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Abstract 
There is a shortage of adequate housing in urban areas of less economically 

developed countries (LEDCs), which is likely to be exacerbated by high population 

growth. Conventional walling materials typically used for this application include 

unstabilised earth, fired brick and concrete block. None of these conventional materials 

are sufficient to meet the multi-dimensional requirements for sustainable urban growth. 

There is therefore a demand for new materials that fulfil the criteria of being practical, 

sustainable and affordable, which is currently unmet. Alkali-activated earth materials 

are an emerging category of construction materials which could have the potential to 

fulfil these criteria. In these materials, the clay minerals in soil are transformed into a 

stabilising phase by the addition of an alkaline activator, in order to give the soil greater 

strength and durability. These materials have two main potential advantages over 

conventional walling materials. Firstly, soils are low cost, low environmental impact 

precursors; secondly, alkali-activated stabilisation has the potential for lower 

environmental impact than Portland cement stabilisation as it does not require high 

temperatures or the direct release of CO2 in the life cycle. Despite these potential 

advantages, there is a significant knowledge gap around which soils are suitable to use 

in alkali-activated earth materials. The aims of this thesis are firstly, to establish a 

fundamental understanding of which soil compositions are suitable for alkali activation, 

and secondly, to assess the overall viability of alkali-activated earth materials as 

walling materials suitable for mass housing in this application.  

An experimental programme was devised to understand the behaviour of the different 

components of soil in alkali activation. In this programme, the complexity of the 

precursors was built up progressively, starting from individual clay minerals commonly 

found in soils (kaolinite, montmorillonite and illite), followed by mixtures of these clay 

minerals, natural and synthetic soils, and finishing with soils containing an addition of 

aggregate. In a simple production process, clay or soil precursors were activated using 

an aqueous solution of NaOH and then cured at a low temperature of 80°C. Phase 

formation behaviour was investigated using a range of characterisation techniques. 

Constraints were specified to make the systems relevant to construction in urban areas 

of LEDCs. Firstly, an innovative consistency constraint was used, to ensure that the 

mixes would be appropriate for brickmaking processes. Secondly, the clay and soil 

precursors were used in their uncalcined form to minimise both the environmental 

impacts and the technological complexity of the process.  

The findings from each experimental stage were used to inform the understanding of 

the next stage in the series. At the start of the series - the individual clay minerals, the 
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product phases formed by alkali activation were hydrosodalite for kaolinite, a N-A-S-H 

or (N,C)-A-S-H geopolymer for montmorillonite, and illite did not form a product phase 

but underwent alteration. Under the range of conditions used, the clay minerals were 

never fully consumed. For the mixtures of clay minerals, phase formation behaviour 

deviated from an ideal rule of mixtures model, which suggested there was a hierarchy 

of reactivity and influence between the individual clay minerals. For the natural and 

synthetic soils, it was shown that the clay mineralogy largely determined phase 

formation behaviour. In contrast, the non-clay components generally had little or no 

effect on phase formation behaviour, although they did produce a retarding effect on 

geopolymer formation in one natural soil. In addition, the plasticity of soil was shown to 

be an important factor in the practical suitability of soils for alkali activation. For the soil 

mixed with aggregate, it was shown that neither the production of a larger sample, nor 

the addition of inert aggregate, made any fundamental differences to the alkali 

activation process.  

From this improved technical understanding, it can be stated that using this production 

process, kaolinitic soils are suitable for alkali activation, whilst montmorillonitic and illitic 

soils are unsuitable. However, building on this improved fundamental understanding, 

there is scope for a wider range of soils to be used by tailoring their composition with 

reactive additives and admixtures. Future research should develop how to tailor soils in 

this way, and also lower the environmental and financial cost of NaOH-based 

activators. This research has made an important contribution to the fundamental 

understanding of how the different components of soil behave in the alkali activation 

process. Going forward, alkali-activated earth materials have the potential to be part of 

the solution in providing practical, sustainable and affordable walling materials for 

housing.  
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Chapter 1 - Introduction 
The overall research question of this thesis is an investigation into whether alkali-

activated earth materials are feasible for construction of housing in urban areas of Less 

Economically Developed Countries (LEDCs). This chapter introduces the problem area 

of inadequate housing in urban areas of LEDCs, describes the demand for new 

materials and the requirements they must meet, and explains why alkali-activated earth 

materials are a promising candidate for this application. 

This thesis is presented in the University of Bath alternative format, in which some 

chapters are in traditional format and some are in journal article format. For chapters in 

journal article format, the article is preceded by a linking commentary putting the study 

in context, and a declaration of authorship explaining the authors’ contributions. Some 

chapters in journal article format include an appendix – the existing numbering system 

for sections, figures and tables is extended to the appendix in these chapters. 
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1.1 Problem area: housing in urban areas of 

LEDCs 

Urban areas of LEDCs are some of the most rapidly growing areas in the world. This 

section will briefly explain the ways in which the insufficient supply of adequate housing 

in these areas is a problem than needs urgent attention.  

By 2050, it is predicted that the world’s population will increase by around 2 billion 

people (UN-DESA, 2015) and there will therefore be a demand for hundreds of millions 

of new homes over the next three decades. Most of this population growth will be in the 

continents of Africa and Asia (Figure 1-1). Within these regions, much of this growth 

will be in LEDCs, which are some of the most rapidly growing countries (UN-DESA, 

2015). Within these countries, population growth is tending to be concentrated in urban 

areas (UN-HABITAT, 2014). 

 

Figure 1-1: Projected global population growth, by region, to 2050. Prepared using data from 
UNDESA (2015). 

In addition to this new demand for housing in these areas, there is simultaneously a 

need to improve much of the existing housing of inadequate quality. Inadequate 

housing often makes up large slum areas in cities and is broadly defined by the UN as 

being deficient in any dimension of habitability, affordability or cultural suitability 

amongst others (OHCHR and UN-HABITAT, 2014). It is projected that a large 

proportion of new housing built over the next 30 years in these areas will be of 

inadequate quality (Figure 1-2) (UN-DESA, 2014, 2015; UN-HABITAT, 2014). 

Inadequate housing has negative consequences for residents’ health, economic 
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opportunities and resilience (Du Plessis, 2002; Mitchell and Macció, 2018; Wekesa et 

al., 2011). 

The provision of adequate housing is recognised as a priority issue in these regions 

(Du Plessis, 2005). This is a cross-cutting issue across several of the UN Sustainable 

Development Goals, including a specific target to “ensure access for all to adequate, 

safe and affordable housing and basic services and upgrade slums” (pg.21, United 

Nations, 2015). The continued prevalence of inadequate housing is a multi-facetted 

problem, caused by factors including land ownership, access to finance and planning 

policy (Du Plessis, 2005; Okpala, 1992; UN-CHS, 1993). However, the lack of 

adequate construction materials contributes to the problem - and hence the 

development of new materials has the potential to help alleviate the problem (UN-CHS, 

1993). 

 

Figure 1-2: Predicted urban population growth in formal and slum areas in Africa and Asia, from 
2015 – 2050. Prepared using data from UN-DESA (2014, 2015) and UN-HABITAT (2014). 
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1.2 Demand for new materials 

This section explains the advantages and drawbacks of conventional materials typically 

used for urban housing in LEDCs, and the requirements of practicality, sustainability 

and affordability that any new materials must meet. 

The scope of this thesis will be limited to walling materials (Figure 1-3), as they typically 

make up the largest element in one or two storey dwellings, the typologies found in this 

application (Praseeda et al., 2016). A fairly limited range of conventional materials is 

typically used for walling in this application: fired brick, concrete blocks and unstabilised 

earth with natural materials (Okpala, 1992; Wells, 1995). Each has its own advantages 

and disadvantages. 

 

Figure 1-3: A diagram demonstrating how the scope of investigation has been narrowed down. 

Images generated from iemoji.com.  

Fired brick and concrete are socially desirable, generally robust and familiar to build 

with in LEDCs. However, they often provide poor indoor environmental quality (Sanya, 

2012), are relatively expensive and have a high environmental impact through 

embodied global warming potential (Hashemi et al., 2015). This is a particular concern 

on a local scale for fired bricks from small manufacturers in many LEDCs, as gathering 

firewood for brick kilns contributes to deforestation (Hashemi and Cruickshank, 2015).  

In contrast, housing built with unstabilised earth materials, using traditional methods 

such as wattle and daub, can have low environmental impact and provide good indoor 

environmental quality (Sanya, 2012). However, they can have poor durability (Figure 

1-4) (Adegun and Adedeji, 2017), requiring continuing, labour intensive maintenance. 

They can also be linked to low social status of occupants (Nambatya, 2015; Yeboah, 

2005). In addition, some natural resources used in combination with earth, such as 
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reed poles, have become overexploited in areas of high population growth (Wells et al., 

1998). The prevaling trend in recent decades has therefore been to move away from 

traditional unstabilised earth materials towards fired brick and concrete, when it is 

affordable to do so (Okpala, 1992; Wells, 1995; Yeboah, 2005). 

There have long been calls for new materials in housing (UN-CHS, 1993), as none of 

the traditional or modern conventional materials meet contemporary needs. New 

materials must fulfil multidimensional demands in the categories of economic, 

technical, socio-cultural and environmental sufficiency (Marsh et al., 2016). For the 

purposes of this thesis, this will be simplified down to three requirements for success: 

practical, sustainable and affordable.  

 

Figure 1-4: An example of damage sustained by an unstabilised earth building, which can suffer 
from low durability. Image courtesy of Prof. Pete Walker. 

1.2.1 Practical 

Construction in urban areas of LEDCs is dominated by the informal sector - this 

typically involves small scale, unregulated construction, with self-building common (Du 

Plessis, 2002; Okpala, 1992). Several production practices are typical in the informal 

sector, such as stockpiling. Because of the lack of formal finance, materials are often 

bought in an ad hoc manner and stockpiled on site, until there is enough for the 

construction of the next building element (Aina, 1988; Yeboah, 2005). This means that 

construction can take months or even years (Awanyo et al., 2014). Unskilled labour is 

used for most housing construction, with the exception of certain elements such as the 



6 
 

foundation (Aina, 1988). This puts constraints on the complexity of unfamiliar 

technology that is advisable to be used. 

1.2.2 Sustainable 

Attention has recently increased on the contribution of the built environment towards 

global warming through embodied CO2eq. emissions, rather than just through 

operational emissions (Ibn-Mohammed et al., 2013). In order to keep the global 

average temperature rise < 1.5°C (relative to pre-industrial levels), it’s predicted that 

global CO2eq. emissions will need to reach net zero by 2050 (IPCC, 2018). Therefore, 

whilst providing new housing on such a large scale, the embodied CO2eq. emissions 

should be considerably lower than the conventional materials of fired brick and 

concrete. However, there are a range of other life cycle impact indicators (Pennington 

et al., 2004), whose impacts are more relevant on a local level. These can include 

human toxicity and ecotoxity (Dahmen et al., 2018; Heath et al., 2014), and are 

especially relevant to informal sector construction, where the regulatory environment 

and safety practices are generally looser than in more economically developed 

countries (MEDCs). Social acceptability of housing is another - often neglected - aspect 

of sustainability. Whilst this is beyond the direct influence of materials researchers, a 

conscious effort can be made to design materials that appeal to people’s aesthetic 

preferences in a given context. In this case, this would be that the finished form is 

similar in appearance to conventional construction materials.  

1.2.3 Affordable 

In informal sector construction, there is typically a lack of access to formal credit, as 

well as limited financial resources in general (Aina, 1988; Okpala, 1992). Given the 

prevalence of self-building and low cost of labour in informal construction, the cost of 

materials typically dominates the overall cost of construction (Baiden et al., 2014; Wells 

et al., 1998). Therefore, new materials should be more affordable than the conventional 

modern materials such as fired brick and concrete, which are often unaffordable for 

many people (Baiden et al., 2014; UN-CHS, 1993). 

Based on these three requirements, there are several emerging materials which have 

the potential to meet this demand. One of these emerging materials is alkali-activated 

earth materials.   
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1.3 Alkali-activated earth materials 

Alkali-activated earth materials are a hybrid of two categories of materials: earthen 

materials and alkali-activated materials. This section explains the background of these 

materials, how they relate to other construction materials, and the potential advantages 

they have for this application. 

Earth construction is an ancient form of construction used for thousands of years and 

still practiced around the world (Fabbri and Morel, 2016; Houben and Guillaud, 1994). 

Earth is advantageous in its widespread availability, allowing for use of local resources 

and reduction of transport costs and impacts (Morel et al., 2001). However, as 

described in the preceding section, there has been a move away from traditional, 

unstabilised earthen materials in this application. This is due to their need for labour-

intensive repair and maintenance, as well as low social status. Stabilisation of soils to 

improve their durability and strength has been practised for a long time using natural 

products (Houben and Guillaud, 1994). Recently, the use of stabilising agents such as 

cement and lime has been used in a methodical way, to improve the performance of 

earth (Kinuthia, 2016). Cement-stabilised earth can have a lower environmental impact 

than concrete blocks and especially fired bricks, whilst still having adequate 

performance (Figure 1-5) (Dahmen et al., 2018; Reddy and Jagadish, 2003). The use 

of cement and lime as stabilising agents is undesirable from the point of view of 

environmental impacts and cost. There is the potential for stabilisation by alkali 

activation to improve upon the environmental performance and affordability of these 

materials (Figure 1-6). 
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Figure 1-5: An example of cement-stabilised soil construction using interlocking stabilised soil 
blocks (ISSB). Image courtesy of Haileybury Youth Trust. 

 

Figure 1-6: Development of soil as a construction material. 

Alkali activation is a way of transforming an aluminosilicate precursor into an alkali 

aluminosilicate phase (Provis, 2014). In the case of soils, this involves transforming the 

clay minerals into a durable product phase, either a geopolymer or a zeolite, which can 

perform the function of stabilising the soil (Figure 1-7). This works in a different way to 

cement stabilisation. Instead of adding in a wholesale new material (such as cement) 

into the soil as a stabilising phase, alkali activation transforms the clay in soil into a 

stabilising phase. A technical explanation of this process will be provided in Chapter 2. 
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Figure 1-7: Schematic diagrams of unstabilised soil, and soil stabilised by alkali activation. 

Alkali-activated materials have been a growing topic of interest given their potential to 

have lower environmental impact than Portland cement based materials (Habert and 

Ouellet-Plamondon, 2016). This is primarily due to the fact that there is no requirement 

for high temperature heating or chemically driven CO2 release during calcination as in 

the production of Portland cement or lime. By combining this advantage with the 

affordability, widespread availability and low environmental impact of soil as a 

precursor, there is the potential for alkali-activated earth materials to fulfil the 

requirements of being practical, affordable and sustainable.  

The potential of these materials as construction materials has been shown for a small 

number of prototype systems, and it is a growing research area. However, there is a 

significant knowledge gap around understanding what range of soil compositions are 

suitable precursors for alkali activation. This range of suitability will determine whether 

alkali-activated earth materials could make a major contribution to meeting this material 

demand across large regions, or be limited to a small portion in certain areas. There is 

also limited research on linking materials behaviour to suitability in processing and 

construction. The literature on this subject is reviewed in Chapter 2. 
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1.4 Overview of thesis 

The overall research question of this thesis is: are alkali-activated earth materials 

feasible for construction of housing in urban areas of LEDCs? This is carried out by 

pursuing specific technical questions, and then linking these findings back to the 

broader application, as will be described in Chapter 3. This Introduction chapter has: 

introduced the problem area of inadequate housing in urban areas of LEDCs; 

described the demand for new materials and the requirements they must meet, and 

explained why alkali-activated earth materials are a promising candidate for this 

application. 

The rest of this thesis is organised to answer this research question. A brief summary 

of each chapter is given below, and schematically summarised in Figure 1-8. 

Chapter Two – Clays, soils and alkali activation – a literature review 

A technical description of clay minerals, soils, and the alkali activation process. 

This identifies the key knowledge gap in the fundamental understanding of soil 

composition and alkali activation. 

Chapter Three – Research approach 

A statement of the technical research questions, and an explanation of the 

overall methodology used to answer these research questions. This is followed 

by a description of the choices and assumptions made for mix design, synthesis 

methods (including how these were made relevant to production processes in 

LEDCs), characterisation techniques, and the clay and soil precursors.  

Chapter Four – Alkali activation of kaolinite 

An investigation of alkali activation of kaolinite, the most common 1:1 clay 

mineral in soil. A hydrosodalite is formed as the product phase.  

Chapter Five – Alkali activation of montmorillonite and illite 

Investigation of alkali activation of montmorillonite and illite, the two most 

common 2:1 clay minerals in soil. A N-A-S-H or (N,C)-A-S-H geopolymer is 

formed as the product phase for montmorillonite, and the illite does not form an 

identified product phase but undergoes alteration. 
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Chapter Six – Alkali activation of clay mixtures 

Investigation of alkali activation of binary and ternary mixtures of kaolinite, 

montmorillonite and illite. Phase formation is mostly determined by the 

dominant clay mineral in a mixture, but does not completely follow a simple rule 

of mixtures model. 

Chapter Seven – Alkali activation of natural and synthetic soils 

Investigation of the influence of non-clay components in soils, by the alkali 

activation of natural and synthetic soils. Clay minerals are the primary 

determinants of phase formation, but non-clay components can have a 

retarding effect.  

Chapter Eight – Alkali activation of soil blocks 

Investigation of differences in phase formation behaviour within scaled-up 

blocks. There are no large phase differences between the centre and edge 

regions of the block, and addition of aggregate makes no fundamental change 

to the alkali activation products. 

Chapter Nine – Conclusions and future research 

The technical research questions are answered, explaining how the systematic 

investigation of the compositional effects of soil on alkali activation fill the 

research gap. The overall research question is answered, discussing how the 

findings of this thesis inform the advantages and disadvantages of alkali-

activated earth materials. Priorities for further research include linking phase 

composition to strength and durability, tailoring the composition and workability 

of soils and developing lower impact alkaline activators.  
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Figure 1-8: Schematic summary of the layout of the thesis. 
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Chapter 2 - Alkali activation of 
clay minerals and soils – a 
literature review 
In this chapter, background descriptions are provided for the structure and properties of 

clay minerals, soils, as well as the fundamentals of the alkali activation process. This is 

followed by a literature review of the alkali activation behaviour of individual clay 

minerals (kaolinite, halloysite, montmorillonite and illite) as well as feedstocks 

containing clays (common clays and soils).  

The scope of the literature review includes some precursors which are not included 

within the experimental work in this thesis: namely, the clay mineral halloysite, and 

common clay deposits. Although these are not considered after this chapter, they 

provide useful context to understanding the alkali activation behaviour of a range of 

clay minerals and natural feedstocks that contain clay.  

Also included in the scope of the literature review are studies which use treatments to 

increase reactivity, such as thermal activation. There is a dearth of studies on clay 

minerals and clay-containing feedstocks without any form of treatment. Studies which 

use reactivity-enhancing treatments have therefore been considered here, because 

they help provide a more complete picture of the behaviour of clay minerals and natural 

feedstocks. 

From the conclusions from the literature review, two scientific knowledge gaps are 

presented. The first is around understanding the range of treatment and processing 

conditions required to form a given product phase. This is highly relevant for the wider 

development of alkali-activated materials, but for the application of housing in urban 

areas in LEDCs, constraints on the level of technological complexity preclude the use 

of the full range of treatments and processing conditions. Therefore, this knowledge 

gap is not applicable to the research undertaken in this thesis.   

The second key knowledge gap is around fundamental understanding of alkali 

activation for a range of clay-containing feedstocks. This is applicable to soils, and it is 

this knowledge gap which forms the motivation for the research in this thesis. It is noted 

that within this review, a key part of the evidence of the behaviour of the untreated 

individual clay minerals is provided by studies undertaken as part of this thesis.  
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Alkali activation and geopolymerisation 

behaviour of clay minerals, common clays and 

soils: a review 

Abstract 

The use of clay minerals as aluminosilicate precursors in alkali-activated materials has 

grown rapidly, for many potential applications including construction materials. Their 

abundance in nature makes them an attractive resource. A large number of studies 

have focused on the alkali activation of calcined kaolinite with a view to forming 

geopolymers. Recently, other types of clay minerals, common clays and soils have also 

been used as feedstocks. This paper reviews the factors in mineralogy, treatment and 

synthesis which influence phase formation in alkali activation of these feedstocks. 

Studies were grouped into individual clay minerals, and common clays and soils. In the 

activation of individual clay minerals, it is shown that treatment methods have arguably 

the largest influence in determining phase formation. Kaolinite, halloysite, 

montmorillonite and illite can be used to form geopolymers, albeit with different 

requirements for treatment, activating solution composition and processing conditions. 

In the activation of common clays and soils, it is shown that overall behaviour is 

approximately in line with the respective dominant clay minerals. It is promising for the 

prospects of scaled up production that many deposits of lower conventional quality are 

in fact better suited for use in alkali activation than those of higher conventional quality. 

There has been significant progress made in this field, and clay minerals remain a 

promising feedstock in alkali activation. However, there is still a lack of understanding 

in how mineralogical factors control material behaviour. It is recommended that further 

research be directed towards a more complete understanding of the effects of 

mineralogy and chemical composition in the alkali activation process.   
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2.1 Introduction 

Alkali-activated materials cover a broad range of systems, defined as "the reaction of a 

solid aluminosilicate (termed the ‘precursor’) under alkaline conditions (induced by the 

‘alkali activator’), to produce a hardened binder which is based on a combination of 

hydrous alkali-aluminosilicate and/or alkali-alkali earth-aluminosilicate phases" (pg.2, 

Provis, 2018a). The alkali activation of clay minerals, common clays and soils lies at 

the intersection of the fields of clay science and other disciplines including civil 

engineering, materials science and inorganic chemistry. It is an example of the recent 

development of collaborations between different subjects for the motivation of 

sustainability and improved material performance. Recent reviews have been 

published on related topics including: sustainable brick production (Murmu and Patel, 

2018); earth-based construction (Pacheco-Torgal and Jalali, 2012); alkali activation of 

solely kaolinite and metakaolin (Liew et al., 2016; Provis, 2018b; Rashad, 2013); alkali 

activation of waste materials (Mehta and Siddique, 2016; Payá et al., 2015; Toniolo 

and Boccaccini, 2017; Zhang, 2013); geopolymer construction in general (Obonyo et 

al., 2011); the applications of alkali-activated materials for masonry blocks (Ahmari and 

Zhang, 2015) and groundworks stabilisation (Sargent, 2015); methods of increasing 

precursors’ reactivity (Tchadjie and Ekolu, 2018); environmental impacts (Habert and 

Ouellet-Plamondon, 2016); advances in characterisation including measuring durability 

(Provis et al., 2015), and the fundamental mechanisms of the alkali activation process 

(Duxson et al., 2007a; Garcia-Lodeiro et al., 2015; Komnitsas and Zaharaki, 2007; 

Pacheco-Torgal et al., 2008). Alkali-activated materials can be used for a wide range of 

applications such as functional nanomaterials (MacKenzie, 2015; Medpelli et al., 2014), 

fire resistance and refractory bricks (Bernal et al., 2014; Kovalchuk and Krienko, 2009), 

heavy metals immobilization (Lancellotti et al., 2015; Provis, 2009b; Van Jaarsveld et 

al., 1997) and nuclear waste storage (Shi and Fernández-Jiménez, 2006; Vance and 

Perera, 2009). Most attention is focussed on construction and building materials, 

including: cast concrete (Provis et al., 2014a), reinforced concrete (Ding et al., 2016), 

blocks (Ahmari and Zhang, 2015), thermal insulation (Bernal et al., 2014; Zhang et al., 

2014), and repair mortars (Pacheco-Torgal et al., 2012). The potential benefits of alkali-

activated materials in construction are well described in the review articles and books 

cited above – in brief, their main attraction is the potential to have a much lower 

environmental impact and higher durability than Portland cement based materials (van 

Deventer et al., 2010).  

The most desirable product phase of alkali activation is a geopolymer, due to its 

strength, stability and durability. Geopolymer is a commonly used term, which falls 

within the broader domain of alkali activation. Invented by Davidovits (1989), the term 
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geopolymer generally refers to a system where "the binding phase comprises an alkali 

aluminosilicate gel, with aluminium and silicon linked in a three-dimensional tetrahedral 

gel framework." (pg.4, Provis and van Deventer, 2009), and is used mainly to describe 

low-calcium alkali-activated aluminosilicate binders (Davidovits, 1989; Provis, 2018a). 

Broadly speaking, any material which has a certain amount of silica and alumina in 

reactive form – being either sufficiently disordered, or having a structure that is highly 

soluble in an alkaline media - can be used as a precursor in alkali activation. Among 

the most popular are: fly ash, ground granulated blast furnace slag (GGBS), building 

residues and calcined kaolinite (metakaolin). These are important precursors due to 

their amorphous character and high reactivity. Despite their useful properties, there is a 

growing move to look beyond these core materials (Scrivener et al., 2016). With 

regards to fly ash and GGBS, trends in industrial production and geographical location 

mean they are not guaranteed to be universal mass-scale concrete replacement 

materials. Utilisation rates of coal combustion products (including fly ash) are already 

as high as >90% in Europe and Japan, although this is lower in other regions such as 

Middle East, Africa and Asia <15% (Heidrich et al., 2013). Although construction is still 

the biggest use, there are numerous other possible applications for fly ash (Blissett and 

Rowson, 2012; Yao et al., 2015), and emerging uses for GGBS such as carbon 

sequestration and soil remediation in farmland (Beerling et al., 2018). In addition, 

questions remain over how to fairly assign their environmental impacts as by-products 

of industrial processes, rather than waste (Habert et al., 2011). Unlike fly ash and 

GGBS, metakaolin is an established processed material resource, rather than an 

industrial side-stream. Due to its purity and consistent composition, metakaolin has 

been a popular choice for alkali activation, both as a single precursor for geopolymers 

(Davidovits, 2011; Provis et al., 2009; Rahier et al., 1996) and as a supplementary 

cementitious material for blended cements (Fernandez Lopez, 2009; Scrivener, 2014; 

Tironi et al., 2013). However, technical issues of poor workability (Provis, 2009a) and 

high water demand (Provis et al., 2010) are problematic in alkali activation of pure 

metakaolin. Methods to address these issues include tailoring the viscosity of the 

alkaline activating solution (Provis, 2009a) and/or the metakaolin particle morphology 

from the calcination process (San Nicolas et al., 2013). Beyond technical issues, scale-

up is also problematic for metakaolin. The processing costs and lack of abundance of 

high quality kaolin deposits mean that high purity metakaolin is not sufficient to be the 

sole precursor for mass-scale cement replacement materials - a wider range of lower 

purity precursors is needed instead (Gharzouni et al., 2016; McIntosh et al., 2015; 

Provis, 2018b). In response, increasing attention has been given to using other clay 

minerals (e.g. 2:1 dioctahedral layer silicates), common clay deposits and soils as 

precursors. Common clays and soils are both widely available in large quantities. 
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Global resources for all common industrial clays are extremely large (U.S. Geological 

Survey, 2018), and it has been estimated that 6 GT/year supply could be available 

(Scrivener et al., 2016). Soils are abundant in many parts of the world, as shown by 

their use in construction throughout human history (Houben and Guillaud, 1994). As 

well as their natural abundance, they are also a waste stream - soils typically make up 

the single largest component of construction waste (Llatas, 2011).  

The alkali activation of clay minerals is a challenging topic, due to the complex nature 

of clay minerals, and the highly variable influence of formation and weathering 

conditions on their mineralogy (Meunier, 2005). Several factors control the chemical 

and physical properties of clays, including: the mineralogy of the layers; exchangeable 

interlayer cations; the type and quantity of associated minerals; presence of organic 

matter and soluble salts, and particle size distribution (Brigatti et al., 2013; Murray, 

2006). Regarding other feedstocks, “common clays” define a variety of clay-containing 

deposits, having a wide range of mineralogical compositions (Murray, 2006). Given that 

soils represent an extensive and widely available source of clay minerals, it is a logical 

step to consider their behaviour too. Soils have long been stabilised by using alkali 

additions to change the interlayer cation state and/or flocculation state of the clay 

minerals (Sargent, 2015), but not by a phase transformation. Alkali-activated soils are 

an emerging strand for the stabilisation of sub-soils in situ for construction (Sargent, 

2015), as well as for the manufacture of construction materials. Although the 

compositional variability and quality of these feedstocks are much less advantageous 

than in high-purity metakaolin, they have a far better potential to be scalable (Provis, 

2018a). The adoption of lower purity resources is not a trivial step, as both the exact 

nature of the clay mineral and presence of impurities can both affect phase formation 

(Autef et al., 2013). Thus, in order to unlock this wider range of resources and use 

alkali-activated materials as a mass-scale replacement for Portland cement based 

materials, there is a need to understand the effects of mineralogy and impurities in 

other clay minerals, common clay deposits and soils. 

Given the growing number of alkali activation studies on these feedstocks, now is a 

timely moment to review: the state of scientific knowledge in this field, the opportunities 

and potential benefits, the areas in which further research is most needed, and the 

practical barriers to adoption. The scope of this review considers the alkaline activation 

of low calcium clay or soil systems, with no additional reactive feedstock such as fly 

ash, GGBS or other industrial wastes. The purpose of this restriction is to focus on the 

alkali activation behaviour of the clay minerals themselves. For the purpose of this 

review, alkali aluminosilicate reaction products are classified as either crystalline 

zeolitic phases, or amorphous geopolymer phases. Emphasis is given to geopolymer 
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phases rather than zeolites, as the former is believed to be more beneficial for the 

applications of construction materials and soil stabilisation. Zeolitic formation is 

considered only as far as to understand the influences of clay mineralogy and 

processing conditions on alkali activation behaviour as a whole. Although acid 

activation has been demonstrated to form geopolymeric products in several systems 

(Guo et al., 2016; Liu et al., 2012; Wang et al., 2017a), this review is restricted to 

alkaline activation, as the majority of studies continue to use this method. 

Within the phyllosilicate clay minerals, attention has been paid to the three most 

common clay minerals, especially in soils (Nickovic et al., 2012), namely kaolinite, 

montmorillonite and illite. Consideration has been extended to the mineralogical groups 

to which these clay minerals belong: serpentine-kaolin, smectite, and true mica 

respectively. Given that kaolinite and in particular its calcined version, metakaolin, have 

been widely studied (Liew et al., 2016; Zhang et al., 2016), kaolinitic systems are 

considered largely as reference points for systems using other clay minerals.  

This article firstly provides a brief overview of clay minerals’ structures and fundamental 

aspects of alkali activation. Secondly, the alkali activation of individual clay minerals – 

including the use of treatments - is reviewed before going further with the alkali 

activation of common clays and soils. Finally, the remaining knowledge gaps in this 

field are identified.  
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2.2 Structure of clay minerals 

Clay minerals are phyllosilicates (layered silicates). Their crystallographic structure 

consists of regular repetition of tetrahedral and octahedral sheets forming layers. The 

two-dimensional tetrahedral sheets (Figure 2-1) have the general formula T2O5. T is the 

cation, usually Si4+, Al3+, or Fe3+, with each cation surrounded by four oxygens in a 

tetrahedral geometry. Each tetrahedron is linked to adjacent tetrahedra by three shared 

corners (the basal oxygen atoms, Ob) to form a hexagonal mesh pattern. The fourth 

corners (the tetrahedral apical oxygen atoms, Oa) form octahedra of formula MO6, 

which together make two-dimensional octahedral sheets (Figure 2-2). M is either a 

divalent (Mg2+, Fe2+) or trivalent (Al3+, Fe3+) cation. For a divalent cation, the side-

sharing octahedra belong to a trioctahedral sheet, whereas for a trivalent cation, the 

sheet is called dioctahedral. The positioning of the octahedral anions Oo (most 

commonly OH-, but can also be other anions such as F- or Cl-) in the octahedra can 

form either cis- or trans- types of octahedra. These features, and their effect on clay 

properties, will be described in Section 2.4.2. 

 

Figure 2-1: Overhead diagram of the tetrahedral sheet. Oxa = apical oxygen atoms; Oxb = basal 
oxygen atoms; T = tetrahedral cations; a and b refer to unit cell parameters (Brigatti et al., 

2013). 
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Figure 2-2: Overhead diagram of the octahedral sheet. Oxa = apical oxygen atoms; Oxo = 
octahedral anions (typically OH). O-trans = trans-oriented octahedra; O-cis = cis-oriented 

octahedra; a and b refer to unit cell parameters (Brigatti et al., 2013). 

The stack of layers formed by one tetrahedral sheet and one octahedral sheet defines 

the 1:1 clay minerals’ crystallographic structure (e.g. kaolinite) while in the 2:1 clay 

minerals, the layer consists of an octahedral sheet sandwiched between two 

tetrahedral sheets (e.g. smectite). The arrangement and composition of the octahedral 

and tetrahedral sheets can vary, and this accounts for most of the differences in the 

physical and chemical properties of the clay minerals (Brigatti et al., 2013; Christidis, 

2011; Murray, 2006; Schaetzl and Anderson, 2005).  

2.2.1 The 1:1 layer silicates  

2.2.1.1 Serpentine-Kaolin group 

The 1:1 layer silicates are divided into three subgroups: Trioctahedral 1:1 Minerals 

(Serpentine sub-group); Dioctahedral 1:1 Minerals (Kaolin sub-group), and a mixed 

sub-group. Serpentine sub-group minerals have the unit formula of Mg6Si4O10(OH)8, in 

which all the six sites of the octahedral sheet are occupied by Mg2+ cations. Kaolin sub-

group minerals have the unit formula Al4Si4O10(OH)8, in which four sites of the 

octahedral sheet are occupied by Al3+ cations and two are vacant. Kaolinite is the most 

common member of this subgroup (Figure 2-3). It can be formed by the dissolution of 

Al and Si by weathering of primary and secondary minerals (Brigatti et al., 2013; 

Christidis, 2011; Murray, 2006; Schaetzl and Anderson, 2005). Unlike the 2:1 layer 

silicates, minerals in this group do not tend to have much atomic substitution and do 

not have a permanent layer charge. This gives them non-swelling behaviour. 
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Figure 2-3: Atomic diagram of kaolinite, showing two layers. Image generated in VESTA using 
structural parameters from Bish (1993). 

2.2.1.2 Halloysite - Hydrated Halloysite group 

The halloysite minerals can be found in two forms: one hydrated, in which there is a 

layer of water molecules between the alumino-silicate layers, and one dehydrated. In 

contrast to the plate-like structure of kaolinite, halloysite has a tubular or spherical 

structure (Brigatti et al., 2013; Murray, 2006; Schaetzl and Anderson, 2005; Schulze, 

2005). 

2.2.2 The 2:1 layer silicates  

The classifications of 2:1 clay minerals are based on the permanent layer charge, 

which is caused by cationic substitution in the octahedral or the tetrahedral sheet. In 

addition to these factors, the 2:1 clay mineral groups are also distinguished by 

differences in interlayer cations, and their hydration ability (Bergaya and Lagaly, 2013).  

2.2.2.1 Smectite group 

The smectite group is defined by a layer charge of 0.2-0.6 equivalents per half unit cell, 

and hydrated exchangeable interlayer cations (Bergaya and Lagaly, 2013). Emmerich 

et al. (2009) suggested five key features to describe a smectite mineral: (1) 

identification of the smectite structure, whether it is a dioctahedral or trioctahedral 

smectite; (2) layer charge; (3) the distribution of the charges in the octahedral and 
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tetrahedral sheets; (4) the distribution of the cations in the octahedral sheet; and (5) Fe 

content. 

Within the smectite group, the most commonly occurring mineral is montmorillonite 

(Figure 2-4). It is defined as dioctahedral smectite with little or no tetrahedral charge. 

Most of the layer charge is generated by the cationic substitution of Mg2+ for Al3+ in the 

octahedral sheet. 

 

Figure 2-4: Atomic diagram of montmorillonite, showing two layers. M = metallic interlayer 
cation. Image generated in VESTA using structural parameters from Viani et al. (2002).  
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2.2.2.2 True mica group  

The true mica group is defined by a layer charge of 0.6-1.0 equivalents per half unit cell 

and non-hydrated monovalent interlayer cations (Bergaya and Lagaly, 2013). 

Within this group, the most commonly occurring minerals are illite (Figure 2-5) and 

muscovite. As a result of the non-hydrated nature of the interlayer cations, these clay 

minerals are non-swelling, in contrast to the smectite group. The main difference 

between illite and muscovite is that there is less substitution of Al3+ for Si4+ in the 

tetrahedral sheet of muscovite (Murray, 2006).  

 

Figure 2-5: Atomic diagram of illite, showing two layers. Image generated in VESTA using 
structural parameters from Gualtieri (2000). 
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2.3 Fundamental aspects of alkali activation 

The mechanisms of alkali activation are still not fully understood, although in recent 

decades there have been great advances in understanding complex reaction 

mechanisms. Fundamentals of alkali activation have been described and discussed in 

detail elsewhere (Duxson et al., 2007a; Garcia-Lodeiro et al., 2015; Provis, 2014; 

Provis et al., 2015). Here, a short summary is presented for the alkali activation of 

clays, together with an overview of possible treatment processes and other factors 

affecting their activation (Figure 2-6). 

  

 

Figure 2-6: A summary of the factors that affect the alkali activation process of clays. 
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2.3.1 Reaction process 

Dissolution of one or more aluminosilicate precursors in a highly concentrated alkaline 

solution is required to break the precursors down into aluminate and silicate monomers 

(Weng and Sagoe-Crentsil, 2007). These species then undergo a polycondensation 

process to form a geopolymer (Duxson et al., 2007a) or a nucleation and growth 

process to form a crystalline zeolite phase (Cundy and Cox, 2005). 

The dissolution behaviour of clay minerals is a well-studied area (Cama and Ganor, 

2015). Much of previous research is limited to the range of pH 2-12 as the context is 

typically either natural rock-forming and pedogenic processes (Golubev et al., 2006) or 

barrier linings in deep geological storage of radioactive waste (Metz et al., 2005). In 

contrast, alkali activation typically requires alkaline solutions of [OH] ≥ 5 M at the 

minimum (Provis et al., 2014b) corresponding to pH ≥ 14. For clays as precursors, an 

optimal range is 8 – 12 M (Diop and Grutzeck, 2008a; Heah et al., 2013; Hounsi et al., 

2014; Lemougna et al., 2014; Xu and Van Deventer, 2000). As a result, although useful 

insights can be obtained from existing studies, it is still somewhat unknown whether the 

dissolution mechanisms and behaviour are the same in highly concentrated solutions. 

The dissolution mechanisms for each clay mineral group are described in Section 2.4. 

Although there is recently growing attention paid to one-part geopolymers (water added 

to a dry mixture of aluminosilicate and alkali source) (Luukkonen et al., 2018), the 

majority of studies reviewed here belong to the two-part process (aqueous activating 

solution added to a solid aluminosilicate), which is typically used.  

2.3.2 Reaction products 

Alkali aluminosilicate reaction products are classified as either crystalline zeolitic 

phases, or amorphous geopolymer phases. The exact nature of the low-Ca amorphous 

binder phases, known as geopolymers, is still a matter of debate, with previous 

suggestions made that they are in fact composed of nanocrystalline zeolites (Provis et 

al., 2005), and others that they are a zeolitic precursor (Fernández-Jiménez et al., 

2006). A key difference between zeolites and geopolymers is that the former has fixed 

stoichiometric compositions (Abdullahi et al., 2017), whereas the latter can have a 

continuous range of compositions due to the coexistence of a range of Q4(mAl) 

tetrahedra in the disordered gel (Duxson et al., 2005b; Provis et al., 2009). For 

geopolymers, the charge balancing required for the presence of Al atoms in the 

inorganic polymeric framework requires one alkali metal (M+) cation for each Al atom 

(Barbosa et al., 2000; Walkley et al., 2018). Within the broad term of geopolymers, 

there are distinct phase categories, differing in structure and calcium composition. 

These are N-A-S-H, C-A-S-H and (N,C)-A-S-H (the following cement chemistry 
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notation is used to abbreviate chemical formulae: N = Na2O; C = CaO; A = Al2O3; S = 

SiO2; H = H2O) (Garcia-Lodeiro et al., 2015). Given the low calcium content of clays, N-

A-S-H or (N,C)-A-S-H typically form, which have only small microstructural differences 

between them (García-Lodeiro et al., 2010). Therefore, throughout the rest of this 

article, it is assumed that when the term geopolymer is used, it refers to a N-A-S-H or 

(N,C)-A-S-H phase. 

2.3.3 Compositional variables 

The element, quantity and concentration of alkaline metal cation in the activating 

solution is critical in determining both the type and the amount of product phases 

formed. Regarding zeolites, the stoichiometry of M, Al and Si depends on the exact 

species that has been formed. The composition of the aluminosilicate framework is 

AlxSi(2-x)O4 (within the range of 0 ≤ x ≤ 2), and includes sufficient framework cations M+ 

required to balance the anionic charge in the framework arising from the inclusion of 

aluminium (Newsam, 1986). The metal cations used in the alkaline solution have a 

crucial effect on the dissolution behaviour and properties of the end material. NaOH 

and KOH are the compounds most commonly used (Provis, 2009a). Xu and van 

Deventer (2000) compared NaOH and KOH activators for a range of aluminosilicates. 

The extent of dissolution was higher in NaOH solutions, but samples activated with 

KOH solution had higher compressive strength. This was suggested to be due to the 

larger K+ ions forming larger silicate oligomers, resulting in more cohesive 

geopolymeric setting behaviour, although more recently it has been shown that 

isolating the effects of alkali cation species is not straightforward (Duxson et al., 

2007b). There is a general tendency of NaOH to be more conducive to zeolite - rather 

than geopolymer - formation (Criado et al., 2006), but other factors such as cost and 

viscosity also influence the choice of compound (Provis, 2009a). When Na2SiO3 

solution is used, the speciation of the silicate oligomers can influence final properties 

(Provis, 2009a; Singh et al., 2005), as well as setting time (Arnoult et al., 2018).  

The Si:Al molar ratio is also influential in determining the phases formed. This refers to 

mobile Si and Al ions that are in the solution and free to react. This may differ from the 

Si:Al ratio of the system as a whole, depending on the dissolution rates and 

mechanisms of the precursor phases. The implications of this for each clay mineral 

group are discussed individually in Section 2.4. When processing conditions conducive 

to geopolymer formation are used, geopolymers are typically formed for systems with 

Si:Al >1.5 (Duxson et al., 2007b), with zeolite formation tending for systems with Si:Al 

<1.5. At intermediate ranges of Si:Al = 1-1.5, zeolites and geopolymers can be formed 

simultaneously (Buchwald et al., 2011; Rahier et al., 1997; Zibouche et al., 2009).  
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As the silicon proportion of a geopolymer framework increases, the proportion of Al 

linkages in the chains decreases, which induces strengthening of the network 

(Fernández-Jiménez et al., 2006). Geopolymers have been formed at Si:Al molar ratios 

of up to 600, although deformation behaviour was reported to become elastic at Si:Al > 

48 (Fletcher et al., 2005). In addition, a system containing too much silica may not fully 

react, resulting in lower strength beyond an optimal Si:Al ratio (Duxson et al., 2005a). 

When processing conditions conducive to zeolite formation are used, the zeolite 

species formed depends on the Si:Al ratio used, with different groups tending to form 

either side of Si:Al = 5 (Abdullahi et al., 2017; Johnson and Arshad, 2014). Higher Si:Al 

ratios also result in longer setting times (Silva et al., 2007).  

2.3.4 Processing variables 

The optimal temperature and time of curing depends on the precursor used, as well as 

the activation conditions. Highly reactive precursors such as metakaolin can form a 

geopolymer at room temperature (Rahier et al., 1996; Zhang et al., 2012), but 

uncalcined kaolin reacts most successfully in the range of 60-100°C (Hounsi et al., 

2013). Curing temperature influences the rate of geopolymerisation (Mo et al., 2014), 

and also affects mechanical properties by influencing pore volume and size distribution 

(Rovnaník, 2010). For some compositions, extended curing times can result in a 

secondary transformation from a geopolymer into a zeolite (Duxson et al., 2007b). 

Pressure plays a role too by altering the solvent’s dielectric constant and density, but 

the effects are specific to each system and also linked to temperature (Byrappa and 

Adschiri, 2007). Higher pressures can result in formation of finer zeolite particles (Tong 

et al., 2014). 

2.3.5 Thermal treatment to increase reactivity 

Thermal treatment is the most common route to increase the reactivity of clay minerals. 

This involves heating the clay mineral to a specific temperature so that the octahedral 

layer undergoes dehydroxylation. This then results in a reduction in the bonding 

coordination number of the Al atoms, making them more reactive (Massiot et al., 1995). 

The structural transformation upon thermal treatment depends on many factors 

associated with the treatment, including: heating rate, holding temperature and time, 

atmosphere (oxidizing or reducing) and cooling rate (Seiffarth et al., 2013; Tchadjie and 

Ekolu, 2018). The transformation also depends on factors associated with the 

precursor, including: particle size (Dietel et al., 2017; Heller-Kallai, 2013; Louati et al., 

2016), clay mineralogy (Buchwald et al., 2009; Heller-Kallai, 2013; Hollanders et al., 

2016), degree of ordering (Hollanders et al., 2016), as well as the amount and type of 

associated minerals present (Hollanders, 2017). It often seems to be an unstated 
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assumption in alkali activation studies that once a clay mineral has been 

dehydroxylated, it stays dehydroxylated. In fact, rehydroxylation is possible under 

certain conditions. This is discussed in Sections 2.4.1 and 2.4.2 for each clay mineral 

group. 

One of the major effects of calcination is decreased specific surface area with 

increasing calcination temperature. This is due to the agglomeration of the clay 

particles at high temperatures, caused by dehydration and then dehydroxylation. For 

the same reason, the particle size distribution is coarser after calcination (Figure 2-7) 

(Fernandez et al., 2011; He et al., 1994; Seiffarth et al., 2013). 

 

Figure 2-7: Particle size distribution of clay minerals (series 0) and their products calcined at 
600°C (series 600) and 800°C (series 800), for a) Kaolinite, b) Montmorillonite, and c) Illite. 

Adapted from Fernandez et al. (2011). 

2.3.6 Other treatments to increase reactivity 

There are several other methods to increase the reactivity of aluminosilicates in clay 

minerals (Tchadjie and Ekolu, 2018). Mechanical treatment aims to have the combined 

effect of increasing disorder and amorphisation within the clay mineral structures, as 

well as reducing particle size to increase the specific surface area and therefore the 

reactivity (Hounsi et al., 2013; MacKenzie et al., 2007). Chemical treatment has also 
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been used. This includes both acid and alkali fusion treatment (MacKenzie et al., 

2007), sometimes used in combination with calcination (Belviso et al., 2017). 

2.4 Alkali activation of individual clay minerals 

Alkali activation of the most common phyllosilicate clay minerals within the serpentine-

kaolin, smectite, and true mica groups are reviewed in this section. Within these 

groups, the breadth of understanding is not even: some minerals have been the subject 

of numerous studies, whilst for others, no relevant studies have yet been done. For 

each clay mineral group, this section has been structured based on dissolution 

mechanisms, treatments used to increase reactivity, and phase formations. 

2.4.1 1:1 clay minerals 

2.4.1.1 Dissolution mechanisms 

Dissolution behaviour of aluminosilicates can be categorised as either congruent - if the 

dissolution ratio of Si:Al in the alkaline solution is similar to the Si:Al ratio in the solid 

raw material, or incongruent - if the dissolution ratio of Si:Al is not similar to the Si:Al 

ratio of the solid raw material.  

Dissolution has been shown to be approximately congruent for a range of 

aluminosilicate minerals, including phyllosilicates (Xu and Van Deventer, 2000). 

However, it is also argued that dissolution is congruent for kaolinite, but incongruent for 

smectite-rich clays (Aldabsheh et al., 2015). There are competing theories to describe 

the kinetics involved (Cama and Ganor, 2015), but it is widely agreed that the 

dissolution rate of kaolinite as a whole is controlled by the dissolution of the layer 

edges (Bauer and Berger, 1998; Huertas et al., 1999; Liew et al., 2016), and it is highly 

dependent on pH above pH 10 (Huertas et al., 1999).  

2.4.1.2 Thermal treatment 

Among all the clay minerals, kaolinite is the most used clay mineral for alkali activation. 

Many studies have tested different calcination temperatures and concluded that the 

complete dehydroxylation of kaolinite occurs in the temperature range of 650-700°C 

(Hollanders et al., 2016; Ilić et al., 2010; Tironi et al., 2013). As a result of the 

dehydroxylation, the coordination of Al atoms in the octahedral sheet is reduced 

(Massiot et al., 1995), delamination of the layers occurs, and available surface area 

decreases (He et al., 1994). The dehydroxylated form is known as metakaolin - this is 

more reactive in geopolymerization than kaolinite as a result of undergoing these 

changes.  
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Metakaolin can be partially re-hydroxylated, but this has required conditions of heating 

at 250°C for 6 days in an excess of water (Rocha and Klinowski, 1991). When the re-

hydroxylated metakaolin was then re-de-hydroxylated, the resulting metakaolin was 

found to be even more disordered than after the first dehydroxylation (Rocha and 

Klinowski, 1991). 

2.4.1.3 Phase formation behaviour 

Activation of kaolinite without additional silica tends to form hydrosodalite using 

hydrothermal synthesis (Barrer et al., 1968; Engelhardt et al., 1992; Heller-Kallai and 

Lapides, 2007) as well as in lower liquid:solid conditions (Marsh et al., 2018b). 

