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Abstract 
 

In recent years smart meters and advanced metering infrastructures (AMI) have been 

rolled out to a substantial number of domestic consumers across the world. An 

unprecedented amount of fine-grained load data have since been generated. 

Meanwhile, owing to the rapid and ongoing digitalization of the society, a variety of 

information about the consumers which was unattainable has streamed in and 

becomes available, such as the consumer’s age, education level, income, etc. 

However, traditional analytics used in power systems are unable to handle the smart 

meter data efficiently and effectively due to the high volatility, large volume and fast 

generating speed of domestic load data. The added dimensions to the smart meter 

data from other sources increase the variety of data and further complicate the 

processing of the data. This thesis proposes a range of methods to address the 

challenges from two key aspects:  

1) Uncovering the underlying patterns of the smart metering data. This thesis proposes 

a novel load forecasting methodology that leverages the knowledge learned from one 

forecasting task to achieve more efficient and accurate forecasting for another by 

utilizing transfer learning along with deep learning. The adoption of deep neural 

networks enables the effective modelling of highly complex and nonlinear relationships 

within smart metering data and has endowed us with strong predictive power. 

Additionally, transfer learning would further improve the predictive performance and 

significantly reduce the required amount of data, computational power, and the efforts 

for hyperparameter optimization. 

2) Revealing the interconnection/correlation between data from other sources and 

smart meter data. Based on the sources, other available data could be classified into 

two groups, i.e., social-economic/demographic data of consumers and data from the 

power system. For the social-economic data, this thesis first proposes an ensemble 

learning framework that could not only predict the social-economic status accurately 

form smart metering data, but also provide insights into the correlation between the 

two sets of data due to the model’s interpretability. Conversely, a deep Convolutional 

Neural Network (CNN) based model is proposed to infer the load characteristics from 

the social-economic data of the consumers. It leverages the convolutional kernel and 
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ii 

deep architecture to overcome the hurdle brought by mixed types of data and infers 

multiple load characteristics simultaneously. It is validated on real data and 

demonstrates an improvement in both the learning efficiency and the prediction 

accuracy compared to predicting each characteristic separately. As for the data from 

the power system, this research preliminarily focuses on the phase connectivity of a 

consumer. The phase connectivity is not commonly available, however, keeps gaining 

increasing attention due to the critical need for Low Carbon Technologies integration 

and network balancing. A novel Spectral and Saliency Analysis (SSA) method is 

developed to accurately identify the phases of consumers using their smart metering 

data.  
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Chapter 1 Introduction 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

his chapter briefly describes the research background, motivation, challenges, and 
contributions of this work. It also provides an overview of the thesis. 
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1.1 Research Background 

1.1.1 Climate Change and Low Carbon Technologies 
Growing population and industrialization of the societies are creating a tremendous 

need for energy use [1], which have also led to a rapid increase in greenhouse gas 

emissions. In response, over 190 parties have signed the Kyoto Protocol aiming to 

reduce the greenhouse emissions [2]. Specifically, in the UK, the Parliament of the 

United Kingdom announced the Climate Change Act 2008 [3]. The act sets its goal as 

34% reduction of CO2 emission by 2020 and at least 80% greenhouse gases 

emissions reduction by 2050. For the energy sector in the UK, as shown in Figure 1-1, 

it generated the most amount of CO2, accounting for about 40% of the total emission 

in 2008 [4], and would make a major contribution to achieving the targets in the act. In 

the following year, the Office of Gas and Electricity Markets (Ofgem) introduced the 

Low Carbon Network (LCN) fund [5] to encourage Distribution Network Operators 

(DNOs) to get prepared for and facilitate the transition to a low carbon future. 

Under the circumstances, Low Carbon Technologies (LCTs) such as renewable 

generations have been significantly promoted [6, 7]. However, the existing distribution 

network will face unprecedented stresses mainly due to the inherently volatile and 

uncertain output of renewable generations, such as solar power, wind power and 

biomass energy. Consequently, a portfolio of projects emerged with the goal of 

 

Figure 1-1 UK greenhouse gas emission by source sector in 2008 
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understanding how the existing network will need to change to accommodate a series 

of LCTs. 

1.1.2 Smart Grid and Smart Meters 
To achieve a greener future, delivering an affordable and low-carbon supply of 

electricity has become the main concern of electricity utilities. The evolution of the 

Smart Grid (SG) [8, 9] provides a potentially cost-effective way to reduce demand and 

make better use of LCTs, which is a key step towards the goal of low carbon emission. 

The SG is the next generation power grid. In contrast to the traditional power grid, it 

uses the two-way flow of both electricity and information [10]. The anticipated 

improvement brought by the SG includes the improved power quality and reliability, 

the enhanced capacity and efficiency of the existing power networks, accommodating 

distributed energy resources and renewable generations, automated maintenance 

and operation, etc. [11]. 

The transmission network is regarded as the most important element in the chain of 

energy supply due to its vital role to the overall system security. Hence, it has 

previously received more attention regarding the installation of advanced monitoring, 

protection and control equipment [12]. However, considering the fact that nearly 90% 

of all the power outages and disturbances take place in distribution network [9], the 

evolution of current grid should start from its bottom which is the distribution network. 

Specifically, the deployment of smart meters and other Advanced Metering 

Infrastructure (AMI) for the distribution networks have been the focus in the past 

several years. Smart meters have been rolled out to a large number of domestic 

households across the world. The UK government has established a central 

programme to roll out smart meters across the UK. Approximately 53 million smart 

meters will be deployed to all the UK homes and small businesses by the end of 2020 

[13]. The unprecedented visibility on individual consumers attained through these 

smart meters could provide crucial information for the consumers to save energy and 

choose better tariff, for the energy suppliers to develop tailored tariff and more effective 

Demand Side Response (DSR) schemes, for the DNOs to better facilitate LCTS and 

achieve more efficient operations. 
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1.1.3 Customer Information Digitization 
As the development of the internet and the Internet of Things (IoT) [14], a vast amount 

of data are being created by the customers. Consequently, a variety of information 

about the consumers which was traditionally unattainable has streamed in and 

becomes available, such as the consumer’s age, education, and other social-

economic or demographic information. 

