, as, for example, the direction of transport is still 

unclear. Although the ‘hydrophobic vacuum cleaner’ hypothesis suggests export into the 

extracellular space, import of the substrate for degradation has not yet been ruled out 

experimentally. Upon recognition of the target-AMP complex, several alternative 

resistance mechanisms that have not been discussed in the literature, yet are plausible, 

might apply for BceAB. Rather than freeing the cellular target from the AMP, it is for example 

possible that the whole target-AMP complex is extracted from the membrane and released 

into the extracellular space. The resulting inactivation of the AMP would also prevent the re-

attachment of the antimicrobial compound onto the membrane. In an alternative 

mechanism, BceAB could recognise the target-AMP complex, and in response export poly-

isoprenoids from the membrane to the extracellular space, where the AMPs could be bound 

and inactivated. Although such a mechanism seems very costly for the cell, a recent study 

suggested a similar mechanism for daptomycin resistance in S. aureus (Pader et al., 2016). 

Upon daptomycin stress, S. aureus releases the phospholipid phosphatidylglycerol, which is 

the target of daptomycin in the membrane (Tran et al., 2015). In doing so, the antibiotic is 

inactivated in culture supernatants (Pader et al., 2016). 

To further investigate these possibilities, bacitracin transport assays from previous work by 

our laboratory were taken into account (Emenegger & Gebhard, unpublished data). These 

experiments were modified from the peptide release assays established by Otto and 

colleagues (1998) and were used in other studies to determine direction of AMP transport 

(Stein et al., 2003, Stein et al., 2005, Reiners et al., 2017). The assay is based on the 

quantification of the AMP concentration that remains in the culture supernatant after 

incubating strains carrying or lacking the respective resistance determinant with the AMP.  

No significant differences in the concentrations of residual biologically-active bacitracin could 

be determined between the culture supernatant of strains containing or lacking BceAB 

(bceAB+ or ∆bceAB) and a control without cells (Fig. S4.1). An initial bacitracin concentration 

of 5 µg/ml was used and a slight reduction of bacitracin was observed even in the control 

without cells. This was likely due to oxidative deamination of bacitracin A to bacitracin F that 
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possesses lower antimicrobial activity (Storm & Strominger, 1973). As the remaining 

bacitracin in the supernatant did not decrease compared to this ‘buffer-only’ control, it was 

concluded that BceAB neither imported bacitracin into the cell nor led to inactivation or 

degradation of the AMP in the extracellular space. These findings make the alternative 

resistance mechanisms described above unlikely.  

Further, a higher concentration of residual bacitracin was expected in the supernatant of the 

bceAB+ strain compared to the ∆bceAB strain, if BceAB worked according to hydrophobic 

vacuum cleaner and expelled bacitracin from the membrane. However, no difference in 

concentration could be determined between them (Fig. S4.1). Notably, the bacitracin 

concentration of the cell suspensions did not seem to be decreased, compared to the buffer 

control. This implied that there was too little bacitracin attached to the cells to be detected. 

Therefore, we could not further confirm the expulsion of bacitracin from the membrane 

experimentally. 

The idea of conferring resistance against lipid II-binding antibiotics via export of the AMP 

from the membrane to the extracellular space has previously been described for several 

LanFEG-type transporters. Otto and colleagues (1998) suggested the EpiFEG transporter of S. 

epidermidis to work by expelling epidermin and gallidermin derivatives from the membrane. 

Resistance against nisin in Lactococcus lactis is mediated by the transporter NisFEG, while B. 

subtilis ATCC6633 is protected against subtilin by SpaFEG. The self-protection mechanism 

provided by the transporters against both lantibiotics was shown to involve the transport of 

the lantibiotics from the membrane into the extracellular space (Stein et al., 2003, 2005). 

Additionally, immunity against the lantibiotic nukacin ISK-1 in the producer Straphylococcus 

warneri ISK-1 was shown be conferred by NukFEG. Again, this transporter is thought to 

relocate the AMP away from the membrane, which was revealed by a transport assay using 

fluorescence-labelled nukacin ISK-1 (Okuda et al., 2008). Recently, also the BceAB-like 

transporter NsrFG of Streptococcus agalactiae COH1 was shown to confer resistance by 

transporting nisin from the membrane to the extracellular space (Reiners et al., 2017). In 

most studies, the remaining lantibiotic concentration was determined using HPLC, but none 

mentioned an increased amount of lipid II in the supernatant. These observations further 

supported that BceAB could provide resistance using a mechanism that recognises its 

substrate in the membrane and releases it into the extracellular space.  
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3.4 The challenges of manipulating the lipid II cycle intermediate levels of the cell 

wall biosynthesis 

In Gram-positive bacteria, the cell wall is the outmost layer of protection against the 

environment, and thus cell wall biosynthesis is a main target for many antibiotics (Breukink 

& de Kruijff, 2006, Schneider & Sahl, 2010). In turn, bacteria have evolved to protect this 

mechanism by producing proteins with redundant function and by developing several stress 

response strategies that upregulate expression of alternative genes and pathways (Mascher 

et al., 2003, Radeck et al., 2016a, Helmann, 2016).  

Most experiments described in this chapter focussed on the most prominent substrate of the 

BceAB transporter, bacitracin in complex with its cellular binding partner UPP. The 

extracellular UPP pool serves as an excellent target for antimicrobial action, yet we were 

seemingly able to alter the lipid carrier levels in the outer face of the membrane using genetic 

manipulations. This could potentially be explained by B. subtilis possessing alternative 

pathways to obtain the crucial lipid II cycle intermediate UP, when UPP recycling is impaired 

by the lack of the main UPP phosphatase BcrC or blocked by bacitracin. The bioneogenesis of 

UPP is catalysed by the undecaprenyl pyrophosphate synthetase UppS (Apfel et al., 1999). 

Followed by dephosphorylation performed by functionally redundant UPP phosphatases 

(Zhao et al., 2016, Radeck et al., 2017a), this could still lead to lipid II formation and 

compensate for some of the deficiency. Further, Gram-positive bacteria are thought to store 

free undecaprenyl (C55-OH) as a reserve pool of the lipid carrier (Bouhss et al., 2008). In B. 

subtilis, UP shortage leads to increased phosphorylation of C55-OH to UP by the undecaprenyl 

kinase DgkA (Jerga et al., 2007, Radeck et al., 2017a). Also recycling of UP from wall teichoic 

acid biosynthesis can potentially compensate for impaired UPP dephosphorylation (Brown et 

al., 2013).  

From the work presented in this chapter, we concluded that the target-AMP complex in 

general is the physiological target of BceAB. This means also the lipid II-binding AMPs, like 

mersacidin and actagardine, should be only recognised by BceAB when they are bound to 

their cellular target (lipid II-AMP). As a consequence, BceAB transport activity should also 

depend on the amount of lipid II-AMP complexes, which in turn should alter with varying 

lipid II levels in the cell. To test if the target-AMP complex principle also applies for lipid II-

binding AMPs, it would be important to measure BceAB activity upon lipid II accumulation or 

reduction in the presence of mersacidin. Several alternative strategies to accumulate lipid II 

in the outer leaflet of the membrane have already been attempted for this study. These 
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included the deletion of ponA, which encodes penicillin binding protein 1. PBP1 is a class A 

PBP that possesses both, transglycosylation as well as transpeptidase activity during cell wall 

biosynthesis (Scheffers & Pinho, 2005). Deletion of ponA was shown to lead to slower growth, 

altered cell morphology (Popham & Setlow, 1995) and potentially to a decreased 

transglycosylation rate.  

In an alternative strategy, we tried to accumulate lipid II without using genetic manipulations. 

A recent study showed that addition of moenomycin led to accumulation of lipid II in S. 

aureus and the same study successfully used vancomycin to accumulate lipid II in B. subtilis 

(Qiao et al., 2017). Vancomycin binds to the terminal D-Ala-D-Ala residues of the 

peptidoglycan precursors stem peptide (Wang et al., 2018). The glycopeptide should not 

affect the pyrophosphate and sugar moieties of lipid II that are recognised by mersacidin and 

actagardine and thus, not block their binding site. Therefore, we attempted to accumulate 

lipid II by combining the AMPs with vancomycin. A similar combinatory approach was 

performed using ampicillin.  

BceAB activity was tested as described previously in this chapter, but now using these 

potentially lipid II-accumulating strains and conditions and upon the addition of mersacidin. 

None of the tested conditions resulted in significant changes of BceAB activity (∆ponA: Fig. 

S4.2, vancomycin: Fig. S4.3, A, B, ampicillin: data not shown).  

As we currently cannot measure the levels of lipid II cycle intermediates on the outer face of 

the membrane, no unwavering conclusions could be drawn from these experiments on 

whether the lipid II-AMP complex also serves as physiological substrate for BceAB. It is 

possible that BceAB can recognise bacitracin in complex with its cellular target UPP, but lipid 

II-binding AMPs might be recognised and dealt with in a different mechanism. In such a case, 

even successful alterations of the lipid II-AMP levels would have not led to changes in BceAB 

activity. However, lipid II, when located in the outer face of the membrane, is regarded as 

the Achilles’ heel of cell wall synthesis and therefore should be particularly well-protected.  

B. subtilis possesses three further PBPs with redundant transglycosylation activity (PBP2c, 

PBP2d, PBP4, Scheffers & Pinho, 2005). Even in absence of all of them, B. subtilis is able to 

grow (McPherson & Popham, 2003). A recent study revealed the transglycosylation activity 

of the RodA that can compensate for the loss of class A PBPs (Meeske et al., 2016). This 

redundancy of function stresses the challenge to accumulate lipid II on the outer face by 

removal of just one PBPs. The cell seems to have several strategies to compensate for their 

loss and to secure the immediate incorporation of peptidoglycan precursors after ‘just-in-

time’ delivery of lipid II.  
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When combining the AMPs with vancomycin, the growth of B. subtilis was analysed for 

potential synergistic interactions between the drug combinations that could point towards 

successful lipid II accumulation (Fig. S4.3, C, D). Although an antagonistic effect of the drug 

combinations can be excluded, the recorded data is not sufficient to conclude whether the 

antibiotics had additive or synergistic (super-additive) effects (Tallarida, 2001, Tallarida, 

2006, Weinstein et al., 2017). It is therefore still unclear if combining the two antibiotics led 

to alteration of the lipid II-AMP levels. Notably, the vancomycin concentration used for lipid 

II accumulation by Qiao et al. (2017) corresponded to eight-times the MIC, whereas our 

experiment required viable B. subtilis cells. Combining the AMPs with ampicillin could have 

potentially not led to successful accumulation of lipid II, as the beta-lactam irreversibly 

inhibits the transpeptidase activity of the PBPs, whereas their glycosyltransferase activity 

might remain functional. This implied that peptidoglycan precursors were taken off lipid II 

and incorporated into the glycan strands.  

