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Summary

Traditionally engineering systems have been analysed as linear systems. How-
ever, nowadays most engineering systems presents discrete behaviours (e.g.
switches, clutches, contacts, to name some), necessitating a di¤erent approach
for the analysis of such systems. For this reason, a hybrid systems approach
is used. Hybrid systems contain continuous and discrete behaviours. These
systems are also known as switched systems.

Hybrid systems behave in a continuous mode most of the time with discrete
behaviour only appearing when a switching element commutes. These behav-
iours can occur depending on the commutation conditions (either controlled
commutations or arbitrary commutation).

Bond graph models are useful to represent multidomain engineering systems.
This is due to the uni�ed representation of the elements for the di¤erent engi-
neering domains involved (electrical, mechanical, hydraulics, thermal), mean-
ing that elements from di¤erent domains have equivalent representations in the
model. Therefore, their interactions can be observed in the entire model in-
stead of being analysed as independent subsystems, which later will be placed
under speci�c constraints in order to comply with some physical laws that al-
lows the analysis of their interaction as a whole system.

Hybrid bond graphs are introduced in order to represent continuous and dis-
crete behaviours. This is usually made by having di¤erent models, some for
the continuous cases, and di¤erent ones for the discontinuous cases. In order
to di¤erentiate hybrid systems from linear time invariant systems a represen-
tation for commuting elements is introduced.

There are several approaches to represent commuting elements, either for the
purpose of structural analysis or e¢ cient numerical simulation of the systems.
In this case switched junctions are used to introduce a standard notation for
bond graph hybrid systems. The use of switched junctions a¤ects the behav-
iour of the causality in some elements. This is known as Dynamic causality.

Dynamic causality represents the changes of power transfer on the system when
a commuting element changes its state (either from ON con�guration to OFF
con�guration or the other way around). These changes are usually ignored
in traditional approaches in order to simplify the analysis of the systems for
simulation purposes but at the cost of loss of information from the system.

Another consequence of the use of switched junctions is the introduction of
Boolean parameters on the model equations. Boolean parameters help to-
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wards the continuous analysis of the system, meaning that the analysis of the
system is from a single general equation containing all the available con�gura-
tions, rather than analysing all of the available con�gurations independently
in order to obtain a particular implicit equation for each con�guration.

The focus of this thesis is to propose a generalized notation for the hybrid bond
graph systems, and a set of rules to obtain the hybrid bond graph model. This
generalized notation is based on Boolean parameters in order to simplify the
analysis and show all the available con�gurations in one general equation.

The main contribution of this thesis is the generalization of the notation of
hybrid bond graph models, and the steps that needs to be followed in order
to obtain the system�s implicit equation. Also, the formulation of the general
implicit equation, and the necessary conditions to identify the valid con�gu-
rations are presented. The results are also used for the analysis of implicit
equations that were obtained using any traditional mathematical approach.
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Nomenclature

A The A-matrix in the standard Linear Time Invariant system equations
B The B-matrix in the standard Linear Time Invariant system equations

BGD Bond graph model with preferred derivative causality assignment
BGI Bond graph model with preferred integral causality assignment
C The C-matrix in the standard Linear Time Invariant system equations
D The D-matrix in the standard Linear Time Invariant system equations
Din Input vector from the system to the resistance �eld not a¤ected by

dynamic causality
~Din Input vector from the system to the resistance �eld a¤ected by dynamic

causality
Dout Output vector from the system to the resistance �eld not a¤ected by

dynamic causality
~Dout Output vector from the system to the resistance �eld a¤ected by dy-

namic causality
E The E-matrix in the standard Linear Time Invariant system equations
e Generalised e¤ort variable on a bond
F The matrix characterising the storage �eld. In the LTI case, this is a
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Chapter 1

Introduction

1.1 Modelling

A model is a simpli�cation of a real system. Depending upon the application
there are several di¤erent types, including physical, mathematical, graphical
and verbal. As physical models can be expensive to produce, they are not
practical to use for the analysis of new design systems. This is because there
can be some unknown dynamics in the system, making the modelling and sim-
ulation of mathematical models useful and needed.

Modelling does not only involve a simpli�ed representation of a physical sys-
tem, but also the analysis of the model behaviour and the study of the com-
ponents contained in it. Properly modelling a system can help to simulate
the response of the system under di¤erent circumstances, therefore avoiding
the production of costly prototypes; as well as increasing the safety before its
production and decreasing time of development. This therefore reduces the
�nal price of the device.

The traditional approach to modelling dynamic systems is the mathematical
approach. A �mathematical model�is the description of a system using math-
ematical expressions. This description facilitates the study of the di¤erent
elements contained within the system and allows the analysis of the behaviour
of the system using mathematical equations. Usually these equations are gen-
erated from a single domain or discipline (Euler, Newton, Lagrange, Bernoulli,
and Kirchho¤, to name some type of equations/domains). Therefore, for mul-
tidomain systems, it is necessary to generate separate sets of equations in order
to represent the system behaviour. This leads to impose constraints on the
system equations in order to allow the interaction between the di¤erent do-
mains.

This approach is mostly done by hand, meaning that for large systems it takes
longer to obtain the system equations. Not only is a large amount of time
consumed by using a mathematical model, it is also more susceptible to errors
introduced by whoever is analysing the model.
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In order to face the challenge in modelling multidomain systems with the po-
tential to contain di¤erent kinds of subsystems, a more generalized modelling
technique is required, in this case bond graph.

1.1.1 Classical bond graph

Bond graph modelling represents a uni�ed approach to the modelling and sim-
ulation of dynamic systems from a graphic representation of the systems. It is
de�ned by Henry Paynter [1] as a graphical modelling technique that displays
the physical behaviour of the system on a mathematical model. The interac-
tion between elements is done through energy ports which describe the �ow of
power through the system.

It is common to �nd multidomain systems, which are usually analysed by
identifying and dividing the di¤erent domains as subsystems and, at the end,
through physical laws and the set of constraints, the mathematical model of
the whole system is obtained. With bond graph approach, this is not necessary
due to the uni�ed representation of the elements from di¤erent domains. As
the analysis is focussed on the transfer of power through the element ports,
there is no need to identify the di¤erent subsystems, unless there is an in-
terest in obtaining a particular response of a speci�c set of elements on the
system. This allows to link sub-models from di¤erent domains more intuitively.

The concept of power transmitted through the system is described in terms of
e¤ort and �ow (time derivatives of generalised momentum and displacement).
These terms are related between the elements by using generalised inertia, ca-
pacitor and resistive elements, modulation elements, and ideal sources, which
all have the same basic form irrespective of the domain.

1.1.2 Hybrid bond graph

Hybrid models are those which include both continuous and discontinuous
equations. These equations are generated by the presence of commuting ele-
ments in the model.

The behaviour of all systems can be described by continuous equations. This
is exploited by software packages in the form of di¤erential algebraic equations
(DAE). Nevertheless, usually rapidly-changing behaviours are considered as
discontinuities in order to achieve a high level of accuracy.

Hybrid bond graphs models group the potential of modelling multi-disciplinary
non-linear systems (from a bond graph perspective) and hybrid modelling.
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This is done by introducing a representation of the commuting elements.

A hybrid bond graph model is achieved using elements that represents ideal
switches with some kind of Boolean modulator or control.

There are di¤erent methods that have been tried to set a standard notation,
such as:

� Modulated transformers [2, 3] that can inhibit the transfer of power
between elements. This is done by changing the modulation ratio for
each of the con�gurations (1 for ON and 0 for OFF).

� Flow or e¤ort sources [3, 4, 5, 6, 7] that change its value to null in order
to impose an OFF con�guration.

� Energy storage elements as switching elements [8] that behaves as a reg-
ular energy storage element (with a non-intrusive value), and behaves as
a null source during the OFF con�guration.

� Switched power junction [9] that behaves as a regular junction during the
ON con�guration, and during the OFF con�guration sever the power in
the output by "deactivating" the bond.

� The latest method is the use of controlled junctions [10] that behaves
as a regular junction during the ON con�guration and as a null source
during the OFF con�guration.

Nevertheless, no single method has reached a common usage or inclusion as
a standard element in bond graph modelling. This is due to the fact that
the elements used create a separate model for each possible con�guration, or
that it needs to include extra elements to the model in order to avoid causal
con�icts, therefore making their use optimal just for modelling or just for simu-
lation, at the expense of increasing the complexity of the model. Only the last
approach addresses these problems, however, the notation needs further devel-
opment in order to be used as a general notation, which is the goal of this work.

1.1.3 Singular systems

Hybrid systems are described by dynamic equations, which might represent
positions, velocities, or accelerations in Newtonian systems, prices or quan-
tities in an economic system, etc. [11]. In order to select a minimal set of
variables, they must be represented in a singular form or descriptor form.

This singular representation allows the analysis of static and dynamic behav-
iours in a single equation.
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Using the notation of singular systems is helpful for modelling hybrid systems
in a compact form.

1.2 Problem formulation

There are previous proposed approaches that are used to analyse hybrid sys-
tems, however, most of them avoids change in the number of state elements,
which does not always represent the behaviour of the physical system [2, 3, 4,
5, 6, 7, 8, 9, 12, 13].

Most of these approaches set constraints into the model as an aid in order to
simplify the equations obtained from the model, or to avoid the use of com-
plex mathematics to represent the interaction between parts of the system that
have di¤erent nature (e.g. mechanical, electrical, hydraulics, to name some).

Some of the approaches were designed to address the proper representation of
the physical behaviour, such as the one proposed by Bonilla in [14, 15] and
Margetts in [10]. However, none of these approaches have reached a standard
usage due to the complexity of the mathematical notation for large systems or
their recent development.

The goal of this research is to propose a standard notation for hybrid bond
graph models by using switched junctions and dynamic causality, which will
decrease the time of analysis and the number of equations that represent its
behaviour. Another goal is to propose a general standard methodology to
obtain the valid con�gurations from the implicit equation; this could be either
from a bond graph model or a mathematical model, therefore, an analysis
of the matrices can be done (either in singular systems, hybrid systems or
hybrid bond graph systems). This is due to the inclusion of previously avoided
behaviours caused by the constraints set on the models.
The following objectives were therefore de�ned:

� To propose a standard notation for hybrid bond graph models, which can
be used for the analysis of any hybrid system, regardless of the number
of commuting elements or valid con�gurations.

� To propose a methodology to �nd the valid con�gurations of hybrid sys-
tems, which can be used regardless of the methodology used to obtain the
implicit equation of the system, meaning that can be used with existing
mathematical models.

� To analyse the properties of hybrid systems exploiting the mixed Boolean
model formulation.

� To apply the method to a selection of case studies.
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1.3 Outline

This thesis is organized in a chronological structure: Background, Construc-
tion & Analysis of hybrid bond graph systems, Simulation of hybrid systems,
and Case studies.

The literature review is presented in chapter 2 in order to explore the previous
works on bond graph, singular and hybrid systems, and to allow a comparison
with the work done in this research.

An introduction to hybrid dynamic bond graph systems is given in chapter 3,
which also includes the di¤erent representations of the commuting elements
and properties of the systems.

The analysis of these systems using the proposed approach is performed in
chapter 4, including analysis of the properties of the systems.

In chapter 5 an introduction to the analysis and simulation of hybrid systems
using software is done, where the necessary considerations for simulation are
mentioned and explained.

Some case studies are presented and analysed in chapter 6, such as the com-
monly used buck converter in order to make a comparison between the di¤erent
approaches.

Finally, in chapter 7 the discussion and conclusions of this work are presented,
and some future work based on this research are discussed.

1.4 Novelty and contributions

To address the limitations imposed by previous approaches in the area of sin-
gular systems, hybrid systems, and hybrid bond graph systems, an expanded
representation of the switched junctions is developed in this work.

Some of the novel aspects presented in this thesis are:

� The introduction of a standard notation for hybrid bond graph models,
which will contain all the available con�gurations on the implicit equation
of the system.

� The introduction of the representation of multiswitch (multiple selections
in one switch element) and multiway switches.
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� The set of rules to obtain a hybrid bond graph model, which are a mod-
i�ed version of the hybrid SCAP (Sequential Causality Assignment Pro-
cedure).

� The set of conditions that determines the validity of any con�guration.

� The ability to extend the obtained results to other areas of modelling
(e.g. singular systems and hybrid systems).

1.5 Publications

Madrigal Salas, J. and Ngwompo, R.F., Modelling and Analysis of Hy-
brid Physical Systems Using Bond Graph and Dynamic Causality. Eurosis
ESM�2015, pp. 16-21, Leicester, UK, November 2015. (ESM�2015 Conference
Proceedings, 2015)

Madrigal Salas, J. and Ngwompo, R.F., Analysis of switched systems
using mixed Boolean singular representation. Submitted to SCS Simulation:
Transactions of the Society for Modeling and Simulation International, under
revision.
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Chapter 2

Literature review

2.1 Preliminaries

In this literature review several topics are involved due to the complexity of
hybrid bond graph systems. This is due to the proposed approach combining
bond graph methodology with singular systems and traditional hybrid systems.
Therefore, it is necessary to have an insight of the di¤erent topics involved and
the analysis of the control properties.

Bond graph methodology is brie�y reviewed as the chosen technique for mod-
elling and analysis of hybrid systems, as this modelling technique allows a
simpli�ed representation of multidomain systems.

In order to understand the behaviours and elements involved in hybrid bond
graphs it is necessary to introduce hybrid modelling and singular systems, this
will set a precedent and also introduce the fundamentals of hybrid bond graph
modelling.

Singular systems theory is reviewed as this is a useful representation of dy-
namic systems, which have a similar representation to hybrid systems.

Previously proposed notations for hybrid bond graph elements are reviewed in
some detail to show the development on hybrid bond graph modelling.

The basics of the analysis of hybrid systems are presented, including some of
the approaches that intend to address the proper representation of physical
phenomena in a mathematical model, such as rectangular variable structure
systems.

After the introduction of the basics of hybrid modelling, the analysis of the
models is addressed. Di¤erent methods from classical control theory are re-
viewed, before demonstrating how control properties have been applied to both
standard and hybrid bond graphs.
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An introduction to dynamic causality in bond graph models is presented. Dy-
namic causality is studied in order to allow the representation of physical phe-
nomena (change in the behaviour of the variable states) during commutation,
which is not re�ected using traditional mathematical approaches.

Based on these topics, the results are expected to be expanded in all of the
involved domains (e.g. singular systems, hybrid systems, hybrid bond graph
systems).

2.1.1 Classical modelling of hybrid systems

The classical modelling of hybrid systems is a variation of the linear time
invariant (LTI) systems. However, hybrid systems contain continuous and dis-
continuous behaviours.

A problem arising from the proposed approach for the modelling of such sys-
tems, is that the system is considered to always have the same order. This
means that the elements of the system behave the same in all of the con�gu-
rations, which does not always represent the behaviour of the physical system.
This can be seen in works such as [16, 17, 18, 19], where all of the analysed
systems maintain the same order for all of the con�gurations, which is achieved
by mathematical manipulation of the equations to simplify the analysis and
simulation of the systems.

Singular systems are usually described by:

E _x (t) = Ax (t) +Bu (t) (2.1)

y (t) = Cx (t)

where x 2 Rn, u 2 Rm, E;A 2 Rn�n, B 2 Rn�m, C 2 Rq�n.

As mentioned before, the analysis of the system (2.1) using the approaches
introduced in the previous works does not allow changes in the order of the
system, which does not represent the physical behaviour of some of the con-
�gurations.

Traditional switched systems are described in the form:

_x� = A�x+B�u where � = 1; 2; : : : ; n

where A� 2 Rn�n and B� 2 Rn�m.

It can be seen that the E matrix does not appears in this case, as they do not
need to be singular to be solvable.
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In order to allow a proper representation of the physical phenomena of the
systems, a new representation of the systems is needed.

2.1.2 Variable structure systems

Variable structure systems are those that have either variable order, variable
input sign or variable parameters [14].

Switched systems are a type of variable structure system, where the number of
states could change during commutation. This change in the number of states
represents the physical behaviour of the system in the model.

An approach to the representation of the physical phenomena into a math-
ematical model was introduced by Bonilla in [14], where variable structure
systems are used to represent many behaviours of di¤erent nature.

In order to properly represent the physical phenomena, Bonilla [14] used rec-
tangular implicit descriptions.

This is done when there are more state components than state equations, which
is usual in systems with switches.

To illustrate this, the following example is used.

For systems containing two (or more) switches, such as the one displayed in
Figure 2.1,

Figure 2.1: Example of a variable model [14]

the variable structure that describes the behaviour is represented by the fol-
lowing implicit di¤erential equation:

�y1 (t) + _y1 (t) + _y2 (t) + y2 (t) = u (t) (2.2)

ym (t) = y1 (t) + y2 (t)

under the additional constraint:
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y1 (t)� y2 (t) � 0 (2.3)

where y1 and y2 are the non measurable outputs (switches), ym is the measured
point, and u the input of the system.
This behaviour can also be described by the following implicit description:

�
1 0 0
0 0 1

�
_x (t) =

�
�1 �1 1
0 �1 0

�
x (t) +

�
0
1

�
u (t)

y (t) =

�
1 0 0
0 1 0

�
x (t) (2.4)

ym (t) =
�
1 1

�
y (t)

with for all t � 0; x1 (t) = 0 or x2 (t) = 0:

It can be seen that the representation of hybrid systems using variable struc-
ture equations allows a simpli�ed representation of the available con�gurations.
However, this rectangular representation complicates the analysis of the con-
trol properties of the system.

Nonetheless, this approach is useful to determine that the equations describing
hybrid systems can be simpli�ed into a general equation, which is an alterna-
tive to the classical approach to switched systems.

However, this is not as simple to implement as the previous approaches, lead-
ing to the development of a new representation which will be useful, and is
proposed in this work, as it allows the proper representation of the physical
phenomena of the systems.

2.2 Bond graph modelling

Henry Paynter developed bond graph modelling in the late 1950�s and this
was later formalised as a methodology by Karnopp, Margolis and Rosenberg
in their textbook �System Dynamics: Modeling, Simulation, and Control of
Mechatronic Systems� [20]. In short, bond graph models can be de�ned as
follow,

De�nition 1 Bond graph model [20]: �A bond graph model is an abstract
representation of a system where a collection of components interact with each
other through energy ports and are placed in a system where energy is ex-
changed�.
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Bond graph main element is the �bond�(represented as a half arrow), which
represents the power transfer between standard elements. These standard ele-
ments are the masses, compliances and resistances that are used for modelling
in mechanical engineering. The power transferred between the elements is
given as a generalised e¤ort and �ow, which allows the method to be extended
to any engineering domain. Di¤erent elements are required to construct a
bond graph model. These elements are ideal descriptions of physical phenom-
ena and represent the principal energy processes, such as energy sources (in
the form of e¤ort and �ow sources), power dissipative elements (resistances),
power storage elements (capacitances and inertias), and power transformer el-
ements (transformers and gyrators).

Causality establishes the orientation of e¤ort and �ow in a bond. The causal
stroke (vertical line at the end of a bond) indicates the direction in which the
e¤ort signal is directed. This is displayed in Figure 2.2.

Figure 2.2: Causality on a bond

For computational models, the causality assignment is done following SCAP
(Sequential Causality Assignment Procedure) ([21, 22]). SCAP assigns com-
putational causality so that the maximum possible number of elements is set in
integral causality (independent variables for energy storage elements). If there
is a causal con�ict, a change in causality is made in one or more elements by
changing the integral causality for derivative causality (dependent variables
for energy storage elements).

If the �ow f is considered as an independent variable in the constitutive equa-
tions of the element A in the Figure 2.2, then there is an equation among the
constitutive equations of the element A that enables the computation of the
conjugate e¤ort e. However, the �ow f can only be an independent variable in
the equations of the element A if one of the constitutive equations of B allows
for computation of �ow f , which means that the e¤ort e is previously known.
This can also be on the other way around.

Making a choice between the obtaining of e¤ort e and �ow f is called an
assignment of computational causality. Causality assignment, in bond graph
modelling, means that it has been decided which one of the two conjugate
variables at a power port is the external one, meaning that this variable is
considered as independent in the constitutive equations of the multiport ele-
ment. Therefore, the power conjugate variable can be obtained in that element.
This is further described by Borutzky in [23].
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Most of the previous work in hybrid systems is based on results obtained in
traditional bond graph modelling where causality is static. This is because
some approaches to the modelling of hybrid systems attempt to preserve the
�xed causality. Not to mention that preserving �xed causality simpli�es the
analysis and avoids undesired behaviour of the system. Nevertheless, for a
proper representation of hybrid systems the causality must change depending
on the di¤erent con�gurations of the switched elements; therefore dynamic
causality is needed in order to properly represent the changes during commu-
tation. This is discussed in the following section.

2.3 Hybrid systems modelling

2.3.1 Hybrid systems

A hybrid system is a system that contains both continuous and discontinu-
ous behaviour as de�ned in [10]. In this type of system, the discontinuities
are "caused" or controlled by a commuting element or a series of commut-
ing elements. Commutation creates 2n (where n is the number of commuting
elements) number of models, which are called operational modes or con�gura-
tions.

As an introduction to the analysis of hybrid systems, it is recommendable to
analyse the change from continuous to discrete con�guration. An example of
this is the work of Mosterman [24], in which the analysis of the change of con-
�guration occurs in a small lapse of time; therefore, the principle of divergence
of time is used to ensure that the model does not falls into an in�nite loop of
instantaneous changes without moving in time.

The continuous events are modelled as a set of di¤erential equations. These
di¤erential equations are supplemented by algebraic constraints that re�ect un-
derlying physical principles (such as Kirchho¤�s laws, or Ohm�s law to name
some). Meanwhile, the discrete events are modelled using discrete states and
switching functions. The discrete states correspond to real modes, where the
behaviour of the system is governed by energy principles; and mythical modes,
where the system behaviour transitions are instantaneous (there is no loss of
energy). The interaction between the continuous and discrete parts consists
of (a) discrete events generated by the continuous signal, and (b) a change of
operational mode by the discrete model, requiring a consistent mapping of the
continuous state vector.

There are other approaches to hybrid system analysis, such as the one pro-
posed by Bornot [25] where the systems were de�ned by two types of rules:
synchronization rules, that specify how an action is the result of the simulta-
neous processes that occur at the same time; and the interleaving rules, that
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specify how an action of a process is the result of the action of another process
from a previous time. The combination of these two rules is essential for the
proper analysis of the systems; however, the combination of them must satisfy
two con�icting requirements, deadlock-freedom and maximal progress. Dead-
locks may appear when there is a con�ict between two states and can only be
avoided by using interleaving rules. Maximal progress refers to the preference
of synchronization over the interleaving when both are possible. The main
di¤erence between this approach and others is that this does not rely on a
time basis, but on a parallel composition of the system.

A model of a hybrid system can be described as hybrid automaton i.e. one
that contains both �nite and continuous state spaces.

The terms hybrid and switched systems are used indistinctly in the bond graph
literature, although, those are di¤erent type of systems, as explained in the
following de�nitions.

De�nition 2 Switched systems [26]: �Switched systems comprise a family
of dynamical subsystems together with a switching signal determining the active
system at a current time�.

Those are a subset of hybrid systems, where the discontinuous behaviours are
introduced by on/o¤ switches or another binary signal. Having this in con-
sideration, any bond graph switched model always gives a hybrid bond graph
model.

Hybrid models are categorised in [27] into Switching and Impulse models,
which can be Controlled or Autonomous. Switching models are those that
presents discontinuous changes when a state reaches a boundary. Meanwhile,
impulse models are those that presents discontinuous changes when a state
changes impulsively on speci�c regions of state space (e.g. when a collision
occurs).

De�nition 3 Switched Model [10]: �A Switched Model is a subset of Hybrid
Model, which contains continuous equations and binary switching variables.
The �switches�select the active continuous equation(s) or behaviours at a given
time.�

De�nition 4 Impulse Model: An impulse model is a subset of hybrid model
where the state changes impulsively, which means that the changes in the model
does not depends on switching signals, rather depends on impulse behaviours
that are caused by physical phenomena.

1

1All the original contribution resulting from this research is indicated in boxes.
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It must be taken into consideration that hybrid models are usually analysed
as systems under controlled commutation in order to avoid instabilities or un-
desired behaviours. This is because some changes of con�guration in short
periods of time can create impulse modes, which in some cases can lead to
instabilities or undesired behaviours.

As most of the physical systems contain discontinuous changes, more studies
focused on hybrid systems have been done recently.

Most of the work have been done in the control area, which is important for
the safety during the operation of physical systems.

These works can be divided into general control techniques and control tech-
niques for speci�c purposes. The general approaches try to set a standard con-
trol technique for hybrid systems, this is the case of the work done by Branicky
in [28], where an optimal hybrid control is presented. In this work, some initial
steps towards a uni�ed state space representation for hybrid control are pre-
sented, however, this could not be achieved because the used approach could
not properly represent some physical behaviours (viscosity in this case). Some
constraints are set to the model in order to use the proposed approach. Also,
the computational power at the time of the development of the approach was
limited, which decreased the impact of the approach at that moment. Some
of those problems where addressed by Hedlund and Rantzer in [29], where dy-
namic programming and convex optimization where used.

As the control techniques in previous approaches were based on a synchro-
nous switching, new approaches were proposed to address the asynchronous
switching. That is the case of the work done by Hu et al. in [30], where a
conic switching law is proposed, which not only stabilises the entire system,
but also possesses robustness properties. This approach is limited by setting
a constraint in the switching conditions, which are limited to a region of com-
muting to avoid instabilities. This is illustrated in Figure 2.3 to show how the
conic switching occurs.

Figure 2.3: Switching happens on the boundary of the safe region 
 : l1 and
l2.
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One of the most recent approaches to control of hybrid systems was done by
Jing et al. in [31], where a sliding mode control is proposed. This approach
makes hybrid systems sturdier to uncertainties and perturbations, however,
the switching signals must be controlled.

While the previous approaches were designed as general techniques, there are
some proposed approaches that were done to �t certain type of hybrid systems.

That is the case of the proposed supervisory control technique introduced by
Koutsoukos et al. in [32], where the approach is developed based on the process
done in the chemical industry. This approach was modi�ed in [33] to expand
the technique to mechanical and electrical systems.

A predictive control for DC-DC power converters is proposed by Patino et al.
in [34], where the proposed approach reaches an optimal periodic cycle to re-
main in a steady state behaviour.

There is a recent approach proposed by Chen et al. in [35] using neural net-
works. This approach uses a neural network to introduce an adaptive law in
order to improve the performance of the system.

These approaches could not reach a broader use because the techniques need to
be modi�ed for di¤erent engineering domains, or even di¤erent systems from
the same domain.

As hybrid systems contains several con�gurations, in order to simplify the
representation of the system behaviour into a single general equation it is nec-
essary to use a di¤erent notation. Boolean algebra allows the representation
of several combinations into a single equation in the form of logic arithmetic.

2.3.2 Boolean algebra

Boolean algebra can be a helpful tool in the analysis of switched systems. This
is because the behaviour of some systems contains abrupt changes in a small
lapse of time. Systems containing abrupt changes in its behaviour are di¢ -
cult to analyse as continuous systems if similar behaviours appear on several
occasions. These behaviours can then be considered as discontinuities, which
can be represented as di¤erent con�gurations of the system. Therefore, the
desired lapse of time can be analysed independently to simplify the analysis of
the system. In those cases, Boolean terms are used to represent the changes at
di¤erent lapses of time as discontinuities in a continuous-time notation. This
allows to have simpler equations that describe the system�s behaviour, instead
of having a series of di¤erential equations that represents the evolution of the
system behaviour. Also, Boolean expressions can be used to simplify the no-
tation of the di¤erent con�gurations into a single equation.
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An example of the simpli�cation on notation is presented in the work of Lewis
[36], where it can be seen that previous approaches to singular systems were
done using di¤erential equations containing Jacobians. The use of Jacobians
allows to write the equations of the system as separated di¤erential equations,
in which a single equation represents a determined lapse of time in which a
commutation occurs. This approach usually led to set algebraic constraints
into the system equations, this is because the set of di¤erential and algebraic
equations that represents the system�s behaviour are treated as a single entity,
resulting in their elimination by introducing a set of admissible initial condi-
tions with nonzero input, which causes loss of information from the system.