The smart metering data of the consumers demonstrate the consumption patterns of 

the consumers directly and intuitively, whereas the social-economic or social-

demographic status of consumers provides deeper insights into the consumers. A 

deeper understanding of the two streams of the data would provide insights into the 

energy behaviours of the consumers. Utilization of the insights would then help 

develop better Energy Management System and better facilitate the LCTs. 

Apart from the social-economic information and smart metering data of the consumers, 

other forms of data from the power systems have also become available or are seeking 

methods to be monitored and collected. For example, the voltage profiles of the 

consumers are being monitored by the smart meters as well, though not commonly 

being recorded. In contrast, the phase connectivity of a consumer is not commonly 

available and cannot be monitored by the smart meters. The identification of the 

phases is receiving increasing attention recently due to the need for balancing network 

and accommodating LCTs. 

1.2 Research Motivation and Challenges 

1.2.1 Uncovering the Underlying Patterns of the Smart 
Metering Data 

Traditionally, most meters and sensors are installed in the transmission networks in 

the power systems. Electricity meters in distribution networks are installed for billing 

purpose and are normally read on sites by electricians on a monthly basis. The 

emergence of smart meters brings a compelling opportunity to increase the distribution 

network’s visibility and accessibility. Up to now, a substantial number of smart meters 

have been deployed at domestic households across the world.  
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The influx of exceedingly large smart metering datasets presents unprecedented 

opportunities for uncovering the underlying patterns of the energy behaviours of the 

consumers. One crucial aspect of uncovering the patterns is load forecasting. For 

energy consumers, better forecasting of their energy consumption patterns would help 

them save energy and choose better tariff. For energy suppliers, accurate forecasting 

would help them design targeted tariff and reduce the cost of purchasing electricity 

from the wholesale market [15]. For DNOs, the better forecasting of their consumers’ 

energy consumption patterns would help them better facilitate the integration of LCTs, 

achieving more efficient operation of the networks, and make better planning and 

investment. 

However, traditional forecasting methods used in the power systems are developed 

for more aggregated loads, such as transmission network load, regional load and 

national load. Load aggregation naturally helps reduce uncertainties [16]. 

Consequently, aggregated loads are much smoother, less uncertain and volatile, and 

are easier to forecast compared to individual household’s load. In addition, smart 

metering data are large in volume and fast in generating speed which poses 

tremendous challenges to traditional load forecasting methods [17-20]. 

Recently, with the development of deep learning, the prediction performance of 

domestic load forecasting has been elevated to an acceptable level [16, 21-24]. 

Nonetheless, the improved accuracy by implementing deep learning is often 

accompanied by other inconvenience, some of which are: 1) building and training deep 

learning models are quite difficult and time-consuming; 2) not all consumers have 

enough data for training deep models; 3) different deep models are trained for different 

datasets or consumers, which is repetitive and complicated. Therefore, there is an 

imperative need for developing efficient and accurate load forecasting models to utilize 

the smart metering data. 

1.2.2 Revealing the Interconnection/Correlation between 
Data from Other Sources and Smart Metering Data 

Apart from the smart metering data, a variety of information about the consumers has 

become available due to the ongoing digitization of the societies. Based on the 

sources, the available information or data of interest could be classified into two 
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categories, i.e., social-economic/demographic data of consumers and data from the 

power system.  

For the social-economic data, such as the social class, age, and education level of the 

consumer, they depict the energy consumers from a different angle. A better 

understanding of them would equip the suppliers with the necessary information for 

developing personalized services on targeted consumers [25, 26]. In addition, 

provided with the social-economic status of the target consumer, more effective DSR 

and EMS could then be implemented. Social-economic data are as equally important 

as the smart metering data. However, energy consumers have varying degrees of 

availability of data. Not all of them have both the smart metering data and the social-

economic data. This drives the need for understanding the underlying correlation 

between the two streams of data and developing models to infer one source of data 

given the other. 

As for the consumer data from the power systems, a wide range of data are becoming 

available, e.g., the voltage profiles at the consumer end, the received frequency of the 

consumer, and the phase connectivity of the consumer. The voltage and frequencies 

can be monitored by most smart meters, whereas the identification of phase 

connectivity of a consumer requires the instalment of extra equipment. Given the fact 

that knowing the phase connectivity of the consumers in a network would help balance 

the network and accommodate LCTs, a cost-effective and efficient way to identify 

phases should be developed to help move towards a greener and efficient distribution 

network.  

1.3 Research Contributions 

This research aims to fully utilize the smart metering data for load forecasting and 

linking the smart metering data to other sources of data in a big data context. The main 

contributions of the research are summarized as follows: 

• Development of transfer learning based short-term load forecasting model for 

domestic consumers. The large amount of smart metering data are ideal for 

developing deep neural networks for load forecasting. The adoption of transfer 

learning on the deep models leverages the knowledge learned from one 

forecasting task for forecasting another, which not only reduces the required 
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computational power for training from scratch but also improves the forecasting 

accuracy. 

• Proposing a boosting tree ensemble model for the inference of consumer’s 

social-economic status from smart metering data. Meaningful features are 

designed and extracted from the smart metering data to reduce the 

dimensionality of the data. Extreme Gradient Boost, a tree-based ensemble 

model, is adopted to predict the social-economic status data. Comprehensive 

interpretation of the trained model by analyzing the individual base trees is 

given. 