These experiments suggested accumulation of lipid II on the extracellular face of the 

membrane to be particularly challenging. The basal level of lipid II in B. subtilis was found to 

be comparatively low (Qiao et al., 2017). In further support of this, our collaborators 

established a computational model for the lipid II cycle in B. subtilis (Piepenbreier & Fritz, 

unpublished). This model simulated the changes in cell wall synthesis upon addition of 

various AMPs and used the findings to deduce the AMP concentrations required to inhibit 

growth. For lipid II-binding AMPs a particularly large disparity between in vitro and in vivo 

activity was found (210-fold difference for nisin, in vitro Kd: 0.05 µM, Wiedemann et al. 

(2001), in vivo MIC: 11 µM). This was explained by the very small pool size of lipid II. With 

1000 lipid II molecules per cell compared to 110 000 UPP molecules per cell, the model 

described the lipid II levels in the cell to be over 100-times lower than the UPP levels 

(Piepenbreier & Fritz, unpublished). This argues that B. subtilis is very good at protecting the 

lipid II pool on the extracellular face of the membrane and therefore the lipid II accumulation 

attempts so far might have not been successful.  

Thus, we aimed to alter the levels of both, UPP and lipid II displayed on the outer face of the 

membrane. The cell wall synthesis is protected by several extracellular function (ECF) sigma 

factors (Helmann, 2016). The σM stress response is activated by conditions that disturb 

peptidoglycan synthesis, including antimicrobial stress caused by bacitracin. σM upregulates 

genes that are responsible for expression of the core machinery for cell wall biosynthesis, 

including PBPs (PBP1 and PbpX) and the UPP phosphatase BcrC (Eiamphungporn & Helmann, 

2008, Helmann, 2016). Deletion of sigM was expected to cause changes in the lipid II cycle 
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intermediate levels and hence, alter the amounts of target-AMP complexes. Removal of σM 

did not lead to significant changes in BceAB activity upon addition of bacitracin or mersacidin 

(Fig. S4.4). Again, it was unclear whether the lipid II cycle intermediates levels on the outer 

face of the membrane were altered. The σM regulon comprises over 60 genes that potentially 

affect the lipid II cycle at different stages, which made accurate predictions difficult. Further, 

several genes are regulated by multiple σ factors, which could have compensated for the loss 

of σM. Particularly the σW and the σx stress response overlap to a significant degree with the 

σM regulon, which can be explained by highly similar consensus sequences in their respective 

promotor regions (Mascher et al., 2007, Helmann, 2016). A well described example for this 

is the activation of expression of bcrC by both, σM and σx (Cao & Helmann, 2002). Double or 

even triple deletion strains might have clearer effects on the lipid II cycle intermediate levels.  

Although many of the described proteins and ECF σ factors seem functionally redundant and 

dispensable, other core genes of the cell wall synthesis are essential (Kobayashi et al., 2003). 

An alternative strategy to alter the total amount of lipid II cycle intermediates in the cell 

aimed at the manipulation of the undecaprenyl pyrophosphate synthetase, UppS. This 

enzyme catalyses the assembly of UPP from isoprenoid precursors (Apfel et al., 1999). 

Overproduction of UppS was expected to lead to an increased amount of all lipid II cycle 

intermediates available to the cell, which should lead to increased amounts of [target-AMP]. 

However, overproduction of UppS did not lead to a significant change in BceAB activity upon 

addition of bacitracin (Fig. S4.5).  

UPP assembly might not have been the rate limiting step of the lipid II cycle and thus, might 

have not led to accumulation on the extracellular face of the membrane. It is still open to 

debate whether de novo synthesised UPP is transported to the outer leaflet of the membrane 

before it is dephosphorylated to UP and imported back in, as the localisation of UPP 

phosphatases remains puzzling (Zhao et al., 2016, Radeck et al., 2017a). Overproduction of 

UppS therefore might have only resulted in small effects. In agreement with this, only a slight 

increase in resistance to bacitracin was found in a ∆ytpB strain upon overproduction of UppS 

(Kingston et al., 2014). 

To make availability of the lipid carrier the rate-limiting step of the lipid II cycle, we aimed to 

reduce UppS levels in the cell. By this, the lipid carrier levels should be decreased throughout 

all lipid II cycle pool levels, leading to lower amounts of [target-AMP] complexes. uppS is not 

only essential, but also transcribed as a polycistronic mRNA together with several other 

essential genes (Zhu & Stulke, 2018). Modifications of uppS were therefore challenging and 
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likely to impair transcription of the other genes in the operon. Deletion of the native uppS 

gene in a strain carrying an ectopic inducible copy of the gene failed, even in the presence of 

the inducer. Decreasing the translation levels of uppS as previously described by Lee and 

Helmann (2013) seemed promising at first, but problems with the control strain led us to 

disregard the data for now (not shown). The strain contained an antibiotic marker in the non-

coding region before the uppS promoter region, which might have altered read-through of 

uppS and other essential downstream genes. To this end, other approaches, including 

conditional expression and CRISPRi (Hawkins et al., 2015, Peters et al., 2016) were attempted 

but failed due to technical reasons.  

Aside from tackling technical issues, more work is required to understand changes of lipid II 

cycle intermediate levels more accurately and efficiently. Based on their to-date unpublished 

model of the lipid II cycle, predictions were attempted by our collaborators (Piepenbreier & 

Fritz, unpublished). While predictions of the lipid II cycle intermediate pool levels can forecast 

UPP accumulation on the outer face upon bcrC deletion, the model still has too many 

unknown parameters to allow accurate predictions of the less intuitive steps of cell wall 

synthesis. To accurately determine the rate limiting steps and alterations of pool sizes, the 

model would have to take resistance determinants and other stress responses into account. 

Analysing the global pattern of changes in promoter activities in response to genetic 

manipulations affecting the lipid II cycle would be a helpful step towards this goal.  

 

All in all, this chapter described in vivo approaches to identify the physiological substrate of 

BceAB. Physiological assays, including growth and competition assays, identified a potential 

low-affinity interaction between BceAB and UPP when UPP dephosphorylation is impaired. 

Further, a PbceA-lux reporter assay was used to investigate the BceAB transport activity in 

response to genetic manipulations of genes important to the lipid II cycle. Our data suggested 

the complex formed between the antimicrobial peptide and its corresponding cellular target 

as the physiological substrate of BceAB. Bacitracin transport assays argued against the import 

of bacitracin or its inactivation in the supernatant. This is in support of a ‘hydrophobic 

vacuum cleaner’ hypothesis as the resistance mechanism of BceAB, as it has been proposed 

before (Ohki et al., 2003). 
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1. Summary and main conclusions 

The overall aim of this thesis was to study the mechanisms of substrate recognition of the 

antimicrobial peptide resistance transporter BceAB of B. subtilis. The objectives of Chapter 

III were the purification and characterisation of the large extracellular domain of BceB (BceB-

ECD), the putative binding domain. Further, the binding mechanism of this domain was 

investigated in vitro. The objectives of Chapter IV were aimed at the identification of the 

physiological substrate of BceAB using in vivo growth and luminescence reporter assays. 

In Chapter III, we established an optimised strategy for the overproduction and purification 

of BceB-ECD, which led to greatly increased yield and solubility as well as high purity in only 

one purification step. As the in silico analysis suggested BceB-ECD to be highly flexible with 

intrinsically disordered regions, a substrate-induced coupled folding and binding process was 

proposed for BceB-ECD. Using steady-state ANS fluorescence and circular dichroism 

spectroscopy, the binding capacities of several refolded and soluble purified BceB-ECD 

samples were investigated. Yet, no binding activity between BceB-ECD and bacitracin alone 

could be detected. The cellular target of bacitracin, undecaprenyl pyrophosphate (UPP), had 

been proposed to be part of the physiological substrate of BceAB. Thus, investigations in the 

presence of geranyl pyrophosphate (GPP), which was used as surrogate for UPP, were 

performed. In vitro analyses did not reveal binding interactions between BceAB and GPP 

alone. The characterisation of a binding event between BceB-ECD and the [GPP-BAC] 

complex did not lead to unwavering conclusions, as the complex formation between GPP and 

bacitracin resulted in highly variable background signal.  

Our investigations in Chapter IV therefore focussed on the identification of the physiological 

substrate in vivo. Accumulation of UPP alone did not induce BceAB activity. Additionally, a 

potential low-affinity binding event between BceAB and UPP was indicated by competition 

assays in the absence of bacitracin. By interacting with UPP, BceAB might withhold some UPP 

from dephosphorylation. These findings argued against a ‘UPP importer‘ mechanism for 

BceAB. 

A PbceA luminescence reporter assay used as proxy for BceAB transport activity revealed that 

transport activity did not only vary with the amount of bacitracin but also when UPP levels 

were changed in the presence of bacitracin. Both variables specifically affected the amount 

of [UPP-BAC] complexes formed in the membrane. From this, we concluded that the most 
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likely physiological substrate is the complex between bacitracin and UPP or bacitracin alone, 

but in its target-bound conformation. 

Combining our findings, we propose that BceAB recognised the [UPP-BAC] complex as its 

substrate, but seemed to only have little or no affinity to the components of the complex 

separately. Bacitracin undergoes an extensive conformational change when binding its 

target, adopting a truly amphipathic configuration (Economou et al., 2013). Our data suggest 

that BceAB can differentiate between the ‘free’ and ‘bound’ form of bacitracin. The [UPP-

BAC] complex is located at the membrane-interface; this is therefore likely where the 

substrate binding of BceAB takes place.  

We thus propose that BceAB acts according to a hydrophobic vacuum cleaner, which takes 

up its substrate directly from the hydrophobic membrane environment and then expels it to 

the extracellular space. By this, the cellular target is released from the inhibitory grip of the 

AMP and can be processed by the next enzymatic step of the cell wall synthesis.  

 

2. BceAB removes bacitracin from its membrane-bound target 

and releases the AMP into the extracellular space. 

Taking the results and conclusions of this study into context with previous findings and the 

literature, we here propose a possible resistance mechanism of BceAB to bacitracin.  

Generally, the resistance transporter BceAB is located in the membrane with its large domain 

facing the extracellular space (Rietkötter et al., 2008). Upon antimicrobial stress, we propose 

that BceAB does not interact primarily with free bacitracin, nor with its cellular target UPP 

(Fig. 5.1 A). This is consistent with our in vitro data, in which no interaction between purified 

BceB-ECD and bacitracin or GPP alone was shown (Chapter III). Previously, a direct in vitro 

binding interaction between full-length BceB and bacitracin had been suggested (Dintner et 

al., 2014). However, the study could not exclude the possibility that BceAB recognised the 

complex formed between bacitracin and its target UPP that was possibly co-solubilised. 

Instead of free bacitracin, our in vivo studies (Chapter IV) suggest that BceAB recognises the 

[UPP-BAC] complex bacitracin as the physiological substrate and binds bacitracin in the 

membrane as suggested for a hydrophobic vacuum cleaner (Fig. 5.1 C, Mascher et al., 2003, 

Ohki et al., 2003). 
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When binding its membrane-anchored target, bacitracin undergoes a conformational change 

and adopts a truly amphipathic, dome-shaped configuration (Fig. 5.1 B, Economou et al., 

2013). Our ANS fluorescence and far-UV spectroscopy experiments in Chapter III confirmed 

the complex formation between bacitracin and its target and the associated conformational 

changes.  