Using Boolean algebra and singular systems notation, simpli�es the analysis
of continuous and discrete behaviours on systems by decreasing the algebraic
constraints set, allowing a better representation of the singular systems and
a closer behaviour response to the physical response of the system. The con-
straints in this case are caused by physical relations between the di¤erent
domains involved in a system, rather than constraints imposed to avoid insta-
bilities in the system.

Boolean algebra has been used in the design of switching systems. This is due
to the fact that the switching conditions for large systems can be reduced to
a single equation when Boolean algebra is introduced in its notation.

The use of Boolean algebra in the design of switching circuits is introduced by
Staehler in [37]. In this case the use of Boolean algebra does not only allow
the reduction of switching elements, but also improves the controllability and
observability analysis of such systems.

It is shown that previously all the control techniques applied to switching sys-
tems was made for sequential switching, which is no longer the case when
Boolean algebra is applied to the model. This does not only allow better
control techniques, but also the reduction in costs of deriving mathematical
models.

Another use of Boolean algebra is in control. An example of this is found in
[38], where Boolean algebra is used to avoid using Pulse Width Modulation
(PWM) for control purposes. While using PWM, the system may lose some
information of the control law. This is because the control strategies (PI, PD,
or PID) are adjusted using PWM, which does not always �t to the desired
parameters. To avoid this, Boolean algebra is used along sliding mode control
(SMC). This allows the design of a control based on PID techniques, having
as result similar behaviour as the ones obtained with a PWM control.

These previous works are used as base for the design of hybrid bond graph
model�s notation and the analysis techniques.
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2.4 Hybrid bond graph

2.4.1 Hybrid bond graph modelling

There are di¤erent proposed methods to represent model discontinuities in
bond graph without reaching a standard notation. This is due to each repre-
sentation providing an advantage depending on the application.

The �rst approach to represent the behaviour of a switched element in bond
graph was to use modulated transformers (MTF). This can be seen in [2] and
[3], nevertheless, the use of MTF elements increased the complexity of the sys-
tems and increased the number of elements in the model, not to mention that
in some models, this introduces changes on causality, which also increased the
time of analysis of the system.

In the former work, it can be seen that the analysis of the systems using bond
graphs was done di¤erentiating the con�gurations, and then analysing one con-
�guration at a time, not taking into consideration any behaviours introduced
by the commutation. For these reason, the MTF were used adding a resistance
that has a di¤erent value for the ON and OFF con�guration of the switch.

The problem using MTF elements to represent switched elements is that for
each MTF element added to the model, the complexity of the system was in-
creased. This also increases the time of analysis for systems containing large
number of switched elements, as the number of con�gurations increases expo-
nentially, thus, making them more susceptible to errors from the modeller due
to the increasing number of equations on the system.

Meanwhile in [3] a relation between R, C and I elements is used to help in
reducing the complexity of the equations created by the MTF or MGY (mod-
ulated gyrators), at the cost of increasing the order or the number of equations
in the system.

The �rst and most used representation for switched elements (as mentioned in
[3, 4]) is the use of �ow or e¤ort sources as a commuting element or ideal switch.

For some models, resistor elements are used to help maintaining the integral
causality of the elements. Examples of this are shown in [5, 6]. The resistor
element is called causality resistor.

When this method is used, three new vectors need to be introduced to the
system in order to represent the commuting element. These vectors are Smout
composed of the sources acting as switch elements, Dm

in and D
m
out to describe
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the variables going into and out of the causality resistor.

The problem using causality resistors is that some of the variable eigenvalues
can result in a high value, which creates numerical di¢ culties during simula-
tions. This is due to the causality resistor selection being arbitrary, creating
undesired behaviour and thus the amplitude of some variables has no physical
meaning.

Sources as commuting elements can be used with the help of Karnaugh maps
and Boolean functions for a less complicated system, as shown in [39] where
there are several switches connected into the system. The problem with the
implementation of Karnaugh maps and Boolean functions is the need of aux-
iliary switches in order to maintain the causality assignment for some models,
which defeat the purpose of using this notation.

A less used approach to the modelling of switched bond graph systems is intro-
duced by Gawthrop in [8]. This approach combines the concept of the switch
element (e¤ort- or �ow-source) with an I or C element. This proves to be a
great help for simulations at the cost of increasing the number of energy stor-
age elements, which increase the complexity of equations.

There is also a switched power junction proposed in [9]. This power junction
has two or more mutually exclusive e¤ort- or �ow-deciding bonds (instead of
having an ON or OFF con�guration), allowing the rest of the system to remain
with the same causality.

The introduction of these junctions allows a traditional analysis of the systems
due to the lack of any new element that could a¤ect the system equations. The
inconvenience of using this switched power junction comes when there are more
than two switched elements connected to the same power junction. This is due
to the complexity of the equations that rule the switching of the elements which
could create confusion to the user.

One of the latest approaches to the switched systems can be found in [10],
where the controlled junctions are proposed as a two-port element associated
to Boolean parameters. These Boolean parameters show the state of the junc-
tion (ON or OFF con�guration of the switch element). These junctions cut
the �ow or e¤ort according to the Boolean parameter, changing the causality
of the port, therefore propagating dynamic causality in the bond graph model.
The analysis made using these junctions is simple and avoids the increase in
size or complexity of the system.

A graphical comparison and a description of the representations of switches
and commuting elements in bond graph can be seen in table 1. These rep-
resentations were previously described, mentioning the disadvantages in their
use in bond graph models.
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Table 1: Representations of switching elements in Bond Graph

Method Bond Graph Representation Description
Element Equivalent ON Equivalent OFF

Modulated
trans-
former and
resistor
combi-
nation
[2, 3]

m is Boolean (1
when ON and
0 when OFF),
resistor commutes
its causality
assignment.

Switched
source
(Switched
element)
[3, 4, 5, 6,
7]

Commutes be-
tween a source of
null �ow and null
e¤ort, imposing a
zero �ow or e¤ort
according to the
connecting junc-
tion when OFF.

Controlled
storage
element [8]

This is a com-
pound element,
acting as a stor-
age element when
ON, and as a null
source when OFF.
The values of the
storage elements
are selected to be
of no consequence
to the analysis of
the model.

Switched
power
junction
[9]

There are two mu-
tually exclusive
causal inputs to
the junctions, s
denotes the active
input bond.

Controlled
junction
[10]

Is a regular 0- or
1- junction when
ON, and act as
null source on
each bond
when OFF.
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2.4.2 Causality assignment

As previously mentioned, causality assignment establishes the orientation of
e¤ort and �ow in a bond, where the �ow or e¤ort is selected as an independent
variable in order to compute the conjugate variable. The causality is assigned
on all the elements of the system in order to compute all the unknown variables
to obtain the system behaviour. Some of the assignments are named (�xed
causality, constrained causality, preferred causality, indi¤erent causality) by
Broenink in [48] where dynamic causality is introduced.

Di¤erent procedures to assign causality have been proposed since the beginning
of the development of bond graph, with SCAP (Sequential Causality Assign-
ment Procedure [20]) being the most used.

There are several examples that allow to show how the causality assignment is
helpful towards the analysis of the model. Some of the most useful are those
made by Margolis and Rosenberg ([40, 41]), which demonstrate how the bond
graph causal assignment (using SCAP) can be exploited to aid its simulation.
This is done by systematically deriving state equations and gain insight into
the system.

The assignment does not need to be done by hand, it can also be done us-
ing simulation software like Enport [23, 42, 43], AMESIM [102, 103], SYM-
BOLS2000 [102, 104], MS1 [23, 44], CAMP-G [23, 45], or 20-SIM [23, 46, 47].

Causality assignment can be used to reveal some of the control properties of
the system such as observability and controllability on a graphic representation
([7, 23]).

Dynamic causality appears when there are switched elements. This type of
causality assignment depends on the con�guration of the commuting element
which can be ON con�guration or OFF con�guration. The causality propa-
gates to the nearest elements until it reaches an energy storage element or a
resistive element.

2.4.3 Dynamic causality

From the previous representations of switched elements, it is clear that the
causal assignment of the bond graphs can change during a commutation. This
phenomena is called dynamic causality, and was addressed separately by Asher
[49], Cellier et al. [50], Stromberg et al. [51] and Bidard et al. [52].

Dynamic causality is di¢ cult to simulate, and for this reason some procedures
to avoid it have been proposed. Low et al [53] proposed a Hybrid-SCAP for
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use with their proposed version of the controlled junction, which gives causally
static bond graph models.

Dynamic causality is a consequence of the commutation of a switch element.
Asher [49] proposed a causality resistance in order to minimize and control it.
This resistance is useful for simulation; nevertheless, the use of this element
can create a model without resemblance to the physical system.

The use of this causality resistance facilitates the modelling of hybrid bond
graph systems in commercial software packages. Some examples of this are the
ones produced at University of Twente by Breedveld and Van Kampen who
have been working in the commercial bond graph simulation package 20sim
[46, 47]. For these examples, controlled junctions are used including causality
resistances to model friction [46], a Newton�s Cradle [47], and a copier machine
[54]. These are some examples where this causality resistance is helpful to sim-
ulate those systems, nevertheless there are other examples like the coupling of
two DC motors using a clutch (presented in [55]) where the model is overly
complex and does not relates completely to the physical system.

There is a discussion on whether dynamic causality must be used or not in
hybrid bond graph models. One of the objectives of this work is to set a
standard representation of switching elements and its notation, which have as
consequence dynamic causality. Also, a generalized mixed Boolean formula-
tion of switched systems will be proposed, in contrast with current studies that
do not account for the changes in the order of the system.

As it is later shown, the e¤ects of dynamic causality are minimised if the as-
signment is properly done following the proposed procedure.

2.5 Model properties of LTI systems

It is of interest for the modelers to not only run a simulation of a model (e.g.
response in time of the state variables), but also to obtain all the model prop-
erties (e.g. controllability, observability, stability).

These properties can be obtained either from the information stored in the
implicit state matrix, due to the interaction between state variables and in-
puts/outputs being contained in this matrix; or by visual analysis of the bond
graph model (in some cases), which is done by following the causal paths be-
tween the elements and inputs/outputs.

The analysis of the model properties, using the approach proposed in this
work, will allow to obtain some missing properties (such as general controlla-
bility and general observability of the system) if the analysis were done using
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a di¤erent approach.

It is also expected to expand its application to singular systems, hybrid sys-
tems, and hybrid bond graph systems, which are some of the model represen-
tations this approach is based on.

2.5.1 State and Implicit models

The state space representation of a system allows to �nd control properties.
Kalman�s General Theory of Control Systems [56] introduces this theory. It is
common to �nd the representations of the state space equation in the context
of the explicit linear time-invariant (LTI) Equation 2.5:

_X = AX +BU (2.5)

Y = CX +DU

where X 2 Rn is a vector of state variables, U 2 Rm is the vector of in-
puts, Y 2 Rp is the vector of outputs, A 2 Rn�n, B 2 Rn�m, C 2 Rp�n and
D 2 Rp�m. The method used in this thesis is in the form of an implicit system
model (2.6):

E _X = AX +BU (2.6)

where E 2 Rn�n is an additional matrix that may be singular.
This formulation is used because this is the form that is naturally derived from
the bond graph junction structure and element constitutive equations.

Singular systems, semistate systems and descriptor systems are speci�c implicit
forms which have been investigated in detail. These forms were developed for
speci�c cases, nevertheless, the terms are used interchangeably in the litera-
ture.

In [57], Yip and Sincovec established the di¤erent properties of the descriptor
systems, while Verghese et al presented a generalised theory for singular sys-
tems in [58]. Both works present control properties for implicit systems that
are similar to each other, one from a singular systems approach, the other
from a descriptor systems approach, nevertheless the results are similar, mak-
ing both approaches to be considered the same for general purposes.
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Another interesting approach for the analysis of singular systems is done by
Dai in [59], where the analysis is done from a matrix-rank criteria only, which
demonstrate the matrix-rank criteria is a su¢ cient condition to determine the
controllability and observability. These results are useful in the hybrid bond
graph area, therefore are used in the generation of equations that describe the
states of hybrid bond graph systems.

2.5.2 Solvability, Order & Rank

Solvability of a system refers to the existence of a unique solution for any given
input and any given admissible initial condition corresponding to the given in-
put.

For singular systems described by Equation 2.6, this is translated as:

De�nition 5 Solvability of singular systems [56]: A singular system is
solvable if det (sE � A) 6= 0.

Wlasowski and Lorenz determines the solvability of Bond Graph model in [60],
where they establish the condition necessary for this:

Consider that the bond graph junction structure, displayed in Figure 2.4, have
the following �ow equation:

Figure 2.4: Junction Structure

�
fout
fint

�
=

�
A1 A2
A3 A4

� �
fin
fint

�
(2.7)
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where fout is a vector of all the �ow variables coming out of the junction struc-
ture, fin is a vector of all the �ow variables going into the junction structure,
fint is a vector of all the junction structure internal �ow variables. Therefore,
submatrices A1; A2; A3 and A4 describe the �ow transfer that occurs in the
junction elements. Also, matrix A4 is necessarily a square matrix. The values
of these submatrices depend on the elements that are connected to the junc-
tions (0 or 1 junctions).

If the internal variables fint are eliminated from (2.7), the resulting equation
is:

fout = Ffin (2.8)

with

F = A1 + A2 (I � A4)�1A3 (2.9)

Leading to the condition for the solvability of the junction structure:

� The matrix F exist if (I � A4) is invertible, which means that there are
no causal loops with a unity gain in the model.

This shows that singular systems and bond graph systems are only solvable if
there are no causal loops with a unity gain in the system, also the notation
is the same as bond graph are dynamic systems, which could lead to have
compatible analysis techniques.

2.5.3 Controllability of LTI systems

Controllability is one of the most important results in the analysis of linear
systems. It depends on the matrices A and B from the LTI state space Equa-
tion 2.5. The necessary controllability condition is given by:

rank
�
B AB A2B : : : An�1B

�
= n (2.10)

where n is the order of the model.

Kalman in [61] makes a di¤erentiation between controllability and reachability,
which led him to de�ne the controllability of the system state variables. In
here, it is explained that an event � can be controllable if and only if it can be
transferred to 0 in a �nite time by an appropriate choice of an input function
!, while an event � can be reachable if and only if there are an event s and
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an input function ! that depend on the event � . This means that an event is
controllable if an input can modify its behaviour at any time, however, it is
reachable if it can only be controllable during determined periods time.

The study of hybrid systems in the control area is essential in designing se-
quential supervisory controllers for continuous systems, and it is central in
designing intelligent control systems with a high degree of autonomy.

For traditional hybrid system, Mixed Logical Dynamic (MLD) notation is used
for its analysis. This is because MLD allow to model nonlinearities, interdepen-
dent physical laws, logic rules, and operating constraints. Wol¤ and Murray
introduce its use in [62]. where MLD tends to depend on Linear Temporal
Logic (LTL) to be able to analyse the model of the system. This dependence
is due to the LTL being the conditions that need to be presented at a de-
termined lapse of time in order to obtain a desired behaviour. Therefore, by
using MLD and LTL, there is more computational e¤ective method to analyse
hybrid systems. However, this approach allows to control hybrid systems by
planning signal �paths�(desired behaviour) at the cost of setting constraints
on the model, which is something undesired to obtain a more physical related
analysis.

As most of the analysis theories are based on previous notions of inputs/outputs,
a di¤erent approach was proposed by Willems in [63], where the controllabil-
ity of the system is obtained without the need of obtaining the state space
equation. This approach is called behavioural, and is de�ned as:

De�nition 6 Behavioural Controllability [63]: �A behaviour is de�ned to
be controllable if it is possible to transfer from any past trajectory to any future
trajectory, while obeying the dynamical laws of the system . . . This de�nition
is applicable to nonlinear, discrete event and delay di¤erential systems without
having to introduce a state representation.�

Controllability is closely related to reachability (a state is reachable from any
initial condition), stabilizability (controlling states to reach a steady state),
observability (dual of controllability) and stability.

2.5.4 Observability of LTI systems

Observability is the dual property of controllability, therefore, the conditions
to determine the observability of a system are equivalent from those of con-
trollability.
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De�nition 7 Duality Principle [61]: "Every problem of controllability in
a real, (continuous-time, or discrete-time), �nite dimensional, constant, linear
dynamical system is equivalent to an observability problem in a dual system."

The observability matrix depends on the matrices A and C, due to observabil-
ity being established by solving the output, hence the observability condition:

rank

2666664
C
CA
CA2

...
CAn�1

3777775 = n (2.11)

For hybrid systems, the process of designing an observer consists of two parts:
a location observer and a continuous observer. Location observer refers to
identify the current location of the hybrid plant; the continuous observer pro-
duces an estimate of the evolution of the continuous state. This is explained
in detail by Balluchi et al in [64].

2.5.5 Stability of LTI systems

Stability is the property of a system by which its behaviour will reach a steady
state condition within enough time.

This area is the one in which most advances had been made for the switched
systems, even though the studies on these systems are relatively new ([30, 65,
66, 67, 68, 69, 70, 71]). Most of the �rst stability studies were adaptations of
continuous systems techniques, leading to a great number of errors and unsta-
ble modes in high-order systems.

For Lyapunov�s stability theory in non-switched systems, there is a globally
asymptotically stability (system is globally asymptotically stable (G.A.S.) if
for every trajectory x(t), there is x(t)! xe as t!1; where xe is the equilib-
rium point).

There is also a globally exponentially stability (system is globally exponen-
tially stable (G.E.S) for _x = f (x) there is a M that satis�es kx (t)k �
Me��t=2 kx (0)k, where � is a constant with value bigger than 0).
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In order to implement this theory to switched systems, instead of aiming to
obtain stability for each particular signal, a somewhat stronger property is
needed, in this case, named uniform asymptotic or exponential stability (GUAS
and GUES, respectively). This is because the stability property need to be
uniform over the set of all switching signals, which must be independent of
the choice of the switching signal. Liberzon showed this in [65] where this
approach is used for arbitrary and constrained switching.

Some of the issues for the stability analysis of switched systems are caused by
the switching signal. Even if all of the switching subsystems are stable, uncon-
strained switching may destabilise a switched system. It may be possible to
stabilise a switched system by means of suitably constrained switching, even
if some or all switching subsystems are unstable.

For hybrid systems, stability can also be de�ned as:

De�nition 8 Asymptotic Stability of Switching Systems [65]: A state
is asymptotic stable if it asymptotically approaches the origin (i.e. x0 = 0)
through a series of switching.

2.6 Equations generated from bond graph

Before analysing any of the properties of the bond graph model, it is necessary
to establish how equations are obtained from the bond graph. In Karnopp
et al [20] the state space equations are obtained from a bond graph by hand
procedure, establishing that energy variables associated with storage elements
are the state variables. To determine which of the e¤ort and �ow signals at a
port is the input, a perpendicular line to the bond graph is added. This line
is called causal stroke, which indicates the direction in which the e¤ort signal
is directed. For large models, the equations can be derived from the junction
structure matrix and the constitutive equations of elements.

The junction structure is the relation between the inputs and the outputs of
the di¤erent elements of the model. Bonds can be classi�ed as internal and
external. Internal bonds are those that represent the interaction between junc-
tions (0 and 1 junctions, TF andGY ). While the external bonds are those that
represent the interaction between sources/detectors, storage elements, and dis-
sipative elements. This relation is illustrated in Figure 2.4.

From this relation a junction structure matrix can be derived. This matrix
contains 0�s and 1�s that represents the relation between the inputs and the
outputs to the structure of each element. If there is a relation between elements
that contains a transformer or a gyrator, a modulation term a is introduced
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instead of a 0 or a 1. These relations are displayed on Equation 2.12:

24 _Xi

Zd
Dout

35 =
24 S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34

35
2664
Zi
_Xd

Din

U

3775 (2.12)

where X is the vector containing the state variables, the subscripts i and d
denotes the integral and derivative causality respectively. Z are the coenergy
variables, D is the inputs and outputs of the resistive elements, and U are the
sources or external inputs.

2.7 Sequential Causality Assignment Procedure

There are several causality assignment procedures proposed in bond graph
literature, but the most widely used is the Sequential Causality Assignment
Procedure (SCAP).

SCAP consist in the computational assignment of causality so that the max-
imum possible number of elements is in integral causality, i.e. inertia and
compliance elements are assigned an output so as to put underlying equations
in terms of the integral of the input. This is known as integral causality, and
the reverse case (where there is a derivative term in the constitutive equation)
is known as derivative causality.

SCAP was proposed by Karnopp and Rosenberg in [22], and the steps to follow
are:

1. Assign causality to a power port of one of the sources according to its
type and propagate this causal information into the bond graph through
its junction structure as far as possible by observing causality rules at
element ports. Repeat this step until all ports of all sources are assigned
an appropriate causality.

2. If there is a resistor port with a characteristic that does not have a
unique inverse, assign the required causality to ensure correct formula-
tion. For example, the Coulomb friction between two sliding bodies is
most commonly assumed to be proportional to the sign if the velocity
di¤erence between two bodies. Propagate this causal information into
the bond graph through its junction structure as far as possible by ob-
serving causality rules at element ports. Repeat this step until all such
resistor ports have their correct causality.

28



3. Assign preferred integral causality to a port of energy store and propagate
this causal information into the bond graph as far as possible. Propaga-
tion of the causality at a storage port may lead to derivative causality
at power ports of other energy stores and often entails an assignment
of causality at resistor ports. For instance, if an I element and a 1-port
resistor representing Coulomb friction are attached to a 1-junctino, then
the I element port must take derivative causality. Repeat this step until
all storage ports are assigned a causality.

4. Finally, if there are still resistor ports or internal bonds without causal-
ity, one resistor port or an internal bond must be chosen. Causality is
arbitrarily assigned and propagated through the junction structure. This
step is repeated until no causally unassigned bonds are left.

2.8 Control Properties of Standard bond graph

2.8.1 Order & Rank

The order of the bond graph model is de�ned as:

De�nition 9 Bond Graph Order (n) [12]: "The number of storage ele-
ments in integral causality when a preferred integral causality is assigned to
the bond graph model."

It must be noted that the order (n) of ODE is given by the number of state
variables. In a bond graph this order is de�ned by physical considerations, e.g.
the inertia and compliance elements in integral causality.

Rank refers to the number of linearly independent columns (or rows; column
and row ranks are equal) in a matrix. It is an indication of the number of
dynamically independent state variables. Many of the standard control prop-
erties for descriptor systems are de�ned using matrix-rank criteria.

The rank of a bond graph model is helpful to obtain some of the model prop-
erties. In [72], Dauphin-Tanguy et al de�ne a �bond graph rank�which cor-
responds to the numerical rank of a matrix, this is due to the correlation
between dependent elements on the mathematical representation and bond
graph model.

29



2.8.2 Controllability of bond graph systems

In the �eld of bond graphs, the concept of structural controllability has been
used as a more physically meaningful approach than classical state controlla-
bility.

Property 1. Structural Controllability of a bond graph [73]: "The
model is structurally controllable if and only if:

1. There is a causal path between each dynamical element [in integral
causality] and a modulated control input, i.e. all states (nodes) are
input-reachable.

2. Struct_Rank[A] = n; where the structural rank of [A] is equal to

(a) the rank of (S11 S13 S14) or

(b) n� ts

where ts is "the number of storage elements remaining in integral causal-
ity when:

(a) a derivative causality assignment is performed,

(b) if the rank is not full, a dualization of the maximal number of input
sources is performed in order to eliminate these integral causali-
ties"."

2.8.3 Observability of bond graph systems

In order to analyse the observability of a bond graph model, a detector element
must be added for every desired output. Observability is the dual property
of controllability, therefore, the criteria to analyse it is similar to the one for
controllability.

Property 2. Structural Observability of a Bond Graph [73]: "The
model is structurally state observable if and only if:

1. There is a causal path between each dynamical element in integral causal-
ity and a detector.

2. Struct_Rank
�
A C

�
= n. Where the structural rank of

�
A C

�
is

equal to

(a) the rank of
�
ST11 ST21 ST31

�T
or
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(b) n� td

where td is "the number of storage elements remaining in derivative
causality when:

(a) a derivative causality assignment is performed,

(b) a dualization of the maximal number of output detectors is per-
formed in order to eliminate these integral causalities.""

It must be noted that the addition of detector elements does not a¤ect the
system equations, this is due to the fact that detector elements only detects
e¤ort or �ow, which in real physical systems is equivalent to the sensor not
drawing any power from the system.

2.8.4 Stability of bond graph systems

The analysis of stability of a bond graph model can be done from a Bond
Graph with preferred Derivative causality assignment (BGD). Gonzalez et al
propose this approach in [74]. This approach presented a new notation to dif-
ferentiate the elements that change its causality in the BGD model, allowing
the use of singular systems notation to simplify the analysis of the stability of
the model. By using this notation, the structurally null modes (poles at the
origin) can be obtained, and thus, determine the stability of the system.

Based on the previous results, the analysis of stability of switched bond graph
systems will be done analysing the BGD of the model, because the graphical
analysis can help to determine the stability of the model.

2.9 Singular Systems

Singular systems are also called Descriptor systems. The set of dynamic equa-
tions that describe a singular system are in the form

E _x = Ax+Bu (2.13)

where E; A 2 Rn�n and B 2 Rn�m, x 2 Rn, u 2 Rm.
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De�nition 10 Descriptor system [105]: �Descriptor systems arise from
formulating system equations in natural physical variables in the form E _x(t) =
Ax(t) + g(t); x(t0) = x0, where E and A are matrices, possibly singular.�

Descriptor variables are those that have an inherent meaning or a natural inter-
pretation within the context of the particular situation, i.e. position, velocity,
acceleration, etc.

One of the interesting properties of singular systems is that its solvability
depends on E and A matrices, as these are the matrices that describe the
interaction between the energy storage elements. This also applies for hybrid
systems because the matrices E and A represent the same interactions for
both systems, which makes the techniques compatible for the analysis of their
properties.

Also, Boolean algebra can be included in the notation to have a more robust
representation of the model.

2.10 Singular systems properties

2.10.1 Controllability of singular systems

Singular systems controllability can be divided in two di¤erent types. Those
are de�ned by Yip et al in [57] as C-controllable and R-Controllable.

De�nition 11 C-controllable [57]: "A system is completely controllable
(C-controllable) if one can reach any state from any initial state."

De�nition 12 R-controllable [57]: "The system E _x = Ax + Bu is R-
controllable within the set of reachable states if one can reach any state in the
set of reachable states from any admissible initial state."
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2.10.2 Observability of singular systems

This property of the system is similar to the controllability due to being its
dual property. The observability of a system is determined by the ability to
reach a system�s state from an output, meaning that the observability matrix
is a function of the C matrix.

One of the observability of singular systems analysis used is the one proposed
by Losse et al in [77]. Here the singular systems are represented as:

E _x = Ax+B1u (2.14)

y = C1x

where y 2 Rp represents the outputs of the system.
In this work some conditions for the observability of singular systems are pro-
posed, which are:

rank

�
�E � �A
C1

�
= n for all (�; �) 2 C2 (2.15)

rank

�
�E � A
C1

�
= n for all � 2 C (2.16)

rank

�
T T1 (E)A
C1

�
= n (2.17)

where � and � are generalized eigenvalues such that det (�E � �A) = 0; � = �
�

and T1 is a matrix with orthonormal columns spanning the left null-space of
E associated with the eigenvalue 1.

