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Abstract 

Methods of increasing energy efficiency and reducing greenhouse gas emission are widely 

developed across the whole world. Housing energy consumption as a large energy consumption 

among different energy sectors, such as industry, transportation, needs to be paid more 

attention. In the UK, gas is still the main fuel used for providing heating in homes and space 

heating is responsible for over 60% of domestic energy usage.  

This work investigates the optimal operation of the low carbon space heating system based on 

a real-world project providing a community level space heating with low carbon technologies 

and thermal energy storage system. The proposed space heating system consists of borehole 

thermal storage and heat pumps. The heat pump has relatively high efficiency compared to 

boilers and with proper operation, electricity consumption and CO2 emission can be largely 

reduced. Borehole thermal storage uses the natural heat source, by coupling with heat pumps 

the heat pump efficiency can be increased.  

The existing research on the borehole mainly focused on the modelling, verification, and 

optimization on the sizing/material of the system and when it comes to coupling with heat 

pumps, most research showed the system operation results, temperature behaviour with 

constant heat injection/extraction and monetary and environmental benefits of the projects. 

With heat injection/extraction and natural heat replenishment under the ground, the heat energy 

storage becomes a very complicated problem when coupled with heat pumps especially when 

the temperature is a key aspect of the system.  As a result, how temperature affecting the system 

efficiency and what is the influence of the operation of the borehole storage coupled with heat 

pumps have not been studied.  

This thesis delivers the researching findings at each stage in each chapter. Starting from the 

high-level energy chain analysis, borehole temperature behaviour study and borehole charging 

strategy optimization. For single/multiple charging/discharging cycles, it enables the borehole 

to store less heat and still retains the performance of the Ground Source Heat Pump (GSHP) 

during the heating season and for limited available heat flux input- by obtaining the optimized 

charging strategy, the heat accumulation in the borehole is more efficient. The total GSHP 

electricity consumption is reduced along with the CO2 emission reduction and in the long-term 

operation, borehole thermal energy storage benefit more in the future.  
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1 Introduction 

1.1 General UK energy consumption 

The massive utilization of fossil energy results in air pollution and global warming [1-3]. In 

order to reduce the damage caused by traditional energy supply, renewable energies and 

environmentally friendly technologies are being widely introduced worldwide.  

1.1.1 Energy consumption and CO2 emission 

In the UK, the Climate Change Act in 2008 requires a specific reduction in greenhouse gas 

emissions [4]. Annual CO2 emissions come from different aspects, such as generating 

electricity using oil, coal, natural gas, etc. As the most important greenhouse gas component, 

CO2 is closely related to energy consumption. The total annually used energy fluctuates, for 

example, between 1970 and 2012, is shown in Figure 1-1. The orange line is the total energy 

consumption and the blue line is the household energy consumption in the UK. With the 

development of renewable energies and increasing efficiency of energy supply systems, the 

total energy consumption and the energy usage per household per year are decreasing. 

However, total household energy consumption is increasing its share due to people demanding 

increased comfort levels in houses including heating/cooling houses, population growth, and 

increasing household appliances [5].  

 

Figure 1-1 UK Household energy and total energy consumptions over 42 years [5] 
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When analysing different energy sectors from Figure 1-2, the housing sector takes the majority 

energy consumption compared to other energy users, such as industry, road transport, air 

transport, commercial buildings, etc. The housing sector consumed 502 TWk energy which has 

an 11% increase compared with 2011 housing sector energy consumption, 452 TWh [5].  

 

Figure 1-2 Final Energy Consumption by Sector 2012 and 2011(UK, TWh) [5] 

Within domestic energy consumption, there are 4 sections that contribute to the total domestic 

energy usage. From the numbers below, space heating is still the primary energy demand. 
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affect the efficiency of the heating energy consumption such as human behaviours, building 

materials and characteristics, technologies and weather conditions [6-8]. The effort was made 
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The UK government also released the United Kingdom housing energy fact file including the 

CO2 emission. From the report of energy consumption by the Department of Environment and 

Climate Change 2012, about 30% of energy consumption is in domestic energy usage and 

responsible for 38% of greenhouse gas emissions [5].  Because of a large amount of CO2 

emission from the domestic aspect, breakdown of emissions is shown in Figure 1-3. Among 

the 13 types of housing energy, the electricity and natural gas caused the majority CO2 emission 

yearly from 1990 to 2011. During the 22 years, electricity and natural gas accounted for 42.8% 

and 45.9% CO2 emission respectively.  

 

Figure 1-3 Housing energy CO2 emission in million tonnes [5] 
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electricity. The installation of electric heat pump was forecasted to lead to reduced CO2 

emissions by more than 90% by the year 2050 [12].  

In summary, heat pumps are more convenient to operate than CHP and have better opportunity 

to reduce the carbon emissions considering the government carbon emission target [13]. The 

Renewable Heat Incentive (RHI) was launched in November 2011 for non-domestic applicants. 

Successful applicants to RHI receive payments over 20 years. Several types of heating can 

claim payment through RHI based on the heat energy generated. As one of the eligible heating 

types in the RHI program, heat pumps have promising market growth in the future [14]. From 

the DUKES, in 2017, nearly 26% of renewable sources were used to generate heat and it is due 

to “the greater contribution of renewable heat from heat pumps”. 

Heat pumps benefit from low carbon electricity. Instead of using gas, electricity drives a 

refrigerant cycle to move heat from a low-temperature source to a high-temperature sink. For 

electricity generation, renewable energies like wind energy and solar energy are now widely 

applied at both large scale and small scale. The government promotes the “small-scale 

renewable and low-carbon electricity generation technologies” by making payments on 

generating and exporting electricity from eligible installations (Feed-in Tariff) [15].  

Besides the momentary benefit from the Renewable Heat Incentive and Feed-in-Tariff, heat 

pumps run more efficiently the warmer the heat source. Electricity consumption of heat pumps 

is related to the output heat energy and the Coefficient of Performance (CoP) of the heat pumps. 

The electricity usage can be calculated using the heat energy output divided by CoP. As a result, 

the higher the CoP, the less electricity required for the same amount of heat demand.  

For example, during the summertime, the ambient temperature is high which increases the CoP 

of an Air Source Heat Pump (ASHP). Since the heating load in temperate climates is usually 

in the winter, a Ground Source Heat Pump (GSHP) is likely to have higher efficiencies at these 

times due to more constant ground temperatures. In order to increase the GSHP performance, 

the borehole is used for storing heat. Inter-seasonal borehole storage which is basically a large 

underground heat exchanger combines both heat pump technologies to increase overall system 

efficiency, by storing summer heat in the bedrock until it is required in winter.  
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1.2 Inter-seasonal borehole heat storage combined heat pump system 

1.2.1 Initial design concept 

By combining the high efficiency and low carbon emission technologies together, the system 

provides excellent efficiency during both the heat charging season and heat discharging season 

and has drawn increasing attention at domestic and community level. This thesis focusses on 

such a proposed system which consists of heat pumps and borehole and converts electricity to 

heat, which is initially modelled based on the “energy hub” concept. In the late 2000’s, the 

“energy hub” was firstly described by Geidl and Andersson at ETH Zurich [16, 17]. The idea 

was “sufficiently general to cover all types of energy flows, but concrete enough to make 

statements about actual systems” [17]. Energy hubs import energy in different forms into a 

bounded area, converts and stores it, providing energy to load in the most efficient way over 

time as is shown in Figure 1-4.  

 

Figure 1-4 Example of a hybrid energy hub with inputs and outputs (multi-input and multi-output with the hub main body 
converting between different inputs to outputs) [16] 

In this proposed system, electricity can be seen as the input and the output is the heat demand. 

Within the “hub”, heat pumps convert electricity and the borehole stores the heat and the whole 

system is operated efficiently to provide space heating demand. The later chapters will give a 

detailed explanation and research.  

1.2.2 Borehole heating system 

In this borehole, inter-seasonal heat storage combined heat pump system, the electricity from 

the PV and the grid are the inputs and the output is the heat demand. This heat energy hub has 

relatively high efficiency compared to traditional methods. 
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Borehole thermal energy storage (BTES) is a ground-based heat storage with a longer asset 

lifetime compared to other energy storages. The borehole array is buried deep underground 

which requires less maintenance and minimal heat replenishment. The soil temperature is at a 

relatively steady temperature. The charged borehole suffers less heat loss to the surrounding 

mass because of the steady temperature and the good insulating properties of the ground. BTES 

allows the system to store the heat and use it efficiently in the future. The fluid flowing in the 

borehole pipe is water with mono-ethylene glycol and the glycol prevent the fluid freezing until 

the temperature reaches -15 °C so that it is very suitable for operating along with the heat 

pumps.  

The ASHP and the GSHP are the key low carbon devices in this system. In the research [18], 

Kelly and Cockroft collected the field trial data including the house location, rooms in the 

house, wall insulation information, roof condition. It is suggested that the houses which are in 

fuel poverty put 10% of the income to the fuel bills. During the research, the concept of UK 

carbon intensity was introduced to quantify the relative emissions from grid-based electricity. 

For the domestic users, the carbon intensity of the grid is around 500g CO2/kWh.  

The study of the performance of the ASHP in the UK suggested that the CO2 emission was 

reduced by 12% compared to the gas boiler [19]. When considered the operation cost, there is 

a 10% increase based on the application parameters [18, 20]. The fan of the ASHP ensures the 

ambient air passes over the evaporator. The refrigerant absorbs the heat from the summer high-

temperature air and the compressor provides high pressure and temperature vapour. After this, 

the refrigerant releases the heat and returns to liquid. The heat stored or released when the state 

of the refrigerant changes. 

The air temperature varies significantly during a day. As the ASHP absorbs the heat from the 

ambient air, the ASHP performance is not as steady as the GSHP. If the ASHP is used during 

winter time, its COP will not be high due to the low ambient air temperature during the heating 

season.   

For the GSHP the heat source is the ground. The evaporator passes the low-pressure cool gas 

through the compressor which releases the higher pressure hot gas. The condenser facilitates 

the heat exchange and provides hot water to the heating system. As stated before, the ground 

has a very steady temperature throughout the whole year even the air temperature drops below 
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0 ̊C. With a much more stable high temperature source, the GSHP is suitable to operate during 

the heating season than ASHP. However, the installation of GSHP is much more complicated.  

In summary, this borehole inter-seasonal heat storage combined heat pump system is best to 

operate under the following process: 

 In the summer, there is no space heating demand and the temperature is high. The PV 

can generate enough or surplus electricity to support the ASHP generating heat without 

spending extra money. The generated heat will be stored in the borehole. The borehole 

has a base temperature as the ground temperature. The injected heat energy lifts up this 

base temperature. 

 In the winter, it is too cold to operate ASHP and the GSHP supplies the heat demand. 

The heat is stored in the bedrock during the summer and will be the heat source during 

the winter time. Instead of providing the GSHP with the ground temperature, the 

borehole gives the GSHP a higher input temperature depending on the amount of heat 

energy stored during the summer. The PV electricity generation is low during the winter 

and the grid electricity takes part in providing the demanded electricity from the GSHP. 

1.3 Overview objective, challenge and motivation 

The investigation into the low carbon heating system is driven by different policy and 

programmes from the government. With the previous introduction of energy usage, CO2 

emission and the proposed system, this thesis focuses on the study of borehole modelling, 

temperature response and its charging strategy. The research aims of this thesis are to: 

i)      Study the feasibility of the space heating system and modelling it under different time, 

scales such as single charging/discharging cycle and multi-charging/discharging cycles. 

A high-level energy chain analysis using a simple borehole model shows great energy saving 

potential, which is the feasibility study of the proposed space heating system. Within the high-

level energy chain, the model is built on a linear function and the borehole physical layout is 

not considered, ignoring the heat transfer between the boreholes and surrounding environment. 

However, the practical operation of the borehole in terms of heat injection and extraction relates 

to heat transfer between each layer around the borehole and the within the boreholes 



8 

 

themselves. This heat transfer process depends on different parameters, thermal conductivity 

(W/m/K), thermal capacity (MJ/m3/K), starting temperature (°C), heat injection, etc. Different 

media have different parameters, which make the heat transfer a very complex nonlinear 

process across the whole borehole field.  

During the whole process, any heat injection and extraction leads to temperature gradients 

through each media which in turn affects the heat transfer. So that when considering the 

system’s time domain behaviour, the borehole temperature in each time step is determined by 

conditions at the previous step. In this thesis, the borehole model will be able to present the 

temperature/heat relationship and temperature change in each medium.  

ii)     Optimize the operation of the borehole to increase the system efficiency under different 

time scales with borehole temperature behaviou study. 

Heat transfer is a complex process and when there is a temperature difference, it happens. For 

the borehole thermal energy storage, less heat loss results in higher temperature. In the past 

research on the borehole, the focus is always on building the borehole, verifying the model, 

and optimizing the size. The influence from the borehole temperature within the heating system 

is not taken seriously [21]. In the proposed heating system, borehole’s temperature changing is 

closely connected to the heat pumps in charging and discharging seasons. During the charging 

season, the ASHP will carry high-temperature fluid to the borehole and the borehole and 

adjacent ground will be raised to a higher temperature. However, along with the charging 

process, the temperature settles down as the heat dissipates to the surrounding area. As a result, 

the temperature of the fluid to the GSHP is not the same high temperature any more. The 

borehole wall absorbs the heat from the fluid during the charging season and in the discharging 

season, the borehole wall is directly related to the performance of the GSHP.  The temperature 

output from the borehole will be a very important aspect. This thesis shows the temperature 

changing pattern of the borehole due to different heat injection and extraction and chooses the 

proper temperature point for further analysis on optimizing the borehole charging process. If 

total low carbon input heat energy is limited, the allocation of charging over time will determine 

the final borehole temperature and thus the GSHP performance during the discharging season. 

Early charging tends to lose heat in the early time steps, vice versa. Taking the heat loss into 

account, this thesis presents that the most efficient borehole charging strategy to increase the 

heat pump performance. 
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iii) Illustrate the benefit from this space heating system such as electricity consumption and 

CO2 emission and provide a guide for future research.  

The efficiency of the heat transfer process between the borehole and the surrounding ground 

acts on single charging/discharging and multi-charging/discharging cycles and is dependent on 

all stages of the whole energy chain. Therefore intelligent input of heat energy over time is of 

critical importance to the system. By studying the borehole coupled heat pump space heating 

system from a high level energy chain to optimizing the operation, this thesis illustrates the 

benefit from the proposed space heating system in terms of system efficiency, electricity 

consumption, and CO2 emission. 

1.4 Outline of the thesis 

There are 7 chapters in this thesis: 

Chapter 1 --- Introduction of general knowledge on the heat energy consumption, challenges, 

motivation and thesis outline. 

Chapter 2 --- This chapter presents the overview of the existing borehole heat energy storage 

modelling based on different aspects and types as well as the application of the borehole 

thermal energy storage coupled with heat pumps. With the overview of the past work, further 

research needs to be done. 

Chapter 3 --- This chapter presents the start stage of this study. A practical borehole project is 

introduced with the detailed phase one borehole feasibility study and the high-level energy 

chain analysis brings out the beneficial quantification on the space heating system. With the 

study on the project, a lumped borehole thermal storage is introduced with initial system 

knowledge built and the high-level energy chain analysis leads to further system improvement 

and research. 

Chapter 4 --- This chapter presents an accurate borehole modelling in the MATLAB 

environment. Instead of a lumped borehole model, the borehole accurate temperature behaviour 

response to the injection/extraction heat flux in long-term and short-term cases are conducted 

in Chapter 4. The new borehole model considers heat transfer between different layers in within 

the whole storage volume. With the temperature behaviour study, the useful temperature 
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information is selected based on this borehole model and initial borehole coupled with heat 

pumps system performance is studied.  

Chapter 5 --- This chapter presents a journal paper on optimizing borehole short-term charging 

strategy. With the knowledge from the previous chapters, Chapter 5 focused on the operation 

of the proposed space heating system and the optimized charging strategy of the borehole helps 

the system to save more consumption and reduce CO2 emission.  

Chapter 6 --- This chapter focuses on the efficient way to charge borehole system with multi-

charging/discharging cycle and illustrate how the heat accumulation benefit in the long term 

operation with limited heat storage in the borehole. The study in this chapter presents a borehole 

charging guide over long term and with the long term charging strategy, the system reduces 

more electricity consumption and takes advantage of the high ground storage temperature with 

heat accumulation with less heat loss in long operation time. 