Substrate recognition and binding happen by a to-date unknown mechanism. We could not 

further confirm or exclude BceB-ECD as the substrate binding domain in this study. Large 

extracytoplasmic domains have been demonstrated to determine substrate specificity and 

mediate substrate binding of transporters that are homologous to BceAB (Mavrici et al., 

2014, Crow et al., 2017, Greene et al., 2018). Based on previous work (Rietkötter et al., 2008, 

Coumes-Florens et al., 2011, Hiron et al., 2011) and the in silico predicted characteristics of 

BceB-ECD (III 2.1), we still assume that BceB-ECD acts as the binding domain (Fig. 5.1 C). We 

speculate that the large extracellular domain of BceAB undergoes a substrate-induced 

conformational change, as is characteristic for intrinsically disordered proteins (Wright & 

Dyson, 2009, Mittag et al., 2010). It is possible that after a first weak interaction, BceB-ECD 

reels in its substrate according to a fly-casting mechanism (Shoemaker et al., 2000, Huang & 

Liu, 2009).  

BceAB removes bacitracin from its target, thereby releasing UPP (Fig. 5.1 D). This step is likely 

to be the ATP-dependent step of the resistance mechanism. Lacking the hydrophobic 

membrane environment and without its negatively charged target, bacitracin might lose its 

amphipathic configuration and changes its conformation back to its unbound form. BceB-

ECD has much lower affinity to this conformation of bacitracin. In turn, bacitracin is released 

into the extracellular space (Fig. 5.1 E). By this, bacitracin is effectively ‘transported’ away 

from the membrane and UPP is unblocked. The proposed mechanism is consistent with 

findings on the BceAB-like transporter NsrFG of S. agalactiae COH1, in which the 

translocation of nisin by NsrFG from membrane-bound lipid II into the culture supernatant 

was shown (Reiners et al., 2017).  

As previous work showed no BceAB-mediated inactivation or degradation of bacitracin in the 

extracellular environment (Emenegger & Gebhard, unpublished), the AMP could now re-

attach to its target in the membrane. However, UPP phosphatases are important resistance 

determinants themselves, and in the case of BcrC are also upregulated upon cell envelope 

stress (Cao & Helmann, 2002, Bernard et al., 2005, Zhao et al., 2016, Radeck et al., 2017a). 

These enzymes dephosphorylate UPP to UP. Bacitracin has a much lower affinity to the single 

phosphate group (Storm & Strominger, 1973). Hence, UP no longer serves as target for 
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bacitracin (Fig. 5.1 F). The lipid carrier can therefore be recycled and cell wall synthesis can 

go forward.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: BceAB is proposed to remove bacitracin from its target and to release the AMP 

into the extracellular space. A: BceAB is located in the membrane with its large domain 

facing the extracellular space. Flexibility of BceB-ECD is indicated by a dashed arrow. B: BceAB 

has very low affinity to unbound bacitracin. Upon binding its target, bacitracin undergoes a 

conformational change. C: BceAB recognises the bound form of bacitracin, potentially via its 

flexible extracellular domain. D: Bacitracin is removed from its target by an unknown 

mechanism. Substrate binding might and ATP hydrolysis induce conformational changes of 

BceAB. E: Without its target, bacitracin loses its amphipathic configuration. BceAB no longer 

has high enough affinity to bacitracin and releases the AMP into the extracellular space. F: 

Re-attachment of bacitracin to UPP is prevented by dephosphorylation of UPP to UP by UPP 

phosphatases. Grey: cell membrane, black: lipid carrier in its phosphorylated (UP) or 

pyrophosphorylated form (UPP), dark blue crescent: bacitracin, light blue: BceAB, red: 

molecular recognition feature within intrinsically disordered region, turquois: UPP 

phosphatase. Movements are indicated by dashed lines and arrows.  
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3. BceAB is a mechanotransducer 

3.1 Mechanotransmission rather than ‘classic’ transport 

We here proposed that BceAB acts as a hydrophobic vacuum cleaner and takes up its 

substrate directly from the interface with the hydrophobic membrane environment 

(Gottesman & Pastan, 1993, Ohki et al., 2003). BceAB then confers resistance by expelling 

bacitracin from the membrane into the extracellular space. Yet, this mechanism does not 

involve transportation of the AMP across any lipid bilayer, and thus should not be classified 

as transport in the ‘classic’ sense (Davidson & Chen, 2004). 

This lack of transmembrane transport seems to be a characteristic feature of the type VII ABC 

superfamily (Greene et al., 2018). This type of membrane protein from both Gram-positive 

and Gram-negative bacteria is known to be involved in lipoprotein trafficking (Ito et al., 

2006), regulation of cell division (Yang et al., 2011, Mavrici et al., 2014), toxin secretion 

(Yamanaka et al., 2008), detoxification, or antibiotic resistance (Crow et al., 2017, Greene et 

al., 2018). While functionally highly variable, none of the so-far described transporters of this 

group were found to facilitate transport across the cytoplasmic membrane (Greene et al., 

2018). When transport across the outer membrane was reported at all, it was not mediated 

by the type VII ABC transporter located in the inner membrane alone. Some MacB-like 

transporters assemble to tripartite efflux pumps, for which adapter proteins and outer 

membrane channel proteins are required to span both, inner and outer membrane 

(Fitzpatrick et al., 2017, Crow et al., 2017, Yang et al., 2018).  

Instead of ‘classic’ import or export across the phospholipid bilayer (Davidson & Chen, 2004), 

the ‘transporters’ of the type VII ABC superfamily were proposed to act via 

mechanotransmission (Greene et al., 2018). Mechanotransmission is defined as a mechanism 

in which ATP hydrolysis is coupled to conformational changes that lead to the performance 

of useful work in periplasm (Crow et al., 2017, Greene et al., 2018).  

This definition of mechanotransmission instead of transport matches our proposed model 

for the resistance mechanism of BceAB. BceAB was shown to belong to the type VII 

superfamily (Chapter III, Greene et al., 2018) and due to its homology to MacB, also 

mechanistic similarity seems evident. We thus conclude that BceAB is most likely a 

mechanotransducer rather than a classic transporter. 
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3.2 Could BceAB work according to an ‘ATP-switch’ model? 

Our model proposed here does not yet include notions on the energy supply and ATP-usage 

required for the mechanotransmission mechanism of BceAB. Active transport or 

mechanotransmission of most ABC transporters is driven by ATP hydrolysis (Higgins & Linton, 

2004, Locher, 2016), and also BceAB activity was abolished when conserved regions in the 

nucleotide binding domains were mutated (Rietkötter et al., 2008). The homology of BceAB 

to MacB-like mechanotransducers might give first insights into the link between ATP binding 

and hydrolysis, and mechanotransmission.  

MacB was proposed to use an ‘ATP-switch’ for its mechanotransmission mechanism (Higgins 

& Linton, 2004, Crow et al., 2017, Greene et al., 2018). ATP binding to the nucleotide binding 

domains (NBD) of MacB is thought to induce their dimerisation, with the nucleotides bound 

between the NBDs. In turn, the linked transmembrane domains undergo extensive 

conformational changes. This leads to the zip-like closing of the periplasmic domains, by 

which the substrate is thought to be extruded. In contrast, ATP hydrolysis drives 

disassociation of the NBD dimer (Higgins & Linton, 2004) and resets the closed conformation 

of the transmembrane and periplasmic domains back to their relaxed open state (Crow et 

al., 2017). As this conformation revealed an interior cavity close to the substrate binding site, 

the substrate is thought to first associate with MacB in the relaxed state (Crow et al., 2017).  

Although not nearly as well understood as MacB, the energy supply of lipoprotein extractor 

LolCDE might function in a similar way. Upon ATP binding by its NBDs, LolCDE seemed to 

release its substrate, while in the absence of ATP or similar compounds the substrate was 

associated with the transporter (Ito et al., 2006).  

We thus wondered whether such an ‘ATP switch’ was a common feature of the type VII ABC 

superfamily and compatible with our current model for BceAB mechanotransmission. BceAB 

was shown to possess two conserved NBDs (BceA), and one large transmembrane segment 

(Dintner et al., 2014). Based on recent experimental data from our laboratory, the BceA NBDs 

are thought to link to BceB at the cytoplasmic regions, between TMH2 and 3, and TMH8 and 

9, respectively (M. Gibbon, unpublished). Further investigations have pointed out several 

residues located on one face of TMH8 (F538, S542, L546, Q550; M. Gibbon, unpublished). 

Mutations of these residues resulted in a hypersensitive signalling response through BceRS 

and are thought to have relaxed the coupling between substrate binding and ATP binding 

and hydrolysis. The correspondent region was identified to be the major coupling helix of 

MacB (Crow et al., 2017). 
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Based on these similarities to MacB, the two BceA NBDs could also undergo dimerisation 

upon ATP binding in an ATP-switch-like manner (Higgins & Linton, 2004), thereby inducing 

conformational changes in the transmembrane segment and the ECD. This hypothesis is 

solely based on the homology to MacB-like transporters and requires further experimental 

evidence.  

TMH8 (M526 to L548) is the direct link between the ECD and the ATPase. Thus, 

conformational changes induced by ATPase dimerisation are likely to be transferred by this 

transmembrane helix. A random mutagenesis approach had previously revealed the C-

terminal half of BceB and TMH8 in particular as hotspot for amino acid replacements that 

affect either bacitracin signalling or resistance, or both (Kallenberg et al., 2013). Topological 

analyses and experimental studies suggested that BceB does not undergo dimerisation, but 

rather forms a ‘pseudo hetero-dimer’ between its MacB-type repeat units (Khwaja et al., 

2005, Greene et al., 2018). It is thus likely that TMH1 and TMH8 as well as TMH2 and TMH7 

interact and potentially undergo a zip-like transition, similar to the one observed for MacB 

transmembrane and periplasmic segments (Crow et al., 2017). To further investigate this, 

crosslinking experiments of the corresponding TMHs could be attempted.  

While ‘pseudo heterodimerisation’ and an ATP switch-like mechanism seem to be a plausible 

scenario, it is unclear which effect the conformational changes would have on substrate 

binding. In a MacB-like scenario, the bellow movement of the transmembrane segments and 

periplasmic domains would actively expel bacitracin from the binding sites (Crow et al., 

2017). It is, however, presumable that initial substrate recognition by BceB-ECD is not enough 

to remove bacitracin from its target. The structural rearrangement of BceB-ECD induced by 

ATP binding could then facilitate dislodging bacitracin from UPP, while keeping bacitracin 

attached to the BceB-ECD binding site. As proposed in Fig. 5.1, in the absence of its 

membrane target bacitracin might lose its amphipathic configuration. In this case, BceB-ECD 

would rather passively release its substrate and BceAB would be reset into its initial 

conformation by ATP hydrolysis. In between such transport or mechanotransmission cycles, 

the ‘ATP switch’ model requires an initial step to facilitate ATP-binding and closed dimer 

formation in the first place. This signal is believed to be substrate binding (Higgins & Linton, 

2004).  