Then the following de�nitions are proposed:

C-observable [77]: �A singular system is completely observable if condition
2.15 holds.�

R-observable [77]: �A singular system is observable in the reachable set if
condition 2.17 holds.�

S-observable [77]: �A singular system is strongly observable if conditions
2.16 and 2.17 hold.�
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Concluding that

Theorem 1 A singular system is C-observable if:

� It is R-observable,

� and rank
�
EA
C1

�
= n (2.17bis)

Proof. The �rst condition of Theorem 1 determines that if a systems is not
R-observable, a determined output of the system cannot be observable, there-
fore, if an output is not observable then the system cannot be C-observable.
The singular system 2.14 is assumed to be in its standard decomposition form:

_x1 = A1x1 +B1u

N _x2 = x2 +B2u (2.18)

y = C1x1 + C2x2

where x1 2 Rn1 ; x2 2 Rn2 ; n1 + n2 = n;N 2 Rn2+n2 is nilpotent, the nilpotent
index is denoted by h. Then, the system 2.18 is R-observable i¤ its slow
subsystem is observable, i.e.,
rank[sE � A=C] = n; 8s 2 C,s �nite.

According to the state representation, any reachable state has the form:

x(t) =

�
x1(t)

x2(t)

�
_x1(t) = A1x1(t) +B1u(t) (2.19)

x2(t) = �
h�1X
i=0

N iB2u
(i)(t); t > 0

y = y1 + y2 = C1x1 + C2x2:

Note that in 2.19, x2(t) is uniquely determined by u(t), and y1 , C1x1(t) =
y � C2x2(t) is uniquely determined by y(t) and u(t). Thus, reconstructing
the reachable state x(t) from y(t) and u(t) is equivalent to that x1(t) may be
uniquely determined by y1(t) and u(t), which is, in turn, equivalent to the
observability of (A1; C1).

For the second condition of Theorem 1, condition 2.17 proposed in [77] only
complies when C1 6= 0. Therefore the system is not R-observable, making the
system not C-observable.

This approach is useful for the research due to the use of the matrix E in the
observability matrix, which in this case is the one that determines the con�g-
urations in which the storage elements behave as independent elements.
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From this result it can be seen that the observability matrix for singular sys-
tem is similar to the one proposed for linear systems, which will be helpful
later on the research.

2.10.3 Stability of singular systems

Stability of singular systems is based on Lyapunov�s stability theory, neverthe-
less, in order to use this approach, the model must be analysed as a continuous
and discontinuous model separately.

De�nition 13 Stability of singular systems [90]: Singular system 2.14
is called stable if there exist scalars �; � > 0 such that when u(t) � 0 for t > 0
its state x(t) satis�es:
kx(t)k2 � �e��tkx(0)k2; t > 0:
By de�nition, we stress stability under the Lyapunov sense, or asymptotic sta-
bility. When system 2.14 is stable and u(t) � 0; t > 0; limt!1x(t) = 0.

In order to determine the stability of a singular system, is necessary to �nd the
poles of the system. In this case, the characteristic polynomial to �nd them is

f(s) = jsE � Aj = an1sn1 + � � �+ a1s+ a0

The poles are those that satisfy f(s) = jsE�Aj = 0. Since matrix E is singu-
lar, the number of poles is always smaller than n (number of storage elements).

2.11 Hybrid bond graph properties

2.11.1 Impulse modes

An impulse mode occurs when a commutation creates an instantaneous change
on a system behaviour. This behaviour occurs when a storage element switches
from integral to derivative causality, generating a step change in the value of
the state.

For Buisson et al ([6, 79]), the impulse modes are only present after commu-
tation. This behaviour is seen based on a reference mode, from which the
maximum possible impulse modes (called impulsive modes in their work) are
calculated assuming that all switched elements commute at the same time.
This approach to impulse modes has been proven to be useful to �nd the
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switching conditions on which the system remains in a valid con�guration.

Rahmani and Dauphin-Tanguy determined in [12] that the number of impulse
modes can be obtained by analysing the bond graph model. They de�ned this
as:

De�nition 14 Number of impulse modes [12]: "The number of impulse
modes is given by the number of elements that appear in derivative causality
after the commutation in the model with preferred integral causality."

Therefore, the number of impulse modes can be determined by analysing the
matrices E and A, where this can be seen even if the bond graph model is not
available.

This result, if compared with the one obtained by Verghese et al in [58], allows
to relate impulse modes with singular systems theory, which mean that im-
pulse modes can be found in singular systems. Therefore, some of the results
obtained in singular systems approach can be applied to hybrid bond graph
systems.

2.11.2 Controllability of hybrid bond graph systems

Structural controllability can be determined by graphical analysis and rank
criteria. Hihi proposed a set of conditions to determine the controllability of
hybrid bond graph systems in [13], where the hybrid junction structure used
to determine the conditions is:

24 _x
Dout

To

35 =
24 Si11 Si13 Si14 Si15
�SiT13 Si33 Si34 Si35
�SiT14 �SiT34 Si44 Si45

35
2664

z
Din

Tin
u

3775 (2.20)

Which is derived from the junction structure displayed in Figure 2.5 where the
switch �eld is added.
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Figure 2.5: Junction structure including switch �eld.

By using the previous junction structure, the conditions are set as:

Proposition 1 [13] �The hybrid bond graph system 2.20 is structurally state
controllable if:

1. All dynamical elements in integral causality are causally connected with
an input source.

2. BG� rank
�
Ai Bci

�
= n:�

where Ai =
�
Si11 � Si13HSiT13

�
F , Bci = Si15+S

i
13HS

i
35, H = Li (I � Si33Li)

�1
; Din =

LDo, and the subindex i denotes that all the elements have integral causality.
If both conditions hold, the system is C-controllable, if only condition 1 holds
the system is S-controllable, if only condition 2 holds the system is R-controllable.

Also in the same work the rank criteria for structural controllability is set as:

�If rank
�
B1 A1B1 : : : An�11 B1 : : : Bq : : : An�1q Bq

�
= n, the system

is structurally controllable.�[13].

As hybrid systems contain impulse modes, Rahmani and Dauphin-Tanguy de-
compose structural controllability into complete controllability, R-controllability
and impulse controllability in [12]. Those are de�ned as:

De�nition 15 Non-impulsive inputs: Non-impulsive inputs are inputs
that does not create discontinuous changes in the states of the system.

De�nition 16 Complete controllability [12]: A switched system is com-
plete controllable if it is both R-controllable and impulse controllable at the
same time.
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Proposition 2 R-controllability [12]: �A switched system is structurally
state R-controllable if and only if the two following conditions are veri�ed:

1. All (I,C) elements are causally connected with a source in the BGI.

2. Bg_rank
�
sE � A B

�
= n:�

De�nition 17 [12]�bg_rank
�
sE � A B

�
= n� tc where tc is the number

of dynamical elements remaining in integral causality when a dualization of the
maximal number of input sources is performed in the BGD in order to cancel
these integral causalities.�

De�nition 18 Impulse controllability [12]: �A switched system is impulse
controllable if all the impulsive modes can be exited by suitably chosen non-
impulsive inputs.�

2.11.3 Observability of hybrid bond graph systems

As observability is the dual property of controllability, it is logical that hybrid
systems present complete observability, R-observability and impulse observabil-
ity, which are related to the �nite and impulse modes respectively. These are
de�ned as:

De�nition 19 Complete observability of a Hybrid bond graph [12]:
A switched system is completely observable if it is R-observable and impulse
observable at the same time.

Proposition 3 Structural R-Observability of a Hybrid Bond Graph
[12]: "A switched system is R-Observable if and only if the two following
conditions are veri�ed:

1. All (I,C) elements are causally connected with a detector.

2. Bg_rank
�
sE � A
C

�
= n.�
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The bond graph rank of the matrix
�
sE � A
C

�
is given using causal manipu-

lations in the bond graph model.

De�nition 20 Impulse Observability of a Hybrid Bond Graph [12]:
�A switching system is impulse observable if at each time � , the knowledge of
the output impulse and the input discontinuities at � are su¢ cient to determine
discontinuities of the state vector x at the same time.�

Proposition 4 Structural Impulse Observability of a Hybrid Bond
Graph [12]: �A switching system is structurally impulse observable if and
only if, the number of impulse modes is equal to the number of disjoint causal
paths between the switches and the output detectors passing through (I,C) ele-
ments in derivative causality in the BGI.�

It can be seen that the observability of hybrid bond graph systems can be
determined from the bond graph model, as it is just necessary that the stor-
age elements are connected to a detector, that they are independent (integral
causality assigned), and that the impulse outputs are caused by the disconti-
nuities from the input, which reduces the time of analysis compared to a more
mathematical analysis.

2.12 Summary

Something that can be seen in the development in bond graph modelling is that
most of the proposed techniques were designed initially for speci�c problems
(e.g. LTI systems, second order descriptor systems, continuous descriptor sys-
tems, time-invariant singular system), which, when applied to di¤erent prob-
lems (e.g. switched singular systems, descriptor-variable systems, switched
linear systems), some constraints were introduced in order to be able to use
the desired approach.

In order to avoid these problems, it is necessary to propose a new model for-
mulation, which will simplify the analysis of the systems by eliminating the
introduction of constraints into the equations.

If this tendency continues, it is di¢ cult to set a standard notation, which is
not desirable. This problem does not only a¤ect the analysis of hybrid and
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bond graph models, the simulation is a¤ected as well. For hybrid systems these
problems escalate due to the number of available representation of switching
elements. Not to mention the common practice of avoiding the change of
causality of the elements when a commutation occurs, which are usually rep-
resentation of the change in behaviour of the model during commutation.

In order to reduce future problems, it is necessary to establish a standard no-
tation and representation of the hybrid system and switching elements based
on previous useful approaches. The bene�ts of this will help in the develop-
ment of new analysis techniques and probably allows obtaining some missing
properties of the models that were omitted when some constraints where set.

In the following chapter this will be addressed, and some new representations
will be introduced, including a standard mathematical notation to simplify the
analysis of hybrid systems.
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Chapter 3

Hybrid Dynamic Bond Graph
Systems

3.1 Preliminaries

A new method to construct hybrid bond graph models is proposed in this
chapter. In order to do this, a new mathematical notation is introduced to
make a distinction between the di¤erent elements involved and simplify the
general notation of the models. This is due to the use of switched junctions
and dynamic causality in the model. Procedure for the construction of the
hybrid bond graph are given, along with a causality assignment procedure.

A di¤erentiation between the previous representations and the proposed one is
described. By doing this, it could be seen that the proposed approach allows a
closer representation of the physical behaviour of the systems, not to mention
the analysis of more properties that are usually not taken into consideration
due to the constraints set on previous approaches, such as the general control-
lability and observability of hybrid systems.

The representation of physical switching elements is revised and expanded to
include multi-way switches (which are used the control of a load from di¤erent
points in the system).

Some properties of the new representation are obtained and enumerated to
help with the analysis of the systems (e.g. change in the order of the system,
new notation to simplify the analysis).
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3.2 Procedure for the construction of a hybrid
bond graph

In the following paragraphs the procedure for the construction of hybrid bond
graph models is described. This is done by analysing the previous approaches
and using the properties that prove to be useful for the approach that is being
developed in this research.

Before the procedure is explained, the di¤erent parts involved are introduced
and described in order to show how these are used in the construction of the
model.

First, the representation of the commuting elements is described, followed by
how this representation modi�es the hybrid junction structure, ending with
the new properties arising from the use of this representation.

3.2.1 Hybrid bond graphs

As previously explained, hybrid bond graphs are those that represent both
continuous and discontinuous behaviour.

Discontinuities are abstractions made in order to simplify a model. This is
usually done to simplify continuous behaviours that change rapidly in a small
lapse of time. These discontinuities are introduced to improve simulations and
simplify the analysis of the model behaviour.

De�nition 21 Hybrid Bond Graph [10]: "A hybrid bond graph is any bond
graph that describes both continuous and discontinuous behaviour."

There are di¤erent representations for hybrid bond graphs; most of them share
the same construction procedure, while some of them have a di¤erent one.

In this case, all the representations that share the same procedure are those
that contain the same number of variables for all of the con�gurations with
�xed causality for all of the possible con�gurations. This is the case of the
traditional representations of hybrid bond graphs such as MTF, controlled
storage elements, and switched power junctions ([2, 3, 4, 5, 6, 8, 9]).

The ones that have di¤erent procedure are those which can have di¤erent num-
ber of variables for di¤erent con�gurations and variable causality. This change
in causality depends on the representation of switched elements chosen. Some

42



examples of this are the controlled junctions used in [10, 24, 53].

For the approach that keeps the same number of storage elements, the proce-
dure for the construction is the same used in LTI systems. The main di¤erence
between modelling hybrid bond graph systems and LTI systems rest in the fact
that hybrid systems have 2n representations (where n is the number of switch-
ing elements), therefore, it is necessary to obtain the model of the system for
each con�guration that needs to be analysed.
With each state of the commuting elements, di¤erent behaviours are intro-
duced in the �nal model (which was already presented in the previous chapter).

The main disadvantage of these modelling techniques is that some physical
representations are not carried to the model. An example of this is the coupling
of two masses, which is displayed in Figure 3.1.

Figure 3.1: Two masses and a switch a) OFF con�guration b) ON con�guration

Using the traditional mathematical approach, each mass has an independent
behaviour (in this case velocity) for all of the con�gurations when compliance
the coupling is present, which is the case of the non-ideal switch. This is not
the proper representation of the behaviour of the physical system, where the
masses behave as one when they are coupled without friction. Therefore, in
order to represent this physical behaviour, the switched junctions are proposed
in this work.

The examples used in [5, 6, 9, 46] shows that by maintaining the causality
assignment static the model does not represent the physical behaviour of the
system for all the con�gurations of the commuting elements. This is caused
by the use of non-ideal switches, which introduces parasitic elements, some
representing frictions, other just as aid to maintain a static causality.

On the other hand, there are some representations that allow the model to
change the number of variables on the system, i.e. controlled junctions. The
procedure to construct the model is described by Margetts in [10], where the
main di¤erence with the traditional procedure lies in the fact that the use of
controlled junctions allows the change of causality of the elements a¤ected by
the use of dynamic causality.

This change on the storage elements allows a closer representation of the phys-
ical behaviour of the system in the ideal case; nevertheless, the proposed ap-
proach still needs some development in order to be used as a standard notation,
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which is why this approach is used as a starting point for the research described
in this work.

3.2.1.1 Switching source elements

Switching source elements were used to represent commuting elements and
their behaviour. Most of these representations in bond graph are zero e¤ort or
zero �ow sources connected to the system (according to the state of the switch).

These sources are inserted into the junction where the commuting element is
connected in the model and are interchanged according to the commuting el-
ement state (ON or OFF con�guration).

Some examples of this representation can be seen in [3, 4, 5, 6]. The behaviour
of this element is shown in Figure 3.2.

Figure 3.2: Ideal Switches

The use of the source representation is not considered in this work due to the
introduction of constraints to the system, which will not allow a proper repre-
sentation of the physical system.

3.2.1.2 Switched power junctions

Switched power junctions avoid the use of sources, instead, there is a "select-
ing" bond that decides which con�guration the commuting element should be
represented. They were introduced by Umarikar and Umanand in [9], and used
for di¤erent applications in [4, 80, 81]. An example of this representation is
shown in Figure 3.3.
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Figure 3.3: Switched power junctions a) 0- junction b) 1- junction

Using this representation could create confusion to the user. This is due to not
having a static representation that allows a proper di¤erentiation between the
"activated" bond and the rest of the bonds. This usually happens when there
are more than 3 elements connected to the same switched power junction, the
selecting bond sends an activation signal to all of the bonds, which indicates
the con�guration selected, nonetheless the causality remains the same, this
is why some confusion can be created. It can be seen in Figure 3.3 that the
switching bonds are not clearly de�ned, as any of the connected bonds can
switch at any moment, which is the part of the representation that could con-
fuse the user as it needs to be more clearly displayed.

This representation allows a closer representation of the commuting elements,
nonetheless, retain some of the constraints set on previous representations,
making it unviable for a standard notation of hybrid bond graph.

3.2.1.3 Switched junctions

The representation used for the switched junctions is a modi�ed version of the
controlled junction previously introduced by Margetts in [10]. The behaviour
of the switched junction is the same as the controlled junction, however, some
changes where done to simplify the representation of hybrid systems and their
analysis.

For the bond graph representation, the Boolean parameter is assigned to one of
the ports instead to the element. Also, the notation in the junction structure
matrix is modi�ed to simplify the analysis by making a distinction between
the elements a¤ected by dynamic causality and those that are not a¤ected,
instead of separating the elements that have integral causality assigned and
those that have derivative causality assigned.

The junction structure for both notations is displayed in Figure 3.4, where
the simpli�cation in the number of elements in the proposed approach allow a
compact junction structure.
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Figure 3.4: a) Junction structure of the controlled junctions, b) Junction struc-
ture of the switched junctions

From Figure 3.4, it can be observed that controlled junctions divide the storage
�eld in three di¤erent elements,

1. Elements not a¤ected by dynamic causality with static integral causality,

2. Elements not a¤ected by dynamic causality with static derivative causal-
ity,

3. Elements a¤ected by dynamic causality, which includes elements with
preferred integral causality assignment and elements with preferred deriv-
ative causality assignment.

In the proposed approach, the junction structure using switched junctions, the
storage �eld is only divided in two di¤erent elements,

1. Elements not a¤ected by dynamic causality,

2. Elements a¤ected by dynamic causality.
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This simpli�cation will be explained in detail in a later subsection. Meanwhile,
a comparison between both notations is done in table 2 to show it is imple-
mented for the analysis of the models.

Table 2: Comparison between Controlled junctions and Switched
junctions derived from Junction Structure Matrices

Junction Structure Matrix Notation

Controlled
junctions

� (�)cj

2666666664

" �
x̂i
�
~xi

#
�
ẑd
~zd

�
�
D̂out

~Dout

�

3777777775
= [S (�)]cj

266666666664

�
ẑi
~zi

�
" �
x̂d
�
~xd

#
�
D̂in

~Din

�
U

377777777775

^ denotes the
elements not
a¤ected by
dynamic
causality.

~ denotes the
elements
a¤ected by
dynamic
causality.

Switched
junctions

� (�)sj

266664
_x
_xi
zd
Dout

~Dout

377775 = [S (�)]sj
26666664

z
zi
_xd
Din

~Din

U

37777775

The elements
a¤ected by
dynamic
causality are
denoted by
the subindex
i and d.
i denotes
integral
causality.
d denotes
derivative
causality.

where � (�)cj =

26666664
�11 (�) 0 0 0 0 0
0 �22 (�) 0 0 0 0
0 0 �33 (�) 0 0 0
0 0 0 �44 (�) 0 0
0 0 0 0 �55 (�) 0
0 0 0 0 0 �66 (�)

37777775 ;

[S (�)]cj =

26666664
S11 (�) S12 (�) S13 (�) S14 (�) S15 (�) S16 (�) S17 (�)
S21 (�) S22 (�) S23 (�) S24 (�) S25 (�) S26 (�) S27 (�)
S31 (�) S32 (�) 0 0 0 0 S37 (�)
S41 (�) S42 (�) 0 0 0 0 S47 (�)
S51 (�) S52 (�) 0 0 S55 (�) S56 (�) S57 (�)
S61 (�) S62 (�) 0 0 S65 (�) S66 (�) S67 (�)

37777775 ;
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� (�)sj =

266664
�11 (�) 0 0 0 0
0 �22 (�) 0 0 0
0 0 ���22 (�) 0 0
0 0 0 �44 (�) 0
0 0 0 0 ���44 (�)

377775 ;

[S (�)]sj =

266664
S11 (�) S12 (�) S13 (�) S14 (�) S15 (�) S16 (�)
�ST12 (�) 0 0 0 0 S26 (�)
�ST13 (�) 0 S33 (�) S34 (�) S35 (�) S36 (�)
�ST14 (�) 0 �ST34 (�) S44 (�) S45 (�) S46 (�)
�ST15 (�) 0 �ST35 (�) �ST45 (�) S55 (�) S56 (�)

377775 :
where x̂i and ~xi are the energy storage elements with preferred integral con-
�guration, ẑd and ~zd are the energy storage elements with preferred derivative
causality, D̂ are the resistive elements not a¤ected by dynamic causality (con-
trolled junctions), ~D are the resistive elements a¤ected by dynamic causality,
x are the energy storage elements not a¤ected by dynamic causality, xi are the
energy storage elements a¤ected by dynamic causality with preferred integral
causality, xd are the energy storage elements a¤ected by dynamic causality with
preferred derivative causality, �ij are the submatrices containing Boolean pa-
rameters that indicates the con�guration of the controlled/switched junction,
Sij are the submatrices in the state junction matrix that indicate the relation-
ship between elements, (�) indicates that the submatrices are dependent of
the con�guration of the controlled/switched junctions.

From the previous table it can be seen that the notation is simpli�ed to avoid
confusion to the modeller. For controlled junctions the elements are divided
by their assigned causality, which creates a mixed junction structure as the
elements a¤ected by dynamic causality are mixed with those that are not.

While the switched junction�s junction structure matrix separates the elements
not a¤ected by dynamic causality from those that are a¤ected, which simpli�es
the notation and allow simpler identi�cation of the elements in the di¤erent
con�gurations.

A switched junction behaves as a normal 1- or 0- junction when it is in ON
con�guration and as a source of zero �ow or e¤ort when OFF con�guration
(respectively). Therefore, a switched 1-junction is used to break or inhibit
�ow (for example, an electrical switch which breaks the �ow of current), and
a switched 0-junction is used to inhibit e¤ort (for example, a clutch or other
physical non-contact in a mechanical system). This creates a dynamic causal-
ity on one of the attached bonds.

From this description, switched junctions X1 and X0 can be de�ned as 2-port
elements with associated Boolean parameters �. The bond graph representa-
tions of controlled junctions X1 and X0 are shown in 3.5, and their de�ning
relationships are given by Equations 3.1 and 3.2, respectively.
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Figure 3.5: Bond graph representation of switched junctions X1 and X0

8>><>>:
�f1 = �f2

� (e1 � e2) = 0
��f1 = 0
��f2 = 0

(3.1)

8>><>>:
�e1 = �e2

� (f1 � f2) = 0
��e1 = 0
��e2 = 0

(3.2)

The assignment of Boolean values (con�guration) to the parameter � selects
the set of equations that are valid given the state of the switch, � = 1 when
the switch is in ON con�guration and � = 0 when the switch is in OFF con-
�guration.

For each switched junction, the de�ning Equations 3.1 and 3.2 lead to 3 possible
causal con�gurations:

� 2 causal con�gurations when the switch is in ON con�guration i.e. � = 1
(�rst two equations equivalent to a normal 1- or 0- junction).

� a unique causal con�guration when the switch is in OFF con�guration i.e.
� = 0 (last two equations equivalent to null sources of �ow or null sources
of e¤ort imposed by the element to both power ports with conjugate
variables externally imposed to the element).

When a commutation occurs (switching from ON con�guration to OFF con-
�guration), the causal assignment from one of the ports must change. This is
usually known as dynamic causality.

By using this representation of the commuting elements, a new procedure for
modelling hybrid bond graphs is proposed. This procedure is explained later
in this chapter; although, it is necessary to �rst introduce a new notation and
the formulation of the junction structure matrix in order to fully exploit this
approach.
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3.2.1.4 Multiswitched junction

A new variant of the switched junction is introduced in order to represent
commuting elements that could commute between two or more di¤erent sub-
systems. These types of switches are common in electrical circuits (e.g. buck
converter), electronics (e.g. multiplexers), and mechanics (e.g. clutches), as
displayed in Figure 3.6.

Figure 3.6: a) Buck converter, b) Electric multiplexor, c) Mechanical clutch

This junction behaves as a normal two port switched junction, the di¤erence
between these two is its use. While the two port switched junctions serves to
connect and disconnect parts of a system, the multiswitched junction allows
to select between n di¤erent parts of the system (where n is the number of
subsystems connected by the multiswitched junction).

While the representation changes by increasing the number of ports connected
to the switched junction, the notation remains the same; only the internal
equation ruling the commutation changes depending on the admissible con�g-
urations. The representation of the multiswitched junction is displayed in the
Figure 3.7.
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Figure 3.7: Multiswitched junction, a) X0 junction, b) X1 junction

A multiswitched junction is denoted as an X0 or X1 switched junction with
two or more outputs, which is di¤erent of having a group of two port switched
junctions connected to the same element or subsystem.

The multiswitched junction (msj) behaves as mode-switching tree (introduced
by Margetts in [10] and illustrated in Figure 3.8), which is based on the multi-
bond notation suggested by Mosterman and Biswas in [24]. Just as the mode-
switching tree, the msj only allows one of the Boolean parameters to be in ON
con�guration at a time (mutually exclusive).

Figure 3.8: Bond graph �Trees� a) �Tree� of X1- junctions b) �Tree� of X0-
junctions

This representation (msj) allows all the bonds to be a¤ected by dynamic causal-
ity.

To determine the causality on a multiswitched junctions it is necessary to fol-
low the HSCAP mentioned in [10].

In order to di¤erentiate the input bond from the rest of the bonds, it is neces-
sary to keep that bond without a Boolean parameter assigned, while the rest
of the ports will have a Boolean parameter assigned.

There are n possible internal con�gurations for the multiswitched junctions,
nevertheless, there is only one subsystem connected at a time. If there are
more than one subsystem connected at a time, a causal con�ict is created,
which will denote a non-admissible con�guration. This causal con�ict repre-
sents the physical constraint of a multiswitch that can only be connected to
one output at a time. It must be noted that the con�guration where all of the
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outputs are disconnected is considered valid using this approach, and only on
this con�guration the input bond will change its causality. This is in order to
properly represent the behaviour of the physical system, which will impose a
zero e¤ort or �ow on all the bonds.

Causality assignment in the msj is displayed in Figure 3.9,

Figure 3.9: Causality assignment in: a) X0 msj b) X1 msj

On this notation, the �ux F and e¤ort E denotes the �ow and e¤ort (respec-
tively) of the input bond which will remain in static causality.

From this causality assignment the equations that describe the msj behaviour
can be obtained.

The �ow and e¤ort relation for the X0 msj are:

e0 = �1e1 + �2e2 + � � �+ �nen
(�1 + �2 + � � �+ �n) f0 � �1f1 � �2f2 � � � � � �nfn = 0

(3.3)

where e0 is the e¤ort and f0 is the �ow of the input bond.

The �ow and e¤ort relation for the X1 msj are:

f0 = �1f1 + �2f2 + � � �+ �nfn
(�1 + �2 + � � �+ �n) e0 � �1e1 � �2e2 � � � � � �nen = 0

(3.4)

De�nition 22 A multiswitched junction represents the connection of a group
of subsystems that are connected between them, but only two can be connected
at a time

It must be noted that there is power transfer between only two ports at a time
(or the lack of power transfer), which means that one bond will be considered
as an "input" bond (which will not have a Boolean parameter � assigned) and
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an "output" bond in ON con�guration.

Even though just one bond will have a Boolean parameter assigned in this
con�guration, the previous relationships remain true. Therefore, the number
of Boolean parameters that determine the con�guration in the mathematical
equation in the model is equal to the number of ports minus one. This is only
done for the analysis of the behaviour of the system.

De�nition 23 The number of Boolean parameters assigned to a multiswitched
junction is equal to the number of bonds minus one.

For the rest of the bonds in the multiswitched junctions, the causality assign-
ment could be interpreted as the existence of power transfer between the bonds
with the assigned OFF con�guration, but the modeller must have in consider-
ation that there is transfer of power between only two bonds at a time.

A description of a multiswitched junction with two outputs is done as example
of its behaviour.

The behaviour (and mathematical representation) of the multiswitched junc-
tion is described in the next example.

Example 2 Figure 3.10 presents a system where the valid con�gurations of
the switch element are the previously mentioned (connected to one subsystem
at a time or disconnected from both).

Figure 3.10: System with three valid operational modes

The next step consists in obtaining the bond graph model (displayed in Figure
3.11).
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Figure 3.11: Bond graph model containing a multiswitched junction with three
valid con�gurations

From the bond graph model, the con�gurations are analysed by obtaining a table
of truth from the di¤erent internal con�gurations of the multiswitched junction.