Chapter 7 & 8 --- Conclusions will be drawn in Chapter 7 and the future work in Chapter 8 is 

based on the current research. 
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2 Overview of existing borehole research 

2.1 Introduction 

In this chapter, the historical research on borehole is introduced. The overview of the borehole 

research is based on different papers. The discussion on each paper includes the borehole 

model, results, focus and conclusions.  

2.2 Thermal storage overview  

Energy storage systems, in general, are designed to accumulate different energies for later 

usage. There are a growing installation and utilization of geothermal energy in the worldwide 

[22-26]. It helps to store excessive energy and then releases it at the request in a later time. 

There are several properties that can describe energy storage systems, capacity (the 

maximum/minimum energy the system can take and remain), efficiency (energy loss during 

the charging/discharging periods), cost (system capacity and operation), and storage time (the 

length of energy stored) [27]. 

Nowadays, the production of renewable energy is increasing [28] and one problem of using 

renewable energies like wind, solar, is that the generation of electricity or heat energy does not 

match the peak demand. Electricity storage can be seen as the Holy Grail for the renewable 

energies and helps to improve the usage of renewable energies [29]. For the heat energy, the 

majority of heat demand appears during the winter time. The inter-seasonal heat energy storage 

makes it possible to store the surplus heat in the summer and use it during the winter. For 

domestic hot water, space heating and air-conditioning in the building sector, thermal energy 

storage is frequently used. 

The first inter-seasonal thermal energy storage was used during the 1960s in the US [30]. 

Thermal energy storage can be divided into the following types [27, 28]: 

 Underground thermal energy storage [27] 

UTES includes borehole storage, aquifer storage, cavern storage and pit storage. The 

selection of different theologies is based on the geological condition.  

i) The most borehole related projects aim to provide space heating during the winter. 

The heat exchanger is often used with the heat pumps.  
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ii) Aquifer storage sees the natural underground water-permeable as the medium and 

frequently used to store winter cold. 

iii) Cavern and pit storage is based on underground water reservoirs. The investment 

costs are high.  

 Sensible (hot water) thermal energy storage [2, 31, 32] 

Sensible heat storage depends on the body mass and heat capacity of the carrying liquid 

or solid and the change in temperature. There is no phase change within the temperature 

range.  

 Latent heat storage (phase change material) [2, 27] 

Phase change material has higher energy capacity and steady discharging temperature 

compared to the sensible storage. However, for PCM the thermal conductivity is always 

in a low range between 0.2 and 0.8 W/mK.  

 Thermo-chemical [2] 

A chemical reaction in the thermal energy storage can achieve high energy capacity and 

it is one of the most novel approaches. Thermo-chemical heat storage does not get limit 

in time due to the heat loss compared to the sensible thermal energy storage and latent 

heat storage [32].  

The underground energy storage such as borehole thermal energy storage in Figure 2-1 is 

becoming increasingly popular [28, 33]. The borehole storage is the vertical heat exchanger 

and transfers the thermal energy to and from the ground layers such as clay, sand and rock. In 

practice, the borehole thermal energy storage is always used with heat pumps to take advantage 

of the soil temperature heat [27, 34].  



13 

 

 

Figure 2-1 Example of usage of borehole thermal storage coupled with heat pump [88] 

This chapter includes the introduction of the borehole heat energy storage history and the 

current research on borehole thermal energy storage.  

2.3 Existing key research on the borehole thermal energy storage  

The modelling of borehole field response can be conducted in several ways. Borehole thermal 

energy storage as a commonly used thermal storage has been studied for decades. In 1882 and 

1948, “Kelvin’s line source theory” first applied the line-source without considering the 

thermal properties and the axial effect of the borehole. Later on, improvement has been done 

on the borehole thermal properties and the heat flow effect. However, the new model only 

considers the temperature response of the borehole for short-term simulation. A lot of current 

research is based on the famous G-function developed in 1988 by Eskilson. The numerical 

model always has homogeneous ground with different thermal properties for the fluid, the grout 

and the ground and the initial temperature so that simulation takes a relatively more time 

compared to the analytical model and the model is suitable for the long-term temperature 

response. In the early borehole heat energy storage research, the analysis of the heat transfer of 

borehole was a great challenge due to the transient heat transfer between different media and 

the surrounding geometry parameters [35]. Some great work has been done in this area, mainly 

by analytical [36-41] and numerical [42-45] approaches.  In [36] and [38], the borehole is 

modelled using line-source providing a new way of designing borehole under different property 

and materials. [37] uses finite line-source solution to calculate the borehole output fluid 
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temperature response of different configurations of boreholes. In [39] and [40], the focus is on 

the groundwater advection impact on the borehole modelling and the analytical borehole model 

provides an efficient way of presenting the influence of the water flow. Angelo in [42], uses 

the numerical borehole model with different grouting material and compares with the field 

measurement. Yujin in [43], uses the numerical method to predict the heat exchange rate for 

designing the system. In [44], Su carried out studies on a single borehole numerical model 

compared with the analytical model on the fluid temperature and computing time and study 

shows that the numerical is an efficient way of simulate the ground heat exchanger. [45] studies 

the temperature effect of different ground layers and finds that the ground layers have little 

effect on the designing of the borehole coupled GSHP system.   

In this section, some important research on the borehole modelling will be selected and 

presented. Each of the selected research has its own characteristics, focuses and model 

environments.  

2.3.1 Composite-medium line-source model validation 

In [35], Min Li studied the borehole temperature short-time response. This research focused on 

the heat capacity effect and different arrangements of the borehole.  In an analytical way, the 

traditional approach of borehole heat transfer, thermal transfer is divided into steady and 

unsteady states because of the small dimension and heat capacity. For the short-time borehole 

temperature study, the U-shaped tube is an equivalent diameter simply tube [46] gives “little 

insight into the underlying heat transfer mechanism” [35] as is shown in Figure 2-2.   

 

Figure 2-2 equivalent’ diameter simplification for U-shaped tube [35] 
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For the current transient thermal process of the borehole model, L. R. Ingersoll firstly 

introduced an infinite line-source and cylindrical-source model in 1955. Authors in [35] 

developed a new line-source model based on their previous wok composite-medium line-

source model for analysing the thermal process. The new model turns the original model to a 

facilitating numerical computation. This approach is different from the traditional one. The 

method of calculating the average temperature of the borehole wall is simplified. In the 

traditional method, the heat transfers within and around the borehole are assumed to be steady 

state and simply represented by thermal resistance.   

Besides the borehole modelling, authors also used the experimental data to validate the 

composite line-source borehole model. Due to the lack of independence thermal parameter 

measurement of the soil, borehole materials, and the layout of the borehole system in the field, 

the laboratory data of Beier et al [47] is used to validate the model. This experiment consists 

of a large sandbox with the borehole model and electric heaters. The initial temperature, 

borehole size, the sand/ backfilling (grout) thermal parameters and heating power of the heaters 

were the major control parameters as shown in Figure 2-3. The temperature response at the 

inlet/outlet and at the different radial positions are comprised.  

 

Figure 2-3 Temperature measurement in Beier et al experiment [35] 

From the results comparison, the new analytical borehole model, considering the U-shaped 

tubes as line source heat reducing the calculating time, gives a more accurate reference for 

predicting the temperature response of in terms of the borehole distance. However, the 

temperature error between the predicted model and the experimental case is decreasing from 

6% at the borehole wall position to 2% at the radius of 24 cm. 
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From the circulation fluid temperature comparison between the new proposed borehole model 

and the traditional model, both models produce the same the prediction of the fluid temperature 

trend. However, the traditional method consumed more time.  

The conclusions from this research are described in two aspects. The new composite borehole 

model was validated by the laboratory experiment. Three factors were analysed to show the 

influence on the borehole model temperature prediction, heat rate, thermal conductivity and 

thermal capacity. For the short-term, the borehole temperature response in the new model is 

more suitable and time-saving for prediction than the traditional method. 

2.3.2 Heat transfer based on borehole different geological lays 

In the analysis of borehole heat exchanger in [48], the focus was drawn to the heat transfer 

between different geological layers as shown in Figure 2-3 (a). For an accurate estimation of 

borehole thermal performance, the heat conductivity and the specific heat capacity are very 

vital in the heat transfer process [49]. The experimental measurements were taken on 18 

boreholes with GSHP in an office building in Germany.  

 

(a) 
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(b) 

Figure 2-4 Borehole display for the thermal response tests (a) with Ground layers (b) [48] 

Figure 2-4 (b) shows the borehole layout. In the tests, the boreholes are divided into three 

groups according to different borehole diameters. The first group shown in Figure 2-4 (a), T1 

is 121 mm, T2 is 165mm and T3 is 180mm. GWM1 and GWM2 are the two extra wells drilled 

in the upstream of the borehole field and downstream of the borehole field. From GWM1 and 

GWM2, the groundwater measurement was carried out. These 18 boreholes and two 

investigation wells were drilled with 80 m depth. The bullet points listed below give the five 

different geological layers considered in this research. Within the 80 m underground: 

 0 – 4 m are the middle sand, fine sand gravels (Quaternary). 
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 4 – 25 m is the sandstone with good hydraulic conductivity and considered to be an 

aquifer (Blasensandstein). 

 25 – 55 m are the bedded sandstone with claystone which has good horizontal hydraulic 

conductivity (Lehtbergschichten). 

 55 – 62 m is sandstone considered to be an aquifer (Schilfsandstein). 

 62 – 80 m is the highly compacted grey claystone layer which is an aquiclude 

(Estherienschichten). 

As stated before, the ground parameters are significant for an accurate measurement. In this 

research, from GWM1, thermal conductivity and specific thermal capacity were measured and 

from GWM2, the groundwater was measured.  

Besides the ground thermal parameters, the borehole model adopts a numerical method with 

mesh representing different borehole regions. This numerical model was built in FEFLOW and 

the heat transfer of borehole was modelled by the fully discretized meshes [50]. The settings 

of the parameters, numerous of mesh and the matrix in the numerical model took a long time 

of operating. Depending on the size of the model and the mesh condition, the simulation time 

increases nonlinearly. The fluid temperature was described as a response to the heat flux per 

unit length [51]. The heat transfer between the fluid and the borehole wall was represented by 

the thermal resistance. Through the whole simulation process, to evaluate the heat transfer of 

boreholes, within the borehole U-shaped pipe, the fluid temperature (in and out) were recorded 

in time series.  

This study brought a detailed temperature profile, heat transfer for different ground layers and 

the measured thermal parameters. The homogenous ground model and layered subsurface 

model were compared through the study and the numerical borehole model was validated. 

From all the simulations and comparisons, the performance of the borehole is very even over 

the length and the length of the borehole model could be reduced in the future study.  

2.3.3 G-function borehole model study 

In [52], a full-scale analytical borehole was developed to overcome the complex heat transfer 

of borehole heat storage in time-space scales. The full-scale model is a composite expression 

consisting of a composite-medium line-source solution (inner solution), a finite line-source 
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solution (outer solution), and an infinite line-source solution. As shown in Figure 2-5, different 

stages of the borehole model are used for different time scales. 

Full-scale model
Composite-medium 
line-source solution 

(inner solution)

Finite line-source 
solution 

(outer solution)

Infinite line-source 
solution

Short-time scale

Intermediate-time 
scale

Long-time scale

 

Figure 2-5 Full-scale model structure and usage 

In borehole study, the borehole wall temperature study is always the key issue. For the infinite 

line-source model, the average temperature is expressed as below [52]: 

                                          𝐺1(𝑡) =
1
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Where, 

 𝑡 is time 

 𝑘𝑠 is thermal conductivity of soil 

 𝑎𝑠 is thermal diffusivity of soil 

 𝑢 is integral variable 

 𝑟𝑏 is the borehole radius 

The limitations of the infinite line-source are that the heat transfer ignores the thermal process 

in the ground and the temperature has no limit of increasing and decreasing. For the short time 

simulation, the temperature response is considered to be accurate [52].  

For the finite line-source, the limitations of the infinite line-source are no longer the issue and 

are suitable for the long time simulation. The borehole temperature for this model is calculated 

with the equation below [52]: 
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Where  

 𝑡 is time 

 𝑘𝑠 is thermal conductivity of soil 

 𝑎𝑠 is thermal diffusivity of soil 

 𝑧′ is the integral variable along coordinates z 

 𝑟𝑏 is the borehole radius 

 erfc(x) is complementary error function 

 𝐻 is the borehole length 

However, the old G-function cannot present the transient heat transfer process because of the 

lack of the thermal parameter of the grout (backfilling material) and the ground thermal 

parameters. The Equation below shows that calculation [52]: 
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Where  

 𝑎𝑏 and 𝑘𝑏 are the thermal diffusivity and conductivity of the backfilling materiel 

 𝑟′ is the position of the line source 

 𝑟𝑎 𝑟𝑏are the radius coordinates of points A and B 

 u is the integral variable of the dimension of reciprocal of the length 
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The calculation is based on the borehole layout below: 

 

Figure 2-6 Example of borehole wall temperature calculation [52] 

For this new model of the borehole, the equation becomes more complicated and it is difficult 

to solve when the more factors are considered [52].  

This research paper introduced the very detailed analytical borehole model. With extra factors 

considered, such as the length of time and different media [53], a new multi-stage is proposed 

by Yi Yang. As a result, the time-space scale simulation can be done for the borehole thermal 

energy storage. The multi-stage model was verified and the difference is very small and can be 

neglected. When running the simulation, the computation time is reduced compared to the full-

scale model. 

2.3.4 Moving finite element borehole  

In paper [40], authors took the groundwater flow and axial effect into account on the borehole 

model.  

The majority of analytical methods of the borehole heat transfer process were based on the 

infinite line-source theory in [54]. This model is good at short-term heat response, however, 

for the long-term test, axial effect is relevant [55] and the temperature response to the heat 

input/output in the infinite line-source without the groundwater flow effect could not approach 

the steady state period. With the constant increasing of the heat energy injection or extraction, 

the temperature increasing or decreasing linearly with the simulation time. In this study, Mikael 

designed the borehole storage with axial effects considered so that the temperature response 
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reaches a steady state. More researches have been done on the effect of axial, in [56], a borehole 

design problem was demonstrated. With the axial effect considered, a more cost-efficient 

borehole system which reduced 15% of the length of the borehole. Besides the axial effect on 

the modelling borehole, groundwater flow presents the heat transfer by the moving water. The 

effect brought by the moving water has been studied in [57-60], and concluded that the 

temperature distribution within the borehole model is changed.  

As a result, Marcotte combined these two effects with the analytical model --- moving finite 

line model. There are three assumptions made in their new model: 

 The homogenous semi-infinite ground has thermal properties independent of the 

temperature changing. 

 The boundary of the ground is set to the fixed temperature as the same as the initial 

underground temperature. 

 The heat flow of this finite line-source is a constant.  

The finite line-source model is based on the Green’s function [61]. The G-function of the heat 

transfer process provides the relationship between the heat and the temperature in the borehole 

model. The model was validated by using a 3D model within a 100 m × 200 m horizontal 

domain. The simulation was done with 20W/m constant heat input for 20 years.  

The thermal parameters are independent of the temperature change. The results show that the 

temperature responses of the moving finite line-source model and the validation model agreed 

to each other. Another comparison was made between the traditional finite live-source model 

and the new model brought up by Marcotte to show the effects of both factors, groundwater 

flow and axial effects.  

The conclusion of this research presents that both factors influence the borehole temperature 

response to the heat input. The heat loss at the borehole bottom and the surface temperature 

result in less temperature change in the surrounding area which becomes more evident with 

longer simulation time. The study also shows that the groundwater velocity in the aquifer and 

the length of the borehole decides the axial effect (vertical heat losses). As a result, the axial 

effect can be neglected with high groundwater flow case.  
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2.3.5 Virtue MATLAB Finite Element numerical simulation 

The difference between the analytical model and the numerical model is the temperature 

distribution domain. In the analytical model, the borehole internal region has been neglected 

and the heat transfer is between the borehole wall and the surrounding soil. The numerical 

model solves the temperature across the whole borehole region [62]. In the study [63], Ye 

Zhang presented a double-borehole model based on the finite line-source through MATLAB 

PDE toolbox. The heat transfer was divided into inside and outside borehole. Most studies are 

focusing on the borehole wall temperature response, however, if the borehole is considered as 

part of the heat pump system, the focus and the difficulty are switched to the outside heat 

transfer.  

After the noble borehole models shown in the following bullet points, most literature is 

focusing on the single borehole and do not present the borehole region temperature response 

based on these two models.  