In Chapter III, we revealed that BceB-ECD has a highly similar predicted secondary structure 

pattern to MacB-like extracytoplasmic domains and that accordingly BceB-ECD can be 

subdivided in ‘Porter’ and ‘Sabre’ subdomains. For MacB, these periplasmic domains were 

proposed to harbour the substrate binding sites. Yet, one major difference between BceB 
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and MacB is that BceB only possesses one extracellular domain, without further dimerisation. 

MacB-like substrate binding at the interface between the heterodimeric periplasmic domains 

is thus rather unlikely.  

Because of its predicted high flexibility and intrinsically-disordered regions (III ), we proposed 

BceB-ECD to undergo conformational changes or potentially even a disorder-to-order 

transition upon substrate binding (Wright & Dyson, 2009). Such or similar substrate binding 

mechanisms are thought to transmit a conformational change to the NBDs, thereby 

enhancing ATP binding and lowering the activation energy for closed dimer formation of the 

NBD (Higgins & Linton, 2004). Several ABC transporters revealed substrate-induced 

conformational changes and concomitant increased affinity to ATP (Higgins & Linton, 2004). 

Amongst them is the hydrophobic vacuum cleaner P-glycoprotein for which both 

conformational changes and increased affinity to ATP were shown upon substrate binding 

(Liu & Sharom, 1996, Sonveaux et al., 1999, Qu et al., 2003, Higgins & Linton, 2004). As hardly 

any structures of transporters or mechanotransducers in complex with their substrates have 

been published, exact substrate binding sites and induced conformational changes remain 

puzzling, and more work is required to elucidate the underlying mechanisms. 

 

3.3 Mechanotransmission directly couples transport activity with flux sensing. 

The mechanotransmission mechanism proposed for BceAB further fits with our current 

understanding of bacitracin sensing and signalling through the two-component system 

BceRS. Unlike traditional histidine kinases, BceS lacks an obvious extracellular input domain 

(Mascher et al., 2006). Even in the absence of bacitracin, BceB is known to form a complex 

with BceS (Dintner et al., 2014). In agreement with this, the complex formation between the 

BceB-like mechanotransducer BraE and the BceS-like kinase NsaS of S. aureus was 

demonstrated recently (Randall et al., 2018). While the interaction between BceB and BceS 

is thought to happen in the membrane (Mascher, 2014), the exact interaction sites are yet to 

be identified.  

According to the flux-sensing mechanism described by Fritz and colleagues (2015), BceAB 

acts as sensor that directly signals its transport activity to BceS. The proposed 

mechanotransmission mechanism likely couples ATP hydrolysis with conformational changes 

that lead to the removal of bacitracin from its target. As the kinase is permanently attached 

to BceB (Dintner et al., 2014), the conformational change of the BceB transmembrane 

segments is thought to affect the transmembrane helices of BceS. Recent work in our group 
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suggests that the transmembrane region of the kinase undergoes a piston-like displacement 

movement (A. Koh, unpublished). This is thought to lead to a rotation of the dimerisation 

histidine phosphotransfer (DHp) domain and to autophosphorylation of the kinase (A. Koh, 

unpublished, Mascher, 2014). In turn, the response regulator BceR that upregulates 

expression through PbceA is activated and enables need-based production of BceAB (Fritz et 

al., 2015).  

 

 

 

Figure 5.2: Mechanotransmission of BceAB can couple ATP-driven bacitracin resistance 

with flux-sensing response through BceRS. Schematics of BceAB-BceRS resistance system in 

its nucleotide-free (A) and ATP-bound (B) conformation. ATP-driven conformational changes 

of the BceB transmembrane segment are thought to lead to rotation and auto-

phosphorylation of the attached histidine kinase BceS. Grey: cell membrane, black: lipid 

carrier in its pyrophosphorylated form (UPP), dark blue crescent: bacitracin, light blue: TMH3, 

4, 5, 6, 9 and 10 of BceAB, purple: TMH1 and TMH2, with corresponding ATPase unit, green: 

TMH7 and TMH8, with corresponding ATPase unit, red: BceRS two component regulatory 

system. Stars indicate the signal transduction between BceB and BceS and the resulting flux-

sensing cascade through BceRS, which eventually leads to expression of bceAB. Potential 

movements are indicated by arrows.   



 
Chapter V: Conclusions and future perspectives 161 

 
 

4. Target protection as resistance strategy 

4.1 BceAB confers resistance by protecting its target 

At a first glance, the proposed mechanotransmission mechanism of BceAB seems like a rather 

counter-intuitive strategy to confer bacitracin resistance. In contrast to canonical resistance 

mechanisms (Blair et al., 2015, Andersson et al., 2016, Du et al., 2018), the antimicrobial 

peptide is not inactivated or degraded, nor is it imported or exported across a membrane, 

which could impede its reattachment. The resistance determinant itself does also not modify 

the target of the AMP. By removing bacitracin from its cellular target UPP, BceAB increases 

the disassociation rate of bacitracin and shifts the equilibrium towards unbound bacitracin 

in the environment. By this, BceAB facilitates the operability of the lipid II cycle, even if it is 

only for another round. The progression of the cell wall synthesis is under most conditions 

crucial for the viability of the bacterial cell. In B. subtilis, the upregulation of key enzymes of 

the lipid II cycle, like UPP phosphatase or PBPs, by ECF σ factors contributes to the 

effectiveness of this resistance mechanism (Helmann, 2016).  

Based on current knowledge, this is the best model for the BceAB resistance mechanism. We 

thus believe that BceAB operates simply by protecting UPP and lipid II, respectively, from 

inhibition by AMPs. Such a resistance mechanism, called ‘target protection’, has been 

previously recognised but is widely underappreciated (Sharkey & O'Neill, 2018). Target 

protection seems particularly useful as measure of last resort to protect essential features of 

the cell or when traditional resistance mechanisms are limited in the first place. 

Modifications of the well-conserved intermediates of the lipid II cycle are uncommon, as the 

progress of the lipid II cycle should not be compromised. In agreement with this, the 

examples of target protection mechanisms described so far all focussed on safeguarding 

essential mechanisms of bacterial metabolism that involve well-conserved structures.  

To the present day, the paradigm of target protection is the protection of the ribosome 

against the inhibitory actions of tetracyclines. The bacterial ribosome is responsible for the 

translation of genetic information from messenger RNAs into proteins and consists of 

structurally well-conserved subdomains. It thus serves as excellent target for antibiotics 

(Poehlsgaard & Douthwaite, 2005). Amongst others, tetracycline binds the A (aminoacyl) site 

and thereby sterically prevents tRNAs from access (Brodersen et al., 2000). 

Ribosomal protection proteins (RPRs) like Tet(O) and Tet(M) were shown to actively release 

tetracycline from ribosome in a GTP-driven mechanism (Trieber et al., 1998, Burdett, 1996). 
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Both Tet(O) and Tet(M) binding sites of the ribosome overlap partly with the binding site of 

tetracycline and chase the antibiotic off by inducing conformational changes of the ribosome 

(Connell et al., 2003b, Donhofer et al., 2012). In doing so, the dissociation rate of tetracycline 

from the ribosome is effectively increased, which mediates resistance against tetracycline 

and secures protein biosynthesis (Connell et al., 2003a).  

In a similar drug displacement mechanism, also Antibiotic Resistance ATP-Binding Cassette-F 

(ARE ABC-F) proteins were recently shown to secure the functionality of the translational 

machinery (Sharkey et al., 2016, Sharkey & O'Neill, 2018). ARE ABC-F proteins confer 

resistance against a vast range of antibiotic classes that target the 50 S subunit of the 

ribosome. Conversely for a protein previously classified as transporter (Dean et al., 2001), 

this type of resistance proteins does not comprise any transmembrane segments. Its two 

ATPase domains are solely connected via an approximately 80 amino acid long linker. Akin to 

homologous regulatory proteins, ARE ABC-F proteins seem to recognise and bind the exit (E) 

site of the ribosome (Boel et al., 2014, Chen et al., 2014). Compared to regulatory proteins, 

the extended linker region of ARE ABC-F proteins enables them to reach into the peptidyl (P) 

site. The linker is thought to allosterically modulate the drug binding site by rRNA or P-site 

tRNA interactions (Sharkey et al., 2016, Sharkey & O'Neill, 2018). By this, the binding affinity 

of the drug changes and the drug is dislodged from the ribosome, enabling protein 

biosynthesis.  

In another ribosomal target protection mechanism, the ribosome is safeguarded from 

obstruction by fusidic acid (Cox et al., 2012, Tomlinson et al., 2016). Fusidic acid binds 

elongation factor G (EF-G) and inhibits the release thereof from the ribosome, after EF-G 

catalysed the translocation of peptidyl–tRNA from the A site to the P site (Tanaka et al., 1968, 

Bodley et al., 1969). Even in the absence of antibiotic stress, FusB-type proteins bind to EF-G 

and induce conformational changes which accelerate the disassociation of EF-G from the 

ribosome In the presence of fusidic acid, the FusB-induced release of EF-G from the ribosome 

directly counteracts the antibiotic’s activity (Cox et al., 2012, Tomlinson et al., 2016). In doing 

so, FusB mediates resistance against fusidic acid and secures integer protein biosynthesis.  

Other than ribosomal protection to ensure functionality of the translational machinery, also 

key players of the DNA replication seem to be protected by such a resistance mechanism in 

Gram-negative bacteria. Here, Qnr (quinolone resistance) proteins physically protect DNA 

gyrase and topoisomerase IV from quinolone inhibition (Ruiz, 2003, Tran et al., 2005, Correia 

et al., 2017). 
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Where mechanistic details are known, target protection mechanisms generally seem to lead 

to direct release of the target from the inhibitory action of the antibiotic. Yet, none of the 

protection determinants physically transfers the antibiotic across a membrane or inhibits its 

re-attachment in a similar way. By dislodging the antibiotics, the resistance determinants 

shift the equilibrium from target-bound towards the unbound antibiotic. Thereby, they 

facilitate proper accessibility and regular functionality of the target for at least one more time 

before the antibiotic could bind its target again, which is exactly what we expect BceAB to 

do. These examples stress that the proposed mechanotransmission mechanism for BceAB is 

both plausible and sufficient to effectively confer resistance against antimicrobial peptides.  

 

4.2 Target protection of cell wall synthesis might be more common than 

anticipated. 

The proposed mechanotransmission mechanism of BceAB is, to our knowledge, the first 

target protection mechanism that has been described for cell envelope stress. As the 

abundance of this resistance mechanism has been underappreciated so far, it is likely to be 

more widely distributed than previously anticipated.  