• Proposing a Deep Convolutional Neural Network (DCNN) based multi-task 

learning (MTL) method for the inference of consumer’s smart metering features 

from social-economic data. It leverages the convolutional kernel and deep 

architecture in DCNN to overcome the hurdle brought by mixed types of social-

economic data and infers multiple load characteristics simultaneously. 

• Proposes to a novel spectral and saliency analysis (SSA) methodology to 

identify households’ phases using their smart metering data. Specifically, the 

proposed method combines spectral and temporal domain feature extraction 

techniques on the smart metering data and do not require 100% smart meter 

penetration ratio in the network. 

1.4 Thesis Layout 

The rest of the thesis is organized as follows: 

Chapter 2 provides an extensive and comprehensive literature review of current 

research on smart metering data analytics. The review will focus on three aspects: 1) 

load forecasting, 2) customer characterization with smart metering data and social-

economic data, 3) connection and phase identification. The limitations of the existing 

methods are identified and discussed.  

Chapter 3 proposes to leverage the knowledge learned from one forecasting 

task to achieve more efficient and accurate forecasting for another by utilizing transfer 

learning and deep learning. The proposed method is tested using real data and the 

transferability of different deep models and different layers in the deep models is also 

assessed. 
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Chapter 4 proposes an ensemble framework to infer the consumer’s social-

economic information from smart metering data. Meaningful features are firstly 

extracted from smart metering data and then fed to a gradient boosted ensemble tree 

structure for training. The features that significantly help the inference of the social-

economic status are lastly identified. 

Chapter 5 proposes a Deep Convolutional Neural Network (DCNN) based multi-

task learning (MTL) method for the inference of consumer’s smart metering features 

from social-economic data. It leverages the convolutional kernel and deep architecture 

in DCNN to overcome the hurdle brought by mixed types of social-economic data and 

infers multiple load characteristics simultaneously. 

Chapter 6 proposes a novel spectral and saliency analysis (SSA) methodology 

to identify households’ phases using their smart metering data. Specifically, the 

proposed method combines spectral and temporal domain feature extraction 

techniques on the smart metering data and do not require 100% smart meter 

penetration ratio in the network. The proposed method is then validated under different 

data conditions to demonstrate its robustness and accuracy. 

Chapter 7 summarizes the key findings from the research and the major 

contribution of the work. 

Chapter 8 presents some potential research topics are as future work.  
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2.1 Introduction 

An unprecedented amount of fine-grained smart meter data have been generated over 

the past decade owing to the rapid and wide deployment of the smart meters. For 

example, in the UK 10.02 million smart meters have been installed in domestic 

households by the end of 2017 [27]. A wide range of data analytics has since been 

developed to utilize the smart meter data. This thesis focus on three aspects of the 

smart meter data analytic research: 

1) Load forecasting for domestic customers; 
2) Customer characterization with smart meter data and social-economic data; 
3) Phase identification. 

2.2 Load Forecasting 

Load forecasting refers to the prediction of future load. It has been widely used and 

studied due to its significance in the planning and operation of the power system [28]. 

Based on the forecasting horizons, load forecasting can be divided into four categories 

[29] as depicted in Figure 2-1: 

1) Very short-term load forecasting (VSTLF) [30-33]; 

2) Short-term load forecasting (STLF) [16, 23, 24, 34-37]; 

3) Medium-term load forecasting (MTLF) [38-40]; 

4) Long-term load forecasting (LTLF) [41-43]. 

 

Figure 2-1 Load forecasting by forecast horizon 
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VSTLF is generally used for the real-time scheduling of generation [32]. STLF is 

gaining more attention due to the emergence of the smart grid [28]. Accurate STLF is 

the prerequisite for effective DSR and EMS [37], cost-effective electricity purchase 

[15], facilitating LCTs [44], etc. MTLF is normally for maintenance scheduling [38] and 

efficient operation [39]. LTLF generally takes the future energy policy and economic 

status into consideration and is used for the long-term power system planning such as 

the development of infrastructures [42]. 

Traditional load forecasting mainly focuses on the system level load, regional level 

load, and feeder level load.  Unlike traditional aggregated load, the smart meter data 

present a new perspective to the way load forecasting can be performed. Smart meter 

data depict the consumer level load, which are much more volatile and uncertain. 

Figure 2-2 demonstrates how the aggregation affect the load. 

 

Figure 2-2 Normalized load with varying levels of aggregation 
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Current research on load forecasting with smart meter data can be classified into two 

groups, i.e., deterministic or point forecasting and probabilistic forecasting. 

2.2.1 Deterministic Load Forecasting 
In deterministic or point load forecasting, the numerical values of future load are 

directly predicted. Current research on point forecasting with smart meter data can be 

grouped into two classes: 1) direct use or modification of traditional load forecasting 

methodologies; 2) developing or adopting new algorithms. 

In [17-20, 45-47], experiments have been conducted to benchmark the traditional and 

classical forecasting methods for STLF at the individual consumer level. The tested 

methods include both time-series techniques, e.g., ARIMA and exponential smoothing, 

and state-of-the-art machine learning approaches, i.e., SVM and Artificial Neural 

Network (ANN). As testified in [19, 45], linear regression and persistence forecasting 

outperformed all the tested approaches for domestic household STLF. In [48], linear 

regression, shallow neural networks, SVM and some variants of them were tested on 

both building level load and domestic household level load. Results have shown that 

accurate forecasting could only be made for the buildings, which coincides with the 

findings in [19, 45]. 