 1948, infinite line-source 

 1987, G-function temperature response 

Two research studies have been conducted on the cylindrical coordinate establishment and G-

function modification. The whole two-borehole field temperature verification is carried out in 

MATLAB PDE toolbox as shown in Figure 2-8. Partial Differential Equation toolbox is a 

numerical finite element method which has humongous number of mesh to solve partial 

differential equations and the heat map is then developed according to the borehole layout. 

Figure 2-7 is the borehole layout used in the study and the equivalent diameter model was used: 

 

Figure 2-7 Diagram of equivalent diameter [62] 
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The main steps in creating the borehole are: 

 Create solving domain 

 Set boundary conditions and equations 

 Generate mesh 

 Show the temperature map 

 

Figure 2-8 Meshing diagram [65] 

The initial temperature for certain boundaries and subdomains are set to 15 °C. There are three 

sets of temperature tests: 1 month, 1 year and 20 years. The study stated that the MATLAB 

PDE toolbox accurately described the soil temperature changing and the difference between 

the analytical solution and the PDE toolbox is within 1%. 

In research [65], the borehole was built with different media: fluid, backfilling material and the 

surrounding soil. In this test, the single borehole model was compared with the multi-borehole 

model. The temperature response was analysed in short-term scale. For the short-term scale, 

the average temperature across the borehole field in the two models shows little difference. In 

[66], the model shows the temperature effect of the soil pipe at different radial from the centre 

and the differences between different soil conditions. The authors in [67] present a study on 

the efficiency of the borehole coupled GSHP and is carried on different scenarios. The results 

show the improving efficiency of the system. However, these studies are lack of the thorough 

research on the long-term (such as 5 or 10 years or lifetime 20 years) borehole behaviour and 

temperature response for different heat input.  
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2.4 Research on borehole application 

The borehole is used in various aspects such as storing water, providing cooling and heating 

and in this section the usage as the thermal energy storage in the energy system is reviewed. 

Inter-seasonal thermal storage helps to maximize the utilization of solar energy because of the 

intermittence of the sun radiation [28]. The ground is a very steady heat source through the 

whole year and the temperature is increasing according to the depth. With a warm surrounding 

area, the heat loss in the underground thermal storage is relatively small. After the seasonal 

thermal storage firstly proposed in the 1960s in the states, there has been much research on this 

topic [30]. Among the commonly used thermal storages such as hot-water thermal energy store, 

borehole thermal energy store, aquifer thermal energy store, gravel-water thermal energy store, 

borehole thermal energy storage is preferred for its safety and reliability [68]. Figure 2-9 shows 

the working process of this system: 

 

Figure 2-9 A schematic of solar-borehole thermal storage [28] 

Surplus solar thermal energy is collected through the solar collector and stored under the 

ground and during the heating season, the heat pump raises the temperature for the users. With 

the solar collector installed coupled with borehole thermal storage, the solar fraction is 

increased, however, the charging time is not flexible due to weather condition and the ability 

of exchange energy with the electricity network is limited. There is a lot of commercial 

software to simulate this high dynamic behaviour system including TRNSYS, MINSUN, 

SOLCHIPS [69, 70]. With the system built, Pahud [71] optimized the system parameters such 

as storage volume and collector area. Argirious [69] simulated a borehole inter-seasonal storage 

system for a residential area and indicated the size of the borehole and energy supply 
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percentage over the total heat demand. Sibbitt et al. [72] found out that with borehole thermal 

energy storage, the system efficiency increased and the results had been compared with system 

operating monitoring.  

As is shown in Chapter 1, in Europe, 40% of final energy consumption is contributed by the 

residential buildings [73]. Adhikari [74] presented an energy supply system for different end 

users including heating, domestic hot water and electricity, in a residential building. In this 

system, GSHP and vertical ground vertical exchanger are used for the space heating. Compared 

with the boiler providing the heat demand, the primary consumption is reduced annually 

dramatically. The CO2 emission from the space heating is reduced as well. Yujin [43] uses 

FEFLOW [75] to calculate heat transfer between the borehole and the surrounding ground and 

the changing pattern of GSHP CoP according to the borehole temperature. From the past years 

of researching on borehole storage, there are two main focuses based on the analytical and 

numerical methods: 

 Borehole size study 

 Borehole thermal performance and validation 

Besides the above study, optimization had been done on the short-term heat energy storage 

system with the influence of energy prices during the 90s [76-79]. A more recent study [80] 

proposed a hybrid thermal energy storage. The system accumulates solar energy and releases 

when the heat is needed and the control model uses the weather forecast. The study guarantees 

a comfortable thermal environment of the room and reduces electricity consumption compared 

to the traditional electric baseboard heating system.    

De Ridder in [81] optimized the control algorithm of managing borehole thermal energy 

storage Figure 2-10 which helps the system to avoid getting exhausted by intensive usage over 

long-term operation.  In this study, different cases have been set according to the weather 

conditions in the summer and winter which are classified as hot, mild, normal and cold. This 

research was the first step to the operation of borehole thermal energy storage and the heat flux 

various according to the field temperature. During the summer, the cooling system guarantees 

the field temperature is not too hot for cooling the building and during the winter time the 

temperature is not too low for heating the building. With the optimized heat flux, the system is 

very robust in each case.  
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More current study on the borehole heat exchangers is carried out in 2017 in China and Jin Luo 

presents three operation conditions for a large scale GSHP system with borehole thermal 

storage [82]. The study has three key focuses: i) thermos-physical properties are determined ii) 

heat transfer and accumulation of the borehole is studied iii) energy demand has great influence 

on the system. In terms of the energy demand on the operation of the system, this paper does a 

good job, however, the study is lack of research during the charging process and the key 

temperature used is the fluid temperature which is different from the borehole storage 

temperature (borehole wall temperature). The current analytical and numerical borehole model 

are used for modelling the heat transfer mechanism within the borehole, between the group of 

boreholes and system configuration according to the literatures [89]. In this thesis, the focus 

will be on the operation of the inter-seasonal borehole thermal storage. 

 

Figure 2-10 Scheme of the storage field and classical installation [82]  
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2.5 Chapter summary  

This chapter provides the general introduction to heat energy storage and the key research on 

modelling borehole heat energy storage with its application.   

Borehole thermal energy storage as a commonly used thermal storage has been studied for 

decades. Section 2.3 and 2.4 are based on diverse research aspects for modelling the borehole 

and applications. Each paper studies borehole temperature response from a certain angle, such 

as axial effect, water flow rate, borehole equivalent diameter, perdition of line source, geometry 

layers, etc. From different aspects of the research, the borehole modelling is verified.  

With the borehole modelling study, more recent research has been focusing on the application 

of the borehole within the energy supply system. Section 2.3 lists several papers on the 

application of the borehole thermal storage. Most of the studies emphasize the working process 

of the system and analyse the performance of the borehole other low carbon technologies such 

as sizing, efficiency. Optimization on the operation of the borehole based on the given weather 

conditions has been done and the heat flux output was balanced to meet the demand. However, 

the borehole temperature behaviour is not thoroughly studied on the system performance. 

These papers largely inspired the research in this thesis on the modelling of borehole system, 

temperature behaviour of the borehole over short and long-term and the influence in the system 

involving other low carbon technologies.  
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3 Low carbon energy chain benefit quantification 

3.1 Introduction 

This chapter quantifies the benefit of the active recharge of the borehole array during the 

summertime on a community level low carbon space heating system including PV, ASHP, 

GSHP and the borehole. With the active charge, the borehole space heating system requires 

less electricity compared to the no-active charge scenario and with the increasing operation 

cycles during the lifetime the difference becomes large. The case study also compares two 

operation scenarios to the traditional heating method, boilers on CO2 emission.  

3.2 Space heating system introduction 

3.2.1 Project introduction 

In 2014, Small Business Research Initiative (SBRI) competition was launched by the 

Department of Environment and Climate Change in October 2014. The innovation designs 

support the low carbon heat network development and this competition has two phases: 

 Phase one investigates the feasibility of the innovative design: i) borehole lump model 

development ii) initial high level energy chain design iii) borehole energy chain 

analysis. 

 Phase two demonstrates the technology on the existing heat networks 

The CHOICES consortium led by Clean Energy Prospector (CEPRO) was developing the new 

type of energy facility that will buy surplus solar power in summer to run Air Source Heat 

Pumps, store that heat in a borehole array, then sell the heat into a heat network in winter. This 

energy chain links two community buildings with a low carbon emission heat network.  

This chapter introduces the high-level energy chain for the CHOICES project in phase one 

followed by the monetary and emission assessment compared with the traditional heating 

method. Different aspects are involved in this chapter’s study, such as temperature condition, 

solar radiation, and equipment efficiency, etc.  
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3.2.2 System introduction 

The borehole energy chain is based on the energy hub theory. The low carbon space heating 

system stores the heat generated from ASHP using PV electricity during the summertime and 

provide high-temperature environment for GSHP during the winter time so that the efficiency 

of GSHP increases. The high-level energy chain describes the general system layout and the 

system working process.  The whole system diagram involves the input, the hub body and the 

output. The inputs are the PV electricity, Grid electricity and the gas. The output is to provide 

the community space heat demand. Figure 3-1 is the proposed project system modelled 

presented as an energy hub. In this system, the main components are the BH (borehole), ASHP, 

and GSHP. The Energy Management System is to control each component.   

 

Figure 3-1 CHOICES project system diagram 

In order to study the efficiency of the energy chain, the model can be investigated in charging 

and discharging seasons.  

In phase one, the heating system is divided into the charging process and the discharging 

process. In the charging season, the PV and the grid provide the electricity required by the Air 

Source Heat Pump. The generated heat energy will be stored in the borehole buried 150m under 

the ground. Figure 3-2 shows the summer charging hub structure. Figure 3-3 is the single time 

step calculation flow chart for the charging season. The ASHP has two input parameters to 

calculate the Coefficient of Performance (CoP) of the ASHP, which in turn determines the 
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electricity consumption of the ASHP. At t=0, the ambient air temperature and selected ASHP 

outlet temperature decide the CoP category and inject the heat into the borehole. After each 

time step, the borehole temperature increases ΔT. If there is no heat injection, the temperature 

remains the same. 

 
 

Figure 3-2 CHOICES charging season [1] 
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Figure 3-3 Charging system flow chart (n time step number and N total time steps) [1] 

In the discharging season shown in Figure 3-4, the GSHP uses electricity from the PV and the 

grid to provide the electricity needed by the GSHP. During this process, the borehole array 
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provides a heat source for the GSHP. The higher evaporator inlet temperature makes the GSHP 

perform better. With higher CoP, under the same heat demand, the electricity consumption will 

drop. Figure 3-5 is the winter discharging process. From the charging season, the borehole high 

temperature is the starting evaporator inlet temperature. With the selected output temperature, 

the GSHP operates under the CoP and calculates the electricity needed from the PV or the grid. 

During this process, the borehole temperature decreases in each time step. 

 
Figure 3-4 CHOICES discharging season [1] 
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Figure 3-5 Discharging system flow chart (n time step number and N total time steps) [1] 
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3.3 Case study set up 

3.3.1 PV and air temperature data 

One of the most important components is the Photovoltaic panels (PV). In the CHOICES 

project, the community building has PV already installed. The electricity generated from PV 

provides low carbon electricity for the community. In the CHOICES project, the electricity 

from PV will be used to drive the heat pumps that charge. This decarbonises the CHOICES 

energy chain and alleviates grid congestion summer caused by high penetrations of distributed 

renewables.  

The project is located in the Easton Community Centre in Bristol. The PV generation data and 

sun radiation data are from the “Photovoltaic Geographical Information System” (PVGIS) [83]. 

The screenshot of the website [83] is shown in the Figure 3-6.  

 

Figure 3-6 PVGIS website information [83] 

 

 

 



34 

 

UK is located in the area which receives 1000 W/m2 according to the website Figure 3-7. 

 

Figure 3-7 Global irradiation and solar electricity potential [83] 

This PVGIS app generates the average daily/monthly electricity generation in kWh. The 

electricity generation is related to the PV generation factor in each month obtained from the 

PVGIS app.  

Current PV installation is 36 kWp which is third-party owned by Bristol Energy Cooperative.  

Table 3-1 gives the daily electricity generation for the current PV installation. The data will be 

used in the case study later this chapter. 
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Table 3-1 Installed PV and electricity generation [83] 

Month 
Installed PV amount 36 kW 

PV generation amount (kWh) 
PV generation factors 

April 2.17 78.12 

May 2.25 81 

June 2.32 83.52 

July 2.45 88.2 

August 1.95 70.2 

September 1.74 62.64 

October 1.19 42.84 

November 0.8 28.8 

December 0.5 18 

January 0.63 22.68 

February 0.96 34.56 

March 1.71 61.56 

Besides PV electricity generation, the ambient air temperature is another weather aspect to take 

into account.   

As is shown in the overall system diagram, during the summertime, only the ASHP is used to 

charge the borehole and the efficiency of the ASHP depends on the ambient temperature. 

Figure 3-8 is the hourly air temperature during the whole year time and the useful temperature 

must be selected to match the time step for the CHOICES project. 
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Figure 3-8 Historical hourly ambient air temperature in one year [13] 

The temperature data used in the project is the recorded historical hourly temperature data as 

shown in Figure 3-8.  The time step used for the borehole model is 12 hours and as a result, the 

day is divided into 7:00 to 19:00 (daytime) and 19:00 to 7:00 (night time) according to the 

community heating demand. In one time step, the temperature is considered to be the mean 

value during 12 hours. Figure 3-9 shows the charging (summer) time ambient air temperatures 

according to the summertime steps. The temperature data will be used in the case study for 

calculating the ASHP CoP during the charging season (summer). 
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Figure 3-9 Summer ambient air temperatures within a year [13] 

3.3.2 Air/Ground source heat pump (ASHP and GSHP) 

In CHOICES, the ASHP and GSHP are the major low carbon technologies. The efficiency of 

the heat pump is called Coefficient of Performance (CoP). [1] 

                                                      𝐻 = 𝐶𝑜𝑃 ∙ 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦                                               (3-1) 

Where 

 𝐻 is the heat output (for ASHP in this thesis, 𝐻 is the heat energy generated; for GSHP, 

𝐻 is the space heat demand). With higher heat pump inlet temperature, heat pump 

requires less electricity to generate the same amount of heat energy which results to a 

higher heat pump CoP and more efficient heat pump performance.   

 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 electricity needed from the heat pump 
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The evaluation of the ASHP performance suggested 12% reduction of CO2 compared to the 

gas boiler [18]. The operation cost increases 10% according to the application parameters[1] 

[18] [20]. Compared with the ASHP, GSHP always has a steady heat source. The ground 

temperature is much higher and more stable than the ambient air temperature in winter. 

However, the installation is very complicated [1, 19]. Table 3-2 and 3-3 are example heat pump 

operation temperature category used in the CHOICES project. Each heat pump inlet 

temperature has a different maximum electricity input which is called the maximum heat pump 

capacity. The detailed temperature categories of GSHP and ASHP are displayed in the 

Appendix A. 

From the example temperature category, the GSHP and ASHP have the lowest lock-up 

temperature, and below the lock-up temperature, the heat pump will stop working. On the other 

hand, the CoP increases when the inlet evaporator or ambient air temperature increases.  

Table 3-2 GSHP information [13] 

GSHP 

Evaporator 

inlet 

temperature 

(°C) 

Condenser Water Outlet Temperature (°C) 

30 

Cooling 

(kW) 

Input 

(kW) 

Heating 

(kW) 
CoP 

-7 50.1 16.8 66.2 3.94 

-1 62.8 16.9 79.1 4.68 

4 73.0 17.0 89.5 5.25 

6 78.1 17.1 94.7 5.54 

10 89.1 17.3 105.9 6.12 

11 92.1 17.4 109.0 6.28 

12 95.1 17.4 112 6.44 

15 105.2 17.7 122.5 6.92 

18 112 17.9 129.5 7.23 

21 122 18 139 7.69 

24 132 19 151 8.09 
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Table 3-3 ASHP information example [13] 

ASHP 

Air temperature (°C) 

Condenser Water Outlet Temperature (°C) 

30 

Input (kW) Heating (kW) CoP 

-20 11.39 27.36 2.40 

-17 11.54 29.82 2.58 

-15 11.68 31.7 2.71 

-13 11.81 33.51 2.84 

-12 11.88 34.42 2.90 

-10 12.02 36.48 3.03 

-5 12.49 41.89 3.35 

0 12.93 47.92 3.71 

5 13.42 54.33 4.05 

7 13.62 57.07 4.19 

10 13.88 61.17 4.41 

15 14.29 68.02 4.76 

20 14.66 75.01 5.12 

There are 6 condenser water outlet temperature categories and 7 condenser water outlet 

temperature categories for the GSHP and ASHP respectively.  