Along the lines of BceAB-like mechanotransducers, we assume that also resistance against 

lantibiotics conferred by LanFEG transporters can be classified as a target protection 

mechanism. LanFEG transporters are known to extrude AMPs from its membrane-anchored 

target, however the mechanistic details remain puzzling (Otto et al., 1998, Stein et al., 2003, 

2005, Okuda et al., 2008, Colin et al., 2008). Since lantibiotics generally bind targets in the 

outer face of the membrane, export across the cytoplasmic membrane is not a plausible 

strategy, and the Gram-positive lantibiotic producer strains do not possess an outer 

membrane that AMPs could be transported across. Considering that LanFEG transporters 

mostly confer self-protection to antimicrobial peptide producers (Colin et al., 2008, Alkhatib 

et al., 2012), many alternative resistance mechanisms seem rather counter-productive. 

Import into the cytoplasm for degradation, as well as degradation or inactivation by other 

means in the extracellular space are suitable strategies to confer protection against attacking 

AMPs. However, production of antimicrobial peptides is a cost-intensive approach to 

compete against other microbes (Hibbing et al., 2010). By degrading or deactivating its newly 

produced agents, the bacterial cell would disarm its own weapon. Also alterations of the 

target are only contingently suitable. The targets of many lantibiotics are well-conserved 

intermediates of the lipid II cycle (Willey & van der Donk, 2007, Bierbaum & Sahl, 2009). 
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Modifications thereof might not only prevent antibiotics from binding but also disturb the 

interactions with their legitimate enzymes and binding partners, which might suspend the 

cell wall synthesis. A notable exception are the lipid II stem peptide alterations that cause 

vancomycin resistance. Yet, it seems like the most effective strategy for LanFEG transporters 

is to release the target from the inhibitory grip of the lantibiotic in a BceAB-like manner. 

Again, increasing the disassociation rate would allow the lipid II cycle intermediate to 

progress to the next stage of the lipid II cycle. Equally, the self-protection mechanism of 

bacitracin-producer B. licheniformis which is mediated by the putative ‘hydrophobic vacuum 

cleaner’ BcrAB would qualify as target protection (Podlesek et al., 1995, Podlesek et al., 

2000). Interestingly, members of both transporter families were found to mediate resistance 

against exogenously produced AMPs in non-producer strains (Gebhard, 2012, Clemens et al., 

2017). Well-described examples are the bacitracin resistance conferred by BcrAB in E. 

faecalis (Manson et al., 2004, Matos et al., 2009) and the LanFEG homolog CprABC of C. 

difficile that confers resistance against nisin, gallidermin and polymyxin B (McBride & 

Sonenshein, 2011, Clemens et al., 2017). This indicates that these resistance determinants 

are derived from the original self-resistance target protection mechanism and have been 

acquired by non-producer strains via horizontal gene transfer (Colin et al., 2008). 

Further, the resistance mechanism of most LanI-type proteins has not yet been elucidated in 

detail. As they do not seem to confer resistance cooperatively together with their respective 

LanFEG transporter, they too could mediate immunity via target protection. As described 

before (I 4.4.1), both SpaI and NisI immunity proteins are known to directly bind their 

substrate (Stein et al., 2003, 2005, Takala et al., 2004). Both proteins might remove their 

corresponding substrate from the membrane targets, rather than binding the unbound 

version of the lantibiotic in the extracellular periphery. In doing so, they would free the lipid 

II cycle intermediate and shift the binding equilibrium more towards the unbound lantibiotic. 

Immunity against the class I lantibiotic Pep5 is conferred by the PepI immunity protein (Reis 

et al., 1994, Hoffmann et al., 2004). PepI as well as Pep5 are highly positively charged 

peptides, which makes a direct binding interaction between them improbable. Instead, PepI 

was proposed to shield the membrane-located target from Pep5 action (Hoffmann et al., 

2004).   

Interestingly, the transcription of all transporters and immunity proteins described here 

seems tightly coupled to the presence or absence of antimicrobial stress. Expression of 

protection determinants is generally regulated by kinase-response regulator two-component 

systems or transcription regulators that directly perceive the AMP stimulus (Gebhard et al., 
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2009, Gebhard, 2012). In doing so, unnecessary costly protection of the host can be avoided, 

leading to an efficient resistance mechanism.  

 

5. Future Perspectives 

5.1 Investigations on the physiological substrate of BceAB for lipid II-binding 

AMPs. 

In this study, we have pursued first steps to investigate whether the physiological substrate 

of BceAB, here established as [UPP-BAC], can be universally stated as the AMP in complex 

with its cellular target. According to this statement, BceAB would also only recognise lipid II-

binding AMPs together with their target or when the AMPs have adopted their target-bound 

conformation (Hsu et al., 2003). In Chapter IV, alterations of the lipid II pool as well as the 

total amount of lipid carrier in the cell were attempted, mainly using genetic manipulations. 

A computational model of the lipid II cycle (Fritz, unpublished) suggested the lipid II pool on 

the outer face of the membrane to be very small. Alterations to the amounts of lipid II in this 

pool, if possible at all without killing the cells, might therefore require more drastic measures 

than the ones tried so far. 

In our study, neither removal of PBP1 to decrease the transglycosylation rate, nor attempts 

using antibiotic combinations resulted in obvious changes to BceAB activity. As already 

discussed, the redundancy in function of, in total, four class A PBPs that all possess 

transglycosylation activity might have prevented lipid II from accumulation (McPherson & 

Popham, 2003). The newly-discovered transglycosylation activity of RodA can just about 

compensate for the loss of all four PBPs (Meeske et al., 2016). Testing the BceAB-activity in 

a quadruple deletion strain that lacks PBP1, PBP2c, PBP2d and PBP4, might decease the 

transglycoslyation activity enough to accumulate lipid II and change BceAB activity in the 

presence of mersacidin. Although B. subtilis is intrinsically resistant to moenomycin due to 

RodA activity, addition of moenomycin could effectively lead to the same decrease of 

transglycosylation (Ostash & Walker, 2010, Meeske et al., 2016).  

Although highly debated for a long time, recent studies suggest MurJ and Amj to be 

responsible for translocation of lipid II across the membrane (Sham et al., 2014, Meeske et 

al., 2015, Bolla et al., 2018, Kumar et al., 2018). Increasing this reaction by overproduction of 

the lipid II flippase could lead to the desired accumulation of lipid II on the outer face of the 
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membrane. Ultimately, combining increased flippase activity with reduced transglycosylation 

could be the key to allow changes in the level of this well-protected cell wall synthesis 

intermediate. On the other hand, also deletions or depletions of the lipid II flippases or 

enzymes crucial to lipid II assembly, like MraY or MurG, are potential strategies to affect the 

lipid II pool (Bouhss et al., 2004, 2008).  

To make the availability of the lipid carrier the rate-limiting step of the lipid II cycle, we aimed 

to reduce UppS levels in the cell, which is responsible for UPP assembly from precursors 

(Apfel et al., 1999). While some attempts to alter UppS levels did not lead to clear results, 

other ideas could not be tested so far due to technical challenges (IV, 3.4).  

To address this challenge in future attempts, two further strains that aim at the down-

regulation of uppS expression should be tested (Sim & Fritz, unpublished). In the first strain 

(GFB0058), expression of uppS is uncoupled from its primary native regulation. The promoter 

region was replaced by the xylose-inducible PxylA promotor, which makes the strains only 

conditionally viable. Any potential read-through from upstream genes to the uppS locus was 

inhibited by insertion of a chloramphenicol resistance cassette containing a terminator. The 

other strain (GFB0078) takes advantage of a CRISPRi knockdown of uppS (Hawkins et al., 

2015, Peters et al., 2016). The strain carries a constitutively-expressed (Pveg) single guide (sg) 

RNA that is complementary to the uppS DNA sequence. It further contains a copy of dCas9 

which encodes a catalytically inactive variant of the endonuclease protein Cas9. The 

expression of dCas9 is set under xylose-titratable regulation (PxylA). Upon binding its DNA 

target, the sgRNA-dCas9 complex sterically hinders transcription (Hawkins et al., 2015). In 

first trials, addition of 0.01 % xylose allowed wild-type growth of B. subtilis, while 0.1 % xylose 

was lethal (Sim & Fritz, personal communication).  

Our current PbceA luminescence reporter plasmid (Fritz et al., 2015) was incompatible with 

these strains, as the same antibiotic marker for selection had been used. Testing BceAB 

activity in these promising strains, requires reconstruction of the current reporter construct.  

Attempts, including the replacement of the resistance cassette using homologous 

recombination and the transformation of B. subtilis with de novo assembled luminescence 

vectors carrying PbceA were performed by a collaborator and have been unsuccessful so far 

(Fritz lab). A promising strategy to acquire PbceA luminescence constructs with compatible 

antibiotic markers is the use of vectors that have been developed and evaluated for use in B. 

subtilis by Popp and colleagues (2017). Cloning PbceA according to the BioBrick assembly 

standard RFC[10] (Knight, 2007) into the vectors pBS3Elux or pBS3Klux should lead to 

constructs very similar to our current plasmid and result in suitable PbceA luminescence 
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reporter strains to test BceAB activity in uppS depletion strains. This approach was postponed 

due to time constraints, but successfully conducted after thesis submission.  

When BceAB activity can successfully be tested in the strains described above, it is also 

advisable to re-test other mutants, for which no effect was observed in this study, but that 

potentially change the lipid II intermediate pool levels, in the now uppS depleted background. 

The potentially decreased UPP levels were found to alter the effects of other genetic 

manipulations related to the lipid II cycle on bacitracin sensitivity (∆sigM, Lee & Helmann, 

2013, ∆ytpB, Kingston et al., 2014). 

As uppS is co-transcribed with other essential genes, some of which play a role in isoprenoid 

biosynthesis and membrane phospholipid production, also expression of these genes would 

be affected by alterations of the transcription levels. To avoid such down-stream effects, 

mutations that solely affect the integrity and function of UppS could be exploited. The 

mutation of residue 86 of uppS from threonine to isoleucine was shown to increase 

resistance to bacitracin and is thought to alter the available UPP pool size (Inaoka & Ochi, 

2012). 

Without the ability to directly monitor the lipid II cycle intermediate levels on the cell surface 

and lacking improved predictions on effects of genetic manipulations on the lipid II cycle, the 

described approaches are mostly trial and error experiments and we cannot yet distinguish 

whether lipid II accumulation or reduction was successful or if BceAB activity is independent 

from the [lipid II-AMP] complex. 

In an approach independent from genetic manipulations, cells could be incubated with 

synthesised or previously extracted lipid II as described by Breukink et al. (2003), Welzel 

(2005), or Qiao et al. (2017). The hydrophobic tail of lipid II is likely to escape the hydrophilic 

culture medium and might insert into the hydrophobic bacterial membrane, thereby 

increasing the lipid II pool size on the outer face of the membrane. This could lead to the 

desired accumulation of [lipid II-AMP] complex and in turn result in alterations of the BceAB 

activity. Lipid II or maybe a more soluble variant thereof, with a shorter prenyl chain, could 

bind lipid II-targeting AMPs like mersacidin already in the supernatant and thereby inhibit its 

antimicrobial activity. Nevertheless, if the extracellular domain is involved in substrate 

binding and under conditions in which the mersacidin binding of lipid II is saturated, the 

transporter might still recognise the formed [lipid II-MERS] complex and adjust transport 

activity. A similar approach is plausible with the [UPP-BAC] or [GPP-BAC] complex, as a 

positive control. Addition of UPP/GPP to cultures for membrane insertion or formation of 

[UPP/GPP-BAC] in the extracellular space should increase the overall amounts of [UPP-BAC] 
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that BceAB can recognise and thus, increase its activity. As mersacidin is not commercially 

available and therefore potentially the bottleneck of this approach, this hypothesis could be 

tested with the nisin-inducible PsdAB transporter (Staron et al., 2011). In this case, nisin and 

extracted lipid II would be added to exponentially growing B. subtilis cells. 