Switched junction configuration C2 causality
�1��2 Derivative
��1�2 Integral
��1��2 Integral
�1�2 Non� valid

From this example, it can be seen why the multiswitched junction can have
three admissible con�gurations in the case where there are no causal con�icts
on any of the ports. Therefore, one Boolean term will represent one con�gura-
tion, while another Boolean term will represent the other two con�gurations,
because, as seen on the previous table of truth, there should be just one output
in ON con�guration at a time, or all of the outputs in OFF con�guration. It
is physically impossible to have two or more outputs connected at a time, as
this con�guration could create a behaviour of fast commutation, therefore, an
unstable behaviour could appear, which is a valid reason to set a constraint in
the multiswitched junction.

It must be noted that the con�guration when both outputs are in OFF con�g-
uration is not considered as non-admissible, because it represents the moment
of commutation in the multiswitched junction. This can be observed in Figure
3.12 where it is compared to an arrangement of two switched junctions.

This con�guration does not create any causal con�icts on the output bonds,
therefore it is not considered a non-admissible con�guration.

An example of this is an electrical switch that is in a con�guration between
the two available outputs (displayed in Figure 3.12(a)), could cause a short
circuit or an undesired behaviour caused by a fast commuting behaviour in
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the switch, therefore it is necessary to analyse this con�guration.

Figure 3.12: Comparison of a) two switched junctions, with b) a multiswitched
junction, with c) simpli�ed bond graph representation

In some systems there can be non-admissible con�gurations caused by causal
con�icts, an example of this is displayed next.

Example 3 A system with two valid con�gurations is displayed in Figure 3.13,
and the correspondent bond graph model is displayed in Figure 3.14.

Figure 3.13: System with two valid con�gurations

Figure 3.14: Bond graph model containing a multiswitched junction with two
valid con�gurations

From the bond graph model, it can be seen that there is a causal con�ict for the
con�guration ��1�2. Meaning that �1��2 and ��1��2 are the valid con�guration for
the system, as �1�2 is a non-valid con�guration to avoid fast commutations

55



that could create instabilities.

From these previous examples, it is deduced that for multiswitched junctions
there cannot be complementary Boolean parameters to show the commuting
of the element, this is due to the constraint set to the element and possible
causal con�icts.

It must be noted that there is always a causal path between the elements
where the commuting occurs (�1 and �2 output bonds), this does not mean
that there is a �ow of power between the elements on the output bonds, this
is a consequence of the representation of the multiport switches, the only �ow
of power occurs between the input bond and the output bond that is in ON
con�guration.

3.2.1.5 Multiswitched junctions and switch power junctions

Both representations look similar, nonetheless, there are some di¤erences be-
tween them.

One of the di¤erences is the way a speci�c con�guration is determined. While
the switch power junctions (spj) have an indi¤erent representation (the con�g-
uration is determined by a Boolean parameter assigned to each bond), the mul-
tiswitched junctions (msj) indicate the con�guration by modifying the causal-
ity of the bonds. An example of this can be seen in Figure 3.15, where a 0s
and a X0 junctions are used.

Figure 3.15: a) Spj with static causality, b) Msj with �1 = 1, c) Msj with
�2 = 1:

It can be seen that using spj could create confusion for the modelers as the
representation for all con�gurations is the same, while using msj each con�gu-
ration has its own causality assignment, which makes it easier to identify the
con�guration used at a time.
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Another di¤erence is the use of dynamic causality. Spj use the Boolean pa-
rameters to denote the con�guration of each bond, however the causality of
the model remains static, which is a constraint that does not represent the
physical behaviour of most of the systems.

This constraint is avoided with the use of msj, which allows the use of dynamic
causality, that helps on the change of causality and its propagation through
the model, leading to a more physically related behaviour of the system. Also,
there are some con�gurations that are not being taken into consideration using
spj, this is because the Boolean parameters assigned to the bonds are consid-
ered to be mutually exclusive, which is not the case for msj, where all of the
possible con�gurations can be analysed and then determine which ones are not
admissible. This is illustrated in Figure 3.16, where a modi�ed boost converter
is used to represent this behaviour.

Figure 3.16: a) Modi�ed boost converter, b) Model using spj, c) Model using
msj

In this example it can be seen that in the model using spj, the causality is
�xed and the only way to determine the con�guration used is by determining
the value of the Boolean parameter U , while the model using msj properly
display the causality of each con�guration. Not only that, also can be seen
that the model using spj only allows two con�gurations (when U = 1 and when
U = 0), which does not allow to analyse the con�guration when the source and
inductance are disconnected from the rest of the model. This con�guration can
however be analysed using msj.

As conclusion, the representations of spj and msj are similar, nonetheless their
behaviour and notation are di¤erent.
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3.2.1.6 Model simpli�cation using switched junctions

It is well known that models constructed from the schematic diagram have
potential to be simpli�ed. The usual approach to simpli�cation of bond graph
models can also be applied to hybrid bond graph models using switched junc-
tions.

The most common simpli�cation is done by removing structures that does not
provide any power to the system. This is the case of electrical and hydraulics
circuits where there is a return line to a zero ground or open tank.

In some occasions ground parts are source elements which also act as a sink.
For example, a mechanical ground is represented by a Sf-element (which has
zero velocity and is a sink for force), and grounds in other domains are repre-
sented by Se-elements (e.g. an electrical ground, which is a source of 0V and
a sink for current).

This simpli�cation can be seen in Figure 3.17.

Figure 3.17: Example of simpli�cation of a ground element

If there is a switched junction between a ground reference and the main struc-
ture of the model the previous procedure is not applicable. This is due to
the behaviour of the system changing when the switched junction commutes,
which is re�ected on the change of the zero �ow or e¤ort imposed by the ground
reference when it is disconnected from the system. This can be seen in Figure
3.18.

In the case where there are two neighbouring switched junctions these can be
combined if there are no elements connected between them. If there are ele-
ments connected between them then these cannot be simpli�ed. This is due
to the change of power �ow when one of the elements commutes, which causes
a change of behaviour on both parts of the system.

This can be seen in Figure 3.19, where the con�guration of Figure 3.19(a)
can be simpli�ed because the switched junctions are connected to each other,
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while the con�guration of Figure 3.19(b) cannot be simpli�ed because there is
an element di¤erent than a switched junction between them.

Figure 3.18: Example of simpli�cation of a model with ground reference con-
nected by a switched junction, a) diagram of an RL circuit, b) bond graph
model (dashed lines represent connections to ground reference that can be
eliminated), c) simpli�ed bond graph model.

Figure 3.19: Example of neighbouring switched junctions, a) simpli�cation of
neighbouring switched junctions, b) arrange of neighbouring switched junctions
that cannot be simpli�ed

The neighbouring switched junctions displayed in Figure 3.19 are the possible
combinations that could appear in a model. In this case, a �ow source and
a resistive element are connected to the ends of the Figure 3.19(a), this is in
order to be able to use an X0 switched junction. The same principle is used
in Figure 3.19(b), where an extra I element is added in order to show the non-
simpli�cation of neighbouring switched junctions.
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3.3 Multiway switching

Multiway switching can be de�ned as an interconnection of two or more switches
in order to control the behaviour of the system from di¤erent points in the sys-
tem.

These loads that can be controlled can (but are not limited to) be lamps, elec-
trical outlets, fans, pumps, heaters, motors, to name some. However, in this
case the load is a generic one in order to avoid confusions on the use of the
multiway switching using bond graph.

In order to have a closer representation of the multiway switching, multi-
switched junctions are used, which at the same time will reduce the size of the
model by reducing the number of elements used to represent the connection
between the elements.

Multiway switching requires special switches (two-way and two-way four ports)
which will have their own representation in bond graph.

3.3.1 Two-way switches in bond graph

Two-way switches are displayed in Figure 3.20, where it can be seen that this
type of switches have one selector input/output that commutes between two
output/input ports.

Figure 3.20: Two-way switch

These switches can be represented as a multiswitched junction (either X1 or
X0), which remain with the same behaviour previously explained. This is
displayed in 3.21.
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Figure 3.21: Two-way switch representation in bond graph, a) electrical two-
way switch, b) mechanical two speed transmission

There is a common use of the two-way switch, in which two of these are used
to control a load from two di¤erent places.

An example of this connection is explained next, where the two-way switches
are connected to a load and a source of voltage or �ow, this in order to assign
causality to the elements and determine its behaviour.

The connection of two two-way switches is displayed in 3.22, where the internal
con�gurations are independently represented. This con�guration is commonly
known as three-way switches.

Figure 3.22: Con�gurations of two two-way switches (left side OFF con�gura-
tions, right side ON con�gurations)
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As previously mentioned, two-way switches can be represented by X1 junc-
tions, the connection between two of these switches can be done using two of
the same switched junction.

In Figure 3.23 the case for X1 multiswitched junctions is displayed, where the
arrows show the �ow of e¤ort between ports, and the crosses show the lack of
power transfer (X1 junction acting as a zero-�ow source).

Figure 3.23: Connection of two two-way switches using X1 multiswitched junc-
tions (left side OFF con�gurations, right side ON con�gurations)

It can be seen that these representations contain a causal con�ict for the ad-
missible con�gurations (the causality assignment in the 1-junction on the OFF
bonds does not follow the proper causality assignment), however, these causal
con�icts can be ignored for the analysis of the model as they represent zero
�ow or zero e¤ort between bonds.

3.3.2 Two-way four port switches in bond graph

A two-way four port switch is displayed in Figure 3.24, where it can be seen
that this type of switches has two input ports and two output ports.

In order to properly represent the admissible con�gurations of the two-way four
port switch, a variant of the multiswitched junction is proposed. This variant
is called X10 switched junction, where there are two input bonds and two
output bonds (denoted by the Boolean parameters �1 and �2). The graphic
representation is displayed in Figure 3.25.
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Figure 3.24: Internal con�gurations of the two-way four port switch, a) direct
connection, b) crossed connection

Figure 3.25: X10 multiswitched junction

TheX10 multiswitched junction has this name because it shares the behaviour
of both X1 and X0 switched junctions. When two causal strokes are on the
same direction it indicates a general ON con�guration, while the general OFF
con�gurations are denoted by two causal strokes going into the junction (X1
switched junction behaviour) or two causal strokes going out of the junction
(X0 switched junction). In order to di¤erentiate the individual ON (�) and
OFF (��) con�gurations, it is decided to have as individual ON con�guration
when the causal stroke is going into the junction, while the individual OFF
con�guration is when the causal stroke is going out of the junction.

It must be noted that there is only power transfer between inputs and outputs,
never between inputs or between outputs.

Also, this proposed notation allows the analysis of the con�guration where
there is a commutation and the inputs are disconnected from the outputs,
which allows a more robust analysis of the system.

Based on the previous considerations, the equations that rule the behaviour of
the X10 multiswitched junction in direct connection are,
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e1 = ��1e2; e3 = �2e4

f1 = ��1f2; f3 = �2f4 (3.5)

or in the alternative con�guration for the direct connection,

e1 = �1e2; e3 = ��2e4 (3.6)

f1 = �1f2; f3 = ��2f4

And the equations that rule the behaviour of the X10 multiswitched junction
in crossed connection are,

e1 = �2e4; e3 = ��1e2

f1 = �2f4; f3 = ��1f2 (3.7)

or in the alternative con�guration for the crossed connection,

e1 = ��2e4; e3 = �1e2 (3.8)

f1 = ��2f4; f3 = �1f2

The previous behaviours are displayed in Figure 3.26, where they are shown
as the possible con�gurations of the X10 junction, where the arrows represent
the e¤ort �ow between ports.

Figure 3.26: Con�gurations of the X10 multiswitched junction

As previously mentioned, there are two representations for each con�guration
based on the causality assignment.
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The con�gurations displayed in Figure 3.27 are considered non-admissible for
the X10 junction in order to avoid confusion to the user, the cases where there
is a general OFF con�guration are displayed in Figure 3.28.

Figure 3.27: Non-admissible con�gurations for the X10 junction

Figure 3.28: OFF con�gurations of the X10 switched junction

The general OFF con�gurations displayed in Figure 3.28 does not allow the
transfer of �ow or e¤ort, which are based on the con�gurations of the X0 and
X1 switched junctions. In con�guration displayed in the left side, the junction
does not allow transfer of e¤ort, while on the con�guration in the right side,
the junction does not allow transfer of �ow.

With a simpli�ed representation displayed in Figure 3.29, where the di¤erent
con�gurations are displayed using dashed causal strokes.

Figure 3.29: Simpli�ed X10 representation

It can be seen that this variant of the multiswitch is a combination of the X0
and X1 switched junctions, where there is only power exchange between one
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input and one output at a time, never between one input and two outputs,
two inputs and one output, between inputs or between outputs, which is the
same behaviour as a four-way switch.

As previously shown, the causality assignment is the one that dictates the
relation between inputs and outputs, which creates the two available internal
con�gurations.

3.4 Implicit formulation of the hybrid model
equations

3.4.1 Hybrid Junction structure

To expand the analysis of hybrid bond graph systems, dynamic causality and
switched junctions are used in order to obtain a more physically related be-
haviour of the elements in the system. This introduces some changes to the
general junction structure of the system.

The changes on the junction structure and the junction structure matrix for
hybrid systems introduce a new matrix including Boolean parameters that dis-
plays the commutation of the switching elements.

These Boolean parameters denotes the available con�gurations of a switching
element, nonetheless, as this being a general representation of the elements,
the Boolean parameters do not have assigned values to them.

This matrix with Boolean parameters allows a simpli�ed version of the junc-
tion structure matrix that represents all the available con�gurations contained
in the model.

In order to properly represent all the interactions between the di¤erent ele-
ments on all available con�gurations, a general representation of the junction
structure is introduced in Figure 3.30, with a junction structure matrix as:
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Figure 3.30: Hybrid Junction Structure
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where _x are the energy storage elements not a¤ected by dynamic causality, _xi
are energy storage elements a¤ected by dynamic causality with integral causal-
ity assigned, _xd are energy storage elements a¤ected by dynamic causality with
derivative causality assigned, D are the resistive elements not a¤ected by dy-
namic causality, and ~D are the resistive elements a¤ected by dynamic causality.

The junction structure displayed in Figure 3.30 is di¤erent from the on dis-
played in Figure 3.4, this to properly di¤erentiate between the elements that
a¤ected by dynamic causality and those that are not. This is done to do a
proper analysis of all of the possible behaviours in the systems.

It must be mentioned that there are no energy storage elements with �xed
derivative causality in this notation. This is because it is considered that the
elements with derivative causality are always a¤ected by dynamic causality,
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which is done in order to simplify the notation and the analysis of hybrid dy-
namical systems.

3.4.2 Notation

It can be seen that there are new elements included in the junction structure
matrix, these elements are introduced to explain the interaction between the
di¤erent state variables when a commuting element is present in the system
and are carried to the implicit matrix.

The relation between storage elements a¤ected by dynamic causality and the
rest of the elements is denoted by the submatrix �22, which is the one that
determines the available con�gurations for the commuting elements when the
a¤ected storage elements have integral causality.

In this proposed approach there is a distinction between the storage elements
a¤ected by dynamic causality and those which are not. In this case the el-
ements that are not a¤ected by dynamic causality are included in the state
variables _x for their analysis, while those a¤ected by dynamic causality are
included in the state variables _xi for their analysis.

Matrix ���22 denotes the con�gurations of the commuting elements when the
a¤ected storage elements have derivative causality. In this case the storage el-
ements a¤ected by dynamic causality change from integral to derivative causal-
ity, resulting in zd notation being used for this purpose.

The resistive elements can also be a¤ected by dynamic causality, in this case
the submatrices �44 and ���44 are used to denote this behaviour.
In case where resistive elements are a¤ected by dynamic causality the terms
~Dout and ~Din are used to denote when these elements are a¤ected, and the
commuting elements are in OFF con�guration.

As previously explained, if dynamic causality a¤ects a resistive element, when
the commuting element is in OFF con�guration, the lack of power transferred
allows to discard the previous submatrices and element�s notation, which re-
sults in the traditional Dout and Din elements. In this case, an identity matrix
replaces the submatrix �44 to denote the presence of the resistive elements
when those are not a¤ected by dynamic causality.

The submatrices Sij (�) (where i = 1; 2; 3; 4; 5 and j = 1; 2; 3; 4) ) indicate the
relations between the di¤erent elements (a¤ected and non-a¤ected by dynamic
causality). It must be noted that these submatrices contain the element (�)
which denotes that the relation could depend on the con�guration of one or
more commuting elements. This does not mean that the elements are a¤ected
by dynamic causality, it just means that the causal path between the elements
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crosses a commuting element.

z remains as the conjugate power variable for the storage elements that are
not a¤ected by dynamic causality, U denotes the inputs, while zi and _xd are
the coenergy values of the storage elements a¤ected by dynamic causality in
ON and OFF con�guration respectively.

In order to simplify the notation, in the following expressions the Boolean vari-
ables (�) are omitted as the elements Sij;�22 and ���22 could contain a causal
path with a commuting element.

During the analysis of the properties of the extended junction structure matrix,
the behaviour of the resistive elements when a¤ected by the dynamic causality
is di¤erent from the one presented by energy storage elements.

While the switched junction is in ON con�guration, the resistive element be-
haves normally, nevertheless, when the switched junction is in OFF con�gu-
ration there is an absence of one of the power variables (either e¤ort or �ow),
which impose a zero e¤ort or zero �ow into the resistive element. Therefore, a
resistive element a¤ected by the dynamic causality does not contribute to the
dynamic of the system in the OFF con�guration as no energy is generated,
stored or dissipated.

This phenomenon leads to a simpli�ed version of the junction structure, which
can be seen in Figure 3.31, and a new junction structure matrix as:

Figure 3.31: Simpli�ed Hybrid Junction Structure
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From this point onwards, the submatrices Sij (�), which are functions of Boolean
parameters � indicating the state of the switches, will simply be denoted Sij.

Also, the resistive �eld is reduced to a single block, this is the result of the
analysis of the resistive �eld a¤ected by dynamic causality, which does not al-
low power transfer during OFF con�gurations, therefore, there is power trans-
fer only during the ON con�gurations, which includes the resistive elements
that are not a¤ected by dynamic causality.

3.4.3 Determination of the hybrid junction structure
matrix

It is necessary to set a series of steps to obtain the hybrid junction structure
matrix (HJSM) when using switched junctions. This is because an arbitrary
assignment of causality can lead to undesired behaviours or the inclusion of
non-admissible con�gurations to the HJSM. These steps are described in the
following Dynamic Sequential Causal Assignment Procedure (DSCAP):

Procedure: DSCAP

1. Obtain the model of the system applying dynamic causality.

(a) Draw the system�s model without causality.

(b) Assign causality to the elements with �xed causality (sources).

(c) Assign integral causality to storage elements as much as possible
while avoiding causal con�icts.

(d) Expand causality following SCAP procedure to the rest of the model.

� Switched junctions behaves as normal 0 or 1 junctions.
� Dynamic causality is assigned following HSCAP, as described
in the following steps.
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�A switched junction without causality assigned must be
chosen. The causality must be assigned with ON con�g-
uration and propagate as far as possible. This is repeated
until all of the switched junctions have their causality as-
signed. If a causal con�ict appears during the assignment,
the con�guration of the switched junction that create the
con�ict must be changed.

�The propagation of causality is �nished by assigning it to
the resistive elements and or remaining bonds and propa-
gate as far as possible.

�Taking each switched junction in turn, the causality as-
signment must be considered in the alternate con�gura-
tion corresponding to the reference con�guration. The new
causality will be assigned with a dashed causal stroke, and
propagate throughout the model. If a causal con�ict oc-
curs during this stage, then the alternate con�guration of
the switched junction is not allowed.

� Dynamic causality must be assigned giving priority to the ele-
ments that allow to maximise the assignment of integral causal-
ity to the energy storage elements.
� If more than one storage elements can be a¤ected by dynamic
causality in a single junction, dynamic causality is assigned to
the element that has derivative causality in fewer con�gura-
tions. In the case where dynamic causality created by multiple
switched junctions a¤ect several elements, the assignment is
done for the combination that result in fewer elements chang-
ing causality. This is in order to maximize the assignment of
integral causality.
� The assignment of causality on resistive elements must be done
after the expansion of dynamic causality from the storage ele-
ments to the switched junctions that are a¤ecting its behaviour.
This is made to maximise the number of storage elements with
integral causality during the assignment of dynamic causality.
� Dynamic causality is assigned to resistive elements only in the
case where they allow to maximise the number of energy storage
elements with integral causality.

2. Obtain a truth table from the switch junction elements interactions.

(a) This truth table must show the causality assignment of the storage
elements that are a¤ected by dynamic causality for the di¤erent
con�gurations of the switched junctions.

(b) In the case where dynamic causality does not propagate to another
switched junction, there is no need to obtain a table of truth of all
of the available con�gurations.
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There are cases were the dynamic causality created by a switch junc-
tion does not a¤ect another switch junction. Also, there are other
cases where elements are only a¤ected by the dynamic causality
created by one switch junction. This is done in order to have a
reduced table of truth.

(c) Notation of this truth table must be done based on Boolean algebra
notation.

(d) From this truth table the � matrix is obtained.

3. Obtain the equations for the system�s elements.

(a) The equation must contain all of the con�gurations in which an
element has an interaction with another element.

(b) It must be noted that matrices �22 and ���22 are not complement of
each other when there are non-valid con�gurations.

4. Generate junction structure equation.

� It must be possible to analyse all of the possible con�gurations in the
junction structure. If there are missing con�gurations, this mean
that the causality assignment was not properly done.

5. Obtain the implicit equation.

� The �nal implicit equation must comply with the established nota-
tion.

An example of the DSCAP procedure is illustrated for the diagram of an elec-
tric RC circuit shown in Figure 3.32:

Figure 3.32: Diagram of a RC circuit

with a bond graph model displayed in Figure 3.33
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Figure 3.33: Model without causality

Figure 3.34: Model with �xed causality on sources and integral causality on
energy storage elements

Then �xed causality is assigned to sources and integral causality to energy
storage elements (Figure 3.34).

Expand causality following SCAP (Figure 3.35).

Figure 3.35: Model with complete causality assignment

The next step is the obtention of a truth table for the switched junctions in-
teraction.
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Switched junctions con�guration Causality of element C
��1��2 Integral
�1��2 Integral
��1�2 Integral
�1�2 Causal con�ict

Using Boolean arithmetic, a simpli�ed relation of con�gurations can be ob-
tained,

Element C ��1��2 + �1��2 + ��1�2 = (�1�2)
Element R (before change in causality) ��1��2
Element R (after change in causality) �1��2 + ��1�2 =

�
��1 + ��2

�
From the previous relations, the � matrix is obtained,

24 (�1�2) 0 0
0 ��1��2 0
0 0

�
��1 + ��2

�
3524 _q

fR
eR

35

As mentioned in the procedure, the notation is Boolean algebra based, there-
fore, the symbol `+` denotes an �OR�operation and � denotes �AND�operation.

For the following step it is necessary to obtain the equations of the elements.

(�1�2) _q =
�
��1 + ��2

�
fR

��1��2fR = 0�
��1 + ��2

�
eR = �1��2V + ��1�2G�

�
��1 + ��2

�
q

With these equations the HJSM is generated.

24 (�1�2) 0 0
0 ��1��2 0
0 0

�
��1 + ��2

�
3524 _q

fR
eR

35 =
24 0 0

�
��1 + ��2

�
0 0

0 0 0 0 0
�
�
��1 + ��2

�
0 0 �1��2 ��1�2

35
266664
q
eR
fR
V
G

377775

74



The last step consist in the obtention of the hybrid implicit equation.

(�1�2) _q =

�
��1 + ��2

�
R

q (3.9)

For the models that contains msj the procedure is similar.

The diagram of an electric circuit with a multiswitch is displayed in Figure 3.36.

Figure 3.36: Electric circuit containing a multiswitch

First a model without causality is needed (Figure 3.37).

Figure 3.37: Model without causality

Then �xed causality is assigned to sources and integral causality to energy
storage elements (Figure 3.38).

Expand causality following SCAP (Figure 3.39), then obtaining a truth table
for the msj internal con�gurations.
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Figure 3.38: Model with causality on

Figure 3.39: Model with complete causality assigned

msj con�guration Causality of element I Causality of element C
��1��2 Derivative Integral
�1��2 Integral Integral
��1�2 Derivative Derivative

Using Boolean arithmetic, a simpli�ed relation of con�gurations can be ob-
tained,

Element I (before change in causality) �1��2
Element I (after change in causality) ��1��2 + ��1�2
Element C (before change in causality) ��1��2 + �1��2
Element C (after change in causality) ��1�2

From the previous relations it can be seen that both storage elements are af-
fected by both of the bonds in the msj, this is because using only the Boolean
parameter connected to one of the storage elements causal path will not re�ect
the behaviour of the msj, therefore all of the Boolean parameters must be used
for all of the outputs. Then the � matrix is

266664
�1��2 0 0 0 0
0 ��1��2 + ��1�2 0 0 0
0 0 ��1��2 + �1��2 0 0
0 0 0 ��1�2 0
0 0 0 0 1

377775
266664

_qi
_pi
fId
eCd
fR

377775
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The rest of the procedure remains the same as the previous example.

There is a special case where there are sources a¤ected by dynamic causality,
as sources have static causality it is necessary to use switched junction instead
of the multiswitched junction to eliminate the forced 0 �ow or 0 e¤ort imposed
to the source. This is displayed in the next example.

From the RL circuit displayed in Figure 3.40, �rst a model without causality
is needed (Figure 3.41), then �xed causality is assigned to sources and inte-
gral causality to energy storage elements (Figure 3.42), and expand causality
following SCAP (Figure 3.43).

Figure 3.40: Diagram of a RL circuit

Figure 3.41: Model without causality
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Figure 3.42: Model with causality on

Figure 3.43: Model with complete causality assigned

As previously mentioned, if there are sources a¤ected by dynamic causality,
switched junction are used to connect each source (Figure 3.44).

Figure 3.44: Model with auxiliary switched junctions

The next step is the obtention of a truth table for the auxiliary switched junc-
tions interaction with the msj.

msj con�guration Causality of element I
��1��2 Derivative
�1��2 Integral
��1�2 Integral
�1�2 Causal con�ict
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Using Boolean arithmetic, a simpli�ed relation of con�gurations can be ob-
tained,

Element I (before change in causality) �1��2 + ��1�2 = (�1 � �2)
Element I (after change in causality) ��1��2

As the �nal model use normal switched junction, the properties from those
junctions are applied to the model. Therefore, it can be seen that there is one
non-admissible mode, which gives a � matrix

24 (�1 � �2) 0 0
0 ��1��2 0
0 0 1

3524 _pi
fId
fR

35

It can be seen that it is not possible to use msj when there are sources a¤ected
by dynamic causality, this due to imposed �ux or e¤ort on a �xed causality
element, therefore it is necessary to expand the msj element into its individual
components, which in this case are individual switched junctions.

The procedure for the obtention of the hybrid implicit equation is described
in the next section.