Figure 3-10 and 3-11 show the linear relationship between CoP and inlet temperature for 

different condenser water outlet temperature categories. In order to simplify the CoP 

calculation in the following case studies and the operation of the heat pumps in this study is 

always within the proper inlet temperature range, the CoP value can be modelled with the 

following linear equation for both heat pumps: 

                                                              𝐶𝑜𝑃 = 𝑎 ∙ 𝑇 + 𝑏                                                     (3-2) 

Where: 

 a and b are constants depending on the manual of the heat pump with the required 

condenser outlet temperature (°C) 



40 

 

 T is the evaporator inlet/air temperature (°C) 

Equation (3-3) to (3-15) are the values used in the CHOICES project [13] and are fitted in 

Figure 3-10 and Figure 3-11. When the condenser outlet temperature goes up, the CoP starts to 

increase with a lower base value.  

 GSHP 

30°C Condenser Water Outlet Temperature 

                                                  𝐶𝑜𝑃 = 0.1362𝑇 + 4.8                                            (3-3) 

35°C Condenser Water Outlet Temperature 

                                                  𝐶𝑜𝑃 = 0.1265𝑇 + 4.2                                            (3-4) 

40°C Condenser Water Outlet Temperature 

                                                  𝐶𝑜𝑃 = 0.1135𝑇 + 3.7                                            (3-5) 

45°C Condenser Water Outlet Temperature 

                                                  𝐶𝑜𝑃 = 0.1002𝑇 + 3.3                                            (3-6) 

50°C Condenser Water Outlet Temperature 

                                                  𝐶𝑜𝑃 = 0.0918𝑇 + 2.8                                            (3-7) 

55°C Condenser Water Outlet Temperature 

                                                  𝐶𝑜𝑃 = 0.0851𝑇 + 2.4                                            (3-8) 

 

Figure 3-10 GSHP CoP values[13] 
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 ASHP 

30°C Condenser Water Outlet Temperature 

                                                    𝐶𝑜𝑃 = 0.068𝑇 + 3.7                                            (3-9) 

35°C Condenser Water Outlet Temperature 

                                                    𝐶𝑜𝑃 = 0.062𝑇 + 3.4                                           (3-10) 

40°C Condenser Water Outlet Temperature 

                                                    𝐶𝑜𝑃 = 0.057𝑇 + 3.1                                           (3-11) 

45°C Condenser Water Outlet Temperature 

                                                    𝐶𝑜𝑃 = 0.051𝑇 + 2.8                                           (3-12) 

50°C Condenser Water Outlet Temperature 

                                                    𝐶𝑜𝑃 = 0.047𝑇 + 2.5                                           (3-13) 

55°C Condenser Water Outlet Temperature 

                                                    𝐶𝑜𝑃 = 0.0.042𝑇 + 2.3                                        (3-14) 

58°C Condenser Water Outlet Temperature 

                                                    𝐶𝑜𝑃 = 0.0.039𝑇 + 2.2                                        (3-15) 

 

Figure 3-11 ASHP CoP values [13] 
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3.3.3 Borehole model and related parameters 

From the charging and discharging system, the borehole temperature is the key factor affecting 

the performance of the GSHP in the discharging season. In this case study, the borehole model 

uses a simplified linear function.  

With different heat flux, the temperature increases or decreases [1]: 

                                                  ∆𝑇 = 𝑇𝑛+1 − 𝑇𝑛 =
𝐻𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒∙3600∙1000

𝐶𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒∙𝑉𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒
                               (3-16) 

Where: 

 𝑇𝑛 is the temperature in the nth time step (°C) 

 𝑇𝑛+1 is the temperature in the (n+1)th time step (°C) 

 𝐻 𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒 is the heat power supplied to(+)/extracted from(-) the borehole within the 

time step (kWh) 

 𝐶𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒 is the volumetric heat capacity of the borehole (J/m3/K) 

 𝑉𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒 is the borehole array storage volume (m3) 

The CHOICES project has 12 boreholes buried under the ground. The Table 3-4 gives key 

parameters concerning the borehole array.  

Table 3-4 Borehole installation data [13] 

Borehole storage – properties 

Number of BH (-) 12 

Depth (m) 150 

Spacing (m) 6 

Storage volume (m3) 50,894 

Average ground thermal 

conductivity (W/m/K) 
2.63 

Average ground volumetric 

heat capacity (MJ/m3/K) 
2.27 
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For the high-level energy chain analysis, it is to simplify things by considering the borehole 

array as a homogenous volume with homogenous heat injection. Using this data, the 

increased/decreased temperature ∆𝑇 changes the GSHP CoP: 

                           𝐶𝑜𝑃𝑛𝑒𝑤 = 𝑎 ∙ (𝑇 + ∆𝑇) + 𝑏 = 𝑎 (𝑇 +
𝐻𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒∙3600∙1000

𝐶𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒∙50894
) + 𝑏              (3-17) 

In each new time step, the input/output heat energy from the ASHP/GSHP is calculated with 

the new heat pump CoP.  

3.3.4 Heat demand of this community 

The heat demand in the heating season in Table 3-5 is the total community heat demand in each 

heating (winter) season from historical billing data. For the sake of simplicity, heat demand is 

assumed to be constant during the winter. Therefore in each time step (12 hours) in the heating 

season, the heat demand is 412kWh calculated with equation 

                                                           
100000+50000

182∗2
= 412 𝑘𝑊ℎ                                          (3-18) 

Table 3-5 Community buildings’ heat demand during the winter [13] 

Heat load 

Building details kWh/PA 

Easton Community centre 100000 

Mosque 50000 

3.3.5 Energy prices and CO2 emission data used  

Table 3-6 is the energy price for each type used for the later result analysis and comparison. 

Table 3-6 Gas and grid electricity price [13] 

GAS Average Cost £/kWh 0.05 

GRID SUPPLY PRICE WINTER Price £/kWh 0.14 
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Table 3-7 is the CO2 emission factors for the components in the study.   

Table 3-7 CO2 emission [13] 

CO2 Emissions Gas Grid Electricity PV ASHP GSHP Borehole DC/AC 

kg/kWh 0.20421 0.44548 0.07 0.01 0.01 0.01 0.01 

3.4 Borehole energy chain case study 

In this section, the case studies are dedicated to showing the avoided electricity consumption 

during the heating season due to different input and CO2 emissions compared to the 

conventional gas heating. 

3.4.1 Traditional (Existing) community heating network 

The incumbent heating for the CHOICES community buildings is from gas boilers used during 

the winter. The gas boilers have efficiency conservatively estimated to be 0.85. Therefore for 

a 412 kWh heat demand, gas with a calorific content of 484 kWh will be required in practice.  

For the CO2 emissions, there will be 0.20421 kg CO2 emission per kWh heat generated [84]. 

During the heating season, the total CO2 emission will be about 30,631 kg CO2 emission per 

heating season. The detailed excel document of boiler operation is in Appendix B. 

3.4.2 Borehole operation with active charging during the summer 

In this case, the installation of PV is 36 kW. The electricity generated from the PV is used for 

the operating heat pumps in both charging and discharging season. However, during the winter 

time, the grid and PV will work together to support the GSHP electricity consumption.  

During the summertime, the ASHP injects heat to the borehole and the condenser water 

category is 30 °C so that Equation (3-9) is used. According to the ambient air temperature 

Figure 3-9, the ASHP CoP during the summer is shown in Figure 3-12. 

With the electricity generated from the PV, the heat from the ASHP can be calculated using 

Equation (3-1). With the heat injection the borehole temperature increases.  
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In Figure 3-13, the blue line is the heat output from ASHP as well as the borehole heat input. 

The heat energy values during the charging time are calculated from the temperature profile in 

Figure 3-9. The red line is the borehole temperature change due to the heat input. From this 

figure, with the constant heat input, the borehole temperature keeps increasing.  

Figure 3-12 ASHP CoP during the charging season 

Figure 3-13 ASHP heat output and borehole temperature profile in charging season 
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The borehole in this chapter is a lumped model including the whole storage area as a result, the 

model is considered that there is no heat transfer outside the whole borehole storage volume. 

Because, as an inter-seasonal heat storage, the discharging season closely follows the charging 

season, so that the borehole temperature at the end of the charging season is the starting 

temperature in the borehole discharging season. The heat demand is for community buildings 

and for this high level energy chain analysis, it is assumed to have a constant heat demand at 

the same level. In the discharging season, with the constant heat extraction from the borehole, 

the temperature decreases as shown in Figure 3-14. In each time step, the temperature decreases 

according to Equation (3-16).  

As stated early in this chapter, the borehole provides the evaporator inlet temperature for GSHP 

so that the CoP of GSHP is related to the borehole temperature. In this CHOICES project, the 

GSHP condenser water outlet temperature is set to 45 °C. According to the GSHP operation 

information, Equation (3-6) is used under 45°C category. The value of CoP in each time step 

decides the electricity consumption of the GSHP. Figure 3-15 shows the GSHP CoP values and 

electricity consumption during the discharging season. With constant heat withdraw from the 

borehole, due to the dropping temperature, GSHP electricity consumption is increasing along 

with the decreasing CoP value. 

Figure 3-14 Borehole heat extraction and temperature profile in discharging season 
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Figure 3-15 GSHP temperature and CoP profiles 

3.4.3 Borehole operation without active charging 

In this scenario, the borehole is not charged during the summer and the electricity generated by 

the PV and the grid electricity provide the GSHP electricity consumption. The borehole starting 

temperature is the same as the ground temperature which is 13°C.  

Under the same discharging season heat demand, the borehole temperature is shown in Figure 

3-16. In this scenario, the borehole temperature reaches the lockout the temperature of the

GSHP within a few discharging seasons, thus making a strong case for active recharging. 

The decreasing borehole temperature leads to a decreasing GSHP CoP in Figure 3-17. With 

the heat extraction from the borehole during each time step, the temperature is decreasing. 

From the heat pump information in this chapter, with the decreasing evaporate inlet 

temperature, the CoP of GSHP is decreasing accordingly and the electricity consumption 

during the discharging season increases due to the dropping GSHP performance as is shown in 

Figure 3-17.  
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Figure 3-16 Borehole heat extraction and temperature profile in discharging season 

Figure 3-17 GSHP temperature and CoP profiles 
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3.5 Case study comparison and analysis 

In the borehole system, the GSHP supplies the same amount of space heat demand as the gas 

heat network for the community buildings. The cost of operating the borehole system during 

the discharging season depends on the amount of grid electricity consumed by the GSHP 

excluding maintenance fees. 

The comparison between different cases in this chapter is based on the same total space heating 

demand, according to the CHOICES project and community information, the installed 

conventional gas boiler uses £8,823.5 of gas to supply the community space heat demand. For 

the proposed borehole space heating system, electricity is used to provide the space heating the 

electricity mainly comes from free PV electricity and the grid electricity. In the two borehole 

system cases, the grid electricity costs during the winter time are £4,382.4 in the non-charged 

case and £4,269.6 in the charged case. The electricity and gas price can be found in Table 3-6. 

During one discharging season, the CO2 emission is shown in Table 3-8. 

Table 3-8 CO2 emissions in three systems in discharging season 

CO2 emission in one discharging season kg 

Boiler 30631.5 

Charged case 16863.1 

Non-charged case 17222.2 

The borehole system generally reduces over 40% CO2 emission in one discharging season. The 

boiler operation table is in Appendix B. 

By comparing the two base case studies, the electricity consumption with summer charging is 

less than the case without the summer charging as is shown in Figure 3-18. Because the 

borehole model used in this chapter is a lump model with its storage area and it is assumed that 

there is no extra heat transfer outside the storage volume, when the heat is extracted from the 

borehole the temperature decreases linearly, as a result, the CoP of the GSHP is decreasing 

according to the borehole temperature. For the same heat energy proving to the community 

centre at each time step, GSHP consumes more electricity. The total electricity consumption 

difference is 806 kWh in one discharging season. 
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Figure 3-18 Electricity consumptions in two cases with summer charging and without summer charging 

Within the GSHP electricity consumption during the discharging season, both installed PV and 

the grid contribute to GSHP electricity usage. The installed PV during the discharging season 

has the same total electricity generation 3,164.58kWh, which is not enough to operate the 

GSHP to supply the community space heating. The grid provides 2.6% more electricity in the 

non-charged case than the charged case.  

In the long-term study for both cases, such as 5 years, the borehole temperature changes as 

shown in Figure 3-19. In each discharging season, the temperature difference is increasing. In 

the case with summer charging, the summer charging process helps to lift up the borehole 

starting temperature at the beginning of each discharging season. From the temperature figure, 

both cases have a decreasing temperature trend and it is possible that GSHP would face the 

lockup the temperature and stop working eventually due to the lack of active charging. With 

enough charging during the summer, this situation can be avoided.  

In Figure 3-20, the yellow line is the 5 years discharging season grid electricity consumptions 

in the non-charged case and the red line is for the charged case. From the first year of the 

operation, the electricity consumption is increasing fast from 30,000 kWh to 55,000 kWh 

(yellow line) and with active charging each year, the electricity consumption increases slowly. 

The stem numbers show the percentage of extra grid electricity needed in the non-charged case 

compared with the charged case and the percentage is increasing from 0.5% to 4.5% which 
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indicates that without the active charge the efficiency of this space heating system is decreasing 

each year during the heating season.  

Figure 3-19 Borehole temperatures in 5 years 

Figure 3-20 Discharging season grid electricity consumption comparison 
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3.6 Chapter summary 

This chapter describes the high-level energy chain analysis conducted for the phase 1 feasibility 

study for the CHOICES project, an innovative decarbonised heat network project using 

borehole inter-seasonal heat transfer. The high-level energy chain is introduced followed by 

different charging case studies. This high-level energy chain study gives a brief introduction of 

the borehole heat energy storage and its long-term benefit and advantages compared to the 

traditional gas heating.   

The borehole model used in Chapter 3 is a simplified linear function, using a homogeneous 

thermal mass with uniform heat injection. The linear function does not consider the distributed 

nature of the various heat storage media, their different properties and the heat transfer between 

the boreholes and the surrounding soil and bedrock. The simplified model suggests that the 

system quickly reaches the GSHP lock up the temperature even with moderate summer 

recharging. This suggests heavy summer recharging is required just to make the scheme viable 

as a primary source of heating.  

The conclusion from this chapter is the requirement for an accurate borehole array model that 

accounts for detailed heat transfer between different media. Therefore in Chapter 4, the 

borehole system will be built in the MATLAB environment to facilitate detailed short-term and 

long-term operational case studies.  
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4 Borehole field modelling 

4.1 Introduction 

In this section, a Finite Element model of the community level borehole storage is introduced. 

The basic borehole information is from the practical project CHOICES funded by DECC (now 

BEIS) under the SBRI heat networks stream. From the phase one, the borehole model is based 

on the linear function which does not take the surrounding environment into account. In 

Chapter 4, the accurate borehole model responds to an input/output heat with the temperature 

changing. The temperature dictates the performance of the heat pump. In this section, the 

modelling environment is introduced, followed by a detailed modelling of the borehole arrays 

based on the actual CHOICES project borehole layout. The borehole behaviour due to the heat 

flux injection/extraction over a certain time period is presented and discussed in the later 

sections.   

4.2 PDE Toolbox 

The borehole layout and the ground parameters from the CHOICES project are used as the 

borehole field modelling basic settings. For the modelling of the borehole, the borehole real 

geometry. The modelling of the borehole array is achieved using the Partial Differential 

Equation (PDE) toolbox in the MATLAB environment. The PDE Toolbox allows the user to 

model the geometric layout and generates the borehole heat map by solving the partial 

differential equations associated with transient heat transfer through conduction. The Finite 

Element solves Partial Differential Equations in different dimensions (2D and 3D) and time. 

As a result, the borehole model under this condition can thoroughly and accurately present the 

temperature behaviour and the heat transfer between different media and boreholes. There are 

4 PDE solvers are elliptic, parabolic, hyperbolic, and eigenvalue problems. The PDE can solve 

problems across diffusion, heat transfer, structural mechanics, electrostatics, magnetostatics, 

conductive Media DC, and AC power electromagnetics, as well as custom, coupled systems of 

PDEs.  

For setting up the PDE problem, there are several steps: 

 Choose the appropriate area.



54 

Different problems will have the different Boundary/PDE specification settings. 

 Create the geometry for the problem.