 

5.2 In vivo investigation of potential BceB-ECD binding site for target-bound 

bacitracin. 

An important, yet still puzzling question about BceAB-like mechanotransducers is the 

molecular basis of their substrate specificity. BceAB-like transporters often have a broad 

substrate range, but within this range only bind a specific, diverse subset of AMPs. Although 

indications suggest the ECD to be involved in substrate binding (Rietkötter et al., 2008, Hiron 

et al., 2011), this could not be confirmed in this study using in vitro binding assays. Future 

work targeting the molecular recognition of the substrates could therefore make use of an 

in vivo approach to identify binding sites.  

The in silico analysis of this study (Chapter III, 2.1) suggested the extracellular domain of BceB 

to be highly flexible and indicated molecular recognition features (MoRF) that are often 

involved in binding interactions (Mohan et al., 2006). One of these predicted regions 

comprises the amino acids residues 370 to 384, encoding Glu--Met-Gln-Gly-Asp--Pro-Gly-Asn-

Met-Gln (Chapter III, Fig. 3.1, green). This stretch contains several negatively charged (X-) and 

polar residues (grey). Polar residues are known to form hydrogen bonds with other polar 

residues, while negatively charged residues can form electrostatic ionic bonds with positively 

charged amino acid side chains. When binding its target, bacitracin was shown to adopt a 

highly amphipathic configuration with polar and non-polar residues distinctly separated 

(Economou et al., 2013). Non-polar residues were found at the hydrophobic membrane lipid 

interface, while most polar residues interacted with the metals or pyrophosphate group of 

UPP. Amongst the polar residues are several positively charged residues (Lys, Orn, His). As 

these residues should be easiest to access for the large extracellularly located domain of 

BceAB, we suggest this MoRF as the potential bacitracin binding site within BceB-ECD.  

Previous random mutagenesis approaches of BceAB did not result in any mutations in the 

ECD (Kallenberg et al., 2013). In future work, a site-directed mutagenesis approach could 

focus on this MoRF to identify potential binding interactions and to confirm BceB-ECD as 

binding domain. Amino acids with polar and charged side chains in particular should be 

replaced by neutral amino acids (e.g. alanine) to investigate their possible contribution to 
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recognition of bacitracin. The resulting effect on signalling can be examined using the same 

in vivo luminescence assay that was used in this study (Chapter IV). Likewise, changes in 

bacitracin resistance should be monitored by MIC assays. To further investigate the findings 

of the alanine scanning mutagenesis, residues of interest could be replaced with amino acids 

with similar or opposite properties. Complete or partial loss or possibly even gain of function 

could indicate a binding interaction between BceB-ECD and bacitracin in its amphipathic, 

bound form. 

BceAB also confers resistance against the lantibiotics mersacidin and actagardine. Yet, both 

have quite different charge distribution and chemical properties to bacitracin (Staron et al., 

2011). Neither of them contain any amino acids with positively charged side chains and 

hardly any polar residues. A glutamate residue in the lipid II-binding motif seems to be the 

only conserved charged residue in the peptides that are otherwise enriched in non-polar, 

hydrophobic residues (Böttiger et al., 2009). The binding domain of BceAB for mersacidin and 

actagardine might therefore differ from the one that was here suggested for bacitracin.  

Another MoRF of BceB-ECD was predicted to lie around amino acid residue 432 (Lys+-Val-

Lys+-Ser-Lys+-His+-Glu--Thr-Gln-Pro, Chapter III, Fig. 3.1, yellow). This region contains some 

polar residues (grey), but strikingly many positively charged amino acids, like histidine and 

lysine (X+). Although intuitively not necessarily suitable for bacitracin binding, this domain 

might be important for other interactions, for example, with the negatively-charged 

mersacidin and actagardine. 

It would be very interesting to investigate differences in the signalling response of BceAB 

containing mutated MoRF residues when mersacidin is administered instead of bacitracin. If 

the signalling response was, for example, partly impaired upon addition of bacitracin but did 

not alter in the presence mersacidin, this could imply that the MoRF is a binding site specific 

for bacitracin.  

If this hypothesis held true, this would be a suitable strategy to confirm BceB-ECD as 

bacitracin binding-domain, while avoiding challenges that might be encountered with in vitro 

assays. The sequence alignment between bacitracin-related permeases in this study did not 

find the amino acid sequence of the MoRF to be conserved at all. Yet, if the MoRF was 

revealed as the bacitracin binding site by site-directed mutagenesis, further insights gained 

from the experimental data might point out a prevailing bacitracin binding motif that could 

be searched for in other ECDs. 
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5.3 Analysis of the natural membrane environment and localisation of BceAB.   

The growth assays performed in Chapter IV indicated a low-affinity interaction between 

BceAB and UPP upon deletion of bcrC. Impaired dephosphorylation of UPP leads to a very 

similar effect as the addition of bacitracin, namely the accumulation of UPP. One possible 

explanation is that UPP is recognised by BceAB as part of the substrate, and a low binding 

affinity is present even in the absence of bacitracin. It is also conceivable that BceAB monitors 

the UPP levels in the cell or that BceAB uses the abundance of UPP for localisation in the 

membrane. In the absence of bacitracin, basal BceAB levels in the cell are low, yet the 

signalling response of BceAB to addition of bacitracin happens rapidly (Fritz et al., 2015). To 

further investigate this interaction, the natural lipid environment of BceAB should be 

examined in vitro.  

The membrane phospholipid composition is under normal conditions tightly regulated. AMPs 

can perturb this regulation change the membrane composition and lead to the formation of 

lipid domains (Muchova et al., 2011, Strahl et al., 2014). Lipid domains were shown have 

increased lipid fluidity in vivo. This can disturb the overall lipid homeostasis and affect 

membrane protein localisation. Daptomycin, for example, was shown to cause an extensive 

rearrangement of fluid lipid domains, affecting the membrane viscosity. This leads to the 

detachment of the lipid II synthase MurG and thus results in the discontinuation of the cell 

wall synthesis (Muller et al., 2016). Further, the synthetic cyclic hexapeptide cWFW leads to 

the formation of distinct membrane domains and rapidly reduces the membrane fluidity of 

B. subtilis (Scheinpflug et al., 2017). This causes membrane protein disorganisation, which is 

followed by the inhibition of cell wall synthesis. These examples stress that changes of the 

membrane composition caused can affect the membrane viscosity or the lateral pressure 

onto membrane proteins (Muchova et al., 2011, Lee, 2004, van den Brink-van der Laan et al., 

2004). This can have effects on the helix-helix interactions of integral membrane proteins 

and change their activity.  

For example, the well-described multidrug efflux pump P-glycoprotein is thought to access 

its substrates from the membrane, according to a hydrophobic vacuum cleaner mechanism 

(Higgins & Gottesman, 1992, Gottesman & Pastan, 1993). However, the membrane 

phospholipid environment was shown to modulate the substrate interactions with P-

glycoprotein (Romsicki & Sharom, 1999). The tested drugs had, for example, a substantially 

higher affinity when surrounded by phosphatidylcholine compared to phosphatidyl-
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ethanolamine. In addition, the ATPase activity that drives P-glycoprotein efflux varied 

accordingly with the encompassing environment (Romsicki & Sharom, 1999).  

Similarly, the activity lipoprotein extractor LolCDE seems to depend on phospholipid 

composition (Miyamoto & Tokuda, 2007). The common phospholipids phosphatidylglycerol, 

phosphatidylethanolamine and cardiolipin affected the lipoprotein sorting and release ability 

as well as ATPase activity of LolCDE, each in their own way. Similar effects may also affect 

BceAB activity.  

As briefly mentioned in Chapter III, styrene maleic acid (SMA) copolymers and similar 

compounds have revolutionised work on bacterial membranes, and integral membrane 

proteins in particular, over the last decade (Knowles et al., 2009, Dorr et al., 2016). The SMA 

copolymers form so-called SMA lipid particles (SMALP) or SMA nanodiscs, which encompass 

the protein of interest and patches of the original lipid bilayer. With this method, membrane 

proteins can be characterised using standard biochemical and biophysical approaches 

(Knowles et al., 2009). Aside from often maintained functionality and increased stability of 

protein complexes, SMALPs also preserve the natural lipid environment of the membrane 

protein (Swainsbury et al., 2014). SMA copolymers have the ability to insert into membrane 

bilayers and extract membrane proteins directly from intact membranes, without the use of 

detergent (Scheidelaar et al., 2015, Stroud et al., 2018). Due to this quality, SMA co-polymers 

found use as tool to investigate protein-lipid interaction and lipid preferences (Dorr et al., 

2014, 2016). Generally, SMA itself does not seem to have any significant preference to 

solubilise a certain phospholipid species (Dominguez Pardo et al., 2017). Thus, comparison 

between the lipid content of the SMA nanodiscs containing the protein of interest with the 

average abundance of phospholipids in other nanodiscs might point out specific affinities of 

the protein under investigation to certain types of phospholipids. The phospholipid content 

of nanodiscs can be analysed by several techniques including thin layer chromatography, gas 

chromatography, high-performance liquid chromatography or variations thereof, e.g. 

reverse-phase chromatography (Peterson & Cummings, 2006, Scheidelaar et al., 2015, 

Dominguez Pardo et al., 2017). Using this method could further test the interaction between 

full-length BceAB and UPP in vitro under different conditions. If the substrate recognition 

mechanism of BceAB is the same for lipid II binding AMPs, BceAB could also have also an 

affinity to lipid II alone. Successful solubilisation of the BceAB complex in SMA nanodiscs 

would also open the doors for structural analysis using electron microscopy (Postis et al., 

2015, Parmar et al., 2018).  
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As key player in the cell wall synthesis, the localisation of lipid II in the cell is well-studied. In 

elongated cells like B. subtilis, de novo synthesised peptidoglycan is not only inserted around 

the division septum but also in domains along the lateral walls of the cell in a helical pattern 

(Daniel & Errington, 2003). Microscopy studies could give insights into where BceAB localises 

in the cell in vivo and whether this distribution correlates with the abundance of labelled lipid 

II or UPP. Localisation of fluorescent-tagged BceAB could also be studied in the presence or 

absence of antimicrobial stress or other conditions that disrupt cell wall synthesis. The 

depletion of precursors, amongst others, leads to the disorganisation of peptidoglycan 

synthesis and to alterations in the distributions of lipids in the membrane (Muchova et al., 

2011). Particularly, depletion of UPP phosphatases might be important for localisation of 

BceAB in the cell.  
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In this thesis, we shed light on the nature of the physiological substrate of the antimicrobial 

resistance transporter BceAB of B. subtilis. By identifying the most likely physiological 

substrate to be bacitracin in complex with its cellular target UPP, rather than unbound 

bacitracin, we now understand that substrate recognition and binding are likely to happen in 

the hydrophobic membrane environment. Thereby, we gained further insights into the 

resistance mechanism that has been elusive for decades. Together with experimental 

evidence from previous studies, these insights support the hypothesis that bacitracin is 

removed from its cellular target and released into the extracellular space. BceAB likely 

confers resistance against AMPs by shifting the equilibrium of membrane-bound AMPs 

towards unbound AMPs in the surrounding environment, according to a target protection 

mechanism. As this resistance mechanism does not involve transport of the AMP across a 

membrane, BceAB was classified as a mechanotransducer rather than a transporter.  