3.5 Hybrid Implicit model

The implicit equation that describes the model behaviour is obtained from the
junction structure matrix,

2664
�11 0 0 0
0 �22 0 0
0 0 ���22 0
0 0 0 I

3775
2664

_x
_xi
zd
Dout

3775 = (3.10)

2664
S11 S12 S13 S14 S15
�ST12 S22 0 S24 S25
�ST13 0 0 0 S35
�ST14 �ST24 0 S44 S45

3775
266664

z
zi
_xd
Din

U

377775
having the following equations,
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�11 _x� S13 _xd = S11z + S12zi + S14Din + S15U

�22 _xi = �ST12z + S22zi + S24Din + S25U (3.11)

0 = ����22zd � ST13z + S35U
0 = �Dout � ST14z � ST24zi + S44Din + S45U

From line 4 of 3.11,

Dout = �ST14z � ST24zi + S44Din + S45U (3.12)

having the constitutive relations of the resistive elements as

Dout = LDin (3.13)

By substituting 3.13 in 3.12,

Din =
�
L
�
I � S44L�1

���1 ��ST14z � ST24zi + S45U� (3.14)

In order to simplify, the next consideration is made

H =
�
L
�
I � S44L�1

���1
Now, by substituting 3.14 in rows 1 and 2 of 3.11

�11 _x� S13 _xd =
�
S11 � S14HST14

�
z +�

S12 � S14HST24
�
zi + (3.15)

(S15 + S14HS45)U

�22 _xi =
�
�ST12 � S24HST14

�
z +�

S22 � S24HST24
�
zi + (3.16)

(S25 + S24HS45)U

The complementary state variables are related to the state by the constitutive
law for the storage elements. In this case the matrix representing the consti-
tutive law of the storage elements is:

24 z
zi
zd

35 =
24 F 0 0
0 Fi 0
0 0 Fd

3524 x
xi
xd

35 (3.17)

Where matrix F is a diagonal matrix of linear coe¢ cients C�1 or L�1 for ele-
ments that are not a¤ected by dynamic causality.
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For elements a¤ected by dynamic causality during integral causality assign-
ment, matrix Fi is a diagonal matrix with terms

P
�C�1 or

P
�L�1:

For elements a¤ected by dynamic causality during derivative causality assign-
ment, matrix Fd is a diagonal matrix with terms

P
�C or

P
�L.

Using the constitutive relations for the storage elements 3.17 with 3.15, 3.16
and row 3 of 3.11, the implicit state equation is obtained

24 �11 0 �S13
0 �22 0
0 0 0

3524 _x
_xi
_xd

35 =
24 �

S11 � S14HST14
�
F

�
S12 � S14HST24

�
Fi 0�

�ST12 � S24HST14
�
F

�
S22 � S24HST24

�
Fi 0

�ST13F 0 ����22Fd

3524 x
xi
xd

35
+

24 S15 + S14HS45S25 + S24HS45
S35

35 [U ] (3.18)

3.6 Properties of the implicit model

3.6.1 Properties of the hybrid junction structure matrix

Assumption 1. Assuming that the initial con�guration of the causal hybrid
bond graph (i.e. before considering alternative switches states) has no ele-
ments in derivative causality, variables used in hybrid junction structure are
shown in 3.31.

With the variables used in Fig. 3.31, the junction structure equations may be
written as

2664
�11 0 0 0
0 �22 0 0
0 0 ���22 0
0 0 0 I

3775
2664

_x
_xi
zd
Dout

3775 =
2664
S11 S12 S13 S14 S15
�ST12 S22 0 S24 S25
�ST13 0 0 0 S35
�ST14 �ST24 0 S44 S45

3775
266664

z
zi
_xd
Din

U

377775
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Property 3. The submatrices S11, S22 and S44 are skew-symmetric.

Property 4. The submatrices S12 = ST12, S13 = S
T
13, S14 = S

T
14, and S24 = S

T
24.

Properties 3 and 4 are due to the continuity of power through the junction
structure.

Property 5. �22 and ���22 are so that �22°u��
�
22=[0].

Matrices �22 and ���22 are diagonal matrices. Elements of matrices �22 and ��
�
22

are Boolean expressions representing the combination of switches for which in-
dividual energy-storage elements a¤ected by dynamic causality are in integral
or in derivative causality, respectively. These expressions are derived from the
tables of truth of a group of switches whose dynamic causality interact with
each other.

This implies that for each combination of switches with Boolean variables (1 or
0) assigned ��22 is the complement of �22 (i.e. �

�
22 = �22 if the value of � in ��

�
22

is the complement of � in �22) when all modes of the switched system are valid.

Property 6. If rank
�
�22 + ��

�
22

�
< n, where n is the number of storage

elements, then a invalid mode exist.

For such con�gurations, the associated Boolean terms in �22 and ���22 are si-
multaneously 0.

The combinations of switches leading to invalid modes are excluded from �22
and ���22 as these lead to causal con�icts or non-solvable equations that cannot
be part of the junction structure equations.

For valid modes, the matrix �22 + ���22 is an identity matrix.

Property 7. Matrices are so that �22S2i = S2i for i=1,2,4,5.

This relation is caused by the fact that matrix �22 determines the integral
causality assignment in the energy storage elements, whose interactions are
described by submatrices S2i:

As a result of the above property, if a combination of switches is so that a
speci�c row of S2i 6= 0 for i = 1; 2; 4; 5; then the corresponding element in �22
has a value of 1 for the same combination of switches.

On the contrary, if a combination of switches is so that an element in �22 has
a value of 0, then the corresponding row of S2i = 0 for i = 1; 2; 4; 5 for the
same combination of switches.
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The same applies to ���22S3i = S3i for i = 1; 5: Where ��
�
22 = I (�) :

As a result of the above property, if a combination of switches is so that an
speci�c row of S3i = 1 for i = 1; 5 then the corresponding row of ���22 = 1 for
the same combination of switches.

On the contrary, if a combination of switches is so that the correspondent row
of ���22 = 0, then the correspondent row of S3i = 0 for i = 1; 5 for the same
combination of switches.

3.6.2 Properties of the hybrid implicit singular state
matrix

Continuing with assumption 1, the resulting hybrid implicit singular state
matrix is

24 �11 0 �S13
0 �22 0
0 0 0

3524 _x
_xi
_xd

35 =
24 �

S11 � S14HST14
�
F

�
S12 � S14HST24

�
Fi 0�

�ST12 � S24HST14
�
F

�
S22 � S24HST24

�
Fi 0

�ST13F 0 ����22Fd

3524 x
xi
xd

35
+

24 S15 + S14HS45S25 + S24HS45
S35

35 [U ]

To simplify notation, this matrix can be rewritten as

24 E11 0 E13
0 E22 0
0 0 0

3524 _x
_xi
_xd

35 =
24 A11 A12 0
A21 A22 0
A31 0 A33

3524 x
xi
xd

35+
24 B1B2
B3

35 [U ]
(3.19)

Based on the previous properties for the hybrid junction structure matrix, the
following properties are obtained

Property 8. If there are no storage elements with static integral causality,

E13 = A11 = A12 = B1 = 0
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Property 9. E22 is so that E22A2i = A2i for i = 1; 2.

This is due to E22 = �22 and its properties remains.

As a result of the above property, if a combination of switches is so that A22 = I
for i = 1; 2, then E22 = I for the same combination of switches. On the con-
trary, if a combination of switches is so that E22 = 0, then A2i = 0 for i = 1; 2
for the same combination of switches.

3.6.3 Properties of a single mode equation

The hybrid implicit singular state matrix can also be analysed for individual
con�gurations. In this case, there are three possible resulting equations,

� when there are only storage elements a¤ected by dynamic causality with
integral causality.

� when there are only storage elements a¤ected by dynamic causality with
derivative causality.

� when there are storage elements a¤ected by dynamic causality in both
integral and derivative causality (previous cases are present at the same
time).

For the case when all the storage elements have integral causality the implicit
state matrix is

�
I 0
0 I

� �
_x
_xi

�
=� �

S11 � S14HST14
�
F

�
S12 � S14HST24

�
Fi�

�ST12 � S24HST14
�
F

�
S22 � S24HST24

�
Fi

� �
x
xi

�
(3.20)

+

�
S15 + S14HS45
S25 + S24HS45

�
[U ]

This case only contains storage elements in integral causality, meaning that
the system could be considered as a linear time invariant system, which means
that the properties for that type of systems can be used as well.

The next case is when all storage elements a¤ected by dynamic causality have
derivative causality, having as implicit state matrix the following
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�
I �S13
0 0

� �
_x
_xd

�
=� �

S11 � S14HST14
�
F 0

�ST13F �Fd

� �
x
xd

�
(3.21)

+

�
S15 + S14HS45

S35

�
[U ]

In this case the system behaviour is similar to a linear time-invariant system
with dependant elements, therefore, it shares the same properties of this kind
of systems.

And for the last case it is the con�guration where there are storage elements
a¤ected by dynamic causality in both integral and derivative causality.

24 �11 0 �S13
0 �22 0
0 0 0

3524 _x
_xi
_xd

35 =
24 �

S11 � S14HST14
�
F

�
S12 � S14HST24

�
Fi 0�

�ST12 � S24HST14
�
F

�
S22 � S24HST24

�
Fi 0

�ST13F 0 ����22Fd

3524 x
xi
xd

35 (3.22)

+

24 S15 + S14HS45S25 + S24HS45
S35

35 [U ]

In this last case, the properties remain the same as with the hybrid implicit
singular state matrix due to be the same matrix.

3.6.4 Properties from the hybrid dynamic junction struc-
ture matrix

There are some properties that can be obtained from the junction structure
matrix (jsm) that allows to simplify the analysis of the system. This general
analysis allows to spend less time looking at individual con�gurations that
could not be admissible. It is easier to observe the non-admissible con�gura-
tions from the jsm.

In this case the parameters determining the non-admissible con�gurations are
usually found in lines containing Boolean parameters non-complement in the
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� matrix.

An example of this can be seen in the buck converter used on several literature
reviews.

In this case the non-admissible con�guration is determined by the lines that
contain the Boolean parameters that are not complement in the � matrix,
which are (�1 � �2) and

�
�1�2

�
.

2666666664

1 0 0 0 0 0 0
0 (�1 � �2) 0 0 0 0 0
0 0 �3 0 0 0 0

0 0 0 �1�2 0 0 0
0 0 0 0 ��3 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3777777775

2666666664

_pL2
_pL1
_pL3
pL1d
pL3d
fR1
fR2

3777777775
=

2666666664

0 a (�1 � �2) 0 0 ��3 0 ��3 0 0
�a (�1 � �2) 0 0 0 0 � (�1 � �2) 0 �1��2 ��1�2

0 0 0 0 0 0 ���3 0 0
0 0 0 0 0 0 0 0 0
�3 0 0 0 0 0 0 0 0
0 (�1 � �2) 0 0 0 0 0 0 0
�3 0 ��3 0 0 0 0 0 0

3777777775

26666666666664

fL2
fL1
fL3
_pL1d
_pL3d
eR1
eR2
V
G

37777777777775
This analysis is simple to do and save time to the user by avoiding the analy-
sis of all of the available con�gurations, as it is simpler to identify the non-
admissible con�gurations. This is of great help in more complex cases, where
a greater amount of time is needed for its analysis.

As there is only one general equation, the it is only necessary to change the
values of the Boolean parameters to obtain the con�guration to analyse. This
procedure simpli�es the analysis of bigger and more complex systems, as the
general equation remain the same, thus, each individual con�guration can be
obtained in a single substitution of Boolean parameters.

3.7 Summary

A new notation and some new representations for the di¤erent elements in-
volved in the modelling of hybrid systems and their relations were introduced.
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This allowed the introduction of a new junction structure and implicit equa-
tion that could be used as a standard notation for hybrid bond graph systems.

This notation can be used in non-bond graph singular systems and hybrid sys-
tems. This is due to the properties of the systems being carried from some of
the approaches on these systems.

From these results, it can be seen that, with a proper integration of the previous
approaches, a solid general representation of hybrid systems can be achieved.

A new DSCAP is proposed to �t with the new notation and avoid the exclusion
of some con�guration into the junction structure matrix.

Some properties of the hybrid junction structure and the implicit matrix for
the di¤erent cases were presented, which are useful in the analysis of the mod-
els.

Using this notation and representation, the analysis of the behaviour of the
models can be determined, which will be the main topic in the next chapter.

It must be noted that the analysis of switched junctions is mostly done using
electrical switches, this is because the main focus is done on the behaviour
during commutation, which is assumed to be the same for physical contact,
frictions, diodes, and other elements that represent commuting behaviours.
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Chapter 4

Analysis of Hybrid Dynamic
Systems

4.1 Preliminaries

The structural properties of the hybrid dynamic bond graph are identi�ed in
this chapter based on previous works done on singular systems and hybrid
bond graphs.

Structural properties can be obtained from the structure of the mathematical
model through matrix-rank criteria and the structure of the bond graph and
its causal assignment. In the case of the proposed approach introduced in this
research, the structural properties obtained are not limited to hybrid dynami-
cal bond graph systems, they can also be used on the analysis of hybrid bond
graph systems, hybrid systems, and singular systems due to being based on
approaches from these areas that shares common results.

Exploiting dynamic causality and its assignment leads to a new notation of
the resulting structure matrices, which is useful for further analysis of the sys-
tems. Some of the results are based on the inspection of causal paths between
elements that are a¤ected by dynamic causality.

Model properties are reviewed by using a new approach based on singular sys-
tems techniques and hybrid bond graph techniques. Most of the techniques
are based on LTI systems analysis, although some can be used on non-LTI sys-
tems, such as input-state stability and observers design for nonlinear singular
systems, ([106]), observer design problem for a large class of nonlinear sin-
gular systems with multi outputs ([107]), an invertible non-linear map which
transforms a non-linear singular system into a regular one that preserves lo-
cal properties under the application of speci�c feedback control laws ([108]),
an adaptative control for nonlinear singular systems ([109]), control design of
an induction machine ([110]), which increase the application of the approach
proposed in this research.
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This research is meant to be used for further development of the analysis tech-
niques of hybrid systems, allowing the obtention of more information from the
model compared to previous approaches.

4.2 Boolean matrix

As previously mentioned, a Boolean matrix is introduced in the analysis of
hybrid systems to represent the several con�gurations of the system in a single
equation. The Boolean parameters appear when the switched junctions are
used.

This Boolean matrix is an extension of the traditional analysis of hybrid sys-
tems by implementing the principles and techniques of singular systems theory
into the hybrid notation (i.e. simpli�cation of continuous and discrete modes,
control properties techniques). This allows a more compact representation of
the system and a simple representation of all the available con�gurations in a
single equation.

The Boolean matrix takes the place of the E matrix on the hybrid equation
E _x = Ax+Bu, where Boolean parameters also appear in matrices A and B.

This E matrix is a mixture of the identity matrix and a matrix containing
Boolean parameters. The identity matrix part corresponds to the storage el-
ements that are not a¤ected by dynamic causality, even though the elements
can be connected to an element a¤ected by dynamic causality, or a causal
path could exist between them. While the Boolean parameters in the matrix
represent the behaviour of the elements a¤ected by dynamic causality. This
can be seen in equation

24 �11 0 �S13
0 �22 0
0 0 0

3524 _x
_xi
_xd

35 = (4.1)

24 �
S11 � S14HST14

�
F

�
S12 � S14HST24

�
Fi 0�

�ST12 � S24HST14
�
F

�
S22 � S24HST24

�
Fi 0

�ST13F 0 ����22Fd

3524 x
xi
xd

35
+

24 S15 + S14HS45S25 + S24HS45
S35

35 [U ]
which has a simpli�ed representation,
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24 E11 0 E13
0 E22 0
0 0 0

3524 _x
_xi
_xd

35 =
24 A11 A12 0
A21 A22 0
A31 0 A33

3524 x
xi
xd

35+
24 B1B2
B3

35 [U ] (4.2)

where the general implicit form is introduced.

Here the matrixE11 indicates that the elements not a¤ected by dynamic causal-
ity can be determined in all of the admissible con�gurations, while the matrices
E22 and E13 represent the storage elements a¤ected by dynamic causality (el-
ements with integral causality assigned and elements with derivative causality
assigned respectively), which are dependent of the con�guration of the switch-
ing elements.

By identifying the di¤erent parts that are contained in the Boolean matrix E,
it is easier to do the structural analysis of the system from the general implicit
state equation.

4.3 Hybrid dynamic junction structure matrix

The hybrid junction structure matrix was introduced in the previous chapter
where the properties were explained.

For structural analysis it is important to understand the interactions contained
in the junction structure matrix, since those interactions reveal some of the
properties that were not used in previous approaches or that could not be ob-
tained before.

The junction structure obtained using the proposed approach in this research
simpli�es the calculation of the implicit state equation with the use of the
Boolean algebra generated by switched junctions.

Some of the structural properties can be obtained by observing the junction
structure matrix, nevertheless it is recommended to follow the procedure pro-
posed later in this chapter to avoid errors.

4.4 Dynamic causality

The notation for elements a¤ected by dynamic causality is modi�ed to be used
as a general notation rather than an alternative to hybrid bond graph model
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analysis.

The changes are made on how the a¤ected elements are allocated in the matri-
ces to simplify their identi�cation, rather than introducing a di¤erent notation.
This is made to clearly di¤erentiate the a¤ected elements from those that are
not a¤ected, not to mention to simplify further analysis of the matrices in-
volved.

Nevertheless, there are some changes for the causality assignment for the di¤er-
ent elements a¤ected by it. This is due to the fact that the previous approach
proposed by Margetts in [10] could generate confusion to the user at the mo-
ment of causality assignment to the model, where there was no preference on
energy storage elements over resistive elements when causal con�ict occurs.

In the previous approaches there was a need to set some constraints in order
to avoid undesired behaviours (set static causality), in this case, with the re-
vised procedure this is not necessary anymore. Those constraints were set to
avoid causal con�icts or non-valid con�gurations while assigning causality to
the model.

While using dynamic causality, there are cases where a kinematic constraint is
created between rigid bodies (i.e. a causal path between two I-elements, one of
which will be in derivative causality) when the switched junction is ON. This
is displayed in Figure 4.1.

Figure 4.1: Behavior of elements a¤ected by dynamic causality

Figure 4.1 shows how the dynamic causality a¤ects the di¤erent elements on
the system. In the initial con�guration (solid causal strokes) it can be seen that
the interaction between the elements does not exist because the commuting
element is in OFF state, therefore both elements are in integral causality. As
soon as the commuting element is activated and change to an ON state (dotted
causal strokes) the element I2 change its causality and it is now dependent of
the element I1.

This �forced�change in causality allows to represent the physical behaviour
of the elements, which is one of the advantages of using dynamic causality in
the proposed approach.
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If the causality remained static during the change of con�guration, a causal
con�ict will be created, which represent a �forbidden mode�. This behaviour is
explained next.

Property 10. Causal con�ict in the Dynamic causality assignment .
When a causal con�ict occurs during the dynamic causality assignment, this
indicates that the con�guration is a �forbidden mode�.

Forbidden modes are a re�ection of a real case such as short-circuit or destruc-
tive behaviour (e.g. two masses colliding or gears coupling while rotating in
contrary direction).

4.5 Valid con�gurations

As previously stated, the commuting elements have two di¤erent con�gura-
tions, ON and OFF. This means that for every commuting element present
in the system there are two con�gurations, which could be simpli�ed as a 2i

con�gurations, where i is the number of commuting elements.

The solvability of the hybrid systems determines if there are non-admissible
modes. In order to determine the solvability, the following considerations are
made using Equations 4.1 and 4.2,

Property 11. If matrices �22 and ���22 are complement of each other, all
available modes are valid.

This can be proved using rank( E22 A33 ) = n, where n is the number of
storage elements.

Property 12. If matrices �22 and ���22 are not complement of each other,
then rank

�
E22 A33

�
< n, this is because E22 = �22 and A33 = ���22.

When this happens, at least one state variable cannot be determined for that
speci�c con�guration, which is caused by a causal con�ict.

These considerations are based on the properties of the matrices �22 and ���22,
and the fact that the non-admissible con�gurations can be observed with the
interaction of these matrices.

To prove the previous property, the theory of the minor of a matrix is used.
This is due to the submatrices E22 and A33 being square matrixes of n order.
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De�nition 24 Minor of a square matrix [82]. A minor (i; j) of a square
matrix is the determinant of the submatrix obtained by deleting the i-th row
and the j-th column. This number is denoted as Mij.

The elimination of redundant lines is the same procedure that is done for the
analysis of hybrid systems, for each con�guration the values for � are assigned,
then if there are rows that only contain zeros, those rows and their respective
columns are deleted.

Then, for property 11, if matrices E22 and A33 (Equation 4.2) are comple-
ment of each other, the resulting rank( E22 A33 ) is of full rank, as those are
diagonal matrices. This can be proved by substituting the values of � for each
operational, and the result, after substitution, of the matrix (E22 � A33) must
be the identity matrix.

For property 12, if matrices E22 and A33 are not complement of each other,
that means that at least one con�guration will contain two rows full of ze-
ros, this is because during these con�gurations there is no transfer of power
between the elements a¤ected by the switched junction, which will create the
rows containing zero values, therefore, this will cause a drop of the rank.

This analysis leads to the introduction of a general matrix M; which is based
on the previous analysis and allows to simplify the analysis of the di¤erent
con�gurations.

Let a matrix M be the concatenation of matrices E and A.

M =
�
E A

�
To simplify the analysis of hybrid systems, a reduced matrix is proposed in
order to omit redundant rows and columns that appear during commutation.

Notation 4 Reduced matrix M̄ij. The reduced matrix �Mij is the result of
omitting the ith row and the jth column.

Notation 5 Reduced matrix �Mr1;:::;kc1;:::;k;1+k;:::;2k : The reduced matrix
M̂r1;:::;kc1;:::;k;1+k;:::;2k is the reslt of omitting more than one row and more than
one column.

The reduced matrix �M is used in hybrid systems where there is only one com-
muting element, which leads to the omission of one of the rows and one of
the columns in the general state equation matrix to represent a determined
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con�guration.

This approach is proposed for hybrid systems; however, the notation needs to
be modi�ed for models that contains more than one switched junctions, there-
fore the reduced matrix M̂ is introduced.

As the proposed notation di¤erentiate the elements a¤ected by dynamic causal-
ity from the ones that are not a¤ected, this is done by using Boolean para-
meters, the omitted lines would not be consecutive for most of the con�g-
urations, therefore the proposed notation for the hybrid reduced matrix is
M̂r1;:::;kc1;:::;k;1+k;:::;2k ; where M̂ is the reduced notation of the hybrid matrices
E and A, subindex r1;:::;k denotes the redundant rows to be omitted, and the
subindexes c1;:::;k;1+k;:::;2k denotes the redundant columns to be omitted.

In this case, for the columns it is necessary to delete the columns in matrices E
and A, which is the reason why the subindex contains the terms 1+ k; : : : ; 2k.
This means that the columns to be deleted will be in the range of 1; : : : ; k for
the E matrix, while the columns deleted in the range of 1 + k; : : : ; 2k are for
A matrix.

The omitted rows and columns are those that contain only elements of value
0 in the analysed con�guration, which could change to value 1 in another con-
�guration.

An example of this is displayed next where two lines and two rows are omitted,

c = 1; 3

r = 2; 3

2666664
e11 e12 e13 � � � e1k
e21 e22 e23 � � � e2k
e31 e32 e33 � � � e3k
...

...
...

. . .
...

ek1 ek2 ek3 � � � ekk

3777775

2666664
a11 a12 a13 � � � a1k
a21 a22 a23 � � � a2k
a31 a32 a33 � � � a3k
...

...
...

. . .
...

ak1 ak2 ak3 � � � akk

3777775

2666664
b11 � � � bu
b21 � � � b2u
b31 � � � b3u
...

. . .
...

bk1 � � � bku

3777775
having as a resulting reduced matrix,

M̂r2;3c1;3 =

26664
e12 e14 � � � e1n
e42 e44 � � � e4n
...

...
. . .

...
ek2 ek4 � � � ekn

37775
26664
a12 a14 � � � a1n
a42 a44 � � � a4n
...

...
. . .

...
ak2 ak4 � � � akn

37775
26664
b11 � � � b1n
b41 � � � b4n
...

. . .
...

bk1 � � � bkn

37775
This is necessary because each con�guration will have lines and rows contain-
ing only zero elements, which will lead to having redundant lines that could
interfere with a proper analysis.
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Proposition 5 Admissible con�gurations. The con�gurations are deter-
mined as admissible or non admissible based on the following criteria:

if rank
�
M̂r1;:::;nc1;:::;k

�
= n then the con�guration is admissible

if rank
�
M̂r1;:::;nc1;:::;k

�
< n then the con�guration is non admissible

where n is the number of energy store elements.

This means that the con�guration needs to be of full rank in order to be con-
sidered as admissible. In the case that the con�guration is not of full rank,
then the behaviour of at least one of the energy store elements in the con�gu-
ration cannot be obtained, rendering the con�guration as non-admissible.

4.6 Properties of hybrid dynamic bond graph
systems

The analysis of structural properties is usually done by using matrix-rank cri-
teria, which in this case is the most appropriate approach due to the fact that
the matrices that are obtained, can be exploited to obtain more information
from the system�s model.

In order to use this analysis, it is necessary to generate an input-output model,
i.e. a model with causality assigned.

Previous approaches are not highly recommended because most of them intro-
duces constraints on the model, which does not represent the physical behav-
iour for all the con�gurations of a hybrid system. The use of dynamic causality
and switched junctions allows a closer representation of the physical behaviour
of the system and the approach can be as reliable as geometric analysis such
as proposed by Lewis [83] and Willems [84].

4.6.1 Controllability of hybrid dynamic bond graph sys-
tems

Controllability of a system depends on the existence of a connection between
a source and a storage element. Therefore, the controllability matrix is a func-
tion of the A and B matrices, which at the same time are comprised from the
submatrices of S.
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It is established that a system is controllable if the controllability matrix has
a rank equal to the model order. This subsection shows the di¤erent types of
controllability and how it is determined for the di¤erent type of systems before
obtaining the controllability matrix for hybrid dynamical bond graphs.

4.6.1.1 Singular systems controllability

The controllability of a system is determined by the ability to control a de-
termined variable from an input. There are di¤erent types of controllability
depending on the number of states that can be reached from the input.

To analyse the controllability of hybrid systems, an approach based on sin-
gular systems and bond graph is introduced. This is due to singular systems
and bond graph controllability sharing the same principles. This approach
also uses switched junctions and dynamic causality in order to obtain more
information from the model.

Controllability of singular systems has been extensively analysed in [57, 77, 85,
86, 87, 88] and [89], having di¤erent approaches based on the type of singular
system, or are a variation from a traditional control technique.

Singular systems are described in the form

E _x (t) = Ax (t) +Bu (t) (4.3)

where E;A 2 Rn�n; B 2 Rn�m; x 2 Rn; u 2 Rm.

In order to di¤erentiate the hybrid singular systems (singular systems contain-
ing Boolean notation used during this research) from regular singular systems,
a new notation is proposed.

De�nition 25 Hybrid singular switched systems are described in the form

E� _x = A�x (t) +B�u (t)

where E�; A� 2 R(n1+2n2)�(n1+2n2) and B� 2 Rn1+2n2�m are constant matrices
containing Boolean parameters, where n1 is the number of energy storage el-
ements not a¤ected by dynamic causality, n2 is the number of energy storage
elements a¤ected by dynamic causality, and m is the number of inputs.

In this case the dimension of the matrices is n1+2n2 in order to di¤erentiate the
storage elements not a¤ected by dynamic causality and the storage elements
a¤ected by dynamic causality, that have two lines for each storage element
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(one for each con�guration). This is because the commutation of switching
elements can change the behaviour of the storage elements from independent
element to dependent element or the other way around.

It must be noted that only one line for each element is present at a given time,
which represents the con�guration at that given time.

All singular systems must be solvable before they can be analysed.

De�nition 26 Solvability [57]: �The system (4.3) is solvable if det (sE � A) 6=
0, meaning that there is a unique solution for any given admissible initial con-
dition for any given u (t).�

In [87], Yamada and Luenberger approach is based on the descriptor systems
in the form

Ex (t+ 1) = Ax (t) +Bu (t) t = 0; 1; � � � :
described in the canonical form

E =

E11 E12

"
n
#

E21 E22

"
d
#

 n!  d!

rank (E) = rank (E11) = n

n = n+ d

this rank condition implies that E22 � E21E�111 E12 = 0.