In creating the geometry of the problem, the operators are ‘+’, ‘-’, and ‘*’ are the set

union operator, the difference operator and the intersection operator, among which ‘-’

has higher precedence. Using these three operators, boundaries, edges and subdomains

can be created between the circle object, polygon object, rectangle object and ellipse

object.

 Set boundary/edge/subdomain conditions and PDE coefficients in the geometry.

After the boundaries, edges, and subdomains are defined, the appropriate boundary

condition (Neumann and Dirchlet) and the PDE specification (Elliptic, Parabolic,

Hyperbolic and Eigenmodes) with its unique value.

In the PDE tool there are two types of boundary condition:

Neumann:                            𝑛 ∗ 𝑘 ∗ 𝑔𝑟𝑎𝑑(𝑇) + 𝑞 ∗ 𝑇 = 𝑔   (4-1) 

Dirchlet:                                            ℎ ∗ 𝑇 = 𝑟    (4-2) 

g: Heat flux. 

q: Heat transfer coefficient. 

h: Weight. 

r: Temperature. 

Four types of PDE specification as mentioned before, and for the heat transfer of this 

borehole model, Parabolic is used: 

Parabolic:              𝑟ℎ𝑜 ∗ 𝑐 ∗ 𝑇′ − 𝑑𝑖𝑣(𝑘 ∗ 𝑔𝑟𝑎𝑑(𝑇)) = Q + h ∗ (𝑇𝑒𝑥𝑡 − T)          (4-3)

k: Coefficient of heat conduction. 

Q: Heat source. 

h: Convective heat transfer coefficient. 

𝑇𝑒𝑥𝑡: External temperature. 

u: Solution of temperature. 

c, a, f, and d are coefficients. Each of the coefficient is given an expression in the 

triangle centres of mass which includes x- and y- coordinates, sd the subdomain 

number, ux and uy the derivatives of the solution and t the time. 

The Fourier’s law: 

𝑞𝑥 = −𝑘
𝑑𝑇

𝑑𝑥
   (4-4) 
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States that the heat flux is equal to the thermal conductivity through multiplied by the 

temperature gradient. Borehole model is a function of transient temperature change due 

to the heat flux which has thermal resistance and thermal capacitance. The heat storage 

ability is a transient problem so that the differential equation will be used. Equation (4-

3) the parabolic performs the temperature calculation.

 Generate mesh.

The initial mesh generates fewer triangles to fill the subdomains, then the mesh is

refined or jiggled, the model tends to give more accurate results, however, the model

takes a longer time to solve and display the result.

 Initial conditions.

Initial condition gives the result status at 𝑡(0) time, length of the time interval and total

simulation time.

The PDE toolbox working environment is easy to operate: 

Figure 4-1 PDE toolbox 

The square, circle and random shape buttons are used for drawing boundaries and dividing 

subdomains. The menu bar provides visual displays and results in exportation. The set formula 

can be manually typed in to define the subdomains. 
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Solving the PDEs programmatically through command-line function is an alternative to the 

PDE app when there are other functions involved, such as nonstandard boundary conditions, 

different variables in the system, variable constraints, etc.  

By using the command-line functions, the geometry, boundary condition, boundary, mesh data, 

and coefficients will be a different matrix and other data types according to the mesh 

coordinates. The export facility mentioned before helps to provide correct syntax of different 

data structures.  

4.3 Borehole model and parameters 

4.3.1 Borehole model layout 

The CHOICES project was carried on in the community park in Bristol as is shown in the 

Figure 4-2 below: 

 

Figure 4-2 Proposed CHOICES project borehole arrays layout in the park 
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In the borehole arrays layout picture, the dashed line circles represent the 12 boreholes used to 

provide community building space heating. The geometry location will be used in the model 

in Figure 4-3. 

Each borehole has its own x- and y- coordinates according to the CHOICES project, (-24.3, -

3.4), (-11.4, -8.1), (3.5, 5.2), (-17.1, 4.1), (-6.6, 3.8), (-6.6, 11.8), (7.5, 1.7), (16.7, 1.7), (23.9, 

10.5), (23.9, 19.3), (26.5, 1.7), (33.4, 7.9), as shown in Figure 4-3: 

 

Figure 4-3 Borehole coordinates 

The dark circles are the borehole locations. The borehole connection has two types: 

 In parallel  

 In series  

In this project and model, the parallel connection is used. For each borehole, the heat flux is 

considered as 1/12th of the total heat injection and extraction.  

For each borehole, there are a U shaped tube, grout, and the surrounding soil. The cross-

sections look like Figure 4-4. 
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Figure 4-4 Borehole vertical and horizontal cross-sections [34, 52] 

In the CHOICES project, the borehole diameters of the borehole and U-tube are 15cm and 

3.26cm. Due to the small size of the borehole U-tube, the fluid circulating regions for one 

borehole can be simplified to a single circle region. However, the diameter of the U-tube 

becomes the radius (𝑟) of this new single circle region. As a result, the horizontal cross-section 

in the FE model is as below: 

For each borehole, the volume in the U-tube is related to the cross-section area and the depth 

of the borehole (𝑑). In CHOICES project, 𝑙 equals to 150 𝑚. As a result, the volume of a single 

borehole is:  

                                                          𝑉 = 𝜋𝑟2 ∗ 𝑑 = 0.5 𝑚3                                              (4-5) 

According to the real size of the Owen Community Park, this 12-borehole system is built within 

a 40 radius circle in MATLAB as shown in Figure 4-6. The MATLAB code is in Appendix C.  

As is shown in Figure 4-4, the borehole is a 3-D model, however, in this chapter, the depth 

dimension is assumed to be uniform so that the 2-D model was built to study the borehole 

temperature behaviour due to the heat flow. As the borehole cross-section is considered as 

unstructured grid, the triangular mesh is used. In this borehole layout map, there are 

approximately 1,275,659 triangles generated and the final heat map will be the temperature 

result formed by these 1,275,659 triangles. For all the nodes (vertex), there is one simultaneous 
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equation and the unknown is the temperature. The edges connect the adjacent vertices. The 

mesh in each region represents different material and the material heat transfer parameters are 

set in the model. The temperature is measured at each node and the desired nodes are the ones 

Figure 4-5 Single borehole in the FE model 

Figure 4-6 12-borehole system layout in MATLAB FE model 
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at the borehole walls. As a result, in the later study, the borehole wall points will be selected 

from the temperature excel file generated by running the model. 

4.3.2 Borehole geometry parameters 

The soil temperature varies in location and from month to month. It is a function of solar 

radiation, rain, air temperature, type of soil and depth underground. However, the ground 

temperature below certain depth is very steady. The temperature of the soil is approximately 

8-10 °C 15 m below the surface of the earth which is close to the annual mean air temperature,

and the temperature increases by, on average, 2.6°C per 100 m. Hence, during the winter time, 

the ground temperature is higher than the air temperature [85]. In this CHOICES project, the 

ground temperature used is 12.67°C.  

As mentioned in the last subsection, borehole U-tube has two layers which are the circulating 

fluid and the grout (backfilling material), which are surrounded by the ground. Different 

locations have various ground density, heat capacity and thermal conductivity which will affect 

the heat transfer between each material. The table below shows the unique parameters for each 

material in the CHOICES project:  

Table 4-1 Borehole parameters [13] 

Ground Fluid Grout 

Density (kg/m3) 2770 1052 1550 

Heat capacity (J/(kg.K)) 883 3795 1000 

Thermal conductivity (W/(m.K)) 2.89 0.5 2.1 

4.4 Borehole behaviour study 

The input heat flux will vary with time and the borehole model may be used to discern the 

temperature variation. In the PDE toolbox, the unit of heat flux is in W/m3. In this section, the 

characteristics of the borehole temperature due to the changing heat flux are presented. 

Heat flux is the rate of heat energy flow through a surface per unit time. The unit of heat flux 

is in W/m2. However, under the MATLAB PDE toolbox, the heat flux is measured in W/m3 

for transient heat transfer problem. From Chapter 3, the heat flux input is related to the air 
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source heat pump which is affected by electricity generated by the roof-mounted photovoltaic 

and the ambient air temperature. As a result, the heat flux varies between 0 to 800 W/m3.  

The borehole heat energy storage discharges during the winter time so that one year can be 

seen as split between charging and discharging seasons. In this section, for the simulation, the 

time interval was set to 24 hours. There will be 180 total simulation steps in each season within 

the charging season, it is assumed that, the heat flux injection and extraction are constant 

processes during the charging and discharging seasons respectively. The simulation has 5 

cases, no charging, maximum charging capacity, discharging only, short-term and lifetime 

simulation.  

4.4.1 Borehole wall temperature selection 

The PDE toolbox exported the temperature of all nodes of the borehole model which are 1438 

points. All the temperature nodes in the model are used to calculate the temperature changing 

across the borehole model step after step and all the heat transfer process is happening between 

each node so that the single node’s temperature profile includes all the influence coming from 

the surrounding area. As is shown in Figure 4-6, the majority of the nodes are located outside 

of the borehole wall and for the later study, the only borehole wall temperature is assumed to 

be the fluid temperature. During the charging process, the fluid temperature is much higher 

than the borehole wall temperature. However, the fluid the temperature settles down quickly 

between the fluid and the borehole wall and the fluid uses the energy stored in the borehole 

wall during the discharging season, it is assumed that the fluid and the borehole wall have the 

same temperature so that the borehole wall temperature nodes are selected for the study.  

In section 4.3.1, Figure 4-5 clearly shows the single borehole structure. By the end of 

charging/discharging season, the central node represents the fluid which is the highest/lowest 

12 points and the borehole wall is defined as the inner surface of the grout part which are the 

second highest/ lowest 8 points for each borehole. From the massive mesh points temperature 

excel file generated by running the borehole code, point 332 to 343 are the 12 fluid points and 

point 63 to 110 and 173 to 220 are the borehole wall points. Figure 4-7 and 4-8 are the detailed 

point to point temperature at the final time step in charging and discharging seasons. The 

borehole wall and fluid temperature points are marked in the following figures and in the latter 

study, the average borehole wall temperature and fluid temperature are automatically selected. 
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Figure 4-7 Charging season point temperature 

Figure 4-8 Discharging season point temperature 
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These two figures share the same characteristics. By crossing check the number and 

temperature of each point, the fluid and borehole wall temperature points are defined as the red 

circle marks.  

The fluid temperature is very straightforward because there are only 12 points. For the Borehole 

wall temperature, the mean value of the 96 points is measured due to the reason that the 12 

boreholes are connected in parallel.  In the latter study, only the borehole wall temperature is 

selected from each temperature file to determine the performance of GSHP. 

4.4.2 No heat flux input/initial study 

With no heat flux input or the initial point, the borehole fluid and grout (backfilling) 

temperatures remain the same as the initial ground temperature, 12.67°C.  

Figure 4-9 0 W/m3 heat flux input/ initial Heatmap 
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4.4.3  Maximum heat flux charging season study 

Considering that in practice, the borehole heat input in the charging season depends on the air 

source heat pump. Therefore in this case study, different maximum input heat flux will be 

studied to show the borehole temperature reaction to different maximum charging.  

For the current community heating system, the air source heat pump provides 800 W/m3 

maximum heat flux at any given time. For a larger heating system, the maximum available heat 

flux could be larger. During the case comparisons, two heat flux values are used during the 

charging seasons: 800 W/m3 and 1600 W/m3.  

Figure 4-10, 4-11 and 4-12are the borehole heat maps and temperature comparison between 

different maximum charging cases. It is obvious that higher heat flux input leads to a higher 

final temperature. With lower heat flux input in Figure 4-10, the maximum temperature is lower 

than the higher heat flux input in Figure 4-11. In both figures, the temperature is higher around the 

centre of each borehole especial the fluid and the far field almost remains the initial temperature. 

Figure 4-10 Maximum charging heat map (800W/m3) 
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Figure 4-11 Maximum charging heat map (1600W/m3) 

Comparing these two temperature profiles, the discharging (end of charging season) start 

temperature is very different in Figure 4-12. With higher heat flux input, the borehole 

temperature is 1 °C higher than the low heat flux input. The temperature influence on this 

borehole model will be shown in the later study. 
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Figure 4-12 Charging season borehole wall temperature profile comparison between 800W/m3 and 1600W/m3 

4.4.4 Borehole discharging season study 

In this case, the borehole is discharged without charging season. This discharging heat flux is 

assumed to be the same during the whole discharging season which is -418 W/m3. From the 

phase one study, in the discharging season, the heat demand is very steady from the history 

data as is for community buildings which can be seen as a constant heat demand. As a result, 

the heat demand is the mean value alone the heating season. 

In Figure 4-13, the blue spikes represent the final temperature of the borehole after the 

discharging season. The surrounding soil and bedrock are the heat source during the 

discharging process and the heat transfer between the ground and these 12 boreholes provides 

the heat demand over these 180-time steps in discharging season. The borehole forms a heat 
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pit due to no heat source. The temperature of the surrounding soil and bedrock decreases 

constantly over the heating season. Because of the natural heat replenishment from the 

surrounding soil and bedrock, it prevents the borehole from dropping to very low temperature 

as the fluid, and thus the heat pump is going below its minimum operating temperature. 

(However over successive discharging seasons without active replenishment this may not be 

the case). With the constant discharging, the borehole wall temperature decreases fast in the 

beginning and slowly reaches a saturated temperature as is shown in Figure 4-14. 

 

Figure 4-13 Discharging season heat map 
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Figure 4-14 Discharging season borehole wall temperature profile 

4.4.5 Short-term simulation study (one year single charging/discharging cycle) 

In this case study, the one year short-term simulation is carried out. In the short-term study, 

charging and discharging seasons are combined. There are two cases to compare with. In 

Chapter 4.4.3, the higher and lower input heat flux are used again with the same output heat 

flux, 800 and 1600 W/m3. This study is to show the borehole reaction to different input and the 

influence over the discharging season. 

For the different charging scenarios in such short time simulation, the heat maps are Figure 4-

15 and 4-16. In Figure 4-15, the charging heat flux is two times lower than that in Figure 4-16. 

As a result, the borehole wall temperature and the surrounding soil temperature in Figure 4-15 

are between 12.68 °C and 12.75 °C and in Figure 4-16, the temperature range is around 12.7°C 

and 12.8°C. 
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Figure 4-15 Short-term heat map (800W/m3 in charging season) 

Figure 4-16 Short-term heat map (1600W/m3 in charging season) 
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Figure 4-17 shows the borehole wall temperature changing in charging and discharging 

seasons. Between charging and discharging seasons, the temperature drop is dramatic which 

shows that the heat transfer between the borehole and the ground is very fast due to the huge 

temperature difference. With higher heat flux input during the charging season, the temperature 

drops from 14.1 °C to 12.8 °C and with lower heat flux during the charging season, the temperature 

drops from 13.2 °C to 12.6°C.  

However, the higher heat flux input raises up the base temperature level so that with higher 

maximum charging amount, the final borehole temperature at the end of charging season is 

slightly higher by 1°C and the borehole surrounding area results in a higher temperature at the 

same time. From the earlier sections, the borehole temperature accumulates slowly in the ground 

and reaches a saturated level according the material parameters, adding the constant heat loss of 

the system, the temperature difference between these two cases is not huge under 800W/m3 and 

1600W/m3 cases. In the next case, the long-term simulation will be carried out and heat map 

results will be compared with short-term simulation. 

 
Figure 4-17 Short-term borehole wall temperature comparison between 800W/m3 and 1600W/m3  
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4.4.6 Lifetime simulation study 

Combining the charging and discharging seasons together, the operation of the borehole over 

its designed lifetime, taken here to be 20 years, have been simulated. The comparison is carried 

out between charging the borehole and without charging the borehole. Figure 4-18 is the two 

charging cases simulation with the maximum heat flux 800 W/m3 and 1600 W/m3 during the 

charging season and the heating extraction during the discharging season is the same. 

 

Figure 4-18 Lifetime heat flux with charging 

Figure 4-19 is the opposite situation with zero heat flux charging during the charging season 

over the whole life operation time. However, the heat extraction during the heating season is 

the same as in Figure 4-18. 
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Figure 4-19 Lifetime heat flux without charging 

With the continuous charging and discharging process, Figure 4-20, 4-21 and 4-22 shows the 

final temperature state of the borehole by the end of the lifetime simulation.  