Metakaolin, formed by thermal activation of kaolinite, can form zeolitic phases including 

hydrosodalite, Zeolites A and X (Barrer and Mainwaring, 1972; Heller-Kallai and 

Lapides, 2007), or a geopolymer phase (Zhang et al., 2012), depending on the 

processing conditions.  

With the addition of soluble silica, both kaolinite (Heah et al., 2012; Hounsi et al., 2013) 

and metakaolin (Lapides and Heller-Kallai, 2007; Rahier et al., 1996; Zhang et al., 

2013) tend towards forming geopolymers. However, if the additional silicate makes the 

system Si:Al = ~1.5, geopolymers and zeolites can co-form (Rahier et al., 1997).  

Although Si:Al molar ratio is important, phase formation does not simply depend on this 

alone. Curing temperature and duration are highly influential, and these variables 

cause different behaviours in systems with the same Si:Al molar ratio. In recent reviews 

of hydrothermal synthesis of zeolites from metakaolin, it is concluded that: for systems 

with Si:Al ≤ 5, products can be SAPOs, X zeolites, hydrosodalite or other LTA zeolites; 

for systems with Si:Al ≥ 5, products can be zeolite β, zeolite Y, ZSM-5, ZDM-11 

(Abdullahi et al., 2017; Johnson and Arshad, 2014). In several of these systems, the 

overall Si:Al molar ratio was conducive to geopolymer formation but a range of zeolites 

were formed instead, due to the curing conditions. The optimum conditions for zeolite 

synthesis are given as 70-200°C for 16-120 h (Abdullahi et al., 2017; Johnson and 

Arshad, 2014). These involve higher temperatures and longer periods than those 

typically used for synthesis of geopolymers. The metastable nature of geopolymers 

means that they can continue transforming into more stable zeolitic phases when cured 

at higher temperatures and/or longer periods than their optimal range (Johnson and 

Arshad, 2014). This was observed for the silica-doped metakaolin systems of Lapides 

and Heller-Kallai (2007), where further curing at 72 h and beyond transformed the 

geopolymers into zeolites. This is supported by the findings of Zhang et al. (2012), that 

crystalline phases form preferentially over geopolymers in systems with higher curing 

temperatures. 
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The concentration of the activating solution also has an influence. Johnson and Arshad 

(2014) and Wang et al. (2017b), recommend an NaOH concentration of <3 M for 

tailored zeolite synthesis, as higher concentrations decrease the relative crystallinity. 

This zeolite perspective agrees with studies optimising for the production of 

geopolymers, as these typically use an NaOH concentration of >5 M (Provis et al., 

2014b), with an optimal range for clays of 8 – 12 M (Diop and Grutzeck, 2008a; Heah 

et al., 2013; Hounsi et al., 2014; Lemougna et al., 2014; Xu and Van Deventer, 2000). 

In summary, even for relatively simple and well-understood minerals such as kaolinite 

and metakaolin, there can be a significant variety in product phases formed depending 

on the variables of additional soluble silica added and curing regime. 

Halloysite is much less studied than kaolinite, due to its comparative rarity. Activation of 

uncalcined halloysite with NaOH solution was shown to result in some structural 

changes but no product phase (Wang et al., 2013), although this was likely due to the 

short synthesis time used of 1 h at 50°C. The use of treatments has been more 

successful - calcination between 550 and 800°C, followed by activation with a 

combined NaOH and Na2SiO3 solution, has succeeded in forming a geopolymer 

(MacKenzie et al., 2007). 

Regarding the synthesis methods used for the 1:1 clay minerals, syntheses optimising 

for zeolite production mostly use hydrothermal synthesis, which is rarely used in 

geopolymer syntheses. There are two reasons for this. Firstly, considering reaction 

conditions, the effects of processing variables in hydrothermal synthesis are still not 

fully understood and it is not generally considered as an appropriate method for making 

amorphous phases such as geopolymers. Secondly, considering scalable processing, 

hydrothermal synthesis is appropriate for high purity reactions in small quantities 

(Byrappa and Adschiri, 2007), but is less appropriate for the manufacture of 

construction materials in bulk. This principle also applies to the other clay minerals and 

clay-containing feedstocks.  

2.4.2 2:1 clay minerals 

2.4.2.1 Dissolution mechanisms 

Similar to the 1:1 clay minerals, dissolution of 2:1 clay minerals as a whole is limited by 

the dissolution rate of the crystal edges (Bauer and Berger, 1998; Köhler et al., 2003; 

Yokoyama et al., 2005). For this reason, dissolution rate is dependent on the edge 

surface area available rather than the total surface area (Yokoyama et al., 2005), in 

addition to the concentration of the alkali activator(s) (Aldabsheh et al., 2015).  
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2.4.2.2 Thermal treatment 

In contrast to the 1:1 clay minerals described previously, the thermal and chemical 

stability of 2:1 clay minerals is more variable due to the greater variety in composition 

and structure. In montmorillonite, thermal and chemical stability is affected by: the 

distribution of the octahedral cations over cis- and trans- sites; the type of interlayer 

cations, and the Fe content (Emmerich et al., 1999; Emmerich et al., 2009). However, 

the principles are the same, in that reactivity is increased by the changes in Al 

coordination and other structural features that occur during the dehydroxylation 

process. Here it is useful to emphasise the distinction between dehydroxylation and 

amorphisation: dehydroxylation is the loss of hydroxyl groups from the octahedral layer, 

whereas amorphisation is the increase in disorder of the layer structure so it is no 

longer crystalline. Amorphisation is desirable for increasing precursor reactivity; 

dehydroxylation can also result in amorphisation in some systems, but this is not a 

direct correlation between the two. 

Cis- and trans- sites describe different types of atomic position in the octahedral sheet 

(Figure 2-8). In the cis-sites, OH− groups are located on a shared edge of a triangular 

face on either the right or left side of the octahedron. In the trans-sites, OH− groups are 

located on the top and bottom vertices of the octahedron. In the half-unit cell of a 

dioctahedral clay mineral, there are two cis-sites and one trans-site, of which only two 

are occupied. This gives the possibility of different structures depending on which sites 

are occupied (Figure 2-9). If a sheet is cis-vacant (cv), one trans-site and one cis-site 

are occupied. If a sheet is trans-vacant (tv), both cis-sites are occupied (Brigatti et al., 

2013). These can also be defined by planes of symmetry (Meunier, 2005). Most 

montmorillonites consist of cv 2:1 layers and most illites consist of tv 2:1 layers, 

although the reverse can also be true (Drits et al., 1995; Tsipursky and Drits, 1984).  
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Figure 2-8: Atomic diagrams of a) trans- and b) cis- configurations of octahedral sites, defined 
by the positions of the octahedral anion - usually a hydroxyl group (Wolters and Emmerich, 

2007). 

 

Figure 2-9: Overhead diagrams of a) trans- and cis- configurations of octahedral sites; b) a cis-
vacant sheet, in which both trans- sites are occupied; c) a trans-vacant sheet, in which both cis- 

sites are occupied (Wolters and Emmerich, 2007). 

During dehydroxylation, the structural changes are different between the two sheet 

structures. A common feature is the reaction of two hydroxyl groups to form a water 

molecule (which evolves) and a residual oxygen, resulting in either a reduction or 

distortion of octahedral coordination. However, the behaviour of the octahedral cations 

themselves differs. In a cv smectite, the Al3+ ions move from the trans-sites to the cis-

sites, which requires additional thermal energy (Heller-Kallai and Rozenson, 1980), and 

the octahedra transform to a range of coordination states (Muller, 2000). In a tv 

smectite, no Al3+ migration occurs, and octahedra transform to five-coordination 

(Muller, 2000). The results of these two dehydroxylation pathways is that regardless of 
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the initial sheet structure, the dehydroxylated structures of dioctahedral 2:1 layer 

silicates always have tv octahedral sheets (Muller, 2000). This difference in structural 

change is reflected in dehydroxylation temperature ranges: most cv 2:1 clay minerals 

dehydroxylate at >600°C, whereas tv clay minerals dehydroxylate at <600°C 

(Emmerich et al., 2009; Wolters and Emmerich, 2007). This temperature difference is 

usually large - the dehydroxylation temperature of a clay mineral with a cv sheet 

structure is typically higher by 150°C to 200°C than the same mineral with a tv sheet 

structure (Drits et al., 1995). This is due to the shorter bond length of the OH-OH edges 

in tv sheets compared to cv sheets, since less energy is required for the hydrogen to 

jump to the closest OH group and form a water molecule (Drits et al., 1995). 

As well as the influence of the sheet structures, the dehydroxylation temperature of 2:1 

clay minerals is dependent on the valency and ionic radius of the interlayer cations 

(Derkowski and Kuligiewicz, 2017; Drits et al., 1995; Emmerich et al., 1999; Fernandez 

et al., 2011; Garg and Skibsted, 2014; He et al., 1994; Hollanders et al., 2016; Tironi et 

al., 2013). Regarding valency, divalent exchangeable cations (e.g. Ca2+) in clay 

minerals bind more water, and bind more tightly, to the clay surface than the 

monovalent exchangeable cations (e.g. Na+) in ambient temperature – therefore, 

higher dehydroxylation temperatures are needed to remove the additional water for 

divalent compared to monovalent interlayer cations (He et al., 1994). Regarding ionic 

radius, dehydroxylation temperature increases for interlayer cations with larger ionic 

radius. Emmerich et al. (1999) studied the behaviour of homoionic cv montmorillonites 

and found that the dehydroxylation temperature increased between 625-685°C in the 

following order: Li+ < Cu2+ < Zn2+ < Ca2+ < Na+ <Sr2+. 

Similarly to the dehydroxylation of kaolinite, the dehydroxylation of 2:1 clay minerals 

can also be seen in powder X-ray diffraction (XRD). He et al. (1994) and Hollanders et 

al. (2016) claimed that at around 700°C the 001 reflection will be weakened but not 

fully collapsed due to the non-complete dehydroxylation of the clays. At 800°C and 

above, the reflection will have fully collapsed and the background of the XRD pattern 

increased, which indicates complete dehydroxylation (Figure 2-10). Higher 

temperatures than the optimum calcination temperature causes formation of new 

phases. In montmorillonite, Garg and Skibsted (2014) showed that above 1000°C, the 

SiO4 tetrahedra across the collapsed interlayer space in the dehydroxylated structure 

recrystallize and form cristobalite, cordierite and anorthite. In a pure smectite clay, at 

900°C, magnesium aluminium silicate (MgAl2Si4O12) was formed (Figure 2-10) 

(Hollanders et al., 2016). The side-effect of new phase formation is a decrease in the 

amount of reactive material in the clay, as shown by decreasing background intensity in 

an XRD pattern.  
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Figure 2-10: XRD patterns of untreated clays (RAW) and after calcination at various 
temperatures, for a) Kaolinite, b) Smectite, and c) Illite. The identified minerals are: K: kaolinite, 
H: halloysite, S: smectite (with Ca or Na), He: hectorite, Q: quartz, A: anatase R: rutile and Z: 

zincite (internal standard), MAS: magnesium aluminum silicate. Adapted from Hollanders et al. 
(2016). 

Unlike kaolinite, dioctahedral 2:1 clays retain their layer structure after dehydroxylation 

(Heller-Kallai, 2013). The Al coordination changes are reversible as they can undergo 

varying degrees of rehydroxylation, including under ambient conditions. 

Rehydroxylation can happen because the clay structure is under stress by lattice 

distortions and by the cations in the hexagonal holes (Emmerich, 2000; Muller, 2000). 

Other studies showed that dehydroxylated montmorillonite regains many of the 

hydroxyl groups by treatment under steam between 200-300°C. The rehydroxylation of 

the 2:1 clay minerals affects the reactivity of these clays under chemical activation. 

More details on the structural transformation of 2:1 dioctahedral layer silicates during 

dehydroxylation-rehydroxylation reactions can be found in Muller et al. (2000). 

2.4.2.3 Chemical treatment 

Acid treatment can also be used to increase reactivity. This process has been 

investigated more extensively for smectites, which causes dehydroxylation and 

dissolution of the octahedral sheet, and turns the tetrahedral sheet into a “three-

dimensional framework of protonated amorphous silica” (pg.129, Komadel, 2003). This 
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can eventually transform the smectite into a "hydrous amorphous silica phase" 

(pg.1405, Madejová et al., 1998). The extent of this process depends on: the 

composition of the octahedral sheet; the strength of the acid treatment, and the length 

of time. This increases reactivity by increasing the surface area, making the structure 

more disordered, and also increases the clay's Si:Al ratio by dissolution of octahedral 

Al (Komadel and Madejová, 2013). 

The extent of this process depends on the treatment conditions used and the 

composition of the clay mineral. Montmorillonite can be almost fully amorphised given a 

treatment of sufficient concentration and time (Figure 2-11) (Steudel et al., 2009b). 

Belviso et al. (2017) found that a 5 M HCl treatment resulted in a greater extent of 

amorphisation for Ca- than Na-montmorillonite. The authors attributed this to a higher 

dissolution rate of the Ca-montmorillonite, due to a higher proportion of Mg and/or Fe 

substitutions in the octahedral layer (Madejová et al., 1998). Behaviour is similar for 

illite, with degree of amorphisation dependent on concentration and length of treatment, 

and near complete amorphisation achievable (Figure 2-11) (Steudel et al., 2009a). 

Acid treatment behaviour has different mechanisms in smectite and mica group clay 

minerals. Attack of the octahedral sheet occurs via layer edges for both groups, 

whereas in swelling clays attack can occur via the interlayer faces too (Steudel et al., 

2009a, b). Since interlayer faces are accessible to protons in swelling layers, this 

increases the rate of dissolution (Komadel et al., 1996). As a result, acid dissolution is 

slower for the mica group (Steudel et al., 2009a). 
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Figure 2-11 XRD patterns showing amorphisation of a) smectite, and b) illite after acid-washing 
in 5 M H2SO4 at 80°C for up to 96 h. Adapted from Steudel et al. (2009a, b). 

2.4.2.4 Phase formation behaviour in smectite group 

There are few studies on the alkali activation of montmorillonite. This preference may 

partly be due to the known difficulties of using montmorillonite-based materials for 

construction, given its expansive behaviour. It also has a more variable composition 

compared to kaolinite, particularly with regard to octahedral and interlayer cation 

substitutions, as described in Section 2.2.2. 

Early studies investigated uncalcined montmorillonite, but not with the intention of 

geopolymer formation as more recent studies have. Ingles et al. (1970) activated an 

uncalcined montmorillonite without additional silica using a range of activators. Using 

NaOH and KOH, no aluminosilicate product phase was formed, and much of the 

activator was not consumed, possibly due to the low curing temperature of 25°C. 

Richardson et al. (1986) activated a similar system, but using higher temperature 

curing. For oven curing, this resulted in a decrease in montmorillonite XRD reflection 
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intensity, and for microwave curing, partial dehydration of the montmorillonite. No 

product phases were reported from XRD characterisation, but geopolymer formation 

cannot be excluded as no consideration of the formation of amorphous phases was 

made. Belviso et al. (2017) activated a calcined montmorillonite which did not undergo 

a phase transformation. Marsh et al. (2018a) activated both an acid-washed K10 

Montmorillonite and an untreated Bentonite with NaOH solution, forming a geopolymer 

when the system molar ratio of Na:Al ≥ 1.  

When thermal treatment is used, phase formation behaviour is more dependent on the 

relative amounts of Al and Si present in the system that are soluble under the given 

activation conditions. Belviso et al. (2017), reported probable geopolymer formation by 

1 M NaOH hydrothermal alkali activation of Na- and Ca-montmorillonites which were 

acid washed (80°C for 48 h in 5 M HCl) and then calcined at 700°C. However, when 

samples were calcined without a preceding acid treatment, no changes were reported. 

This difference is likely due to the partial amorphisation and dissolution of the 

octahedral sheet observed from the acid treatment, and the relatively low NaOH 

concentration used in synthesis. 

When additional soluble silica is added, a geopolymer is formed. Prud'homme et al. 

(2011) activated an uncalcined montmorillonite with KOH and K-silicate solution, and 

the later addition of silica fume as a foaming agent. Characterisation results and visible 

strengthening suggested that the montmorillonite contributed to the formation of a 

geopolymer, as the montmorillonite's structure was destroyed during activation. 

Seiffarth et al. (2013) reported a geopolymer was formed from a silica-doped smectite 

clay calcined at various temperatures from 550–950°C. In this study, explicit evidence 

for geopolymer formation from phase characterisation was not given, but rather inferred 

from increased strength of the alkali-activated samples. When Belviso et al. (2017) 

used an additional NaOH fusion step at 700°C, zeolites were much more readily 

formed.  

No studies were found on the alkali activation of other members of the smectite group. 

In summary, montmorillonite can be used to form a geopolymer in its uncalcined form, 

if the activating solution and curing conditions are sufficient. The same is also true for 

its calcined form, although zeolites can also be formed, depending on the activating 

solution and processing conditions. 
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2.4.2.5 Phase formation behaviour in true mica group 

As for montmorillonite, few studies have been performed on the alkali activation of illite, 

and most of these have used thermal treatment.  

For un-calcined illites, reaction products are not generally formed, but there are 

exceptions. Richardson et al. (1986) activated an uncalcined illite with NaOH solution. 

No reaction products were formed for oven heating, but nepheline was formed when 

microwave heating was used. Sedmale et al. (2013) mixed illite-rich clay with KOH 

solution, which underwent only small changes in strength. It is likely that no 

geopolymer was formed, and this could have partly been due to the very short curing 

time used. Marsh et al. (2018a) activated an illite with NaOH without treatment. No 

product phase was formed, but the illite underwent a kind of structural breakdown. In 

contrast, Prud'homme et al. (2011) activated an uncalcined illite with KOH and K-

silicate solution, and the addition of silica fume as a foaming agent. After a full set of 

characterizations, they concluded that the illite partially dissolved and contributed to the 

formation of a geopolymer.  

When calcination is used, the results are not always in agreement. Belviso et al. (2017) 

showed that an illite calcined at 700°C underwent no obvious changes by 1 M NaOH 

hydrothermal alkali activation, with the addition of a preceding acid treatment making 

no difference. In contrast, Sperberga et al. (2011) mixed a calcined (700–900°C) illite 

with KOH solution, and a geopolymer was believed to be formed. 

When additional soluble silica is added in addition to a thermal treatment, a 

geopolymer is possibly formed. Seiffarth et al. (2013) thermally treated illite clay 

between 550–950°C, and activated it with additional silica. Geopolymerisation was 

inferred from increased strength, but without proof provided by phase characterisation. 

When Belviso et al. (2017) used an additional NaOH fusion step, a sodalite was 

formed, and a variety of other sodalites were formed using various combinations of 

treatment processes.  

The inference of a geopolymer phase through increased strength after activation is 

simple but has drawbacks, as will be discussed in Section 2.5.5. However, in the case 

of illite as the dominant clay phase, no formation of zeolitic phases has been reported 

for the conditions typically used for geopolymer synthesis, so could be a reasonable 

assumption in this instance.  

In summary, the alkali activation behaviour of illite does not seem to be consistent 

between studies. In its uncalcined form, geopolymers have been formed under some 
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conditions but not others. If illite is calcined, geopolymer formation is also possible, but 

from the evaluation of these studies, it does not seem to be a reliable reaction.  

2.4.3 Comparison of individual clay studies 

In terms of having the potential to form a geopolymer, the evidence suggests that any 

of the clay minerals considered here can be transformed into a geopolymer. Comparing 

clay minerals and the different treatments used (Table 2-1), the different clay minerals 

require different extents of treatments to become reactive enough, and to get a suitable 

Si:Al molar ratio, to make this happen. 

The most obvious comparison is the difference between the 1:1 and 2:1 clay minerals. 

One expects different phase formation behaviour between them, due to a large 

difference in Si:Al molar ratio. It seems that it is more reliable to form a geopolymer 

from kaolinite, but only given the use of additional soluble silicate. In contrast, it is 

possible to form a geopolymer from the 2:1 clay minerals without additional soluble 

silicate, but the reaction is less reliable. Within 1:1 clay minerals, despite the dearth of 

studies on halloysite, it is tentatively suggested that halloysite is less prone to form a 

geopolymer than kaolinite. Within 2:1 clay minerals, geopolymers are formed more 

readily from montmorillonite than illite. Given their similarity in layer chemistry, this 

could be partly attributed to smectites' swelling behaviour giving a higher specific 

surface area for reaction in a wet mix, as has been shown for acidic dissolution 

(Komadel et al., 1996). 

The majority of studies use calcined clays in alkali activation. It is likely that calcined 

clays will be more highly used than uncalcined clays in future products due to their 

amorphous structure and high reactivity towards alkali activation. However, it is still 

necessary to study the alkali activation of uncalcined clays. Firstly, from a perspective 

of understanding the fundamentals of their behaviour, and secondly, for investigating 

the feasibility of uncalcined clay products for applications where comparable 

performance to Portland cement based materials is less critical.  

From the comparison of studies by clay mineral and treatments used (Table 2-1), the 

most reliable route to forming a geopolymer for all of the clay minerals considered is 

calcination followed by activation with additional soluble silica. Whilst acid washing and 

NaOH fusion do seem to increase reactivity, they do not necessarily make it more likely 

to form a geopolymer rather than a zeolite. This conclusion supports previous 

recommendations for alkali-activated materials in general, that lower impact routes of 

soluble silicate production is a research priority (Provis, 2018a, 2018b; Scrivener et al., 

2016). Other potentially energy-saving measures such as flash-calcination (Salvador, 

1995) should also be investigated further.   
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Table 2-1: Summary of reaction products for alkali activation of individual clays in the 

studies reviewed, showing effects of different treatments and system additions. The 

default activation process in this context is with NaOH only. 

 1:1 clay minerals 2:1 clay minerals 

Treatment 
System 

additions 
Kaolinite Halloysite Montmorillonite Illite 

None None 

Hydrosodalite  
(Barrer et al., 1968; 
Engelhardt et al., 

1992; Heller-Kallai 
and Lapides, 2007; 

Marsh et al., 
2018b) 

None  
(Wang et al., 

2013) 

 
None  

(Ingles, 1970; 
Richardson et al., 

1986) 
 

Geopolymer 
(Marsh et al., 

2018a)  

 
None  

(Marsh et al., 
2018a; 

Richardson et 
al., 1986; 

Sedmale et 
al., 2013) 

None 
Soluble 
silicate 

Geopolymer  
(Heah et al., 2012, 
2013; Hounsi et al., 
2014; Hounsi et al., 
2013; Prud'homme 

et al., 2011) 

--- 
Geopolymer  

(Prud'homme et 
al., 2011) 

Geopolymer  
(Prud'homme 
et al., 2011) 

Acid wash None --- --- 

None  
(Belviso et al., 

2017) 
 

Geopolymer  
(Marsh et al., 

2018a) 

--- 

Calcination None 

Hydrosodalite 
(Barrer and 

Mainwaring, 1972) 
 

Various zeolites  
(Barrer and 

Mainwaring, 1972; 
Heller-Kallai and 
Lapides, 2007; 

Zhang et al., 2012) 
 

Geopolymer + 
hydrosodalite  
(Zhang et al., 

2012) 

--- 
None  

(Belviso et al., 
2017) 

None  
(Belviso et al., 

2017) 
 

Possible 
geopolymer  

(Sperberga et 
al., 2011) 

Acid wash  
+  

calcination 
None --- --- 

Geopolymer  
(Belviso et al., 

2017) 

None  
(Belviso et al., 

2017) 

Calcination  
+  

NaOH 
fusion 

None --- --- 
Various zeolites  
(Belviso et al., 

2017) 

Sodalite  
(Belviso et al., 

2017) 

Calcination 
Soluble 
silicate 

Geopolymer  
(Lapides and 

Heller-Kallai, 2007; 
Rahier et al., 1996; 
Zhang et al., 2013) 

 
Geopolymer + 
hydrosodalite 
(Rahier et al., 

1997) 

Geopolymer  
(MacKenzie 
et al., 2007) 

Possible 
geopolymer  

(Seiffarth et al., 
2013) 

Possible 
geopolymer  
(Seiffarth et 
al., 2013) 
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2.5 Alkali activation of common clays and soils 

2.5.1 Nature and composition of common clays and soils 

In line with the purpose of this review, the focus of this section will be on the alkaline 

activation behaviour of the clay minerals within common clays and soils. As previously 

stated, common clay deposits and soils are an abundant source of clay minerals. 

These are more scalable compared to the high purity deposits and refined products 

currently used - but also more complex and variable. Using kaolinite for example, 

primary residual deposits are the most common type, but are generally small and 

contain limited quantities of reserves (Murray and Keller, 1993). Thus, there is a need 

for research on a wider range of deposits than the small number of large deposits 

currently exploited in other industries. This argument extends to the other clay minerals 

as well as soils. 

Understanding the influence of mineralogical aspects is key to unlocking their potential 

as scalable precursors. Given the scope of this review, the majority of attention is paid 

to clay mineral factors with only brief consideration given to the role of associated 

minerals and organic content.  

Very small amounts of certain clay minerals may exert a large influence on the physical 

properties of a common clay or soil. The degree of crystallinity is important for some 

industrial applications, especially paper coatings (Murray and Lyons, 1956). 

Crystallinity is of particular importance here, since, as discussed in Section 2.3, clay 

minerals with poorer crystallinity are generally thought to be more reactive. 

The clay minerals and other components can vary greatly within common clays and 

soils in different locations. Soils around the world contain clay minerals in different 

amounts (Abe et al., 2006; Nickovic et al., 2012), depending on climate, lithology and 

weathering history (Christidis, 2011). In addition, the distribution of clay minerals in soil 

in a single location can vary with depth (Claret et al., 2002; Dixon and Weed, 1989), 

due to varying extents of weathering (Meunier, 2005). Further information on 

pedogenic processes, the occurrence of clay minerals in soils and their mineralogical 

and physical properties are given elsewhere (Huang et al., 2011; Meunier, 2005). 

In addition to differences in the amounts present, there can be large differences in the 

nature of the clay minerals in different locations, including substitutions and crystallinity 

(Meunier, 2005). For example, the kaolinite from a mixed hydrothermal and residual 

kaolin deposit in Cornwall, U.K. is well crystallised, whereas kaolinite from a 

sedimentary deposit in Georgia, U.S.A. varies between extremely well crystallised and 
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poorly crystallised (Murray and Keller, 1993; Murray and Lyons, 1956). Other clay 

minerals can also vary in crystallinity depending on their formation and weathering 

history - for example, smectite in vertisol soils from undergoing wetting-drying cycles 

(Meunier, 2005). Decreased stacking order and degree of crystallinity could contribute 

to the reactivity of clays, even without explicit treatment to increase disorder. This is 

relevant to the different formation routes of clays, suggesting that some deposits may 

require less treatment, as their geological history has made them more reactive 

(Prud'homme et al., 2011). 

2.5.2 Overview of types of systems 

Because common clays and soils frequently contain more than one clay mineral, this 

section also reviews studies on synthetic mixtures of the individual clays. This is helpful 

to understand the interactions between different clay minerals in more complex 

systems such as soils. Many studies have mixed an additional reactive aluminosilicate 

(e.g. fly ash, refined metakaolin) with a soil before activation. Although potentially 

beneficial in terms of properties achieved, these systems are not as useful for 

understanding the behaviour of clay minerals and associated minerals in common 

clays and soils. In these systems, it is often unclear whether the soil is simply acting as 

an aggregate, or whether its components are actively contributing to the alkali 

activation process and phase formation. For this reason, these systems have not been 

reviewed here, and so only a small number of studies in this field meet the scope of 

this review. In the following sections, studies are grouped by the dominant clay in each 

soil.  

2.5.3 Common clays and soils containing a single dominant 

clay mineral 

Kaolinite-dominant soils are the most studied ones, for the same reason described for 

individual clays. In an early study, Boutterin and Davidovits (1988) activated a kaolinitic 

soil with NaOH, giving increased compressive strength. The authors attributed this to a 

zeolitic product, but no characterisation was given. Lateritic soils containing kaolinite as 

the sole clay mineral are a popular feedstock. Lemougna et al. (2014) and Diop and 

Grutzeck (2008a) activated uncalcined kaolinitic lateritic soils with NaOH, forming a 

hydrosodalite as the product phase. Lemougna et al. (2014) suggested a geopolymer 

phase may also have formed, but the characterisation evidence presented was not 

conclusive. In a very similar study, Yousef et al. (2012) identified the reaction product 

to be plagioclase feldspar and a geopolymer, but given the system, it is thought far 

more likely to be a hydrosodalite too. Lassinantti Gualtieri et al. (2015) also studied a 

kaolinitic lateritic soil. Activation with NaOH and Na2SiO3 apparently had no effect on 
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the uncalcined soil, but a geopolymer formed as the main reaction product for the 

calcined soil. Muñoz et al. (2015) studied a synthetic montmorillonite-dominated soil, 

using clay and mining waste. Activation of the uncalcined soil with NaOH and Na-

silicate seemed to form a geopolymer, although the relatively modest gains in strength 

suggest that much of the montmorillonite remained undissolved, albeit exfoliated. 

Notably, the use of mineral additives seemed to encourage geopolymerisation. 

In summary, in feedstocks containing a single dominant clay mineral, phase formation 

behaviour is generally in line with that expected from alkali activation of individual clay 

minerals. However, the majority of studies are on kaolinitic feedstocks.  

2.5.4 Common clays and soils containing multiple clay 

minerals 

For studies on feedstocks containing multiple clay minerals, those containing two clay 

minerals will be reviewed first, followed by those containing three.  

Amongst feedstocks containing two clay minerals, kaolinite-illite is the most common 

clay combination. El Hafid and Hajjaji (2015) calcined an illite-kaolinite clay sample at 

700°C and mixed it with NaOH solutions, producing the zeolites chabazite and 

natrolite. It was unclear what exact roles the kaolinite and the illite played in the 

development of these product phases. However, the formation of zeolites in this study 

is most likely due to the metakaolin supplying enough Al to solution, to give a lower 

Si:Al solution ratio that was more conducive to zeolite formation. On another kaolinite-

illite soil, Zibouche et al. (2009) found that activation of the calcined soil with NaOH 

solution formed zeolites, geopolymers or both, depending on the amount of soluble 

silica used in the activating solution. The illite did not fully react in the process. Essaidi 

et al. (2014) studied two kaolinite-illite clays, one of which had a lower kaolinite and 

higher illite content than the other. The soils were activated in the uncalcined and 

calcined states with KOH and K-silicate, forming geopolymers for all systems. Among 

the activated samples, the more illite-rich soil was the stronger of the two when 

calcined but weaker when uncalcined. However, the authors suggested this might be 

partly attributable to the surface defects in the kaolinite in the illite-rich soil, leading to 

more amorphous content after calcination. Xu and van Deventer (2000) used a 

synthetic mixture of illite and kaolinite, activated in its uncalcined state using NaOH and 

Na2SiO3. No chemical characterisation of the activated sample was given, but it did 

result in mechanical strength gain. Richardson et al. (1986) activated binary mixtures of 

kaolinite, montmorillonite and illite clays with aqueous NaOH solution, producing 

zeolites and/or nepheline. None of the phases formed had not been formed during 

activation of the individual clays. However, no mention of geopolymers or amorphous 



50 
 

phases was made, and the activated systems were not fully characterised. The use of 

microwave curing and very short curing times (less than 30 minutes) means there is 

limited comparability with other systems.  

There are fewer studies on feedstocks containing three clay minerals. Richardson et al. 

(1986) extended the previous study to a ternary mixture, which produced zeolites and 

nepheline. Diop and Grutzeck (2008b) activated a raw clay containing kaolinite, 

montmorillonite and illite, although the relative quantities were not given. Activation of 

the uncalcined clay with NaOH formed a hydrosodalite. Dietel et al. (2017) studied a 

different clay containing all three minerals, using thermal treatment and activation with 

KOH. A geopolymer was formed.  

In summary, in common clays or soils containing multiple clay minerals, phase 

formation behaviour and clay mineral consumption is generally less easily determined 

that in those with a single dominant clay mineral. However, no studies have observed 

radically different behaviour between multiple and single clay mineral feedstocks. 

2.5.5 Comparison of common clays and soil studies 

Compared with individual clays, there is greater complexity but also greater potential 

with using common clays and soils as feedstocks. Key challenges are to understand 

the effect of this complexity on phase formation behaviour and other material 

properties. 

As previously described, there can be great variation in clay mineralogy - including 

crystallinity - in common clays and soils, depending on pedogenic conditions. Since 

poorer crystallinity is generally thought to make for a more reactive clay mineral in 

alkali activation, several treatment methods (Sections 2.3.5 and 2.3.6) have been used 

to artificially improve reactivity. The purposeful use of clay minerals with naturally 

occurring low crystallinity, such as by Essaidi et al. (2014) is an under-investigated 

aspect in this field so far. It is promising that clay minerals from low crystallinity 

deposits could be better suited for alkali activation, thereby avoiding competition with 

other industries for high crystallinity deposits. 

A general trend throughout this field is the proliferation of different units used to 

describe a system’s composition – this makes meaningful comparisons between 

systems more difficult. The most useful units are deemed to be: oxide/elemental molar 

ratios (i.e. Si:Al, M:Al, M:Si) - for system composition of Al, Si and metal cation M; 

molarity - for alkali activating solution, and liquid:solid mass ratio - for describing the 

wet mix used. 
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In testing of mechanical properties, dry strength is usually tested rather than wet 

strength. Although reported dry strength values are often impressive, this is not 

necessarily the most important measurement for the commercial development of alkali-

activated materials as replacements for fired clay bricks and Portland cement based 

materials. If increased dry strength is not also accompanied with increased wet 

strength and durability, then use will be limited. In addition, when Na2SiO3 is used, it is 

rarely mentioned that this is an adhesive used to strengthen other materials, most 

commonly cardboard (Fawer et al., 1999). The development of appropriate testing 

methods for alkali-activated construction materials is being progressed by RILEM 

Technical Commitee 224-AAM amongst others (Abora et al., 2014). There is now a 

voluntary standard for alkali-activated cementitious materials in the British Standards, 

PAS 8820:2016 (BSI, 2016). 

Studies on soils are usually carried out with the purpose of demonstrating a particular 

common clay deposit or soil is suitable for use as an alkali-activated material. For this 

reason, there is usually an emphasis on optimising the processing variables to get the 

best mechanical properties. In general, the depth of microstructural characterisation is 

less than for studies on individual clay minerals. This is understandable as they are 

more complex systems, but at the same time is less useful for developing a 

fundamental understanding of common clays’ and soils’ behaviour. Calcination is 

generally used less often for common clays and soils than in studies of individual clay 

minerals.  

For common clays and soils that contain a single clay mineral plus associated 

minerals, phase formation behaviour is in line with that expected from the alkali 

activation of individual clay minerals. This suggests that associated minerals do not 

play a large role in determining alkali activation behaviour. However, this cannot yet be 

taken as universally applicable, as only a very limited compositional range of clay-

containing feedstocks has been studied so far. A summary of basic details, including 

clay composition, of all the reviewed alkali activation studies is given in Table 2-2. As 

described above, studies on single clay feedstocks are dominated by kaolinite, and 

multiple clay feedstocks are dominated by kaolinite-illite. In order to improve the 

fundamental understanding of these systems, a broader range of compositions should 

be studied. Lastly, there is still limited understanding on the strengthening mechanisms 

between geopolymers and aggregates (Dietel et al., 2017; Lee and van Deventer, 

2004; Pacheco-Torgal et al., 2007). This may be a key difference between ‘pure’ 

individual clays and common clays or soils with a high content of unreactive particles.  
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Table 2-2: A summary of basic details of the alkali activation studies reviewed (Kaol = kaolinite, 

Mt = montmorillonite, I = illite) 

Study 
Feedstock 
category 

Clay 
mineral(s) 

Treatments 
used 

Alkali 
solution 

compound(s) 

Phases 
formed 

Barrer et al. (1968) 
Individual 

clay 
Kaol None NaOH Hydrosodalite 

Engelhardt et al. 
(1992) 

Individual 
clay 

Kaol None NaOH Hydrosodalite 

Heller-Keller and 
Lapides (2007) 

Individual 
clay 

Kaol None NaOH Hydrosodalite 

Marsh et al. 
(2018b) 

Individual 
clay 

Kaol None NaOH Hydrosodalite 

Barrer and 
Mainwaring (1972) 

Individual 
clay 

Kaol Thermal NaOH 
Hydrosodalite; 

various 
zeolites 

Heller-Keller and 
Lapides (2007) 

Individual 
clay 

Kaol Thermal NaOH 
Hydrosodalite; 

Zeolite A; 
Zeolite X 

Zhang et al. (2012) 
Individual 

clay 
Kaol Thermal NaOH 

Geopolymer + 
hydrosodalite 

Heah et al. (2012) 
Individual 

clay 
Kaol None 

NaOH + 
Na2SiO3 

Geopolymer 

Heah et al. (2013) 
Individual 

clay 
Kaol None 

NaOH + 
Na2SiO3 

Geopolymer 

Rahier et al. (1996) 
Individual 

clay 
Kaol Thermal 

NaOH + 
Na2SiO3 

Geopolymer 

Lapides and Heller-
Kallai (2007) 

Individual 
clay 

Kaol Thermal 
NaOH + 
Na2SiO3 

Geopolymer 

Zhang et al. (2013) 
Individual 

clay 
Kaol Thermal 

NaOH + 
Na2SiO3 

Geopolymer 

Rahier et al. (1997) 
Individual 

clay 
Kaol Thermal 

NaOH + 
Na2SiO3 

Geopolymer + 
hydrosodalite 

Wang et al. (2013) 
Individual 

clay 
Halloysite None NaOH None 

MacKenzie et al. 
(2007) 

Individual 
clay 

Halloysite Thermal 
NaOH + 
Na2SiO3 

Geopolymer 

Ingles et al. (1970) 
Individual 

clay 
Mt None NaOH None 

Richardson et al. 
(1986) 

Individual 
clay 

Mt None NaOH None 

Marsh et al. 
(2018a) 

Individual 
clay 

Mt None NaOH Geopolymer 

Marsh et al. 
(2018a) 

Individual 
clay 

Mt Acid NaOH Geopolymer 

Belviso et al. (2017) 
Individual 

clay 
Mt Acid NaOH Geopolymer 

Belviso et al. (2017) 
Individual 

clay 
Mt 

Acid + 
thermal 

NaOH Geopolymer 

Prud'homme et al. 
(2011) 

Individual 
clay 

Mt None 
KOH + 
K2SiO3 

Geopolymer 

Seiffarth et al. 
(2013) 

Individual 
clay 

Mt Thermal 
NaOH + 
Na2SiO3 

Possible 
geopolymer 

Belviso et al. (2017) 
Individual 

clay 
Mt 

Thermal + 
NaOH fusion 

NaOH 
Sodalite + 
zeolite + 
faujasite 

Richardson et al. 
(1986) 

Individual 
clay 

I None NaOH None 

Sedmale et al. 
(2013) 

Individual 
clay 

I None KOH None 
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Marsh et al. 
(2018b) 

Individual 
clay 

I None NaOH None 

Prud'homme et al. 
(2011) 

Individual 
clay 

I None 
KOH + 
K2SiO3 

Geopolymer 

Belviso et al. (2017) 
Individual 

clay 
I Thermal NaOH None 

Sperberga et al. 
(2011) 

Individual 
clay 

I Thermal KOH 
Possible 

geopolymer 

Seiffarth et al. 
(2013) 

Individual 
clay 

I Thermal 
NaOH + 
Na2SiO3 

Possible 
geopolymer 

Belviso et al. (2017) 
Individual 

clay 
I 

Thermal + 
NaOH fusion 

NaOH Sodalite 

Boutterin and 
Davidovits (1988) 

Single clay 
soil 

Kaol None NaOH + KOH Zeolite 

Lemougna et al. 
(2014) 

Single clay 
soil 

Kaol None NaOH Hydrosodalite 

Lassinanti Gualtieri 
et al. (2015) 

Single clay 
soil 

Kaol Thermal 
NaOH + 
Na2SiO3 

Geopolymer 

Diop and Grutzeck 
(2008a) 

Single clay 
soil 

Kaol None NaOH Hydrosodalite 

Yousef et al. (2012) 
Single clay 

soil 
Kaol None NaOH Hydrosodalite 

Munoz et al. (2015) 
Single clay 

soil 
Mt None 

NaOH + 
Na2SiO3 

Geopolymer 

El Hafid and Hajjaji 
(2015) 

Multiple clay 
deposit 

Kaol + I Thermal NaOH 
Chabazite + 

natrolite 

Zibouche et al. 
(2009) 

Multiple clay 
soil 

Kaol + I Thermal 
NaOH + 
Na2SiO3 

Geopolymer + 
faujasite 

Essaidi et al. (2014) 
Multiple clay 

deposit 
Kaol + I None 

KOH + 
K2SiO3 

Geopolymer 

Essaidi et al. (2014) 
Multiple clay 

deposit 
Kaol + I Thermal 

KOH + 
K2SiO3 

Geopolymer 

Xu and Van 
Deventer (2000) 

Multiple clay 
mixture 

Kaol + I None 
NaOH + 
Na2SiO3 

Possible 
geopolymer 

Richardson et al. 
(1986) 

Multiple clay 
mixture 

Kaol + I None NaOH 
Zeolites + 
Nepheline 

Richardson et al. 
(1986) 

Multiple clay 
mixture 

Kaol + Mt None NaOH Zeolites 

Richardson et al. 
(1986) 

Multiple clay 
mixture 

Mt + I None NaOH Nepheline 

Richardson et al. 
(1986) 

Multiple clay 
mixture 

Kaol + Mt + I None NaOH 
Zeolites + 
Nepheline 

Diop and Grutzeck 
(2008b) 

Multiple clay 
deposit 

Kaol + Mt + I None NaOH Hydrosodalite 

Dietel et al. (2017) 
Multiple clay 

deposit 
Mt + I + Kaol Thermal KOH Geopolymer 
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2.6 Conclusions 

Clay-containing feedstocks have high potential as scalable precursors in alkali-

activated materials, which can help achieve sustainable development in the 

construction industry. To meet this potential, it is necessary to utilise both non-kaolinitic 

clay minerals, as well as clay-containing feedstocks of variable composition and lower 

purity than those typically used, such as common clays and soils. Attention has been 

concentrated on production of geopolymer phases through alkali activation, as these 

are the most desirable phases for use as construction materials. 

Kaolinite is the most reliable clay mineral precursor to produce a geopolymer, but only 

given the use of additional soluble silicate. Montmorillonite and illite (both 2:1 clay 

minerals) have the potential to form geopolymers without the addition of soluble 

silicate. Montmorillonite is less reliable for geopolymer formation compared to kaolinite, 

and is more dependent on treatment and processing parameters. Illite can form a 

geopolymer, but there is less agreement between studies on what optimal conditions 

are. Whilst it is the available Si:Al molar ratio that determines the potential phases that 

a system may form, it is a combination of treatment and processing conditions that 

determines what phase, if at all, is actually formed. For all the clay minerals, the most 

effective route for geopolymer production in general is a combination of calcination 

treatment and additional of soluble silicate.  

With regard to common clay deposits and soils, phase formation behaviour is 

controlled by the dominant clay mineral in the composition. Clay mineral crystallinity 

varies depending on geological and diagenetic conditions. A lower degree of 

crystallinity gives higher reactivity in alkali activation. Given that several industrial 

applications for clays prefer high crystallinity, further exploitation of clay deposits for 

alkali activation precursors would not directly compete with existing industries. 

The potential for the exploitation of common clays and soils as precursors for scalable 

alkali-activated materials is bright, as it is possible to form geopolymer phases from 

individual clay minerals, and from low-purity common clays and soils. There are two 

chief scientific barriers to further development and commercial production. Firstly, 

understanding of how restrictive the range of processing conditions is to achieving 

desired phase formation. Secondly, improving our fundamental understanding of these 

systems by investigating a broader compositional range of feedstocks. Engineering 

barriers include whether materials can have the strength and durability to displace 

Portland cement based materials. Further questions remain about the cost-

effectiveness, environmental impact and scalability of different treatment methods.  
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Chapter 3 - Research approach 
This chapter: defines the scope of investigation and the research questions; explains 

the overall methodology used; justifies the specific methods and materials used, and 

describes how the following results chapters link to each other. 
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3.1 Scope of investigation and research 

questions 

In Chapter 1, it was shown that there is an unmet demand for sustainable, practical and 

affordable construction materials to provide adequate housing in urban areas of 

LEDCs. Alkali-activated earth materials are an emerging construction material that may 

have the potential to fulfil the requirements. From this context, the overall research 

question is presented:  

 Are alkali-activated earth materials viable walling materials for sustainable, 

practical and affordable mass housing in LEDCs?  

In Chapter 2, a review of the literature review showed there is a knowledge gap around 

the influence of soil compositions on the alkali activation process. Therefore, in order to 

answer the overall research question, the following technical research questions 

needed to be answered: 

 What are the alkali activation potentials of kaolinite, montmorillonite and illite as 

individual clay minerals? 

 What contribution do the non-clay minerals in soil make to alkali activation? 

 Which soil compositions are most suited to stabilisation by alkali activation? 

These questions defined the scope of the investigation. The varied and controlled 

parameters are listed in Table 3-1, and these were assessed through considering the 

products formed. This excluded other variables from the scope of investigation, 

including: processing conditions, treatments (such as calcination), and the use of 

reactive additives (such as fly ash). 

The aim of this investigation was not product design – it was not intended to make a 

construction product from one specific soil. Rather, the aim was to improve the 

fundamental understanding of this materials family, and its potential to solve a civil 

engineering problem. As shown in Chapter 2, it is common for studies in this field to 

perform detailed testing on mechanical properties, but the most pressing knowledge 

gap in this field is around the effect of soil composition on phase formation. 

Accordingly, the focus of this investigation was the characterisation of precursors and 

product phases, rather than detailed measurements of mechanical properties such as 

strength and durability. 
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Table 3-1: A list of the parameters that are varied and controlled in the investigations in this 

thesis. 

Varied parameters Controlled parameters 

Precursor composition 

Na:Al molar ratio 

Alkaline solution compound 

Mix consistency 

Curing temperature 

Curing time 

Ageing time 
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3.2 Methodology 

The experimentation for this thesis was designed to understand the behaviour of 

complex natural materials by isolating their components. As described in Chapter 2, 

soils have highly variable compositions, simplified as consisting of clay minerals and 

non-clay components. In addition to this natural complexity, from the precedent of 

cement-stabilised soil blocks, aggregate would be added to an alkali-activated soil mix.  

To break down this multi-component complexity into bitesize parts, a sequence of 

experiments was designed to build up from simple (individual clay minerals) to complex 

precursors (an alkali-activated soil and aggregate mix), as shown in Figure 3-1. Firstly, 

the alkali activation behaviour of kaolinite (Chapter 4), montmorillonite and illite 

(Chapter 5) in clay minerals in isolation were investigated. As described in Chapter 2, 

clay minerals are understood to be the largest reactive component of soils in alkali 

activation, and these three clay minerals are the most common in soils. Secondly, 

mixtures of clays in different proportions were used as precursors, to understand if their 

behaviour in a mixture deviated from their behaviour as individuals (Chapter 6). Thirdly, 

synthetic soils were manufactured, based on the composition of three natural soils, in 

order to isolate the influence of non-clay components (Chapter 7). Lastly, aggregate 

was added to one of the natural soils (Chapter 8) and used to produce large scale 

block specimens, as used in real wall construction. Each experiment built on the results 

of the previous experiments, to refine understanding of how the different components 

of soil influence alkali activation behaviour.  

 

Figure 3-1: Schematic diagram showing the development of precursor complexity throughout 
the thesis investigation. 
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The typical methodology used in this research area is to use a single soil precursor, 

and vary the parameters regarding the activating solution and curing conditions. As 

described in Chapter 2, this has given a detailed level of knowledge for optimising 

these processing conditions, but only for a single soil composition in each research 

project. In contrast, the overall methodology of this thesis and the constituent studies 

was to vary soil composition factors in a systematic way, as shown visually in Figure 

3-2. Complexity was built with each following study to include mixtures of minerals, real 

soils and larger scale blocks with aggregates. Through this innovative approach, it was 

intended to determine in a systematic way which soil compositions are most promising 

for alkali activation, rather than just optimising the activation of a single soil.  

 

Figure 3-2: Schematic diagram comparing the range of variables investigated in this thesis and 

in typical studies in this field. 
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3.3 Materials 

3.3.1 Clays and soils 

Regarding the clays used, a balance was sought between what is representative of 

clays in soils, purity and previous characterisation in other studies (Table 3-2). As a 

result, purified clays were sourced for kaolinite (Imerys Speswhite Kaolin) and 

montmorillonite (Sigma-Aldrich K10 Montmorillonite #69866, and Honeywell Fluka 

Bentonite #285234). Illite in isolation has no commercial purpose, so a purified form 

could not be sourced. An unpurified but well-characterised illite was used instead (Clay 

Minerals Society Illite IMt-2 Silver Hill, Montana). The cost of the montmorillonite and 

illite clays was much more expensive than the kaolinite, which limited some 

experiments.  