Identifying the physiological substrate of the paradigm transporter BceAB and understanding 

the underlying resistance mechanism are of great importance to counteracting emerging 

antimicrobial resistance, as this and similar mechanisms are presumably wide spread in 

immunity and resistance against AMPs in numerous bacterial genera. The ability to 

differentiate between the membrane-bound and free version might constitute a key concept 

of AMP recognition in resistance determinants beyond this and similar types of transporters. 

The findings of this study thus open up exciting future perspectives to further investigate 

BceAB-like transporters and other resistance determinants. Better understanding of 

resistance mechanisms will facilitate the development of AMPs for medical treatment that 

can circumvent these resistance determinants and reveal new targets and strategies to 

combat the global threat that antimicrobial resistance poses to mankind.  
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Supplement 

 

Chapter II 

Table S1: E. coli strains used in this study.  

Strain Descriptiona Source/Reference 

DH5α 
fhuA2∆(argF-lacZ)U169 phoA glnV44 ɸ80 Δ(lac-Z) M15 

gyrA96 recA1 relA1 end A1 thi-1 hsdR17 
Laboratory stock 

BL21(DE3) 

fhuA2 [Ion] ompT gal (λ DE3) [dcm] ΔhsdS 

λ DE3 = λ sBamHIo ΔEcoRI-B int::(lacI::PlacUV5::T7gene1) i21 

Δnin5 

New England BioLabs 

Inc. 

SGE09 DH5α pSG1601, ampr Susanne Gebhard 

SGE156 XL1-blue pNTSB104, ampr  Nicole Treichel 

SGE162 XL1-blue pNT2E01, ampr Nicole Treichel 

SGE420 DH5α pCKET1601, ampr This study 

SGE421 DH5α pCKET1602, ampr This study 

SGE422 DH5α pCKET1603, ampr This study 

SGE423 DH5α pCKET1604, ampr This study 

SGE426 Top10 pCKpUC571, kanr This study 

SGE427 Top10 pCKpUC572, kanr  This study 

SGE435 DH5α pCKBAD2404, ampr This study 

SGE436 DH5α pCKBAD2405, ampr This study 

SGE469 DH5α pCKDR1, ampr This study 

SGE507 DH5α pCKC301, cmr  This study 

SGE508 DH5α pCK4S01, ampr  This study 

GFC473 DH5α pANM-1_145, specr Annis Newmann 

GFC474 DH5α pANM-1_146, specr Annis Newmann 

GFC475 DH5α pANM-1_147, specr Annis Newmann 

aampr: resistance to ampicillin, cmr: chloramphenicol, kanr: kanamycin, specr: spectinomycin. 
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Table S2: B. subtilis strains used in this study. 

Strain Descriptiona Source/Reference 

W168 laboratory wild type strain, trpC2 Laboratory stock 
 

SGB01 bceAB::kan bcrC::tet, kanr, tetr Susanne Gebhard 
 

SGB73 sacA::PbceA-luxABCDE, cmr (Fritz et al., 2015) 
 

SGB74 sacA::PpsdA-luxABCDE, cmr Sebastian Dintner 
 

SGB79 bceAB::kan sacA::PbceA-lux, cmr (Kallenberg et al., 2013) 
 

SGB170 bceAB::kan pXT-bceAB, kanr, specr (Kallenberg et al., 2013) 
 

SGB218 bceAB::kan sacA::PbceA-lux lacA::Pxyl-bceAB, kanr, cmr, mlsr Nicole Treichel 
 

SGB575 bceAB::kan, kanr This study 
 

SGB576 lacA::Pxyl-bceAB (pNT2E01), mlsr This study 
 

SGB577 bceAB::kan lacA::Pxyl-bceAB (pNT2E01), kanr, mlsr This study 
 

SGB648 bceAB::kan bcrC::tet sacA::PbceA-lux, kanr, cmr, tetr This study 
 

SGB649 bcrC::tet sacA::PbceA-lux, cmr, tetr This study 
 

SGB650 amyE::Phy_spank-uppS (pCKDR1), specr This study 
 

SGB651 sacA::PbceA-lux amyE::Phy_spank-uppS, cmr, specr This study 
 

SGB677 

bcrC::tet bceAB::kan sacA::PbceA-lux lacA::Pxyl-bceAB, tetr, 

kanr, cmr, mlsr This study 
 

SGB678 

bcrC::tet bceAB::kan sacA::PbceA-lux lacA::Pxyl-bceAB*WalkerB, 

tetr, kanr, cmr, mlsr This study 
 

SGB681 bcrC::tet sacA::PpsdA-lux, tetr, cmr This study 
 

SGB713 thrC::PxylA-uppS, specr This study 
 

SGB714 thrC::PxylA-uppS sacA::PbceA-lux, specr, cmr This study 
 

SGB745 PuppS::kan-uppS1, kanr This study 
 

SGB746 sacA::PbceA-lux PuppS::kan-uppS1, cmr, kanr This study 
 

SGB758 sacA::PbceA-lux lacA:: PxylA-bcrC, cmr, mlsr This study 
 

SGB798 ytpB::mls sacA::PbceA-lux, cmr, mlsr This study 
 

SGB810 ponA::kan sacA::PbceA-lux, cmr, kanr This study 
 

SGB812 sigM::kan sacA::PbceA-lux, cmr, kanr This study 
 

SGB870 PuppS::kan-uppS+ sacA::PbceA-lux, kanr, cmr This study 
 

SGB871 PuppS::kan-uppS1 sacA::PbceA-lux, kanr, cmr This study 
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TMB035 bceAB::kan, kanr (Rietkötter et al., 2008) 
 

TMB297 bcrC::tet, tetr (Rietkötter et al., 2008) 
 

HB13321 ytpB::mls, mlsr (Kingston et al., 2014) 
 

HB13647 PuppS::kan-uppS+, kanr (Lee & Helmann, 2013) 
 

HB13648 PuppS::kan-uppS1, kanr (Lee & Helmann, 2013) 
 

GFB058 PuppS::cat-PxylA, cmr Andre Sim 
 

GFB078 lacA:: PxylA-dcas9 amyE::Pveg-uppS-sgRNA, mlsr, cmr Andre Sim 
 

BKK09520 sigM::kan, kanr (Koo et al., 2017) 
 

BKK22320 ponA::kan, kanr (Koo et al., 2017) 
 

TMB035 bceAB::kan, kanr (Rietkötter et al., 2008) 
 

aAll B. subtilis strains used in this study are derived from strain W168. ampr: resistance to 

ampicillin, cmr: chloramphenicol, kanr: kanamycin, mlsr: macrolide-lincosamide-

streptogramin B, specr: spectinomycin, tetr: tetracycline. 

 

 

 

 

 

 

 

Table S3: Vectors used in this study. 

Vectors Descriptiona Source/Reference 

03 pET-16b PT7, His•tag®, tT7, lacI, ori(pBR322), ampr 
pET system manual, 

11th ed., Novagen® 

20 pBAD24 
arabinose-inducible promoter pBAD; ribosome binding 

site on vector, ampr 

(Guzman et al., 1995) 

78 pBS4S pDG1731 derived, rfp-cassette, thrC integration, ampr (Radeck et al., 2013) 

81 pSB1C3 
ori pMB1 , rfp-cassette in BioBrick multiple cloning site, 

cmr 

(Radeck et al., 2013) 

101 pDR111 
Phy_spank-multiple cloning site, IPTG-inducible, amyE 

integration  

David Rudner 

a ampr: resistance to ampicillin, cmr: chloramphenicol.  
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Table S4: Plasmids used in this study. 

Plasmids Descriptiona Source/Reference 

11 pSG1601 
bceB-ECD (A310-G525) in pET-16b, N-terminal His•tag® 

(NdeI/XhoI) 
Susanne Gebhard 

153 pNTSB104 PxylA in pSB1A3 (EcoRI/SpeI, TM2341/2342)  Nicole Treichel 

159 pNT2E01 PxylA-bceAB in pBS2E (EcoRI/PstI) Nicole Treichel 

418 pCKET1601 

bceB-ECD (Y315-Q520) in pET-16b, N-terminal His•tag® 

(NdeI/BamHI, SG0183/185) 
This study 

419 pCKET1602 

bceB-ECD (T320-D515) in pET-16b, N-terminal His•tag® 

(NdeI, BamHI, SG0184/186) 
This study 

420 pCKET1603 

bceB-ECD (Y315-D515) in pET-16b, N-terminal His•tag® 

(NdeI/BamHI, SG0183/186) 
This study 

421 pCKET1604 

bceB-ECD (T320-Q520) in pET-16b, N-terminal His•tag® 

(NdeI/BamHI, SG0184/185) 
This study 

429 pCKpUC571 

H1-bceb-ECD (A310-G525)-Strep•tag® II in pUC57-kan, 

synthesized (EcoRI/PstI) 
This study 

430 pCKpUC572 

H1-bceb-ECD (A310-G525)-H2-Strep•tag® II in pUC57-

kan, synthesized (EcoRI/PstI) 
This study 

433 pCKBAD2404 

H1-bceb-ECD (A310-G525)-Strep•tag® II in pBAD24, 

synthesized (EcoRI/PstI) 
This study 

434 pCKBAD2405 

H1-bceb-ECD (A310-G525)-H2-Strep•tag® II in pUC57-

kan, synthesized (EcoRI/PstI) 
This study 

465 pCKDR1 Phy_spank-uppS, in pDR111 (SalI/NheI, SG495/496) This study 

510 pCKC301 uppS in pSB1C3, (EcoRI/PstI, SG587/588) This study 

511 pCK4S01 PxylA-uppS in pBS4S (BioBrick assembly) This study 

pANM-1_145 sacA::cat-PbceA-luxABCDE (MoClo method) Annis Newmann 

pANM-1_146 sacA::spec-PbceA-luxABCDE (MoClo method) Annis Newmann 

pANM-1_147 sacA::mls-PbceA-luxABCDE (MoClo method) Annis Newmann 

aRestriction enzymes used for cloning are given in brackets (enzyme for 5’/enzyme for 3’). 