Very recently, with the advancement of deep learning, various forms of deep models 

have been adopted and applied for load forecasting. In [49], Factored Conditional 

Restricted Boltzmann Machine (FCRBM) and Conditional Restricted Boltzmann 

Machine (CRBM) were assessed on a benchmark dataset consisting of fine-grained 

data collected from an individual residential customer. The results show that FCRBM 

outperforms ANN, SVM, RNN and CRBM.  

A pooling-based Deep Recurrent Neural Network (DRNN) was proposed in [16]. 

During the training of the DRNN, data from different consumers are pooled together, 

which drastically increases the training data volume and postpones the overfitting of 

the network. It was validated on residential load data and outperformed ARIMA, SVM, 

and classical deep RNN. 

In [22], multiple Deep Belief Networks (DBN) are trained first on the intrinsic mode 

functions (IMFs). The IMFs are obtained by decomposing the original data by 

Empirical Mode Decomposition (EMD) algorithm. The individual forecasts of the DBNs 
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are then combined together to generate the final prediction. The proposed method 

was compared with 9 other machine learning based methods, including Support 

Vector Regression (SVR), Random Forest (RF), ANN, and some EMD based variants. 

It was shown that the proposed method achieved the best performance for the majority 

of the tests. 

A Long Short-Term Memory (LSTM) based deep learning model is proposed in [23]. 

In addition, the appliance consumption sequential data are fed into the model as well. 

It is shown in the research that the forecasting accuracy is remarkably improved by 

incorporating appliance measurements into the training data. The proposed method is 

validated on a real-world dataset and has shown an improvement of accuracy 

compared to ANN and K-Nearest Neighbours (KNN). 

In [24], a Deep Residual Network (ResNet) based STLF method is presented. With 

the adoption of ResNet as the building block for the deep neural network, the network 

could go deeper and potentially have stronger predictive power. Though the proposed 

method achieved the best result among of the benchmarking methods, it was not 

validated on individual household level load data.  

2.2.2 Probabilistic Load Forecasting 
Domestic household load are highly volatile and uncertain. They are difficult to be 

accurately predicted by point forecasting. Therefore, predictive models with the ability 

to quantify the various uncertainties are desirable [50]. With the ability to represent the 

uncertainties, probabilistic forecasting is receiving increasing attention [29]. 

Based on the way the forecasts are made, probabilistic forecasting methods can be 

divided into three groups [29]: 1) generating multiple inputs and feeding them to a point 

forecasting model of choice; 2) utilizing probabilistic forecasting models that are 

inherently capable of quantifying uncertainties, such as quantile regression; and 3) 

post-processing of results such as residual simulation.  

There is a wide range of research works on input scenario generation. Generating 

different scenarios for temperature has been empirically proven to be very effective. 

Commonly used and effective methods for generating temperature scenarios are: 

using the temperatures from previous years with the dates being fixed [43], shifting the 
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temperatures from previous years [51], and bootstrapping the temperatures from 

previous years [52].  

As for the probabilistic models that are inherently capable of generating probabilistic 

forecasts, a variety of them has been developed and proposed such as quantile 

regression, Bayesian models, Gaussian process, and nonparametric density 

estimation. In [53], a method that combines the gradient boosting method and quantile 

regression was proposed. 

Probabilistic forecasting can also be achieved through the post-processing of the point 

forecast results. As summarized in [29], residual simulation and forecast combination 

are two common techniques to convert point forecast to probabilistic forecast. In [54], 

different methods for residual simulation were assessed, showing that adding the 

simulated residuals under the normality assumption could the forecasting performance. 

In [55], eight individual forecasts are generated and combined using the quantile 

regression averaging (QRA) method. 

Different methods could also be combined together to form an ensemble forecaster. 

In [56], a total number of 13 quantile regression models are generated and combined 

together. The combination was achieved by formulating the QRA as a linear 

programming problem with the objective to minimize the pinball loss. 

In summary, the volatile and uncertain nature of smart meter data has arisen 

tremendous challenges for both point and probabilistic forecasting. Traditional 

methods cannot capture the underlying patterns and make prediction very well. The 

emergence of deep learning addresses the challenges for its strong predictive power. 

However, deep learning models are much more complex than traditional models. 

Building deep models requires not only specific expertise but also requires much more 

effort as they are extremely difficult and time-consuming to optimise. 

2.3 Customer Characterization 

Energy consumers are characterized by not only the smart meter data but also the 

social-economic data. The two streams of data depict consumers from different angles. 

The smart metering data of the consumers demonstrate the consumption patterns of 

the consumers directly and intuitively, whereas the social-economic or social-

demographic status of consumers provides deeper insights into the consumers. 
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Revealing the correlation and linking the two sets of data are crucial for the consumers 

themselves to save energy and for the suppliers/retailers to develop customized 

services. 

Based on the research objective, existing research on characterizing the customers 

using smart metering data and socio-economic data can be broadly categorised into 

two types: 

1) Research on inferring social-economic/social-demographic status from smart 

metering data [57-60]; 

2) Research on inferring smart meter data/characteristics from social-

economic/social-demographic data [61-64]. 

2.3.1 Inferring Social-Economic Status 
The inference of social-economic status can be achieved through either classification 

or regression in machine learning. In [65], Discrete Fourier Transform (DFT) is first 

applied to convert the load data to into frequency domain, at the same time reducing 

dimensions of input data. Classification and Regression Tree (CART) is then used 

classify the consumers into different groups based on the coefficients of harmonics in 

the frequency domain. In [66], a different transformation technique on the load data is 

applied to extract usage patterns, which is Non-negative sparse coding. Then the 

extracted patterns are fed into an SVM to make a classification prediction. 