From the previous study on the charging and discharging seasons, the heat is accumulated in 

the borehole and the surrounding soil and bedrock in Figure 4-20 and 4-21. Because the 

borehole gets supercharged during each charging season, the excessive heat builds up under 

the ground and lifts up the ground temperature to 13 and plus degrees forming a hot spot.  
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Figure 4-20 Lifetime heat map with maximum 800W/m3 heat flux charging. For the borehole discharging season, the heat 

flux is assumed to be a constant value per time step which is -418 W/m3 heat flux discharging 

Figure 4-21 Lifetime heat map with maximum 1600W/m3 heat flux charging For the borehole discharging season, the heat 

flux is assumed to be a constant value per time step which is -418 W/m3 heat flux discharging 
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On the other hand, in the case with no charging, the borehole takes advantage of the natural ground 

heat with the cold spots in resulting “temperature pit” moderated by surrounding heat. In this 

scenario, the ground heat transfer prevents the system from reaching a low temperature. 

Figure 4-22 Lifetime heat map with 0W/m3 heat flux charging. For the borehole discharging season, the heat flux is assumed 

to be a constant value per time step which is -418 W/m3 heat flux discharging 

The temperature profile shows in Figure 4-23 is the gradual temperature change over the 20 

years. The red/blue lines are with maximum heat flux charging scenario and the yellow line is 

without the charging in each charging season.  

The yellow line has a very unique temperature changing pattern. As stated before, the soil and 

bedrock provide the heat demand so that the temperature change between the charging and 

discharging seasons are very small. However, for the red/blue lines, the high-temperature fluid 
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makes the heat transfer between the borehole and the surrounding area fast. The base 

temperature is lifted up and helps to preserve the heat within the lifetime.  

Figure 4-23 Lifetime borehole wall temperature profile 

4.4.7 CoP response to borehole temperature during the discharging season 

In this section, thorough studies on the borehole temperature reaction to different heat flux over 

various time periods are carried out.  

From the single and short-term charging and discharging seasons, the borehole heat storage 

always approaches a saturated temperature after continuous heat injection or extraction. With 

a higher base temperature and higher charging heat flux, the borehole tends to have higher 

storage temperature as is shown in which helps obtain a higher GSHP CoP when the space 

heating is needed. In Figure 4-24, the red line is the CoP in the discharging period under higher 
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charging heat flux and the blue line is under the low heat flux charging and the value difference 

is around 0.3-0.6. The CoP tends to approach a saturated value as the temperature changing 

pattern. 

From the lifetime simulation, the conclusion is that sufficient charging is definitely beneficial 

each winter for GSHP’s performance. In Figure 4-25, the CoP is very different between the 

maximum charging and zero charging. With borehole reactive charge during the charging 

season, the average CoP value is increasing over the years as is shown the red and blue lines, 

however, without reactive charging, the CoP value is decreasing in each heating season as the 

yellow lines. 

Figure 4-24 Short-term discharging season 
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Figure 4-25 20 years of discharging seasons 

4.5 Chapter summary 

This chapter is focusing on investigating the borehole behaviour under the two extreme 

charging strategies, maximum and zero charging. From the temperature profile, it is clear to 

see the temperature response to the heat flux input and output and the useful temperature points 

are selected as the borehole temperature for further usage. By comparing different scenarios, 

with borehole active charging, the temperature is increasing and during the discharging period, 

the average heat pump efficiency is increasing.  

However, in practice, the proposed space heating system uses the borehole coupled with heat 

pumps and the charging heat flux may be limited by the natural condition or facility 

functioning. As a result, in the future chapters, the model will be studied with different 

constraints on an operational level. 
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5 Borehole charging optimization 

In this chapter, the optimization is carried on the proposed space heating system. With an 

accurate borehole model which can simulate the correct heat transfer between the borehole and 

the surrounding ground and the borehole wall temperature behaviour, finding an efficient 

method of operating this system is the next important stage.  

The borehole inter-seasonal heat storage in this system provides a warm environment to the 

GSHP which helps to increase the performance of GSHP. From the Chapter 3, high-level 

energy chain, with the active charge of the borehole during the summer time using PV 

electricity supplying ASHP, the system is very effective in terms of reducing CO2 emission 

and GSHP electricity consumption. However, the heat stored underground involves heat 

transfer between different media constantly, as a result, heat loss and temperature of the 

borehole will affect the system efficiency under different charging strategies. 

The following section presents an optimized charging strategy for operating this system within 

one charging/discharging cycle. With the same GSHP performance during the heating season, 

a more efficient charging method is introduced.  

This chapter contains the journal paper which is under review in Access and the figures, tables, 

and equations are numbered independently. The structure of this chapter is based on the 

alternative thesis format. 
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5.1 Optimization of borehole energy storage charging strategy within a 

low carbon space heat system 

This declaration concerns the article entitled: 

Optimization of borehole energy storage charging strategy within a low carbon space heat 

system 

Publication status: Published 

Publication 

details 

(reference) 

W.Wei, C. Gu, D. Huo, S. Le Blond, and X. Yan,

W. Wei, C. Gu, D. Huo, S. LeBlond, and X. Yan, "Optimal Borehole Energy

Storage Charging Strategy in a Low Carbon Space Heat System," IEEE 

Access, pp. 1-1, 2018. 

Candidate’s 

contribution 

to the paper 

The lead author proposed the idea of the paper, she designed the methodology 

and predominantly executed the coding to derive the experimental results. 

Other authors helped the candidate with the design of case studies, the format 

of the paper, and improvement of academic writing. The percentage of the 

candidate did compare with the whole work is indicated as follows: 

Formulation of ideas: 100% 

Design of methodology: 90% (10% of the work is from the discussion with 

other co-authors) 

Experimental work: 90% (system parameters and PV/load information are 

from the project and other reliable sources in the references) 

Statement 

from 

candidate 

This paper reports on original research I conducted during the period of my 

Higher Degree by Research candidature. 

This paper is published. 

Signed Wei Wei Date 21/11/2018 

Published as: Wei, W, Gu, C, Huo, D, Le Blond, S & Yan, X 2018, 'Optimal Borehole Energy Storage 
Charging Strategy in a Low Carbon Space Heat System', IEEE Access, vol. 6, 8550636, pp. 76176-76186 
and available online via: https://doi.org/10.1109/ACCESS.2018.2883798
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5.2 Follow-up case study and results 

5.2.1 Cases 

In the new comparison between the cases, the PV electricity is considered as a major electricity 

source as well as the FIT. The following cases show the conditions under which each case is 

carried out.  

1) Case 1 without active charging in charging season with all the PV exported to the grid

The difference between the new Case 1 and the old Case 1 is that, the PV is installed, however, 

all the electricity generated by PV is exported to the grid and the grid electricity supplies the 

whole system. In the old Case 1, the PV generation is ignored during the charging season 

because the focus of the study is on the discharging season. However, in the new Case 1, the 

exported PV is considered as an important aspect of system cost. As a result, large amount of 

PV electricity is exported to the grid. 

Table 5-1 Old and new Case 1 comparison on electricity sources 

Whole process Case 1 (old) Case 1 (new) 

PV electricity export (kWh) 3212.09 94130.57 

Grid electricity import (kWh) 16547.11 48448.54 

2) Case 2 with active charging according to PV generation

The new Case 2 is the same as the old Case 2 in the paper. 

3) Case 3 optimized charging strategy

There is one change from the old Case 3. In the old Case 3, because the charging strategy 

requires the ASHP provides the maximum heat flux during the charging time steps and the PV 

can only provide limited electricity to the ASHP, so that the grid electricity is imported to 

provide the rest of the ASHP electricity demand during the charging season. However, in the 

new Case 3, the PV installation stays the same, but it is assumed that the electricity generated 

from the PV can be allocated to any time step according the charging strategy and then the 

surplus electricity is exported. 
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Table 5-2 Old and new Case 3 comparison on charging electricity sources 

Charging season Case 3 (old) Case 3 (new) 

PV electricity export (kWh) 41332.92 13911.56 

Grid electricity import (kWh) 27421.36 0 

5.2.2 Results and conclusion 

According to the data used in the paper, with all the PV electricity exported to the grid, new 

Case 1 actually earns the most money (£3,509.5) shown in Table 5-3. Because that the total PV 

electricity is exported to the grid, a large amount of earning can cover the electricity 

consumption of the system. However, the system under this condition needs the largest amount 

of grid electricity supply in return (£7,413.8). In the new Case 3, the charging heat flux is all 

from converting the free PV electricity to heat energy and is available to be allocated to the 

time step when the system decides to charge the borehole. In the new Case 3, the system cost 

reduced by 50% compared with the old Case 3.  

Table 5-3 Detailed electricity cost/earn from different electricity sources and system cost comparison 

£ Case 1(old) Case 1(new) Case 2 Case 3(old) Case 3(new) 

PV FIT +353.3 +10354.3 +367.5 +4914.6 +1898.2

Grid electricity -2933.0 -7413.8 -2891.6 -6928.9 -2891.6

System cost -2579.6 +3509.5 -2524.0 -2014.3 -993.4

To conclude, the system benefits from selling PV electricity to the grid, however, the operation 

of the proposed space heating system benefits more from the active charging especially using 

renewable energy and the active charging reduces the reliance on the grid electricity.  

5.3 Chapter summary 

In this chapter, the optimized short-term charging strategy is presented in the paper with a 

follow-up analysis on the system cost. With the optimized charging strategy, the system makes 

the most of the thermal storage and the efficiency can be increase. In this borehole coupled 

with heat pumps space heating system, the installation of PV can largely affect the system, and 

with high involvement of renewable energy, the system operational cost can be reduces.  
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6 Long term charging optimization 

6.1 Introduction 

The previous chapter discussed the charging strategy simulation which only contains one 

charging/discharging cycle and found out the most efficient method to use the borehole 

combined with the heat pumps. However, the borehole heat energy storage is built for its 

lifetime usage. As a result, in this chapter, the optimization is carried out on the several 

charging/discharging cycles to see how to make the best use of the heating system during long 

term simulation to see how heat accumulation affect the system in the long-term operation. 

6.2 Case set up and explanation 

In this section, the optimization is carried under 2 and 5 years for long term study. In this 

optimization process, it is assumed that the total charging heat flux is the fixed amount during 

the whole simulation and the aim is to find how to maximise the benefit from charging the 

borehole during the charging periods.  

The objective function is in Equation (6.1). The optimization is to minimise the GSHP 

electricity consumption during the discharging season. The total heat flux injected into the 

borehole during the charging season is a fixed value as shown in Equation (6.2a) which is the 

constraint. Equation 6.2b describes the boundary of the variables at each time step. Equation 

6.3 and 6.4 shows how electricity and heat flux converted by the heat pumps in this system. 

                                                   Obj = min ∑ 𝐸𝐺𝑆𝐻𝑃(𝑛)                                                      (6.1) 

                                            0 = 𝐻𝑒𝑎𝑡𝑓𝑙𝑢𝑥𝑓𝑖𝑥𝑒𝑑 − ∑ 𝑥(𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔)                                      (6.2a) 

                                             {
0 ≤ 𝑥(𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔) ≤ 4541

𝑥(𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔) = ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑙𝑜𝑎𝑑
                                           (6.2b) 

                                                    𝐸𝐻𝑃 =
𝐻𝐻𝑃

CoP
=

𝑥

𝑎∙temperature+𝑏
                                                  (6.3) 

         𝑥(𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔) =  
1000×𝐸𝐻𝑃×CoP

ℎ𝑜𝑢𝑟𝑠×𝑁𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒×𝑉𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒
=  

1000×𝐸𝐻𝑃×(𝑎∙𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒+𝑏)

24×7×𝑁𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒×𝑉𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒
    (6.4) 
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 𝐸𝐻𝑃 is heat pump electricity consumption (kWh) 

 𝐻𝑒𝑎𝑡𝑓𝑙𝑢𝑥𝑓𝑖𝑥𝑒𝑑  fixed total heat flux injection during the charging season. 

 CoP is the heat pumps’ CoP at step 

 𝑥(𝑐ℎ𝑎𝑟𝑔𝑒) and 𝑥(𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) are the heat flux injection and extraction (W/m3). 

 𝑁𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒 is the borehole number.  

 𝑉𝑏𝑜𝑟𝑒ℎ𝑜𝑙𝑒 is the single borehole volume (m3). 

 𝐻𝐻𝑃 is the heat energy generated by heat pumps.  

Figure 6-1 is the optimization flow chart. The optimization method used in this chapter is the 

numerical optimization pattern search to find the minimum electricity consumption as is shown 

in equation (6.1). The pattern search was introduced by Hooke and Jeeves in 1961. The pattern 

search starts with a current point and searches in a predetermined direction. If a better point is 

found, this point becomes the new start and the search keeps going on.  

The process starts with a given heat flux applying to the borehole model and with the GSHP 

technical data, the electricity used during the heating season can be calculated. If the result is 

not the minimum electricity consumption, the control variable is altered and applied to the 

system until the constraints are fulfilled. When the objective function is satisfied, the system 

generates the optimized x (heat flux) and temperature file. 
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applying heat flux x to the model

Borehole FE model: 
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heat demand 
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Select borehole wall 
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heating season

Calculate GSHP CoP 
and electricity usage

Figure 6-1 Optimization process 
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6.3 System inputs 

The PV electricity generation data is obtained from G.B. National Grid Status [86] and PVGIS 

[83]. During the charging season, the PV weekly generation data is shown in Figure 6-2. The 

charging season starts from April to September and the electricity generation is relatively high 

during June, July, and August. During the charging season, the electricity generated from 

installed PV will provide the ASHP to charge the borehole. The space heating weekly demand 

is shown in Figure 6-3. The data is estimated from the historical data [87]. It is assumed that 

during the long term simulation, each year, the PV and heat demand has the same weekly 

profile. From each figure, the electricity generation and the space heating demand vary largely 

each week. In this PV historical generation figure, most electricity is generated around the 

summer time as shown in week 9 to week 20. In the space heating figure, the coldest time is 

around the end of December to March. However, the data used in this simulation is based on 

the historical analysis and depending on the weather condition and there will be exceptions in 

the figures which can be ignored considering the operation of the system.  

 

Figure 6-2 PV electricity generation during the charging season (April to September) 
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Figure 6-3 Space heat demand during the heating season (October to March) 

Besides the heat demand and PV generation input, the heat pump information is shown in 

previous chapters. 

6.4 Case explanation and comparison 

In the long term simulation, in order to shorten the optimization time, the time step length is 

set to one week and the total time step number for 2 years, and 5 years will be 104, and 260 

respectively. In every single charging/discharging cycle, it is assumed that the system uses 

halftime to charge and discharge.  

 Case 1 operation according to PV generation 

This is the base case and the borehole is charged according to the electricity generated by the 

installed PV. Figure 6-4 and 6-5 are the temperature response to the heat flux injection and 

extraction during 2 years and 5 years operation. In the charging seasons, the temperature 

increases with the constant heat flux injection. Due to the limitation on PV electricity 

generation, the heat flux amount fluctuates over the time. Compared to the ASHP maximum 

heat flux in equation 6.2b, the amount of heat flux under this condition is much lower. With 

higher heat flux injection, the temperature goes up quickly, with lower heat flux injection the 

temperature increases slow and sometimes decreases because of the heat loss. During the 

heating season, with the space heat demand, the borehole temperature decreases with the 
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constant heat extraction. It is obvious that at the beginning of the charging or discharging 

season, the temperature increases or decreases fast due to the massive temperature difference 

between each borehole layers. In this case, borehole temperature stays between 11°C and 15°C. 

Figure 6-4 Temperature response to heat flux during 2 years’ operation 

Figure 6-5 Temperature response to heat flux during 5 years’ operation 
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 Case 2 operation using single-cycle charging strategy 

In this case, the charging strategy from chapter 5 is used. In Chapter 5, the study shows that 

the proposed heating system benefits more from a concentrated charging strategy in a single 

charging/discharging cycle. As a result, the total charging heat flux remains the same and the 

concentrated charging strategy is used in each year. Figure 6-6 and 6-7 are the borehole wall 

temperature response to this charging strategy. In each charging season, the borehole is charged 

close to the beginning of the heating season with the available maximum heat flux from ASHP. 

In the charging seasons with no active charging, the surrounding ground increases the borehole 

temperature due to the temperature difference after the last heating season. Under this 

condition, borehole temperature stays between 11°C and 17°C. 

 

Figure 6-6 Temperature response to heat flux during 2 years’ operation 
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Figure 6-7 Temperature response to heat flux during 5 years’ operation 

 Case 3 optimized long-term optimization

In this case, the charging strategy is optimized using the method presented in section 6.2.1. The 

optimized strategy allocates the maximum heat injection, which is called supercharging, during 

the early charging seasons and the borehole wall temperature increases fast. The charging 

strategy used in the 2-year and 5 year is directly from the pattern search optimization result.  