Table 3-2: Summary of clays used 

Clay used Clay mineral Treatment 

Imerys Speswhite Kaolin Kaolinite Purified 

Sigma-Aldrich K10 

Montmorillonite #69866. 
Montmorillonite Purified and acid-washed 

Honeywell Fluka Bentonite 

#285234. 
Montmorillonite Purified 

Clay Minerals Society Illite 

IMt-2 Silver Hill, Montana 
Illite none 

 

Regarding the soils used, a balance was sought between having a spread of 

geographical locations near to urban areas, a variety of mineralogical compositions, 

and previous characterisation in other studies (Table 3-3).   

Table 3-3: Summary of soils used 

Soil used Clay minerals (in descending order of wt.%) 

Bristol Kaolinite, illite, montmorillonite 

Bengaluru Kaolinite 

Khartoum Montmorillonite, kaolinite, illite 

 

Regarding treatments, none were used. Amongst the different treatments, it is well-

established that thermal activation in particular increases the reactivity of clay minerals 

in alkali activation (as explained in Chapter 2). However, this additional process would 

not be feasible for this construction context, as it requires tightly controlled 

temperatures tailored to the clay mineralogy (Hollanders et al., 2016). It would also 
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increase the embodied impacts of the material considerably (Habert and Ouellet-

Plamondon, 2016).  

3.3.2 Alkaline activators 

Regarding activating solution composition, although it is well-established that additional 

soluble silicates - such as solutions from Na2O∙nSiO3 (with a typical range of n = 1.55 – 

3.97) (Lagaly et al., 2000) - are conducive to geopolymer formation (as explained in 

Chapter 2), these were not used. Firstly, this would have added another variable into 

the experimental design, giving an unfeasible number of systems. Secondly, it would 

have obstructed the aim of understanding the fundamental behaviour of the clay 

minerals themselves. Therefore, NaOH was chosen as the sole activating solution 

compound. It is the most commonly used compound in previous studies (as described 

in Chapter 2), and is cheaper and more widely available than KOH or other alkali metal 

hydroxides. 
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3.4 Synthesis methods 

A simple synthesis process was used to make small cylinder samples. This was 

designed to mimic production processes appropriate to LEDCs as far as possible in a 

laboratory setting. This process was kept as consistent as possible between the 

different studies. In each study, a control sample was also made, using water, rather 

than an activating solution. 

The stages in synthesis were (also shown visually in Figure 3-3): 

1. Preparing the activating solution 

2. Preparing the dry clay/soil (includes mixing clay/soil components in Chapters 6, 

7 and 8) 

3. Mixing the dry clay/soil with the activating solution 

4. Tamping the wet mixture into the mould 

5. Curing in an oven 

6. Demoulding 

A variation on this process was used for the synthesis of scaled-up blocks – this is 

described in Chapter 8. 

 

Figure 3-3: Visual summary of the stages in the synthesis process 

The activating solution composition was determined from the desired Na:Al molar ratio, 

and the plasticity properties of a given clay or soil. Because the behaviour of the 

individual clays had not previously been systematically investigated using comparable 

conditions, an Na:Al range from 0.25 - 1.5 was used in Chapters 4 and 5. Once it was 

established that Na:Al = 1 was sufficient to cause the majority of the clay precursor to 

react without using a theoretical excess of Na, this was used as the fixed Na:Al value in 

Chapters 6 and 7. 
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To calculate the quantities of dry NaOH and water required to meet a specified Na:Al 

value whilst maintaining plastic limit consistency, an iterative solving function was used. 

This was required given the interdependence of the system parameters, as shown 

schematically in Figure 3-4. The change in the precursors’ plastic limit with NaOH 

concentration was measured experimentally, and by fitting a best fit line to those data, 

the plastic limit of each precursor could be predicted for a given NaOH concentration. 

By using the equation for the best fit line, amounts of water and NaOH were iteratively 

generated to achieve a system where the conditions of desired Na:Al ratio and plastic 

limit consistency were both met. Further details are provided in the Methods and 

Materials sections of Chapters 4, 5, 6 and 7.  

 

Figure 3-4: Schematic diagram showing the interdependence of consistency, Na:Al and alkali 
solution concentration, with their respective units. 

The curing conditions of 80°C for 24 h were chosen based on optimal values identified 

by previous studies investigating curing conditions for uncalcined clays and soils 

(Chapter 2).  
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3.5 Characterisation techniques 

Characterisation techniques were chosen based on established methods for clay 

minerals (Christidis, 2011), soils (Ulery and Drees, 2008) and alkali activated materials 

(Duxson et al., 2007; Provis et al., 2015). Techniques were used to characterise the 

precursors as well as identify phase transformations and microstructural changes in the 

alkali-activated samples. Determining the phase assemblages in each system was not 

possible with a single technique. It was therefore crucial to use a range of techniques, 

as each technique gave complementary information to the others. However, due to the 

constraints of cost, availability and time, the full range of techniques were not used in 

all studies. Characterisations of the alkali-activated materials were done at 28 days 

ageing time. This time was a compromise between a sufficiently long time for the 

reaction to occur, and a practical length for testing. This is also an ageing time 

commonly used in the testing of cementitious materials. Testing conditions used for 

each technique varied between the constituent studies, so full details are specific to 

each chapter and are provided there. A brief description of why each technique was 

used is given here: 

Powder X-ray diffraction (PXRD) was used to identify crystalline phases, as well as to 

determine whether a large quantity of an amorphous phase was present. In all cases, 

oriented powder samples were used, prepared using a glass slide to press down the 

powder onto another glass slide. This preparation was chosen in order to achieve 

preferential orientation of the plate-like clay minerals along their basal plane, and thus 

make them easier to identify when present in small quantities (Brindley and Brown, 

1980).  

Scanning electron microscopy (SEM) was used to examine systems’ microstructure. 

Fracture surfaces of samples were used, to examine the morphology of phases more 

clearly. Polished cross-sections were not used due to the friability of many of the 

samples. Secondary electrons were used for the image signal, to give a clearer image 

of the topography.  

Thermal gravimetric analysis (TGA) with mass spectrometry (MS) of the evolved gases 

was primarily used to determine the amount of H2O and OH groups present in different 

phases. C and CO2 were also monitored to assist in identifying the presence of phases 

containing carbon.  

27Al and 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) 

spectrometry were used to measure the distribution of bonding environments for Al and 

Si atoms in the samples. The observed coordination changes were used to describe 

the effects of alkali activation.  
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Fourier Transform Infrared (FTIR) spectroscopy was used to give supplementary 

information about the bonding environments of atoms, particularly the Si-O-T bonding 

environment. The Si-O-T bands gave information about bonding in the precursor clay 

minerals as well as the zeolite and geopolymer reaction products. 

Unconfined compressive strength (UCS) testing was used in Chapter 8 to measure the 

load-bearing capacity of cured blocks. As previously described, structural 

characterisation was not the primary aim of this thesis, so these were treated as 

indicative measurements to supplement the chemical and microstructural 

characterisation.  

Photos of the cured samples were taken to show the macroscopic changes that 

happened during curing, such as shrinkage, expansion and colour changes. Where 

possible, these changes were then related to the phase and microstructural analysis.  

In addition to these, some techniques were used for the precursors only: 

Brunauer-Emmett-Teller (BET) nitrogen porosimetry was used to measure the specific 

surface area of the precursors, to indicate how much surface area was available for the 

alkali activation reaction.  

Energy Dispersive X-ray (EDX) spectroscopy was used to measure chemical oxide 

composition of the precursors, and in particular to assess the presence of minor 

elements.  

Plastic limits of precursors were measured using the Atterberg test (BSI, 1990) to 

determine the amount of water required to attain the plastic state. When in the plastic 

state, a plastic material – such as a clay or soil - can be moulded without breaking, and 

hold its shape (Reeves et al., 2006). This concept is mostly used in soil mechanics but 

also has industrial relevance to construction materials, as a soil in its plastic state can 

be extruded to form a block (Maskell et al., 2013). Depending on the blockmaking 

process used (e.g. block press) and exact conditions used, the optimal amount of water 

required to form a block will differ from the plastic limit. However, given the plastic limit 

is an easily measured property that is comparable across clays and soils, this was 

used to determine the amount of water or NaOH solution to add to the precursor. When 

determining the amount of NaOH solution required for a precursor to achieve the 

plastic state, the Atterberg test was adapted to exclude the mass of NaOH from being 

considered with the mass of clay in the dried sample (Bain, 1971). 

For the natural soils, particle size distribution was measured using a combination of 

wet-sieving, to measure particle grading from 2 mm – 63 μm, and hydrometer testing, 

to measure particle grading < 63 μm by using the principle of Stokes’ Law to measure 
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particle size by the time taken for particles to fall out of suspension in water (BSI, 

1990). 

3.6 Outline of results chapters 

The following five chapters each describe and interpret the results of an individual 

study (Table 3-4). These build up in precursor complexity, from individual clays 

(Chapters 4 and 5) to mixtures of clays (Chapter 6), natural and synthetic soils 

(Chapter 7) and finally to natural soils mixed with aggregates (Chapter 8).  

Table 3-4: An outline of the systems studied in Chapters 4-8. 

Chapter# 
Material 

system 
Aspect of soils tested Characterisation 

4 Clay 
Behaviour of 1:1 clay 

(kaolinite) 

PXRD, SEM, TGA, FTIR, 27Al 

and 29Si MAS-NMR, FTIR, 

photos 

5 Clay 

Behaviour of 2:1 clays 

(montmorillonite and 

illite) 

PXRD, SEM, TGA, FTIR, 27Al 

and 29Si MAS-NMR, FTIR, 

photos 

6 
Mixtures of 

clays 

Differences in behaviour 

of clays when present in 

mixtures 

PXRD, SEM, FTIR, photos 

7 

Natural and 

synthetic 

soils 

Influence of non-clay 

components 

PXRD, SEM, TGA, FTIR, 

photos 

8 

Natural soil 

mixed with 

aggregate 

Influence of addition of 

aggregate and scaling up 

PXRD, SEM, photos, UCS, 

drying. 
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Chapter 4 - Alkali activation of 
kaolinite 
 

In this chapter, the alkali activation behaviour of kaolinite, the most common 1:1 clay 

mineral in soils, is investigated. This is presented as a separate chapter to 

montmorillonite and illite (Chapter 5) - these are 2:1 clays and are therefore better 

suited to comparisons between each other.  

This chapter has been revised following suggestions from the examiners, so the article 

presented here has minor differences compared to the published article.   
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A mild conditions synthesis route to produce 

hydrosodalite from kaolinite, compatible with 

extrusion processing 

Abstract 

Hydrosodalites are a family of zeolitic materials which have a diverse range of possible 

applications such as water desalination. Typical synthesis methods are relatively 

complex, using hydrothermal production and pre-processing and it is desirable to use 

lower energy and more cost-effective processing routes. For the first time, a low 

temperature, non-hydrothermal synthesis procedure for hydrosodalites, compatible with 

extrusion processing, is demonstrated. Kaolinite precursor, without calcination, was 

activated with a sodium hydroxide solution and formed at a workability consistent with 

extrusion. The cured samples were characterised using a range of advanced analytical 

techniques including PXRD, SEM, TGA, 27Al and 29Si-MAS-NMR, and FTIR to confirm 

and quantify conversion of the precursor to product phases. The synthesis consistently 

formed a 8:2:2 basic hydroxysodalite phase and the reaction was shown to follow a 

largely linear relationship with Na:Al until full conversion to the hydrosodalite phase 

was approached. The hydrosodalite became more ordered for Na:Al ≥ 1. There is good 

agreement between quantitative measurements made using PXRD, TGA and 29Si-

MAS-NMR methods, providing confidence in the results. It has been shown that it is 

possible to synthesise hydrosodalite materials in a consistent and predictable manner, 

using non-hydrothermal methods, at the viscosity used for extrusion processing. This 

novel processing route could reduce production costs, production impacts and open up 

new applications for this important family of materials. 
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4.1 Introduction 

Hydrosodalites are a member of the zeolite family. Their defining features are their 

aluminosilicate framework of cubic symmetry (S.G. P-43n) (Wiebcke et al., 1992), 

formed by alternating SiO4 and AlO4 tetrahedras shown in Figure 4-1 (Pauling, 1930). 

These sodalite cages (β-cages) can contain a wide range of guest species (Engelhardt 

et al., 1992; Newsam, 1986). The sub-family of hydrosodalites itself contains two 

separate groups within the general chemical formula 𝑁𝑎6+𝓍(𝐴𝑙6𝑆𝑖6𝑂24)(𝑂𝐻)𝓍 ∙ 𝑛𝐻2𝑂. 

These are: basic hydrosodalite (or hydroxysodalite hydrate) for x = 2, n= 8, with a 

chemical formula of 𝑁𝑎8(𝐴𝑙6𝑆𝑖6𝑂24)(𝑂𝐻)2 ∙ 2𝐻2𝑂 (abbreviated as 8:2:2), and non-basic 

hydrosodalite for x = 0, n =2, with a chemical formula 𝑁𝑎6(𝐴𝑙6𝑆𝑖6𝑂24) ∙ 8𝐻2𝑂 

(abbreviated as 6:0:8) (Felsche and Luger, 1987; Wiebcke et al., 1992). The cage 

structure of sodalites gives them desirable properties including selective adsorption 

(Newsam, 1986), fluorescence (Kirk, 1955) and thermal stability. Previous research 

has considered applications as diverse as wastewater treatment (Johnson and Worrall, 

2007), water desalination (Khajavi et al., 2010; Wang et al., 2016), admixtures in 

cement mortars (Sasnauskas and Palubinskaite, 2005), and use in optics and 

computation (Stucky and James, 1990). 

It is well established that kaolinite can be reacted with sodium hydroxide solutions to 

form hydrosodalite under hydrothermal conditions (Barrer et al., 1968). Kaolinite is a 

phyllosilicate mineral, with an ideal chemical formula 𝐴𝑙2(𝑆𝑖2𝑂5)(𝑂𝐻)4. Each layer is 

formed of a gibbsite and silica sheet, with the unit cell having the C1 space group 

(Bish, 1993), as shown in Figure 4-1. Hydrogen bonding between layers forms large 

stacks, giving little opportunity for interlayer cation adsorption (Bergaya et al., 2013). 

Kaolinite is a common clay mineral found in soils and deposits, and is an inexpensive 

feedstock if not highly purified. Purified kaolinite is readily available and is used in 

ceramics, paper production, medicines and numerous other applications. 
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Figure 4-1: The structures of a) sodalite (8:2:2 hydroxysodalite), using structural parameters by 
Kendrick and Dann (2004), and b) kaolinite, using structural parameters by Bish (1993). Both 

structures are viewed along the a axis with coordination polyhedra shown for Al and Si. Images 
were generated in VESTA.  

The synthesis of zeolitic products is generally by alkali activation of an aluminosilicate 

and the product phase is strongly determined by the processing conditions used. 

Hydrosodalite has been shown to be favoured over formation of other zeolitic phases 

by the following processing conditions: synthesis time between 24 and 72 hours 

(Temuujin et al., 2002); solid:liquid ratios of > 5 (Alkan et al., 2005); NaOH solution 

concentrations of > 3 M, and synthesis temperatures of 150-200 °C (Querol et al., 

2002). Hydrothermal synthesis is by far the most commonly used method (Querol et 

al., 2002), whilst more complex two-step synthesis methods have also been used 

involving alkali pre-fusion at elevated temperatures (Belviso et al., 2017). It is also 

common to calcine kaolinite by heating above 700 °C to form metakaolin, in order to 

increase reactivity before synthesis (Passos et al., 2017).  

Even for hydrosodalite which prefers low solid:liquid ratios (Alkan et al., 2005), 

synthesis routes typically use an excess quantity of NaOH solution, which makes them 

incompatible for processing involving extrusion, a technique which is frequently used 

for production of ceramics. Extrusion is an adaptable, continuous processing 

technique, which requires that a clay-based feedstock is a wetted mixture in its plastic 

state (Maskell et al., 2013). In the plastic state, a clay-based material is able to be 

moulded without cracking and has the ability to hold its new shape without support 

(Barnes, 2000). This is typically done at a moisture content between the plastic limit 

and liquid limit (Wagner, 2013), which is the moisture content range over which the clay 
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can be moulded but will not flow as a liquid. Extrusion processing could increase the 

types of products and applications where hydrosodalites could be used. 

Given that calcination and mid-temperature synthesis both involve an additional 

heating step, a synthesis route at low temperature involving no thermal pre-treatment 

could be desirable for reducing energy and for practicality. The proportions of phases 

formed by the reaction of kaolinite with sodium hydroxide have previously been 

investigated in relation to the nature of kaolinite used (Heller-Kallai and Lapides, 2007), 

or addition of different volumes of an activating solution at given pH (Sruthi and Reddy 

P, 2017), rather than the Na:Al molar ratio for a mixture of constant workability. Whilst 

Heller-Kallai and Lapides demonstrated proof of concept for non-hydrothermal 

synthesis (Heller-Kallai and Lapides, 2007), a systematic understanding of the reaction 

for these conditions has not previously been developed. A synthesis route using lower 

temperature and atmospheric conditions would make production cheaper and less 

energy-intensive. 

In this study, hydrosodalite-kaolinite samples were made with a range of Na:Al ratios 

from 0.25-1.5. They were characterised to determine the amounts of hydrosodalite 

formed and unreacted kaolinite for each Na:Al ratio, comparing measurements made 

using PXRD, 29Si MAS-NMR and TGA. 
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4.2 Experimental 

4.2.1 Materials 

Imerys Speswhite (mined from Cornwall, U.K.) kaolinite was used as the 

aluminosilicate precursor. The chemical composition was determined by energy 

dispersive X-rays (JEOL SEM6480LV with Oxford INCA X-Act SDD X-ray detector), at 

an accelerating voltage of 20 kV, a chamber pressure of between 10 – 30 Pa, a Si 

wafer as a standard, and measuring 4 scan areas. The precursor powder was mounted 

on a sticky carbon tab on top of an aluminium stub, and was not coated. Standard 

errors in composition were calculated from the variation in values between the different 

area scans. This showed minor amounts of iron, potassium and magnesium were 

present (Table 4-1), believed to be unreactive in the present conditions. Specific 

surface area was determined using the BET method (Brunauer et al., 1938), using a 

Micromeritics 3Flex. 1 g of precursor powder was degassed under vacuum conditions 

at 150°C for 14 h, before testing. The measured specific surface area was 11.9 m2g-1. It 

was activated using sodium hydroxide pellets of >98% purity (Sigma-Aldrich, product 

no. 06203).  

Table 4-1: Chemical composition of kaolinite precursor in oxide wt%. 

Oxide Al2O3 Fe2O3 K2O MgO SiO2 Total 

wt % 
(std error) 

40.11 
(0.15) 

0.95 
(0.06) 

2.06 
(0.09) 

0.04 
(0.04) 

56.83 
(0.15) 

100 

 

4.2.2 Synthesis procedure 

The compositions in Table 4-2 were determined to provide samples of pre-determined 

Na:Al ratio, whilst maintaining the wet mix workability at the plastic limit. This was done 

by initially undertaking Atterberg plastic limit measurements (Wagner, 2013) for 

kaolinite over a range of sodium hydroxide solution concentrations (BSI, 1990). From 

these data a best fit line was plotted to extrapolate the volume of solution required to 

reach plastic limit consistency for a given concentration (Figure 4-2). A correction was 

made to exclude the mass of the sodium hydroxide from the solids mass in the plastic 

limit calculations (Bain, 1971). Only small changes in plastic limit were observed, as 

expected due to kaolinite’s low cation exchange capacity (Bergaya et al., 2013). 
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Table 4-2: Composition of hydrosodalite samples for chemical characterisation. 

Name 0.25-Na:Al 0.5-Na:Al 0.75-Na:Al 1-Na:Al 1.25-Na:Al 1.5-Na:Al 

Na:Al molar 
ratio 

0.25 0.5 0.75 1 1.25 1.5 

Concentration 
of activating 

solution 
(molarity) 

5.2 9.5 13.2 16.2 18.3 19.7 

 

 

Figure 4-2: The change in kaolinite’s plastic limit with sodium hydroxide solution concentration. 

The kaolinite was activated by adding a sodium hydroxide solution. Solutions of 

different concentrations were prepared by adding sodium hydroxide pellets to distilled 

water, mixed with a magnetic stirrer (Stuart UC152 heat-stir) for a minimum of 2 hours 

until fully dissolved and then allowed to cool. Kaolinite was pre-dried in a 105 °C oven, 

and left to cool. Varying quantities of activating solutions were added to 25 g of 

kaolinite, as given in Table 4-2. The mixture of activating solution and kaolinite was 

mixed by hand for 3 minutes, providing a consistent and well-distributed mixture. The 

high viscosity of the samples allowed them to be compacted by hand into 18mm x 

36mm cylindrical Teflon moulds by tamping with a glass rod in three layers for each 

sample, using 25 blows for each layer. Samples were cured in an air atmosphere in a 

80°C oven for 24 hours in their moulds, and after demoulding stored in a controlled 

environmental room at 20  0.5°C and 50  2.5 % relative humidity. 

4.2.3 Characterisation methods 

The set of characterisations was performed at 28 ± 2 days ageing time, and (with the 

exception of SEM imaging) was done using powders prepared from the cured samples. 

These were ground by hand, having been wetted with isopropanol to avoid damaging 

the kaolinite’s crystal structure (Moore and Reynolds, 1997). Powders were ground 
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until there was no further discernible reduction in particle size, and so were comparable 

between samples. Any variation in particle size of the ground powders was not 

expected to have any noticeable effect on characterisation results. The intention of the 

testing was to attempt to quantify kaolinite to hydrosodalite conversion, and develop a 

fundamental understanding of the mechanisms and products formed. 

Powder X-ray diffraction (PXRD) analysis was undertaken to identify phases with a 

Bruker D8 Advance instrument using monochromatic CuKα1 L3 (λ = 1.540598 Å) X-

radiation and a Vantec superspeed detector. A step size of 0.016⁰(2θ) and step 

duration of 0.3 seconds were used. Phase identification was performed using Bruker 

EVA software, using reference patterns from the Joint Committee on Powder 

Diffraction Standards (JCPDS) database. Le Bail extractions and Rietveld refinements 

of the structure were performed using JANA 2006 (Petříček et al., 2014) and the 

Cheary Coelho fundamental approach for XRD profile parameters (Cheary and Coelho, 

1992). Quartz was used as an internal standard. The refined patterns were plotted in 

arbitrary units, without normalisation. For determining relative differences of a given 

pattern to a well-defined pattern (the original precursor material) prepared in the same 

manner, the limitations of hand grinding and Rietveld refinement for semi-quantitative 

XRD analysis were deemed acceptable (Kahle et al., 2002).  

Thermogravimetric analysis (TGA) was undertaken using a Setaram Setsys Evolution 

TGA over a range of 30 to 1000 °C at a heating rate of 10 °C/minute. An air 

atmosphere was used, with a flow rate of 20 ml/minute. A connected mass 

spectrometer was used (Pfeiffer Omni) to identify whether evolved gas species 

contained OH, H2O, C or CO2.  

Fourier Transform Infrared Spectroscopy (FTIR) was used to characterise molecular 

bonding, using a Perkin-Elmer Frontier with a diamond Attenuated Total Reflectance 

(ATR) head. Spectra were collected over a range of 4000-600 cm-1 using a resolution 

of 4cm-1 and 5 scans per spectrum. Corrections were made for ATR and background 

using Perkin-Elmer Spectrum software.  

Magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were 

measured for 27Al and 29Si to characterise coordination states, using a Varian VNMRS 

(9.4 T) in direct excitation. The 27Al spectra were obtained with a 104.199 MHz field, 

using a sample spinning frequency of 14 kHz in a 4 mm rotor, a pulse duration of 1 μs, 

an acquisition time of 10 ms, a recycle time of 0.2 s, line broadening of 0.005 s, and 

between 6000 - 7000 scans were used for each spectrum. The 29Si spectra were 

obtained with a 79.438 MHz field (79.435 MHz for Kao), using a sample spinning 

frequency of 6.08 kHz (6 kHz for Kao) in a 6 mm rotor, a pulse duration of 4 μs, an 

acquisition time of 20 ms, a recycle time of 2 s, line broadening of 0.02 s, and between 
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1360 - 3000 scans were used for each spectrum. Proton decoupling was used at 61.0 

kHz for Kao, and at 62.5 kHz for Kao-0.25Na:Al, Kao-0.5Na:Al and Kao-0.75Na:Al. The 

other spectra were recorded without decoupling, which appeared to make very little 

difference to the appearance of the spectra. Chemical shifts were referenced to 1 M aq. 

Al(NO3)3 for 27Al and tetramethylsilane for 29Si. Spectra have been normalised to the 

height of the most intense line in the spectrum. 

The proportion of kaolinite consumed was estimated by integrating the peaks 

corresponding to kaolinite and hydrosodalite in the 29Si MAS-NMR spectra 

(deconvoluted as required when overlapping) (Kinsey et al., 1985). The area fraction of 

the kaolinite peak from the total peak area in a given sample’s spectrum was assumed 

as equivalent to phase proportion, since 29Si is a spin-half nucleus and does not suffer 

quadrupolar effects (Apperley et al., 2012). A Lorentzian profile was used for 

deconvolution as it gave a better fit to the measured curves than a Gaussian profile. 

These results are presented collectively alongside the values from the other techniques 

in Section 4.4.2. A detailed description of the deconvolution process is given in the 

Appendix. 

Scanning electron microscope (SEM) imaging was used to characterise phase size and 

morphology, using a JEOL SEM6480LV in secondary electron mode with an 

accelerating voltage (AV) of 10kV. Bulk specimens were sputter coated with gold for 3 

minutes. Because the SEM used a tungsten filament, an AV of 10 kV was selected as 

an optimal balance between the tendencies towards a noisy image at lower AV, and 

lower resolution at higher AV. Unpolished samples were used to enable easier 

distinction of particle morphology in the microstructures, and also because of the 

friability of some of the samples.  
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4.3 Results 

4.3.1 PXRD phase analysis 

The PXRD pattern of the precursor clay gave kaolinite clay mineral (Powder Diffraction 

File (PDF)# 01-079-1570) as the major phase, with muscovite (PDF# 01-084-1304) 

and quartz (PDF# 00-046-1045) present as minor phases (Figure 4-3), as expected 

from a Cornish residual deposit (Thurlow, 2005). X-Ray diffraction patterns were also 

recorded for each cured sample and compared with the kaolinite precursor (Figure 

4-4). New peaks in the cured samples were assigned to hydrosodalite (PDF# 00-042-

0215), with a basic hydroxysodalite 8:2:2 structure. The patterns presented in Figure 

4-4 shows that the intensity of the kaolinite peaks decreases while the intensity of the 

hydrosodalite peaks increases with increasing Na:Al ratio, indicating kaolinite was 

consumed during the production of hydrosodalite, as expected. As no evidence was 

found of the formation of a disordered phase, it was assumed that all the phases 

present in the samples are either hydrosodalite or the crystalline structures in the 

kaolinite precursor. 

 

Figure 4-3: PXRD pattern of kaolinite precursor, indexed as: k = kaolinite; m = muscovite; q = 
quartz.  
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Figure 4-4: PXRD patterns of the initial kaolinite clay and the cured samples. Peaks which do 
not change are labelled on the Na:Al = 0 pattern, as m = muscovite, q = quartz. Peaks which do 

change are labelled on the Na:Al = 1.5 pattern, as k = kaolinite, hs = hydrosodalite.  

LeBail structure extractions were performed for the clay and each cured sample using 

structural models for kaolinite (Bish, 1993), quartz (Dusek et al., 2001), muscovite 

(Guggenheim et al., 1987) and hydroxysodalite (Kendrick and Dann, 2004) from the 

literature. The only observable change in the kaolinite phase’s lattice parameters with 

the increase of Na:Al ratio was the monotone increase of the α-angle from 91.6° to 

92.5°. Although the magnitude of this increase is significant, this distortion is rather 

small considering the triclinic lattice of kaolinite, and neither does it affect the structure 

of the aluminosilicate layers or the distance between them. On the other hand, the 

sodalite cubic lattice shrinks from Na:Al = 0.25 - 1, then stabilizes for Na:Al> 1. This 

difference of 0.03 Å is probably due to slight disorder in the lowest Na:Al ratio samples.  

The good agreement achieved between the models cited above and the experimental 

data allowed Rietveld refinements to be undertaken for each pattern in order to 

estimate the proportion of kaolinite consumed in function of the Na:Al molar ratio, and 

an example is shown in Figure 4-5. Rietveld refinement of kaolinite PXRD pattern at 

room temperature has been shown to be difficult (Bish, 1993) and this study is not 

intended to improve knowledge of the kaolinite structure. Instead Rietveld refinements 

were used as a comparison tool to study the formation of hydrosodalite under the 

synthesis conditions used.  
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Figure 4-5: Refined XRD patterns of the 0.75 Na:Al sample with the structural models for 
kaolinite (ICSD #80082), quartz (ICSD #93093), muscovite (ICSD #202262) and 8:2:2 

hydroxysodalite (ICSD# 413496).  

Owing to the higher symmetry and ordering of the phases present in the kaolinite 

precursor, these refinements permitted the percentage of each phase in the cured 

samples to be estimated. The percentages of muscovite and quartz phases remained 

consistent in all the samples. These species are considered unaffected by the 

synthesis process, in agreement with previous studies on muscovite (Zografou, 2015) 

and quartz (Autef et al., 2012). 

As expected, the quantity of hydrosodalite in the samples increased in a linear trend 

with the increase of Na:Al ratio, confirming expectations for this system (Heller-Kallai 

and Lapides, 2007; Sruthi and Reddy P, 2017). A chart summarizing these results is 

provided in Section 4.4.2.  

4.3.2 SEM phase size and morphology  

SEM images were taken to investigate the microstructure of the cured samples, in 

particular the size, morphology and distribution of hydrosodalite crystallites. As shown 

in Figure 4-6, two dominant particle types were present in the cured samples: plate-like 

particles typically between 0.5 – 5 μm, spheroidal crystallites typically ≤1 μm. The 

plate-like particles were attributed to kaolinite, as these were the only particle type 

observed in the precursor, and it was known from the PXRD results that kaolinite was 

the dominant phase in the precursor. The spheroidal particles were attributed to 
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hydrosodalite. It was known from the PXRD results that the amount of hydrosodalite in 

the cured samples increased with increasing Na:Al molar ratio – this matched the 

observations of increasing amounts of the spheroidal particles in the SEM images. The 

difference between kaolinite’s 2D morphology and hydrosodalite’s 3D morphology was 

expected given the nature of their crystallographic cells as shown in Figure 4-1, and 

was consistent with the known morphology of hydrosodalite (Moloy et al., 2016). The 

small size and irregular shape for the hydrosodalite were as expected for short curing 

time non-hydrothermal conditions (Engelhardt et al., 1992). As Na:Al increased, the 

average size of hydrosodalite crystallites increased from around 0.5 to 1μm. The 

observed phase proportions of hydrosodalite and kaolinite respectively increased and 

decreased in the cured samples as Na:Al increased. Knowing that these observations 

are only qualitative, the changes in microstructure showed by SEM imaging still broadly 

agreed with the results of the PXRD refinement. 
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Figure 4-6: SEM images of the kaolinite precursor a), and cured samples with the following 
Na:Al values: b) 0.25, c) 0.5, d) 0.75, e) 1, f) 1.25, g) 1.5. Annotations in d) give examples of 

kaolinite (k) and hydrosodalite (hs) phases.  
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4.3.3 TGA thermal behaviour 

Thermal behaviour was investigated to give more detailed information about the 

possible composition of the hydrosodalite phase, as well as thermal stability and 

quantity of kaolinite present. The proportion of kaolinite consumed was estimated by 

integrating the peak attributed to the dehydroxylation of kaolinite in the dTG spectrum 

(plotted in %mass loss / minute to normalise between samples). This peak area was 

then expressed as an area fraction of the equivalent peak in the dTG spectrum for the 

starting kaolinite precursor. The area fraction was then assumed as equivalent to 

proportion of kaolinite remaining in the sample. These results are presented collectively 

alongside the values from the other techniques in Section 4.4.2. The accompanying 

mass spectrometry data is presented in the Appendix. 

Overall mass loss decreased slightly as Na:Al increased, with the exception of 1.5-

Na:Al (Figure 4-7), indicating that the hydrosodalite phase had a slightly lower overall 

content of evolvable H2O and/or OH groups than the kaolinite precursor. The changes 

in the profile of the TG curve were clarified by taking the derivative (dTG) (Figure 4-7). 

In the dTG curve of the kaolinite precursor, the peak at 500°C was attributed to 

dehydroxylation of kaolinite’s octahedral sheet, and the broad peak from 50 to 100°C to 

surface adsorbed moisture (Földvári, 1991). The dehydroxylation peak decreased in 

intensity as Na:Al increased, which indicated an increased consumption of kaolinite in 

confirmation of XRD and SEM observations. The dTG curves of the cured samples all 

had two or three new peaks between 80 and 230°C, attributed to the H2O molecules in 

the β-cage of the hydrosodalite (Engelhardt et al., 1992).The dTG curves of 1.25-Na:Al 

and 1.5-Na:Al had an additional peak at 740°C, possibly indicating a carbonated 

hydrosodalite (Buhl, 1993) which could have occurred from interaction with 

atmospheric carbon dioxide during the curing phase. The reasons why this is more 

likely at higher Na:Al ratios is discussed later.  
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Figure 4-7: TGA (a) and dTG (b) spectra for kaolinite and cured samples  
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4.3.4 27Al and 29Si MAS-NMR bonding coordination 

MAS-NMR spectra were measured to determine whether the curing process had 

transformed aluminium and silicon bonding from 3-fold sheet coordination in kaolinite 

into 4-fold network coordination in hydrosodalite.  

For kaolinite, the 27Al spectrum (Figure 4-8) had a single peak at 1.5 ppm, attributed to 

Al in the octahedral sheet (Fitzgerald et al., 1989), and the 29Si spectrum (Figure 4-9) 

had a single peak at -91 ppm, attributed to Si in the tetrahedral sheet in Q3 coordination 

(Fitzgerald et al., 1989). In the 27Al spectra of the cured samples (Figure 4-8), the 

kaolinite peak at 1.5 ppm decreased as Na:Al increased, as expected from increased 

consumption of the kaolinite. New peaks emerged in the range of 60 to 63 ppm which 

are indicative of Al(4Si) coordination (Sturm et al., 2015), and was attributed to 

hydrosodalite as this was known to be the product phase from PXRD. Within this range 

there are two peaks, at 60 and 63 ppm, which overlap in the spectra of samples in the 

range Na:Al = 0.75 – 1.25. The small difference in chemical shift between the two 

peaks, despite them both having Al(4Si) coordination, is likely due to differences in 

other structural parameters such as the next-nearest neighbour environment and β-

cage contents (Kirkpatrick et al., 1985). 

 

Figure 4-8: 27Al MAS-NMR spectra of kaolinite precursor and cured samples  
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In the 29Si spectra of the cured samples (Figure 4-9), the kaolinite peak at -91ppm 

decreased as Na:Al increased, also as expected from increased consumption of the 

kaolinite. New peaks emerged in the range of -83.5 to -86.5 ppm which are indicative of 

Q4(4Al) bonding in a zeolitic framework (Klinowski, 1988), and were therefore attributed 

to hydrosodalite (Engelhardt et al., 1992). In a similar manner to the 27Al spectra, the 

location and intensity of peaks within this region changed with Na:Al molar ratio. For 

both 27Al and 29Si spectra, the recession and emergence of distinct peaks suggest that 

the system is disordered, with different local environments within the hydrosodalite 

(Kirkpatrick et al., 1985). 

 

Figure 4-9: 29Si MAS-NMR spectra of kaolinite precursor and cured samples.  
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4.3.5 FTIR molecular bonding 

FTIR spectra were collected to determine the changes in molecular bonding, in 

particular for aluminium and silicon. The range of 1800 – 600 cm-1 is shown (Figure 

4-10) along with the indexed peaks (Table 4-3) as the most intense aluminosilicate 

bands occur in this range. As Na:Al increased, the kaolinite bands progressively 

decreased in intensity to become only shoulders at most in the1.5-Na:Al spectrum, 

whereas the hydrosodalite bands emerged from 0.25-Na:Al to become dominant in 1.5-

Na:Al. The two carbonate bands are only detectable for Na:Al = 1.25 to 1.5. These 

spectra confirm the progressive consumption of kaolinite to form hydrosodalite as Na:Al 

increased. The presence of carbonate bands in spectra with higher Na:Al indicated 

either the presence of sodium carbonate (Barbosa et al., 2000) or a carbonate-

enclathrated variety of hydrosodalite (Buhl, 1993).  

 

Figure 4-10: FTIR spectra of kaolinite precursor and activated samples  
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Table 4-3: Indexed absorption bands in FTIR spectra. Wavenumbers given are from kaolinite 
precursor spectrum for kaolinite phase bands, and from 1.5-Na:Al spectrum for hydrosodalite 

phase bands. ┴ = stretching vibration, ║= bending vibration. 

Band 
Wavenumber 

(cm-1) 
Intensity Phase Reference 

Si-O 683.5 vw Kaolinite 
(Madejova and 
Komadel, 2001) 

Si-O 750.8 vw Kaolinite 
(Madejova and 
Komadel, 2001) 

Si-O 788.5 vw Kaolinite 

(Van der Marel 
and 

Beutelspacher, 
1976) 

Si-O (┴) 1114.6 w Kaolinite 

(Van der Marel 
and 

Beutelspacher, 
1976) 

Al—O-H (║) 911.0 s Kaolinite 
(Russell and 
Fraser, 1994) 

Al—O-H (║) 936.3 s/sh Kaolinite 
(Russell and 
Fraser, 1994) 

Si-O-Si (┴) 1025.5 vs Kaolinite 
(Madejova and 
Komadel, 2001) 

Si-O-Si (┴) 1114.6 w Kaolinite 

(Van der Marel 
and 

Beutelspacher, 
1976) 

Si-O-T 
(┴,symmetric) 

663.4 w Hydrosodalite 

(Henderson and 
Taylor, 1977; 
Mikuła et al., 

2015) 

Si-O-T 
(┴,symmetric) 

706.1 w Hydrosodalite 

(Henderson and 
Taylor, 1977; 
Mikuła et al., 

2015) 

Si-O-T 
(║,asymmetric) 

734.0 w Hydrosodalite 

(Henderson and 
Taylor, 1977; 
Mikuła et al., 

2015) 

Si-O-T 
(║,asymmetric) 

963.2 vs Hydrosodalite 

(Henderson and 
Taylor, 1977; 
Mikuła et al., 

2015) 

O-H (║) 1644.6 vw Hydrosodalite 
(Engelhardt et 

al., 1992; 
Farmer, 1974) 

C-O 881.1 w Hydrosodalite 
(Barbosa et al., 

2000; Buhl, 
1993) 

C-O 1452.2 w Hydrosodalite 
(Barbosa et al., 

2000; Buhl, 
1993) 
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4.4 Discussion 

4.4.1 Nature of the hydrosodalite product phase 

XRD patterns showed that the product phase was a hydrosodalite. The lattice 

parameters of the hydrosodalite, obtained through Le Bail refinement, did not change 

significantly over the Na:Al range tested. Given that an increase in hydration ratio 

would increase the lattice parameter, it can be deduced that the same hydrosodalite 

phase is formed for each composition. Other characterisation results were analysed in 

an attempt to identify the exact phase present. Given the processing conditions of 80°C 

in an atmosphere of air with no applied pressure, the candidate hydrosodalite phases 

are limited to 8:2:2, 6:0:8 (Engelhardt et al., 1992) and carbon-enclathrated 8:1:3 (Buhl, 

1993). The TG and dTG curves agreed broadly with XRD and SEM results, but showed 

evidence of possible changes in the hydrosodalite β-cage contents at different Na:Al 

values, confirming some of the SEM observations. The peaks in the dTG curves 

(Figure 4-7) between 80 and 230°C seemingly question the possibility of 8:2:2, as its 

characteristic dTG peak is much higher at around 600°C (Engelhardt et al., 1992).The 

presence of the 6:0:8 phase would be surprising, as 8:2:2 is known to be the primary 

phase formed in this reaction, which only transforms to 6:0:8 phase upon washing with 

water (Engelhardt et al., 1992).  

The presence of multiple peaks attributed to hydrosodalite in the 29Si MAS-NMR 

spectrum (Figure 4-9) indicates different local environments, and hence a degree of 

disorder in the hydrosodalite (Kirkpatrick et al., 1985). The number of different peaks 

and overall spread was greatest for Na:Al ≤ 0.75, reducing progressively for Na:Al ≥ 

1.This trend is corroborated by the observed stabilisation of hydrosodalite lattice 

parameters for Na:Al > 1, as described in section 4.3.1. An in-depth study of local 

environments is beyond the scope of this article, but this trend clearly indicates that the 

hydrosodalite becomes more ordered at higher Na:Al values. 

Carbonates are key to determining if another product phase was present, or whether 

they were also part of a hydrosodalite. Sodium carbonate would be expected to form in 

the higher Na:Al samples, given that not all Na was consumed in the reaction (see 

Section 4.4.3) leaving some Na in solution, and that the curing process involved 

heating in an atmosphere of air containing carbon dioxide. dTG peaks strongly 

associated with release of CO2 were present at 840°C for 1-Na:Al and at 740°C for 

1.25-Na:Al and 1.5-Na:Al (Figure 4-7). The mass loss at 740°C in 1.25-Na:Al and 1.5-

Na:Al could have been from a carbon-enclathrated sodalite, which has previously been 

shown to lose mass between 693-750 °C (Buhl, 1993). The mass loss at 840°C in 1-

Na:Al is possibly from sodium carbonate, as this does not lose mass until above 800°C 
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(Newkirk and Aliferis, 1958). Carbonate bands emerged in the FTIR spectra for 

Na:Al≥1.25, but these are not enough to distinguish whether the carbonates are part of 

a hydrosodalite phase or a separate carbonate salt, possibly sodium carbonate from 

the reaction of any excess sodium hydroxide with atmospheric carbon dioxide.  

Whilst there is not total agreement between the different characterisation methods, 

given the synthesis conditions used, the product phases are most likely to be 

dominated by a 8:2:2 basic hydroxysodalite, which becomes more ordered with higher 

Na:Al. There is evidence of minor carbonate products, particularly at the higher Na:Al 

ratios.  

4.4.2 Measurements of kaolinite consumption with Na:Al 

molar ratio 

The consumption of kaolinite in each sample was compared for measurements made 

by methods in PXRD, TGA and 29Si-MAS-NMR (Figure 4-11). Each data point 

corresponds to a single sample, rather than an average taken from several samples. 

For this reason, error bars have not been plotted. Caution should be taken in 

considering the precision of individual data points, and so discussion is about the 

overall trends rather than specific values. The R2 value of the linear best fit line taken 

over all the data points from the different techniques (plotted in Figure 4-11) is 0.816. 

The R2 values of the linear best fit lines for the data points for each individual technique 

(not plotted in Figure 4-11 for clarity) are 0.946 for Rietveld XRD, 0.987 for TGA and 

0.967 for 29Si MAS NMR. 
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Figure 4-11: Consumption of kaolinite for different Na:Al values, estimated from Rietveld XRD, 
TGA and 29Si MAS-NMR techniques. The dotted line is the linear best fit. The two solid lines 

represent the lines expected for ideal formation of 6:0:8 and 8:2:2.  

Only values up to Na:Al = 0.75 are plotted for TGA, as after this point in the series the 

baseline of the dTG curve was too noisy. Evaluation using FTIR was also attempted, 

by comparing the intensity of the Al—O-H stretching vibration at ~3690cm-1 between 

the activated samples and the starting kaolinite (Russell and Fraser, 1994). However, 

given these spectra were taken using ATR rather than KBr pellet technique, this 

method was discounted as too unreliable and imprecise (Farmer, 1974).  

There is good agreement between the remaining different techniques, with each 

showing an approximately linear trend between consumption of kaolinite and Na:Al. 

There is some variability in outcomes, particularly for PXRD at 0.5-Na:Al and TGA at 

0.75-Na:Al, but some discrepancy is expected with experimental data with automatic 

data processing. The method for 29Si MAS-NMR is straightforward, but relies on having 

a simple spectrum in which the peaks do not overlap too much. Likewise, the accuracy 

of the TGA method depends on having a consistent baseline and well-spaced dTG 

peaks. The different techniques give good agreement for measurement of phase 

consumption, but as described in Section 4.4.1, each still provides distinct, 

complementary phase information. 
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4.4.3 Nature of the reaction 

Under the conditions used, the reaction of kaolinite produced hydrosodalite as the only 

major phase. Whilst the TGA and FTIR analysis suggests there could be formation of 

minor quantities of carbonate salts at Na:Al≥ 1.25, the majority of Na was consumed in 

the production of hydrosodalite. In addition to the advantages of low temperature and 

simple conditions, this indicates this could also be a clean process.  

The Na:Al ratio expected to result in transformation of all the kaolinite in the precursor 

depends on the type of hydrosodalite formed. Each sodalite framework of (AlSiO4)6 

requires either 6 or 8 Na atoms (as shown in the unit cell in Figure 4-1) depending on 

whether a 6:0:8, 8:2:2 or 8:1:3 phase is formed. These correspond to ideal Na:Al molar 

ratios of 1 and 1.33 respectively. Given that at an experimental Na:Al ratio of 1.5 there 

was approximately 10% unreacted kaolinite, the reaction under these conditions did not 

reach equilibrium and can be assumed was limited by kinetics.  

A linear line provides a good fit (R2 = 0.82) to the values of kaolinite consumption taken 

from the different methods (Figure 4-11). The deviation of the 0.5-Na:Al point is 

explained by lower values given by all of the methods, and in particular the lower XRD 

value, whilst that of 0.75-Na:Al is skewed by the TGA result, as affected by baseline 

selection as mentioned above. For Na:Al ≥ 1.25, there is some evidence of a plateau 

beginning. This cannot be attributed to the dissolution process, as the surface 

area:mass ratio of kaolinite has been shown to remain constant throughout (Bauer and 

Berger, 1998), with the faster dissolution of particularly fine particles only making a 

small contribution to the overall process (Huertas et al., 1999). A plateau indicates 

increased unreacted sodium, which correlates with the potential for increased 

carbonates identified in the FTIR spectra at Na:Al > 1.25. 

Extending the linear best fit line predicts that the reaction would reach completion at a 

Na:Al molar ratio of 1.6. In practice, the reaction is unlikely to go to completion, as the 

alkalinity of the remaining solution decreases as more kaolinite is dissolved. The 

predicted Na:Al ratio to completion of 1.6 would present difficulties for this process, as 

the number of moles of Na required in solution would then exceed the saturation limit of 

a sodium hydroxide solution at room temperature (Budtova and Navard, 2016). If the 

questionable TGA data at 0.75-Na:Al is ignored, the average would be closer to 50% 

kaolin consumption which would place it below the theoretical maximum for an 8:2:2 

hydrosodalite, indicating this form of hydrosodalite is not excluded by the data.  
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4.5 Conclusions 

A novel synthesis method has been shown to produce hydrosodalite from kaolinite by 

activation with sodium hydroxide solution with no prior activation of the precursor and 

no hydrothermal conditions required. A rational study of the effect of the alkaline 

concentration has been performed and gave consistent and repeatable results across 

different analytical techniques. This demonstrates the possibility of easy, cheap and 

efficient production of semi-condensed aluminosilicates. The numerous applications of 

the latter as well as the extrusion compatibility of this process also increases its 

potential for larger scale production.  
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Appendix 

Additional details are given here regarding three aspects of the main article: firstly, the 

mass spectrometry data accompanying the thermogravimetric results; secondly, an 

explanation of the deconvolution procedure used for analysis of the 29Si MAS-NMR 

spectra, and lastly, the water and hydroxyl bands of the FTIR spectra. 

4.6 Mass spectrometry data 

The mass spectrometry (MS) data that was collected alongside the thermogravimetric 

(TG) data is presented here (Figure 4-12). 
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Figure 4-12: MS and dTG data for Kao and activated Kao samples. 
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4.7 29Si MAS-NMR deconvolution procedure 

The process used for the deconvolution and analysis of the 29Si MAS-NMR spectra will 

be explained in detail here. Firstly, a flat-line baseline correction was made on the 

spectra so that there were no negative values. Deconvolution of the spectra was 

carried out using OriginPro software and fitted to Lorentzian peak profiles, as this gave 

a better fit to the measured peaks than Gaussian profiles. Peak centre values for the 

fitted curves were not pre-determined and were allowed to vary.  

A total of five different peaks were fitted over the range of samples analysed. For 

simplicity, it was assumed that all Si in a Q3 environment was present in kaolinite, and 

all Si in a Q4 environment was present in hydrosodalite. It was beyond the necessary 

scope of this study to identify the exact bonding environment of each of the four fitted 

Q4 peaks (labelled a – d). It is acknowledged that this approach did not consider the 

contributions of Q3 Si in muscovite or Q4 Si in quartz – however, it is known from the 

PXRD analysis that both of these are only present as minor impurity phases in the 

precursor. Therefore this assumption is not expected to make a significant difference to 

the values. It was also assumed the dissolution of Al and Si from the kaolinite was 

congruent, and the possible contribution of Al and Si from muscovite was not 

considered to be significant. For each spectrum, the cumulative fitted curve was 

deemed to be an acceptable match for the measured spectrum. An example is given in 

Figure 4-13 below. 