Domain knowledge based manual feature extraction and selection have also been 

used. In [58], features, such as the average consumption and the ratios of 

consumptions over different time periods are extracted from the original smart meter 

data. Then, different classifiers or regressors are tested to predict the social-economic 

status. In [67], a classification method named CLASS is proposed. CLASS also takes 

in the manually extracted features as input and make predictions through different 

classifiers, including KNN, Linear Discriminant Analysis (LDA), Mahalanobis classifier, 

and SVM. 

Recently, deep learning based method has been proposed to infer the social-

economic status in [60]. Deep CNN is used in the method to automatically extract 

features from the raw smart meter data. Results show that the proposed method 

outperforms traditional methods. 
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In summary, the traditional machine learning model based methods have reasonable 

model interpretability, for example, Multiple Linear Regression (MLR). However, the 

prediction is not as accurate as the deep learning based method. On the contrary, 

deep learning models have much stronger predictive power, but its interpretability is 

quite poor. 

2.3.2 Inferring Load characteristics  
Not all consumers’ load data are available as many of them are still using the 

conventional meters. Rather than installing costly smart meters, some research works 

have been conducted to infer load characteristics from consumers’ social-economical 

information. 

In [64], the MLR model is used to map the load characteristics from the social-

economic data. As MLR is a linear model, the significance of each input feature can 

be easily explained by its corresponding weight. 

As proposed in [61], load profiles of different consumers are firstly allocated to different 

groups using x-means, which does not require to pre-set the cluster number k as 

compared to k-means clustering. Two novel indicators, Energy Behaviour Correlation 

Rate (EBCR) and Indicator Dominance Index (IGD) are derived to collectively quantify 

and identify the significance of a social-economic question in helping differentiate 

different clusters. 

In summary, research works on inferring load characteristics from consumers’ social-

economic data are limited and mainly utilize traditional methods. The prediction 

accuracy is relatively low compared to inferring the social-economic status. New 

methods are needed to tackle the challenge and improve the performance. 

2.4 Phase Identification 

Broadly, current phase identification methods could be divided into three groups: 

phase identification through extra equipment, similarity analysis of voltage data and 

analysis of load data. 
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2.4.1 Phase Identification through Extra Equipment 
Apart from the time-consuming and inefficient manual checking on site, the easiest 

method one can think of is by introducing signal injection equipment. In the context of 

cable identification, two methods are widely used and could be adapted to identify 

end-user’s phase: light test and tone generation [68]. In the first method, a DC power 

source is connected at one end of a known cable and a light is connected at another 

end of a tested cable. The cable is identified by the illuminating of the light. While in 

the second method, the DC power source is replaced by a tone generator and the 

cable is identified by receiving the tone. The main disadvantage of these two methods 

is that all the cables have to be de-energized prior to the test, which would be 

unacceptable considering the long time it may take. Though paper [68] proposed a 

device that can identify phase under energized cable condition, the time it may take 

and the expense it may cost make it still unpractical. Similarly, Caird in his patent [69] 

presents a signal injection and receiving system to identify phases. In this system, a 

signal has to be injected into the phase line from the substation and a signal 

discriminator is needed at the user end. [70] introduces a similar signal injection 

method. This system is originally used to measure impedance. With the signal 

processing tool it presents, the method could be applied to identify phase connectivity. 

However, due to the need for installation of signal generators and receiving equipment 

in the above methods, the capital and maintenance costs will be increased greatly. 

Also, there are methods making use of smart metering data, i.e. load data and voltage 

data. The literature on these methods will be reviewed in the following two sections. 

2.4.2 Phase Identification through Analysis of Voltage Data 
Another set of methods to perform phase identification is through the analysis of 

voltage data. Phase could be detected by similarity analysis of end-user’s voltage 

profile and the phase line’s voltage profile. In [71], a correlation based method is 

proposed. The research is developed from a solar city program where the feeder is 

aerial and all the consumption, voltage, and current data is recorded by smart meters 

at a frequency of every 15 minutes. The method is based on the assumption that 

voltage data within the same phase should share a similar shape. In this method, 

cross-correlation analysis is performed due to its popularity in feature and signal 

detection [72, 73]. Cross-correlation analyses the similarity between two time series 
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taking into consideration the time lag of the series. In other words, it will not only 

quantify how similar the two series are but also show at what time lag the two signals 

match each other best. (2-1) shows how cross-correlation of 𝑥(𝑛)  and 𝑦(𝑛)  is 

calculated. 

 𝑟'((𝑙) = + 𝑥(𝑛)𝑦(𝑛 − 𝑙)
-

./0-

									𝑙 = 0,±1,±2,… (2-1) 

The cross-correlation could be normalised by (2-2). 

 𝜌'((𝑙) =
𝑟'((𝑙)

9𝑟''(0)𝑟(((0)
 (2-2) 

where 𝑟''(0) and 𝑟(((0) are the mean square values of the signals of x(n) and y(n). 

In [71, 74], for single-phase load, there are three possible connections, i.e. the load 

could be connected to either of the three phases.  After performing cross-correlation 

of the single-phase consumer’s voltage data with voltage data of the three phases of 

the transform, there will be three sequences of values. Each sequence is the 

correlation results between the load and the corresponding phase taking time lag into 

consideration. Then, the maximum value of each sequence is selected as an indicator 

to show correlated the load is with the particular phase voltage data. Finally, the 

maximum value of the three indicators is picked to show which phase the load is 

connected to. For three-phase load, the identification process is similar. The main 

difference is that there are six possible phase connections. 

Similarly, [75] presents a method in which voltage data from the consumer side is 

correlated with the voltage data from the SCADA system. The SCADA system is 

applied to monitor the substation’s condition whose voltage data is treated as the 

reference data. The correlation analysis is not achieved by performing cross-

correlation. Alternatively, the method seeks time instances where the voltage change 

is unique to only one phase, i.e. out of the three phases, the voltage of only one phase 

changes significantly. After that, the consumers’ voltage data variation is compared 

with the voltage change of the phase. The phase connectivity can then be predicted. 