Primers used for PCRs are stated in bracktes, where applicable (primer for 5’/primer for 3’). 
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Table S5: Oligonucleotides used in this study. 

Primers Target Sequence (5' → 3') 

SG0183 BceB_Y315_NdeI_F AATTCATATGTACTCGTCGGAAAAGACCGC 

SG0184 BceB_T320_NdeI_F AATTCATATGACCGCTGAACAAAATGTAGCG 

SG0185 BceB_Q520_BamHI_R AATTGGATCCTCATTGCGCAGCGCTTGTATC 

SG0186 BceB_D515_BamHI_R AATTGGATCCTCAATCTAGTCTTGATAAATGCTCG 

SG0416 pETcheck_up  ATGCGTCCGGCGTAGA 

SG0417 pET_check_down  GTTAAATTGCTAACGCAGTCA 

SG0418 pBAD_check_up ATGCCATAGCATTTTTATCC 

SG0419 pBAD_check_down GATTTAATCTGTATCAGG 

SG0427 pUC check_f (M13) CCCAGTCACGACGTTGTAAAACG 

SG0428 pUC check_r (M13) AGCGGATAACAATTTCACACAGG  

SG0495 UppS_SalI_F AATTGTCGACATGCTCAACATACTCAAAAATTGGAAG 

SG0496 UppS_NheI_R AATTGCTAGCCTAAATTCCGCCAAACCTCCGGCC 

SG0506 AmyE check(F) GTAAGCGTTAACAAAATTCTC 

SG0507 AmyE check(R) TTATATTGTGCAACACTTCACA 

SG0587 UppS_ENX_F ATTGAATTCGCGGCCGCTTCTAGAGATGCTCAACATACTCAAAAATTGGAAG 

SG0588 UppS_SNP_R AGCCTGCAGCGGCCGCTACTAGTACTAAATTCCGCCAAACCTCCGGCC 

SG0599 pSB1C3_seq_F TGCCACCTGACGTCTAAG 

SG0600 pSB1C3_seq_R ATTACCGCCTTTGAGTGA 

SG0601 pBS4S_seq_F CAGTCAACCCTTACCGCATTG 

SG0602 pBS4S_seq_R CCTCCTCACTATTTTGATTAGTACC 

SG0626 UppS_up_F TGAATCAGCTGTTAAGTATGAATCAC 

SG0627 UppS_up_R CCTATCACCTCAAATGGTTCGCTGTGTACATAGTTTTTCATTAAACTTCCA 

SG0628 UppS_do_F 

CGAGCGCCTACGAGGAATTTGTATCGACTGTTGATTACATTGATTATCAGCA

GGGAATGTAACCTTTTTGGGTGACGGAGGCATCTCATGCTCAACATAC 

SG0629 UppS_do_R TACTCAGCCTTATCTCGCCG 

SG0637 menA_up_F CCGTACACAAGGATAGGAGA 

SG0638 menA_up_R CCTATCACCTCAAATGGTTCGCTGGCCAAAGGATCTGCCCCAT 

SG0639 menA_do_F CGAGCGCCTACGAGGAATTTGTATCGCTGGGTTGTCGGCTTGGTT 

SG0640 menA_do_R GAAGGCGAAAGCATCTGACA 

SG0701 sigM_up CGGGCCAATGCACCTGATAAAG 

SG0702 sigM_do CAACCCGTTCATTCCCTACGG 

SG0703 ponA_up GCCGTTATACACAAAAAGCCGAC 

SG0704 ponA_do GCGCAGTCTTGGCCAGAAGAG 
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Chapter III 
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Figure S3.1: The extracellular domains of bacitracin resistance-related BceB-like permeases 

have only poor amino acid conservation. Sequence alignment of eight BceB-like permeases 

that sense bacitracin or confer resistance against the AMP. Amino acid sequences were 

aligned using the application ClustalW built into the sequence analysing tool BioEdit. Identical 

amino acid residues are shaded in back, amino acids with similar properties are shaded grey 

(75%). The extracellular domains are highlighted by a blue box. 1: BceB, B. subtilis (O34741, 

Ohki et al., 2003), 2: AnrB, Listeria monocytogenes (Q8Y5E9, Collins et al., 2010), 3: BraE, 

Staphylococcus aureus, (A0A0H3JWA4, Hiron et al., 2011), 4: VraG, Staphylococcus aureus 

(A0A0H3K6M3, Hiron et al., 2011), 5: MbrB, Streptococcus mutans (Q8VUH1, Tsuda et al., 

2002, Ouyang et al., 2010), 6: Spr0813, Streptococcus pneumoniae (Q8DQ76, Becker et al., 

2009), 7: EF_2049, Enterococcus faecalis (Q833B5, Gebhard et al., 2014), 8: EF_2751, 

Enterococcus faecalis (Q830M8, Gebhard et al., 2014). Uniprot accession numbers are given 

in brackets (Boutet et al., 2007).  
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Figure S3.2: Circular dichroism spectra of polypeptides and proteins with representative 

secondary structures. 1: α-helical conformation (black), 2: antiparallel β-sheet conformation 

(red), 3: random coil or disorder (green), 4+5: collagen in native (blue) and denatured (cyan) 

forms. Modified from Greenfield (2006). 
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Figure S3.3: Complex formation between bacitracin and GPP results in saturation at 50 µM 

BAC and 200 µM GPP. Steady-state ANS fluorescence experiments of bacitracin and GPP 

were performed as described in Fig. 3.4. No buffer spectra were subtracted. A+B: Dose 

response of ANS fluorescence upon addition of various concentrations of A: GPP and B: 

bacitracin. Data points were fit with a linear regression line. C: Dose response of ANS 

fluorescence signal upon gradual addition of GPP to bacitracin. Data points were fit with a 

non-linear single site binding curve. D: Dose response of ANS fluorescence emission upon 

titration of bacitracin to GPP. Data points were approximated with a non-linear single site 

binding curve (purple) for lower and according to a linear regression fit (grey) at higher 

bacitracin concentrations. Data in C+D are depicted as mean ± standard deviation of two 

independent measurements.  
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Figure S3.4. Schematic of BceB-ECD hybrid membrane proteins. Two different BceB-ECD 

hybrid membrane constructs were designed for gene synthesis (B and C). B: The first protein 

was designed to comprise two TMH (H1 + H2, orange) with the bceB-ECD encoding sequence 

in between (blue). C: The second hybrid protein contained a single TMH (H1, orange), 

followed by the bceB-ECD coding sequence. Both constructs were C-terminally-tagged with 

a Strep-Tag® II (green, IBA GmbH) and cloned into the same arabinose-inducible vector that 

were used for overproduction of full-length BceAB (A, pBAD24). The sequence of the 

membrane helices originated from the E. coli protein LepB. To ensure the correct topology in 

the membrane with the ECD located on the extracellular side of the membrane, additional 

positive amino acids (KKK) were added into the N-terminal region of the fusion protein, and 

positive residues in the native loop region of LepB were exchanged as suggested by 

Andersson and von Heijne (1993). The orientation of membrane proteins is based on the so-

called ‘positive-inside rule’ which has been extensively studied and is used for topology 

predictions of membrane proteins (von Heijne, 1992, Andersson & von Heijne, 1994a, 

1994b). According to this rule, bacterial inner membrane proteins contain a much higher 

amount of positively charged amino acid residues in their cytoplasmic regions rather than in 

the periplasm or extracellularly (Heijne, 1986). The correct topology of the BceB-ECD hybrid 

constructs was confirmed using the TOPCONS web server for consensus prediction of 

membrane protein topology (data not shown, Tsirigos et al., 2015).  
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Chapter IV 

 

 

 

 

 

Figure S4.1: AMP transport assay suggests bacitracin is neither imported nor inactivated by 

BceAB. B. subtilis W168 (WT) and a ∆bceAB mutant (TMB035) were grown, harvested and 

resuspended to an OD600 of 10. Bacitracin was added to cultures and a control without cells 

to a final concentration of 5 µg/ml and incubated for 30 minutes. Supernatants were 

collected and the remaining bacitracin activity was determined using a bio-assay. 

Supernatants were filled into wells in an agar plate with a bacitracin-sensitive strain (∆bceAB 

∆bcrC double mutant, SGB01) as indicator strain. Residual bacitracin concentrations were 

quantified from the diameter of inhibition zones and calibrated against a series of standards. 

Data are shown as mean ± standard deviation of at least three biological replicates. A: 

Comparison of remaining biologically active bacitracin in the supernatant of WT and ∆bceAB 

cultures and samples without cells. Values are stated in panel B. No significant difference 

could be determined using a one-way ANOVA. 
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Figure S4.2: Deletion of ponA does not lead to changes in BceAB activity. Comparison of 

BceAB activities in the WT (SGB73, dark red) and a ∆ponA strain (SGB810, light red) in the 

presence of varying mersacidin concentrations. BceAB activities were determined as 

described in Fig. 4.4. Data are shown as mean ± standard deviation of at least three biological 

replicates. A two-way ANOVA did not reveal any significant contribution to variation by the 

strains.  
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Figure S4.3: Combination of bacitracin or mersacidin with vancomycin does not alter BceAB 

activity. A+B: BceAB activity in presence of bacitracin or mersacidin in combination with 0, 

0.05, 0.1 µg/ml vancomycin (dark to lighter colour). Exponentially growing cells were 

challenged with varying concentrations of vancomycin and bacitracin or mersacidin, as 

indicated BceAB activities were determined as described in Fig. 4.4. C+D: Growth of the WT 

strain (SGB73) in presence of bacitracin or mersacidin combined with vancomycin. OD600 

measurements taken 55, 60 and 65 minutes after addition were averaged and normalised 

(100 % corresponding to maximum growth, darkest blue/red). All data are shown as mean of 

two biological replicates. Standard deviation of BceAB activity is indicated in bar graphs of 

panel A and B. A two-way ANOVA did not show any significant contribution to variation by 

the strains.  
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Figure S4.4: Deletion of sigM does not result in significant changes in the BceAB activity. 

BceAB activity of a ∆sigM strain (SGB, 812turquois/light red) compared to WT activity (SGB73 

darker blue/red) in the presence of sub-inhibitory concentrations of A: bacitracin and B: 

mersacidin. BceAB activities were determined as described in Fig. 4.4. All data are shown as 

mean ± standard deviation of at least three biological replicates. A two-way ANOVA did not 

show any significant contribution to variation by the strains.  
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Figure S4.5: Overproduction of UppS does not alter BceAB activity. Comparison of BceAB 

activities in the WT (SGB73, dark blue) and IPTG-/ xylose-inducible UppS overproduction 

strains (SGB651, blue and light blue) in the presence of varying bacitracin concentrations. 

BceAB activities were determined as described in Fig. 4.4, in the presence of 1 mM IPTG or 

0.2 % xylose. Data are shown as mean ± standard deviation of at least three biological 

replicates. A two-way ANOVA did not show any significant contribution to variation by the 

strains.  

 