Then matrices A and B are partitioned as well,

�
F11 F12
F21 F22

�
,
�

I 0
�E21E�111 I

� �
A11 A12
A21 A22

� �
I �E�111 E12
0 I

�

With this, they proceed to transform 4.3,based on graph theory, with the as-
sumption of causality, the resulting canonical form is:
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�
y (t+ 1) = �Ay (t) + �B1u (t)

z (t) = � �B2u (t)

where

�A , D
�
A11
A21

�
; �B1 , D

�
B1
B2

�
; �B2 , F�122

�
�E21E�111 I

� � B1
B2

�
D , E�111

�
I �F12F�122

� � I 0
�E21E�111 I

�
;

�
y (t)
z (t)

�
, W�1x (t)

W ,
�
I �E�111 E12
0 I

� �
I 0

�F�122 F21 I

�

Then, the causal descriptor system 4.3 is

i) R-controllable if and only if

rank
�
�B1; �A �B1; �A

2 �B1; � � � ; �An�1 �B1
�
= n (full) (4.4)

ii) C-controllable if and only if, in addition to (4.4),

�B2 has full row rank.

Controllability of singular systems with feedback and derivative feedback was
not addressed at the time; that is why Garcia-Plana and Tarragona decided
to propose an approach to this in [89]. They used the triplets of matrices
(E;A;B) to do this.

Using the results introduced in [90], a system (E;A;B) 2 R is controllable if
and only if all of the following conditions are veri�ed

rank
�
sE � A B

�
= n; for all s 2 C;

rank
�
E B

�
= n:

rank
�
B AB � � � An�1B

�
= n

where n is the number of state variables.
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This approach is useful to consolidate that the controllability of the systems
is determined by the matrices E; A and B, making the use of those matrices
the main approach for this research.

Based on these previous approaches, it can be seen that controllability can
be determined from the matrices E; A and B, which could change for each
con�guration.

4.6.1.2 Hybrid systems controllability

Controllability of hybrid systems is usually analysed with linear systems tech-
niques, such as [30, 91, 92], which are based on Lyapunov functions or set
several constraints into the system (controlled switching, limited interval of
time, to name some), and this is not optimal or accurate. For that reason
other approaches were proposed.

In [93], Hihi propose an observability condition for the hybrid system,

Ei _x = Aix+Biu (4.5)

where Ei, Ai 2 Rn�n; Bi 2 Rn�m; are the matrices of the ith mode, and the
subindex i denotes the mode (i = 1; 2; : : : ; n; where n is the number of modes),
x 2 Rn; u 2 Rm.

As controllability and observability are dual properties, based on the results
obtained in [93], the controllability condition is:

C =
�
C1 C2 � � � Cq

�
where,

Ci =
�
Bi AiBi � � � (Ai)n�1Bi

�
From there some conditions for the controllability are de�ned,
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Remark 6 "1) The system (4.5) can be controllable if there is only one
controllable subsystem (mode)
2) It is possible that no subsystem is controllable but that the system

E _x (t) = Ax (t) +B1u (t)

y (t) = C1x (t)

is controllable".

Campbell et al [85] and Losse [77] reached a more common approach for the
controllability that is being more commonly used.

Based on the results from these previous works, it can be concluded that the
conditions for the controllability of a singular system are:

Proposition 6 Controllability of a singular system: The model is con-
trollable if and only if:
The system

E _x = Ax+Bu; (4.6)

complies with the controllability condition

rank
�
B EAB (EA)2B : : : (EA)n�1B

�
= n (4.7)

where n is the number of storage elements.

Proof. In the case of singular systems, matrix E is singular, A represents the
interactions of the elements on the system, and B represents the interaction
of the storage elements with the inputs. Therefore,

� If rank(B) < n, then at least one energy storage element cannot be
reached from any input, then the system is not C-controllable.

� If rank(B) = 0, then the system is not controllable

� If rank[E � AB] < n, then at least one storage element is disconnected
from the system and cannot be controlled.

4.6.1.3 Hybrid bond graph systems controllability

Controllability in bond graph is dependent on the existence of a causal path
between a source element and a storage element with integral causality. This
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is the reason why the matrices A and B are commonly used to determine the
controllability of a system by checking the rank of:

rank
�
B AB A2B � � � An�1B

�
= n (4.8)

where n is the number of storage elements with integral causality. This re-
mains valid for hybrid systems for all of the di¤erent approaches proposed so
far. The reason for this was that the hybrid systems were considered to have
the same number of states for all the possible con�gurations, which is clearly
not true for all the systems when a commutation occurs.

Hihi proved that the use of the rank
�
B AB A2B � � � An�1B

�
= n is

valid for hybrid systems in [13], where the system (4.3) is considered to have
instant changes and all the elements are in integral causality before and after
the commutation.
Based on a previous work ([94]) the conditions for controllability are men-
tioned:

Proposition 7 [94] "The hybrid system is structurally state controllable if:
1. All dynamical elements in integral causality are causally connected with an
input source.
2. BG� rank

�
Ai Bci

�
= n".

These conditions are from the classical bond graph analysis, and that is the
reason why the elements need to remain with the same causality.

For hybrid systems using switched junctions, in [10] the conditions for a com-
pletely controllable (C-controllable) system are mentioned, which are:

Property 13. Structural C-controllability of a Hybrid Bond Graph.

1. There must be a causal path between each storage element with integral
causality an a source element for all of the system�s con�gurations. This means
that if a causal path crosses a switched junction the system is not C-controllable
but can be reachable controllable (R-controllable).

2. The rank of the controllability matrix rank
�
B AB A2B � � � An�1B

�
=

n is equal to the model order.
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In this work a new formulation is introduced, therefore some changes to the
controllability matrix are made.

In order to show these changes, the new notation developed in chapter 3 is
displayed next:24 �11 0 �S13

0 �22 0
0 0 0

3524 _x
_xi
_xd

35 =24 �
S11 � S14HST14

�
F

�
S12 � S14HST24

�
Fi 0�

�ST12 � S24HST14 (�)
�
F

�
S22 � S24HST24

�
Fi 0

�ST13F 0 ����22Fd

3524 x
xi
xd

35
+

24 S15 + S14HS45S25 + S24HS45
S35

35 [U ]
Having as a general notation the following equation:24 E11 0 E13

0 E22 0
0 0 0

3524 _x
_xi
_xd

35 =
24 A11 A12 0
A21 A22 0
A31 0 A33

3524 x
xi
xd

35+
24 B1B2
B3

35 [U ]
Having in consideration the previous conditions property 11, det(sE�A) 6= 0,
and rank[ EA B ] = n and results for singular systems and hybrid bond
graph systems (rank

�
sE � A B

�
= n; rank[ B AB A2B : : : An�1B ] =

n), by using the new suggested notation, the following conditions must be pre-
sented in order to determine the controllability of a system.

Proposition 8 A hybrid system is C-controllable if and only if the following
conditions are met:

1. The switched junction does not a¤ect any storage element causality.

2. The submatrices B1 and B2 have a value di¤erent of 0.

3. Due to the submatrix B2 being dependent on the submatrix E22, and the
submatrices A3k (where k = 1; 3) and B3 being used for the con�gura-
tions when the prefered causality assignment is derivative, the equation
to determine the controllability of the system changes to

rank

�
B1 E11A11A12B1 (E11A11A12)

2B1 : : : (E11A11A12)
n�1B1

B2 E22A21A22B2 (E22A21A22)
2B2 : : : (E22A21A22)

n�1B2

�
= n

(4.9)
where n is the number of storage elements.
If condition 1 is not met but conditions 2 and 3 hold, then the hybrid system
is R-controllable.
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Proof. Note that E11 is the submatrix that determines the presence of inde-
pendent storage elements not a¤ected by dynamic causality, A11 is the sub-
matrix that represent the interaction of the storage elements not a¤ected by
dynamic causality with the rest of the elements, A12 is the submatrix that
represent the interaction of the storage elements a¤ected by dynamic causality
with the rest of the elements, and B1 is the submatrix that relates the inputs
with the independent storage elements. If the elements in B1 are equal to 0
when the elements in E22 change its value, this means that there is a causal
path between the storage elements and the input. Nevertheless, if in a given
con�guration the elements contained in E11 are equal to 0, this means that
there are no independent elements not a¤ected by dynamic causality, there-
fore, B1 does not exist.

Also, the submatrix E22 must always contains n � m rows (where m is the
number of non-commuting elements), if this is not true, this means that there
is a causal con�ict for that speci�c con�guration.

If any of the previous conditions (or both) are present, the rank of the control-
lability matrix will drop, meaning that the system is not controllable because
there are not causal paths between the storage elements and the inputs, oth-
erwise the system remains controllable.

Proposition 9 The non-controllability of a con�guration is determined by the
causal paths that cross a switched junction when a switched junction is in OFF
con�guration.

Example 7 This can be seen in the model illustrated in Figure 4.2,

Figure 4.2: Determination of controllability using causal paths

In this case the element I1 can be controlled in all of the con�gurations because
there is a direct causal path with the source element, however, the elements C
and I2 are only controllable when the switched junction is in ON con�guration,
this is because the causal path is severed when the switched junction is in OFF
con�guration.
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Proposition 10 Due to the fact that x and xi could have di¤erent order,
and by using the singular systems approach, the controllability matrix can be
reduced to the expression 4.9, were the rank drops when a causal path crosses
a switched junction in OFF con�guration.

In this case E11 is used to determine if there are elements with integral causal-
ity not a¤ected by dynamic causality for any con�guration, while B1 is used
to determine if there is a causal path between an input and a storage element
crossing a switched junction. E22 is used due to being the submatrix that
determines the actual con�guration, therefore the values on the submatrix B2
depends on the value assigned to E22 (i.e. the correspondent B2 value is not
considered if its correspondent E22 value is equal to 0).

This can be explained using the previous example. The implicit equation that
describe its behaviour is,

2664
1 0 0 0
0 � 0 ���
0 0 � 0
0 0 0 0

3775
2664

_q
_p2
_p1
_p1d

3775 =
2664

��R
L

��
C2

��
C1

0
�
L

0 0 0
�
L

0 0 0

0 ���
C2

0 ���
C1

3775
2664
q
p2
p1
p1d

3775+
2664
1
0
0
0

3775 [V ]

where E11 =
�
1 0
0 �

�
; B1 =

�
1
0

�
; E22 = [�] ; B2 = [0] :

If the Boolean parameters are substituted, the rank
�
E11 B1

�
does not

change for the ON con�guration, however, it drops during the OFF con�gura-
tion, which means that the system is non-controllable for that con�guration.

4.7 Controllability conditions of hybrid dynam-
ical systems

Hybrid dynamical systems have a general implicit equation as follows,

24 E11 0 E13
0 E22 0
0 0 0

3524 _x
_xi
_xd

35 =
24 A11 A12 0
A21 A22 0
A31 0 A33

3524 x
xi
xd

35+
24 B1B2
B3

35U (4.10)

From this general implicit state equation the controllability conditions for the
di¤erent con�gurations can be obtained.

A state variable can be controlled only if there is a direct connection between
a source and the state variable. However, it can be reachable controlled if the

104



state variable is dependent of a state variable that can be controlled.

The following conditions are necessary and su¢ cient to determine the control-
lability of the admissible con�gurations from 4.10.

Proposition 11 Hybrid dynamical systems are controllable if and only if:

� rank
�
E11 B1

�
= n1 (where n1 is the number of storage elements not

a¤ected by dynamic causality)

� the con�gurations are C-controllable when rank
�
E22 B2

�
= n2.

(where n2 is the number of storage elements a¤ected by dynamic
causality)

� the con�gurations are R-controllable when E22�B2 6= 0 and A33�B3 6=
0, and also rank

�
B2
B3

�
= n, where n is the number of energy

storage elements; otherwise the con�gurations are not controllable.

When rank
�
E11 B1

�
< n1 all the con�gurations are not controllable.

The con�gurations are also not controllable when rank
�
A33 B3

�
6= n.

Proof. From the non simpli�ed general implicit equation

24 �11 0 �S13
0 �22 0
0 0 0

3524 _x
_xi
_xd

35 =
24 �

S11 � S14HST14
�
F

�
S12 � S14HST24

�
Fi 0�

�ST12 � S24HST14 (�)
�
F

�
S22 � S24HST24

�
Fi 0

�ST13F 0 ����22Fd

3524 x
xi
xd

35
+

24 S15 + S14HS45S25 + S24HS45
S35

35 [U ]
It can be seen that E11 = �11, therefore,

� if �11 6= I then at least one of the elements with static causality is in a
path a¤ected by a switching element, and cannot be reached when the
switched junction(s) is in OFF con�guration,

making those con�gurations non controllable. This is because the ele-
ments with static causality are not a¤ected by the behaviour of dynamic
causality, but a switched junction could be between a source and another
element that share a causal path with the element with static causality,
then making it unreachable during the OFF con�guration even though
it does not change its causality.

� if rank [B1] 6= n then at least one of the state variables cannot be reached
from a source element, therefore that con�guration is non controllable.
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This is because B1 represent the interaction between the source elements
and the storage elements, therefore, if the rank of B1 is not of full rank,
then there is at least one storage element that cannot be controlled from
a source element for the con�gurations where rank [B1] 6= n1.

It can be seen that E22 = �22 and A33 = ����22Fd, therefore,

� the behaviour of these matrices is ruled by Property 4, which was
introduced in Chapter 3 and all of their interactions are explained.

� if rank [B2] 6= n or rank [B3] 6= n then at least one of the state variables
with dynamic causality cannot be reached from a source element. This is
because B2 and B3 represent the interaction between the source elements
and the storage elements a¤ected by dynamic causality in their di¤erent
con�gurations, therefore, if the rank of B2 or B3 are not of full rank,
then there is at least one storage element a¤ected by dynamic causality
that cannot be controlled from a source element for the con�gurations
where rank [B2] 6= n2 or rank [B3] 6= n3.

4.7.1 Observability of hybrid dynamic bond graph sys-
tems

Observability remains as the dual of controllability for singular systems, there-
fore the properties are similar.
Proposition 12 Observability of singular systems: The model is ob-
servable if and only if:

1. It is C-observable and R-observable

2. and rank

�
EA
C

�
= n:

4.7.1.1 Observability of hybrid systems

One of the most commonly used approaches to the analysis of hybrid systems
was introduced by Hihi in [93],where the observability of the system (2.14) for
hybrid systems is given by the equation:

O =
�
OT1 OT2 � � � OTq

�T
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where

Oi =
h
CTi ATi C

T
i � � �

�
ATi
�n�1

CTi

iT
where i is the ith mode.
From there some conditions for the observability are de�ned,

Remark 8 [95]"There are algebraic su¢ cient conditions, and necessary and
su¢ cient algebraic conditions, which are:
Algebraic su¢ cient conditions:
1) The system (4.5) can be observable if there is only one observable subsystem
(mode).
2) It is possible that no subsystem is observable but that the system (4.5) is
observable.
Necessary and su¢ cient condition:
In [17] and [93] the following subspace sequence is de�ned as

G1 = O1 + � � �+Oq =
qP
i=1

hAtijCti i ;

where
qP
i=1

hAtijCti i = Ct1+At1Ct1+� � �+(At1)
n�1

Ct1 � � �Ctq+AtqCtq+� � �+(At1)
n�1

Ctq

Gj+1 =
qP
i=1

hAtijGji ; j = 1; 2; : : : and

G =
P
k=1

Gk:

The system 4.5 is observable, if and only if rank (G) = n, where n is the
number of storage elements."

As can be seen, the observability matrix remains the same for hybrid systems,
but it is also proved that the observability of the whole system does not de-
pends on a single con�guration, which is useful for the development of the
observability matrix in this research.

4.7.1.2 Observability of hybrid bond graphs

Structural observability of bond graph models is dependent on the existence
of a causal path between a detector element and all storage elements. This is
the reason why the matrices A and C are used to determine the observability
of a system by checking the rank of:
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rank

2666664
C
CA
CA2

...
CAn�1

3777775 = n

where n is the number of storage elements. This remains valid for hybrid sys-
tems for all of the di¤erent approaches.

For hybrid bond graph systems, one of the most used approaches is the one
proposed by Hihi in [95]. This approach is based on the results of structural
observability of LTI bond graph systems, from where the following de�nition
results:

Theorem 9 Hybrid bond graph observability [95]: �The Controlled Switch-
ing Linear System is structurally state observable if:

- On the BGI all dynamical elements in integral causality are causally con-
nected with a continuous output De or Df associated to y (t) or a discrete
output Sw (commuting element) associated to TOi (t) (output of the commut-
ing element), where TOi (t) is composed of the complementary variables in the
switches.

- BG � rank
�
Ai
Ci

�
= n. With Ci =

�
Ci
Cdi

�
; i 2 f1; : : : ; qg, where Cdi are

the storage elements directly connected to a commuting element.�

This result proves that the observability matrix for hybrid bond graph systems
is similar to the one for singular systems, which will allows the implementation
of both approaches for the approach developed in this research.

With both singular systems observability and bond graph observability hav-
ing similar principles, this can also be used to determine the observability of
hybrid systems using switched junctions and dynamic causality.

For hybrid systems using switched junctions, in [10] the conditions for an
observable system are mentioned, which are:

1. There must be a causal path between each storage element with integral
causality and a detector element for all of the system�s con�gurations.
This means that if a causal path crosses a switched junction in OFF
con�guration the system is not reachable observable (R-observable).

2. The rank of the observability matrix is equal to the model order.
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In this work a new notation is introduced, therefore some changes to the ob-
servability matrix are made.

In order to show this changes, the new notation is displayed next:24 �11 0 �S13
0 �22 0
0 0 0

3524 _x
_xi
_xd

35 =24 �
S11 � S14HST14

�
F

�
S12 � S14HST24

�
Fi 0�

�ST12 � S24HST14
�
F

�
S22 � S24HST24

�
Fi 0

�ST13F 0 ����22Fd

3524 x
xi
xd

35
+

24 S15 + S14HS45S25 + S24HS45
S35

35 [U ]
Y =

� �
S51 � S54HST14

�
F

�
S52 � S54HST24

�
Fi
� � x

xi

�
+S53 _xd+[S55 + S54HS45] [U ]

Having as a simpli�ed notation the following equation:

24 E11 0 E13
0 E22 0
0 0 0

3524 _x
_xi
_xd

35 =
24 A11 A12 0
A21 A22 0
A31 0 A33

3524 x
xi
xd

35+
24 B1B2
B3

35 [U ]
Y =

�
C1 C2

� � x
xi

�
+ S53 _xd + [D] [U ]

Remark 10 The notation for the output of the system does not match the
classical notation of the output Y = CX+DU due to the commuting elements.
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Proposition 13 Having in consideration the previous conditions that

� the system must be R-observable,

� rank
�
E
C1

�
= n

� there must be a causal path between each storage element with
integral causality a detector element for con�gurations with all
switched junction in ON con�guration, and the observability equation
O =

�
OT1 OT2 � � � OTq

�T
, by using the new suggested notation,

the following conditions must be presented in order to determine the
observability of a system.

1. A hybrid system is completely observable when the switched junc-
tions are in ON con�guration, and there is a casual path between a
designated detector element and a storage element with integral causality.

2. Due to the observability being dependant on the change of causality on
the output, the resulting observability amtrix of the system is

rank

�
C1A11A12
C2A21A22

�T
= n (4.11)

where n is the number of storage elements with integral causality.

Proof. Note that C1 is the submatrix that determines the presence of storage
elements not a¤ected by dynamic causality that are reachable form the output,
and C2 is the submatrix that relates the storage elements a¤ected by dynamic
causality that can be reached from the output. If the elements in C1 or C2 are
equal to 0; this means that these elements cannot be reached from the output.

It can be seen that during commutations these matrices can change its rank
due to the causal path between the output and a storage element crosses a
switched junction in OFF con�guration.

In this notation the submatrices E11and E22 are not included in the observ-
ability matrix due to be implicit included, this means that C1 depends on E11
and C2 on E22, nevertheless, when the submatrices E11 and E22 have value
of 1 does not implies that all the storage elements not a¤ected by dynamic
causality can be reached from an output.
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Proposition 14 The non-observability of a con�guration is determined by the
causal paths that cross a switched junction in OFF con�guration, meaning that
the elements that have a causal path crossing a switched junction are the ones
that can become non-observable when a commutation occurs.

As observability being the dual property of controllability, the same principle
applies to the observability of the elements using causal paths. Using the model
illustrated in Figure 4.3, the non-observable con�gurations can be obtained,

Figure 4.3: Example of non-observable con�gurations

It can be seen that during the ON con�guration the system is observable from
the detector element, however its non-observable during the OFF con�guration
because the causal path between the detector element and the storage element
is severed.

Proposition 15 The system is considered C-observable if the ranks of the ma-
trices A and C are equal to the number of storage elements, and R-observable
if at least one of the storage elements can be reached from the output.

Similar to the non-observability of the system, if the storage elements cannot
be reached using a causal path, the elements are non-observable. In Figure 4.4
an example of this is illustrated.

Figure 4.4: Example of C-observable and R-observable con�gurations

In this case, during the ON con�guration all the storage elements can be
reached from the output (detector), while during the OFF con�guration only
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one storage elements can be reached.

4.7.2 Stability of hybrid dynamic bond graph systems

The stability of the hybrid systems is usually established by �nding the eigen-
values of the characteristic polynomial. In this case roots with positive real
parts indicate unstable behaviours. This a numerical approach rather than a
structural one.

De�nition 27 Structural stability of hybrid systems [75]: "Where as-
ymptotic stability does not exist, it indicates the presence of �zero modes�
(eigenvectors with vanishing eigenvalues). Recall that �structurally null modes�
(i.e. eigenvalues which are zero or the poles at the origin) are given by the stor-
age elements which are in integral causality when preferred derivative causality
is assigned".

To obtain the number of structural null modes, two approaches can be used in
hybrid bond graph analysis. One is introduced by Margetts in [10], where it is
described that the stability of hybrid bond graph systems depends on the num-
ber of storage elements that remains with integral causality plus the storage
elements a¤ected by dynamic causality when a preferred derivative causality
is assigned to the bond graph model. The resulting stability equation is:

D0 = (dim [X] + dim [Xi])BGD

where X are the storage elements not a¤ected by dynamic causality, and Xi

are the storage elements a¤ected by dynamic causality with integral causality
assigned.

The other approach is the traditional mathematical approach, which can be
expanded to identify k structurally null modes. These structurally null modes
correspond to the elements that remains in integral causality when a preferred
derivative causality is assigned. Having as a characteristic polynomial for the
hybrid systems:

P (s) = jsE (�)�A (�)j = sk
�
sq + aq�1s

q�1 + : : :+ a1s+ a0
�
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where q is the bond graph rank. The k structurally null modes have no steady
state and therefore not asymptotically stable.

4.8 Summary

The purpose of this chapter was to revise the previous results and approaches
for the analysis of structural analysis. In this case the main di¤erence with the
previous approaches is the use of dynamic causality and switched junctions,
which allows the exploitation of previous unused properties of the systems.

There is a new notation that it is intended to be proposed as a standard for
hybrid bond graphs and singular systems. It is expected to be used in a more
robust analysis of the systems in a future due to have been proven that it
retains the properties of previous approaches while having improvements from
di¤erent approaches that allows a more complete representation of the system
behaviour.

The results are not only useful for the analysis of hybrid bond graphs but also
for hybrid and singular systems, this is due to the implementation of Boolean
algebra into the general notation.

After obtaining these results for the structural analysis, the necessary consid-
erations for a proper software simulation of the models will be introduced in
the following chapter.
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Chapter 5

Introduction to the use of
software tools for the analysis
and simulation of Hybrid
systems

5.1 Preliminaries

The use of computational tools has proven to be helpful during the analysis of
physical systems. However, it is necessary to obtain the mathematical model
of the system before it can be analysed. This mathematical model needs to be
obtained in a set of assigned statements. If the procedure to obtain the math-
ematical model is standardized, it can be implemented into a computational
tool, which in this case can be a simulation software.

In the case of bond graph models, there is a standard procedure to obtain the
mathematical model called SCAP. This approach is used for LTI systems in
various software such as 20-Sim, Dymola, MATLAB (with the use of Simulink
add-ons), CAMP-G, MS1, to name some.

However, this approach is not suitable for hybrid systems, which leads to the
use of the HSCAP that deals with the change in the number of independent
variables during commutation.

To implement the HSCAP into software it is necessary to introduce a set of
rules to deal with causality assignment problems.

For hybrid systems most of these problems arise from the use of dynamic
causality, which allows the change in causality in the model.

This change of causality in the model could lead to causal con�ict. In this
case, most of the causal con�icts or causal loops can be avoided by using the
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modi�ed HSCAP proposed in this work. There are occasions where causal
con�icts are unavoidable, which means that the con�guration containing it is
considered non-admissible for the analysis of its behaviour.

The procedure to adapt HSCAP into software is described in this chapter along
with some examples.

5.2 HSCAP implementation in software tools

As previously mentioned, there are some considerations to be made for the
implementation of HSCAP to a simulation software. Some are done to avoid
causal con�icts such as the reassignment of causality after a commutation,
while others are necessary rules to identify some admissible modes that could
be considered as non-admissible, such as con�gurations that created causal
con�icts while assigning static causality.

Most of the procedure remain the same as with the use of traditional imple-
mentations, which are based on SCAP. However, for hybrid systems, the focus
is in the change of causality due to the use of dynamic causality in the bond
graph model, or in a traditional mathematical approach, the proper represen-
tation of a physical behaviour. This requires further analysis of each of the
con�gurations, which in previous implementations had static causality, which
mean that all the elements had the same behaviour for all of the con�gurations.

There is a problem arising from the simulation model of the switched junctions,
which is the change of causality during commutation, which was previously
avoided in order to simplify the simulation of hybrid systems.

This can be seen in the work done by Van Kampen in [96], where a switching
junction is designed in 20-Sim. In here, the analysis is done for a copying
machine, to be more speci�c, in the paper path. This is displayed in 5.1.

The main focus for developing the model was to have an accurate timing and
accurate velocity of the rollers and sheets. This model is displayed in 5.2.

In here, to obtain a proper transition between a freely rotating pinch and the
pinch in contact with the paper, an extended inertia element was developed.
This extended inertia consists in a switching junction connected to an inter-
nal inertia, which is a representation of the external inertia connected to the
switching junction with a di¤erent causality assignment. This is displayed in
Figure 5.3.
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Figure 5.1: Photocopying machine diagram.

Figure 5.2: Bond graph model of the paper path.

Figure 5.3: Pinch bond graph in the dynamic causality model. This model has
a switching inertia element (shown as X1-I).

The internal inertia remains disconnected from the junction in the ON con-
�guration and it is connected during the OFF con�guration. This is done to
represent the change in causality during commutation. This representation is
illustrated in 5.4.
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Figure 5.4: Representation of a switching junction with an internal inertia

In this case, when the system is in ON con�guration (Figure 5.5(a)), the in-
ternal inertia and the resistance representing the friction up are disconnected
from the model, while the switching junction behaves as a 1 junction.

During the OFF con�guration (Figure 5.5(b)), the switched junction behaves
as a zero �ow source, while the internal inertia and the resistance representing
the friction up are connected to represent the behaviour of the subsystem
(inertia and resistance) when the source is disconnected.

Figure 5.5: Behaviour of switching junction with internal inertia. a)ON con-
�guration b)OFF con�guration

However, this interaction limits the use of the switching element to a single el-
ement in a determined causal path, which will need to be programmed to that
speci�c switching junction. In the case of a multiswitch element the number
of additional internal elements increase, therefore, increasing the complexity
in the analysis of the system.

To avoid increasing the complexity of the model, a proper representation of the
change in causality during commutation is needed, therefore, it is necessary
to introduce energy storage and resistive elements that can change causality,
rather than introduce extra elements inside the switching junctions (as shown
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in the previous example).

This approach requires to properly de�ne the behaviour of the di¤erent ele-
ments during commutation, which will also require de�ning the condition in
which the change of behaviour of the elements is presented.