 

Figure 4-13: Peak deconvolution of the 29Si MAS-NMR spectra, demonstrated for Kao-
0.25Na:Al. 
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The area under each of the fitted curves was integrated, and then expressed as a % of 

the total integrated area. These values are given in Table 4-4 below.  

Table 4-4: Estimates for the proportion of different Si environments found in each sample. 

  Si environments 
(average peak centre given in ppm) 

Q3 Q4 (a) Q4 (b) Q4 (c)  Q4 (d) 

-91.3 ppm -86.5 ppm -85.3 ppm -83.6 ppm -80.4 ppm 

Kao 100% 0% 0% 0% 0% 

Kao-0.25Na:Al 67% 20% 0% 13% 0% 

Kao-0.5Na:Al 51% 17% 16% 16% 0% 

Kao-0.75Na:Al 22% 66% 0% 12% 0% 

Kao-1Na:Al 11% 44% 36% 9% 0% 

Kao-1.25Na:Al 7% 46% 40% 0% 7% 

Kao-1.5Na:Al 4% 46% 44% 0% 6% 

 

The % values from the different Q4 curves were summed to give the estimated signal 

contribution from hydrosodalite, and hence the proportion of Si atoms. The % values 

for Q3 were used to get the equivalent proportion for kaolinite. These values were then 

factored by the relative number of Si atoms in one mole of the respective phases (2 

moles of Si per mole of kaolinite, 6 moles of Si per mole of hydrosodalite). This then 

gave the estimated proportions of each phase. The results for each sample are given in 

Table 4-5 below. 

Table 4-5: Estimates for the phase distribution of each sample in terms of proportion of Si 
atoms, and phase composition. 

 

% of Si atoms % molar proportion 

Kaolinite Hydrosodalite Kaolinite Hydrosodalite 

Kao 100% 0% 100% 0% 

Kao-0.25Na:Al 67% 33% 86% 14% 

Kao-0.5Na:Al 51% 49% 76% 24% 

Kao-0.75Na:Al 22% 78% 46% 54% 

Kao-1Na:Al 11% 89% 27% 73% 

Kao-1.25Na:Al 7% 93% 19% 81% 

Kao-1.5Na:Al 4% 96% 12% 88% 
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4.8 Hydroxyl and water bands in FTIR spectra 

Due to the difference in absorbance of bands in different regions of the spectra, only 

the range of 600 – 1800 cm-1 was presented in the main article. The Si-O-Al bands in 

that range are the most useful for phase identification, but the water and hydroxyl 

bands in the range of 3000 – 4000 cm-1 can also provide information (Figure 4-14).  

 

Figure 4-14: FTIR spectra of kaolinite precursor and activated samples in the 3000 – 4000 cm-1 
range. 

The bands at 3687, 3669, 365 and 3620 cm-1 are OH stretching bands, which are 

characteristic of kaolinite (Russell and Fraser, 1994). As the Na:Al molar ratio 

increased, the intensity of these bands decreased but never fully disappeared. This is 

in agreement with analysis in the main article on the phase composition of these 

samples. As the kaolinite OH bands receded, they were replaced with a broad band in 

the range of 3200 – 3700 cm-1. This was attributed to OH groups in water-water 

hydrogen bonds (Farmer, 1974). This trend corresponds with the TGA observations of 

increasing amounts of zeolitic water with increasing Na:Al molar ratio. It would 

therefore be expected that this emerging band is attributable to OH and/or water 

groups in the β-cage of the hydrosodalite (Engelhardt et al., 1992).  
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Chapter 5 - Alkali activation of 
montmorillonite and illite 
In this chapter, the alkali activation behaviour of montmorillonite and illite, the most 

common 2:1 clay minerals in soils, is investigated. This is presented as a separate 

chapter to kaolinite, as montmorillonite and illite are both 2:1 clays and are therefore 

better suited to comparisons between each other.  

The additional experimentation on interlayer cation exchange presented in the 

Appendix was undertaken on the recommendation of the journal reviewers. Whilst not 

of direct applicability to the motivations of this research, it helps to provide a more 

thorough understanding of the phenomena observed in the alkali activation of 

montmorillonite.  

This chapter has been revised following suggestions from the examiners, so the article 

presented here has minor differences compared to the published article.   
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Alkali activation behaviour of un-calcined 

montmorillonite and illite clay minerals 

Abstract 

Using alkali activation, un-calcined soils have potential as precursors for low carbon, 

low cost, geopolymer-stabilised construction materials. This technology has been 

recently promoted as a lower impact alternative to cement stabilisation for walling 

materials in construction around the world. There is a lack of fundamental 

understanding around the alkali activation of un-calcined montmorillonite and illite, 

which, along with kaolinite, are clay minerals commonly found in soils. Kaolinite, as a 

1:1 clay mineral, has been shown to form crystalline hydrosodalite when alkali-

activated, but 2:1 montmorillonite and illite could form stronger geopolymer structures 

due to the higher Si:Al ratio in the precursor mineral. The lack of understanding of the 

underlying mechanisms at work with 2:1 clay minerals is a barrier to knowing how 

viable un-calcined geopolymer stabilised soil materials are for the range of soil types 

found in nature. In this study, montmorillonite and illite precursors were activated with a 

range of sodium hydroxide concentrations, compacted, and then cured at 80°C for 24 

hours. The cured samples were characterised using a variety of advanced analytical 

techniques, including powder XRD, SEM, TGA, 27Al and 29Si-MAS-NMR, and FTIR. For 

the first time it was confirmed that alkali activation of uncalcined montmorillonite forms 

a N-A-S-H or (N,C)-A-S-H geopolymer as the major product phase, which increases in 

quantity with increasing Na:Al molar ratio of the system. Although it has a similar Si:Al 

ratio, alkali activation of illite seems to result in structural alteration and increased 

porosity for Na:Al ≥ 0.5. The behaviour of these individual clay minerals suggests that 

the alkali activation of un-calcined 2:1 clay minerals is complex. Although alkali 

activation of montmorillonite can form a geopolymer, alkali activation of soils containing 

illite may lead to poor quality materials. This research has shown that the focus of 

future development work should be around montmorillonite-based clays. 
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5.1 Introduction 

Alkali activation of aluminosilicates for construction materials has been the focus of 

extensive research in recent years, due to the potential of lower energy and carbon 

costs compared to conventional materials such as Portland cement based concrete 

(Provis, 2014). Alongside industrial by-products such as fly ash (Fernández-Jiménez et 

al., 2006; van Jaarsveld et al., 2002) and rice husk ash (Zhang, 2013), alkali activation 

of clays and soils has been investigated, due to their abundance and low cost (Diop 

and Grutzeck, 2008; MacKenzie, 2009). Clays can be used not only as supplementary 

cementitious materials (Fernandez et al., 2011; Garg and Skibsted, 2014; Hollanders et 

al., 2016; Tironi et al., 2013), but also as primary aluminosilicate precursors in alkali 

activation. While a few studies have been done on montmorillonitic and illitic soils, 

studies of clay minerals in isolation have been dominated by kaolinite and metakaolin 

(Liew et al., 2016). At the same time, a wide range of soils found around the world 

contain montmorillonite and/or illite (Nickovic et al., 2012). An improved fundamental 

understanding of the alkali activation behaviour of these two clay minerals in isolation is 

required. This is in order to develop a better understanding of how mixed mineral soils 

will behave, and therefore which soils might be suitable or unsuitable for alkali 

activation.  

In the specific application being considered, the goal of alkali activation is to convert 

clay minerals into strong, durable and water resistant product phases which will allow 

the manufacture of concrete block replacements, or similar products. A sufficiently 

reactive aluminosilicate system with a Si:Al molar ratio of 1.5 – 2.5 is expected to form 

a geopolymer in the presence of a sufficiently concentrated alkaline activating solution 

(Duxson et al., 2007b). The amount of geopolymer phase formed depends on both the 

extent of dissolution of the aluminosilicate precursor (i.e. the clay mineral) in the 

alkaline activating solution (Duxson et al., 2007a), as well as the total amount of metal 

cation in the system, as required for charge balancing (Barbosa et al., 2000).  

Both, montmorillonite and illite are dioctahedral 2:1 clay minerals having layers 

consisting of one octahedral sheet between two tetrahedral sheets. Montmorillonite is a 

member of the smectite family; illite, the mica family (Brindley and Brown, 1980). For 

their crystal structure, montmorillonite has a triclinic lattice, with a P space group 

(Gualtieri et al., 2001; Viani et al., 2002) while illite has a monoclinic lattice, with a C2/c 

or C2/m space group for the 1M and 2M1 polytypes respectively (Gualtieri, 2000; 

Gualtieri et al., 2008). In chemical composition, both minerals have formula ranges 

rather than fixed stoichiometry, due to substitutions. For montmorillonite, there is 

substitution of Mg2+ for Al3+ in the octahedral sheet; for illite there is Al3+ substitution for 
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Si4+ in the tetrahedral sheet, and possible Mg2+ or Fe2+ substitution for Al3+ in the 

octahedral sheet (Brigatti et al., 2013; Brindley and Brown, 1980).  

To balance the negative layer charges resulting from these substitutions, both minerals 

have interlayer cations. Montmorillonite can host a range of different interlayer cations 

including Ca2+, Na+, Mg2+, K+ and Sr2+, whereas illite has only K+. Illite has a much 

lower cation exchange capacity than montmorillonite (Kahr and Madsen, 1995). This is 

due to its small interlayer space and the ‘fixed’ nature of the small potassium ions in the 

ditrigonal cavities on the surfaces of the tetrahedral sheet (Bergaya et al., 2013; 

Verburg and Baveye, 1994). The hydration of the interlayer cations and subsequent 

osmotic behaviour of their diffuse double layers in montmorillonites results in swelling 

behaviour, whereas the positioning of the K+ interlayer cations in illite results in non-

swelling behaviour (Van Olphen, 1963).  

For application as masonry blocks, alkali-activated soil materials must be able to be 

manufactured at block scale and placed in a wall at which point dimensional stability is 

required. Given their swelling behaviour, montmorillonitic soils have usually been 

avoided in earth construction, even when using chemical stabilisation such as cement 

or lime (Jagadish, 2007). It remains to be seen whether alkali activation can be used to 

transform the montmorillonite into a strong and durable stabilising phase, which 

ensures that any unreacted clay fraction is constrained in its ability to have a 

detrimental effect on overall properties. The viability of an alkali-activated soil material, 

especially if containing a swelling clay such as a montmorillonite, therefore depends 

not only on the ability to form a geopolymer phase, but also how much geopolymer 

phase is formed and how that geopolymer phase interacts with any unreacted 

minerals. To be compatible with extrusion processing, an established process used in 

brickmaking, the consistency of the wet mix needs to be approximately at the plastic 

limit (Maskell et al., 2013). Practical constraints such as these are not often considered 

in studies on alkali-activated materials, but are vital to the feasibility of any new 

material.  

In previous studies in this field, a popular processing technique is to heat a clay (or soil 

containing clay minerals) above its dehydroxylation temperature in order to increase its 

reactivity (Liew et al., 2016; Tchadjie and Ekolu, 2018). Unlike the dehydroxylation of 

kaolinite, dioctahedral 2:1 clays retain their layer structure (Heller-Kallai, 2013) but still 

undergo a reduction in Al coordination in the octahedral layer (Heller-Kallai, 2013; 

Muller, 2000). However, these coordination changes are reversible as dehydroxylated 

2:1 clays can undergo varying degrees of rehydroxylation, even under ambient 

conditions (Emmerich, 2000; Muller, 2000). Given that the dehydroxylation 

temperatures for montmorillonite and illite are in the ranges of 620 – 780°C and 520 – 
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650°C respectively (Földvári, 1991), there is a significant energy investment required 

for this. Since the main driver for alkali activated materials is a lower energy footprint 

(MacKenzie, 2009), it is desirable to know under which conditions these two clay 

minerals might be sufficiently reactive in their uncalcined state. 

The behaviour of montmorillonite in alkali solutions is the subject of ongoing research 

for the application of barrier materials for radioactive waste storage (Dohrmann et al., 

2013; Fernández et al., 2014; Nakayama et al., 2004). For example, the transformation 

of montmorillonite to illite in the presence of K-rich groundwater is of concern, as this 

leads to loss of swelling capacity (Kaufhold and Dohrmann, 2010; Lee et al., 2010). 

The transferability of such knowledge is limited for the present application for several 

reasons: alkaline concentrations are lower ([OH] < 1 M); timescales are longer; 

liquid:solid ratios are much higher, and alkali solutions used are often complex mixtures 

of metal hydroxides designed to mimic the composition of Portland cement pore fluids. 

In contrast, there are few previous studies on alkali activation of montmorillonite for the 

intentional production of alkali aluminosilicate phases. In early studies, Willoughby et 

al. (1968) and Ingles (1970) activated uncalcined montmorillonite with a range of alkali 

hydroxides, showing a loss of strength when sodium hydroxide was used with room 

temperature curing. Belviso et al. (2017) showed that a 700°C calcined Ca-

montmorillonite precursor formed a geopolymer by hydrothermal alkali activation, but 

formed zeolites when an additional NaOH pre-fusion step was used. Seiffarth et al. 

(2013) thermally pre-treated a smectite clay sample (550 – 950°C), and mixed it with a 

sodium silicate solution. Geopolymerisation was inferred from the increased strength of 

the alkali activated samples, but detailed phase characterisation was not performed. 

The causal link between geopolymerisation and higher strength is not straightforward 

since sodium silicate itself is an adhesive, used to strengthen materials such as 

cardboard (Fawer et al., 1999). 

More studies have been done on illite alkali activation, but most of them have focussed 

on calcined precursors. Seiffarth et al. (2013) thermally pre-treated illite clay between 

550 – 950°C, and mixed it with a sodium silicate solution. Again, geopolymerisation 

was inferred from increased strength, but without detailed phase characterisation. El 

Hafid and Hajjaji (2015) calcined an illite-kaolinite clay sample at 700°C and mixed it 

with NaOH solutions, producing the zeolites chabazite and natrolite. It was unclear 

what role the kaolinite and the illite played in the development of these product phases. 

Sperberga et al. (2011) mixed a calcined (700 – 900°C) illite deposit with KOH solution, 

Sedmale et al. (2013) mixed the same illite deposit with KOH solution, but without 

calcination. In both cases, although improved compressive strength was noted, proof of 

geopolymer phase production was not definitive. In contrast to their results for 
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montmorillonite, Belviso et al. (2017) showed that a calcined illite precursor underwent 

no obvious changes by hydrothermal alkali activation, but did form zeolites when an 

additional NaOH pre-fusion step was used.  

Although the existing range of studies provides some insight, there is still a knowledge 

gap in the direct comparison of the alkali activation of non-calcined montmorillonite and 

illite. A recurring obstacle to developing a fuller fundamental understanding of 

precursor influence on alkali activation behaviour is that given the numbers of variables 

involved, comparison between studies is difficult. In order to develop a fundamental 

understanding of the processes at work, this study is a systematic investigation and 

comparison of the alkali activation behaviour of un-calcined montmorillonite and illite. 

The aim is to understand phase formation behaviour, in order to determine which 

conditions might be suitable for producing stabilised soil materials.  
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5.2 Experimental 

5.2.1 Materials 

K10 montmorillonite (Sigma-Aldrich, product no. 69866-1KG) and Clay Minerals 

Society Imt-2 (Silver Hill) illite were used as the aluminosilicate precursors. Chemical 

compositions were determined by energy dispersive X-rays (EDX) in a scanning 

electron microscope (JEOL SEM6480LV with Oxford INCA X-Act SDD X-ray detector) 

at an accelerating voltage of 20 kV, a chamber pressure of between 10 – 30 Pa, a Si 

wafer as a standard, and measuring 4 scan areas per sample. The precursor powders 

were mounted on a sticky carbon tab on top of an aluminium stub, and were not 

coated. Standard errors in composition were calculated from the variation in values 

between the different area scans for each sample. Specific surface area was 

determined using the BET method in a Micromeritics 3Flex instrument. The precursor 

powders (0.2 g of K10 Montmorillonite, and 1 g of Illite) were degassed under vacuum 

conditions at 150°C for 14 h, before testing. 

For the K10 montmorillonite, chemical composition suggested that the dominant clay 

mineral was a Ca-montmorillonite due to presence of Ca, with a low amount of iron and 

minor amounts of potassium, magnesium, sodium, sulphur and titanium also present 

(Table 5-1). The sulphur was likely to be due to either a remnant of the acid treatment, 

or a trace accessory mineral. BET specific surface area was 265.8 m2g-1. K10 

montmorillonite is produced by acid treatment of naturally occurring Ca-

montmorillonite, in which the Ca2+ interlayer cations are partially replaced by protons 

(Varadwaj et al., 2013), and the octahedral sheet cations (mostly Al3+, with some Mg2+ 

substitution) are partially replaced by more divalent cations (Monteiro et al., 2014). This 

process typically results in a modified clay with increased surface area, micro-porosity 

and surface acidity (Komadel and Madejová, 2013). This was a proprietary process 

carried out by the manufacturer, so no details could be obtained. The pre-treatment 

was not expected to significantly affect the product phases formed in this particular 

application, and having a consistent and well characterised material was considered 

more important than having an untreated raw material in developing a fundamental 

understanding of the mechanisms. 

Table 5-1: Chemical composition of K10 montmorillonite and illite used, in oxide %wt. 

Oxide Al2O3 CaO Fe2O3 K2O MgO Na2O SiO2 SO3 TiO2 Total 

K10 Montmorillonite 
%wt 

(std error) 

13.53 
(0.66) 

0.47 
(0.14) 

4.53 
(1.05) 

1.56 
(0.22) 

1.67 
(0.11) 

0.03 
(0.03) 

77.60 
(2.12) 

0.12 
(0.07) 

0.49 
(0.02) 

100 

Illite 
%wt 

(std error) 

20.80 
(0.34) 

0.00 
8.32 

(0.38) 
8.67 

(0.18) 
2.28 

(0.06) 
0.00 

59.14 
(0.26) 

0.00 
0.78 

(0.06) 
100 



127 

For the illite, chemical composition showed minor amounts of iron, potassium, 

magnesium and titanium present (Table 5-1). BET specific surface area was 19.5 m2g-

1. Unlike for the montmorillonite, there were no easily accessible purified forms of illite

available. 

The precursors were activated using sodium hydroxide pellets of >98% purity (Sigma-

Aldrich, product no. 06203). 

5.2.2 Synthesis procedure 

As previously described (Marsh et al., 2018), the compositions in Table 5-2 were 

determined to provide samples of pre-determined Na:Al ratio, whilst maintaining the 

wet mix workability at the plastic limit. Molar quantities of Al were calculated from 

generic structural formulae of the clay minerals. Although there were minor impurities in 

both the precursors, the Na:Al ratios were valid for the purpose of relative comparisons 

– any small error was consistent within the series of systems for each precursor.

Atterberg plastic limit measurements (Wagner, 2013) were taken for montmorillonite 

and illite over a range of sodium hydroxide solutions (BSI, 1990). From these data a 

best fit line was plotted to extrapolate the volume of solution required to reach plastic 

limit consistency for a given concentration (Figure 5-1). A correction was made to 

exclude the mass of the sodium hydroxide from the solids mass in the plastic limit 

calculations (Bain, 1971). Montmorillonite demonstrated a significant decrease in 

plastic limit with increasing NaOH, likely due to partial dissolution. Only small changes 

were observed for illite. The illite samples were limited to Na:Al of 0.75 as it was not 

practically possible to produce samples with a higher value while keeping the plasticity 

constraint. 

Table 5-2: Composition of samples in the activated montmorillonite and illite series, each for 25 
g of dry precursor. 

Name 
Mont
-0.25
Na:Al

Mont-
0.5 

Na:Al 

Mont-
0.75 

Na:Al 

Mont-
1 

Na:Al 

Mont-
1.25 

Na:Al 

Mont-
1.5 

Na:Al 

ILL-
0.25 

Na:Al 

ILL-
0.5 

Na:Al 

ILL-
0.75 

Na:Al 

Na:Al molar 
ratio 

0.25 0.5 0.75 1 1.25 1.5 0.25 0.5 0.75 

Concentration of 
activating 
solution 

(molarity) 

1.1 2.5 4.1 6.4 14.0 18.8 8.3 15.3 19.7 

Water mass (g) 22.5 20.5 18.2 15.3 8.2 6.5 4.8 4.8 4.8 
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Figure 5-1: The change in plastic limit of montmorillonite and illite precursors with sodium 
hydroxide solution concentration. 

The montmorillonite and illite were activated by adding a sodium hydroxide solution. 

Solutions of different concentrations were prepared by adding sodium hydroxide pellets 

to distilled water, mixed with a magnetic stirrer (Stuart UC152 heat-stir) for a minimum 

of 2 hours until fully dissolved and then allowed to cool. The clays were pre-dried in a 

105°C oven, and left to cool. Varying quantities of activating solutions were added to 25 

g of each clay, as given in Table 5-2. Each mixture of activating solution and clay was 

mixed by hand for 3 minutes, providing a consistent and well-distributed mixture. The 

high viscosity of the samples allowed them to be compacted by hand into 18 mm x 36 

mm cylindrical Teflon moulds by tamping with a glass rod in three layers for each 

sample, using 25 blows for each layer. Samples were cured in an air atmosphere in a 

80°C oven for 24 hours in their moulds. After curing, the activated illite samples were 

not fully dried so required further drying by 72 hours in a vacuum desiccator. After 

demoulding, samples were aged for 28 days in a controlled environment of 20 ± 0.5°C 

and 50 ± 2.5% relative humidity. An air atmosphere was intentionally used for both 

curing and ageing, to provide conditions representative of industrial brickmaking 

processes. This gave an indication of carbonation behaviour for these clay minerals 

after alkali activation, a subject of interest as efflorescence is a known problem in 

alkali-activated materials (Allahverdi et al., 2015), as well as an approximate indication 

of how much Na was left unused in the activation process itself. 
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5.2.3 Characterisation methods 

The set of characterisations were done at 28 ± 2 days ageing time, and (with the 

exception of SEM imaging) were done using powders prepared from the cured 

samples. These were ground by hand, having been wetted with isopropanol to avoid 

damaging the clay minerals’ crystal structures (Moore and Reynolds, 1997). Powders 

were ground until there was no further discernible reduction in particle size, and so 

were comparable between samples. Any variation in particle size of the ground 

powders was not expected to have any noticeable effect on characterisation results. 

For XRD, TGA and FTIR, all characterisation was carried out on powder samples 

stored for at least 48 hours at 50% relative humidity, to allow for equal hydration states.  

Powder X-ray diffraction (XRD) analysis was done to identify phases with a Bruker D8 

Advance instrument using monochromatic CuKα1 L3 (λ = 1.540598 Å) X-radiation and 

a Vantec superspeed detector. A step size of 0.016 °(2θ) and step duration of 0.3 

seconds were used. Phase identification was done using Bruker EVA software, using 

reference patterns from the Joint Committee on Powder Diffraction Standards (JCPDS) 

database. Patterns were corrected for sample height shift by calibrating to the most 

intense quartz reflection (101) at 26.6 °(2θ). The backgrounds have been defined 

thanks to Le Bail extractions of the XRD patterns using JANA 2006 (Petříček et al., 

2014). 

SEM imaging was used to characterise phase size and morphology, using a JEOL 

SEM6480LV in secondary electron mode with an accelerating voltage (AV) of 10kV. 

Bulk specimens were sputter coated with gold for 3 minutes. Because the SEM used a 

tungsten filament, an AV of 10 kV was selected as an optimal balance between the 

tendencies towards a noisy image at lower AV, and lower resolution at higher AV. 

Unpolished samples were used to enable easier distinction of particle morphology in 

the microstructures, and also because of the friability of some of the samples.  

Thermogravimetric analysis (TGA) was done to characterise thermal behaviour, using 

a Setaram Setsys Evolution TGA over a range of 30 to 1000°C at a heating rate of 

10°C/minute. An air atmosphere was used, with a flow rate of 20 ml/minute. A 

connected mass spectrometer was used (Pfeiffer Omni) to identify whether evolved 

gas species contained OH, H2O, C or CO2.  

Solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra 

were measured for 27Al and 29Si to characterise coordination states, using a Varian 

VNMRS (9.4 T) in direct excitation. The 27Al spectra were obtained with a 104.198 MHz 

field (104.199 MHz for Mont and ILL), using a sample spinning frequency of 14 kHz in a 

4 mm rotor, a pulse duration of 1 μs, an acquisition time of 10 ms (9.8 ms for activated 
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Mont samples), a recycle time of 0.2 s, line broadening of 0.005 s, and between 3000 – 

7000 scans were used for each spectrum. The 29Si spectra were obtained with a 

79.435 MHz field (79.438 MHz for activated ILL samples), using a sample spinning 

frequency of 6 kHz in a 6 mm rotor, a pulse duration of 4 μs, an acquisition time of 20 

ms (15 ms for activated ILL samples), a recycle time of 2 s, line broadening of 0.01 s 

(0.05 s for ILL and activated ILL samples), and between 1220 – 4000 scans were used 

for each spectrum. Proton decoupling was used at 61.0 kHz for Mont and ILL, at 41.7 

kHz for Mont-Na:Al = 0.25 – 1 and ILL-Na:Al = 0.25 – 0.75. The samples Mont-Na:Al = 

1.25 – 1.5 were recorded without decoupling, which appeared to make very little 

difference to the appearance of the spectra. Chemical shifts were referenced to 1 M aq. 

Al(NO3)3 for 27Al and tetramethylsilane for 29Si. Spectra have been normalised to the 

height of the most intense line in the spectrum. 

Fourier Transform Infrared Spectroscopy (FTIR) was done to characterise molecular 

bonding, using a Perkin-Elmer Frontier with a diamond Attenuated Total Reflectance 

(ATR) head. Spectra were collected over a range of 4000 – 600 cm-1 using a resolution 

of 4 cm-1 and 5 scans per spectrum. Corrections were made for ATR and background 

using Perkin-Elmer Spectrum software.  
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5.3 Results 

5.3.1 XRD phase analysis 

The XRD pattern of the plain (control) montmorillonite precursor showed it contained 

montmorillonite clay mineral (Powder Diffraction File (PDF)# 00-013-0135), muscovite 

(PDF# 01-084-1304), quartz (PDF# 00-046-1045) and minor amounts of microcline 

(PDF# 00-019-0932) and kaolinite (PDF# 01-079-1570) (Figure 5-2). The weak 

intensity and broad peak profile of the montmorillonite 001 reflection is likely a result of 

internal disorder, and does not necessarily indicate the phase proportion. The basal 

spacing calculated from the Le Bail refinement is 14.4 Å, which is in the possible range 

for smectites. Given the oxide composition, this suggests it is either a Ca-, Mg- or 

mixed Ca-Mg-montmorillonite (Ferrage et al., 2005).  

The XRD pattern of the illite showed it contained illite clay mineral (PDF# 00-026-0911) 

as the major phase, with quartz, microcline and kaolinite present as minor phases 

(Gailhanou et al., 2007) (Figure 5-2). Previous studies on this source clay identified it to 

be composed of >90% illite (Gailhanou et al., 2007), and the illite clay mineral to be 

mostly of the 1M/1Md polytype (Haines and van der Pluijm, 2008).  
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Figure 5-2: X-Ray powder diffraction patterns of K10 montmorillonite and Illite Imt-2 precursors. 

In the activated montmorillonite series, a change in the background profile was 

observed with increasing Na:Al (Figure 5-3), more clearly visible in the background 

patterns, extracted from the measured patterns using Le Bail refinement. The 17 – 22 

°(2θ) (5.2 – 4.0 Å) hump in the precursor’s pattern receded, and a broad hump 

emerged in the 22 – 35 °(2θ) (4.0 – 2.6 Å) region as Na:Al increased. This emergent 

hump was attributed to an amorphous geopolymer phase as described by Duxson et 

al. (2007a). No significant new crystalline reflections were observed. Seeming 

increases in the intensity of the montmorillonite/muscovite reflection at 17.8 °(2θ) (5.0 

Å) between patterns were believed to arise from a combination of pattern effects, rather 

than changes in phase quantity. Firstly, the decrease in intensity of the neighbouring 

montmorillonite/muscovite reflection at 19.8 °(2θ) (4.5 Å) made the 17.8 °(2θ) (5.0 Å) 

reflection look more intense in comparison. Secondly, the described background 

changes affected the intensity of the quartz reflection at 26.6 °(2θ), which each pattern 

was normalised to. The 001 reflection shifted for all activated samples, corresponding 
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to a shift in d-value from 14.4 Å for the precursor clay to 11.6 Å. As shown by further 

experimentation reported in the Appendix, the synthesis conditions used for alkaline 

activation were not conducive to cation exchange of Na+ in solution for the initial Ca2+ 

and/or Mg2+ in the interlayer sites. There was no significant shift in 2θ position of the 

muscovite 001 reflection in the activated samples, indicating there was no significant 

interlayer cation exchange of Na+ for K+. This is expected, given that Na+ has a lower 

affinity for muscovite than K+ (Osman et al., 1999), and little exchange happens except 

on exposed surfaces (Gaines Jr, 1957).   

Figure 5-3: X-Ray powder diffraction patterns of the montmorillonite precursor and the cured 
samples. The lower set of patterns show the changes in extracted background in the 15-35 °2θ 

range. 
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In the activated illite series, several new crystalline reflections emerged (Figure 5-4). A 

small amount of hydrosodalite (PDF# 00-041-0009) was formed as Na:Al increased. 

This occurred in parallel with the consumption of the minor amount of kaolinite – 

estimated by Gailhanou et al. (2007) to make up <1% of the precursor – as would be 

expected for this type of synthesis (Marsh et al., 2018). Reflections of natrite (Na2CO3) 

(PDF# 00-037-0451) and thermonatrite (Na2CO3∙H2O) (PDF# 00-008-0448) emerged 

as Na:Al increased, associated with efflorescence arising from an excess of Na in an 

alkali-activated system (Škvára et al., 2012; Zhang et al., 2014). Unlike the activated 

montmorillonite series, there were no significant changes in the patterns’ backgrounds, 

or illite lattice parameters. 

 

Figure 5-4: X-Ray powder diffraction patterns of the illite precursor and the cured samples. 
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5.3.2 SEM phase size and morphology 

For the montmorillonite series (Figure 5-5), the microstructure changed with increasing 

Na:Al ratio. For low Na:Al ratios, this was irregularly shaped particles, with rough, flaky 

edges, typically ≤0.5 μm. As Na:Al increased, these particles formed a continuous 

phase rather than distinct individual particles.  

 

Figure 5-5: SEM images of the montmorillonite precursor a), and cured samples with the 
following Na:Al values: b) 0.5, c) 1, d) 1.5. 
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For the illite series (Figure 5-6), there were no significant differences in microstructure 

between the precursor and Na:Al = 0.25 – 0.5, however there were continuous 

changes, including the arrangement of particles. For Na:Al = 0.75, the particles had an 

elongated morphology. Possible explanations for this are explored in Section 5.4.4.    

 

Figure 5-6: SEM images of the illite precursor a), and cured samples with the following Na:Al 
values: b) 0.25, c) 0.5, d) 0.75. 
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5.3.3 TGA thermal behaviour 

The mass loss events at 30 – 200°C (dTG peak at 86°C) and 200 – 750°C (peak at 

564°C) in the montmorillonite precursor (Figure 5-7) were attributed to the loss of 

surface adsorbed water and the dehydroxylation of the montmorillonite phase 

respectively (Földvári, 1991). Given that muscovite undergoes dehydroxylation at 780 – 

950°C, the absence of a major dTG peak in this region indicates that muscovite is only 

present as a minor phase. The mass loss in the region of 200 – 1000°C is 4.5%. This is 

close to the range of theoretical dehydroxylation mass loss for montmorillonites of 4.7 – 

4.9wt% (Christidis, 2011). Given that the only notable impurities from the XRD were 

muscovite and quartz, this indicates that montmorillonite is the majority phase in the 

precursor. MS data for all spectra is presented in the Appendix. 

Overall mass loss increased with Na:Al over the range of Na:Al tested, from ~9.5% to 

13%. The constant magnitude of the dTG peak at ~100°C over the Na:Al range was 

attributed to a simultaneous decrease in surface water desorption from montmorillonite, 

and increase in surface water desorption from the geopolymer product. This was 

inferred from a previous observation that metakaolin geopolymers have a water 

desorption peak at ~100°C (Bernal et al., 2011). A plateau of increasing intensity 

formed in the dTG spectrum in the range 120 – 380°C. This signal was also attributed 

to the geopolymer phase, since it resembles a disordered form of zeolitic water 

desorption peaks in this temperature range (Alshaaer et al., 2016). A distinct single 

peak has previously been observed at 270°C for simple geopolymer systems, albeit for 

longer curing times (Walkley et al., 2016), whilst more complex clay-based systems 

have formed plateaus in that region (Alshaaer, 2013; Alshaaer et al., 2016; Hounsi et 

al., 2013). In addition, the XRD and SEM results show that a geopolymer is the only 

product phase present which could contribute to such a significant mass loss signal. 

Two peaks in the dTG spectra at ~470°C emerged only for Na:Al = 0.75 – 1, strongly 

associated with CO2 evolution. These were not attributed to the geopolymer phase as 

no thermal loss events have been found above 350°C in simple geopolymer systems 

(Walkley et al., 2016). 
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Figure 5-7: a) TG spectra and b) dTG spectra, for montmorillonite precursor and cured samples. 
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The mass loss events at 30 – 115°C (dTG peak at 88°C) and 340 – 680°C (dTG peak 

at 545°C) in the illite precursor (Figure 5-8) were attributed to the loss of surface 

adsorbed water and the dehydroxylation of illite respectively (Földvári, 1991; Murad 

and Wagner, 1996).  

There was an increase in overall mass loss as Na:Al increased, from 5% in the illite 

precursor to 14% in ILL-0.75Na:Al. This increase was distributed over thermal loss 

events in both the 30 – 115°C and 450 – 600°C ranges, which were both associated 

with evolution of H2O and CO2. The significant increase in intensity of the dTG peak at 

~90°C with increasing Na:Al suggested that there is a significant increase in surface-

adsorbed water, and hence surface area. The significant single dTG peak at 540°C in 

the activated illite samples was not attributed to a geopolymer, since the dTG signal 

range for a geopolymer was shown in the activated montmorillonite system to be a 

broad plateau within the 100 – 400°C range (Figure 5-7). The colour change to a red 

hue upon heating to 1000°C indicated that hematite had formed once the illite structure 

broke down completely releasing Fe2+ after 900°C (Murad and Wagner, 1996). 
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Figure 5-8: a) TG spectra and b) dTG spectra, for illite precursor and cured samples. 
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5.3.4 27Al and 29Si MAS-NMR bonding coordination 

In the montmorillonite precursor, the 27Al spectrum had peaks at 70, 56 and 4 ppm 

(Figure 5-9a). The peaks at 70 and 4 ppm were attributed to AlO4 and AlO6 coordination 

respectively ((Engelhardt and Michel, 1987) cited in (Cativiela et al., 1993)). The small 

amount of AlO4 coordination was attributed to Al3+ substitution for Si4+ in the tetrahedral 

sheet of montmorillonite. These montmorillonite peaks may have overlapped with 

muscovite, whose peaks would be expected at 4 and 72 ppm (Kinsey et al., 1985). The 

29Si spectrum had peaks at -93, -101 and -111 ppm (Figure 5-9b). The peaks at -93 

and -101 ppm were both attributed to Si in Q3(>1Al) coordination in the tetrahedral 

sheet of the montmorillonite (Cativiela et al., 1993; Magi et al., 1984), since decreased 

shielding from Al3+ substitutions moves Q4(1Al) peaks to less negative chemical shifts 

(Kirkpatrick et al., 1985). The peak at -111 ppm was attributed to tetrahedral sheet Si 

that had transformed from sheet (Q3) to framework (Q4) coordination as a result of the 

acid-washing process (Breen et al., 1995). Another possible contribution is from a 

siliceous impurity (Magi et al., 1984). 

In the activated montmorillonite samples’ 27Al spectra, a peak emerged at 56 ppm, 

corresponding to tetrahedral Al coordination and attributed to a N-A-S-H geopolymer 

phase (Duxson et al., 2005a; Singh et al., 2005), with the other peaks remaining 

unchanged (Figure 5-9a). In the 29Si spectra, a broad peak emerged in the -80 to -95 

ppm range, corresponding to a range of Si coordination states in terms of non-bridging 

oxygens (NBOs) and Al next nearest neighbours (NNNs), and attributed to N-A-S-H 

geopolymer formation (Figure 5-9b) (Duxson et al., 2005c; Fernández-Jiménez et al., 

2006). As Na:Al increased, this peak progressively shifted towards less negative 

chemical shifts, which is associated with a higher proportion of Al in the framework 

(Lee and Stebbins, 1999). This suggested there was initial preferential dissolution of 

silica from the clay at low Na:Al values, but becoming less Si-rich at higher Na:Al 

values. The 29Si spectra had more changes than the 27Al spectra in the activated 

montmorillonite samples. Despite this inconsistency, the overall evidence showed the 

formation of a geopolymer phase, in agreement with previous XRD and SEM results. 
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Figure 5-9: a) 27Al MAS-NMR and b) 29Si MAS-NMR spectra of montmorillonite precursor and 
cured samples. 



143 
 

In the 27Al spectrum of the illite precursor (Figure 5-10a), the largest peak at 2 ppm was 

attributed to AlO6 coordination in the octahedral sheet, and a small peak at 66 ppm to 

AlO4 coordination of Al3+ substitutions in the tetrahedral sheet of illite (Kinsey et al., 

1985). In the 29Si spectrum (Figure 5-10b), the largest peak at -90 ppm is attributed to 

Si in Q3 coordination in the tetrahedral sheet of illite (Kinsey et al., 1985). The breadth 

of this peak was caused by paramagnetism of iron atoms (Kirkpatrick et al., 1985). The 

smaller 29Si peak at -108 ppm was attributed to a quartz impurity (Thompson, 1984).  

In the activated illite samples, the AlO6 (2 ppm) and AlO4 (66 ppm) illite peaks 

decreased with increasing Na:Al, indicating increased dissolution of the illite (Figure 

5-10a). A peak emerged at 59 ppm, attributed to AlO4 coordination given its location. 

Since this is the same coordination as the AlO4 peak in the illite precursor but at a less 

positive chemical shift, the emergent peak represented an AlO4 coordination state with 

a greater number of Al NNNs (Kirkpatrick et al., 1985). The narrower profile of the 

emergent peak suggested it was a more ordered bonding environment (Kirkpatrick et 

al., 1985). This was hence attributed to a hydrosodalite phase, which was known to 

have formed in small amounts from the XRD, and the peak matched well with sodalite 

produced in the same synthesis conditions using a kaolinite precursor (Marsh et al., 

2018). Unlike the activated montmorillonite samples’ spectra, the 29Si spectra changed 

little with increasing Na:Al (Figure 5-10b). There was some evidence of a peak 

emerging at -88 ppm, in agreement with observations of hydrosodalite formation under 

the same synthesis conditions (Marsh et al., 2018), possibly accompanied by a 

decrease in intensity on the negative side of the tetrahedral peak. The indication of a 

small amount of hydrosodalite formation agreed with the XRD results, but without an 

obvious explanation for the microstructural changes observed in SEM images. 
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Figure 5-10: a) 27Al MAS-NMR and b) 29Si MAS-NMR spectra of illite precursor and cured 
samples. 
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5.3.5 FTIR molecular bonding 

In the montmorillonite precursor, the FTIR spectrum (Figure 5-11a) was dominated by 

a Si-O-Si stretching band at 1031 cm-1, with various shoulders (Van der Marel and 

Beutelspacher, 1976). Tables of band attributions are provided in the Appendix (Table 

5-7). In the activated samples’ spectra (Figure 5-11a), the montmorillonite Si-O-Si

stretching band decreased as Na:Al increased, but was still present as a shoulder. The 

emergence of a new, broad band at ~1000 cm-1 was attributed to the asymmetric Si-O-

T stretching modes of a geopolymer (Lee and van Deventer, 2003; Rees et al., 2007). 

The lower wavenumber is indicative of a greater proportion of Si-O-Al bonds in the 

alkali aluminosilicate product phase relative to the precursor (Fernández-Jiménez and 

Palomo, 2005). As Na:Al increased, the peak position of the Si-O-T band progressively 

shifted to lower wavenumbers. This phenomenon was previously observed for fly ash 

(Hajimohammadi et al., 2011), and here was likewise attributed to a decrease in the 

Si:Al ratio with increasing Na:Al. This interpretation agreed with the changes observed 

in the 29Si-MAS-NMR spectra (Figure 5-9b). The decrease in wavenumber of the Si-O-

T band’s peak was the greatest between the precursor and Na:Al = 0.25, followed by 

(previously described) progressive decreases of smaller magnitude with increasing 

Na:Al. Given the XRD results showed that a consistent modification of montmorillonite 

occurred for all Na:Al values, it could be that this phenomenon also made some 

contribution to the observed band shift between the precursor and Na:Al = 0.25. The 

breadth of the bands made it difficult to say to what extent the spectral changes could 

be attributed to montmorillonite modification, and which to montmorillonite consumption 

and geopolymer formation. In the lower wavenumber range, the Si-O stretching band in 

the montmorillonite was partly replaced by a broad Si-O band which emerged at 779 

cm-1 in the activated samples, attributed to a geopolymer (Barbosa et al., 2000). CO3
2-

bands at 1441 and 880 cm-1 emerged for Na:Al ≥ 0.5 (Barbosa et al., 2000). These 

corroborated the presence of carbonates, as suggested by the peaks attributed to CO2 

evolution in the dTG spectra (Figure 5-7b). 

In the illite precursor, the FTIR spectrum was dominated by a Si-O-Al band at 987 cm-1 

(Figure 5-11b). Tables of band attributions are provided in the Appendix (Table 5-8). In 

the activated samples’ spectra the dominant band was broader, less intense and at a 

higher wavenumber (999 cm-1) than the Si-O-Al band in the illite precursor (Figure 

5-11b). Given their close proximity in wavenumber, it was unclear whether the

dominant band in the activated samples was due to formation of an alkali 

aluminosilicate product phase, or from modification of the illite. Given that the XRD 

patterns of the activated patterns did not show a significant geopolymer hump or 

crystalline alkali aluminosilicate reflections, and retained a significant illite reflection, the 
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latter explanation was preferred. Similar to the activated montmorillonite samples’ 

spectra, CO3
2- bands at 1436 and 880 cm-1 emerged in all activated samples (Barbosa 

et al., 2000). These corroborated the presence of carbonates, as shown in the XRD 

patterns (Figure 5-4) and the peaks attributed to CO2 loss in the dTG spectra (Figure 

5-7b). Although carbonate bands have been shown to be an associated product of

geopolymer formation from the atmospheric carbonation of unconsumed NaOH in the 

system (Barbosa et al., 2000), the evidence from the activated illite samples’ spectra 

agreed with the preceding sections’ conclusions that no significant amount of alkali 

aluminosilicate product phase was formed. 
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Figure 5-11: FTIR spectra of a) montmorillonite and b) illite precursors and activated samples. 
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5.3.6 Macroscopic behaviour 

Photos taken after demoulding showed differences in curing behaviour between 

samples (Figure 5-12). In the activated montmorillonite series, samples in the Na:Al = 

0.75 – 1 range exhibited angled shrinkage cracks and were noticeably darker in 

complexion than the others in the series. In the activated illite series, there was a 

significant trend in expansion as Na:Al increased. ILL-0.75Na:Al expanded beyond the 

top of the mould by >5 mm, ILL-0.5Na:Al expanded by ≤1 mm, and ≤2 mm shrinkage 

was observed for ILL-0.25Na:Al. 

Figure 5-12: Photos of the cured samples of a) montmorillonite series and b) illite series. 
Samples were cured in 18 mm diameter, 36 mm height cylindrical moulds. 
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5.4 Discussion 

Having characterised the product phases formed, it is necessary to understand how the 

differences in the clay minerals resulted in these different behaviours, and the effect of 

Na:Al molar ratio on the nature and quantity of product phase formed. Given the 

intended application of construction materials, it is also desirable to understand the 

relationships between micro- and macro-structures. 

5.4.1 Transformations of the precursor clay minerals 

Both systems require a qualitative approach to phase analysis as they are incompatible 

with quantitative methods (Marsh et al., 2018), due to the overlap of signals from the 

precursor and product phases. In addition, the amorphous nature of geopolymer 

phases makes quantifying them, particularly using XRD, difficult.  

In the montmorillonite series, a geopolymer phase was clearly formed when Na:Al ≥ 1. 

The activation behaviour was found to be similar to that of an untreated Bentonite (see 

Appendix for further experimentation). For the spectral measurements, especially dTG 

(Figure 5-7b) and 29Si-MAS-NMR (Figure 5-9b), there was a progressive emergence of 

the characteristic signals as Na:Al increased. As for the exact nature of the geopolymer 

phase formed, it seems likely to have been either N-A-S-H or (N,C)-A-S-H. The latter is 

a N-A-S-H gel with partial substitution of Ca for Na (Garcia-Lodeiro et al., 2015). The 

precursor contained a minor amount of calcium (0.5wt% CaO) (Table 5-1). The 

measured d-value of the montmorillonite suggested that some of this calcium was 

present as interlayer cations, and hence had potential to be a mobile species that could 

have been involved in the activation process. The formation of a C-A-S-H phase in 

large quantities was unlikely, as the amount of calcium in the system was insufficient 

for this. The CaO:SiO2:Al2O3 normalised ratio of the precursor was 0.5% : 84.7% : 

14.8%. This is much less than the minimum CaO content of 35% for a C-A-S-H phase, 

but well within the range for (N,C)-A-S-H (Garcia-Lodeiro et al., 2011).  

It has been shown that N-A-S-H and C-A-S-H phases can form together in an 

activating solution of < 7.5 M (Yip et al., 2005). It is therefore feasible that for samples 

with Na:Al ≤ 1 (i.e. those with [NaOH] < 7.5 M), a trace amount of C-A-S-H formed in 

addition to a majority of N-A-S-H. However, this is very difficult to verify, due to the 

combined effect of the much smaller amount of total product phase formed and the 

similarity of their respective signals for several of the characterisation methods used. 

For the samples with Na:Al ≥ 1.25 (i.e. [NaOH] > 7.5 M), a single (N,C)-A-S-H phase is 

the most likely product. Given that there are no considerable differences in 

microstructure between (N,C)-A-S-H and pure N-A-S-H (García-Lodeiro et al., 2010), 

this subtle phase difference is unlikely to be deleterious in a structural application. 
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In the illite series, there were clearly significant physical changes in both 

macrostructure (Figure 5-12) and microstructure (Figure 5-6). However, there was little 

chemical evidence to show transformation of the illite into a product phase for any of 

the samples in the series, only a small amount of hydrosodalite formed from the 

kaolinite impurity as well as sodium carbonates. It is therefore concluded that the alkali 

activation of illite resulted in some kind of structural breakdown. This process could be 

the alkaline analogy of either: acid activation, in which a three-dimensional, cross-

linked structure of amorphous, porous silica is formed (Komadel, 1999; Komadel and 

Madejová, 2013); or, thermal dehydroxylation, which in kaolinite Al coordination is 

reduced from 6 to 5 and 4 (Heller-Kallai, 2013; Massiot et al., 1995). This interpretation 

would be consistent with some of the observed changes: SEM images (Figure 5-6) and 

the adsorbed water peak in the dTG spectrum (Figure 5-8) indicated a significant 

increase in porosity.  

It is clear from Table 5-3 that the systems in both series changed upon activation. 

However, the nature of a geopolymer phase, with its amorphous atomic structure, 

variable composition and variable microstructure, means that it is difficult to 

conclusively prove that a geopolymer phase has formed using a single characterisation 

technique. Using a range of advanced corroboratory techniques, the evidence in this 

study points towards geopolymer formation in the montmorillonite series, and structural 

alteration of illite with increasing Na:Al ratio.  

Table 5-3: A summary of the strength of evidence for the formation of a geopolymer phase for 
montmorillonite and illite systems. 

Characterisation method Montmorillonite series Illite series 

XRD Indicative Undetectable 

SEM Indicative Undetectable 

TGA Indicative Undetectable 
27Al-MAS-NMR Indicative Undetectable 
29Si-MAS-NMR quantitative Undetectable 

FTIR Indicative Undetectable 

5.4.2 Differences between clay minerals in interlayer cation 

and dissolution behaviour 

Clays in highly alkaline solutions can undergo interlayer cation exchange and/or 

dissolution. To develop a fuller understanding of differences in behaviour between the 

two clays, both phenomena will be considered.  

With regard to interlayer cation exchange, the mechanism for the decrease in d-value 

of the montmorillonite during activation is not clear. The synthesis conditions used, 

particularly the low liquid:solid ratio, mean that it is unlikely that Na+ exchange took 
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place to a large extent in the montmorillonite. It is also unlikely that exchange of other 

cations is responsible for the decrease in d-value. Elucidation of the exact mechanism 

of this phenomenon is beyond the scope of this study, further results and discussion 

are included in the Appendix.  

With regard to the differing extents of reaction between the two precursors, it could be 

that the greater total effective surface area of montmorillonite helped to enable much 

greater dissolution than in the illite. As mentioned earlier, the acid wash pre-treatment 

could also have increased the surface area for the montmorillonite. Changes in the 

extent of dissolution through increased surface area alone are unlikely to explain the 

differences between the product phases. However, the substitution of Al for divalent 

cations during this process will have altered the Si:Al molar ratio of the clay mineral 

from its starting state. The extent of this Al removal depends on the acid strength and 

duration of the pre-treatment process (Komadel and Madejová, 2013). 