For the case in 2-year simulation in Figure 6-8, in the second charging season, no heat flux is 

injected, however, due to the temperature difference between the borehole and the surrounding 

ground, the surrounding ground increases the borehole temperature before the start of the 

heating season due to natural heat replenishment. 

For the case in 5-year simulation in Figure 6-9, ASHP provides the maximum heat flux 

covering the first two charging seasons and obtain the single cycle charging strategy in the third 

charging season. In the last two charging season, there is no active charging happening. 

Because of the supercharging, the borehole temperature increases very fast.  
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Figure 6-8 Temperature response to heat flux during 2 years’ operation 

Figure 6-9 Temperature response to heat flux during 5 years’ operation 

From the temperature response figures in these three cases, a massive temperature change 

occurs between the charging and discharging seasons. In Chapter 4 borehole temperature 

behaviour study, the one of the characteristics of the borehole temperature changing pattern 
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shows that with the constant heat injection/extraction, the borehole temperature changes fast in 

the early time and slowly reaches a saturated level. During the operation of the borehole system 

in this chapter, heat loss happens when there is a temperature difference, adding the heat 

extraction from the borehole, the temperature drops dramatically between each season.  

6.5 Result analysis 

 GSHP electricity consumption 

The optimization is to find the minimum GSHP electricity usage during the heating season 

with limited heat storage during the charging seasons. For 2-year optimization, Case 1 is the 

base case in which GSHP consumes the most electricity. Case 2 obtains the single 

charging/discharging cycle strategy and it helps to save 436.39kWh electricity compared to 

case one. GSHP uses the least electricity in Case 3 which is operated under the most optimal 

charging strategy. In case 3, the saved electricity is 505.91kWh compared to Case 1. 

For 5-year optimization, the cases show the same characteristic. Compared to Case 1, GSHP 

electricity consumption in Case 2 and Case 3 are reduced by 1,126.73kWh and 1,679.70kWh. 

From Figure 6-10 and 6-11, it is clear that with an optimized charging strategy allocating the 

heat input during appropriate time intervals, the electricity consumptions are reduced in Case 

2 and 3 compared with Case 3. 

 
Figure 6-10 GSHP electricity consumption in 2 years 
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Figure 6-11 GSHP electricity consumption in 5 years 

 Temperature difference 

Figure 6-12 is the temperature comparison between these three cases in the 2-year simulation. 

With the supper charge in the first charging season in Case 3, borehole temperature increases 

very fast and slowly reaches a saturated level around 17 °C. After the first discharging season, 

the borehole wall temperature in Case 3 is higher than the other 2 cases. Without the heat flux 

input in the second charging season,  Although in second charging season, the temperature in 

Case 3 is lower than Case1 and 2, the heat loss is much less than in Case 1 and 2. Overall, Case 

3 uses the most of the stored heat in the borehole.  

 
Figure 6-12 Borehole temperature comparison in 2 years 
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Figure 6-13 is the temperature comparison between these 3 cases in the 5-year situation. The 

first two supercharging seasons in Case 3 lifts the borehole wall temperature fast as well as the 

surround ground temperature which helps to decrease heat loss in the future, and the 

temperature in the first two charging seasons are increasing. In Case 1 and 2, because the 

charging is very even in each season, the temperature changing pattern is the same in each year. 

Although in the later cycles, the borehole temperature is higher than Case 3, the heat loss is 

higher than Case 3 and less heat is stored.   

Figure 6-13 borehole temperature comparison in 5 years 

 Heat accumulation affect

The installation the borehole inter-seasonal heat storage is for long term usage and by obtaining 

the optimized charging strategy over the long term simulation, the space heating system uses 

the best of the total available active recharge. The optimization is only carried on 2 years which 

is to tell the difference from 1 year and 5 years which is close to lifetime situation. Due to the 

long process time, optimization is not performing on lifetime simulation and instead, the 

simulation is carried out to show the result.  

The previous optimization is based on the concept of each single year operation and the result 

shows that with the optimized charging strategy, less heat input is needed to provide the heat 
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demand. In this chapter, the optimization is to illustrate how charging affects the proposed 

heating system over a long term operation. Two base cases are set up for comparison: 

 Case 1 charging according to the PV generation

 Case 2 charging using the single cycle optimized method

Case 3 uses the optimized charging method. Figure 6-14 is the results comparison. The x-axe 

represents a different year’s simulation from 2 years to 10 years. In different year’s simulation, 

Case 3 always has the lowest GSHP electricity consumption according to the bar chart. Case 2 

has the second lowest GSHP electricity consumption and in Case 1 GSHP consumes the most 

electricity during the whole heating season.  

The red dotted line and the blue solid line are the electricity saved in Case 3 and Case 2 

compared to Case 1. It is obvious that by using the optimized long term charging strategy, with 

the growth of operation time, more electricity is saved over the years. By using the single cycle 

charging strategy in each year, the saved electricity in total is increasing slowly.  

Table 6-1 is the saved electricity amount in Case 2 and 3 within the whole heating seasons 

under each simulated time window.  It is clear that the optimized charging strategy helps to 

save more electricity over a longer operation time.   

Figure 6-14 GSHP electricity consumption comparison 
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Table 6-1 Total save electricity (kWh) during the whole simulation time 

Total saved 

electricity 

compared to 

Case 1 

2 years 3 years 4 years 5 years 6 years 7 years 8 years 9 years 10 years 

Case 2 436.39 663.63 894.08 1126.7 1360.8 1596.7 1833.6 2071.4 2310.1 

Case 3 505.91 885.68 1249.7 1679.7 2093.8 2508.7 2972.5 3355.1 3844.0 

From this comparison figure and table, it can be seen that, in Case 3, with supercharge in the 

early state, heat accumulates under the ground which benefits the most regardless of the length 

of the time and with the longer operation time, the saving is increasing. 

6.6 Chapter summary 

In this chapter, the optimization is carried out on the operation of borehole thermal storage 

combined with heat pumps for long term simulation. 

Heat transfer in the ground is a very complicated process. The borehole FE model used in this 

study considers the heat transfer between the surrounding ground and different borehole 

materials in each part, thus, heat loss and heat accumulation under the ground are inevitable. 

With the efficient operation of borehole heat storage, the proposed space heating system can 

be operated more efficiently. With the same amount charging heat flux injected into the 

borehole thermal storage during the charging seasons, it is better to charge the borehole early 

with the maximum available heat flux that ASHP can provide which is called supercharge. 

Compared with the cases treating each charging/discharging cycle as an individual process, the 

optimized strategy reduces the most electricity consumption during the heating seasons with 

the same amount of charging during the summer time. With this charging strategy, it prevents 

borehole from more heat loss in the later stage and increases the surrounding ground 

temperature as soon as possible during the long term operation. By using the optimized method, 

the injected heat flux brings the maximum benefit to the space heating system. 
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7 Conclusion 

This dissertation is focused on the modelling of borehole inter-seasonal thermal storage and 

borehole thermal storage application. This study is carried out and developed based on a 

practical project located in Bristol, UK, focusing on the low carbon heat network development. 

The project aims to operate an ASHP on hot summer days matched in PV generation and 

delivers the heat to an inter-seasonal borehole thermal storage array; then GSHP to extract heat 

from the thermal store. The process is called “active replenishment” which shift electricity-

heat consumption in the heating system and enable the small borehole to supply more 

properties reducing the capital cost [13].  

This work started with the feasibility study of the borehole storage energy chain based on the 

energy hub concept. In Chapter 3, the basic system process is brought up and studied. The new 

space heating system was later applied to a community building. With the actual system 

parameter applied in the simulation, the results in this section were compared with the historical 

space heating data from the old heating system with boilers. There are two main findings: 

 An active charging to borehole during the summertime increases the borehole

temperature which helps to reduce the electricity consumption of GSHP during the

winter time.

 The feasibility study on the lifetime performance shows great potential on saving

energy and reducing carbon emission. The heat accumulates in the borehole and brings

benefit in the lifetime.

With the feasibility study on the proposed heating system, Chapter 4 develops an accurate 

model for the borehole arrays and studies the temperature behaviour of the heat transfer with 

the media of the borehole and surrounding ground. The following part introduced this 12-

borehole model based on the real geometry layout. The model: 

 The fluid in the borehole has a high temperature, however, the heat quickly settles

down in the surrounding area especially the borehole wall. The borehole wall

temperature is the key information in the heating system.
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 The temperature in the borehole changes fast at the beginning of the charging or

discharging due to the temperature difference between each media and gradually, the

temperature reaches a saturated value. With the active charging during the charging

season, the overall temperature is increasing and the efficiency of the heating system

is going up.

Because the heat transfer is a very complicated process involving constant heat dissipation, 

injection and extraction, and for the proposed space heating system, borehole temperature is 

related to the heat pumps, finding the most efficient operation strategy is significant for the 

operation of the system. In Chapter 5, the system is optimized according to single 

charging/discharging process, for the same amount of electricity used to provide space heating 

during the heating season, the optimized borehole charging strategy is found and the main 

conclusions are: 

 For this single charging/discharging optimization, instead of charging the borehole

according to the PV generation across the whole charging season, the optimized

charging strategy required less electricity consumption from ASHP to generate heat

energy injected into the borehole during the charging season and remains the

performance of GSHP during the discharging season.

 The proposed heating system reduces 70% of CO2 emission compared to the

traditional heating method (gas boilers). By using the optimized charging strategy,

during the discharging season, the CO2 emission is reduced compared to the normal

charging strategy.

The borehole inter-seasonal heat storage has a very low maintenance cost and used not only 

for one single charging/discharging cycle, but it is also important to study on the performance 

in long term operation. In Chapter 6, the optimization of long term system operation is carried 

out, with the charging strategy studied, there are two main findings as listed below: 

 With the limited total charging heat energy, the charging strategy is very different

from the single charging/discharging cycle. Instead of using the single cycle optimized

charging strategy in each cycle, it is more efficient to supercharge the borehole in the

early charging seasons.
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 The early heat accumulate under the ground not only helps the current heating season

to benefit from high temperature due to the supercharging and the temperature is

normally 2-3°C higher which increases the GSHP CoP more. The heat accumulated

under the ground also benefit the future charging/discharging cycles. With higher

surrounding ground temperature, it helps to preserve more heat in the later charging

season reducing the heat loss and when the borehole temperature is low, the

surrounding ground transfers back the heat preventing the system from low

temperature.

This thesis starts with the study of high-level space heating energy chain based on a practical 

project followed with the operation strategy within a space heating system. The operation 

strategies of the inter-seasonal borehole heat energy storage presents the guide to increase the 

system efficiency, reduce the energy consumption and CO2 emission on space heating system 

and can be used in the future with more complicated energy supply system on the community 

level.  
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8 Future work 

This chapter discusses a number of opportunities that can be improved in the future based on 

the work presented in this thesis. This research is the initial borehole thermal storage operation 

study and it presents an operational guide for the thermal storage when coupled with heat 

pumps. Besides the benefit brought by this proposed space heating system, further research 

work is needed to increase the application of the low carbon heating system and with more 

aspects taken into account, the space heating system could possibly provide more detailed 

information to the end users as well as helping the energy network to improve the operation 

and therefore achieve the government regulation and requirement. The following bullet points 

are the main future research directions:  

 Increase system accuracy over timescale and model conditions  

In this thesis, work has been done on the operation of the low carbon space heating system. 

Due to the complexity of the borehole system, it is difficult to optimize a lifetime performance 

with a small time step. The optimization has been done on short timestep with short total 

simulation time, and long timestep with long total simulation time. With a longer time step, 

assumptions are made: i) the system is simulated as seasonal, during the charging and 

discharging season, the heat flux injection or extraction is a constant process during each time 

step. ii) Because that the system is simulated seasonally, the electricity price is not considered 

in the system. iii) the electricity used for charging the borehole is from the PV generation and 

is assumed that it is available at any time. iv) in each season, the weather, temperature and heat 

demand is assumed to be the same.  

In the future work there is improvement needed to be done in terms of the performance of the 

space heat system: 

i) Time step length: for the single-cycle and multi-cycle optimization, each time 

step length is one week and during each time step it is assumed that the borehole 

is constantly charging or discharging. With the renewable energy involved 

especially PV, the system cannot be guaranteed with the constant input from the 

PV during the charging season. With the borehole being an inter-seasonal heat 
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storage, the focus is on the heat accumulation in the borehole and the benefit in 

the lifetime operation and it is reasonable to make the assumption in each time 

step. However, the heat transfer is a complex process and the temperature changes 

differently which will affect the short-term simulation. This situation can be 

further improved by shortening the time step into an hourly simulation which can 

be better used with renewable energy and cooperate easily with another form of 

energies. 

ii) Heat pumps performance: in this proposed heating system, the focus is on the 

borehole operation and delivered charging strategies on the system to increase the 

efficiency during the heating season. Further work needs to be done considering 

the more aspects of the low carbon space heating system. For instance, the 

operation of the heat pumps, ASHP in this system works as the input of the 

borehole, and it takes the advantage of the high air temperature during the summer 

time. However, in this research, the focus is on the borehole temperature and 

system efficiency over the heating season, as a result, there is a lack of study on 

how large the influence of ASHP can bring to the space heating system. GSHP 

CoP during the heating season directly gets influenced from the borehole 

temperature changing and provide space heating for the community. However, 

the output of the GSHP is set to a fixed value as the radiator temperature which 

can leads to over-heating or under-heating according to the room temperature and 

weather. In the future work, more research can be done on the relationship 

between GHSP and weather. 

 Improving borehole application in the multi-energy system 

This study delivered a promising operation strategy for the space heating system, however, for 

the domestic energy consumption, other forms of energy demand need to be considered. In 

order to improve the application of the heat energy storage, future work needs to be done in 

smart homes/grid, and understand how the borehole heating system performs and brings benefit 

to a multi-energy system. 

Continuing with the work presented in this thesis, initial research has been done over inter-

connected energy hubs on sharing energies among energy hubs. In the research, the small 

community consists of 11 houses and there are conventional energy forms and renewable 
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energies. In order to reduce the optimization time, the borehole FE model is simplified and 

blended in the community inter-connected energy hub system. The research concludes on the 

benefit from the borehole combined heat pump: 1) stable system performance 2) reduced total 

energy cost.  

This initial research is based on daily operation and for the borehole inter-seasonal storage, 

however, the affection to the energy supply system from the heat accumulation in the borehole 

and the bedrock is not shown, as a result, in the future work, long-term optimal control for the 

borehole combined heat pump system will be studied.  

 Uncertainty analysis

In the presented research, the focus is on the borehole temperature affecting the heat pump 

performance and how the charging strategy affects the system in the long-term simulation. 

However, during the charging and discharging seasons, the weather condition is not considered, 

assumptions are made on the operation of heat pumps and borehole storage. At the same time, 

because of the lack of investigation during the heating season and the historical data is used, 

social profiles are not considered.  