To perform the correlation analysis more accurately, Short’s [76] presents a method 

where a linear regression model for voltage is built taking consumer’s and substation’s 
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meter voltage and power into consideration. The proposed method could not only 

identify phase but also reconstruct the network’s topology. 

Chen [77] introduces a phase identification system (PIS) to detect phase connectivity. 

Though [78] is published under a different first author’s name, it can be seen that the 

proposed system is exactly the same to the one in [77]. Generally, a signal within an 

AC system could be represented by a phasor, which can be uniquely determined by 

its frequency, amplitude and phase angle [79]. The frequency within one system is the 

system. Instead of analysing the similarity of the amplitude of voltage data, the 

proposed system focuses on another aspect of phasors: phase angle. The PIS 

requires high accuracy measurement of phase angles which is achieved by using 

phasor measure units (PMUs). Traditionally, PMUs are used to evaluate the stability 

of the power system [80, 81]. In this system, with highly synchronised PMUs, the PIS 

takes the substation’s phase angles as a reference. By comparing the phase angles 

from the load end at the corresponding time instances with the reference angles, 

phase connectivity of the load could then be identified. 

As a combination of Chen’s [77, 78] and Pezeshki’s [71, 74] methods, Wen [82] 

proposes a method by performing cross-correlation of voltage data as well as 

comparing phase angles. Moreover, instead of using PMU the proposed approach 

adopts a more accurate micro-synchrophasor (µPMU) [83]. The µPMUs are able to 

measure phase angles at a precision of 0.01°. 

All the methods mentioned above make use of voltage data which will be a problem in 

the UK power system. Though the UK has installed various types of smart meters and 

AMIs, the voltage data is not commonly available in most smart meters. Even voltage 

data could be obtained, the sample rate in the UK is every 30 minutes. Compared with 

the 15 minutes rate in [71, 74] and hundreds of Hertz rate provided by PMUs or µPMUs, 

half an hour rate voltage data has not been validated to be applicable in phase 

identification.  Moreover, PMUs or µPMUs still have not justified their cost to install 

them. 

2.4.3 Phase Identification through Analysis of Load Data 
As mentioned, most smart meters in the UK do not provide consumers’ voltage data. 

In DECC’s technical specifications for smart meters [84], only consumption data is 
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required to record by smart meters. Based on the analysis consumption data, which 

are load data, several methods have been developed. 

Dilek [85] describes a phase prediction system where tabu search (TS) is used as an 

optimisation procedure to find the phases of laterals. Phase is identified on condition 

that the calculated power flow using predicted phase information could well match the 

measured power flow. However, the method is based on the assumption that the 

topology of the LV network is known. This means that even though the phasing of a 

lateral is missing, the position of lateral along with its load data must be known. This 

requirement arises from the need to perform power flow analysis. 

Arya [86] introduces a method based on the fact that the sum of the load within the 

same phase should be approximately equal to the load monitored at the substation. 

The method formulates the identification process into a Mixed Integer Linear 

Programming (MILP) problem with several linear equations. The connectivity of 

phases could be solved by calling IBM’s CPLEX MIP solver. Moreover, basing on 

whether the data is noiseless, the objective function of this optimization problem would 

change accordingly. The identification process is based purely on end-users’ and 

substation’s load data. 

All the approaches mentioned above are derived from the rule of conservation of 

electric charge and all of them make use of load data which is available in UK’s smart 

meters. The main drawback is that both of the methods require a 100% penetration 

rate of smart meters in the LV distribution network. While in the UK, the installation of 

smart meters is not mandatory. According to the Government’s report released [27], 

an estimated total of 1,317,900 smart meters (including smart gas meters) have been 

installed nationwide representing less than 3% of all domestic meters operated by 

large suppliers. As a result, traditional phase identification methods making use of 

complete load data are not applicable in the UK or nations with a similar issue. A novel 

approach to identify phase using incomplete load data is in urgent need to be 

developed.
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3.1 Introduction 

Short-term load forecasting (STLF) for the individual residential consumer was 

traditionally unattainable until the rollout of smart meters. In recent years, it is receiving 

increasing attention due to the wide deployment of Low Carbon Technologies (LCTs) 

at domestic households [87]. 

To facilitate the penetration of domestic LCTs, Peer-to-Peer (P2P) energy trading [88, 

89], Demand Side Response (DSR) [90, 91], Energy Management System (EMS) [92, 

93] along with some other technologies or frameworks [94, 95] have been proposed 

and studied. The precursor to achieve all the above-mentioned tasks is to be able to 

predict each household’s load accurately [16]. The inherent uncertainty and volatility 

underlying domestic load behaviours pose tremendous challenges to traditional load 

forecasting methods [17-20]. It was not until the recent adoption of deep learning that 

the prediction performance has been elevated to an acceptable level [16, 21-24]. 

However, the improved accuracy by implementing deep learning is often accompanied 

by other inconvenience. Some of the main challenges regarding the implementation 

of the deep models are summarized as follows: 

1) Training deep neural networks is difficult. A number of tricks and pitfalls should 

be considered before training the network. For example, depending on the choice of 

the optimizer, the weights must be initialized accordingly. Otherwise, the gradients 

during backpropagation are very likely to vanish or explode hence the network will 

not converge [96]; 

2) Training deep neural networks is time-consuming. The power of deep models is 

their ability to approximate really complex functions and it lies in the complexity of 

the models. In other words, deep models are extremely complex and could easily 

have millions of parameters, for example, a VGGNet [97] have about 140 million 

parameters. Training deep models, given a large amount of data, means gradually 

updating all those millions of parameters up to the point where the model optimally 

approximates the projection from the input to the output. It is very common to take 

days or even weeks to train a deep model without consideration of hyperparameter 

optimization; 
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3) Building deep neural networks is arduous and requires a certain amount of 

experience. There are numerous forms or architectures to choose from, e.g., 

Recurrent Neural Networks (RNNs) [98], Convolutional Neural Networks (CNNs) 

[99], and Residual Networks (ResNets) [100]. In addition, each category of deep 

neural network has its own sub-categories and different variants as well. Building a 

deep neural network means to choose from tens of various architectures and even 

mix and combine them; 

4) Hyperparameter optimization or tuning of the deep neural networks is challenging. 