In contrast to cation exchange, alkaline dissolution – especially at pH > 13 – is 

generally less well understood. Although a comparison of the precursors’ dissolution 

behaviour is beyond the scope of this study, it needs brief consideration given its 

influence as the first reaction step in the geopolymerisation process (Duxson et al., 

2007a; Weng and Sagoe-Crentsil, 2007). Previous studies on the dissolution of 

montmorillonite (Bauer and Berger, 1998) and illite (Xu and Van Deventer, 2000) 

cannot be directly applied to interpret the reactions in this system because no studies 

have yet made a direct comparison of these two minerals under the same conditions, 

and in particular the low water contents used in this study. In addition, the solutions 

used here (pH 14 – 15) are significantly stronger than those typically used in 

dissolution studies (pH 11 – 13) (Köhler et al., 2003). Although a direct comparative 

study has not been done, Köhler et al., (2003) noted that alkaline dissolution rates are 

similar for many clay and micaceous minerals. From a mechanistic perspective of 

alkaline dissolution, muscovite and montmorillonite dissolve almost solely at particle 

edges, with negligible dissolution on the basal planes (Kuwahara, 2008; Yokoyama et 

al., 2005). As described in section 5.3.1, there were significant differences in 

consumption of the montmorillonite, illite and muscovite phases in these systems, and 

also compared to the kaolinite phase in the analogous kaolinitic system (Marsh et al., 

2018). This could be primarily due to the larger quantities of clay phases in the 

precursors, compared to muscovite. It seems likely that the difference between the 

extents of dissolution is also partly attributable to differences in total edge surface area 

(ESA) of each mineral in the system. 
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5.4.3 Influence of Na:Al ratio 

Na:Al ratio is the primary user-controlled variable in alkali activated soil systems, so it is 

important to understand its effects on the nature and quantity of products or 

transformed phases. 

A geopolymer N-A-S-H or (N,C)-A-S-H phase was formed for samples in the activated 

montmorillonite series for Na:Al ≥ 1.25, and likely at lower values too. Whilst the nature 

of a geopolymer phase does not lend itself to quantitative phase analysis, there is 

qualitative evidence to suggest that the amount of geopolymer phase formed increased 

progressively with Na:Al. This molar ratio also seems to influence the nature, as well as 

quantity of the geopolymer phase formed. The observed decrease in the Si:Al ratio of 

the geopolymer phase, as described in Sections 5.3.4 and 5.3.5, is inferred to be 

caused by a decrease in the Si:Al ratio of the pore solution (Buchwald et al., 2011). 

Although the Si:Al ratio of the geopolymer product is altered from the precursor, the 

total mix Si:Al ratio remains unchanged – the change in the geopolymer product phase 

is a function of the different dissolution rate for the Al and Si. The initial preference of 

silica dissolution is attributed to the increased porosity and disorder in the tetrahedral 

silica sheet (Komadel, 2003; Shinoda, 1995), which is expected to increase dissolution 

rate. This would likely have increased the supply of Si from the basal planes, which is 

negligible for ordered sheet silicates (Kuwahara, 2008). Whilst it is a subtle change in 

this instance, the ability of the Na:Al ratio to change the Si:Al molar ratio of the 

geopolymer formed is of fundamental interest due to the influence of Si:Al on the 

mechanical properties of geopolymers (Duxson et al., 2005b).   

For the illite series, increase in the Na:Al molar ratio possibly resulted in progressive 

decreases in the illite clay mineral signal intensity in the 29Si MAS-NMR spectra (Figure 

5-10b), and to a lesser extent in the XRD pattern (Figure 5-4). This suggests that more 

illite was altered as Na:Al increased. The most dramatic progressive change was in 

macroscopic behaviour, with increasing degrees of expansion during curing as Na:Al 

increased (Figure 5-12). Shrinkage was observed at Na:Al = 0.25, some expansion for 

Na:Al = 0.5, and extreme expansion for Na:Al = 0.75. This suggests that the nature of 

the alteration was more extreme at higher Na:Al values, in addition to simply more of 

the illite being altered. Unlike in the montmorillonite series, where increase in Na:Al 

increased the amount of geopolymer phase formed, in the illite the increase in Na:Al 

changed both the nature of the transformation product as well as possibly the amount 

of illite being transformed. 
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5.4.4 Linking macrostructural and microstructural changes 

Given the performance of construction materials depends on both micro- and macro-

structural performance and properties, it is important to determine any links between 

the two as observed in the SEM and photo images.  

Two montmorillonite samples Mont-0.75Na:Al and Mont-1Na:Al underwent angled 

shrinkage cracking during curing (Figure 5-12). Apart from Na:Al molar ratio, there 

were no compositional differences between these samples and the rest of the series, 

and the phenomenon was shown to be repeatable. The only remaining explanation is 

that during the curing process, the NaOH concentration in the pore fluid induced a 

flocculation effect amongst the unreacted montmorillonite particles, resulting in 

localised face-face alignment and hence shrinkage cracks around the outside of the 

sample.  

The ILL-0.75Na:Al sample expanded during the curing process, resulting in both 

macroscopic voids (Figure 5-12) and an altered microstructure (Figure 5-6) in the cured 

sample. One possible explanation is that a gas-generating reaction took place during 

curing. The oxidation of fine silica during alkali activation has been shown to produce a 

hydrogen gas, but the porosity generated by this mechanism is coarser than that 

observed here (Prud’homme et al., 2010). Trace iron oxide phases could play a role, 

which are likely present from both the EDX results and the colour change after heating 

to 1000°C discussed in Section 5.3.3. Another explanation is that the illite underwent 

an alkali-induced structural breakdown, as already described in Section 5.4.1.   
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5.5 Conclusions 

Montmorillonite and illite are both dioctahedral 2:1 clay minerals, but their alkali 

activation behaviour is very different. With the precursors and synthesis conditions 

used in this study, montmorillonite formed a N-A-S-H or (N,C)-A-S-H geopolymer as 

the major product phase, which increased in quantity but decreased in Si:Al ratio with 

increasing Na:Al molar ratio of the system. Illite increased in porosity upon alkali 

activation with Na:Al ≥ 0.5, but without forming a new product phase from the activation 

of the illite clay mineral itself. Both series displayed deleterious macroscopic changes, 

including both shrinkage and expansion, which cannot be entirely explained through 

the observed microstructural phenomena. 

The prospect of making geopolymer-stabilised soil materials without calcination has 

both energy and processing benefits. However, even using a range of characterisation 

techniques it is extremely difficult to quantify the extent of phase transformations in 

these more complex aluminosilicate systems. Within the Na:Al ranges compatible with 

extrusion processing, the activation behaviour of uncalcined illite suggests illite-rich 

soils are not suitable for earth block construction, whereas montmorillonite-rich soils 

may be more promising. It remains to be seen whether using higher Si content or 

calcining the clays can produce a sufficient quantity of geopolymer to use for low 

impact earth masonry materials.  
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Appendix 

In the main set of experiments, an acid-washed K10 montmorillonite was used as one 

of the clay precursors in alkali activation. As already described in the main text of the 

article, the acid-washing process is known to affect surface area and interlayer cation 

state. Additional experiments were undertaken to ensure that the reaction products 

were not affected by acid washing the K10 montmorillonite, and therefore that the 

comparison between the alkali activation behaviour of the K10 montmorillonite and the 

untreated illite was valid.  

In this supplementary set of experiments, alkali activation was carried out on an 

untreated bentonite, containing montmorillonite as the major mineral phase. The 

activation behaviour was compared with that of the K10 montmorillonite. Additional 

experiments involving cation saturation were also carried out on the K10 

montmorillonite to determine whether changes in d-value in the alkali-activated 

samples were due to interlayer cation exchange or other factors.  
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5.6 Introduction 

In the main set of experiments, an acid-washed K10 montmorillonite was used as one 

of the clay precursors in alkali activation. As already described in the main text of the 

article, the acid-washing process is known to affect surface area and interlayer cation 

state. Additional experiments were undertaken to ensure that the reaction products 

were not affected by acid washing the K10 montmorillonite, and therefore that the 

comparison between the alkali activation behaviour of the K10 montmorillonite and the 

untreated illite was valid.  

In this supplementary set of experiments, alkali activation was carried out on an 

untreated bentonite, containing montmorillonite as the major mineral phase. The 

activation behaviour was compared with that of the K10 montmorillonite. Additional 

experiments involving cation saturation were also carried out on the K10 

montmorillonite to determine whether changes in d-value in the alkali-activated 

samples were due to interlayer cation exchange or other factors.  
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5.7 Experimental 

5.7.1 Materials 

The untreated montmorillonite-containing precursor used was a Fluka/Honeywell 

Bentonite (product no. 285234). BET surface area was measured as 24.9 m2g-1, 

however, this does not include the interlayer interface areas, which are accessible 

when the clay undergoes swelling in moisture (Christidis, 2011). Oxide composition 

was measured by EDX and is given in Table 5-4. For the cation saturation, a 1.1 M 

aqueous solution of sodium chloride was prepared using reagent grade sodium 

chloride (Sigma-Aldrich, product no. 31434) and distilled water. For the standard 

synthesis route, a 1.1 M aqueous solution of sodium chloride was prepared using 

sodium chloride flakes (Sigma-Aldrich, product no. 57653).  

Table 5-4: Oxide composition of Bentonite (Fluka/Honeywell 285234), measured by EDX. 

Oxide Al2O3 CaO Fe2O3 K2O MgO Na2O SO3 SiO2 Total 

Bentonite 
%wt. 

(std error) 

19.78 
(0.09) 

1.70 
(0.03) 

6.95 
(0.28) 

0.47 
(0.02) 

2.12 
(0.03) 

1.81 
(0.02) 

0.55 
(0.03) 

66.63 
(0.2) 

100 

5.7.2 Experimental procedures 

Two main routes were used to make samples: the standard synthesis route as 

described in the main article, and cation saturation. A summary of the main variables 

for the additional samples is given in Table 5-5.  

Table 5-5: Summary of main variables for additional samples, for 25 g of clay precursor. 

Sample name Precursor Method Solution 
Water : clay 
mass ratio 

Bent-1Na:Al Bentonite 
Standard 
synthesis 

NaOH (6.4 M) 0.6 

Bent-Na-exchange Bentonite Cation saturation NaCl (1.1 M) 10.0 

Mont-NaCl 
K10 

Montmorillonite 
Standard 
synthesis 

NaCl (1.1 M) 0.8 

Mont-1Na:Al 
K10 

Montmorillonite 
Standard 
synthesis 

NaOH (6.4 M) 0.6 

Mont-Na-exchange 
K10 

Montmorillonite 
Cation saturation NaCl (1.1 M) 10.0 

Mont-control-
exchange 

K10 
Montmorillonite 

Cation saturation Water 10.0 
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Alkali activation of the bentonite for sample Bent-1Na:Al was performed in the same 

manner as for the Na:Al = 1 sample of K10 montmorillonite. 25 g of clay was mixed 

with sufficient 6.4 M NaOH solution to achieve a wet mix with workability at the plastic 

limit. The standard synthesis procedure was also adapted for the sample Mont-NaCl by 

using a 1.1 M NaCl solution with K10 Montmorillonite.  

Cation saturation was performed to provide an excess of Na+ in conditions similar to 

those in the synthesis process, but without alkalinity. 25 g of clay was dispersed in 250 

ml of 1.1 M aqueous sodium chloride solution in a round-bottomed flask, mixed by 

magnetic stirrer and heated under reflux to 80°C using an oil bath. A concentration of 

1.1 M was chosen, as this was the lowest concentration of NaOH solution used in the 

series of activation of K10 montmorillonite in the main experiments. The saturation 

process was run for 6 hours, before the flask was removed and placed in an ice bath to 

cool. The K10 montmorillonite sample, Mont-Na-exchange, was dried by filtration 

through a Buchner funnel using a Fisher Qualitative filter paper, and then left to air dry. 

Due to its water adsorption and swelling properties, a Rotovap R-114 with acetone was 

used to remove excess water from the bentonite sample, Bent-Na-exchange, at 40°C, 

and then left to air dry. Control saturation for sample Mont-control-exchange was also 

performed using the same process, but with distilled water instead of a sodium chloride 

solution. 

pH testing was performed to confirm that the high level of NaOH added was sufficient 

to overcome any residual acidity from the acid washing. For both K10 Montmorillonite 

and Bentonite, 2.5 g of clay was added to 25 ml of 1M NaOH solution in a round-

bottomed flask, mixed by magnetic stirrer and heated under reflux to 80°C using an oil 

bath. The pH was measured before addition of clay, and then 1 hour and 24 hours after 

the addition of the clay.  

5.7.3 Characterisation methods 

XRD was used as already described, to measure the °2θ value of the 001 

montmorillonite reflection in each sample, and then calculate the d-value in Å. The 001 

basal reflection was analysed in order to elucidate the extent of interlayer cation 

exchange in alkali activation of montmorillonite, and determine the influence of 

interlayer cation exchange on plasticity behaviour. Patterns were corrected for sample 

height difference by calibration to the theoretical position of the quartz 101 reflection at 

26.7 °2θ. SEM, BET, FTIR, TGA and plasticity measurements were also used as 

already described. 
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5.8 Results 

5.8.1 Interlayer cation exchange behaviour 

Each treatment of the K10 montmorillonite precursor resulted in different shifts in the 

001 reflection peak centre of the montmorillonite phase (Figure 5-13 and Table 5-6). 

Whilst the 001 reflection in the precursor had a peak centre at 6.1 °2θ (calculated from 

the Le Bail refinement of the pattern) corresponding to a d-value of 14.4 Å, the control-

saturated sample had a more well-defined reflection at 6.0 °2θ, and d-value of 14.7 Å. 

Na-saturation decreased the apparent d-value to 13.1 Å, whilst alkali activation resulted 

in a larger decrease to 11.6 Å.  

 

Figure 5-13: XRD patterns showing the position of the 001 reflection for the K10 montmorillonite 
precursor and after different processing routes. 
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Table 5-6: °2θ positions of the 001 montmorillonite reflection centre for the K10 montmorillonite 

precursor and after different processing. 

Sample 
001 reflection centre 

(°2θ) 
d-value

(Å)

Mont-NaCl 6.1 14.4 

Mont-1Na:Al 7.6 11.6 

Mont-Na-sat 6.7 13.1 

Mont-control-sat 6.0 14.7 

Mont 6.1 14.4 

Plastic limit measurements for the K10 montmorillonite precursor, Na-saturated sample 

and activated sample are provided in Figure 5-14. After Na-saturation, there was a 

decrease in plastic limit, and after alkali activation there was a larger decrease, 

possibly because of some of the clay mineral being dissolved by the alkali activator. 

This trend was observed for both K10 montmorillonite and bentonite, although the 

decreases were greater for Bentonite.  

Figure 5-14: Plastic limit values for the Bentonite and K10 montmorillonite precursors, Na-
saturated samples and alkali-activated samples. 
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5.8.2 Alkali activation behaviour of Bentonite and K10 

Montmorillonite 

Figure 5-15 gives XRD patterns for the precursors and activated samples of both K10 

montmorillonite and bentonite. Both precursors contained quartz and muscovite as 

minor phases. K10 montmorillonite also contained microcline; bentonite also contained 

cristobalite and an albite. In the pH testing, the addition of K10 montmorillonite to 1 M 

NaOH solution resulted in a small decrease in pH within 1 hour, whereas there was no 

change for the addition of bentonite. The 0.3 reduction in pH was not anticipated to 

have a major effect on reaction products for the K10 montmorillonite. 

The 001 reflection of montmorillonite was a lot broader and weaker in the K10 

montmorillonite than the bentonite, which suggested greater disorder resulting from the 

acid treatment. In the activated samples, no major new crystalline phases were formed 

from either clay. There was also some evidence of a background shift in the XRD 

pattern in the 20 – 35 °2θ region in both activated clays, which is associated with 

geopolymer formation (Duxson et al., 2007). 

 

Figure 5-15: XRD patterns of precursors and alkali-activated samples of K10 montmorillonite 
and bentonite. 
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SEM images of the control and activated samples are shown in Figure 5-16. Both 

precursors had a plate-like morphology. After activation, there was a clear change in 

morphology in both clays. A granular structure was formed in bentonite, whilst a more 

continuous structure was formed in K10 montmorillonite.  

 

Figure 5-16: SEM images of control and activated samples of K10 montmorillonite and 
bentonite. 
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TG and dTG spectra for the precursors and activated samples of both clays are given 

in Figure 5-17. MS data is presented at the end of this Appendix. In the precursors of 

both clays, peak mass loss from surface adsorbed moisture was at around 100°C. The 

montmorillonite dehydroxylation peak in bentonite was well-defined at ~680°C, 

whereas in K10 montmorillonite it was much broader and centred at ~580°C. This 

temperature difference suggested that the montmorillonite phase in the bentonite had 

mainly cis-vacant octahedral sheets, whereas in the K10 montmorillonite it had mainly 

trans-vacant octahedral sheets (Drits et al., 1995). The broader peak in the K10 

montmorillonite would be expected from the amorphisation resulting from the acid 

activation process, yielding a range of activation energies for dehydroxylation.  

There were no other large peaks in the dTG pattern, indicating that there was a small 

proportion of impurity phases in both precursors. The mass loss in the region of 200 – 

1000°C was 4.5% for K10 montmorillonite and 4.9% for bentonite. These values are 

within, or close to, the range of theoretical dehydroxylation mass loss for 

montmorillonites of 4.7 – 4.9wt% (Christidis, 2011). This suggested that montmorillonite 

was the majority phase in both precursors.  

After activation, both displayed similar changes in the profile of the dTG spectrum. The 

montmorillonite peak was reduced in intensity, whilst a series of broad peaks emerged 

in the range 100 – 500°C.   
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Figure 5-17: TG and dTG spectra of precursors and activated samples of K10 montmorillonite 
and bentonite. 
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The FTIR spectra of precursors and activated samples are given in Figure 5-18. The 

centre of the Si-O-T band was at 1031 cm-1 for the K10 montmorillonite and 999 cm-1 

for the bentonite. The profile of the spectrum was broader and less well-resolved in the 

K10 montmorillonite compared to the bentonite, which suggested greater disorder in 

the material. 

 

Figure 5-18: FTIR spectra of precursors and activated samples of K10 montmorillonite and 
bentonite. 

In the activated samples, the centre of the Si-O-T band changed to 1003 cm-1 for the 

K10 montmorillonite and 999 cm-1 for the bentonite. Carbonate bands formed at ~1450 

cm-1, and the overall profile of the spectrum in the 1200 – 800 cm-1 region was similar. 

Full tables of band attributions are included here for the activated montmorillonite and 

illite series as described in the main article (Table 5-7, Table 5-8). 
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Table 5-7: Indexed absorption bands in montmorillonite series’ FTIR spectra. Wavenumbers 
given are from the montmorillonite precursor’s spectrum for montmorillonite phase bands, and 

from the Mont-1.5Na:Al spectrum for geopolymer phase bands. ┴ = stretching vibration, ║= 
bending vibration. Rounded to nearest whole wavenumber. 

Band 
Wavenumber 

(cm-1) 
Intensity Phase Reference 

Si-O-Al 695 vw Montmorillonite 
(Van der Marel and Beutelspacher, 

1976) 

Si-O-Al 696 vw Montmorillonite 
(Van der Marel and Beutelspacher, 

1976) 

Si-O 779 w Geopolymer (Barbosa et al., 2000) 

Si-O (┴) 799 w 
Quartz / 

Montmorillonite 
(Monteiro et al., 2014; Van der Marel 

and Beutelspacher, 1976) 

C-O 880 m / sh Carbonate (Barbosa et al., 2000) 

Al-OH-Al 
(║) 

920 m / sh Montmorillonite (Russell and Fraser, 1994) 

Si-O-T 
(┴) 

995 vs Geopolymer 
(Lee and van Deventer, 2003; Rees et 

al., 2007) 

Si-O-Si 
(┴) 

1031 vs Montmorillonite 
(Van der Marel and Beutelspacher, 

1976) 

C-O 1441 m Carbonate (Barbosa et al., 2000) 

O-H (║) 1629 vw Montmorillonite 
(Farmer, 1974; Russell and Fraser, 

1994; Van der Marel and 
Beutelspacher, 1976) 

O-H (║) 1644 w Geopolymer (Barbosa et al., 2000) 

Table 5-8: Indexed absorption bands in the illite series’ FTIR spectra. Wavenumbers given are 
from the illite precursor’s spectrum for illite phase bands, and from the ILL-0.75Na:Al spectrum 

for altered illite bands. ┴ = stretching vibration, ║= bending vibration. Rounded to nearest whole 
wavenumber. 

Band 
Wavenumber 

(cm-1) 
Intensity Phase Reference 

Si-O-Al 695 vw Illite (Van der Marel and Beutelspacher, 1976) 

Si-O (┴) 778 w Quartz (Van der Marel and Beutelspacher, 1976) 

Si-O (┴) 798 w 
Quartz / 

Illite 
(Van der Marel and Beutelspacher, 1976) 

Si-O-Al 827 w Illite (Russell and Fraser, 1994) 

C-O 880 m Carbonate (Barbosa et al., 2000) 

Al--O-H 901 m / sh Illite (Van der Marel and Beutelspacher, 1976) 

Al--O-H 912 m / sh Illite (Van der Marel and Beutelspacher, 1976) 

Si-O-Al 987 vs Illite 
(Russell and Fraser, 1994; Van der Marel 

and Beutelspacher, 1976) 

Si-O-Al 999 vs 
Altered 

illite 
(Russell and Fraser, 1994; Van der Marel 

and Beutelspacher, 1976) 

Si-O-Si 
(┴) 

1080 m / sh Illite 
(Russell and Fraser, 1994; Van der Marel 

and Beutelspacher, 1976) 

Si-O-Si 
(┴) 

1089 m / sh Illite 
(Russell and Fraser, 1994; Van der Marel 

and Beutelspacher, 1976) 

Si-O 1163 w / sh Illite 
(Russell and Fraser, 1994; Van der Marel 

and Beutelspacher, 1976) 

C-O 1436 s Carbonate (Barbosa et al., 2000) 

O-H (║) 1652 vw Illite (Van der Marel and Beutelspacher, 1976) 
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5.9 Discussion 

5.9.1 Changes in basal spacing in K10 montmorillonite 

The d-value measured from the position of the 001 reflection in PXRD is the sum of the 

layer thickness and the interlayer distance. The interlayer distance is determined by the 

interlayer cations and the extent of interlayer hydration. The interlayer hydration is in 

turn influenced by layer charge, interlayer cation species, relative humidity and any 

Brownian swelling between particles (Brigatti et al., 2013).  

The K10 montmorillonite precursor underwent cation exchange for Na+ when an 

excess of Na+ is supplied in solution. This was shown by the decrease in d-value in the 

Na-saturated sample relative to the control-saturated sample. The measured values for 

the control-saturated (14.7 Å) and Na-saturated (13.1 Å) samples are similar to the 

values measured by Ferrage et al. for a Ca-saturated montmorillonite (15.02 Å) and a 

Na-saturated montmorillonite (12.45 Å) respectively, at 40% humidity (Ferrage et al., 

2005).  

The profile of the 001 reflection in the precursor was much broader compared to 

samples in which it has subsequently been wetted and dried. This could be due to 

rehydration-dehydration effects. It is possible that the precursor was flash-dried, which 

may give different drying behaviour to the typical processing route used in this study, 

which is wetting and then drying in an 80°C oven or in ambient conditions. 

There was a greater decrease in d-value in the alkali-activated samples than in the Na-

saturated sample. This shift was the same for all the alkali-activated K10 

montmorillonite samples. Comparing the samples prepared with NaCl solutions, Mont-

Na-exchange and Mont-NaCl, there was a large d-value decrease for the former but 

not the latter. This shows that cation exchange of Na in K10 montmorillonite occurs 

when liquid:solid ratio is high. When the liquid:solid ratio is low, only limited Na 

exchange appears to occur. Comparing the samples prepared at low liquid:solid ratio 

using the standard synthesis method, Mont-1Na:Al and Mont-NaCl, there was a large 

d-value decrease for the former but only a small decrease in the latter. As already

stated, the lack of 001 reflection shift in the Mont-NaCl sample suggests that Na-

exchange does not occur to a large extent under the standard synthesis conditions. 

However, there was still a large 001 reflection shift in the Mont-1Na:Al sample. It would 

therefore seem that the large decrease in d-spacing for the alkali-activated K10 

montmorillonite samples is caused by something other than only Na-exchange. 

Determination of the exact mechanism of this phenomenon is beyond the scope of this 

study, but some suggestions are briefly described here.  
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Ca, K and Mg were present in minor quantities in the K10 montmorillonite precursor. 

Exchange for Ca and Mg would be consistent with the d-value of the precursor, so 

even if they did participate in exchange, this would not explain the shift. Interlayer 

saturation with K would be expected to provide a decrease of similar magnitude, but it 

is believed that low quantity of K present is from the limited muscovite present rather 

than in in the montmorillonite interlayer. The muscovite is not believed to have 

undergone a large extent of dissolution during the synthesis process.  

The interlayer spacing of the alkali-activated samples agrees well with the 0% r.h. 

values of Ca- and Mg-smectites, which have a similar d-value to the precursor (Ferrage 

et al., 2005). Negligible change in d-spacing was observed after storage in these 

conditions up to 12 months. The observed behaviour seems to be the opposite of a 

pillaring synthesis, in that the interlayer spacing is permanently reduced – possibly by 

permanent dehydration. The formation of geopolymer may have ‘sealed’ the 

montmorillonite in its dehydrated state during curing. Given the small extent of 

transformation for the lower values of Na:Al, this explanation seems unsatisfactory. 

However, given the residual acidity shown by the pH testing, this phenomenon could 

be associated with a neutralisation reaction occurring between layers.   

There is some similarity between the alkali activation process used here and the 

procedures used in making pillared clays – both use NaOH to produce Al oligomers. 

However, in NaOH solutions the dominant Al oligomer is [Al(OH)4]− (Weng and Sagoe-

Crentsil, 2007; Weng et al., 2005), and does not include the anions required to obtain 

typical pillaring species (Vicente et al., 2013).  

Unreacted NaOH in the activated samples could act as a local desiccant, dehydrating 

the montmorillonite layers. However, given the storage conditions, any residual NaOH 

may have already reached equilibrium hydration, negating any desiccating potential.  

The decrease in plastic limit observed for the Na-saturated K10 Montmorillonite sample 

agreed with previous experimental results (Bain, 1971). However, when the precursor 

was mixed with sodium hydroxide solution, the reduction in plastic limit was unlikely to 

be due to Na-exchange at these low liquid:solid ratios, as previously shown. The even 

lower plastic limit measured for this is therefore likely to be due to the partial dissolution 

of particles. Partial dissolution would decrease the solid:liquid mass ratio, therefore 

acting as a plasticizing process.  
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5.9.2 Comparison of the K10 montmorillonite and Bentonite 

precursors 

From the characterisation carried out, it was shown that both precursors contain 

montmorillonite clay mineral as the majority phase.  

The biggest difference between them is in stacking and swelling behaviour. This was 

evident visually in the large amount of swelling of the bentonite clay during the control 

saturation process, which was not observed for the K10 montmorillonite. This 

difference is likely to arise because the K10 montmorillonite’s ability to form stacks, and 

therefore to swell, had been disrupted by the effect of the acid washing treatment. This 

interpretation is supported by the measurements of the BET nitrogen adsorption. The 

stacking behaviour of the bentonite meant that under vacuum the interlayer spaces in 

stacks collapsed, meaning a much smaller surface area was measured than would be 

available in an excess of water. For the K10 montmorillonite, the lack of stacking 

behaviour meant that all available surface area was accessible to N2 molecules under 

vacuum. The difference in dehydroxylation temperatures shows a difference in 

structure within the montmorillonite’s octahedral sheets, but this is not believed to be a 

significant factor in the dissolution process.  

5.9.3 Activation behaviour of the K10 montmorillonite and 

Bentonite precursors 

After activation, in both clays there was an emergence of a new morphology in the 

microstructure, an absence of strong crystalline peaks in XRD, as well as a 

characteristic background shift. There was also a notable reduction in friability. The 

collective evidence therefore suggests that a geopolymer phase was formed in both 

activated clays.  
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5.10 Conclusions 

It is unlikely that a large extent of Na-interlayer exchange of the K10 montmorillonite 

occurred during the alkali-activation synthesis route, due to the low liquid:solid ratio. 

The decrease in d-value of the montmorillonite phase during synthesis is therefore 

thought to be caused by a different mechanism, which has not yet been confirmed.  

The two montmorillonite-containing precursors had several differences, in particular 

their degree of crystalline disorder, and stacking and swelling behaviour. In terms of 

alkali activation behaviour – the focus of investigation of the main article – behaviour is 

not identical but is similar for both precursors. The characterisation evidence suggests 

that a geopolymer was formed in both activated samples. This therefore shows that 

despite the acid activation process, the reaction products from alkali activation of K10 

montmorillonite is similar to that of the untreated bentonite. Therefore, it is valid for a 

comparison to be made between the activation of K10 montmorillonite and untreated 

illite in the main article.  
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5.11 Mass spectrometry data 

The mass spectrometry (MS) data that was collected alongside the thermogravimetric 

(TG) data is presented here for the following sample series from both the main article 

and Appendix: 

 Mont and activated Mont (Figure 5-19)

 ILL and activated ILL (Figure 5-20)

 Bent and activated Bent (Figure 5-21)
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Figure 5-19: MS and dTG data for Mont and activated Mont samples. 
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Figure 5-20: MS and dTG data for ILL and activated ILL samples. 

 

Figure 5-21: MS and dTG data for Bent and Bent-1Na:Al 
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Chapter 6 - Alkali activation of 
clay mixtures 
In this chapter, the alkali activation behaviour of binary and ternary mixtures of 

kaolinite, montmorillonite and illite, the most common clay minerals in soils, is 

investigated. The rule of mixtures approach is used to build on the understanding 

developed in Chapters 4 and 5 for the alkali activation of the three clay minerals as 

individuals. 

This chapter has been revised following suggestions from the examiners, so the article 

presented here has minor differences compared to the article in review.    
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Phase formation behaviour in alkali activation of 

clay mixtures 

Abstract 

Alkali-activated soils have potential as precursors for low carbon, low cost construction 

materials. There is a lack of fundamental understanding around how soil composition 

influences alkali activation behaviour, especially for uncalcined soils. The types and 

relative amounts of clay minerals can vary greatly throughout real soils across the 

world. Since clays are typically the dominant reactive aluminosilicate constituent in 

soils, it is desirable to understand how the types and relative amounts of clay minerals 

influence reaction products in alkali activation. In this study, mixtures of kaolinite, 

montmorillonite and illite precursors were activated with sodium hydroxide solutions. By 

comparing with extrapolations of cross-characterisation from the behaviour of individual 

clays, it was shown that phase formation behaviour deviated from an ideal rule of 

mixtures model. Instead, there was a hierarchy between the clays in influencing 

reaction products: kaolinite and montmorillonite dominated illite. This study 

demonstrates that the viability of a given soil for alkali activation depends not only on 

the total amount of clay, but the types and relative amounts of clay minerals present. In 

order to unlock the potential of alkali-activated soils, more understanding is needed of 

the role of the different components in soil. 
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6.1 Introduction 

Alkali activated materials have become a promising candidate as low carbon 

construction materials (Davidovits, 2011; Provis, 2014).Their low curing temperature of 

typically 100 °C or less, and absence of carbon-releasing chemical changes during 

precursor preparation, gives them the potential for better environmental performance 

than Portland cement based materials (Heath et al., 2014; Khale and Chaudhary, 

2007). The principle of the alkali activation reaction is to transform an aluminosilicate 

precursor into an alkali aluminosilicate phase by the addition of an alkaline activating 

solution, mixing and curing (Duxson et al., 2007a). The exact alkali aluminosilicate 

phase produced in this reaction depends on several compositional and processing 

factors, most importantly, the Si:Al ratio of the dissolved precursor (Duxson et al., 

2007b; Weng and Sagoe-Crentsil, 2007). It is usually intended to form an amorphous 

gel phase, also known as a geopolymer, as this possesses good strength, durability 

and other desirable properties (Liew et al., 2016). It is also possible to form crystalline 

products, typically members of the zeolite family (Criado et al., 2007). Crystalline 

products are more likely to form at lower Si:Al ratios while geopolymer phases are 

more likely to form at higher Si:Al ratios (Buchwald et al., 2011; Duxson et al., 2007b), 

as discussed later.  

Within this emerging category of materials, alkali-activated soils have significant 

potential because subsoil is a widely available resource, available at very low 

environmental cost (Diop and Grutzeck, 2008). In the application of soil stabilisation for 

construction blocks, the alkali aluminosilicate product fulfils the function of the 

stabilising phase (Murmu and Patel, 2018). By being stronger and less expandable 

than the clay mineral precursors it replaces, it improves the strength and durability of 

the soil. However, a significant barrier to adoption is a lack of understanding of how soil 

composition influences the alkali activation reaction.  

Soils are composed of clay minerals, unreactive quartz, and other associated minerals 

typically in minor quantities (Dixon and Weed, 1989). The most common clay minerals 

in soils are kaolinite, montmorillonite and illite, with allophane and halloysite less 

common (Reeves et al., 2006). The dissolution of aluminosilicates in a concentrated 

alkaline solution determines the ultimate extent of alkali aluminosilicate phase 

formation (Xu and Van Deventer, 2000). Of the aluminosilicate phases in soils, clays 

are typically the most soluble component, more so than other common minerals such 

as quartz (Autef et al., 2012; Tchakoute et al., 2015) and muscovite (Zografou, 2015).  

Previous studies have investigated the effect of aluminosilicate precursor and 

activating solution composition on geopolymer formation (Pacheco-Torgal et al., 2008). 
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However, this is generally done using an aluminosilicate precursor of roughly fixed 

stoichiometric composition (usually metakaolin) and varying the chemical ratio of the 

liquor by adding additional soluble Si (Duxson et al., 2007b; Duxson et al., 2005). This  

is not the same as supplying silicates solely from mineral precursors, as such minerals’ 

behaviours are likely to differ based on dissolution rates (Bauer and Berger, 1998; Xu 

and Van Deventer, 2000) and particle size effects (Weng et al., 2005). Although it is 

well-established that clays are more reactive when calcined, the energy cost of this 

step gives a strong incentive to investigate the activation of un-calcined clays 

(MacKenzie, 2009).  

The alkali activation behaviour of individual clays kaolinite (Liew et al., 2016), 

montmorillonite (Belviso et al., 2017; Seiffarth et al., 2013) and illite (Belviso et al., 

2017; El Hafid and Hajjaji, 2015; Seiffarth et al., 2013; Sperberga et al., 2011) have 

previously been investigated. However, almost all previous studies on montmorillonite 

and illite have used their calcined state. Whilst kaolinite (Liew et al., 2016), real soils 

(Lemougna et al., 2014), and blends of uncalcined real soils and other materials such 

as metakaolin (Omar Sore et al., 2018) are popular for studies, there has been much 

less attention on the alkali activation of individual clays, and in particular, controlled 

mixtures of clays. Soils around the world contain clays in different amounts (Abe et al., 

2006; Nickovic et al., 2012), notwithstanding other minor minerals. Improving our 

fundamental understanding of how mixtures of clays react under alkali conditions is 

crucial to determining whether alkali activated soils can be widely used and reliable 

construction materials.  

Given the strong influence of processing conditions, including curing temperature 

(Hounsi et al., 2013; Muñiz-Villarreal et al., 2011), curing time (Diop and Grutzeck, 

2008), solid:liquid ratio (Alshaaer et al., 2002; Heah et al., 2012; Liew et al., 2012) and 

activating solution concentration (Hounsi et al., 2014), it is difficult to make 

comparisons between previous studies. A useful practical constraint on processing 

conditions is for the consistency of the wet mix to be approximately at the plastic limit, 

making it compatible with extrusion, an established brickmaking process (Maskell et al., 

2013). This study builds on previous experiments on the alkali activation of individual 

clays under conditions compatible with extrusion, for which the same processing 

constraints are used here (Marsh et al., 2018a; Marsh et al., 2018b). 

A small number of previous studies have used a systematic approach for 

understanding the alkali activation behaviour of clay mixtures. Richardson et al. (1986) 

showed that binary and ternary mixtures of kaolinite, montmorillonite and illite activated 

using aqueous NaOH solution produced reaction products of combinations of sodalite, 

cancrinite and nepheline. However, no mention of geopolymers or amorphous phases 
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was made, and since only XRD characterisation was used, this gives an incomplete 

picture of the activated systems. In addition, very short curing times (less than 30 

minutes) microwave curing was used, giving limited comparability with other systems. 

Buchwald et al. (2011) showed that for solutions of aluminium and silicon, geopolymer 

formation was favoured for systems with Si:Al > 1.5, with geopolymers and zeolites co-

existing in some systems. This is a valuable contribution to fundamental understanding, 

but there is still a gap to consider the effects of the mineralogy and composition of real 

aluminosilicate precursors. 

In this study, a Rule of Mixtures (RoM) approach was used to investigate how phase 

formation behaviour in alkali activation differed for mixtures of clays, compared to the 

activation of the constituent clays individually. The RoM approach has been used to 

evaluate a range of properties for material mixtures including elastic modulus (Marom 

et al., 1978) and glass transition temperature (Couchman, 1978), as well as to evaluate 

phase formation in material mixtures (Donald and Davies, 1978). Mixtures of the 

common clay minerals kaolinite, montmorillonite and illite were activated with NaOH 

solutions, in order to determine to their phase formation behaviour in comparison with 

the clays as individuals.  
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6.2 Experimental 

6.2.1 Materials 

Imerys Speswhite kaolin (mined from Cornwall, U.K.), K10 montmorillonite (Sigma-

Aldrich, product no. 69866-1KG) and Clay Minerals Society IMt-2 (Silver Hill) illite were 

used as the precursor clays. Chemical compositions were determined by energy 

dispersive X-rays (JEOL SEM6480LV with Oxford INCA X-Act SDD X-ray detector) at 

an accelerating voltage of 20 kV, a chamber pressure of between 10 – 30 Pa, a Si 

wafer as a standard, and measuring 4 scan areas per sample. The precursor powders 

were mounted on a sticky carbon tab on top of an aluminium stub, and were not 

coated. Standard errors in composition were calculated from the variation in values 

between the different area scans for each sample. Specific surface area was 

determined using the BET method (Brunauer et al., 1938) using a Micromeritics 3-Flex. 

The precursor powders (1 g of kaolinite, 0.2 g of K10 Montmorillonite, and 1 g of Illite) 

were degassed under vacuum conditions at 150°C for 14 h, before testing. 

The kaolinite (Kao), montmorillonite (Mont) and illite (ILL) precursor clays have 

previously been characterised (Marsh et al., 2018a; Marsh et al., 2018b), but will briefly 

be restated here. The XRD pattern of the kaolinite precursor gave kaolinite clay mineral 

(Powder Diffraction File (PDF)# 01-079-1570) as the major phase, with muscovite 

(PDF# 01-084-1304) and quartz (PDF# 00-046-1045) present as minor phases (Figure 

6-1), as expected from a Cornish mixed hydrothermal and residual deposit (Murray and

Keller, 1993). The XRD pattern of the montmorillonite precursor showed it contained 

montmorillonite clay mineral (PDF# 00-013-0135) as the major phase, along with 

muscovite, quartz and minor amounts of microcline (PDF# 00-019-0932) and kaolinite 

(Figure 6-1). The refined basal spacing of 14.4 Å suggested it was a Ca-

montmorillonite (Ferrage et al., 2005). The XRD pattern of the illite showed it contained 

illite clay mineral (PDF# 00-026-0911) as the major phase, with quartz, microcline and 

kaolinite present as minor phases (Gailhanou et al., 2007) (Figure 6-1). Previous 

studies on this source clay identified the illite clay mineral to be mostly of the 1M/1Md 

polytype (Haines and van der Pluijm, 2008).  
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Figure 6-1: XRD patterns of the clay precursors. 

The kaolinite precursor contained minor amounts of iron, potassium and magnesium 

(Table 6-1) and these were not considered to have a major effect on the reactions and 

products under the conditions in this study. BET specific surface area was 11.9 m2g-1. 

The montmorillonite precursor contained minor amounts of iron, potassium, 

magnesium, sodium, sulphur and titanium (Table 6-1). BET specific surface area was 

265.8 m2g-1. The illite precursor contained minor amounts of iron, potassium, 

magnesium and titanium (Table 6-1). BET specific surface area was 19.5 m2g-1. 
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The precursor clays were activated using sodium hydroxide pellets of >98% purity 

(Sigma-Aldrich, product no. 06203). 

Table 6-1: Chemical composition of clay precursors in oxide wt%, after LOI removed. 

Oxide (wt.%) Al2O3 CaO Fe2O3 K2O MgO Na2O SiO2 SO3 TiO2 Total 

Speswhite kaolin 
(std error) 

40.11 
(0.15) 

0.00 
0.95 

(0.06) 
2.06 

(0.09) 
0.04 

(0.04) 
0.00 

56.83 
(0.15) 

0.00 0.00 100 

K10 
Montmorillonite 

(std error) 

13.53 
(0.66) 

0.47 
(0.14) 

4.53 
(1.05) 

1.56 
(0.22) 

1.67 
(0.11) 

0.03 
(0.03) 

77.60 
(2.12) 

0.12 
(0.07) 

0.49 
(0.02) 

100 

Imt-2 illite 
(std error) 

20.80 
(0.34) 

0.00 
8.32 

(0.38) 
8.67 

(0.18) 
2.28 

(0.06) 
0.00 

59.14 
(0.26) 

0.00 
0.78 

(0.06) 
100 

 

6.2.2 Synthesis procedure 

Using the same procedure as used in a previous study (Marsh et al., 2018b), the 

masses of clays, water and NaOH for each sample (Table 6-2) were specified so that 

all samples had two characteristics. Firstly, all samples had the same Na:Al molar ratio 

(chosen to be 1), and secondly, the wet mix consistency of all samples was at the 

plastic limit. This was done by initially undertaking Atterberg plastic limit measurements 

(Wagner, 2013) for the clay minerals over a range of sodium hydroxide solutions. The 

exception to this condition is activated illite – due to its lower plastic limit, the maximum 

Na:Al ratio that could be achieved was 0.75 without exceeding the saturation limit of 

NaOH(aq.) at room temperature. The plastic limits of the clay mixtures were extrapolated 

from the plastic limit behaviour of the individual clays.  

Table 6-2: Compositions of the clay mixtures made in each series. Clay contents given in wt%. 

Series Sample 
Kao 

content 
(%mass) 

Mont 
content 
(%mass) 

ILL 
content 
(%mass) 

[NaOH] 
molarity 

NaOH solution : 
clay mass ratio 

Kao-
Mont 

100Kao-0Mont 100% n/a n/a 16.1 0.73 

90Kao-10Mont 90% 10% n/a 15.0 0.73 

50Kao-50Mont 50% 50% n/a 10.7 0.75 

10Kao-90Mont 10% 90% n/a 7.2 0.77 

0Kao-100Mont 0% 100% n/a 6.4 0.77 

Mont-ILL 

100Mont-0ILL n/a 100% 0% 6.4 0.77 

50Mont-50ILL n/a 50% 50% 12.2 0.61 

0Mont-100ILL n/a 0% 100% 19.7 0.39 

ILL-Kao 

100ILL-0Kao 0% n/a 100% 19.7 0.39 

50ILL-50Kao 50% n/a 50% 18.9 0.59 

0ILL-100Kao 100% n/a 0% 16.1 0.73 

Kao-
Mont-ILL 

33Kao-
33Mont-33ILL 

33% 33% 33% 13.6 0.65 
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The chosen combinations of clay mixtures were activated by adding a sodium 

hydroxide solution. Solutions of different concentrations were prepared by adding 

sodium hydroxide pellets to distilled water, mixed with a magnetic stirrer (Stuart UC152 

heat-stir) for a minimum of 2 hours until fully dissolved and then allowed to cool. The 

clays were pre-dried in a 105°C oven, and left to cool. The constituent clays were then 

dry-mixed together using the magnetic stirrer for 5 minutes. Varying amounts of 

activating solutions were added in the quantities presented in Table 6-2. Each wet 

mixture of activating solution and clay mixture was mixed by hand for 3 minutes, 

providing a consistent and well-distributed mixture. The consistency of the samples 

allowed them to be compacted by hand into 18mm x 36mm cylindrical Teflon moulds 

by tamping with a glass rod in three layers for each sample, using 25 blows for each 

layer. Samples were cured in an air atmosphere in an 80°C oven for 24 hours in their 

moulds. For each composition, a control sample was made in addition to an activated 

sample. Distilled water was used instead of sodium hydroxide solution, such that the 

consistency of the wet mix was still at the plastic limit. The control samples were then 

mixed and cured in the same manner as the activated samples. 

Samples 50Kao-50Mont, 50ILL-50Kao and 33Kao-33Mont-33ILL did not fully dry with 

curing, so were forcibly dried in a vacuum desiccator for 72 hours. After demoulding, 

samples were aged for 28 days in a controlled environment of 20 ± 0.5°C and 50 ± 

2.5% relative humidity. An air atmosphere was intentionally used for both curing and 

ageing, to provide conditions representative of industrial brickmaking processes. 

6.2.3 Characterisation methods 

The set of characterisations were done at 28 ± 2 days ageing time, and (with the 

exception of SEM imaging) were performed on powders prepared from the cured 

samples. These were ground by hand, having been wetted with isopropanol to avoid 

damaging the clay mineral crystal structures (Moore and Reynolds, 1997). Powders 

were ground until there was no further discernible reduction in particle size, and so 

were comparable between samples. Any variation in particle size of the ground 

powders was not expected to have any noticeable effect on characterisation results. 

For XRD and FTIR, all characterisation was carried out on powder samples stored for 

at least 24 hours at 50% relative humidity, to allow for equal hydration states. 

Powder X-ray diffraction (XRD) was undertaken with a Bruker D8 Advance instrument 

using monochromatic CuKα1 L3 (λ = 1.540598 Å) X-radiation and a Vantec 

superspeed detector. A step size of 0.016 °(2θ) and step duration of 0.3 seconds were 

used. Phase identification was performed using Bruker EVA software, using reference 

patterns from the Joint Committee on Powder Diffraction Standards (JCPDS) database. 
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Patterns were corrected for sample height shift by calibrating to the most intense quartz 

reflection (101) at 26.6 °(2θ), and normalised to the most intense peak in each pattern. 

For each of the activated clay mixtures, a Rule of Mixtures (RoM) XRD pattern was 

calculated and plotted, to compare with the measured pattern. The RoM XRD patterns 

were calculated by proportionally summing the raw data of the XRD patterns for the 

constituent activated clays. For example, the calculated RoM pattern for activated 

50Kao-50Mont was generated by summing together the activated Kao pattern at 50% 

intensity, and the activated Mont pattern at 50% intensity. The calculated pattern was 

then normalised in the same way as for the measured patterns. As XRD intensity is 

affected by particle orientation and other factors, this is not considered an exact 

prediction but was used to make a very rough comparison between each clay mixture’s 

measured pattern, and what would be expected from a RoM model. This method gave 

good agreement to the measured pattern when comparing the control mixtures of 

clays. Due to the limitations of the XRD preparation techniques used, it was not 

possible to make quantitative comparisons. However, for the purpose of identifying 

differences in phases formed and any large differences in the quantities of phases 

formed, this method was deemed acceptable. 

Scanning electron microscope (SEM) imaging was used to characterise phase size and 

morphology, using a JEOL SEM6480LV in secondary electron mode with an 

accelerating voltage (AV) of 10 kV. Bulk specimens were sputter coated with gold for 3 

min. All images were taken >2 mm away from the edge to minimise edge effects. 

Because the SEM used a tungsten filament, an AV of 10 kV was selected as an 

optimal balance between the tendencies towards a noisy image at lower AV, and lower 

resolution at higher AV. Unpolished samples were used to enable easier distinction of 

particle morphology in the microstructures, and also given the friability of some of the 

samples.  

Fourier Transform Infrared Spectroscopy (FTIR) was performed to characterise 

molecular bonding, using a Perkin-Elmer Frontier with a diamond Attenuated Total 

Reflectance (ATR) head. Spectra were collected over a range of 4000-600 cm-1 using a 

resolution of 4 cm-1 and 5 scans per spectrum. Corrections were made for ATR and 

background using Perkin-Elmer Spectrum software, and each spectra was normalised 

relative to its most intense band. RoM spectra were calculated for the clay mixtures 

using the same method described for the RoM XRD patterns. 
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6.3 Results 

6.3.1 Visual inspection 

A range of colour and form was observed in the cured samples (Figure 6-2). The 

influence of ≥50% montmorillonite was strong, giving distinctive angled shrinkage 

cracking. The reasons for the distinctive form of these shrinkage cracks are not yet 

known, but these were consistent with similar cracks previously observed in alkali 

activation of this montmorillonite clay (Marsh et al., 2018a). There was a clear band of 

darker colour at the top of the 33Kao-33Mont-33ILL sample, and to a lesser extent, 

some darkening at the top of the 50ILL-50Kao sample. These phenomena are likely to 

be associated with the one-dimensional flow of soluble matter to the top of the sample, 

given that a mould with one open end was used. 