De�nition 28 Dynamic elements. A dynamic element (in simulation) is
an element that can change its behaviour during commutation (from indepen-
dent to dependent or the other way around).

In hybrid systems, standard simulation elements have a static causality once
assigned, which does not always allow the proper simulation of a physical ele-
ment, therefore dynamic elements are introduced.

They must have to behave just as the existing elements in simulation software,
however, dynamic elements will represent the change in the causality during
simulation, this will allow the proper representation of some physical phenom-
ena previously not considered.

The change in causality must comply with the proposed HSCAP procedure,
where if there are changes in causality caused by dynamic causality during
commutation, these changes must result in the maximum number of energy
storage elements in integral causality. Therefore, it is necessary to introduce
these rules into the HSCAP procedure of the simulation software by either
introducing new elements to the software or adding an algorithm to set these
rules.

An approach to this was discussed by Roychoudhury et al in [97], where the
system was divided in block diagrams where the causality remains static for
elements not a¤ected by the switching elements, while the elements a¤ected
by the switching elements change their causality. This is possible because the
approach is based on the analysis of transfer of energy, instead of using math-
ematical equations all the time, just as bond graph.

In Figure 5.6 a representation of the Bond Graph model in block diagrams is
illustrated.

Figure 5.6(a) is the bond graph model with both switching elements (1a and 1b
junctions) in ON con�guration, Figure 5.6(b) is the block diagram equivalent
of the previous bond graph model, Figure 5.6(c) presents the bond graph model
with the switch element 1a in OFF con�guration, Figure 5.6(d) is the diagram
block equivalent of the previous bond graph model.
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Figure 5.6: Representation of the bond graph model in diagram blocks

It can be seen that the block diagram simpli�es the analysis of the OFF con�g-
urations by eliminating the power transfer, and the rest of the system remains
unaltered. In this case the causality assignment cannot be seen in the bond
graph model, however, the change in causality is carried in the equations ob-
tained from the block diagram.

This approach allows a simpli�ed analysis of the models by analysing the blocks
after generating the model for the new con�guration. However, this only allows
the simulation of a single con�guration at a given time, rather than a continu-
ous simulation of the available admissible con�gurations, not to mention that
the change in causality is not done in the Bond Graph model. Nonetheless,
this approach leads to the proposition of static causality blocks, which will
contain the subsystems not a¤ected by dynamic causality.

De�nition 29 Static causality blocks. The model can be divided in subsys-
tems a¤ected and subsystems not a¤ected by dynamic causality. Static causality
blocks are the subsystems not a¤ected and remaining with static causality in
the model, which can be modeled as a block.

If static causal blocks are used in the modelling, the assignment of dynamic
causality can be easily determined and assigned to the correspondent elements.
This is achieved by dividing the subsystems into those that are not a¤ected
by dynamic causality and those that are a¤ected by it, by doing this, the
subsystems with static causality will be contained inside static causal blocks.
Therefore, only the elements a¤ected by dynamic causality will be displayed on
a general representation, where the changes in causality can be observed. By
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doing this, the maximum number of elements with integral causality is ensured.

This approach allows a proper representation of the physical phenomena, as it
allows the change in causality in energy storage elements if needed.

There are some causal con�icts that cannot be avoided due to the use of
some commuting elements, such as two-way switches (Figure 3.23 in chapter
3), which create a valid causal con�ict during the ON con�guration. There-
fore, these causal con�icts must be considered as exemptions in order to avoid
considering as non-admissible the con�gurations that contains any of these
elements in the mentioned con�guration.
However, it is necessary to clearly de�ne this exemption, which will only exist
in the connection between two two-way switches. This is in order to avoid
having causal con�icts in neighbouring junctions considered as exemptions. If
a causal con�ict appears outside the connection of two two-way switches the
con�guration is not admissible.

De�nition 30 Causal con�ict in two-way switches. A connection be-
tween two two-way switches creates a causal con�ict during the ON con�g-
uration, which will not considered as such to avoid the oimission of a valid
con�guration due to the lack of power transfer.

In Figure 5.7 the valid causal con�ict (there is no e¤ort coming into the 1-
junctions in OFF con�guration) is illustrated during the ON con�guration of
the two-way switch.

Figure 5.7: Causal con�ict in two-way switches a) Valid causal con�ic dur-
ing ON con�guration b) Con�guration without causal con�ict during OFF
con�guration
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In the case where there are unavoidable causal con�icts, the con�guration
is considered as non admissible and is then discarded from the analysis and
simulation of the model. An example of this is displayed in Figure 5.8.

Figure 5.8: RL circuit with a switch

In Figure 5.9.the bond graph model is displayed.

Figure 5.9: Example of unavoidable causal con�icts a)Valid con�guration when
only one switched element is in ON con�guration b)Non-valid con�guration
caused by causal con�ict when both switched elements are in ON con�guration

Before the analysis of the response in time of the model, it is necessary to create
a list of the admissible con�gurations. This is in order to generate warnings to
the user to avoid including non-admissible con�gurations into the simulation
sequence.

The response in time of the system, is then determined by using the admissible
con�gurations which were previously obtained. The order of the con�gurations
is determined by the user as well as the time the con�guration is simulated.

As the model has a general representation of the available con�gurations, an
"initial con�guration" needs to be set. This con�guration is considered �ini-
tial�as it is the con�guration where there are more storage elements with inte-
gral causality, which is the con�guration that results from the use of DSCAP.
The con�guration can be either selected by the user or by an algorithm.
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Once all the parameters for the elements are set, and the con�guration se-
quence and time if simulation as well (for each con�guration and the general
simulation time), the behaviour of this con�guration is obtained.

Before there is a change of con�guration, the behaviour of the elements must
be saved. This is done in case any of the elements change its causality during
commutation, therefore, the last value of the previous behaviour can be used
as an initial value for the con�guration at the moment. This is necessary to
avoid having behaviours that do not have any physical meaning or represen-
tation.

5.3 Software algorithms

In order to help in the analysis of hybrid systems, it is helpful to have an
algorithm that analyses the structure of the implicit state equation. This al-
gorithm will determine if the con�gurations are admissible or not, also if they
are controllable, all of this based on the results previously obtained; this in
order to decrease the time on the analysis of the systems and focus on the
analysis of the properties.

The software used to test this algorithm is MATLAB due to its characteris-
tics. MATLAB is a matrix-based software which can be used to write and
test algorithms, simulations based on physical systems using existing tools,
analysis of complex systems based on mathematical equations, to name some
of its uses in this �eld. By being matrix -based software, MATLAB is the most
suitable option to develop an algorithm to automatize and simplify the analy-
sis of the hybrid bond graph systems. Besides, the matrices can be directly
obtained/feed via Simulink, which can be used for simulation purposes.

A comparison between the actual representation of switched bond graph ele-
ments on simulation programs with future representations is addressed as well.

As most of the previous approaches are based on the premises that the systems
remain with the same number of storage elements for all of its con�gurations,
all the software-based developments are a novelty.

An algorithm based on the reduced matrix notation can be developed. Re-
duced matrices are obtained by deleting rows and columns in order to obtain
a smaller square matrix that represents the current con�guration.

The redundant elements in this case are the lines and columns containing only
0 values when the Boolean parameters � are assigned for an speci�c con�gu-
ration. For non-admissible con�gurations the matrices A; B and E will have
extra lines and columns removed, the number depends on the number of states
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involved in causal con�icts in the bond graph model.

The algorithm does not only allow to simplify the implicit equation matrix
for the di¤erent con�gurations, it also allows to determine if a speci�c con�g-
uration is admissible. It must be noted that it can also be implemented the
analysis of controllability of the model.

Algorithm 1 Admissible con�gurations

� Matrices E; A and B are introduced

� The Boolean parameters are substituted

� The matrices E; A and B are obtained for an speci�c con�guration

� Checks if there are any lines containing only 0 elements

� If there are lines containing only 0 elements, the line is deleted
from the matrices. Also the corresponding column is deleted from
the matrices.

� Else the lines contains values di¤erent of 0, the algorithm proceed
to the next step

� The rank of the simpli�ed matrices E; A and B is analysed by the algo-
rithm

� If the rank is the same as the number of storage elements, the con-
�guration is considered admissible

� Else there rank is not equal to the number of storage elements, the
con�guration is considered non-admissible

� A new con�guration for the system is analysed using the original
E; A and B matrices

� After all the con�gurations are analysed the algorithm displays which
con�gurations are admissible and non-admissible. It also displays the
reduced matrices E; A and B.

In order to properly explain the procedure of the algorithm, an example is
necessary, in this case, the buck converter previously analysed will be used.

The model of the buck converter is displayed in Figure 5.10,
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Figure 5.10: Buck converter connected to a DC motor with load

with a bond graph model displayed in Figure 5.11,

Figure 5.11: Bond graph model of the buck converter

First an admissible con�guration will be used to illustrate the procedure, which
latter will be compared with a non-admissible con�guration; this in order to
show how the algorithm simpli�es the analysis of the model for the user.

The general implicit equation of the buck converter is,
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from where the redundant lines and columns (those that only contain 0 value)
are removed by the algorithm,
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which simpli�ed is,

24 1 0 1
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0 0 0
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In this case the reduced matrices are determined by the redundant lines and
columns, rather than being determined by the user, which decrease the time
in the analysis of the state equation.

A non-admissible con�guration is obtained to be compared with the previous
admissible mode,

�1 = 1; �2 = 1; �3 = 1266664
1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

377775
266664
_pL2
_pL1
_pL3
_pL1d
_pL3d

377775 =
266664

�R2
L2

0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1
L2

0 0 0 �1
L3

377775
266664
pL2
pL1
pL3
pL1d
pL3d

377775+
266664
0 0
0 0
0 0
0 0
0 0

377775
�
V
G

�

where the redundant lines and columns are removed by the algorithm,

266664
1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

377775
266664
_pL2
_pL1
_pL3
_pL1d
_pL3d

377775 =
266664

�R2
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0 0 0 0

0 0 0 0 0
0 0 0 0 0
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1
L2

0 0 0 �1
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377775
266664
pL2
pL1
pL3
pL1d
pL3d
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377775
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V
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�

which simpli�ed is,

�
1 1
0 0

� �
_pL2
_pL3d

�
=

� �R2
L2

0
1
L2

�1
L3

� �
pL2
pL3d

�

It can be seen that there is a drop in the order of the matrices, which com-
pared to the admissible con�guration, it can be seen that one of the state
variables cannot be de�ned, and that determines why the con�guration is
non-admissible.

As previously mentioned, the algorithm can contain (if it is useful to the user)
the controllability condition equation, which could provide extra information
of the analysed con�gurations and reduce the time of analysis. This is done
by adding an extra line at the end of the algorithm (but before the new con-
�guration is analysed), where the implicit state equation is analysed using the
controllability condition equation, which could save time on the analysis of the
model. This was not implemented in the algorithm used in this chapter as the
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main objective was to obtain the admissible con�gurations.

5.4 Simulation of hybrid bond graph

There are some attempts to represent hybrid bond graphs in simulation pro-
grams. Some of these representations can be found in Dymola, 20-Sim, and
MATLAB.

The representation of switched elements in Dymola is the ideal switch. An
example of the use of this representation can be seen in [98] where several
systems from aircraft are modelled and analysed. This representation does
not allow a change of causality on state variable elements, only on resistive
elements, which in occasions are added to reduce the impulse modes during
commutation. The addition of the extra resistive elements could introduce
some undesired behaviours into the system.

An example of the 20-Sim representation are the X0 and X1 junctions, which
behave has a regular 0- and 1- junction (respectively) when the switched ele-
ment is in ON con�guration, while it behave as an 0 e¤ort or 0�ow source when
the element is in OFF con�guration. In this representation the commuting is
indicated by an external signal which can have value of 0 or 1 depending on the
con�guration. It must be noted that this representation of switching elements
in 20-Sim does not allow a change on the causality during commutation, which
mean that some con�gurations remain unrelated to the physical representation.

For MATLAB (and 20-Sim also), there is a representation of switched elements
as a programmable diagram block introduced by Roychoudhury et al in [99].

Although this algorithm does allow change in the causality, this change is only
applied to the resistive elements, leaving the storage energy elements with �xed
causality, which mean that the results are similar to representations that does
not allow change in the causality of the model.

5.5 Future in simulation

The proper representation of the switched junctions can be developed based
on the considerations made in this chapter, which includes multiswitched junc-
tions and multi-way junctions.

An introduction to the implementation to dynamic causality and an approach
is proposed, which is expected to be useful in the implementation in a simula-
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tion software.

The algorithm described is expected to be used as a starting point in simulation
software, which can be modi�ed to include all of the possible con�gurations
to determine the admissible con�gurations with a single iteration rather than
one for each con�guration. This is planned to be done by optimizing the com-
putational resources within the algorithm as previously proposed.

It is necessary to mention that this can be done in one or more simulation
software, as the description of the procedure is general, rather than be focused
on an speci�c language/software.

5.6 Summary

An introduction to the steps needed to properly represent switched junctions
where named, which are expected to be used in a later work in the implemen-
tation in a simulation software.

Some considerations for the proper simulation are named and addressed as well.

It was mentioned that MATLAB has been used to code a routine to simplify the
analysis of the system�s implicit equation for all of the available con�gurations.

This allowed to reduce the time of analysis and therefore more models were
analysed in order to test the robustness of the results of this research.

Similar algorithms can be developed in di¤erent software, which will be useful
to reduce time in the analysis of the behaviour of the model.

Some possible applications of the results are mentioned, in this case on the
simulation on a di¤erent software package rather than just an implementation
of a variation of the algorithm on MATLAB.

This is due to the implementation of the switched junctions on a bond graph
software allows a closer representation of the systems to the physical behav-
iour, while the algorithm was just written to reduce the analysis time.

After this introduction of simulation of hybrid systems in software, some case
studies will be analysed in order to compare the results obtained using the
proposed approach in this work with previous approaches. At the moment
this is being developed for a future implementation to expand its use.
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Chapter 6

Case Studies

6.1 Preliminaries

Some case studies are presented in this chapter to demonstrate the procedure
and di¤erences of the proposed approach compared to previous approaches.

The buck converter is presented due to being widely-used as an example in the
literature, making it ideal for comparison with previous approaches. It will
be compared with the most recent approach done by Margetts [10] where it
is expected to be a clearer di¤erentiation of the commuting elements and how
their behaviour a¤ects the system.

There is also a two-phase bridge to show how the new notation is used to rep-
resent systems with large number of commuting elements while having more
non-valid con�gurations than the previous case. This will allow demonstrat-
ing how the proposed approach decrease the time used on the analysis of large
systems compared to previous approaches.

Having these cases allows demonstrating that all of the non-valid con�gura-
tions are included in the general implicit equation, also how those modes are
represented compared to the valid ones when the commuting elements have
their values assigned.

In order to show the behaviour of the multiswitched junctions, the buck con-
verter and a modi�ed boost converter are analysed, and their properties are
obtained, which are later compared to the previously obtained on the model
with switched junctions.

Also, the controllability and observability of the analysed examples are ob-
tained with the proposed procedures introduced in Chapter 4.
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6.2 Buck converter

6.2.1 Overview of the buck converter

The buck converter shown in Figure 6.1 is an example that incorporates both
electrical switches and a mechanical clutch. This example is used by Buisson
et al [79], Margetts [10], and Edström et al [100] (on a simpli�ed version),
therefore, making it useful for comparison with the previous approaches.

The model used is a buck converter connected to a DC motor that can be con-
nected or disconnected to a load using a clutch. This model is used to represent
di¤erent subsystems connected through a commuting element to analyse the
interaction between both subsystems in di¤erent con�gurations.

Figure 6.1: Buck converter connected to a DC motor with load

6.2.2 Hybrid bond graph of the buck converter

In order to obtain the hybrid bond graph model, it is necessary to follow the
instructions of the modi�ed HSCAP to determine the con�gurations. There-
fore, the �rst step consists in determining the commutation sequences and its
consequences. This is displayed on the following table,

�1 �2 �3 I1 I3
0 0 � Derivative �
0 1 � Integral �
1 0 � Integral �
1 1 � Non-valid �
� � 0 � Integral
� � 1 � Derivative
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It can be seen that the commuting elements just a¤ect a part of the system
and that is why the table is divided in two sections that does not interfere with
the other one.

The switches �1 and �2 create an interaction between the source, ground ref-
erence and I1. This interaction creates di¤erent results (which are mentioned
in the previous table). If only one switch is closed at a given time, the inertia
store energy; if both are open at a given time, the inertia releases the stored
energy; however, if both switches are closed at a given time, this creates a
short circuit, making this con�guration non-valid.

As previously explained, this is done in order to reduce the table size and to
observe the behaviour of the di¤erent parts of the system.

The following step consists of the assignment of causality to the elements in
the model. It is highly important to check that the initial assignment of the
causality allows representing the highest number of energy storage elements
on integral con�guration (independent con�guration).

Figure 6.2: Bond graph model of the buck converter
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The bond graph of the buck converter is shown in Figure 6.2. Note that some
resistance elements have been added (R1 and R2) to model losses in the circuit
and friction in the moving parts.

In this case the element I2 cannot be selected as an element a¤ected by dy-
namic causality due to the causality assignment in the GY and X0 elements
next to it.

The full bond graph model is shown to display the interaction between the dif-
ferent elements connected to the ground (0V reference), that is then simpli�ed
by removing the bonds connected to the ground that are redundant (bonds
that add a 0V to the junction).

6.2.3 Junction structure and Implicit state equations of
the buck converter

In order to construct the Junction Structure Matrix, the modes of operation
and any consequential dynamic causality must be identi�ed. Therefore, it is
necessary to obtain the equations that describe the energy exchange between
the di¤erent elements interacting with each other.

The following equations show these interactions,

_pL2 = a (�1 � �2) fI1 � �3 (fI3 + eR2)
(�1 � �2) _pL1 = (�1 � �2) (�eR1 � afI2) + �1��2V + ��1�2G
��3 _pL3 = ���3eR2
�1�2pL1d = 0
�3pL3d = �3fI2
fR1 = (�1 � �2) fI1
fR2 = ��3fI3 + �3fI2

Using these equations the general junction structure matrix can be obtained,
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2666666664

1 0 0 0 0 0 0
0 (�1 � �2) 0 0 0 0 0
0 0 ��3 0 0 0 0

0 0 0 �1�2 0 0 0
0 0 0 0 �3 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3777777775

2666666664

_pL2
_pL1
_pL3
pL1d
pL3d
fR1
fR2

3777777775
= (6.1)

2666666664

0 a (�1 � �2) 0 0 ��3 0 ��3 0 0
�a (�1 � �2) 0 0 0 0 � (�1 � �2) 0 �1��2 ��1�2

0 0 0 0 0 0 ���3 0 0
0 0 0 0 0 0 0 0 0
�3 0 0 0 0 0 0 0 0
0 (�1 � �2) 0 0 0 0 0 0 0
�3 0 ��3 0 0 0 0 0 0

3777777775

26666666666664

fL2
fL1
fL3
_pL1d
_pL3d
eR1
eR2
V
G

37777777777775
The constitutive law of the R-�eld is:

Din = LDout

�
fR1
fR2

�
=

�
R1 0
0 R2

� �
eR1
eR2

�
(6.2)

The constitutive law for the storage elements:

24 Z
Zi
Zd

35 =
24 F 0 0
0 Fi 0
0 0 Fd

3524 X
Xi

Xd

35 (6.3)

where: F =
�
L�12

�
; Fi =

�
L�11 0
0 L�13

�
; Fd =

�
L�11 0
0 L�13

�
from where the general implicit state equation is obtained,
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266664
1 0 0 0 �3
0 (�1 � �2) 0 0 0
0 0 ��3 0 0
0 0 0 0 0
0 0 0 0 0

377775
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0 0 0 ��3
L3

37777775
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If the implicit state equation is analysed for each con�guration, it can be seen
that there are two modes that only contains two rows. Based in the results
from Proposition 10, these modes are considered non-valid. This is because

the matrices �22

��
(�1 � �2) 0

0 �3

��
and ��22

��
�1�2 0
0 ��3

��
are not com-

plement of each other during those con�gurations, therefore there are three
rows containing only zero elements, which creates a drop in the rank of the
model.

6.2.4 Simulation of the buck converter

The simulation and comparison between a previous approach (modulated trans-
formers) and the proposed approach (switched junctions) of the buck converter,
where it could be seen that one of the admissible con�gurations could not be
analysed with the previous approach, which did not allow to observe the im-
pulse mode when the source and ground reference are disconnected, which
could lead to undesired behaviours in the physical system.

The model using modulated transformers is displayed in Figure 6.3, in which
some resistive elements. These resistive elements represent electrical losses
(R1) and friction (R2).
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Figure 6.3: Buck converter model using modulated transformers.

As previously explained, for this model the causality remains the same for
all of the con�gurations, which means that the elements will have the same
behaviour for all of the con�gurations. This can be seen in Figure 6.4, where
the commuting signals are displayed in the top graphs, and simulation results
are displayed in the bottom graph. The ON and OFF con�gurations for the
V e¤ort source goes in 10s segments (from 0s to 10s ON, then OFF con�gu-
ration from 10s to 20s, and so on), while the ON con�guration for the MTF
a¤ecting the I3 element stays in that con�guration for 30s and then the OFF
con�guration goes in.

It can be seen that the behaviour is as expected, the elements store energy
during the ON con�gurations, while in the OFF con�gurations the stored
energy is consumed.

Figure 6.4: Switching signals and simulation results of buck converter.
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The buck converter is also modeled using X0 and X1 switched junctions, this
is displayed in Figure 6.5.

Figure 6.5: Model of the buck converter in 20 Sim.

For this simulation the values of the elements remain the same, also the com-
muting times remain the same in order to have a proper comparison.

The simulation of the �rst con�gurations (source V and ground reference G
are connected to the system) are displayed in Figure 6.6.

Figure 6.6: Simulation results using X0 and X1 switched junction while V (�1)
and G (�2) commutes. �3 is in OFF con�guration during the �rst 20s, then is
in ON con�guration for the last 10s.

It can be seen that the behaviour of the storage elements remains similar, this
is because the system is the same as the previous approach. However, the be-
haviour of the system when both source and ground reference are disconnected
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from the system were not analysed previously, which in this case is one of the
admissible con�gurations.

However, the impulse mode can be observed during the change of con�guration.

This behaviour is displayed after 20 seconds of simulation in Figure 6.6, where
it can be seen that as soon as the source V and ground reference G are dis-
connected an impulse response occurs and then there system goes to a zero
response, this due to the absence of power input.

If the results are compared, it can be seen that both systems behave the same
when the source V and the ground reference G are connected to the system and
are commuting, nonetheless, the behaviour when these are disconnected from
the system were not previously analysed, which can be done using switched
junctions, therefore, more information can be obtained from simulation to have
a proper representation of the physical system.

6.2.5 Change in order of the system at commutation of
the buck converter

The changes in order for this system represent the interaction between the
source and the ground reference which creates a non-valid mode. As it was
previously mentioned in Proposition 10, there is a drop on the rank of the
implicit equation matrix, meaning that the con�guration is not valid.

An example of this is when the system changes from a valid con�guration to
a non-valid con�guration.

Consider the case when the system is connected only to the source, and then it
is connected to both the source and ground reference. The �rst con�guration
being:

24 1 0 0
0 1 0
0 0 1

3524 _pL2
_pL1
_pL3

35 =
24 0 a

L1
0

�aR2
L2

�R1
L1

0

0 0 �R2
L3

3524 pL2pL1
pL3

35+
24 0 0
1 0
0 0

35� V
G

�
(6.5)

After it is connected:

�
1 0
0 1

� �
_pL2
_pL3

�
=

�
0 0
0 �R2

L3

� �
pL2
pL3

�
(6.6)
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The system changes from having three di¤erential equations to having two dif-
ferential equations. As previously stated in Proposition 10, when the rank
of the matrices are determined, if there is a drop of the rank, then the con-
�guration is not valid, which in this case are the modes which contains the
interaction between the source and the ground reference.

6.2.6 Structural analysis of the power converter of the
buck converter

The order of the model varies, since two of the storage elements are in dynamic
causality. Any con�guration that does not contains an interaction between the
source and the ground reference gives the highest order, which in this case is 3.

For this model, the rank can be 2 or 3 depending on the con�guration. It can
be clearly seen that the presence of the elements B21 and B22 are the ones that
determines the rank of the model in the reduced matrix M̂ .

The controllability of the con�gurations can obtained by using the controlla-
bility matrix 4.9 introduced in Chapter 4.

As example of this, the con�guration �1 = 1; �2 = 0; �3 = 1 is used, which
results in:

rank

24 01
0

35 = 1
This means that the system is not completely controllable, because only one
storage element can be controlled through the input. However, the system
is reachable controllable, which is illustrated in Figure 6.7. This reachable
controllability is achieved by controlling the behaviour of elements I2 and I3
through element I1.

Figure 6.7: Controlling causal paths

It can be seen that the elements I2 and I3 can be reached using the element
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I1, however, this does not means that there is complete control over those
elements. The observability of the system can be determined by using the
observability matrix 4.11 introduced in Chapter 4. This matrix will have a
di¤erent value depending on the placement of the output. An example of this
is developed next.

By setting an output (current detector) in the 1- junction where the I3 element
is connected (illustrated in Figure 6.8), the resulting Y matrix is:

Y =
h

�3
L2

0 0 0
��3
L3

i
266664
pL2
pL1
pL3
pL1d
pL3d

377775

Figure 6.8: Buck converter with a �ow detector

If the same con�guration used in the previous example is analysed, the observ-
ability matrix is:

rank

�
�3
L2

0

�
= 1

which means that only one of the states is observable, which in this case is I2:

The stability of the system can be determined from BGD model of the system
(Figure 6.9). It can be seen that there are no storage elements in integral con-
�guration, and as previously explained, if there are no elements with integral
causality in the BGD model then there are no null modes, meaning that the
stability of the system cannot be determined.

This means that the model is structurally stable in this con�guration. Due to
the dynamic behaviour of the elements I1 and I2, the system could contain a
possible structural null mode, which render the system asymtotically unsta-
ble, nevertheless, if the model implicit equation is solvable even when there
are storage elements in integral con�guration, then the model is stable.
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Figure 6.9: Hybrid bond graph model of the buck converter with preferred
derivative causality

6.3 Two-phase bridge

6.3.1 Overview of the two-phase bridge

The two phase bridge (Figure 6.10) is a modi�ed model of the Graetz bridge
(Figure 6.11) analysed by Cormerais and Buisson on [101]. The changes on
the model are made in order to show the behaviour of complex systems that
contains a large number of non-valid con�gurations. The two-phase bridge has
an extra inductance connected to the source V1 with the purpose to observe
if the change in the behaviour of the system when its values changes. In this
case a low value is selected to avoid instabilities during commutation.

This system behaviour is determined by the interaction between the commut-
ing elements connected to the sources V1 and V2. This interaction is controlled
by the sequenced commutation of the switches 1, 2, 3 and 4, which are set in a
controlled sequence to avoid instabilities on the system. Nonetheless, for this
study, the analysis of the model is done with arbitrary commuting sequence,
which allows the analysis of all of the available con�gurations in order to com-
pare its behaviour.

Valid con�gurations appear when there is at least one of the sources V1 or V2
connected to the rest of the circuit (both can be connected at the same time).
The modes that allow both inputs being connected to the model correspond to
the commuting sequence when both switches 1 and 2 are in ON con�guration
while both switches 3 and 4 are in OFF con�guration; another possible con-
�guration is when both switches 3 and 4 are in ON con�guration while both
switches 1 and 2 are in OFF con�guration.; there are also the cases where both
switches 1 and 4 are in ON con�guration while both switches 2 and 3 are in
OFF con�guration; or when both switches 2 and 3 are in ON con�guration
while both switches 1 and 4 are in OFF con�guration. While, the modes that
allow only one input being connected to the model at a determined time, are
those that only contain a single switch in ON con�guration while the other 3
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switches are in OFF con�guration.