As a result, the uncertainty of system input and output will be investigated in the future: 

i) Weather: continue with the work presented in this thesis, which include the

assumption on the weather condition, modelling the relationship between renewable

energy generations varying along the weather condition, ASHP reacting to the air

temperature during the charging season, and heat demand changes along the winter

air temperature (household load forecasting) can help to improve the operation

ii) Social profile: model how the demand varies according to different social groups

which helps to optimize the operation during the heating season and further

improves cooperation between the borehole heat energy storage and other energy

supply in the multi-energy system.
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Appendix A   

Ground Source Heat Pump 

 

 

GSHP 

Evaporator 

outlet 

temperature 

(°C) 

Evaporator 

inlet 

temperature 

(°C) 

Condenser Water Outlet Temperature (°C) 

30 

Cooling 

(kW) 

Input 

(kW) 

Heating 

(kW) 
COP 

-10 -7 50.1 16.8 66.2 3.94 

-4 -1 62.8 16.9 79.1 4.68 

0 4 73.0 17.0 89.5 5.25 

2 6 78.1 17.1 94.7 5.54 

5 10 89.1 17.3 105.9 6.12 

6 11 92.1 17.4 109.0 6.28 

7 12 95.1 17.4 112 6.44 

10 15 105.2 17.7 122.5 6.92 

12 18 112 17.9 129.5 7.23 

15 21 122 18 139 7.69 

18 24 132 19 151 8.09 

 

 

GSHP 

Evaporator 

outlet 

temperature 

(°C) 

Evaporator 

inlet 

temperature 

(°C) 

Condenser Water Outlet Temperature (°C) 

35 

Cooling 

(kW) 

Input 

(kW) 

Heating 

(kW) 
COP 

-10 -7 47.6 18.7 65.4 3.50 

-4 -1 59.9 18.9 78.0 4.13 

0 4 69.9 19.0 88.2 4.65 

2 6 74.9 19.0 93.3 4.91 

5 10 85.5 19.2 104.0 5.42 

6 11 88.4 19.2 107.0 5.57 

7 12 91.3 19.2 109.9 5.72 

10 15 100.7 19.4 120.0 6.17 

12 18 107.0 19.6 126.7 6.46 
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15 21 116.9 19.5 136.0 6.97 

18 24 127.6 20.0 147.2 7.36 

GSHP 

Evaporator 

outlet 

temperature 

(°C) 

Evaporator 

inlet 

temperature 

(°C) 

Condenser Water Outlet Temperature (°C) 

40 

Cooling 

(kW) 

Input 

(kW) 

Heating 

(kW) 
COP 

-10 -7 44.7 20.70 64.40 3.11 

-4 -1 56.8 21.00 76.90 3.66 

0 4 66.4 21.1 86.8 4.11 

2 6 71.2 21.20 91.70 4.33 

5 10 81.4 21.30 102.00 4.79 

6 11 84.2 21.4 104.8 4.91 

7 12 86.9 21.40 107.60 5.03 

10 15 96.5 21.5 117.4 5.45 

12 18 102.9 21.60 123.90 5.74 

15 21 111.9 21.40 132.70 6.20 

18 24 122.2 21.70 143.30 6.60 

GSHP 

Evaporator 

outlet 

temperature 

(°C) 

Evaporator 

inlet 

temperature 

(°C) 

Condenser Water Outlet Temperature (°C) 

45 

Cooling 

(kW) 

Input 

(kW) 

Heating 

(kW) 
COP 

-10 -7 41.8 22.9 63.4 2.77 

-4 -1 53.3 23.4 75.6 3.23 

0 4 62.6 23.6 85.2 3.61 

2 6 67.2 23.7 90.0 3.80 

5 10 76.9 23.8 99.8 4.19 

6 11 79.6 23.9 102.6 4.30 

7 12 82.3 23.9 105.3 4.41 

10 15 91.6 24.0 114.7 4.79 

12 18 97.8 24.0 121.0 5.04 

15 21 106.6 23.6 129.5 5.49 

18 24 116.4 23.8 139.5 5.86 
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GSHP 

Evaporator 

outlet 

temperature 

(°C) 

Evaporator 

inlet 

temperature 

(°C) 

Condenser Water Outlet Temperature (°C) 

50 

Cooling 

(kW) 

Input 

(kW) 

Heating 

(kW) 
COP 

-10 -7 N/A 

-4 -1 49.3 26 74 2.85 

0 4 58.2 26.3 83.3 3.16 

2 6 62.7 26.5 88 3.32 

5 10 72 26.6 97.5 3.67 

6 11 74.6 26.6 100.1 3.76 

7 12 77.1 26.6 102.7 3.86 

10 15 85.9 26.7 111.6 4.18 

12 18 91.7 26.8 117.6 4.39 

15 21 100 26 126 4.80 

18 24 109 26 135 5.10 

GSHP 

Evaporator 

outlet 

temperature 

(°C) 

Evaporator 

inlet 

temperature 

(°C) 

Condenser Water Outlet Temperature (°C) 

55 

Cooling 

(kW) 

Input 

(kW) 

Heating 

(kW) 
COP 

-10 -7

N/A -4 -1

0 4 

2 6 57.6 29.5 85.7 2.91 

5 10 66.6 29.7 94.9 3.20 

6 11 69.0 29.8 97.4 3.27 

7 12 71.4 29.8 99.8 3.35 

10 15 79.7 29.9 108.4 3.63 

12 18 85.3 29.9 114.1 3.82 

15 21 93 30 121 4.10 

18 24 103 29 131 4.46 

Air Source Heat Pump 
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ASHP 

Air temperature (°C) 

Condenser Water Outlet Temperature (°C) 

30 

Input (kW) Heating (kW) COP 

-20 11.39 27.36 2.40 

-17 11.54 29.82 2.58 

-15 11.68 31.7 2.71 

-13 11.81 33.51 2.84 

-12 11.88 34.42 2.90 

-10 12.02 36.48 3.03 

-5 12.49 41.89 3.35 

0 12.93 47.92 3.71 

5 13.42 54.33 4.05 

7 13.62 57.07 4.19 

10 13.88 61.17 4.41 

15 14.29 68.02 4.76 

20 14.66 75.01 5.12 

ASHP 

Air temperature (°C) 

Condenser Water Outlet Temperature (°C) 

35 

Input (kW) Heating (kW) COP 

-20 12.44 27.36 2.20 

-17 12.58 29.79 2.37 

-15 12.67 31.5 2.49 

-13 12.8 33.28 2.60 

-12 12.86 34.16 2.66 

-10 13.02 36.14 2.78 

-5 13.42 41.36 3.08 

0 13.88 47.12 3.39 

5 14.38 53.38 3.71 

7 14.58 55.95 3.84 

10 14.86 59.87 4.03 

15 15.3 66.71 4.36 
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20 15.68 73.36 4.68 

ASHP 

Air temperature (°C) 

Condenser Water Outlet Temperature (°C) 

40 

Input (kW) Heating (kW) COP 

-20 N/A 

-17 13.7 29.69 2.17 

-15 13.79 31.33 2.27 

-13 13.89 33.05 2.38 

-12 13.96 33.92 2.43 

-10 14.08 35.8 2.54 

-5 14.46 40.88 2.83 

0 14.9 46.46 3.12 

5 15.38 52.27 3.40 

7 15.59 54.67 3.51 

10 15.9 58.62 3.69 

15 16.35 65.12 3.98 

20 16.76 71.57 4.27 

ASHP 

Air temperature (°C) 
45 

Input (kW) Heating (kW) COP 

-20 

N/A -17 

-15 

-13 15.1 32.85 2.18 

-12 15.15 33.71 2.23 

-10 15.26 35.44 2.32 

-5 15.61 40.3 2.58 

0 16.05 45.66 2.84 

5 16.57 51.2 3.09 

7 16.73 53.49 3.20 

10 17.02 57.28 3.37 

15 17.49 63.43 3.63 
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20 17.9 69.46 3.88 

ASHP 

Air temperature (°C) 

Condenser Water Outlet Temperature (°C) 

50 

Input (kW) Heating (kW) COP 

-20

N/A 

-17

-15

-13

-12

-10

-5 16.91 39.74 2.35 

0 17.31 44.83 2.59 

5 17.75 50.05 2.82 

7 17.96 52.37 2.92 

10 18.27 55.91 3.06 

15 18.72 61.62 3.29 

20 19.17 67.28 3.51 

ASHP 

Air temperature (°C) 

Condenser Water Outlet Temperature (°C) 

55 

Input (kW) Heating (kW) COP 

-20

N/A 

-17

-15

-13

-12

-10

-5

0 18.72 44.02 2.35 

5 19.16 48.89 2.55 

7 19.34 51.06 2.64 

10 19.64 54.42 2.77 
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15 20.09 59.98 2.99 

20 20.48 65.23 3.19 

ASHP 

Air temperature (°C) 

Condenser Water Outlet Temperature (°C) 

58 

Input (kW) Heating (kW) COP 

-20

N/A 

-17

-15

-13

-12

-10

-5

0 19.64 43.48 2.21 

5 20.05 48.26 2.41 

7 20.25 50.34 2.49 

10 20.52 53.48 2.61 

15 20.96 58.8 2.81 

20 21.35 64.01 3.00 

Appendix B 

kWh KWh kg £ 

Days Time step 

Boiler operation 

Input 

energy 
Efficiency 

Output 

energy 

(Heat) 

CO2 

emission 
Cost 

starting point 0.0 0.0 0.0 0.0 0.0 

October 

Day 1 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 2 07:00-19:00 484.8 0.9 412.1 84.2 41.4 
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19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 3 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 4 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 5 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 6 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 7 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 8 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 9 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 10 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 11 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 12 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 13 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 14 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 
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Day 15 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 16 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 17 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 18 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 19 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 20 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 21 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 22 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 23 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 24 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 25 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 26 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 27 07:00-19:00 484.8 0.9 412.1 84.2 41.4 
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19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 28 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 29 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 30 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 31 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

November 

Day 32 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 33 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 34 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 35 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 36 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 37 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 38 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 39 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 
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Day 40 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 41 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 42 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 43 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 44 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 45 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 46 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 47 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 48 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 49 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 50 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 51 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 52 07:00-19:00 484.8 0.9 412.1 84.2 41.4 
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19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 53 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 54 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 55 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 56 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 57 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 58 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 59 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 60 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 61 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

December 

Day 62 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 63 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 64 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 
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Day 65 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 66 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 67 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 68 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 69 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 70 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 71 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 72 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 73 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 74 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 75 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 76 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 77 07:00-19:00 484.8 0.9 412.1 84.2 41.4 
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19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 78 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 79 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 80 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 81 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 82 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 83 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 84 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 85 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 86 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 87 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 88 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 89 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 
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Day 90 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 91 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 92 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

January 

Day 93 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 94 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 95 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 96 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 97 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 98 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 99 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 100 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 101 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 102 07:00-19:00 484.8 0.9 412.1 84.2 41.4 
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 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 103 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 104 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 105 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 106 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 107 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 108 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 109 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 110 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 111 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 112 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 113 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 114 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 
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Day 115 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 116 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 117 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 118 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 119 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 120 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 121 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 122 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 123 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

February 

Day 124 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 125 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 126 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

 19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 127 07:00-19:00 484.8 0.9 412.1 84.2 41.4 
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19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 128 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 129 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 130 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 131 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 132 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 133 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 134 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 135 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 136 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 137 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 138 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 139 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 
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Day 140 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 141 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 142 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 143 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 144 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 145 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 146 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 147 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 148 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 149 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 150 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 151 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

March Day 152 07:00-19:00 484.8 0.9 412.1 84.2 41.4 
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19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 153 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 154 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 155 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 156 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 157 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 158 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 159 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 160 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 161 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 162 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 163 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 164 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 
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Day 165 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 166 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 167 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 168 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 169 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 170 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 171 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 172 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 173 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 174 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 175 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 176 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 177 07:00-19:00 484.8 0.9 412.1 84.2 41.4 
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19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 178 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 179 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 180 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 

Day 181 07:00-19:00 484.8 0.9 412.1 84.2 41.4 

19:00-07:00 484.8 0.9 412.1 84.2 41.4 
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Appendix C 
model=createpde(1); 
C1=[1     0  0  40];  

C2=[1 -24.3    -3.4    0.075];

C3=[1 -11.4 -8.1     0.075];

C4=[1  3.5  5.2  0.075];  

C5=[1 -17.1    4.1    0.075];

C6=[1 -6.6    3.8    0.075];

C7=[1 -6.6    11.8    0.075];

C8=[1  7.5  1.7  0.075];  

C9=[1  16.7  1.7  0.075];  

C10=[1    23.9    10.5    0.075];  

C11=[1    23.9    19.3    0.075];  

C12=[1    26.5    1.7    0.075];   

C13=[1    33.4    7.9    0.075];   

C14=[1 -24.3    -3.4    0.0326];

C15=[1 -11.4     -8.1     0.0326];

C16=[1  3.5  5.2  0.0326]; 

C17=[1 -17.1    4.1    0.0326];

C18=[1 -6.6    3.8    0.0326];

C19=[1 -6.6    11.8    0.0326];

C20=[1    7.5    1.7    0.0326];     

C21=[1    16.7    1.7    0.0326];   

C22=[1    23.9    10.5    0.0326];  

C23=[1    23.9    19.3    0.0326];  

C24=[1    26.5    1.7    0.0326];   

C25=[1    33.4    7.9    0.0326]; 

C2=[C2;zeros(length(C1) - length(C2),1)]; 
C3=[C3;zeros(length(C1) - length(C3),1)]; 
C4=[C4;zeros(length(C1) - length(C4),1)]; 
C5=[C5;zeros(length(C1) - length(C5),1)]; 
C6=[C6;zeros(length(C1) - length(C6),1)]; 
C7=[C7;zeros(length(C1) - length(C7),1)]; 
C8=[C8;zeros(length(C1) - length(C8),1)]; 
C9=[C9;zeros(length(C1) - length(C9),1)]; 
C10=[C10;zeros(length(C1) - length(C10),1)]; 
C11=[C11;zeros(length(C1) - length(C11),1)]; 
C12=[C12;zeros(length(C1) - length(C12),1)]; 
C13=[C13;zeros(length(C1) - length(C13),1)]; 

C14=[C14;zeros(length(C1) - length(C14),1)]; 
C15=[C15;zeros(length(C1) - length(C15),1)]; 
C16=[C16;zeros(length(C1) - length(C16),1)]; 
C17=[C17;zeros(length(C1) - length(C17),1)]; 
C18=[C18;zeros(length(C1) - length(C18),1)]; 
C19=[C19;zeros(length(C1) - length(C19),1)]; 
C20=[C20;zeros(length(C1) - length(C20),1)]; 
C21=[C21;zeros(length(C1) - length(C21),1)]; 
C22=[C22;zeros(length(C1) - length(C22),1)]; 
C23=[C23;zeros(length(C1) - length(C23),1)]; 
C24=[C24;zeros(length(C1) - length(C24),1)]; 
C25=[C25;zeros(length(C1) - length(C25),1)]; 
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gd=[C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17,C18,C19,C20,C21,C22,C23,C2

4,C25]; 
ns=char('C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11','C12','C13','C14','C15','C16','C17','C18','C19','

C20','C21','C22','C23','C24','C25'); 
ns=ns'; 

% Set formula 
sf='C1-C2-C3-C4-C5-C6-C7-C8-C9-C10-C11-C12-C13-C14-C15-C16-C17-C18-C19-C20-C21-C22-

C23-C24-

C25+(C1*C2)+(C1*C3)+(C1*C4)+(C1*C5)+(C1*C6)+(C1*C7)+(C1*C8)+(C1*C9)+(C1*C10)+(C1*C1

1)+(C1*C12)+(C1*C13)+(C1*C14)+(C1*C15)+(C1*C16)+(C1*C17)+(C1*C18)+(C1*C19)+(C1*C20)+(

C1*C21)+(C1*C22)+(C1*C23)+(C1*C24)+(C1*C25)'; 
g=decsg(gd,sf,ns); 
geometryFromEdges(model,g); 
pdegplot(model,'EdgeLabels','on','SubdomainLabels','on') 
xlim([-40 40]); 
axis equal; 

% Generate mesh 
generateMesh(model,'Hgrad',1.999999999);   % Must have geometry From Edges 
figure(1) 
pdeplot(model) 

% Mesh to [p,e,t} form 
[p,e,t] = meshToPet(model.Mesh);  
%      Ground        Fluid            Backfilling(Grout) 
% Density (kg/m^3)      dg=2770  df=1052  db=1550 
% Heat capacity (j/(kg.K))      hcg=829  hcf=3795   hcb=1000 
% Thermal conductivity (W/(m.K))     ccg=2.61    ccf=0.5    ccb=2.1 
dg=2770;    df=1052;    db=1550;      hcg=829;    hcf=3795;    hcb=1000;    ccg=2.88;    ccf=0.5;    ccb=2.1; 

% PDE coefficient 
% d is density and capacity 
d=sprintf('(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(

%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(

%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)!(%f).*(%f)',dg,hcg,db,h

cb,db,hcb,db,hcb,db,hcb,db,hcb,db,hcb,db,hcb,df,hcf,db,hcb,df,hcf,db,hcb,db,hcb,df,hcf,db,hcb,db,hcb,df,

hcf,df,hcf,df,hcf,df,hcf,df,hcf,df,hcf,df,hcf,df,hcf,df,hcf); 
a='0!0!0!0!0!0!0!0!0!0!0!0!0!0!0!0!0!0!0!0!0!0!0!0!0'; 

% c is thermal conductivity 
c=sprintf('%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f!%f',cc

g,ccb,ccb,ccb,ccb,ccb,ccb,ccb,ccf,ccb,ccf,ccb,ccb,ccf,ccb,ccb,ccf,ccf,ccf,ccf,ccf,ccf,ccf,ccf,ccf);  

% Apply initial boundary condition 
applyBoundaryCondition(model,'Edge',1:4,'u',13); 

% Initial ground temperature 
U0=12.67; 

% Timelist (tlist) 
time{1}=[1,2592000]; 
% External temperature 
ext=0; 
% Convection heat coefficient 
con=0; 
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