Figure 6-2: Photos of the cured activated mixed clay samples. 

6.3.2 XRD 

In the figures for XRD, for purposes of clarity given the number of patterns shown, only 

the main reflections for the clay minerals and reflections for product phases are 

indexed. In general, most of the reflections above 15 °2θ correspond to unreactive 

phases. Full indexation of reflections in the precursors’ patterns is given in Figure 6-1. 

6.3.2.1 Kao-Mont series 

Firstly considering the individual clays at each end of this series, alkali activation of 

kaolinite and montmorillonite under these conditions has already been shown to form a 

8:2:2 hydrosodalite (Marsh et al., 2018b) – a member of the sodalite and zeolite 

families – and a geopolymer (Marsh et al., 2018a) respectively. 90Kao-10Mont formed 

the same hydrosodalite phase (PDF# 00-042-0215) and a small amount of 
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hydroxycancrinite (PDF# 00-046-1457) (Figure 6-3a). 50Kao-50Mont formed a trace 

amount of hydrosodalite and a small amount of thermonatrite (Na2CO3∙H2O) (PDF# 00-

008-0448). 10Kao-90Mont formed a small amount of thermonatrite as the only 

crystalline product phase, but experienced a background shift in the 20 – 35 °2θ region 

(Figure 6-3b) indicative of geopolymer formation (Duxson et al., 2007a), whilst retaining 

a large amount of unreacted montmorillonite. 

Amongst the activated samples, kaolinite was still present in all mixes originally 

containing kaolinite. Montmorillonite was still present in mixtures with ≥ 50% 

montmorillonite in the starting mix. It was not detectable in 90Kao-10Mont, but was only 

faintly detectable in the control sample. The montmorillonite 001 reflection consistently 

shifted from 5.9 to 7.3 °2θ after activation, corresponding to a decrease of d-value from 

14.4 to 11.6 Å. For this particular montmorillonite clay, this phenomenon is due to a 

combination of interlayer cation exchange for the Na in solution, as well as other 

possible effects associated with alkali activation (Marsh et al., 2018a). Muscovite was 

present in all samples, with no significant change in °2θ position, as expected from 

previous work by Zografou (2015).  

In summary, hydrosodalite formed in mixtures with ≥90% kaolinite, but not for samples 

with <50% kaolinite. Hydroxycancrinite formed in 90Kao-10Mont, but in no others. A 

geopolymer hump seemed to form in samples with ≥50% montmorillonite, but was a 

more subtle change for 50Kao-50Mont (Figure 6-3b). 

The RoM patterns were broadly correct in predicting the product phases formed, but 

were not consistent over the whole series. For 90Kao-10Mont the RoM model 

predicted hydrosodalite as a major product phase, while in the measured pattern, a 

small amount of hydroxycancrinite was formed in addition to hydrosodalite. For 50Kao-

50Mont, hydrosodalite was predicted as a major phase, whereas only a trace amount 

was formed. For 90Mont-10Kao, it was correctly predicted that a large amount of 

montmorillonite remained unreacted, but the prediction that a minor amount of 

hydrosodalite would form could not be confirmed from the XRD pattern.  
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Figure 6-3: Kao-Mont series: a) XRD patterns of control (cont.) samples, compared with 
measured (act.) and RoM calculated (act. RoM) patterns of the activated samples. b) XRD 

patterns for a selection of samples for the range 20 – 35 °2θ. Lines have been drawn to 
illustrate the changes in the backgrounds of the patterns from 25 – 30 °2θ. 
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6.3.2.2 Mont-ILL series 

Firstly considering the individual clays at each end of this series, alkali activation of 

montmorillonite and illite under these conditions has already been shown to form a 

geopolymer and altered illite respectively (Marsh et al., 2018a). 50Mont-50ILL formed a 

small amount of thermonatrite (Na2CO3∙H2O) as the only new crystalline phase (Figure 

6-4). Montmorillonite shifted its 001 reflection position as already observed in the 

previous series. The trace kaolinite impurity, evident by the reflection at 12.5 °2θ in the 

control sample’s pattern, appeared to be consumed. However, there was no evidence 

for formation of a hydrosodalite reflection, as observed for consumption of trace 

kaolinite in 0Mont-100ILL. The illite reflections at 9 and 18 °2θ overlapped with those of 

the muscovite impurity in the montmorillonite precursor. These reflections appeared to 

decrease in intensity, but the reflections at 20 °2θ were maintained, which could 

suggest this was partly an orientation effect. In each measured pattern, a large amount 

of clay precursor was still present, as shown in the 5 – 10 °2θ region.  

The RoM model matched well with the measured pattern. The only difference was the 

prediction of a trace amount of hydrosodalite, which was not observed in the measured 

pattern of 50Mont-50ILL. Given that both the product phases from individual activated 

montmorillonite and illite did not appear as new crystalline reflections, this alone was 

not conclusive. However, the background profiles of the measured and RoM patterns 

were broadly similar.  
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Figure 6-4: Mont-ILL series: XRD patterns of control (cont.) samples, compared with measured 
(act.) and RoM calculated (act. RoM) patterns of the activated samples. 



199 
 

6.3.2.3 ILL-Kao series 

Firstly considering the individual clays at each end of this series, alkali activation of illite 

and kaolinite under these conditions has already been shown to form altered illite 

(Marsh et al., 2018a) and 8:2:2 hydrosodalite (Marsh et al., 2018b) respectively. In 

50ILL-50Kao, hydrosodalite was the major crystalline reaction product with a trace 

amount of hydroxycancrinite (Figure 6-5). All the kaolinite in the precursor seemed to 

be consumed, but unreacted illite was still present. However, as previously stated, the 

001 reflection overlapped with that of the muscovite, which undergoes very limited 

dissolution in alkali solutions.   

The RoM pattern correctly predicted that hydrosodalite was the dominant product 

phase for 50ILL-50Kao sample. However, it predicted a minor amount of kaolinite 

phase would remain in the 50% mixture, whilst the measured pattern showed only a 

trace amount. It also failed to predict the formation of a trace amount of 

hydroxycancrinite.  

 

Figure 6-5: ILL-Kao series: XRD patterns of control (cont.) samples, compared with measured 
(act.) and RoM calculated (act. RoM) patterns of the activated samples. 
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6.3.2.4 Kao-Mont-ILL 

In the mix of all three clay precursors, hydrosodalite was formed as the major 

crystalline product phase (Figure 6-6). There was some evidence of a shift in 

background profile towards higher angles in the 20 – 35 °2θ region. Some kaolinite and 

montmorillonite was consumed, with some left as a remnant. The overlap of the first 

two illite reflections with those of muscovite made it difficult to discern whether the 

intensity of these had decreased after activation. The RoM model was correct in 

predicting hydrosodalite as the main reaction product, as well as a small change in the 

background profile in the 20 – 25 °2θ region.  



201 
 

 

Figure 6-6: Combined results for the Kao-Mont-ILL series: a) XRD pattern of the control (cont.) 
sample, compared with measured (act.) and RoM calculated (act. RoM) patterns of the 

activated sample. Lines have been drawn to illustrate the changes in the backgrounds of the 
patterns from 20 – 35 °2θ. b) SEM images, comparing the cont. and act. samples. c) FTIR 

spectrum of the cont. sample, compared with act. and act. RoM spectra of the activated sample. 
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6.3.3 SEM 

6.3.3.1 Kao-Mont series 

Small, spheroidal particles were observed to have formed in 100Kao-0Mont and 

90Kao-10Mont, typically with size of 250 - 500 nm and an irregular morphology (Figure 

6-7). It was known from the XRD results that a large amount of hydrosodalite had

formed in both of these samples. Given that these spheroidal particles had a 

morphology similar to that expected from hydrosodalites (Moloy et al., 2016), they were 

attributed as hydrosodalite. The amount of hydrosodalite formed was less for 50Kao-

50Mont than for the samples with >50% kaolinite, with a corresponding increase in 

unreacted kaolinite. For 10Kao-90Mont, there was a large quantity of new particles with 

irregular morphology and particle size of around 250 nm, with more of a connected 

structure between particles. At 0% kaolinite (100% montmorillonite), the new particles 

were semi-continuous. Both of these microstructural characteristics have previously 

been observed in geopolymer systems (Duxson et al., 2005). Given that no 

hydrosodalite or other crystalline phase was present in the XRD pattern for the 10% 

kaolinite sample, it was inferred that the new particles observed in both 10Kao-90Mont 

and 0Kao-100Mont samples were part of a geopolymer phase.  
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Figure 6-7: Kao-Mont series: SEM images comparing the control (cont.) and activated (act.) 
samples for each mixture. 
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6.3.3.2 Mont-ILL series 

In 50Mont-50ILL, the microstructure was made of irregular particles of 100-500 nm, 

sometimes showing connectedness (Figure 6-8).This is different to the microstructures 

of both 100Mont-0ILL, a semi-continuous geopolymer, and 0Mont-100ILL, an altered 

illite with a distinctive arrangement of particles. Given that the XRD pattern revealed no 

crystalline product phase, and that geopolymers have been observed to have similar 

particle morphologies (Duxson et al., 2005), this new microstructure was also believed 

to be a geopolymer. This was similar to the microstructure of the 10Kao-90Mont 

sample, also believed to be a geopolymer for the same reasons.  

 

Figure 6-8: Mont-ILL series: SEM images comparing the control (cont.) and activated (act.) 
samples for each mixture. 
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6.3.3.3 ILL-Kao series 

In 50ILL-50Kao, the microstructure was made of irregular particles of size 250-500 nm 

(Figure 6-9). Given that the control sample contained clay particles of similar 

dimensions, the change in appearance after activation was not dramatic. Some 

unreacted clay particles were still present in the activated sample. Given that the XRD 

pattern for 50ILL-50Kao showed that a large amount of hydrosodalite was present, and 

that these new particles had a morphology similar to that expected from hydrosodalites 

(Moloy et al., 2016), they were attributed as hydrosodalite. The modified microstructure 

seen in 100ILL-0Kao wasn’t observed in 50ILL-50Kao. 

Figure 6-9: ILL-Kao series: SEM images comparing the control (cont.) and activated (act.) 
samples for each mixture. 
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6.3.3.4 Kao-Mont-ILL 

The 33Kao-33Mont-33ILL sample contained a microstructure made of fine particles of 

size ~300 nm (Figure 6-6). Unreacted clay particles were present too. The XRD pattern 

for this sample showed hydrosodalite to be the crystalline reaction product, and these 

particles were similar to those observed in 100Kao-90Mont and 90Kao-10Mont, both of 

which contained a large amount of hydrosodalite (Figure 6-7). Therefore, these fine 

particles in this sample were also attributed to hydrosodalite. 

6.3.4 FTIR 

The most intense bands in the FTIR spectra were observed between 950 – 1080 cm-1. 

This region is dominated by the Si-O-Si and Si-O-T bands of the clay mineral precursor 

phases and alkali aluminosilicate product phases respectively. 

The dominant band in each of the precursor clay minerals is the Si-O-Si stretching 

vibration in the 970 – 1070 cm-1 region (Farmer, 1974; Madejova and Komadel, 2001). 

The dominant band in both of the crystalline product phases, hydrosodalite and 

hydroxycancrinite, is an asymmetric T-O-T stretching vibration in the region of 980 – 

1000 cm-1 (Flanigen et al., 1974; Henderson and Taylor, 1977; Mikuła et al., 2015). In a 

geopolymer, it is an Si-O-T asymmetric stretching vibration (Rees et al., 2007b), the 

position of which depends on the Si:Al composition of the gel (Roy, 1990), the number 

of non-bridging oxygens and the extent of activation (Fernández-Jiménez and Palomo, 

2005; Lee and van Deventer, 2003; Rees et al., 2007a).   

Outside of this main region of interest, quartz has bands at Si-O stretching vibrations at 

around 778 and 798 cm-1 (Van der Marel and Beutelspacher, 1976). In the cured 

samples’ spectra, carbonate bands are often seen in alkali-activated systems, with a C-

O bands at around 880 cm-1 (Barbosa et al., 2000).  

6.3.4.1 Kao-Mont series 

There were two clear groupings amongst the activated samples’ FTIR spectra in this 

series (Figure 6-10). The main Si-O-T band region of 1200 – 800 cm-1 was similar 

between 100Kao-0Mont and 90Kao-10Mont, with a single band with a centre at ~965 

cm-1, indicating hydrosodalite formation. For the three other spectra for samples with 

≥50% Mont, the main band area was broader with the band centres at higher 

wavenumbers in the region of 995 – 1005 cm-1 indicating geopolymer formation. In this 

latter group, a carbonate band emerged at ~870 cm-1. 

Behaviour in the lower wavenumber region supported this interpretation. For 100Kao-

0Mont and 90Kao-10Mont, bands emerged at ~663 and ~732 cm-1 attributed to 

hydrosodalite T-O-T symmetric stretching modes (Henderson and Taylor, 1977). In the 
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other three spectra, no narrow new bands were formed in this region. This discounted 

the possibility of formation of nanocrystalline zeolitic phases in large amounts, with the 

emergence of a weak broad hump in this region suggesting geopolymer formation 

instead (Rees et al., 2007a). 

The RoM spectra for activated 90Kao-10Mont and 10Kao-90Mont matched well with 

the measured spectra. However, for activated 50Kao-50Mont, there were clear 

differences in the RoM and measured spectra. The RoM spectrum’s profile was 

broader, and the Si-O-T main band peak was at a lower wavenumber (968 cm-1) than 

for the measured spectrum (1004 cm-1). Given the association between a negative shift 

of the main Si-O-T band and formation of alkali aluminosilicate product phases 

(Prud'homme et al., 2013), the difference in Si-O-T band wavenumber suggests that a 

smaller extent of transformation occurred in the 50Kao-50Mont mixture than was 

expected from the behaviour of the individual clays. 

Figure 6-10: Kao-Mont series: FTIR spectra of the control (cont.) samples, compared with 
measured (act.) and RoM calculated (act. RoM) spectra of the activated samples. 
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6.3.4.2 Mont-ILL series 

The end members of this series behaved differently after activation (Figure 6-11). The 

dominant band in 100Mont-0ILL shifted from 1031 cm-1 to a lower wavenumber at 1003 

cm-1 after activation, indicating geopolymer formation, whereas the dominant band in

0Mont-100ILL shifted from 987 cm-1 to a slightly higher wavenumber at 994 cm-1. For 

50Mont-50ILL, the dominant band shifted from 1004 cm-1 to a slightly lower 

wavenumber at 992 cm-1 after activation and no narrow zeolitic bands emerged in the 

650 – 750 cm-1 region. Given the microstructural changes observed in the SEM images, 

this also supported the interpretation that a geopolymer was formed in 50Mont-50ILL. A 

carbonate band emerged at 866 cm-1. The RoM spectrum for activated 50Mont-50ILL 

matched well with the measured spectrum. 

Figure 6-11: Mont-ILL series: FTIR spectra of the control (cont.) samples, compared with 
measured (act.) and RoM calculated (act. RoM) spectra of the activated samples. 



209 
 

6.3.4.3 ILL-Kao series 

In the spectrum of the activated 50ILL-50Kao sample, the dominant band moved to a 

lower wavenumber at 968 cm-1 and Si-O-T symmetric stretching bands emerged at 664 

and 735 cm-1 (Figure 6-12).These observations supported the evidence of the XRD 

pattern that a hydrosodalite is the dominant reaction product. A carbonate band 

emerged at 866 cm-1. The RoM spectrum for activated 50ILL-50Kao matched well with 

the measured spectrum. 

 

Figure 6-12: ILL-Kao series: FTIR spectra of the control (cont.) samples, compared with 
measured (act.) and RoM calculated (act. RoM) spectra of the activated samples. 

6.3.4.4 Kao-Mont-ILL 

After activation, the dominant band centre in the 33Kao-33Mont-33ILL spectrum shifted 

from 1000 cm-1 to 975 cm-1 and Si-O-T symmetric stretching bands emerged at 664 

and 732 cm-1 (Figure 6-6). Hydrosodalite was known to be present from the XRD 

patterns, but a geopolymer phase may have also formed. The observed shift of the Si-

O-T band centre may support this - the band centre was at a higher wavenumber than 

inactivated samples which contained hydrosodalite as the primary reaction product 

(100Kao-0Mont and 50ILL-50Kao), but lower than in activated samples which 

contained a geopolymer as the primary reaction product (0Kao-100Mont and 10Kao-
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90Mont). An intermediate value of wavenumber for the Si-O-T band could therefore 

indicate the presence of a geopolymer phase as well as hydrosodalite. As with other 

samples, carbonate bands emerged at 866 and 1451 cm-1.  

For all the clays and clay mixtures except illite and 50Kao-50Mont, there was a 

decrease in wavenumber of the main Si-O-T band after activation.  

6.3.4.5 Changes in wavenumber position of dominant band 

As previously used in studies investigating the variables of time (Essaidi et al., 2014), 

alkali source and calcination temperature (Prud’homme et al., 2013), the position of the 

dominant Si-O-T band in the sample can help understand product phases formed in 

alkali activation. As previously stated, the main region of interest is from approximately 

950 – 1080 cm-1, as this is dominated by the Si-O-Al and Si-O-Si bands of the 

precursor and product phases. There was large variation in wavenumber of the 

dominant band between precursor samples, and between activated samples. There 

was also significant variation between samples in the change in Si-O-T band 

wavenumber after activation (Figure 6-13). In most, but not all cases, alkali activation 

resulted in a decrease in wavenumber position of the dominant band, as a result of 

more Si-O-Al bonds in the aluminosilicate framework (Fernández-Jiménez and Palomo, 

2005). The extent of shift for geopolymer formation was less than the 40 cm-1 observed 

by Prud’homme et al. (2013), as might be expected since those experiments used 

calcined clays. However, for 50Kao-50Mont and 0Mont-100ILL / 100ILL-0Kao, there is 

a positive shift. No explanation of this positive shift has been yet found in the literature.   

Figure 6-13: The distribution of wavenumbers for the Si-O-T band peak centre for control and 
activated samples. The centre-line of each box is the median value; the edges of each box are 
the first and third quartile values, and the lines extend to the maximum and minimum values.  
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6.4 Discussion 

6.4.1 Evaluation of phase formation 

Mixtures of clays are complex to characterise, even without alkali activation. 

Furthermore, given the amorphous nature of the geopolymer phase, it is important to 

use multiple characterisation methods to provide corroborating evidence. It has 

previously been shown that in the alkali activation of clays, different reaction products 

can coexist, including different zeolitic phases (Barrer and Mainwaring, 1972) and a 

zeolite with a geopolymer (Heller-Kallai and Lapides, 2007). Due to the multiple phases 

present, the amorphous character of geopolymers and the presence of some phases in 

small amounts, it is not possible to state the phase composition of the activated 

systems with complete certainty. Nonetheless, a summary of phases observed in the 

activated samples, as well as the phases predicted from the RoM model, is given in 

Table 6-3. 

Table 6-3: A summary of the product phases observed through characterisation for the 
activated clay mixtures, and the product phases expected from the rule of mixtures model. 

Phases marked with a ? indicate less certainty. 

Series Sample Phases observed 
Phases expected 
from RoM model 

Kao-Mont 

90Kao-10Mont 
Hydrosodalite 

Hydroxycancrinite 
Hydrosodalite 
Geopolymer 

50Kao-50Mont 
Hydrosodalite 
Geopolymer? 

Hydrosodalite 
Geopolymer 

10Kao-90Mont Geopolymer 
Geopolymer 

Hydrosodalite 

Mont-ILL 50Mont-50ILL Geopolymer 
Geopolymer 
Altered illite 

ILL-Kao 50ILL-50Kao 
Hydrosodalite 

Hydroxycancrinite 
Hydrosodalite 
Altered illite 

Kao-Mont-ILL 33Kao-33Mont-33ILL 
Hydrosodalite 
Geopolymer? 

Hydrosodalite 
Geopolymer 
Altered illite 

The trends observed here suggest that the wavenumber of the Si-O-T FTIR band could 

be a useful indicator for the alkali aluminosilicate phase formed in a given system of 

uncalcined clay mixtures, as has previously been shown for fly ash (Fernández-

Jiménez and Palomo, 2005) and calcined clays (Prud’homme et al., 2013). However, 

given the inconsistencies within the series here, it should not be relied on as a 

standalone method, but should be supported with complementary characterisation 

techniques. This is especially important for uncalcined clay mixtures. Given the 

coexistence of crystalline and amorphous phases, as well as the significant amount of 

unreacted precursors, phase identification is more complex and less certain than for 

simpler, more reactive systems such as metakaolin.  
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Regarding carbonate phase formation (not included in Table 6-3 for concision), a C-O 

band was detected in all of the samples where carbonates had been identified from the 

XRD pattern. In 0Kao-100Mont, a C-O band was detected, but no carbonate phase 

was identified in the XRD pattern. These two observations suggest two further insights. 

Firstly, that in most - if not all - of these systems there is an excess of Na available, 

which carbonates when not consumed during the reaction. And secondly, that the 

presence of carbonates in these systems cannot reliably be detected solely using XRD. 

6.4.2 Performance of the rule of mixtures (RoM) model 

For alkali-activated soils to be a viable construction technology, the phase formation 

behaviour needs to be predictable. As previously described, a rule of mixtures 

predictive model provides a useful basis for describing the phase formation behaviour 

of the clay mixtures. 

For the Kao-Mont series in general, the RoM XRD patterns overpredicted the 

propensity of hydrosodalite formation. It predicted a large quantity of hydrosodalite for 

50Kao-50Mont when only a trace amount was formed, and a minor quantity for 

90Mont-10Kao when none was detected. It also did not predict the formation of a minor 

amount of hydroxycancrinite for 90Kao-10Mont. For the Mont-ILL series, the RoM 

pattern matched the measured pattern well, but since the expected transformations do 

not yield strongly crystalline signals, it is difficult to verify the accuracy of this. For the 

ILL-Kao series, the RoM model underestimated the extent of kaolinite consumption and 

hydrosodalite formation for 50ILL-50Kao. As in the Kao-Mont series, it also did not 

predict formation of hydroxycancrinite.  

The formation of hydroxycancrinite is of special interest as it did not form in any of the 

activated individual clays. Favourable conditions for formation of hydroxycancrinite are 

typically at high concentrations of activating solution and higher temperatures, such as 

200°C (Querol et al., 2002). For clay precursors, Barrer and Mainwaring (1972) formed 

hydroxycancrinite from alkali activation of metakaolin, under conditions of >100 °C and 

< 1 M NaOH(aq.).The addition of soluble silicate was found to discourage its formation. 

This seems to contradict the observations made here that hydroxycancrinite only 

formed in mixtures of 50% kaolinite in combination with 50% of a 2:1 clay. The 

presence of a 2:1 clay would be expected to provide additional Si. Cancrinite has been 

formed from kaolinite, but this required the presence of certain sodium salts for 

synthesis at 80°C, or else temperatures of ~400°C (Barrer et al., 1968). No previous 

studies have shown the formation of hydroxycancrinite from uncalcined clay minerals in 

the <100°C temperature range without a hydrothermal process involved.  
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The RoM FTIR spectra generally agreed well with the measured spectra, with the 

exception of 50Kao-50Mont. Here, the wavenumber of the Si-O-T band was higher in 

the measured pattern than in the RoM spectrum, suggesting that a smaller extent of 

transformation to alkali aluminosilicate reaction products occurred than expected. This 

agreed with the observation from the measured and RoM XRD patterns for 50Kao-

50Mont, in that less hydrosodalite was formed than expected. Therefore, the evaluation 

of the FTIR RoM spectra is in broad agreement with the evaluation of the XRD RoM 

patterns. 

Comparing the phases observed in the activated clay mixtures to those predicted by 

the RoM model, there is some degree of disagreement for nearly all of the mixtures. 

The RoM model is not consistently correct in predicting the phases and quantities 

formed in the alkali activation of mixtures of clays. This suggests there are hierarchies 

in the dissolution and subsequent reactivity of these clays and in determining the 

product phases formed. Given that consistent curing conditions were used for all 

compositions, the deviation from RoM behaviour is likely to be due to the conditions in 

the Al- and Si-rich pore solution favouring the production of different phases (Buchwald 

et al., 2011), and possibly the influence of the precursor minerals. 

6.4.3 Dominance relations between clays in determining 

product phase formation 

Given that the behaviour of the clay mixtures deviated from a rule of mixtures (RoM) 

model, this can be used as a baseline to consider the dominance relations between the 

clays under the activation conditions used in this study. Dominance relations are 

evaluated here in two areas of interest – precursor reactivity, and product phase 

formation. For example, in an alkali-activated clay mixture of A and B, if more of clay 

mineral A reacts and less of clay mineral B reacts (compared to the baseline behaviour 

in the RoM model), then clay mineral A could be said to be dominant in terms of 

reactivity. In the same mixture, if more of the product phase associated with clay 

mineral B forms than the product phase associated with clay mineral A (again, 

compared to the RoM model), then clay B could be said to be dominant in terms of 

determining product phase formation in the mixture. Predicting the suitability of 

aluminosilicate precursors for alkali activation is acknowledged to be difficult even for 

individual minerals (Xu and Van Deventer, 2000), let alone for mixtures of minerals. 

The approach used here is not a quantitative method of evaluation, but is helpful in 

developing an empirical understanding of how such mixtures behave in alkali 

activation. In the following section, the constituent clay minerals’ reactivity and 

influence on phase formation in the different mixtures are evaluated in this way.  
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In the Kao-Mont series as a whole, less kaolinite was consumed than expected from 

the RoM model, and less hydrosodalite was formed than expected. From the behaviour 

of the 50Kao-50Mont sample, montmorillonite seemed to be more reactive than 

kaolinite, given how much of each was consumed in the reaction. On the other hand, 

the characterisation evidence suggested that more hydrosodalite (the product phase 

associated with kaolinite) had formed than geopolymer (the product phase associated 

with montmorillonite). Thus, over the Kao-Mont series as a whole, montmorillonite was 

dominant in terms of reactivity, but kaolinite was dominant in determining phase 

formation.  

In the Mont-ILL series, there was evidence of a geopolymer (the product phase 

associated with montmorillonite) but not of altered illite (the product associated with 

illite) in 50Mont-50ILL. Given the overlap between the illite reflections and the 

muscovite impurity reflections in this XRD pattern, it was not possible to compare the 

relative extents of reaction of the montmorillonite and illite. So, for the Mont-ILL series, 

one can only say that montmorillonite dominated illite in determining phase formation.  

In the ILL-Kao series, the RoM model underestimated both the extent of kaolinite 

consumption and the extent of hydrosodalite formation (the product phase associated 

with kaolinite) in 50ILL-50Kao. At the same time, no microstructural features similar to 

those in 100ILL-0Kao were observed in the SEM images of 50ILL-50Kao. So, for the 

ILL-Kao series, kaolinite dominated illite both in reactivity and in determining product 

phase formation.  

The validity of this interpretation can be checked against 33Kao-33Mont-33ILL, as this 

mixture includes the three constituent clay minerals together. As summarised in Table 

6-3, the XRD pattern and SEM images showed hydrosodalite to be present, with no

evidence of the microstructure characteristic of altered illite. There was possibly a 

background hump indicative of a geopolymer in the XRD pattern, with the position of 

the dominant T-O-T band in the FTIR spectrum suggesting a possible mix of 

geopolymer and hydrosodalite. These observations broadly agree with the dominance 

relations established from the three binary series of clay mixtures.  

These dominance relations have been evaluated for these specific clay precursors, 

under the alkali activation conditions used in this study. The chemistry and mineralogy 

of the clay minerals is highly influential in determining their reactivity and product phase 

formation. However, it is unlikely to be the case that these are inherent, irrevocable 

qualities of the clay minerals. It is conceivable that these dominance relations could 

change depending on other factors influencing dissolution, such as available surface 

area (Tchadjie and Ekolu, 2018), and phase formation, such as curing temperature, 
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curing time and concentration of NaOH activating solution (Abdullahi et al., 2017; 

Johnson and Arshad, 2014).  

Nonetheless, this finding has implications for the application of alkali-activated clays 

and soils in construction. The expansive behaviour of soils containing montmorillonite 

means they are typically avoided in earth construction. However, given that 

montmorillonite influences phase formation towards geopolymers, the presence of 

montmorillonite could be beneficial in alkali-activated soil materials, if enough of the 

montmorillonite can be consumed. Illite is much less expansive, so is normally 

considered acceptable in soil construction. In isolation, its alkaline activation behaviour 

is problematic, although could be useful when present as a minor component with other 

clay minerals. Although these dominance relations were established for un-calcined 

clays, and without using additional soluble silicates, it is an important step in improving 

the fundamental understanding of the behaviour of alkali-activated soils. 
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6.5 Conclusions 

Through investigating the alkali activation of binary series of clay mixtures, it has been 

shown that there was a hierarchy between the clay minerals kaolinite, montmorillonite 

and illite in determining the product phases in a clay mixture. Montmorillonite and 

kaolinite both dominated illite. Montmorillonite seemed to be more reactive than 

kaolinite, but kaolinite had a stronger influence in determining reaction products. 

Hydroxycancrinite was formed in some binary mixtures, which was not a reaction 

product from any of the individual clays under these conditions. These findings suggest 

that knowing which clay minerals are present can help predict the general phase 

formation; but, neither the relative amounts of phases formed, nor the type of phases 

formed, can be fully predicted. The systematic method employed in this study has 

enabled a useful bridge to be made between the study of individual clays and complex 

soil systems.  
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Appendix 

Additional experimental information is provided here regarding the quantities of water 

used to manufacture the samples (Table 6-4).  

Table 6-4: Quantities of clay, water and NaOH used for sample manufacture.  

Series Sample 
Mass of clay 

(g) 
Mass of water 

(g) 

Mass of NaOH 
(g) 

Kao-Mont 

100Kao-0Mont 25 10.4 7.8 

100Kao-0Mont (control) 50 18.0 0 

90Kao-10Mont 10 4.4 3.0 

90Kao-10Mont (control) 25 10.0 0 

50Kao-50Mont 10 5.1 2.4 

50Kao-50Mont (control) 10 6.5 0 

10Kao-90Mont 10 5.9 1.8 

10Kao-90Mont (control) 25 22.5 0 

0Kao-100Mont 25 15.3 4.1 

0Kao-100Mont (control) 50 48.0 0 

Mont-ILL 

100Mont-0ILL 25 15.3 4.1 

100Mont-0ILL (control) 50 48.0 0 

50Mont-50ILL 10 4.0 2.1 

50Mont-50ILL (control) 10 5.8 0 

0Mont-100ILL 25 4.8 1.7 

0Mont-100ILL (control) 25 4.8 0 

ILL-Kao 

100ILL-0Kao 25 4.8 1.7 

100ILL-0Kao (control) 25 4.8 0 

50ILL-50Kao 10 3.1 2.9 

50ILL-50Kao (control) 10 2.7 0 

0ILL-100Kao 25 10.4 7.8 

0ILL-100Kao (control) 50 18.0 0 

Kao-Mont-ILL 
33Kao-33Mont-33ILL 10 4.1 2.5 

33Kao-33Mont-33ILL (control) 12.5 6.2 0 
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Chapter 7 - Alkali activation of 
natural and synthetic soils 
In this chapter, the alkali activation behaviour of natural and synthetic soils is 

investigated. The aim of this chapter is to understand the behaviour of non-clay 

components in soil in alkali activation. The use of synthetic soils, comprised of mixtures 

of the same individual clay mineral precursors used previously, builds on the 

understanding of clay mixtures developed in Chapter 6.  
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Influence of clay minerals and associated 

minerals in alkali activation of soils 

Abstract 

Alkali activation is promising for low environmental impact soil stabilisation. Given soils’ 

complexity, there is a lack of fundamental understanding of the role different 

components play in their alkali activation behaviour. A novel method was developed to 

compare three natural soils with synthetic versions. Precursors and products were 

characterised by XRD, SEM, TGA and FTIR to explore the soils’ alkali activation phase 

formation behaviour. It is shown that only the clay minerals will determine phase 

formation, whereas most associated minerals had negligible influence. The trade-off 

between Na:Al and NaOH concentration in mix design means lower plasticity soils are 

more suitable.  
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7.1 Introduction 

Alkali-activated materials are a growing area of interest in construction material 

development, due to their versatility in using a range of precursors and their potential 

for low environmental impact (Provis, 2018a). One application for alkali activation is soil 

stabilisation (Hamzah et al., 2015; Pourakbar and Huat, 2017; Sargent, 2015). 

Research in this area has concentrated on the route of indirect alkali activation – the 

addition of reactive aluminosilicates to a soil, which are then transformed to form a 

stabilising phase. Additions have included fly ash (Cristelo et al., 2013), GGBS (Singhi 

et al., 2016; Toda et al., 2018), agricultural wastes (Arulrajah et al., 2016; Kinuthia, 

2016; Pourakbar et al., 2017), metakaolin (Omar Sore et al., 2018; Zhang et al., 2013), 

volcanic ash (Miao et al., 2017) and others (Sargent, 2015). The alternative route of 

direct alkali activation – transforming the clay minerals in soil, without the addition of 

external aluminosilicates – has been less explored. This route has the possible benefits 

of being more versatile in areas where there is not a readily available source of reactive 

aluminosilicate, negating the troublesome effects of some clays in soil (e.g. swelling 

clays), and still retaining improvements in embodied carbon (Dahmen et al., 2018). 

There is also a general benefit of developing methods to understand the alkali 

activation behaviour of lower purity aluminosilicates. This is to enable a wider range of 

precursors to be used, and hence greater impact of alkali-activated materials 

(Gharzouni et al., 2016; McIntosh et al., 2015; Provis, 2018b). Previous research in 

direct alkali activation of clays and soils has mostly focussed either on relatively simple 

systems such as metakaolin (Rahier et al., 1996) and kaolinite (van Jaarsveld et al., 

2002), with only a small number of studies on more complex natural soils (Boutterin 

and Davidovits, 1988; Diop and Grutzeck, 2008; Lassinantti Gualtieri et al., 2015; 

Lemougna et al., 2014; Obonyo et al., 2014). The objectives of these studies have 

typically been to understand the effect of alkali activator and curing variables on the 

reaction, or simply the strength of the end products. This approach has been valuable 

in gaining an understanding of the fundamentals of the alkali activation process, as well 

as an empirical understanding of the range of these variables which typically give 

optimal results. However, in order to determine the feasibility of alkali-activated soils as 

a scalable technology, it is necessary to determine which compositional factors are 

important in making a given soil well-suited for activation, and which are not. This 

requires a more systematic approach to considering the influence of both the clay 

minerals in the reaction (Marsh et al., under review), and the influence of associated 

minerals in soils, some of which are known to be reactive in alkali activation. This has 

been done to some extent for common clay mineral deposits (Zibouche et al., 2009), 

but without isolating the effect of clay minerals other than kaolin.  
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The composition of sub-soils can be considered to consist of clay minerals, associated 

minerals (i.e. naturally occurring non-clay minerals) (Bergaya and Lagaly, 2013; 

Guggenheim and Martin, 1995) and some amount of organic compounds present in 

humic substances (Dixon and Weed, 1989). Soils with low organic content are used for 

stabilised soil materials, as this is a general requirement in earth building (Jagadish, 

2007). The composition of soils can vary greatly between different locations, as well as 

varying with depth in a single location (Dixon and Weed, 1989). The direct alkali 

activation behaviour of the common clay minerals is still being investigated, but a basic 

understanding of their behaviour as individuals (Marsh et al., 2018a; Marsh et al., 

2018b) and in mixtures (Marsh et al., under review) has already been established 

under comparable processing conditions. In contrast, as a group, common associated 

minerals – especially in the context of soil systems – are less well understood.  

The aim of this study is to investigate the relative influence of clay minerals and 

associated minerals in determining the direct alkali activation behaviour of soils. By 

using multi-component systems to close the gap between laboratory studies and real 

conditions, it is intended to gain a better understanding for a direct application in 

construction. This is the first known attempt to isolate the effect of associated minerals 

in soil on alkali activation using this approach.  
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7.2 Materials and Methods 

7.2.1 Materials 

Natural soils were used from: Bristol, U.K.; Bengaluru, India, and Khartoum, Sudan. 

The particle size distribution (Figure 7-1) was measured by a combination of wet-

sieving, to measure particle grading from 2 mm – 63 μm, and hydrometer testing, to 

measure particle grading < 63 μm by using the principle of Stokes’ Law to measure 

particle size by the time taken for particles to fall out of suspension in water (BSI, 

1990). All three soils were fine-grained under the USCS terminology, with Bristol as a 

lean clay (CL) (Maskell, 2013), Bengaluru as a lean clay (CL) and Khartoum as an 

intermediate clay (CI) (Balila, 2017). Regarding colour, Bristol was brown, Bengaluru 

red and Khartoum brown-grey. Calcination is a common processing step in alkali 

activation of clay minerals, as it generally improves reactivity by the dehydroxylation of 

clay minerals – in particular, the conversion of kaolinite to metakaolin. In this study, it 

was chosen not to use calcination for two reasons. Firstly, because it increases the 

environmental impact of the precursor (Habert and Ouellet-Plamondon, 2016). 

Secondly, because the ideal calcination temperature depends on the type and nature 

of clay minerals present (Hollanders et al., 2016), and in soils with different clay 

minerals choosing a single calcination temperature would be difficult.  

Figure 7-1: The particle size distribution of the three natural soils. 
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To manufacture synthetic soils, Imerys Speswhite kaolin (mined from Cornwall, U.K.), 

K10 montmorillonite (Sigma-Aldrich, product no. 69866-1KG) and Clay Minerals 

Society Imt-2 (Silver Hill) illite were used as precursor clays. Builders’ fine quartz sand 

was used as an inert aggregate, sieved to <425 μm and washed clean with distilled 

water. This contained quartz, with a trace amount of calcite. Chemical compositions of 

the natural and synthetic soils were determined by energy dispersive X-rays (JEOL 

SEM6480LV with Oxford INCA X-Act SDD X-ray detector) at an accelerating voltage of 

20 kV, a chamber pressure of 30 Pa, a Si wafer as a standard, and measuring ≥ 3 scan 

areas per sample. The soil powders were mounted on a sticky carbon tab on top of an 

aluminium stub, and were not coated. Specific surface areas were measured using the 

BET method (Brunauer et al., 1938) using a Micromeritics 3-Flex. 2 g of each precursor 

powder were degassed ex-situ in a N2 atmosphere under atmospheric pressure at 

250°C for ≥ 70 h, and then degassed in-situ under vacuum at 250°C for 14 h. 

The natural and synthetic soils’ chemical compositions are given in Table 7-1. In order 

to ensure consistency, the soils were ground by hand in isopropanol until they passed 

through a 425 μm sieve. The natural and synthetic soils’ specific surface areas are 

given in Table 7-2. The precursors were activated using sodium hydroxide pellets of 

>98% purity (Sigma-Aldrich, product no. 06203).

Table 7-1: Chemical composition of the natural (nat) and synthetic (syn) soils in oxide wt%.

Soil Al2O3 CaO CuO Fe2O3 K2O MgO MnO Na2O SiO2 SO3 TiO2 Total 

Bristol-nat 22.85 1.29 0.34 9.75 4.84 1.16 0.00 0.25 57.76 0.39 1.37 100.00 

Bengaluru-nat 24.05 0.38 0.08 12.10 1.21 0.26 0.00 0.00 60.73 0.08 1.11 100.00 

Khartoum-nat 11.60 11.45 0.17 10.36 1.12 2.46 0.41 0.64 60.20 0.30 1.30 100.00 

Bristol-syn 32.93 0.44 0.00 2.36 2.98 0.37 0.00 0.00 60.71 0.06 0.13 100.00 

Bengaluru-syn 37.65 0.52 0.13 1.62 2.49 0.14 0.00 0.00 57.45 0.00 0.00 100.00 

Khartoum-syn 16.63 0.50 0.00 3.93 2.09 1.00 0.00 0.00 75.28 0.00 0.57 100.00 

Table 7-2: Specific surface areas of the natural (nat) and synthetic (syn) soils in oxide wt%. 

Soil Specific surface area (m2g-1) 

Bristol-nat 17.6 

Bengaluru-nat 33.7 

Khartoum-nat 36.9 

Bristol-syn 14.0 

Bengaluru-syn 6.7 

Khartoum-syn 42.0 
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7.2.2 Synthesis procedure 

The phase compositions of the natural Bristol (Maskell, 2013) and Khartoum (Balila, 

2017) soils had been previously quantified. The Bengaluru soil was found to contain 

kaolinite as the only clay mineral, the mass proportion of which was assumed to be the 

same as the clay fraction (<2 μm particle size). Using this information about the phase 

compositions of the natural soils (Table 7-3), synthetic soils were prepared. The 

compositions of the synthetic soils were determined in order to have the same types 

and proportions of clay minerals as each respective natural soil - but, instead of the 

associated minerals found in the natural soils, the remaining mass was made up with 

quartz sand as a filler. Using these proportions of clay minerals and quartz sand, the 

synthetic soils were prepared to have compositions given in Table 7-3. These were 

made by adding the constituent ingredients together in a beaker, then dry-mixing for 5 

minutes with a magnetic stirrer (Stuart UC152 heat-stir). Their chemical compositions 

are given in Table 7-1.  
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Table 7-3: Compositions of natural (nat) and synthetic (syn) soils used. *Natural associated 

minerals are assumed not to participate in the reaction. 

Sample 
Kaolinite 

(%) 
Montmorillonite 

(%) 
Illite 
(%) 

Natural 
associated 

minerals* (%) 

Inert filler sand 
(%) 

Bristol-nat 31 3 13 53 0 

Bristol-syn 31 3 13 0 53 

Bengaluru-nat 36 0 0 64 0 

Bengaluru-syn 36 0 0 0 64 

Khartoum-nat 4 18 3 75 0 

Khartoum-syn 4 18 3 0 75 

 

As previously described (Marsh et al., 2018b), the compositions in Table 7-4 were 

determined to provide samples of a predetermined Na:Al ratio (chosen to be 1), whilst 

maintaining the wet mix workability at the plastic limit. In order to be consistent about 

calculating the reactive moles of Al, a working assumption was made that only the clay 

minerals would react in alkali activation. Therefore, molar quantities of Al in each soil 

were calculated from the clay contents and generic structural formulae of the clay 

minerals. To model workability behaviour, Atterberg plastic limit measurements 

(Wagner, 2013) were undertaken for each of the natural soils over a range of sodium 

hydroxide solution concentrations (BSI, 1990), shown in Figure 7-2. The behaviour 

matched well for the synthetic soils too.  
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Figure 7-2: Variation in plastic limit with sodium hydroxide solution concentration for the three 
natural soils. 

The soil samples were activated by adding an aqueous sodium hydroxide solution. 

Solutions of different concentrations were prepared by adding sodium hydroxide pellets 

to distilled water, mixing with a magnetic stirrer (Stuart UC152 heat-stir) for a minimum 

of 2 h until fully dissolved and then allowing to cool. Varying quantities of activating 

solutions were added to 20 g of each soil, as given in Table 7-4. Each mixture of 

activating solution and soil was mixed by hand for 3 minutes, providing a consistent 

and well-distributed mixture. The high viscosity of the samples allowed them to be 

compacted by hand into 18 mm x 36 mm cylindrical Teflon moulds by tamping with a 

glass rod in three layers for each sample, using 25 blows for each layer. Samples were 

cured in an air atmosphere in an 80 °C oven for 24 h in their moulds. After curing, 

activated samples in the Bristol and Bengaluru soil series were not fully dried so 

required further drying, by storing for 48 h in a vacuum dessicator. This phenomenon of 

slow drying has previously been observed in other alkali-activated clay-based systems 

(Marsh et al., 2018a). After demoulding, samples were aged for 28 days in a controlled 

environment of 20 ± 0.5°C and 50 ± 2.5% relative humidity. An air atmosphere was 

intentionally used for both curing and ageing, to provide conditions representative of 

industrial brickmaking processes. A control sample was made for each composition, by 

adding distilled water and then mixing and curing in the same manner.  

Due to the experimental constraints of plastic limit consistency and Na:Al = 1, the 

NaOH solution was a lower concentration for Khartoum (4.1 M) than for the other soils 

(10.2 M and 13.2 M) (Table 7-4). Therefore, to test whether the difference in behaviour 

was due to a lower concentration, activation of the Khartoum soils was repeated using 



233 
 

a 10 M NaOH activating solution whilst maintaining the plastic limit condition, and 

hence giving an Na:Al molar ratio > 1. These results are included in an Appendix. 

Table 7-4: Composition of activating solutions used for 20g of dry soil, for the control (cont) and 
activated (act) samples. 

Sample 
Water 

(g) 
NaOH 

(g) 
[NaOH] 

(molarity) 

Bristol-nat-cont 4.04 n/a n/a 

Bristol-nat-act 4.41 2.56 13.2 

Bristol-syn-cont 4.04 n/a n/a 

Bristol-syn-act 4.41 2.56 13.2 

Bengaluru-nat-cont 3.94 n/a n/a 

Bengaluru-nat-act 5.13 2.23 10.2 

Bengaluru-syn-cont 3.94 n/a n/a 

Bengaluru-syn-act 5.13 2.23 10.2 

Khartoum-nat-cont 5.86 n/a n/a 

Khartoum-nat-act 5.54 0.94 4.1 

Khartoum-syn-cont 5.86 n/a n/a 

Khartoum-syn-act 5.54 0.94 4.1 

 

7.2.3 Characterisation methods 

The set of characterisations was performed at 28 ±2 days ageing time, and (with the 

exception of SEM imaging) was done using powders prepared from the cured samples. 

These were ground by hand, having been wetted with isopropanol to avoid damaging 

the clay minerals’ crystal structures (Moore and Reynolds, 1997). For XRD and TGA, 

powders were ground until there was no further discernible reduction in particle size, 

and so were comparable between samples. Any variation in particle size of the ground 

powders was not expected to have any noticeable effect on characterisation results. 

For FTIR, due to the constraints on particle size when making measurements in 

reflection mode, and the wider particle size distribution in soils compared to clays, 

powders were ground until they passed through a 75 μm sieve.   
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Powder X-ray diffraction (XRD) analysis was performed to identify phases with a 

Bruker D8 Advance instrument using monochromatic CuKα1 L3 (λ = 1.540598 Å) X-

radiation and a Vantec superspeed detector. A step size of 0.016 °(2θ) and step 

duration of 0.3 seconds were used. Powder samples were prepared using the pressed 

glass slide method. Patterns were corrected for sample height shift by calibrating to the 

most intense quartz reflection (101) at 26.6 °(2θ), and normalised to the most intense 

reflection in each respective pattern. Phase identification was done using Bruker EVA 

software, using reference patterns from the Joint Committee on Powder Diffraction 

Standards (JCPDS) database.  

Fourier Transform Infrared Spectroscopy (FTIR) was done to characterise molecular 

bonding, using a Perkin-Elmer Frontier with a diamond Attenuated Total Reflectance 

(ATR) head. For FTIR, powder samples were ground further until they passed through 

a 75 μm sieve. Spectra were collected over a range of 4000 – 600 cm-1 using a 

resolution of 4 cm-1 and 5 scans per spectrum. Corrections were made for ATR and 

background using Perkin-Elmer Spectrum software. Spectra were normalised to the 

most intense band in each respective spectrum.  

Scanning electron microscope (SEM) imaging was used to characterise phase size and 

morphology, using a JEOL SEM6480LV in secondary electron mode with an 

accelerating voltage (AV) of 10 kV. Because the SEM used a tungsten filament, an AV 

of 10 kV was selected as an optimal balance between the tendencies towards a noisy 

image at lower AV, and lower resolution at higher AV. Unpolished samples were used 

to enable easier distinction of particle morphology in the microstructures, and also 

given the friability of some of the samples. Bulk specimens were sputter coated with 

gold for 3 minutes. All images were taken of regions in the bulk of the specimen, >2 

mm away from the edge. 
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7.3 Results 

7.3.1 Macroscopic behaviour 

No unusual curing shrinkage or expansion defects were observed in any of the 

samples after curing (Figure 7-3). The difference in colour between the natural and 

synthetic clays is mostly attributable to the presence of iron compounds (Dixon and 

Weed, 1989). Most of the soils did not undergo any changes of colour after activation. 

Exceptions included: the Bristol natural soil darkened slightly; the Khartoum synthetic 

soil turned a shade of brown, and both the Bengaluru real soil and the Bristol synthetic 

soil had a strip of darker material at the top (i.e. the open end of the mould).  

Figure 7-3: Photos of cured control and activated samples. 
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7.3.2 XRD 

7.3.2.1 Precursors 

The indexing of the Bristol and Khartoum natural soils was based on the quantitative 

analysis undertaken on these soils in previous studies (Balila, 2017; Maskell, 2013). 

XRD patterns were also measured for the <2 μm fraction of the soils, separated using a 

sedimentation technique (Stucki, 2013). Regarding iron oxide/hydroxide compounds, 

only hematite was identified in Bristol-nat and Bengaluru-nat (Figure 7-4). Both these 

soils demonstrated a noticeable response to an applied magnetic field, as expected 

(Stucki et al., 1987). The Khartoum-nat soil demonstrated a weak response. Given the 

brown/grey colour, it may contain a small amount of fine goethite which was not 

detectable in XRD due to small size and low crystallinity (Kuhnel et al., 1975; Stucki et 

al., 1987).  

 

Figure 7-4: Indexed XRD patterns of the natural and synthetic soils. 