Regardless of the architecture of the network, there are various hyperparameters to 

optimize. For example, learning rate, the decay of learning rate, momentum in 

certain optimizers, number of hidden layers, number of neurons in each layer, form 

and degree of regularization, dropout rate, etc. The possibilities of combinations of 

different hyperparameters grow exponentially with the increase in hyperparameter 

number. Traditional grid search or cross-validation are simply impractical in deep 

learning [101]. 

In addition to those issues about the models, one other major concern comes from the 

requirement of data for training the models: 

1) Individual consumers’ data are not large enough to train a deep model. According 

to the research reported in [16], deep models are prune to overfit using just one 

consumer’s load data to be trained on; 

2) Individual consumers’ data are not equal in amount. Take the UK electric market 

as an example. Domestic consumers have the rights to decide whether to install the 

smart meters or not and to decide when to install smart meters. Consequently, 

different consumers would likely to have different length of available historical data. 

Some consumers with sufficient data would then benefit more accurate forecasting 

brought by deep learning, whereas those with little data would not; 

3) New consumers have hardly any data. The predictive models for those consumers 

who have just have smart meters installed would perform unsatisfactorily as the 

amount of data are quite limited. 

Considering the above-mentioned reasons, building a deep model for every one of the 

consumers is not only challenging but also unrealistic in certain situations. Similar 



Page 

Chapter 3  Transfer Learning for STLF 

                                                                                                                                                                              
  

24 

issues could be found in computer science domain as well, where transfer learning is 

widely applied to tackle the problems and has made great success especially in the 

fields of Computer Vision (CV) and Natural Language Processing (NLP) [102].  

In this chapter, a transfer-learning-based framework is proposed to tackle the 

addressed issues by leveraging the learned knowledge from other consumers. The 

key contributions of the research are summarized as follows: 

1) The applicability of transfer learning in STLF has been examined; 

2) The transferability of various forms of deep models has been examined; 

3) The transferability of features in different layers has been examined. 

The remainder of this chapter is organized as follows: Section 3.2 introduces the 

concept of transfer learning and the rationale of applying it in STLF. Section 3.3 

explains the setup of the experiments. Section 3.4 presents the experimental results 

and discussion. Section 3.5 draws the conclusions. 

3.2 Transfer Learning 

Machine learning, especially deep learning, has achieved significant success in many 

domains. However, the effort, computational power and amount of data that are 

needed to train a deep model are beyond what most researchers can obtain. In such 

a context, transfer learning is brought into play. 

 

Figure 3-1 General form of transfer learning 
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3.2.1 Introduction of Transfer Learning 
Transfer learning is to utilize the knowledge learned from solving one task to solve a 

different task. Figure 3-1 depicts the general perception of (supervised) transfer 

learning. A more rigorous definition will be given after introducing two important 

concepts, i.e., domain and task. 

A domain 𝒟 is characterised by a feature space 𝒳 and a marginal probability 

distribution 𝑃(𝑋), where 𝑋 = 	 {𝑥@, 𝑥A, …	𝑥., } 	 ∈ 	𝒳 [103]. For instance, if the task is to 

predict the next day’s load using seven-day-long load data, 𝒳 is then the space of all 

available seven-day-long load data and X is a sample. Two domains are defined as 

different if they either have different feature space 𝒳 or have different marginal 

probability distribution 𝑃(𝑋). 

Given the domain 𝒟 =	 {𝒳, 𝑃(𝑋)}, a task is denoted as 𝒯 =	 {𝒴, 𝑓(∙)} and is composed 

of a label space 𝒴 and an objective predictive function 𝑓(∙)  [103]. Following the 

previous example, 𝒴 is then the space of all the daily load data to be predicted. 

Given a source domain 𝒟H and learning task 𝒯H, a target domain 𝒟I and learning task 

𝒯I, transfer learning is to improve the learning of predictive function 𝑓I(∙) in 𝒟I using 

the knowledge in 𝒟H and 𝒯H, where 𝒟H 	≠ 	𝒟I, or 𝒯H 	≠ 	𝒯I [103]. 

Transfer learning has been widely studied and successfully applied in many fields, 

including text mining [104], image processing [105], collaborative filtering [106], activity 

recognition [107] and etc. With different criterions of interest, transfer learning could 

be classified differently. For deep-learning-based transfer learning, it can be divided 

into three categories, i.e., supervised, semi-supervised, and unsupervised [108]. The 

task of STLF using transfer learning belongs to supervised transfer learning, where 

both the source and target domains provide the correct labels. 

3.2.2 The rationale of Applying Transfer Learning in STLF 
In recent years, smart meters have been rolled out to a large number of domestic 

households across the world. The timely sampling ability of electric load by these 

smart meters is creating one of the largest datasets in the power industry. The large 

amount of data makes it ideal for them to be exploited by deep learning. However, the 

challenges and issues come with deep models which are discussed in Section I are 

limiting the deployment and utilization of them. Similar issues in computer science 
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domain exist as well and have been successfully solved by using transfer learning. 