The previous con�gurations are obtained only in simulation, where the values
of the threshold of the diodes can be modi�ed. This is done to observe the
di¤erent behaviours of the system under di¤erent operational conditions.

Figure 6.10: Two phase bridge

Figure 6.11: Graetz bridge

Non-valid con�gurations occur when both sources V1 and V2 are connected to
the system at the same time (by having switches 1, 2, 3 and 4 in ON con-
�guration at the same time), or neither of the sources are connected to the
system. This is due to short circuits or open circuits created by the interac-
tions of the commuting elements. These cases are caused by having at least
two adjacent switches in ON or OFF con�guration at the same time; this being
both switches 1 and 3 in ON or OFF con�guration at the same time, or both
switches 2 and 4 in ON or OFF con�guration at the same time.
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6.3.2 Hybrid bond graph of the two-phase bridge

The bond graph model of a two-phase bridge is showed on 6.12.

Figure 6.12: Bond graph model of the two phase bridge

The di¤erent con�gurations are easier to identify on this bond graph model
compared to the previous model. As previously explained, the valid modes are
those that allows one (or both) of the sources V1 and V2 are connected to the
model. It can be seen that the cases that only allows to have one of the sources
connected cause a change on the causality of the storage element I2, while the
con�gurations that allows both sources to be connected to the model does not
change the causality of the element.

The non-valid con�gurations are represented by causal con�icts that can be
seen on the junction where switches �1 and �3 are connected to each other,
just as with the junction where the switches �2 and �4 interact with each other.

6.3.3 Junction structure and implicit state equations of
the two-phase bridge

Based on the previous case, in order to obtain the junction structure of the
model, it is necessary to obtain the equations that describe the system�s be-
haviour for the di¤erent con�gurations, which are show next,
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_p1 = V1
� _p2 = � (E � eR) + aV1 + b (V1 + V2) + c (V1 + V2) + dV2
'fL2 = 0
fR = �fL2

where

a = �1�2��3��4
b = �1��2��3�4
c = ��1�2�3��4
d = ��1��2�3�4
� = a+ b+ c+ d
' = �1��2��3��4 + ��1�2��3��4 + ��1��2�3��4 + ��1��2��3�4

The resulting junction structure matrix of the model is,

2664
1 0 0 0
0 � 0 0
0 0 ' 0
0 0 0 1

3775
2664

_p1
_p2
fL2
fR

3775 =
2664
0 0 0 0 0 1 0
0 0 0 �� � a+ b+ c b+ c+ d
0 0 0 0 0 0 0
0 � 0 0 0 0 0

3775

2666666664

fL1
fL2
_pL2
eR
E
V1
V2

3777777775
Obtaining the following implicit equation,24 1 0 0
0 � 0
0 0 0

3524 _p1
_p2
_p2d

35 =
24 0 0 0

0 �R
L2

0

0 0 �'R
L2

3524 p1
p2
p2d

35+
24 0 1 0
� a+ b+ c b+ c+ d
0 0 0

3524 E
V1
V2

35
If the implicit state equation is analysed for each con�guration, it can be seen
that the non-valid modes creates two lines full of zeros, due to only one stor-
age element is a¤ected by dynamic causality, which decrease the order of the
system.

This is because the matrices �22 (�) and ��22 (') are not complement of each
other during those con�gurations, therefore there are three rows containing
only zero elements, which creates a drop in the rank of the model.

In this case the non-valid modes are created by the interaction between the
commuting elements, either creating a causal con�ict (short circuit by having
adjacent switches in ON con�guration at the same time) or the lack of power
�ow through the system (having all the switches in OFF con�guration) that
is acting as an open circuit.

The rest of the con�gurations correspond to the system being connected to (at
least) one of the sources V1 or V2 as previously explained.
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6.3.4 Simulation of the two-phase bridge of the two-
phase bridge

The simulation of the two-phase bridge using ideal switches is not possible.
This is because the causal assignment cannot be done for the arrange of the
four switches, therefore, an independent simulation of each con�guration is
done.

The behaviour of the con�gurations is displayed in Figure 6.13, where it can
be seen that the elements behave the same for all of the con�gurations.

Figure 6.13: Simulation of the two-phase bridge

In this �gure, the displayed behaviour indicates that the model using ideal
switches is the same as an ideal ac to dc converter, which does not re�ect the
behaviour of the physical system.

The next step is the simulation of the model using switched junctions, which
is displayed in Figure 6.14.

In this case all of the admissible con�gurations can be simulated on the same
model, which simpli�es the simulation. The results are displayed in Figure
6.15.
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Figure 6.14: Two-phase bridge using switched junctions

Figure 6.15: Simulation results of the two-phase bridge using switched junc-
tions

It can be seen that the behaviour of the system is similar as analysing the model
for each con�guration, however, using switched junctions, the impulse modes
can be determined, which are caused by the commutation of the switching
elements (in this case a change of con�guration occurs every 10 seconds). These
impulse modes cannot be obtained using the traditional approach because the
elements remain with the same causality during commutation.
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6.3.5 Change in order of the system at commutation

For this system, the change in the order of the system is caused by the lack of
power �owing through the system, or by a causal con�ict created by the inter-
action of two adjacent switched junctions. If the switched junctions create a
loop, the system remains on the same order as the power keeps �owing. This
can be seen on con�gurations where there is at least one switched junction in
ON con�guration, or two non-adjacent switched junctions in ON con�guration.

Based on the procedure described in Proposition 10, the change in the order
occurs when the matrices �22 and ��22 are not complement of each other. This
can be seen on the following equation corresponding to a con�guration with
just one switched junction in ON con�guration,

�
1 0
0 0

� �
_p1
_p2d

�
=

�
0 0
0 �1

L2

� �
p1
p2d

�
+

�
0 1 0
0 0 0

�24 E
V1
V2

35 (6.7)

that later commutes, having all the switched junctions in OFF con�guration,

[1] [ _p1] = [0] [p1] +
�
0 1 0

� 24 E
V1
V2

35 (6.8)

It can be seen that in the �rst con�guration �22 and ��22 are complements,
while on the second con�guration they are not.

6.3.6 Structural analysis of the bridge of the two-phase
bridge

Controllability of the system depends on the con�guration, on which it can be
completely controllable, reachable controllable, or structural controllable.

Using the controllability condition matrix 4.9 introduced in Chapter 4, this
can be determined for all of the available con�gurations.

Most of the con�gurations are controllable due to the storage element I1 is not
a¤ected by dynamic causality and it is connected to the input V1, which their
controllability equation is:

rank

�
1
0

�
= 1

The completely controllable con�gurations are those in which both storage
elements I1 and I2 are in integral causality, which at the same time are the
structural controllable con�gurations which have the controllability equations:
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rank

�
1 0 0 0
0 R

L2
R
L2

0

�
= 2

or

rank

�
1 0 0 0
0 R

L2
R
L2

R
L2

�
= 2

or

rank

�
1 0 0 0
0 R

L2
0 R

L2

�
= 2

The observability of the con�gurations is determined by the location of the
output, which could lead to the observability of one of the states or both of
them. This is determined using the observability condition Equation 4.11 in-
troduced in Chapter 4.

The asymptotical stability of the system cannot be achieved under any of the
commuting conditions, this is due to one of the storage elements (I1) cannot
be assigned with derivative causality. Although this does not means that the
system cannot reach a stable state, in this case the stability of the system is
determined by the solvability of the implicit equation.

6.4 Buck converter using multiswitched junc-
tion

6.4.1 Overview of the buck converter using multiswitched
junction

The buck converter is analysed using a multiport switch (Figure 6.16) to com-
pare its behaviour with the traditional representation. This in order to deter-
mine the viability of the use of the multiswitched junction instead of individual
switched junctions.
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Figure 6.16: Buck converter using a multiswitch

6.4.2 Hybrid bond graph of the boost converter using
multiswitched junction

Following the procedure of the HSCAP, �rst the truth table is obtained,

�1 �2 �3 I1 I3
0 0 � Derivative �
0 1 � Integral �
1 0 � Integral �
1 1 � Non-valid �
� � 0 � Integral
� � 1 � Derivative

It can be seen that the behaviour of the storage elements I1 and I3 remain the
same as the model containing switched junctions. This is because the msj is a
simpli�cation of the interaction of two or more switched junctions.

The resulting bond graph model of the buck converter using the multiswitched
junction it is displayed in Figure 6.17, which will be used to compare the re-
sulting equations with the previous approach, and to look at the simpli�cations
that this new representation brings.

As previously mentioned, the sources are a¤ected by dynamic causality as re-
sult of using a newly introduced multiswitched junction, it is necessary to use
traditional switched junctions, therefore the bond graph model used for the
analysis is displayed next (Figure 6.18),

The use of the switched junctions leads to the same equations previously ob-
tained.
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Figure 6.17: Model of the buck converter using a multiswitched junction

Figure 6.18: Model of buck converter using auxiliary switched junctions

6.4.3 Junction structure and implicit state equations of
the buck converter using multiswitched junction

In order to construct the JSM, the equations that describe the interaction be-
tween elements in the system are obtained,

_pL2 = a (�1 � �2) fI1 � �3 (fI3 + eR2)
(�1 � �2) _pL1 = (�1 � �2) (�eR1 � afI2) + �1��2V + ��1�2G
�3 _pL3 = ���3eR2
�1�2pL1d = 0
��3pL3d = �3fI2
fR1 = (�1 � �2) fI1
fR2 = ��3fI3 + �3fI2

Using these equations the general JSM can be obtained,
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2666666664

1 0 0 0 0 0 0
0 (�1 � �2) 0 0 0 0 0
0 0 �3 0 0 0 0

0 0 0 �1�2 0 0 0
0 0 0 0 ��3 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3777777775

2666666664

_pL2
_pL1
_pL3
pL1d
pL3d
fR1
fR2

3777777775
= (6.9)

2666666664

0 a (�1 � �2) 0 0 ��3 0 ��3 0 0
�a (�1 � �2) 0 0 0 0 � (�1 � �2) 0 �1��2 ��1�2

0 0 0 0 0 0 ���3 0 0
0 0 0 0 0 0 0 0 0
�3 0 0 0 0 0 0 0 0
0 (�1 � �2) 0 0 0 0 0 0 0
�3 0 ��3 0 0 0 0 0 0

3777777775

26666666666664

fL2
fL1
fL3
_pL1d
_pL3d
eR1
eR2
V
G

37777777777775
with constitutive relation between resistive elements as

�
fR1
fR2

�
=

�
R1 0
0 R2

� �
eR1
eR2

�

and constitutive relation between storage elements as

24 z
zi
zd

35 =
24 F 0 0
0 Fi 0
0 0 Fd

3524 x
xi
xd

35

where F =
�
L�12

�
; Fi =

�
L�11 0
0 L�13

�
; Fd =

�
L�11 0
0 L�13

�
:

By using the JSM and the constitutive relations between elements, the general
state equation is obtained,
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266664
1 0 0 0 �3
0 (�1 � �2) 0 0 0
0 0 ��3 0 0
0 0 0 0 0
0 0 0 0 0

377775
266664
_pL2
_pL1
_pL3
_pL1d
_pL3d

377775 = (6.10)

26666664

��3R2
L2

a(�1��2)
L1

0 0 0
�a(�1��2)

L2

�(�1��2)R1
L1

0 0 0

0 0 ���3R2
L3

0 0

0 0 0
�(�1�2)

L1
0

�3
L2

0 0 0 ��3
L3

37777775

266664
pL2
pL1
pL3
pL1d
pL3d

377775+
266664

0 0
�1��2 ��1�2
0 0
0 0
0 0

377775
�
V
G

�

It can be seen that the behaviour of the system remains the same due to the
use of switched junctions instead of msj in order to maintain a proper causality
assignment. Therefore, the simulation and properties of the system are proved
to remain the same.

6.5 Modi�ed Boost converter

6.5.1 Overview of the modi�ed boost converter

Another example using the multiswitched junction is needed to demonstrate
the behaviour of these switching elements when sources are not a¤ected by
dynamic causality. In this case a modi�ed version of the boost converter is
used (Figure 6.19). The modi�cation of the boost converter allows to select be-
tween two di¤erent boost ratios by changing the con�guration of the switching
element. The model used behaves as a regular boost converter connected to
a load, which in this case can be two di¤erent loads with di¤erent conversion
ratio.

Figure 6.19: Modi�ed boost converter.
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6.5.2 Hybrid bond graph of the modi�ed boost con-
verter

Following the procedure of the HSCAP, �rst the truth table is obtained,

�1 �2 I C1 C2
0 0 Derivative Integral Integral
0 1 Integral Integral Derivative
1 0 Integral Derivative Integral
1 1 Non-valid Non-valid Non-valid

In physical systems, if a multiswitch is connected to more than one output, the
multiswitch could create a high-frequency switching, which usually leads to in-
stabilities. Therefore, to avoid such behaviour, this con�guration is considered
non-admissible. This is introduced in bond graph models as causal con�icts.

The bond graph model of the modi�ed boost converter can be seen in Figure
6.20.

Figure 6.20: Bond graph model of the modi�ed boost converter.

As previously mentioned, when multiswitched junctions are used there are
three possible con�gurations, which will reduce the number of equations that
describe the behavior of the system.

6.5.3 Junction structure and model equations of the
modi�ed boost converter

The equations describing the power exchange between elements are,

�1 � �2 _pL = �1�2V � �1��2eC1 � ��1�2eC2
�1��2 _qC1 = �1

��2(fL � fR1)
��1�2 _qC2 =

��1�2(fL � fR2)
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��1��2pLd = 0
��1�2qC1d = 0
�1��2qC2d = 0
eR1 = �1

��2eC1
eR2 =

��1�2eC2

The resulting junction structure matrix of the model is,

266666666664

�1 � �2 0 0 0 0 0 0 0
0 �1��2 0 0 0 0 0 0
0 0 ��1�2 0 0 0 0 0
0 0 0 ��1��2 0 0 0 0
0 0 0 0 ��1�2 0 0 0
0 0 0 0 0 �1��2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

377777777775

266666666664

_pL
_qC1
_qC2
pLd
qC1d
qC2d
eR1
eR2

377777777775
=

266666666664

0 ��1��2 ���1�2 0 0 0 0 0 �1 � �2
�1��2 0 0 0 0 0 �1��2 0 0
��1�2 0 0 0 0 0 0 ���1�2 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 �1��2 0 0 0 0 0 0 0
0 0 ��1�2 0 0 0 0 0 0

377777777775

26666666666664

fL
eC1
eC2
_pLd
_qC1d
_qC2d
fR1
fR2
V

37777777777775

where the constitutive relations between resistive elements is,

�
eR1
eR2

�
=

� 1
R1

0

0 1
R2

� �
fR1
fR2

�

and the constitutive relations between the storage elements are,

Fi = Fd =

24 1
L

0 0
0 1

C1
0

0 0 1
C2

35

By using the previous equations the implicit state equation is obtained.
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26666664
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0 0 ��1�2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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26666664
_pL
_qC1
_qC2
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_qC2d

37777775 =
2666666664
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���1�2
C2

0 0 0
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�1��2
C1R1

0 0 0 0
��1�2
L

0
��1�2
C2R2

0 0 0

0 0 0
��1��2
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0 0

0 0 0 0
��1�2
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0 0 0 0 0 �1��2
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3777777775
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qC1
qC2
pLd
qC1d
qC2d

37777775+
26666664
�1 � �2
0
0
0
0
0

37777775 [V ]

If the implicit state equation is analysed for each con�guration, it can be seen
that there is only non-valid con�guration, which �ll all the matrices with zeros,
because this con�guration does not have a proper assignment of causality.

As the previous examples, this is because the matrices �22

0@24 �1 � �2 0 0
0 �1��2 0
0 0 ��1�2

351A
and ��22

0@24 ��1��2 0 0
0 ��1�2 0
0 0 �1��2

351A are not complement of each other during

this con�guration, therefore, there is a drop in the rank of the model.

6.5.4 Simulation of the modi�ed boost converter

The modi�ed boost converter is simulated using a classical approach (ideal
switches represented by modulated transformers) where the elements remains
with static causality after a commutation occurs, and the proposed approach
(switched junctions) where dynamic causality a¤ect some elements after a com-
mutation occurs.

First, the classical approach is used for the simulation. The model is displayed
in Figure 6.21.
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Figure 6.21: Model of the modi�ed boost converter using ideal switches.

Its behaviour is displayed in Figure 6.22.

Figure 6.22: Behaviour of the system using modulated transformers.

In Figure 6.23 the model in 20Sim is displayed.

The behaviour of the model is displayed in Figure 6.24.
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Figure 6.23: Model of the modi�ed boost converter

Figure 6.24: Simulation results of the modi�ed boost converter

6.5.5 Structural analysis of the modi�ed boost converter

The order of the model remains the same for the admissible con�gurations due
to the absence of power �owing to the elements that are connected to the out-
put bond in OFF con�guration, in this case the storage element is giving the
stored energy to the resistive element but does not a¤ect the order of the model.

By using the controllability condition matrix 4.9 (Chapter 4) the order of the
con�gurations is determined. For this model the order of the system can be 1
for most of the con�gurations, which have a controllability equation:

rank

�
1
0

�
= 1

This is because the elements C1 and C2 are only reachable controllable, which
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is illustrated in Figure 6.25.

Figure 6.25: Controlling causal paths

The observability of the con�gurations is determined by the location of the
output, which could lead to the observability of one of the states or both of
them. This is determined using the observability condition 4.11 (Chapter 4).

The asymptotical stability of the system it cannot be achieved under any of
the commuting conditions, this is due to one of the storage elements (C1 or
C2) cannot be assigned with derivative causality. This can be seen in Figure
6.26, in this case the stability of the system is determined by the solvability of
the implicit equation.

Figure 6.26: Hybrid bond graph of the modi�ed boost converter with preferred
derivative causality.

6.6 Multiway switching using three-way and
four-way switches

6.6.1 Overview of the multiway switching system

A multiway switching system, as previously mentioned, are systems where a
load is controlled from di¤erent parts of the system, this is done by using
two-way and two-way four port switches, where the simpler system uses two
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two-way and one two-way four port. An example of this type of systems (and
the possible con�gurations) is displayed in Figure 6.27.

Figure 6.27: Left side OFF con�gurations, right side ON con�gurations

In this case a load can be controlled from di¤erent places in a circuit. These
types of circuits are commonly found in electric installations in buildings (to
turn ON and OFF lights) and some assembly lines in industries (to turn OFF
assembly lines in emergencies).

6.6.2 Hybrid bond graph of the multiway switching sys-
tem

The hybrid bond graph model is displayed in Figure 6.28.
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In this model all the possible con�gurations are taken into consideration, in
order to properly represent the behaviour of the physical system.

Figure 6.28: Hybrid bond graph model of the multi-way circuit

It must be noted that the ON con�gurations containing causal con�icts are
included as these are admissible and are considered under special cases of ad-
missible con�gurations. This also applies to the OFF con�gurations, because
the causal con�icts represent the absence of �ow of power.

6.6.3 Junction structure and model equations of the
multiway switching system

In order to obtain the junction structure of the model, it is necessary to obtain
the equations that describe the system�s behaviour for the di¤erent con�gura-
tions, which are shown next,

a _q = �afI
b _p = bSe + aeC
cfI = 0

where

a = ��1�2��3�4�5��6�7��8 + ��1�2��3��4�5�6��7�8
b = �1��2�3��4��5�6��7�8+��1�2��3�4�5��6�7��8+�1��2�3�4��5��6�7��8+��1�2��3��4�5�6��7�8
c = ��1��2��3��4��5��6��7��8+��1��2�3�4�5�6��7��8+��1�2�3�4�5�6�7��8+�1��2�3�4�5�6��7�8

The resulting junction structure matrix of the model is,24 a 0 0
0 b 0
0 0 c

3524 _q
_p
fI

35 =
24 0 �a 0
a 0 0
0 0 0

3524 q
p
eI

35+
24 0b
0

35 [Se]
Obtaining the following implicit equation,
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24 a 0 0
0 b 0
0 0 0

3524 _q
_p
_pd

35 =
24 0 �a

I
0

a
C

0 0
0 0 �b

I

3524 q
p
pd

35+
24 0b
0

35 [Se]
In this example, the non-valid con�gurations are all that represent the two-way
switches as open in both ends (�1�2 and �7�8), which is physically impossi-
ble. In this case the matrices �22 (a) and ��22 (b) are not complement of each
other, leading to the non-admissible con�gurations, as previously explained in
Chapter 3.

6.6.4 Structural analysis of the multiway switching sys-
tem

The controllability of the system is determined using the controllability condi-
tion Equation 4.9 introduced in Chapter 4, which depends on the con�guration.
It is completely controllable in the ON con�gurations, as there is a direct con-
nection between the source and the motor (I), which have a controllability
equation:

rank

� �ab
C

0

�
= 1

And as expected, is not controllable during the OFF con�gurations. Which
have a controllability equation:

rank

�
0
0

�
= 0

The observability of the con�gurations is determined by the location of the
output, which could lead to the observability of one of the states or both of
them. This is determined using the observability condition Equation 4.11 in-
troduced in Chapter 4.

The system is asymptotical stable in all admissible con�gurations as the motor
(I) can be assigned with preferred derivative causality in the BGD.

6.7 Discussion

Based on the results shown in this chapter, it can be concluded that the pro-
posed procedure for the analysis of hybrid bond graphs allows to represent all
of the behaviours of the systems without setting constraints. This includes
the representation of non-valid con�gurations on the implicit state equation,
which allows to represent all of the available con�gurations.
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The examples used in this chapter allow to compare previous approaches with
the one proposed in this work, which is useful to validate the advantages of
the latter.

All of the systems analysed in this chapter contains a large number of con-
�gurations, which shows how the proposed approach is useful for this type of
systems by simplifying their representation in a general implicit state equation,
rather than having to generate the state equation of each con�guration.

This allows to simplify the analysis of the system only to the valid con�gura-
tion, rather than making an independent analysis of each con�guration, that
usually included the non-valid con�gurations. It is then proven that the time
spent doing the analysis is reduced, because the non-valid con�gurations can
be detected in a simpler manner instead of being detected after the analysis
of such con�gurations.

Also, as previously mentioned, a more physically related behaviour is obtained.
This can be seen when a change in con�guration occurs and the number of
states changes as well, rather than having the same number of states for all of
the con�gurations as it was on previous analysis techniques.

This is not a general behaviour of all of the hybrid systems, however, it is
common to �nd systems that contain elements showing this behaviour, such
as mechanical systems where a coupling is made during a commutation, when
two or more masses behaves as one.

On the case of multiswitched junctions, it can be seen that models containing
sources a¤ected by dynamic causality, the multiswitch must be changed by an
arrange of switched junctions. This is because the multiswitched junctions is
a simpli�cation of a group of switched junctions with an added constraint to
avoid instabilities.

This constraint is useful on models that do not have sources a¤ected by dy-
namic causality, because this allows to omit con�gurations that are not physi-
cally possible, nonetheless, the non-valid con�gurations are contained into the
general implicit state equation.

On the case of the multiway switched system, the model cannot be simulated
because there is a causal con�ict in the model that should be considered as an
admissible con�guration, however, this behaviour could not be programmed
into any of the available simulation software. This can be solved by modifying
the source code of an open source simulation software, or by using a modi�ed
multiway switch. Both options are being analysed at the moment to observe
the behaviour resulting by using this proposed element.

It can be concluded that switched junctions and multiswitched junctions are
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useful to properly model the physical behaviours of the systems, which could
not be done using previous approaches, such as ideal switches in the case of
the switched junctions or switched power junctions in the case of the multi-
switched junctions. This is because the previous approaches where done with
the purpose of simplify the simulation of the hybrid systems, and it was done
at the cost of adding a constraint of static causality to the elements, which does
not allow to represent the physical behaviour of most of the hybrid systems.
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Chapter 7

Discussion and Conclusions

7.1 Discussion

The goal of this research was to propose a general notation for Hybrid Bond
Graphs which could be used as a widespread notation and be suitable for
simulation activities. In doing so, it was important to retain the graphical
advantages of bond graph modelling and the principles of idealised physical,
acausal model construction.

This notation is based on singular systems theory and hybrid bond graphs
notation. Singular systems notation is used to simplify the notation of the
con�gurations of the hybrid systems. As previously explained, the number of
con�gurations are 2n where n is the number of commuting elements. Therefore,
the more commuting elements on the system, the larger number of con�gura-
tions are to be analysed.

While with a traditional notation, it would be necessary to �nd the implicit
equation for each con�guration, which is time consuming (not only for systems
with a large number of commuting elements). It is not the case of the proposed
notation because it is easier to use in a computational environment, therefore
the time consumed on the analysis is drastically reduced.

7.2 Conclusions

A general Hybrid Bond Graph notation and a method for its construction have
been de�ned. This notation allows di¤erentiating the elements that are not af-
fected by dynamic causality from those that are a¤ected by dynamic causality.
By having this di¤erentiation of the elements a¤ected by dynamic causality,
the analysis of the system is simpli�ed compared to previous approaches, this
is due to the implicit equations for the di¤erent con�gurations remains quite
similar, compared to previous approaches where the implicit equations where
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needed to be obtained independently, or the elements a¤ected by dynamic
causality where mixed and therefore the equations took longer to be obtained
or could create confusion to the user.

Also, a more physically related behaviour can be obtained from the model by
using this notation and representation of the commuting elements, which mean
that there is no need to set any constraints into the model, and the rules to
properly assign the causality to the model and avoid mistakes on the equations
that represent the system�s behaviour.

It is possible to identify the valid con�gurations from the implicit equation,
which reduce the time of analysis of the model. This is done by checking the
rank of the implicit equation matrices, instead of doing the independent analy-
sis of each of the available con�gurations, which exponentially as the number
of commuting elements increase.

The results of this research can be used in singular systems theory and classic
hybrid bond graph theory as the results obtained in this research are based
in approaches proposed on these areas. This is due to the fact that the tech-
niques on which this approach is based on are used without any alteration.
Therefore, when this approach is applied on singular systems analysis, or hy-
brid bond graph analysis, the results could be similar to the ones that can be
obtained by using previous analysis techniques, or in some cases the result are
improved due to the lack of constraints set into the models, and therefore more
information can be obtained compared to previous approaches.

7.3 Further Work

The determination of the stability of hybrid systems using switched junction
is determined using traditional bond graph approaches. An approach to deter-
mine the steady state of the hybrid systems is being studied at the moment.
This work is expected to be concluded in the following months, as it need to
be tested using systems with large number of switched junctions to prove its
usefulness.

An implementation of the switched junctions can be done in 20 Sim for simula-
tion purpose, either represented as a traditional junction and a zero �ow/e¤ort
source, or as a dynamic element. This lead to the design of dynamic elements,
which is hard to implement, however it is not impossible.

Simulation of switched systems using traditional elements in 20 Sim is done by
using traditional zero �ow/e¤ort sources, square signals, and modulated trans-
formers. To obtain the proper behaviour of the system using this arrangement
of elements, the system must be modelled for each con�guration, with the cor-
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respondent causality assignment. These models will allow to obtain a closer
representation of the physical phenomena of the system, however, the obtained
behaviour it is not as accurate as it should. For this reason, the creation of
dynamic elements is suggested in Chapter 5.

There are two types of dynamic elements, switched junctions and storage/resistive
elements. Switched junctions are simpler to programme, as the governing
energy equations between ports must be programmed accordingly, while the
causality assignment is kept in consideration. However, the storage/resistive
elements must be programmed independently, as each element behaves di¤er-
ently according to the con�guration of the switched junction and the con�gu-
ration of the surrounding elements. This can be simpli�ed if the considerations
mentioned in Chapter 5 are followed.

The algorithm previously used is being improved so it can be used to obtain all
the information possible from the implicit equation. As is an algorithm made
on MATLAB, it can be translated to di¤erent programming languages; this is
due to MATLAB uses a programming language based on C, which is widely
used.
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