In the Bristol natural soil, the clay phases present (listed in order of most to least 

abundant) were kaolinite (Powder Diffraction File (PDF)# 01-079-1570), illite (PDF# 00-

026-0911) and montmorillonite (PDF# 00-013-0135), with quartz (PDF# 00-046-1045), 

hematite (PDF# 00-033-0664), a chlorite (PDF# 01-085-2163), calcite (PDF# 00-005-

0586) and siderite (PDF# 00-029-0696) also present. In the synthetic soil, the same 
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clay phases were present, with quartz, muscovite (PDF# 01-084-1304) and microcline 

(PDF# 00-019-0932) present as impurities.  

In the Bengaluru natural soil, kaolinite was the only clay mineral present, with quartz, 

hematite, microcline and a mica phase also present. The mica phase was assigned as 

muscovite, given that the underlying geology of the area was granitic. In the synthetic 

soil, kaolinite was the sole clay phase, with quartz, microcline and muscovite present 

as impurities. The broader profile of the kaolinite reflections is likely due to weathering 

in lateritic soils (Kaze et al., 2017; Kuhnel et al., 1975). 

In the Khartoum natural soil, the clay phases present (listed in order of most to least 

abundant) were montmorillonite, kaolinite and illite, with quartz, microcline, a chlorite 

(PDF#  01-074-1137), albite (PDF# 00-009-0466), calcite and hornblende (PDF# 01-

071-1060) also present. Given the high iron content of this soil (Table 7-1), at least one 

iron oxide or hydroxide phase was also expected to be present. Although reflections for 

these could not identified in the measured pattern, this might expected as its reflections 

are generally weak due to its small size of typically 10 – 100 nm (Stucki et al., 1987), 

and also given the number of other phases’ reflections in the pattern. In the synthetic 

soil, the same clay phases were present, with quartz, microcline and muscovite present 

as impurities. The d-values of the 001 montmorillonite peak were 14.7 and 14.5 Å for 

the natural and synthetic soils respectively. This suggests their interlayer cations were 

Ca2+ and/or Mg2+ (Ferrage et al., 2005).  

In the following figures, only the main reflections for the clay minerals and reflections 

for product phases are indexed. This is done for purposes of clarity, given the number 

of associated mineral phases, and their general lack of observed reactivity. 
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7.3.2.2 Bristol Soils 

In the natural soil, activation resulted in emergence of new reflections attributed to 

hydrosodalite Na6[AlSiO4]6·4H2O (PDF# 00-042-0216)(Figure 7-5). For the clay 

minerals: there was a reduction in intensity of the kaolinite reflections; the illite 

reflections did not seem not to decrease, and the montmorillonite reflection was too 

weak to discern any change, especially given its overlap with a chamosite reflection. 

No notable changes were observed for any of the associated minerals’ reflections.  

In the synthetic soil, activation also resulted in emergence of new reflections attributed 

to basic hydrosodalite Na8[AlSiO4]6(OH)2·4H2O (PDF# 00-041-0009). For the clay 

minerals there was: a reduction in intensity of the kaolinite reflections; the 

illite/muscovite reflections seemed to reduce in intensity, and again the montmorillonite 

reflection was too weak to discern any change. With regard to the minor phases, 

microcline’s strongest reflections seemed also to reduce in intensity relative to the 

strongest quartz reflection.  

Although particle orientation may have some influence, the intensity is less and the 

breadth is greater of the kaolinite 001 reflection (12.4 °2θ) in the natural soil compared 

to the synthetic soil. This could be due to particle-size broadening, suggesting that the 

kaolinite clay mineral phase may have a much smaller average crystallite size in the 

natural soil, although it is possible strain broadening could contribute too (Moore and 

Reynolds, 1997).  



239 

Figure 7-5: XRD patterns of the precursors and activated samples of the natural and synthetic 
Bristol soils  



240 
 

7.3.2.3 Bengaluru Soils 

In the natural soil, activation resulted in emergence of new reflections attributed to the 

hydrosodalite Na6[AlSiO4]6·4H2O (PDF# 00-042-0216) (Figure 7-6). The reflections of 

kaolinite, the sole clay mineral present, decreased in intensity after activation. With 

regard to other phases, the weak reflection of hematite at 33.2 °2θ is still present after 

activation, whilst the main reflection of muscovite at 8.9 °2θ is too weak to be 

conclusive.  

In the synthetic soil, activation resulted in emergence of new reflections also attributed 

to the hydrosodalite Na6[AlSiO4]6·4H2O (PDF# 00-042-0216). The reflections of 

kaolinite decreased in intensity after activation. The muscovite 002 and 004 reflections 

at 8.9 and 17.8 °2θ seemed to decrease relative to the most intense quartz reflection.  

 

 

Figure 7-6: XRD patterns of the precursors and activated samples of the natural and synthetic 
Bengaluru soils. 
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7.3.2.4 Khartoum Soils 

In the natural soil, activation resulted in no visible formation of crystalline product 

phases (Figure 7-7). For the clay minerals, there was a shift of the montmorillonite 001 

reflection from 5.9 to 7.3 °2θ, and hence a decrease in d-value from 15.0 to 12.1 Å. 

This shift has previously been attributed partly to interlayer cation exchange of Na+ for 

Ca2+/Mg2+, and partly to the activation process itself (Marsh et al., 2018a). This 

interpretation was consistent with a noticeable decrease in plastic limit when NaOH 

concentration was increased (Figure 7-2), which is typical of Ca2+ montmorillonite 

(Bain, 1971). The 001 reflection became broader after activation, making it unclear 

whether there was any change in overall intensity. The kaolinite 001 reflection (12.4 

°2θ) did not undergo any noticeable change, and the illite reflections were too weak to 

say anything conclusive. No notable changes were observed for any of the associated 

minerals’ reflections.  

In the synthetic soil, activation also resulted in no visible formation of crystalline product 

phases. For the clay minerals, there were also the effects of cation exchange and 

activation process on montmorillonite, which underwent a shift of the 001 reflection 

from 5.6 to 7.2 °2θ, and hence a decrease in d-value from 15.8 to 12.3 Å. The 

montmorillonite 001 reflection also seemed to undergo a decrease in intensity. The 

kaolinite and illite/muscovite reflections seemed to decrease in intensity in comparison 

to the main quartz reflection. With regard to minor phases, the microcline reflection at 

27.5 °2θ seemed to undergo a decrease in intensity.  
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Figure 7-7: XRD patterns of the precursors and activated samples of the natural and synthetic 
Khartoum soils. 
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7.3.3 SEM 

7.3.3.1 Bristol Soils 

The micron-scale clay platelets were clearly visible in the images of both the natural 

and synthetic control samples (Figure 7-8). In the activated natural soil, there were still 

a large number of clay particles visible, and also new particles of typical size ~0.5 µm. 

These were attributed to the hydrosodalite phase identified in the XRD pattern. In the 

activated synthetic soil, only a small number of clay particles were still present. The 

microstructure was dominated by new particles of typical size ~0.2 µm, attributed to the 

hydrosodalite phase identified in the XRD pattern.  

 

Figure 7-8: SEM images of control and activated samples of the natural and synthetic Bristol 
soils. 
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7.3.3.2 Bengaluru Soils 

The micron-scale clay platelets are clearly visible in the image of the synthetic control 

sample (Figure 7-9). In the image of the natural control sample, the scale of the 

particles was much finer, typically <0.1 µm. This observation agrees with the BET SSA 

values given in Section 7.2.1, which were significantly higher for the natural control soil.  

In the activated natural soil, the microstructural features were of a similar scale to the 

control sample. This made differences in phase morphology inconclusive, although the 

size distribution of fine particles increased from <0.1 µm to 0.1 – 0.2 µm. This 

difference in particle size distribution was attributed to the transformation of kaolinite 

into a hydrosodalite phase, as identified in the XRD pattern. In the activated synthetic 

soil, a small number of clay particles were still present. The microstructure was 

dominated by new particles of typical size ~0.3 µm, attributed to the hydrosodalite 

phase identified in the XRD pattern.  

 

Figure 7-9: SEM images of control and activated samples of the natural and synthetic 
Bengaluru soils. 
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7.3.3.3 Khartoum Soils 

The micron-scale clay platelets were clearly visible in the images of both the natural 

and synthetic control samples (Figure 7-10). In the image of the activated natural soil, 

the edges of the platy particles appeared with ragged edges, suggestive of the edge-

dominated dissolution mechanism of these clays in alkaline solutions (Bauer and 

Berger, 1998; Köhler et al., 2003). No new microstructural features were observed. In 

the image of the activated synthetic soil, irregular particles of typical size ~0.5 µm were 

evenly distributed in the microstructure. This was similar to the microstructure 

previously observed for an activated mixture of 90% montmorillonite and 10% kaolinite 

clays (Marsh et al., under review). These are unlikely to be individual zeolitic particles – 

they do not exhibit the expected angular morphology, and given that no zeolitic 

reflections were observed in the XRD patterns, they are too large to be x-ray 

amorphous zeolites (Jacobs et al., 1981). This suggests these could be either a poorly 

linked geopolymer phase or carbonate precipitates.  

Figure 7-10: SEM images of control and activated samples of the natural and synthetic 
Khartoum soils. 



246 
 

7.3.4 FTIR 

The range 2000 – 600 cm-1 is displayed, as this is range of most interest given it 

contains the stretching bands of the aluminosilicate phases.  

7.3.4.1 Bristol Soils 

There were no significant differences between the FTIR spectra of the natural and 

synthetic soils’ control samples (Figure 7-11). The same bands were present, albeit 

with small differences in relative intensity. The position of the dominant Si-O-Si 

stretching vibration was slightly higher for the synthetic soil (1006 cm-1) than the natural 

soil (1000 cm-1).  

The changes in the dominant aluminosilicate band were similar for both natural and 

synthetic soils, with a broadening and shift to lower wavenumbers (984 and 979 cm-1 

respectively). Broad carbonate bands, likely composed of several superimposed bands 

emerged for both soils centred at ~1450 cm-1, along with another individual band at 850 

– 865 cm-1. These were more intense for the natural soil.  

 

Figure 7-11: FTIR spectra of precursor and activated samples of the natural and synthetic 
Bristol soils. 
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7.3.4.2 Bengaluru Soils 

There were no significant differences between the FTIR spectra of the natural and 

synthetic soils’ control samples (Figure 7-12). The same bands were present, albeit 

with small differences in relative intensity. The position of the dominant Si-O-Si 

stretching vibration was slightly higher for the synthetic soil (1006 cm-1) than the natural 

soil (1004 cm-1).  

The changes in the dominant aluminosilicate band were similar for both natural and 

synthetic soils, with a broadening and shift to lower wavenumbers (976 and 979 cm-1 

respectively). A very weak, broad carbonate band emerged in the synthetic soil, 

centred at 1476 cm-1.  

 

Figure 7-12: FTIR spectra of control and activated samples of the natural and synthetic 
Bengaluru soils. 
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7.3.4.3 Khartoum Soils 

Due to larger differences in relative intensity between the different aluminosilicate 

bands in the control samples’ spectra, the position of the dominant Si-O-Si stretching 

vibration was significantly lower in the natural soil (1003 cm-1) than in the synthetic soil 

(1032 cm-1) (Figure 7-13). Carbonate bands at ~1450 cm-1 and 873 cm-1 were only 

present in the natural soil’s control spectrum, attributed to calcite.  

The changes in the dominant aluminosilicate band were similar for both natural and 

synthetic soils, undergoing broadening but also a very small shift in wavenumbers 

compared to the other soils (1004 and 1031 cm-1 respectively). The calcite carbonate 

bands remained present for the natural soil, and weaker carbonate bands emerged in 

the same locations for the synthetic soil. A broad carbonate band, also centred at 

~1450 cm-1, emerged for the synthetic artificial soil after activation, along with another 

individual band at ~865 cm-1.  

Figure 7-13: FTIR spectra of control and activated samples of the natural and synthetic 
Khartoum soils. 
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7.3.5 TGA 

Most of the minerals known to be present in the soils undergo some form of mass loss 

event in the temperature range tested, as follows (Smykatz-Kloss, 1974; Ulery and 

Drees, 2008). Clay minerals can be distinguished by their dehydroxylation 

temperatures, which typically lie within the range of 450 – 750 °C. For the silicates and 

other aluminosilicates, dehydroxylation typically occurs in a higher range. The 

exceptions are quartz and microcline, which do not contain hydroxyl groups. For the 

carbonates, decomposition typically occurs from 700 – 960 °C. For the iron oxides and 

hydroxides, some only undergo decomposition rather than structural changes. These 

specificities make TG and dTG curves particularly helpful for confirming the identity of 

minerals in soil. 

As shown in the FTIR results (Section 7.3.4), it is likely that due to efflorescence, small 

amounts of sodium carbonate phases were present in the activated soils which were 

not detected in the XRD patterns. The phases most likely to be present are natrite 

(𝑁𝑎2𝐶𝑂3), thermonatrite (𝑁𝑎2𝐶𝑂3 ∙ 𝐻2𝑂) and trona (𝑁𝑎3𝐻(𝐶𝑂3)2 ∙ 2𝐻2𝑂). For the latter 

two compounds, dehydration and/or partial carbon loss can occur < 300 °C, to form 

natrite (Nikulshina et al., 2008; Smykatz-Kloss, 1974). Full decomposition of natrite 

occurs above 840 °C (Newkirk and Aliferis, 1958).  

Due to the complex phase composition of these soils and the possibilities of 

overlapping loss peaks, it was not always possible to provide a complete indexing of 

the dTG curves. dTG peaks will be described either by their peak centre if well-

resolved, or approximate temperature range if not.  
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7.3.5.1 Bristol Soils 

In the dTG curves of the natural / synthetic precursor soils (Figure 7-14), the mass loss 

events were attributed to the following phases: 102 / 92 °C to the loss of surface 

adsorbed water from clay minerals; the largest magnitude peaks at 490 / 507 °C to the 

dehydroxylation of kaolinite and montmorillonite; 645 °C to the dehydroxylation of illite 

in the natural soil (Földvári, 1991; Smykatz-Kloss, 1974). In the natural soil, the small 

peak at 309 °C was assigned to the dehydration of hydrate phases associated with 

hematite (Rodulfo-Baechler et al., 2004), and the peak at 644 °C to decomposition of 

calcite (Criado and Ortega, 1992). In the synthetic soil, the shoulder at 656 °C could 

possibly have been due to a trace amount of calcite in the sand addition. The major 

dTG loss peaks expected from the other associated minerals were either overlapping 

with the larger clay minerals’ peaks, or not of large enough magnitude to be assigned 

with confidence. The overall mass loss was slightly greater for the natural precursor 

soil (-7.0 %) than for the artificial one (-4.9 %).  

In the activated samples of both the natural and artificial soils, there was a large 

decrease in the magnitude of the kaolinite dTG peak, in agreement with the 

consumption of kaolinite shown in the XRD patterns (Figure 7-5). In the activated 

natural soil, broad peaks emerged at 212, 315 and 394 °C, which overlapped in the 

100 – 400 °C region. The magnitude of the 89 °C surface adsorbed moisture peak 

increased greatly. In the activated synthetic soil, there was also a large decrease in 

magnitude of the kaolinite dTG peak. New, broad peaks emerged at 160 °C and 

elsewhere within the 100 – 400 °C region. There was also a large increase of the 

surface adsorbed moisture peak at 102 °C. 

The new peaks in the 100 – 400 °C region for both activated samples were attributed to 

the respective hydrosodalites identified in the XRD patterns. Peaks in this region are 

indicative of hydrosodalites, with the loss temperature and number of the dTG peaks 

corresponding to H2O and/or OH loss from the β-cages (Engelhardt et al., 1992). The 

clear difference in the profile of the dTG curves in this region would therefore be 

expected from the formation of a basic and non-basic hydrosodalite. The increase in 

surface-adsorbed moisture loss at ~100 °C was also attributed to the presence of 

hydrosodalites.  

In both activated soils, the dTG intensity increased in the 700 – 1000 °C region. This 

could partly be attributed to the decomposition of natrite (𝑁𝑎2𝐶𝑂3), but only in the range 

of >840 °C. In the TG curves, overall mass loss increased after activation for both soils 

but to a greater extent for the natural soil (2.1 %) than for the synthetic soil (0.7 %).  
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Figure 7-14: TGA and dTG spectra of control and activated samples of the natural and synthetic 
Bristol soils. 
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7.3.5.2 Bengaluru Soils 

In the dTG curves of the natural / synthetic precursor soils (Figure 7-15), the mass loss 

events were attributed to the following phases: 87 / 105 °C to the loss of surface 

adsorbed water from clay minerals; the largest magnitude peaks at 458 / 508 °C to the 

dehydroxylation of kaolinite (Földvári, 1991; Smykatz-Kloss, 1974). In the natural soil, 

the small peak at 289 °C was assigned to the dehydration of hydrate phases 

associated with hematite (Rodulfo-Baechler et al., 2004). In the synthetic soil, the 

shoulder at 618 °C could possibly have been due to a trace amount of calcite in the 

sand addition. The overall mass loss was slightly greater for the natural precursor soil 

(-6.8 %) than for the artificial one (-5.2 %). 

In the activated samples of both the natural and artificial soils, there was a large 

decrease in the magnitude of the kaolinite dTG peak, in agreement with the 

consumption of kaolinite shown in the XRD patterns (Figure 7-6). In the activated 

natural soil, broad peaks emerged at 198 and 287 °C. The magnitude of the 111 °C 

surface adsorbed moisture peak increased greatly. The hematite peak was still present 

after activation. In the activated synthetic soil, a new peak emerged at 197 °C, with 

another possibly in the overlapping region from 100 – 200 °C. There was also a large 

increase of the surface adsorbed moisture peak. 

The new peaks in the 100 – 200 °C range were attributed to the non-basic 

hydrosodalite identified in the XRD patterns (Figure 7-6). The broad similarity in 

number and locations of loss peaks in this temperature range between the activated 

soils is in agreement with the observation that the same type of hydrosodalite was 

formed in both samples. The increase in surface-adsorbed moisture loss was also 

attributed to the presence of hydrosodalites.  

In the activated synthetic soil, minor, broad peaks also emerged at 658 and 759 °C. In 

contrast, there was negligible change for the activated natural soil in this temperature 

range. In the TG curves, overall mass loss did not change after activation for the real 

soil, but decreased a slight amount for the synthetic soil.  
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Figure 7-15: TGA and dTG spectra of control and activated samples of the natural and synthetic 
Bengaluru soils. 
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7.3.5.3 Khartoum Soils 

In the dTG curves of the natural / synthetic precursor soils (Figure 7-16), the mass loss 

events were attributed to the following phases: 88 / 78 °C to the loss of surface 

adsorbed water from clay minerals; the largest magnitude peaks at 471 / 496 °C to the 

dehydroxylation of montmorillonite (Földvári, 1991; Smykatz-Kloss, 1974). Both these 

dehydroxylation temperatures are in the lower end of the range for montmorillonites, 

suggesting that both had a trans-vacant octahedral sheet structure (Drits et al., 1995; 

Wolters and Emmerich, 2007). In the natural soil only, mass loss peak attributions 

were: 285 °C to the dehydration of hydrate phases associated with hematite (Rodulfo-

Baechler et al., 2004); 696 °C to the decomposition of calcite (Criado and Ortega, 

1992). The montmorillonite dehydroxylation peak at 471 °C exhibited a shoulder on the 

lower temperature side – after activation, a peak was visible at 421 °C. This peak could 

be the dehydroxylation of goethite (FeOOH) (Smykatz-Kloss, 1974), a common iron 

compound in soils (Stucki et al., 1987). However, it was not possible to confirm this 

attribution through XRD due to the fine size distribution and low crystallinity of iron 

compounds in soil, as previously described in Section 7.3.2.1. In the synthetic soil only, 

the peak at 656 °C could have been due to decomposition of a trace amount of calcite 

in the sand addition. The overall mass loss was greater for the natural precursor soil (-

10.0 %) than for the artificial one (-2.5 %). 

In the activated natural soil, there was a decrease in magnitude of the montmorillonite 

dehydroxylation peak at 471 °C. In the activated synthetic soil, there seemed to be a 

decrease in magnitude of the equivalent peak at 496 °C. In the activated natural soil, 

there was almost no change in the surface adsorbed moisture peak, whereas in the 

synthetic activated soil there was a large increase in magnitude of the equivalent peak.  

In the activated natural soil, a new minor peak emerged at 774 °C. The calcite peak, 

and possible hematite and goethite peaks, were still present after activation. In the 

synthetic activated soil there was negligible change in the 750 – 1000 °C range, but 

there was a broad increase in magnitude from 170 – 400 °C. From a previous study on 

a montmorillonite system (Marsh et al., 2018a), this phenomenon is associated with 

geopolymer formation. In the TG curves, overall mass loss decreased (-0.7%) for the 

natural soil, but increased for the synthetic soil (1.5 %).  
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Figure 7-16: TGA and dTG spectra of control and activated samples of the natural and synthetic 
Khartoum soils. 
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7.4 Discussion 

7.4.1 Phase formation for natural and synthetic soils 

There were both similarities and differences between the phases formed in the natural 

and synthetic versions of each soil, as summarised in Table 7-5.  

Table 7-5: Summary table showing phases formed from activation of the natural and synthetic 
soils. 

Soil Natural Synthetic 

Bristol hydrosodalite basic hydrosodalite 

Bengaluru hydrosodalite hydrosodalite 

Khartoum geopolymer none 

As expected for a kaolinite dominated soil (Marsh et al., 2018b), for the Bristol soils, 

hydrosodalite was formed as the reaction product in both the natural and synthetic 

soils. However, different hydrosodalities were formed in each of the soils: a non-basic 

hydrosodalite Na6[AlSiO4]6·4H2O in the natural soil, and a basic hydrosodalite 

Na8[AlSiO4]6(OH)2·4H2O in the synthetic soil. The existence of different product phases 

is supported by differences in the TGA and FTIR signals, as already described in 

Sections 7.3.5.1 and 7.3.4.1. The difference in the scale of the clay phases, 

predominantly kaolinite, was negligible between the two precursor soils, as already 

shown from the BET specific surface area and SEM results in Sections 7.2.1 and 

7.3.3.1. Previous studies on the synthesis of zeolites from kaolinite have shown that 

phase formation is sensitive to temperature, time, alkaline solution concentration and 

Si:Al ratio (Abdullahi et al., 2017; Barrer et al., 1968). It is therefore likely that this 

difference is either due to slight differences in the mineralogy of the kaolinite, or very 

minor variations in the processing and curing conditions.  

For the Bengaluru soils, exactly the same hydrosodalite phase was formed in both the 

natural and synthetic soils, the non-basic hydrosodalite Na6[AlSiO4]6·4H2O. The 

hydrosodalite particles formed were much finer in the activated natural soil, as already 

described in the SEM results in Section 7.3.3.2. In the precursor, the kaolinite particles 

were much smaller, and specific surface area much higher as already described in 

Sections 7.3.3.2 and 7.2.1. It is likely that the finer kaolinite particles offered a higher 

spatial density of nucleation sites, thus resulting in the formation of more, finer 

hydrosodalite particles.  

For the Khartoum soils, no crystalline product phases were formed in either the natural 

or synthetic soils. A change of microstructure was observed in the SEM images which 

could have been a geopolymer (Section 7.3.3.3), but the evidence was not conclusive 

given there was no large observed negative shift of the Si-O-T FTIR band after 
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activation (Section 7.3.4.3). It is therefore likely that a small amount of poorly linked 

geopolymer N-A-S-H or (N,C)-A-S-H phase formed in the synthetic soil, but not for the 

natural soil. However, the results included in the Appendix show some evidence for 

geopolymer formation in both natural and synthetic soils when using 10 M NaOH. This 

suggests that in the lower concentration activation of the natural soil, geopolymer 

formation was retarded, but not prevented, relative to the synthetic soil.  

In summary, in spite of the differences in particle size and the absence of minor non-

clay minerals in the synthetic soils, the phase formation behaviour was generally 

similar between the natural and synthetic soils, albeit with non-clay components having 

a retarding effect in Khartoum-syn.  

7.4.2 Evaluation of clay minerals in activation 

In addition to characterising overall phase formation, the purpose of this study was to 

determine the relative influence of clay minerals and associated minerals in alkaline 

activation behaviour of soils.  

The Bristol natural soil had a slightly larger specific surface area than the synthetic soil 

(17.6 to 14.0 m2g-1), but the difference in particle size distribution as seen from the 

SEM images was negligible (Figure 7-8). The Bengaluru natural soil had a significantly 

larger specific surface area and finer particle size than the synthetic soil (33.7 to 6.7 

m2g-1), also seen in the SEM images (Figure 7-9). The kaolinite dTG mass loss peak 

was 50 °C lower for the natural soil than the synthetic soil, which is consistent with 

smaller particle size (Suraj et al., 1997). Accumulation of iron in kaolinite during 

pedogenic processes can make them more reactive by increasing disorder (Obonyo et 

al., 2014). The decrease in intensity of the kaolinite 001 peak after activation was 

similar for the natural and synthetic soils, suggesting that the clays had similar 

reactivity and hence that the kaolinite in the natural soil had low iron accumulation and 

was still relatively ordered. The Khartoum natural soil had a similar surface area to the 

synthetic soil (36.9 to 42.0 m2g-1), and seemed similar in terms of size from the SEM 

images (Figure 7-10). Furthermore, the montmorillonite dehydroxylation temperatures 

suggested that the montmorillonite clay minerals in both soils had a trans-vacant 

octahedral sheet structure (Section 7.3.5.3). The sheet structure of montmorillonites is 

known to influence some behaviours such as dehydroxylation mechanism (Drits et al., 

1995; Wolters and Emmerich, 2007), and also pozzolanic reactivity (Hollanders et al., 

2016). It was therefore desirable for getting an overall match between the clay minerals 

in the real and synthetic soils that both montmorillonite precursors had a trans-vacant 

structure. However, wavenumber of the Si-O-T FTIR band was ~30 cm-1 lower for the 

natural soil (Figure 7-13), and the dTG peak for montmorillonite dehydroxylation 

occurred at ~30 °C lower in the natural soil (Figure 7-16). For the purpose of this 



258 

exercise, the clay minerals in the synthetic soils were deemed to be suitable 

comparison points for those in the natural soils.  

A previous study (Marsh et al., under review) investigated the alkali activation products 

of different clay mixtures under the same processing conditions used here. These are 

useful comparison systems, as they can be considered as simplified soil systems. The 

mixtures closest to the soils, and their phase formation behaviours, were: for 

Bengaluru, 100%Kao forming hydrosodalite; for Bristol, 50%Kao-50%ILL forming 

hydrosodalite and a minor amount of hydroxycancrinite, and for Khartoum, 90%Mont-

10%Kao forming a geopolymer. These make an overall good agreement with the 

phases formed in the respective soils here. This is in agreement with the findings of the 

previous section, and supports the argument that phase formation behaviour is 

predominantly determined by the clay minerals.  

7.4.3 Evaluation of associated minerals in activation 

The associated minerals found in the natural soils included quartz, hematite, chlorite, 

siderite, muscovite, microcline, albite, calcite and hornblende. The synthetic soils were 

designed to match the natural soils in terms of clay content, but would not feature any 

of the minor phases found in the natural soils. In practice it was not possible to fully 

avoid these, since the precursor clays used for the synthetic soils contained small 

amounts of quartz, muscovite and microcline. Therefore, the behaviour of the 

associated minerals in all of the soil systems will be evaluated. The associated 

minerals can be categorised into two groups: firstly, silicate/aluminosilicate phases that 

might contribute directly to the alkali activation reaction through dissolution and 

donation of aluminium and/or silicon species (quartz, chlorite, muscovite, microcline, 

albite, hornblende); secondly, other phases which do not contain aluminium or silicon, 

but which might influence the system in other ways (hematite, siderite, calcite).  

In the first group of aluminosilicate/silicate minerals, quartz is the most common 

associated mineral in soils, and typically the largest component of the silt and sand size 

fractions, albeit with a size distribution dependent on weathering conditions (Dixon and 

Weed, 1989). Given that quartz consistently has the most intense reflections in the 

XRD patterns (Figure 7-4), this is likely the case for all the precursor soils used here. It 

is therefore difficult to say whether any minor dissolution of quartz occurred, although 

quartz remained the largest peak after activation for all soils. However, given the curing 

conditions used (Lucas et al., 2011), and the presence of more reactive minerals, it is 

unlikely that anything more than a minor amount of quartz dissolution occurred.  

Feldspars are the second most common associated mineral in soils (Dixon and Weed, 

1989), and include the alkali feldspar (including microcline) and plagioclase (including 
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albite) sub-groups. Microcline’s most intense XRD reflection seemed to undergo a 

decrease in intensity after activation in all the synthetic soils (Figure 7-5, Figure 7-6, 

Figure 7-7), but not in Bengaluru-nat, the only natural soil in which microcline was 

present (Figure 7-6). Albite was present in the precursor of Khartoum-nat, but did not 

undergo any noticeable decrease (Figure 7-7). In comparison with previous studies, Xu 

and van Deventer (2000) found that aluminosilicates with a ring structure – including 

feldspars – had a lower extent of dissolution than minerals with framework or chain 

structures. The same researchers later activated uncalcined albite and microcline, and 

found that both formed a geopolymer when in a mixture with kaolinite (Xu and Van 

Deventer, 2002). In comparison, Feng et al. (2012) found that albite in isolation had 

little ability to form a geopolymer phase when activated in its uncalcined or calcined 

state, albeit without additional silicate. No hard conclusions can be drawn on the exact 

extent of participation of feldspars in these specific systems, except that there seems to 

be variation between feldspars, and that they do not have a deleterious effect on 

overall phase formation behaviour.  

Amongst micas, muscovite is a common minor component in soils (Dixon and Weed, 

1989). Muscovite was present in all the synthetic soils (through its presence in the 

kaolinite precursor), and also in Bengaluru-nat. Noticing changes in muscovite 

reflections in the XRD patterns of Bristol-syn and Khartoum-syn was not feasible, as 

they overlapped with the other 2:1 phyllosilicates montmorillonite and/or illite. In the 

Bengaluru soils, kaolinite was the sole clay mineral, and hence did not overlap (Figure 

7-6). In Bengaluru-nat, the intensity of the muscovite reflection was too weak to discern 

any change with confidence, whereas in Bengaluru-syn, there seemed to be a clear 

decrease. It is within reason that this change could be partly explained by orientation 

effects.  

Chlorites are unstable in soil environments, but can be found as an inherited mineral 

(Dixon and Weed, 1989). In Bristol-nat both the reflections at 6.2 and 25.2 °2θ were 

retained after activation (Figure 7-5). In Khartoum-nat, the reflection at 6.2 °2θ was also 

retained after activation. In Khartoum-nat, the only soil containing a hornblende, the 

main reflection at 10.5 °2θ was retained (Figure 7-7).  

In the second group of non-aluminosilicate/silicate minerals, iron compounds are found 

to some extent in nearly all soils, with goethite (α-FeOOH), hematite (α-Fe2O3) and 

magnetite (Fe3O4) the most widespread (Dixon and Weed, 1989). Their size distribution 

is in the <2 μm clay fraction (Stucki et al., 1987). The presence of iron phases in 

lateritic soils is of additional interest because of their known surface hardening effect 

under conditions of wetting and drying cycles (Alexander and Cady, 1962; Lassinantti 

Gualtieri et al., 2015). Iron compounds were only found in the natural soils. As shown in 
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Table 7-1, iron oxide composition differed by up to 10 wt.% between the natural and 

synthetic soils. Hematite was present in Bristol-nat and Bengaluru-nat, with possibly a 

small amount of goethite present in Khartoum-nat as described in Section 7.3.2.1. 

Hematite’s main reflection at 33.2 °2θ seemed to decrease in intensity after activation 

in both Bristol-nat and Karnatak-nat. Hematite has low solubility in alkaline solutions, 

but does increase with concentration (Ishikawa et al., 1997). Siderite was only present 

in Bristol-nat, and its main reflection at 32.0 °2θ decreased in intensity after activation. 

The iron phase (likely goethite) in Khartoum-nat was too fine and/or disordered to 

confirm its presence or detect any changes after activation. From previous studies, the 

role played by iron in alkali activation depends on the phase it is present in. Iron can be 

included within a geopolymer gel if it is available in solution during the polymerisation 

process, and hence in a reactive form, as shown for ferric nitrate solution and freshly 

precipitated ferric (oxy)hydroxide (Perera et al., 2007), as well as augite (Lemougna et 

al., 2013). However, if the iron is held in an unreactive form, including ferran forsterite 

(Lemougna et al., 2013) or hematite (Essaidi et al., 2014), this iron does not participate, 

or can have a slight retardation effect. The effect of unreacted iron on strength is 

debated, with some studies suggesting it has little effect (Lemougna et al., 2014) and 

others suggesting it is deleterious (Obonyo et al., 2014). Due to the complexity of these 

systems and the objectives, checking for elemental incorporation within the product 

phases is beyond the scope of this study. In summary, hematite did not prevent the 

formation of zeolitic phases in Bristol-nat and Bengaluru-nat, but the influence of the 

iron compound in the Khartoum-nat (likely goethite) may have contributed to a 

retarding effect on geopolymer formation. This is in broad agreement with previous 

studies. 

Calcite is a common mineral in soils and many other deposits. Calcite is present in 

Bristol-nat and Khartoum-nat (Figure 7-4). Its main reflection at 29.4 °2θ is not reduced 

in either soil. This is in agreement with the dTG spectra, in which the calcite mass loss 

peak does not appreciably change after activation in both soils (Figure 7-14, Figure 

7-16). Calcite can participate in dissolution and geopolymer formation to some extent,

although reported effects on strength have been mixed (Cwirzen et al., 2014; Yip et al., 

2008). Ca2+ ions can fulfil the charge-balancing role in the aluminosilicate polymer 

framework (Garcia-Lodeiro et al., 2015), but the overall effect on alkali aluminosilicate 

phase formation depends on activating solution concentration (Yip et al., 2005), and 

quantity of soluble Ca in the system (Garcia-Lodeiro et al., 2011). In this case it seems 

that the calcite underwent negligible dissolution, likely due to the presence of more 

reactive phases. 
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Organic matter in sub-soils is typically present as humus, a general term given to a 

variety of unidentifiable organic substances (Dixon and Weed, 1989). Organic 

compounds generally act as retardants in the setting of Portland cement (Paria and 

Yuet, 2006), but their effect in alkali activation is not well-investigated so far. NaOH is 

commonly used to extract organic matter from soils undergoing testing (Schnitzer and 

Schuppli, 1989). The evidence so far suggests that adsorption onto mineral surface 

sites has an inhibiting effect for dissolution of both kaolinite (Chin and Mills, 1991) and 

smectite-illite (Claret et al., 2002), as well as binding free Ca in solution (Toda et al., 

2018). However, as stated previously, soils with low organic content are used for 

stabilised soil materials, as this is a general requirement in earth building (Jagadish, 

2007). 

With regards to the associated minerals found in the synthetic soils, the coarse size of 

the added quartz (sieved to >63μm) made appreciable dissolution unlikely. Muscovite 

was generally observed to be unreactive. The exception was microcline, which 

consistently seemed to undergo a reduction in intensity, but only in the synthetic soils. 

With regards to the associated minerals found in the natural soils, quartz, microcline, 

albite, muscovite, chlorite, hornblende and calcite were likely to have made a negligible 

contribution, whilst the iron compounds hematite and siderite underwent an appreciable 

degree of dissolution.  

7.4.4 Implications for practical adoption 

If a soil has a high plastic limit there is a trade-off between NaOH concentration and 

Na:Al molar ratio whilst maintaining mix workability at the plastic limit. As shown for 

Khartoum-nat, when a system molar ratio of Na:Al = 1 was used, the NaOH 

concentration was insufficient for a reaction to occur. When a 10 M NaOH solution was 

used, a product phase was formed but the Na:Al molar ratio far exceeded the ideal 

value of 1. This means there was an excess of Na in the system available to form 

soluble carbonates in the form of surface efflorescence, which poses practical 

difficulties in leaching and even potential for surface damage (Allahverdi et al., 2015). 

This study has shown that there is a trade-off in mix design between NaOH 

concentration and Na:Al molar ratio. As a result of this trade-off, although the 

mineralogy of montmorillonite-rich soils may be conducive to successful alkali 

activation, the practical production constraints make them unfeasible to use in their 

natural form using NaOH as the sole activator. However, there is still strong potential 

for alkali-activated soil systems, albeit using a range of activators, reactive precursors 

and/or admixtures. The increased understanding of the fundamental behaviours 

developed in this study will assist the development of such systems. In future, it would 

be valuable to measure the mechanical properties of these systems for comparison 
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with conventional construction materials. However, to give accurate data, larger 

samples should be used. This was not possible with the limited amounts of these clays 

and soils available for this study. A contribution to this aim has been carried out in a 

follow-up study (Chapter 8).  



263 
 

 

7.5 Conclusions 

Clay minerals have been shown to be the primary determinants of phase formation in 

alkali-activated soils. In zeolite-forming soil systems, the scale and type of zeolite 

particles formed were influenced by clay particle size, mineralogy and possibly 

processing conditions. In contrast, through the innovative use of synthetic soil systems, 

it was shown that most associated minerals had little or no influence in the reaction. 

Regarding iron compounds, hematite did not prevent zeolite formation in two of the soil 

systems, but iron compounds did seem to have a retarding effect on geopolymer 

formation in the montmorillonite-rich soil. There is a trade-off in mix design between 

Na:Al molar ratio and NaOH concentration. Given this, in addition to clay mineralogy, it 

is the plastic limit which determines if a given soil is suitable for alkali activation.  
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Appendix 

7.6 Introduction 

As described in the Synthesis Procedure section in the main article, mix compositions 

were designed for efficient production of an alkali aluminosilicate phase and 

compatibility with extrusion processing. To this end, two constraints were used for each 

soil system: the wet mix had plastic limit consistency, and the system molar ratio Na:Al 

= 1. Given the differences in plastic limit between the soils (Figure 7-2 in the main 

article), the NaOH solution had a lower concentration for Khartoum (4.1 M) than for 

Bristol (13.2 M) and Bengaluru (10.2 M) (Table 7-3 in the main article). After activation, 

it was observed that new microstructural features had formed in Khartoum-syn, 

believed to be a N-A-S-H or (N,C)-A-S-H geopolymer phase. In contrast, in Khartoum-

nat there was no evidence of new phase formation, with clay particles showing 

evidence of only partial dissolution at their edges (Section 7.3.2.3 in the main article). 

To test whether associated minerals were preventing the formation of a geopolymer 

phase, or just retarding it, activation of the Khartoum soils was repeated using a 10 M 

NaOH activating solution. This concentration was chosen as it is a similar value to 

those in the other soil systems, and because the optimal concentration range for alkali 

activation of uncalcined clays using NaOH solution is understood to be in the range of 

8 – 12 M (Diop and Grutzeck, 2008; Heah et al., 2013; Hounsi et al., 2014; Lemougna 

et al., 2014; Xu and Van Deventer, 2000). New mix compositions were designed to 

maintain the plastic limit condition whilst using a 10 M concentration. This broke the 

second constraint, giving a system Na:Al molar ratio greater than 1. These additional 

results are presented here, with attention given to the phase formation in the additional 

systems, and comparison between the 10 M and 4.1 M systems for both Khartoum-nat 

and Khartoum-syn. 
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7.7 Materials and Methods 

The same precursors were used as described in the main article, using a soil mass of 

20g for each mix. The activating solution quantities are given in Table 7-6. These 

quantities gave a Na:Al molar ratio of 2.4 in the activated systems. 

Table 7-6: Composition of activating solutions used for 20g of dry soil. 

Sample 
Water 

(g) 
NaOH 

(g) 
[NaOH] 
molarity 

Khartoum-nat-act10M 5.1 2.2 10.0 

Khartoum-nat-act 5.5 0.9 4.1 

Khartoum-syn-act10M 5.1 2.2 10.0 

Khartoum-syn-act 5.5 0.9 4.1 

The same preparation procedures and characterisation methods were used as 

described in the main article. 
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7.8 Results 

7.8.1 Macroscopic behaviour 

There were no major changes in form or appearance between the 10 M and original 

4.1 M activated samples of either natural or synthetic Khartoum soils (Figure 7-17). 

There was slightly more colour contrast between the top and rest of the cylinders for 

the 10 M samples. Unlike for the original 4.1 M samples, no major cracks developed in 

demoulding the 10 M activated cylinders, indicating potentially improved binding.  

Figure 7-17: Photos of the 10 M and original 4.1 M activated samples of the natural and 
synthetic Khartoum soils. 
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7.8.2 XRD 

In the 10 M activated samples new reflections emerged, attributed to a small amount of 

hydrosodalite phase (Figure 7-18). Given the small number of clearly visible reflections, 

it was not possible to index this with complete confidence, but was believed to be the 

non-basic hydrosodalite Na6[AlSiO4]6·4H2O (PDF# 00-042-0216). These were 

accompanied by a large reduction in intensity of the kaolinite reflections. With regards 

to the associated minerals, no large changes were observed relative to the original 4.1 

M activated samples. The only small difference of note is the variability of the intensity 

of the microcline reflections at 27.5 °2θ, which suggests this may have been more to do 

with orientation than consumption. In Khartoum-nat, there was a decrease in intensity 

of the calcite peak at 29.4 °2θ.  

 

Figure 7-18: XRD patterns of the 10 M and original 4.1 M activated samples of the natural and 
synthetic Khartoum soils. 
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7.8.3 SEM 

In the 10 M activated sample of Khartoum-nat (Figure 7-19), the same ragged clay 

particles were present as with the original 4.1 M activated sample but new particles 

appeared to be present, of particle size <500 μm. In the 10 M activated sample of 

Khartoum-syn (Figure 7-19), the microstructure was dominated by irregular particles, 

which seemed to be more connected and with a wider size distribution than in the 

original 4.1 M activated synthetic sample.  

In both the natural and synthetic soils, there seemed to be changes in the SEM images 

for the 10 M activated sample relative to the original 4.1 M activated sample, although 

some overall similarities in microstructure were maintained.  

Figure 7-19: SEM images of the 10 M and original 4.1 M activated samples of the natural and 
synthetic Khartoum soils. 
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7.8.4 FTIR 

Some similar changes were observed for both natural and synthetic soils for 10 M 

activation relative to the original 4.1 M activation (Figure 7-20). In Khartoum-syn, the 10 

M NaOH activation led to a small positive shift in wavenumber of the Si-O-T band peak, 

from 1031 to 1035 cm-1. However, the profile of this band clearly changed with a more 

prominent shoulder on the lower wavenumber side. In Khartoum-nat, there was a 

negative shift in wavenumber of the Si-O-T band peak, from 1004 to 988 cm-1. This 

was especially striking, since the wavenumber position in the precursor was 1003 cm-1. 

This suggested that an alkali aluminosilicate product had formed after 10 M activation, 

but not after the original 4.1 M activation.  

 

Figure 7-20: FTIR spectra of the 10 M and original 4.1 M activated samples of the natural and 
synthetic Khartoum soils. 
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7.8.5 TGA 

In the TGA and dTG spectra (Figure 7-21), the same features were present in the 10 M 

and original 4.1 M activated samples, but these were more pronounced in the 10 M 

samples. Several changes were common to both soils with the increase to 10 M. 

Overall mass loss increased by 3.0% for both. There was an increase in the surface-

adsorbed moisture dTG peak (centre at 83 °C), and an increase in the background 

signal to form a plateau between 150 – 350 °C, which is associated with geopolymer 

formation (Marsh et al., 2018). This was in agreement with the FTIR results, which 

suggested a geopolymer phase had formed in Khartoum-syn-act10M. 

Regarding clay minerals, no large changes were visible for Khartoum-syn-act10M. In 

Khartoum-nat-act10M there was overlap with the positions of the dTG peaks and the 

plateau region between 150-350 °C. Regarding associated minerals, there was a 

noticeable decrease in intensity of the calcite dTG peak (centre at 661 °C) for 

Khartoum-nat, in agreement with the XRD observations. 
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Figure 7-21: TG and dTG spectra of the 10 M and original 4.1 M activated samples of the 
natural and synthetic Khartoum soils. 
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7.9 Discussion 

Apart from the fact that kaolinite was consumed in the 10 M activated samples, 

behaviour of the clay minerals was largely the same in the 10 M and original 4.1 M 

activated samples. Regarding the associated minerals, this was also largely the same, 

with the exception of some degree of calcite consumption in Khartoum-syn as 

described in the XRD and TGA results. The discussion will then focus on the kaolinite 

and phase formation behaviour.  

When 10 M activation was used, kaolinite was consumed and hydrosodalite formed in 

both the natural and synthetic soils. This was not observed for the original 4.1 M 

activated samples. Both soils contained just 4 wt.% kaolinite, and the XRD patterns 

showed that not all kaolinite was consumed (Figure 7-18). Therefore it seems likely that 

the changes observed in the different characterisation techniques were not wholly due 

to hydrosodalite formation, and that geopolymer formation also occurred in both soils, 

but this is more difficult to quantitatively identify. As mentioned in the main article, a 

useful comparison system is from a study on the activation of controlled mixtures of 

clays under the same processing conditions (Marsh et al., under review). The clay 

mineral composition of the Khartoum soil falls between those of the systems 90%Mont-

10%Kao, 50%Mont-50%Kao and 33%Kao-33%Mont-33%ILL. From these 

compositions, at comparable NaOH concentrations, both a geopolymer and a 

hydrosodalite would be expected to form. The participation of kaolinite only at higher 

concentration is also in agreement with the cited study which suggested that 

montmorillonite reacts preferentially to kaolinite under these processing conditions 

(Marsh et al., under review). Whereas in the original 4.1 M activated samples only a 

geopolymer was formed for Khartoum-syn, in the 10 M activated samples both a 

geopolymer and a hydrosodalite formed in Khartoum-nat and Khartoum-syn. This 

therefore suggests that whilst the associated minerals in Khartoum-nat may have 

prevented geopolymer formation at 4.1 M, a geopolymer was successfully formed at 10 

M, meaning that the associated minerals in Khartoum-nat may have a retarding rather 

than an inhibiting effect on geopolymer formation.  

7.10 Conclusions 

These results show evidence for geopolymer and hydrosodalite formation in both 

natural and synthetic soils using 10 M NaOH. This suggests that in the lower 

concentration activation of the natural soil, geopolymer formation was retarded, but not 

prevented, relative to the synthetic soil. 
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7.11 Mass spectrometry data 

The mass spectrometry (MS) data that was collected alongside the thermogravimetric 

(TG) data is presented here for the following sample series from both the main article 

and Appendix: 

 Bristol soils (control and activated) (Figure 7-22) 

 Bengaluru soils (control and activated) (Figure 7-23) 

 Khartoum soils (control and activated) (Figure 7-24) 

 Khartoum soils (activated with 10 M NaOH) (Figure 7-25) 

 

Figure 7-22: MS and dTG data for Bristol soil samples. 
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Figure 7-23: MS and dTG data for Bengaluru soil samples. 

Figure 7-24: MS and dTG data for Khartoum soil samples. 
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Figure 7-25: MS and dTG data for Khartoum soil samples activated with 10M NaOH. 
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Chapter 8 - Alkali activation of soil 
blocks 
In this chapter, the alkali activation behaviour of soil blocks is investigated. The aim of 

this chapter is to understand the effects on alkali activation behaviour of scaling-up 

samples to block size and addition of inert aggregate. The same Bengaluru soil as 

used in Chapter 7 is used as the precursor, building on the understanding of the 

behaviour of this soil developed in that chapter.  

This research was undertaken on a research placement at the Indian Institute of 

Science, Bangalore, as part of the project “Developing earth based building products 

utilising solid wastes”, funded by UKIERI.  
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Scale-up effects in alkali-activated soil blocks 

Abstract 

Alkali activation is a novel method of soil stabilisation, which could be used for the 

production of compressed blocks for walling materials. Given that much of the 

fundamental research into the chemical behaviour of this process has been done for 

small specimens, there is a knowledge gap over the potential effects of increasing 

specimen size. In this study, blocks were made from a mix of soil, sand and NaOH 

solution using a manual block press. Their phase composition and microstructure were 

investigated using powder XRD and SEM; drying behaviour and compressive strength 

were also measured. No major microstructural or phase differences were found 

between the central and edge regions of the blocks. Longer curing time had little effect 

on phase formation and microstructure, but resulted in increased compressive strength. 

There are no fundamental chemical issues obstructing the scale-up of this stabilisation 

method, but further research should focus on the measurement of properties in line 

with building standards and eliminating hazards in the manufacturing process. 
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8.1 Introduction 

Soil and soil-based materials can be used in a variety of construction methods, 

categorised into three groups: structural, monolithic and blockwork (Houben and 

Guillaud, 1994). Alkali-activated soils are most suited to blockwork, as it allows the 

material to be cured at elevated temperatures, which cannot be done for the other two 

groups. Within the blockwork group, there are several manufacturing methods for 

producing blocks (Houben and Guillaud, 1994). Pressed blocks are an appropriate 

method for alkali-activated soils, for several reasons. They minimise handling of the 

wet mix (compared to hand-moulding methods), which is favourable given their 

alkalinity at that stage of the process. The use of static compaction to produce a block 

of target density gives strength from the removal of voids in the soil mix as well as a 

more uniform appearance and dimensions (Reddy, 2015), making it more competitive 

with fired block specimens and concrete blocks. The manual block press is well-suited 

for in-situ production of walling blocks, especially in developing countries, due to its 

ease of operation and maintenance (Jagadish, 2007).  

Investigation of the fundamental chemical behaviour of alkali-activated soils and clays 

has typically been done using small specimens, such as 18 mm x 36 mm cylinders, 

due to the cost of some precursors and the small amounts of material required for 

characterisation. In contrast, the manual block press can make blocks of different 

sizes, but typically ranges between 305 x 143 x 100 mm and 230 x 108 x 100 mm 

(Jagadish, 2007). The scaling up of alkali activation reactions is not a trivial aspect in 

the development of this technology. With respect to soil, care needs to be taken with 

regards to drying shrinkage when using larger individual elements in wall construction. 

Drying shrinkage puts limitations of the types of soil, speed of drying and potentially 

size of individual elements used in some earth building techniques (Houben and 

Guillaud, 1994). With regards to alkali activation, care needs to be taken with regards 

to moisture transport and heating effects. Shrinkage-induced cracking can occur in 

clay-based geopolymer systems, depending on the aggregate content (Kuenzel et al., 

2014). Although rapid or flash-setting is generally only an issue in systems containing a 

high amount of soluble Ca (Chindaprasirt et al., 2012; Lee and van Deventer, 2002), 

setting time is also reduced by using higher curing temperatures (Rovnaník, 2010). The 

dissolution and phase formation processes for both geopolymers (Granizo and Blanco, 

1998; Zhang et al., 2012) and zeolites (Petrova and Kirov, 1995) are exothermic. 

Consequently, for larger mix volumes there is the potential for reaction-generated heat 

to build up, reducing setting times (Antoni et al., 2016), and potentially altering the 

microstructure. Unlike cement and hydraulic lime stabilisation, commonly used 

stabilising agents which undergo a hydration reaction, the formation of a geopolymer 
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does not involve net consumption of water. Instead, water is a reaction medium which 

is temporarily consumed during the dissolution stage and released during the 

condensation stage (Duxson et al., 2007; Weng and Sagoe-Crentsil, 2007), before 

removal from gel pores during drying (Mastali et al., 2018). Therefore a balance is 

required to have enough water to facilitate the reaction, but not so much to create 

excessive porosity in the final gel (Provis et al., 2010; Zuhua et al., 2009). The plate-

like morphology of clay particles gives them a higher demand for water than other 

aluminosilicate precursors such as fly ash or GGBS (Mastali et al., 2018; Provis et al., 

2010). This makes them less well-suited for cast concrete, but more conducive to 

brickmaking processes such as extrusion (Maskell et al., 2014) or manual compaction 

(Diop and Grutzeck, 2008). Zeolite formation under these conditions also begins with 

water-mediated dissolution and then precipitation from solution (Byrappa and Adschiri, 

2007). The number of water and hydroxyl groups present in the β-cage of the product 

phase is dependent on the exact synthesis conditions used (Engelhardt et al., 1992). 

For both geopolymers and zeolites, the availability of sufficient water for the formation 

process is a key requirement. Another concern is efflorescence. This can occur in 

cementitious materials in general, but is a particularly acute problem in alkali-activated 

materials (Allahverdi et al., 2015). These are all practical, macro-scale considerations 

which depend on an understanding of micro-scale reactions.  

The comparison between different alkali-activated systems is often difficult due to the 

large number of variables in composition and processing. Investigation of the effects of 

scaling-up in isolation is a neglected area of research, at least in the public domain. In 

this study, a well-characterised precursor soil - whose alkali activation behaviour has 

already been characterised at small scale - has been activated at block scale using 

similar composition and processing conditions. The aim of this study was to investigate 

any variations in phase formation and microstructure between the centre and edge 

regions in a block, and what implications these have for its development as a viable 

construction material. 
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8.2 Materials and Methods 

8.2.1 Materials 

The soil used is from Bengaluru, India. Its chemical and phase composition has 

previously been described in Marsh et al. (in preparation), but will briefly be restated 

here. It had a clay fraction of 36%, and kaolinite was the sole clay mineral. Other 

phases present were quartz, hematite, microcline and muscovite (Figure 8-1). The 

chemical composition is given in Table 8-1. A quartzitic river sand, known to contain no 

more than 5 wt% of clay, fine silt or organic impurities (Gourav and Reddy, 2018) in line 

with the standard IS:2116-1980 (BIS, 1980), was used as aggregate. The sand was 

sieved to < 4.75 mm before use. NaOH pellets (>97.5% purity, Thomas Baker) were 

mixed with water to make a 12 M NaOH solution.  

 

Figure 8-1: Indexed XRD pattern of the soil precursor used. 

Table 8-1: Chemical composition of the Bengaluru soil in oxide wt.%. 

 Al2O3 CaO CuO Fe2O3 K2O MgO SiO2 SO3 TiO2 Total 

Bengaluru 

soil 
24.05 0.38 0.08 12.10 1.21 0.26 60.73 0.08 1.11 100.00 

 

8.2.2 Manufacturing procedure 

A 50% aggregate mix was chosen in order to reduce the overall clay content in the mix 

to 18%, within the recommended range of clay content for cement stabilised soil blocks 

(Walker and Stace, 1997). At higher clay contents, the clay clumps together and does 
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not mix well at this scale. The mix quantities are given in Table 8-2. For the quantity 

and concentration of NaOH solution, and assuming kaolinite to be the only reactive 

aluminium-containing phase in the soil, this gave a molar ratio of Na:Al = 0.86.  

Table 8-2: Mix proportions for control and activated block specimens 

Mix parameter Control Activated 

Soil mass (kg) 20.00 20.00 

Sand mass (kg) 20.00 20.00 

Water mass (kg) 4.00 3.59 

NaOH dry mass (kg) 0 1.92 

Solution molarity (M) n/a 12 

The water mass values used here are proportionally lower to the mass of dry 

components than those used in the manufacture of smaller samples. This is partly due 

to the use of 50% aggregate, but also because of the difference between the extrusion 

and static compaction processing methods. For extrusion, soil is required to have 

plastic consistency in order to achieve flow; but for static compaction, it is better for soil 

to have a more brittle consistency. For the manual block press using static compaction, 

it is desired for the soil to have the optimum moisture content for this compaction 

method in order to achieve for maximum dry density under the given compaction force. 

The steps in the block specimen manufacture process are shown in Figure 8-2. The 

NaOH solution was mixed and left, covered to dissolve and cool overnight. The soil and 

sand were added together as a 40 kg batch in a 90 kg capacity pan-mixer and dry-

mixed at a speed of 27 rpm for 2 minutes. The water or NaOH solution was slowly 

added, and then wet-mixed for a further 3 minutes. Any residual lumps were broken up 

by hand, and the mixture was covered with sacks to reduce drying out. A reverse 

toggle manual block press developed by the Department of Civil Engineering at the 

Indian Institute of Science was used (Reddy, 2015), to produce block specimens of 

dimensions 230 x 110 x 70 mm. A fixed mass of 3.64 kg of wet mix was used for each 

block specimen, to achieve a target density of 1.83 gcm-3 under static compaction, 

which is within the recommended range of 1.80 - 1.85 gcm-3 (Jagadish, 2007).  
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Figure 8-2: Stages in block specimen manufacture: a) mixing the soil, sand and activating 
solution, b) breaking up any remnant lumps in the wet mix, c) weighing out a set amount of wet 

mix for each block specimen, d) filling the mould with the wet mix, e) compacting the block 
specimen, f) releasing the block specimen from the mould.  

Once pressed, the block specimens were placed into an 80°C oven, and cured for 

either 24 hours or 120 hours. One activated block specimen was not oven cured, for 

comparison. The naming conventions for each sample are given in Table 8-3. After 

heat curing, the specimens were left to age indoors in atmospheric conditions, with all 

doors to the room left open during the daytime for a high air change rate. In the ageing 

period, average outdoor temperature was 22.6°C (ranging from 19.6 - 27.6°C) and 

average outdoor relative humidity was 82% (ranging from 59 - 98%). Data is from 

Bangalore weather station (USAF #432950) (National Centers for Environmental 

Information, 2018).   
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Table 8-3: Details for each sample and its abbreviation 

Sample abbreviation Control or activated Curing time Location in block 

Cont-24h-e Control 24 hours Edge 

Cont-24h-c Control 24 hours Centre 

Act-24h-e Activated 24 hours Edge 

Act-24h-c Activated 24 hours Centre 

Act-120h-e Activated 120 hours Edge 

Act-120h-c Activated 120 hours Centre 

Act-0h-e Activated 0 hour Edge 

 

8.2.3 Characterisation and measurements 

To compare behaviour in the centre and edge of the block specimens, material was 

obtained from the central 50 mm region as well as the 5 mm border at the edge of the 

block specimens. To prepare powder for characterisation, material was dry-ground in a 

ceramic pestle and mortar, and sieved through a 300 μm sieve, to remove the large 

sand aggregate particles. 

Powder X-ray diffraction (XRD) patterns were taken with a Bruker D8 Advance 

diffractometer using Cu Kα (λ = 1.54060 Å) X-radiation using a step size of 0.02 °(2θ). 

For the precursor soil and act-120h samples, a different Bruker D8 Advance 

diffractometer was used with monochromatic CuKα (λ = 1.540598 Å) X-radiation and a 

step size of 0.016 °(2θ). Patterns were corrected for specimen height shift by 

calibrating to the most intense quartz reflection (101) at 26.6 °(2θ), and normalised to 

the most intense reflection in each respective pattern. Phase identification was done 

using Bruker EVA software. 

Scanning electron microscope (SEM) imaging was used to characterise phase size and 

morphology, using a JEOL SEM6480LV in secondary electron mode with an 

accelerating voltage (AV) of 10 kV. Bulk specimens were sputter coated with gold for 3 

minutes. 

Unconfined compressive strength (UCS) testing was done at 7 ±1 days ageing time, 

using a TUN600 Universal Testing Machine. At least four block specimens were tested 

for each series. The frogs on both sides of each block specimen were filled in with a 

mix of Plaster of Paris and <1.18 mm sieved sand to create a level surface.  

The mass change behaviour of the block specimens was measured after curing, and 

after 7 days ageing time. Average values and standard deviations were calculated for 

≥4 measurements for each series. 
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8.3 Results 

8.3.1 XRD 

XRD patterns comparing the cont-24h, act-24h and act-120h specimens are given in 

Figure 8-3. In the control specimens, the phases present were kaolinite, albite, quartz, 

muscovite and microcline. For simplicity of viewing, where associated minerals (i.e. 

quartz, albite, muscovite and microcline) have been indexed in the control specimen 

patterns, these have not been indexed again in the activated specimen patterns. There 

was some variation in the intensity of the 002 microcline reflection at 27.5 °2θ between 

patterns – however, there was no consistent difference between the control and 

activated samples. This variation has been previously observed in alkali-activated soil 

systems (Marsh et al., in preparation), and is likely due to orientation effects.  
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In all of the act-24h and act-120h block specimens, a hydrosodalite phase was formed. 

This is a known transformation from kaolinite under these processing conditions (Marsh 

et al., 2018). The kaolinite was not fully consumed in any of the activated block 

specimens as evidenced by the residual kaolinite peaks. The peak profiles of all the 

hydrosodalite reflections were broad, suggesting the crystallites were small and/or 

highly strained (Burton et al., 2009). There were small differences in the peak positions 

of the 310 (32.6 – 32.9 °2θ) and 222 (34.9 - 35.1 °2θ) reflections between the act-24h 

and act-120h specimens. This likely means that the cage contents of the hydrosodalite 

phases were slightly different, with different amounts of water and/or hydroxyl groups in 

the β-cage (Engelhardt et al., 1992). The peaks were too broad to conclusively assign 

a specific hydrosodalite phase. Overall, no large differences were observed between 

the patterns from centre and edge regions in any of these block specimens.  

Figure 8-3: XRD patterns of the centre and edge regions of cont-24h, act-24h and act-120h 
block specimens. 
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XRD patterns from the edge regions of the cont-24h, act-0h and act-24h blocks are 

compared in Figure 8-4. Also included is a pattern from some of the surface 

efflorescence collected from the act-0h block specimen after 5 days ageing, as shown 

in Figure 8-9. No hydrosodalite was formed in the act-0h block specimen. The 

efflorescence was composed of thermonatrite (Na2CO3∙H2O), one of several possible 

efflorescence phases in alkali-activated materials (Allahverdi et al., 2015), along with 

other phases from the act-0h block specimen. The thermonatrite was likely formed by 

atmospheric carbonation of residual NaOH in the presence of water. 

Figure 8-4: XRD patterns showing different behaviour in the edge region of the block specimens 
for different levels of activation and curing time. 



295 

8.3.2 SEM 

SEM images of the centre and edge regions of the cont-24h, act-24h and act-120h 

block specimens are given for low (Figure 8-5) and high (Figure 8-6) magnifications. At 

low magnification (Figure 8-5), the large quartz aggregate particles were visible in 

some of the images, with areas of soil in between. Fine scale cracking between the 

large quartz aggregate particles and the soil was observed in the activated block 

specimens, but not in the control block specimen. This is consistent with observations 

of drying-induced micro-cracking in alkali-activated metakaolin-sand mixes (Kuenzel et 

al., 2014). At high magnification (Figure 8-6), the microstructural features were 

consistently fine, typically <1 μm, but also with some very fine particles <200 nm. In the 

control specimens, out of the phases known to be present from the XRD analysis, 

kaolinite, hematite and possibly quartz are known to be present at these size scales 

(Dixon and Weed, 1989). In the activated specimens, it is known from the XRD 

analysis that the same phases are still there, in addition to hydrosodalite. As described 

in Section 8.3.1, hydrosodalite could be expected to be present at a very fine scale. 

Comparing the scale of microstructural features at high magnification in the block 

specimens, there were no significant differences between the control and activated 

specimens, the 24 h and 120 h cured specimens, nor between the centre and edge 

regions.  
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Figure 8-5: SEM images of centre and edge regions of cont-24h, act-24h and act-120h block 

specimens at 100x magnification. 
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Figure 8-6: SEM images of centre and edge regions of cont-24h, act-24h and act-120h block 

specimens at 10,000x magnification. 
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8.3.3 Drying behaviour 

The changes in mass of the control and activated block specimens with ageing time 

are given in Figure 8-7. Within the 24h cured block specimens, there was a clear 

difference between the control and activated block specimens. The control blocks 

continuously decreased in mass up to 7 days ageing, whereas the activated block 

specimens maintained an approximately constant mass. This could have been be due 

to: a) the formation of a surface barrier preventing moisture loss; b) atmospheric 

reactions that resulted in mass gain which offset any mass loss from drying, or c) re-

adsorption of moisture from the atmosphere. No chemical hydration reactions were 

expected, given the chemical and phase composition of the precursors. Within the 

120h cured block specimens, both the control and activated block specimens 

underwent a small increase in mass. This suggests that during the longer curing time, 

all excess moisture from mixing was driven off, and on return to atmospheric conditions 

underwent moisture re-adsorption (McGregor et al., 2014).  

Figure 8-7: Changes in block specimen mass at different stages in the ageing process. 



299 
 

Immediately after demoulding, the control and activated block specimens looked nearly 

identical in appearance as shown in Figure 8-8. With increasing ageing time, the act-0h 

block specimen formed a profusion of white efflorescence as shown in Figure 8-9, 

forming needle-like crystals. This was extreme, but some minor efflorescence was also 

observed for some of the act-24h block specimens by 4 days of ageing.  

 

Figure 8-8: Comparison of the control (left) and activated (right) block specimens immediately 
after compaction and demoulding. 

 

Figure 8-9: The act-0h block specimen after demoulding (0 days), and after 1 and 5 days 
ageing. 
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8.3.4 UCS 

Air dry UCS results for control and activated block specimens at 24 and 120h curing 

times are shown in Figure 8-10. Both control block specimens had low strength of <1 

MPa. The act-24h block specimens had a slightly higher average strength than the 

cont-24h blocks, but this was smaller than the standard error. In contrast, the act-120h 

block specimens had a far higher average strength of 10.7 MPa. All block specimens 

failed with the ‘hourglass’ failure pattern, which is a valid mode of failure in 

compression (BSI, 2009).  

Values for moisture content, bulk density and dry density for the block specimens at 

testing are given in Table 8-4. The moisture content at testing for the activated block 

specimens were higher than for the control block specimens, and the dry density was 

lower for the activated block specimens. Act-120h, which had by far the highest failure 

strength, also had the lowest dry density of all the block series tested. This indicated 

that the reason for the greater strength was not due to a smaller void proportion. 

 

Figure 8-10: Air dry UCS results for control and activated block specimens at 24 and 120h 
curing times. 
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Table 8-4: Moisture content, bulk density, dry density and average dimensions for the block 

specimens at testing. 

Cont-24h Act-24h Cont-120h Act-120h 

Moisture 
content (%) 

3.6% 9.5% 2.1% 4.1% 

Bulk density 
(gcm-3) 

1.96 1.99 1.86 1.83 

Dry density 
(gcm-3) 

1.89 1.80 1.82 1.75 

Average 
dimensions 

(mm) 

227.0 x 108.3 
x 69.8 

229.8 x 109.0 
x 70.5 

228.4 x 108.8 
x 70.2 

230.0 x 109.8 
x 71.0 
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8.4 Discussion 

8.4.1 Microstructure and properties 

As described in Sections 8.3.1 and 8.3.2, there were no large differences in phase 

composition or microstructure between the centre and edge regions. Any differences in 

the exact phase and size of the hydrosodalite reaction products are unlikely to result in 

any large differences in performance as a walling material. It is also noted that the 

microstructures and phase formation of the activated block specimens were very 

similar to that of a small block specimen made without aggregate, as described in 

Marsh et al. (in preparation). This suggests that the addition of inert aggregate, use of a 

larger mould size and lower moisture content did not result in any fundamental 

changes in the alkali activation process.  

Regarding the effects of curing time, the mass change results in Section 8.3.3 show 

that 24h was not a sufficient time for the control block specimen to fully dry. This was 

consistent with the curing of small 18 x 36 mm cylinders of the same soil in Marsh et al. 

(in preparation). Although 24h was sufficient to cause an alkali activation reaction in the 

act-24h block specimens, the strength results described in Section 8.3.4 show that this 

did not result in a meaningful increase in strength. In contrast, the act-120h block 

specimens demonstrated a large increase in strength compared to cont-120h. This was 

despite the fact that the phase formation behaviour and microstructure was very similar 

for the act-24h and act-120h blocks, but this may be influenced by other larger-scale 

factors. In cement-stabilised soil block specimens, it has been shown that compressive 

strength increases linearly with cement content, and that strength is higher when clay 

content is lower (Walker and Stace, 1997). However, the XRD results show that there 

is unreacted kaolinite in both the act-24h and act-120h block specimens, and their peak 

intensities suggest there was not a large difference in the extent of reaction between 

the two. The lower moisture content at testing (also given in Section 8.3.4) for act-120h 

compared to act-24h could explain some of the strength difference (Champiré et al., 

2016), but may not fully explain such a large difference in behaviour. Other factors 

which can influence mechanical behaviour in alkali-activated and soil systems include: 

particle grading, compacted density, and the binding between the different phases. 

Although finely grained soils have been shown to have a lower void ratio and hence 

higher strength than coarse grained soils in cement-stabilised soil block specimens 

(Reddy and Latha, 2014), the same soil and sand was used in all block specimens 

tested.  

Regarding compacted density, it was shown in Section 8.3.4 that the act-120h block 

specimens had the lowest dry density of all the samples tested and it was hypothesised 
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that this could be due to the hydrosodalite phase having a lower particle density than 

the original kaolinite. Additional experimentation was therefore undertaken to 

investigate the influence of the kaolinite to hydrosodalite phase transformation on 

density. Because it was difficult to isolate the kaolinite mineral from the actual soil, for 

the additional experimentation on particle density, high purity Imerys Speswhite kaolin 

was used, activated with NaOH solutions made with NaOH pellets of >98% purity 

(Sigma-Aldrich, product #06203). Particle density was measured by He gas 

displacement using a Micromeritics Accupyc 1330. Before measurement, powder 

samples were degassed at 150°C under vacuum for 1 h. 

The particle density for a kaolinite precursor was 2.62 gcm-3, which decreased to 2.32 

gcm-3 after alkali activation at Na:Al = 1 (an 11% reduction) (Figure 8-11). In this 

system, it is known that a significant proportion of the kaolinite is transformed into 

hydrosodalite (Marsh et al., 2018), and the measured particle density value agrees well 

with the theoretical value for hydrosodalite calculated from a structural model (Kendrick 

and Dann, 2004). The lower density of hydrosodalite arises from its cage-like structure, 

which forms interconnected pores of approximately 12 nm in size (Franus et al., 2014). 

Given that kaolinite comprised 16.3 wt.% of the wet mix, and the transformation is 

associated with an 11% reduction in particle density, one would expect a bulk density 

reduction of approximately 1.9% in the activated block specimens (approximating that 

all kaolinite was transformed to hydrosodalite), compared to the control ones. This 

value of 1.9% reduction is less than the bulk density reductions observed between the 

activated and control samples (3.8-4.8%). An analysis of the sample dimensions (Table 

8-4) showed that the control samples shrunk 2.9% (24 hr curing) and 2.7% (120 hr

curing) relative to the activated samples. This was most likely due to drying shrinkage 

of the unstabilised control samples (Walker, 1995) which led to an increase in dry 

density as the volume decreased. This indicates that not only does the conversion of 

kaolin to hydrosodalite result in a decreased particle density, but it can also reduce the 

amount of drying shrinkage. 
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Figure 8-11: The variation of particle density with Na:Al ratio in an alkali-activated kaolinite 
system. 

Now that some explanation of the changes in density has been given, the question still 

remains of what other factors could contribute to the large difference in strength 

between the act-120h and act-24h block specimens. Differences in interaction strength 

between the different phases at an atomic scale could also make a contribution. For a 

sodium silicate - quartz system, it has been shown that the curing temperature has an 

effect on the bonding mechanism between the sodium silicate phase and quartz 

particles, which then has a large effect on strength (Lucas et al., 2011). Although the 

chemistry is different, it is a precedent which suggests that curing conditions could 

influence interaction between aggregate particles and a stabilising phase. In summary, 

the difference in strength between the act-24h and act-120h specimens is likely to be 

due to some combination of the effects of moisture content at testing, and the chemical 

and/or mechanical interaction between the product phase and aggregate. The size, 

morphology and crystallinity degree of the particles could have a minor effect as well.   

Regarding the effects of ageing time, the most notable observation was the difference 

in mass change between the cont-24h and act-24h specimens in Section 8.3.3. Of the 

possible explanations for this difference, the existence of a surface barrier preventing 

moisture loss seems unlikely. The act-120h block specimens continued to lose more 

moisture during a longer curing time, so a preventative barrier could not have formed 

within the first 24h. For reactions that would increase mass, some minor efflorescence 

(thermonatrite) had formed on the act-24h specimens by 4 days ageing, as stated in 

Sections 8.3.1 and 8.3.3. Since the formation of thermonatrite consumes atmospheric 

CO2, it would increase the mass of the specimen. However, it is not straightforward to 

determine the size of this contribution to the observed mass gain of act-24h with 
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ageing. As the act-0h-e XRD pattern in Figure 8-4 shows, even when thermonatrite 

dominates the specimen, its XRD peaks are not the dominant peaks. Therefore, 

moderate amounts of thermonatrite could be present in the act-24h specimen, but be 

undetected by XRD. The remaining possible explanation for this mass increase is the 

re-adsorption of moisture from the atmosphere. Alkali-activated soils have been shown 

to have an increased capacity for moisture adsorption (≤+2%) in the relative humidity 

range of 60-90%, i.e. the capillary condensation domain (McGregor et al., 2014). This 

agrees well with thermogravimetric measurements in simple hydrosodalite-kaolinite 

systems, which give a similar value of +2% for the difference in surface-adsorbed 

moisture mass in hydrosodalite compared to kaolinite (Marsh et al., 2018). Given this, 

the re-adsorption rate of act-24h would be expected to be higher than that of cont-24h. 

It is therefore likely that the observed mass change is due to a combination of moisture 

re-adsorption and some carbonation. This has consequence for these materials’ 

performance as walling materials, as hygroscopic behaviour influences both strength 

and moisture buffering of the indoor environment (McGregor et al., 2016).  

8.4.2 Implications for practical adoption 

The strength values for the act-120h block specimens are promising, as they 

demonstrated a large increase over the cont-120h block specimens. These would fulfil 

the strength requirements of 2.9 MPa for autoclaved aerated concrete (AAC) masonry 

blocks - this is a suitable comparison material for how earth materials could be used in 

construction (Heath et al., 2012) - tested at 6% moisture content, under Part A of the 

UK Building Regulations (HM Government, 2013). There is some debate about what 

constitutes appropriate testing conditions, given that these should represent service 

conditions (Morel et al., 2007). However, if such materials are to compete with fired 

bricks and concrete blocks in load-bearing walling, then saturated strength testing 

would be essential for any alkali-activated soil mix before use in construction. The 

Indian Standard for Stabilized Soil Blocks (IS 1725:2013) (BIS, 2013) demands a 

saturated compressive strength of ≥ 3.5 MPa, using the same testing procedure as 

used for fired clay bricks (IS 3495-1:1992) (BIS, 1992). More widely, it’s recommended 

that a saturated compressive strength of 3 – 4 MPa is required for two storey 

construction, whilst 2.5 – 3 MPa is acceptable for single storey construction or non load 

bearing walls (Jagadish, 2007). Now that the phase formation behaviour of these 

blocks has been established, further testing would show whether they could meet the 

saturated strength requirements. However, this lies outside the scope of this study, 

given that such testing would benefit from firstly optimising the activating solution 

concentration for maximising strength and minimising efflorescence.  
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For hydrosodalite stabilisation, an increase in strength is accompanied by a decrease 

in density, as shown in the preceding section. This is the opposite trend observed for 

cement stabilisation (Reddy and Latha, 2014). Whilst dry density is determined by 

compaction force and moulding moisture content (Reeves et al., 2006), in some 

circumstances a measurement of density change could be used to verify that the 

reaction has occurred. Regarding the influence on other engineering properties aside 

from strength, a decrease in bulk density is associated with an increase in thermal 

conductivity for earthen materials (Walker et al., 2005). However, the scale of the 

decrease observed here would be unlikely to result in a significant change in thermal 

performance. 

Another practical issue is the specific hazards of alkali activation in the construction 

process. The use of highly alkaline substances such as 12 M NaOH solution is routine 

in laboratory settings. This is safe, given the right precautions and protective measures. 

However, in many areas of the world where population growth and demand for housing 

is highest, protective measures on construction sites are often poorest. For the 40 kg 

soil-sand mix used in this study, direct handling of 4 litres of 12 M NaOH solution was 

required. Whilst other properties of a given soil mix, such as environmental impacts, 

depends on the exact amounts of solution used, in terms of health and safety, any 

exposure to such highly alkaline substances is a hazard. There have been efforts to 

find less hazardous substances in industry, but in publically available research, this is 

still a relatively neglected topic (Heath et al., 2014).  
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8.5 Conclusions 

In this investigation of the variation within alkali-activated soil block specimens, it was 

found that there were no major differences in phase formation or microstructure 

between the central and edge regions of the block specimens. Alkali activation resulted 

in a large increase in compressive strength after 120 hours of curing, but not after 24 

hours. Although the addition of inert aggregate has been shown not to affect the 

fundamental reactions occurring in alkali activation, it could yet be the case that the 

interaction between the stabilising phase (in this system, a hydrosodalite) and the 

aggregate is an influential parameter on overall mechanical behaviour.  
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Chapter 9 - Conclusions and 
future research 
In this chapter, the findings of this research will be drawn together to reflect on the 

original motivations of the research. Firstly, a short overview of the problem area and 

research motivations will be given. Secondly, the contributions to knowledge from 

Chapters 4-8 will be evaluated by answering the research questions concerning 

technical and overall viability. Thirdly, priorities for future research will be suggested. 

Lastly, a final evaluation of this research will be given. 
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9.1 Overview of problem area and research 

motivations 

In Chapter 1, an introduction was given to the problem area of affordable and 

sustainable housing provision. A concise overview will be given here, to help provide 

context for interpreting the contributions to knowledge of this research.  

There is currently a lack of adequate housing in urban areas of LEDCs. This situation is 

likely to be exacerbated in the coming decades as population growth rates are typically 

highest in these areas. Conventional materials used in housing construction include 

traditional materials such as unstabilised earth as well as fired brick and concrete 

block. None of these materials fulfil the multitude of requirements to provide adequate 

housing sustainably on the scale of units required. As a result, there is an urgent and 

as yet unmet demand for new construction materials. To be successful in this 

application, any new material must be practical, sustainable and affordable. Alkali-

activated earth materials are an emerging material family that has the potential to fulfil 

this demand. By using soil as the main precursor, this has intrinsic advantages of low 

cost and low environmental impact. Alkali-activated materials have the potential to 

have lower environmental impact than Portland cement based materials due to their 

differences in chemistry. Alkali-activated earth materials could therefore become the 

next generation of stabilised earth materials, for which Portland cement is the 

stabilising agent typically used at present.  

A review of the literature in Chapter 2 indicated there is a knowledge gap around which 

soil properties affect alkali activation, and that this is limiting the potential use of these 

materials. The motivation for this research is therefore to undertake fundamental 

investigation into the influence of soil composition on the alkali activation process. 

Through a better fundamental understanding of these systems, it is intended to 

improve understanding of the viability of alkali-activated earth materials for the 

application of walling materials for housing in LEDCs. 
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9.2 Technical viability of alkali-activated earth 

materials 

By bringing together the findings of the preceding chapters, the specific research 

questions stated in Chapter 3 can now be answered. These are: 

 What are the alkali activation potentials of kaolinite, montmorillonite and illite as

individual clay minerals?

 What contribution do the non-clay minerals in soil make to alkali activation?

 Which soil compositions are most suited to stabilisation by alkali activation?

 Are alkali-activated soils a viable material to produce walling materials for

sustainable, practical and affordable mass housing in LEDCs?

9.2.1 What is the alkali activation potential of the individual 

clay minerals? 

As described in Chapters 4 and 5, the phase formation behaviour of the three most 

common clay minerals in soils has been characterised (Figure 9-1). When individually 

activated with NaOH solution under the conditions used in the testing, kaolinite forms a 

hydrosodalite as the main product, montmorillonite forms a N-A-S-H or (N,C)-A-S-H 

geopolymer and illite does not form a major product phase, but undergoes alteration.  

Figure 9-1: Summary of alkali activation reaction products from the clay minerals 
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The extent of hydrosodalite formation could be quantified, but geopolymer formation 

could not be accurately quantified. In both cases, the amount of product phase formed 

increased with Na:Al ratio. For all three of the clays tested and within the limits of the 

alkali contents used, not all of the clay was consumed; some amount was always left 

unreacted. These results also show that precursor Si:Al molar ratio is not the sole 

parameter in influencing what product phase is formed. Both montmorillonite and illite 

are 2:1 minerals, but only montmorillonite formed a geopolymer.  

As described in Chapter 6, when mixtures of these clays are activated, there is a 

hierarchy between the clays in determining phase formation behaviour. Montmorillonite 

appears more reactive than kaolinite, but kaolinite has a stronger influence in 

determining reaction products. Montmorillonite and kaolinite both dominate illite. This 

shows that the alkali activation behaviour of clay mixtures (which is the case for many 

soils) has an extra degree of complexity, so that reaction products cannot be fully 

predicted from the clay mineral and activator composition alone. 

9.2.2 What contribution do the non-clay minerals in soil 

make to alkali activation? 

As described in Chapter 7, clay minerals are the primary determinants of alkali-

activated product phase formation behaviour in soils. Most associated minerals had 

little or no influence on the reaction, although it appears that some additional minerals 

did produce a retarding effect on geopolymer formation in the Khartoum soil.  

As described in Chapter 8, the introduction of an inert aggregate phase does not 

change the fundamental nature of the alkali activation reaction. However, there is 

evidence to suggest that the bonding between the soil and the aggregate could be an 

important determinant of block strength. Because clay minerals were the only major 

reactive phase present in the soils studied, the amount of NaOH required to achieve a 

system molar ratio of Na:Al = ~1 decreased with the higher amount of non-reactive 

material in the system (Table 9-1). 
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Table 9-1: Comparison of wt.% NaOH in the different systems, calculated by dividing dry weight 

of NaOH by the weight of dry components in the mix (i.e. soil and other minerals). 

Sample 
Kao-

1Na:Al 

Mont-

1Na:Al 

Bristol-

nat-act 

Bengaluru-

nat-act 

Bengaluru-

block-act 

Composition 

type 
Clay Clay Soil Soil 

Soil + 

aggregate 

Wt.% NaOH 31% 16% 13% 11% 5% 

9.2.3 Which soil compositions are most suited to 

stabilisation by alkali activation? 

For a soil to be suitable for an alkali-activated earth material, it must form a stabilising 

phase through alkali activation, as well as not being problematic if unreacted. These 

two conditions are both required as this research has shown that for all the clay 

minerals, transformation did not go to completion. More than very minor quantities of 

highly expansive clay minerals (such as montmorillonite) generally renders soils 

unsuitable for earth construction, as it can lead to excessive shrinkage cracking as well 

as expansion and strength loss when the moisture content increases. The findings in 

Chapters 4 to 8 can be drawn together to suggest broad guidelines (Table 9-2), based 

on clay mineralogy, from which soils can be deemed suitable or unsuitable for 

stabilisation by this method of alkali activation. Based on the findings presented in this 

work: 

 Kaolinite-dominated soils are likely to work well, as they reliably form

hydrosodalites.

 Montmorillonite-dominated soils are unlikely to work well. Although

montmorillonite does form a geopolymer, there are associated dimensional

changes and there is unreacted clay left. This means that its expansive

properties are unlikely to be fully eliminated. Therefore it is unlikely to work well

for external, load-bearing walling materials.

 Illite-dominated soils are also unlikely to work well. Illite does not form a useful

product phase, so there is likely to be negligible benefit from this technique.
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Table 9-2: Evaluation of technical suitability for soils whose properties are dominated by each of 

the most common clay minerals.  

Kaolinite Montmorillonite Illite 

Suitable for  
alkali activation?   

Unlikely to be 
problematic if 
unreacted? 

  

Suitable for  
alkali-activated 

earth materials? 
  

For mixed soils, performance is likely to depend on the exact proportions of clay 

minerals. Minor amounts of montmorillonite and/or illite in a soil are likely to be 

acceptable. 

In addition to clay mineralogy, guidelines can also be suggested for a suitable range of 

soils’ plasticity. The two chemical constraints of 8 - 12 M NaOH concentration and a 

system Na:Al molar ratio = 1 together set processing limits on the plastic limits of soils. 

This is due to the interdependence of these three factors (Figure 9-2). If a soil is too 

plastic, then for Na:Al = 1, the NaOH solution will be too dilute, and dissolution will be 

insufficient. If a soil is too non-plastic, then the NaOH solution will exceed the 

saturation limit without achieving a Na:Al = 1. Only a soil having plasticity within the 

suitable range can meet these three requirements simultaneously.   

Figure 9-2: The interdependent factors influencing the chemistry and consistency of alkali-
activated soil mixes, with approximate recommended ranges given in brackets. 
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9.3 Overall viability of alkali-activated earth 

materials 

The additional understanding of the technical viability summarised above can be used 

to re-evaluate the overall viability of these systems. This will be categorised along the 

three requirements for new materials described in Chapter 1: sustainability, practicality, 

and affordability.  

9.3.1 Sustainability 

In an alkali-activated earth material, the majority of the environmental impact is 

associated with the alkaline activator (Dahmen et al., 2018). Therefore, the amount of 

activator required, as well as the environmental impact per unit mass of a given 

activator, is crucial to determining the overall impact of the system.  

The findings of Chapter 4 and 5 showed that under the given consistency constraints, a 

molar ratio of Na:Al > 0.75 is required to get appreciable transformation of the clay 

minerals in soil. From the mass ratios of NaOH to precursor (Table 9-1), the amount of 

NaOH required would be in approximately the same range as the amount of cement 

required for cement stabilisation of 5 – 10 wt.% (Reddy and Gupta, 2006; Walker and 

Stace, 1997). The global warming potential (GWP) for NaOH is 2.2 kgCO2eq.kg-1, and 

for CEM1 Portland cement is 0.84 kgCO2eq.kg-1 (Habert et al., 2011); that is, the GWP 

of NaOH is a factor of >2 higher than Portland cement. Therefore, using this specific 

mix design, alkali activation is not obviously an improvement on cement stabilisation in 

terms of environmental impact. However, there are several caveats in this figure. This 

estimate does not normalise for strength (Habert and Ouellet-Plamondon, 2016), and 

the values used are for cradle-to-gate, and hence do not account for any potential 

benefits from reductions in material transport from localised NaOH production. Most 

significantly, the GWP for NaOH is based on conventional production methods. There 

is great potential for reducing the impacts of NaOH production, both by developments 

in processing technology, and using waste streams such as coal seam gas brine 

(Simon et al., 2014) and desalination brine (Du et al., 2018). This has the potential to 

produce NaOH from a wide geographical spread of resources, reducing impacts from 

both transport of the NaOH as well as from averting the release or disposal of such 

waste streams (Du et al., 2018).  

Aside from embodied energy and carbon, the use of NaOH has additional 

environmental impacts, such as ecotoxicity (Habert and Ouellet-Plamondon, 2016; 

Heath et al., 2014), which would likely be exacerbated in a loosely regulated 

environment. However, there are possible ways around some of these risks, such as 
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the use of CaO and Na2CO3 to form NaOH in-situ without direct handling required 

(Heath et al., 2014; Wang et al., 2018b). 

9.3.2 Practicality 

Earthen construction is an established construction method in many parts of the world. 

However, the use of alkaline activators is a novel aspect which would be unfamiliar to 

most builders. This is relevant to three particular issues: safety, simplicity and 

standards. 

Regarding safety, it was shown in Chapters 5 and 6 that a molar ratio of Na:Al > 0.75 is 

needed to form an appreciable amount of stabilising phase. This corresponds to a 

NaOH concentration of ≥ 4 M, which is ≥ pH 14.6. As described in Chapter 8, manual 

block production involves a lot of handling. The handling of alkaline substances in 

construction is common practice; both freshly mixed cement and slaked lime are 

alkaline. These are weaker than alkali activating solutions, although depending on the 

soil, a lime-soil wet mix can reach a pH of <13 (Yong and Ouhadi, 2007). The stronger 

alkalinity of the activating solutions required could expose workers to unacceptable 

levels of risk in a loosely regulated environment (Davidovits, 2011). However, there is 

potential for processes to be developed which could avoid the direct handling of such 

highly alkaline solutions in this way. One method is the use of sodium silicate solutions, 

which are classified as irritant rather than corrosive for SiO2:Na2O > 1.45 (Davidovits, 

2011), and are also therefore much easier to transport (Araya, 2018). Another is the in-

situ reaction of Na2CO3 with Ca(OH)2 to form NaOH and CaCO3 (Heath et al., 2014). 

Lastly, there is the option of manufacturing using the one-part geopolymer technique 

(Luukkonen et al., 2018).  

Regarding simplicity, this is one of the great benefits of Portland cement based 

materials which are currently favoured for construction. Concrete is very simple to mix 

for a block-scale application. Use of cement stabilisation has several guidelines, but is 

a fairly straightforward process. To assess if a soil is suitable, one needs to know the 

clay, silt and sand size fractions of the soil, whether it is expansive, and whether it 

contains > 0.5% of organic matter, salt or sulphates (Jagadish, 2007). Specifying the 

cement content to be used is straightforward, with 5-10 wt.% established as an 

acceptable range (Reddy and Gupta, 2006; Walker and Stace, 1997). In contrast, 

stabilisation by alkali activation is arguably a more elegant solution – using the 

resources that are already in the soil (i.e. the clay) to form a stabiliser, rather than 

bringing in another material wholesale. However, as shown in the technical findings of 

this research, it is important to know the type of clay minerals present in a soil in 

addition to the clay fraction. Clay fraction can be easily (if highly inaccurately) 
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measured on-site (Price and Heath, 2014), and accurately measured using a simple 

hydrometer test in a laboratory. In contrast, determining mineralogy is far more 

complex, time-consuming and resource-intensive. This adds an additional point of 

complexity relative to current stabilised earth-building techniques, such as cement 

stabilisation. 

Regarding standards, it is recognised that a lack of suitable standards can be a barrier 

to the use of innovative construction materials (Pacheco-Torgal and Labrincha, 2013). 

There are ongoing efforts to develop relevant testing procedures and standards by both 

the alkali-activated materials (Ko et al., 2014; Provis, 2018; Van Deventer et al., 2012) 

and earthen materials communities (Vyncke et al., 2018). Not all tests can be directly 

transferred from Portland-cement based or masonry materials (Abora et al., 2014; 

Bernal et al., 2012). As explained in the technical findings, this thesis has shown that 

zeolite and/or geopolymer stabilising phases can be formed depending on the clay 

mineralogy. It remains to be seen whether appropriate testing methods are the same 

for zeolite-stabilised soils and geopolymer-stabilised soils. Building regulations and 

standards are frequently not followed, usually because people lack the means to do so 

or they are not enforced for domestic buildings in this application (Okpala, 1992; 

Wekesa et al., 2011). However, given the importance of user perception and the 

influential role of government housing projects (UN-CHS, 1993), this is still a relevant 

factor. 

9.3.3 Affordability 

Of the three requirements, affordability is arguably the most variable and most difficult 

to estimate. The issues are different for the two main ingredients in alkali-activated 

earth materials: the soil, and the NaOH activating solution. 

As explained in the technical findings, this research has shown that kaolinite-dominated 

soils are likely to be well-suited for stabilisation by alkali activation. Kaolinite is a 

widespread clay mineral in soils (Figure 9-3), along with a large number of geological 

deposits (Ekosse, 2010). This makes it compatible with localised production in urban 

areas.  
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Figure 9-3: Maps showing the global distribution of kaolinite, smectite and illite in the clay 
fraction of soil. Adapted from Fig.1s of Nickovic et al. (2012) under a CC BY 3.0 license. 

NaOH is a widely available industrial chemical with a global annual production of 

around 60 Mt/yr (Provis, 2018). It is currently more expensive than cement, but that 

could change depending on how the carbon-intensive cement industry is targeted by 

carbon emission reduction mechanisms, such as taxes or trading schemes (Duxson 

and Van Deventer, 2009). NaOH is mainly manufactured using the chlor-alkali process 

(Crook and Mousavi, 2016). Like cement production, this is an industrial process 

unsuited to small-scale, localised production. There are concerns about the scalability 

of NaOH production by the chlor-alkali-process, given that the world’s demand for 

chlorine, the other product of this process, is not expected to increase (Provis, 2018). 

One alternative which would avoid chlorine production is production using trona ore, 

Na3(CO3)(HCO3)·2H2O, which has large resources and is scalable (Provis, 2018). A 

better alternative could be the use of industrial wastes, such as brines (Du et al., 2018; 

Simon et al., 2014), or agricultural wastes, such as plant ashes, in the activating 
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solution to displace the use of conventionally produced NaOH (Attwell, 2018). It is 

desirable to exploit a wide geographical range of resources, as transport can make up 

a disproportionately large part of material costs in this construction context (UN-CHS, 

1993; Wells et al., 1998). Using such waste streams would require further research to 

establish the technical viability, and would be locally specific, but could improve the 

affordability as well as the environmental impact of the activator.  
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9.4 Future research 

There are several aspects of alkali-activated earth materials which would benefit from 

further research. These include further research to improve the fundamental 

understanding of these systems, as well as more applied research into how to optimise 

mix designs and use waste streams in the precursors. 

Strength and durability is a commonly tested aspect of alkali-activated earth materials; 

but as described in Chapter 2, testing in a wet state is often not done. Wet testing is 

advisable if alkali-activated earth materials are ever to be considered as durable 

materials to replace fired brick and concrete block, as they need to be shown to meet 

the same demands of these conventional materials. The field would benefit from 

investigating the link between the type and quantity of a stabilising phase, and the 

resulting strength and durability. In addition, there needs to be a further understanding 

about the interaction between stabilising phases and aggregate or other inert particles 

in soils. There is also the potential to build on the experimental evidence so far by 

advancing the use of geochemical modelling to understand and predict the behaviour 

of these systems. This could use existing software such as PHREEQC (Wang et al., 

2018a). 

A similar comment can be made for curing temperature and time. This is a commonly 

tested variable, and ranges have been established for some soils, as described in 

Chapter 2. However, there is not yet an understanding of how the individual clay 

minerals respond to curing temperature. There is also potential to investigate the 

viability of low cost solar curing methods, such as adapting designs for sludge drying 

beds (Kamil Salihoglu et al., 2007).  

As already mentioned in the preceding section, the majority of environmental impacts 

from these solutions arise from the activating solution. There is great scope to reduce 

this by developing industrial processes to extract NaOH or other alkaline activators 

from a variety of waste streams. Validation is needed so that these do not reduce the 

performance of the materials, as well as establishing how much refinement of the 

waste stream is required. There are precedents for obtaining soluble silicates from 

waste streams from research in supplementary silicates in Portland cement. This has 

partly been transferred to alkali-activated materials, particularly for rice husks (Kamseu 

et al., 2017; Tong et al., 2018). There is still scope to investigate a wider range of 

possible silica sources, and improving the simplicity, reliability and cost of the 

processing used. Adding soluble silicates will increase the Si:Al molar ratio and 

potentially increase strength and durability (Duxson et al., 2007). Given that Na is 

required to balance the negative charge arising from Al substitution for Si in the N-A-S-
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H gel framework (Barbosa et al., 2000; Walkley et al., 2018), a N-A-S-H product phase 

with a higher Si:Al molar ratio would contain a lower molar proportion of Al; hence, the 

total amount of Na required in the system would also be lower. Providing the extent of 

precursor dissolution is sufficient, the molar quantity of NaOH required in the activating 

solution would then be lower too, with subsequent possible benefits for environmental 

impact and cost. 

One of the findings from this research has been an understanding of the need to 

control consistency whilst tailoring the chemical composition of the wet mix. This 

presents different issues for low plasticity and high plasticity soils. For low plasticity 

soils, the necessary quantity of activating solution is likely to make the wet mix wetter 

than desired. Such soils could be more suited to other earth-based construction 

techniques which benefit from a less viscous consistency, such as self-compacting 

earth concrete (Van Damme and Houben, 2017) or flowable earth concrete (Ouellet-

Plamondon and Habert, 2016). 

For high plasticity soils, admixtures may offer a route to reduce the amount of water 

required for plasticity, and hence obtain a suitable NaOH concentration without also 

getting an excess of Na in the system. Due to the deleterious effects of high pH on 

many superplasticizers used in Portland cement based materials (Palacios and 

Puertas, 2005), the development of appropriate superplasticizers for alkali-activated 

systems is still ongoing. However, in alkali-activated earth materials, there could be a 

wider range of options to control workability, such as by manipulating the flocculation 

behaviour of clay particles (Landrou et al., 2016). 

There is also potential to apply recent developments in hybrid or blended alkali-

activated materials to earth based systems. By using a mid-range of soluble Ca, 

usually obtained by blending reactive aluminosilicate precursors with Portland cement 

clinker, some different combinations of C-A-S-H, N-A-S-H and C-S-H gels can be 

obtained (Garcia-Lodeiro et al., 2015). This could still offer a lower environmental 

impact than a high Ca Portland cement based system, but with the advantages of room 

temperature curing. However, the viability of this would need to be investigated, given 

the lower reactivity of uncalcined clays than the precursors used so far in hybrid 

cements.  

Finally, it would be highly beneficial to develop a less resource intensive way of 

measuring or accessing measurements of the clay mineralogy of soils worldwide. As 

shown in the technical findings of this research, it is the type of clay minerals, rather 

than just the size of the clay fraction in the soil, which determines alkali activation 

behaviour.  
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9.5 Overall evaluation 

Alkali-activated earth materials are a promising construction material. This thesis has 

shown that in terms of technical viability, kaolinite-dominated soils are suitable for alkali 

activation, and are common around much of the world. However, in terms of overall 

viability, there remain many hurdles to be overcome; most importantly, making 

manufacture safe in loosely regulated environments, and easily determining the clay 

mineralogy of a given soil.  

The findings in this thesis also make a valuable contribution to the understanding of 

clays and alkali activation as a whole. The scope of this research was intentionally 

limited to the chemical aspects of soil composition and alkali activation, and has 

successfully answered the research questions. This improved understanding also has 

the potential to help the design and development of other alkali-activated systems, 

such as the use of clays as supplementary cementitious materials. Aside from housing, 

this processing technique could be useful for other applications. For example, with 

montmorillonite, even if the reaction does not transform all of the montmorillonite, the 

in-situ replacement of it with a stabilising phase could be useful for specialist 

treatments of very expansive soils in certain situations. In other words, it could render 

some soils suitable for earth construction that are currently considered unsuitable. 

The 20th century has been dominated by Portland cement based construction materials 

as a one size fits all solution. Future materials are likely to be more diverse, and more 

suited to local requirements and resources. Alkali-activated materials and earthen 

materials are both offering more sustainable alternatives to Portland cement based 

ones. As part of this smorgasbord of emergent materials, alkali-activated earth 

materials have potential to be used in some areas and applications. This will likely 

involve using different combinations of soils, activating solutions and reactive additives. 

The findings in this thesis have provided a valuable contribution in fundamental 

understanding to the further development of this material family.  
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