The reasons why transfer learning is ideal to assist deep models to tackles these 

issues are summarised as below:  

1) The reusability of trained models 

One way of transfer learning in deep learning is to use the new data to train on a 

pre-trained model where only a few layers will be replaced and are trainable. Since 

the models have already been built and trained, those who want to use these models 

for transfer learning will not be bothered to design, build and train the deep model 

from scratch. Additionally, it is found that the first few layers in deep models are 

trying to learn low-level and general features and the last several layers transition to 

be task-specific, hence less transferable. So normally only the last or the last few 

layers are replaced and retrained using the new data in transfer learning. The 

computational burden will be dramatically reduced as there are much fewer 

parameters in the trainable layers. This is ideal for domestic STLF as new 

consumers are coming into the system every day and using transfer learning not 

only saves the trouble to develop deep models for all consumers but also greatly 

reduces the computational requirement to re-train the model. 

2) The reusability of learned knowledge 

The knowledge that deep models have learned from the data are embedded in the 

models themselves. Specifically speaking, the weights and biases within the deep 

models represent what the models have learned. Transferring the model to another 

domain or task is actually transferring the knowledge which will improve the 

performance on similar or related target domains or tasks. 

The transferability of knowledge is extremely useful when there is insufficient data 

in the source domain or task. In such a situation, traditional machine learning models 

would break down or performs unsatisfactorily due to the lack of data. However, the 

model developed using transfer leaning will perform reasonably well by leveraging 

the knowledge learned from the source domain and task, where there are sufficient 

data. For example, there are a large number of labelled images on cats, cars, ships, 

etc. Many successful deep models have been developed on these data. Some of 

popular models include AlexNet [99], GoogLeNet [109], VGGNet [97] and ResNet 
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[100]. On the contrary, there is a limited amount of labelled medical images. Building 

and training a model upon these data would yield quite poor performance. Using the 

deep model and knowledge learned from other images for transfer learning would 

significantly improve the predictive performance on these medical images [110]. 

As discussed in Section I, domestic consumers would have a variable length of 

available load data. Some may be suitable for building deep models and some may 

not. The rationale for using transfer learning for STLF, apart from the reduced 

computational requirement, is the improvement of performance on tasks with 

relatively fewer data. Research in [111] has shown that even for tasks with similar 

size of labelled data, transfer learning can still help improve the performance on 

target task. By applying transfer learning, a well-designed and fine-tuned deep 

model could be built on consumers with sufficient data. The model can then be 

transferred to new consumers or consumers with relatively small data. And those 

consumers can enjoy a significant improvement on their load forecasting accuracy. 

3.3 Experiment Setup and Procedure 

The goal of the experiment is to explore the applicability of transfer learning in 

domestic STLF. In order to achieve that, the transferability of different layers in a deep 

model and the transferability of various forms of deep models should both be 

considered simultaneously. Specifically, in this experiment, two commonly used 

architectures for load forecasting, Multi-Layer Perceptron (MLP) and Long Short Term 

Memory (LSTM), are selected. 

3.3.1 Data Description 
The data used in this experiment are taken from the Smart Metering Electricity 

Customer Behaviour Trials (CBTs) initiated by the Commission for Energy Regulation 

(CER) in Ireland [112]. The trials spanned from July 2009 to December 2010 and 

contain over 5000 consumers. The full anonymized data sets are publicly available 

online and contain not only the half-hourly sampled electricity consumption (kWh) from 

each participant but also the customer type, tariff, and stimulus description, which 

specifies customer types, allocation of tariff scheme and Demand Side Management 

(DSM) stimuli.  
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The focus of the experiment is to validate whether transfer learning would help improve 

STLF performance for general domestic consumers. Hence, only the residential (type 

1) consumers with the controlled stimulus (stimulus E) and controlled tariff (tariff E) 

are most appropriate for the experiment as the majorities of consumers outside the 

trial are of the type. However, it is not only impractical but also not necessary to test 

every one of the consumers for all the 920 1-E-E consumers. Therefore, a subset of 

100 randomly selected 1-E-E consumers are used in this experiment which is 

reasonably sized and practical to be implemented. 

3.3.2 MLP Deep Model Transfer Learning 
MLP or Feedforward Networks are a type of acyclic neural networks [113], which can 

be graphically presented as in Figure 3-2. 

MLPs are one of the most fundamental and quintessential models in deep learning 

and have proven themselves to be effective in a wide range of tasks. It is reasonable 

and common practice to start a deep learning task with MLP. The experiment with 

MLP consists of several steps which are explained below. 

1) Data Munging and Partitioning: 

For simplicity, an additional criterion is applied before randomly selecting the 100 

consumers, i.e., the data of consumer should consecutively range from July 14th 

2009 to December 31st 2010. Hence, all the selected consumers have the same 

amount of data. The list of the selected consumers can be found in Appendix A. 

 

Figure 3-2 Typical structure of MLP 
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The data are then reshaped and standardised according to (3-1) 

 𝓏 =
𝓍 − 𝜇
𝜎  (3-1) 

where 𝓏 is the rescaled value, 𝓍 is the original value, 𝜇 is the mean of the original    

data, and 𝜎 is the standard deviation of the original data. 

The obtained data for each consumer are further divided into three disjoint parts, 

i.e., training set, validation set, and test set. The proportions are 70%, 10%, and 20% 

respectively. 

2) Hyperparameter Optimization:  

As mentioned earlier, training deep neural networks involves a larger number of 

parameter settings. For building MLPs, this experiment takes the following 

hyperparameters into consideration. 

• Initial learning rate 

• Number of hidden layers 

• Number of neurons per layer 

• Activation function 

• Weight initialization 

• Dropout rate 

• Batch size 

• Optimizer 

• Regularizer and its strength 

The number of possible combinations of hyperparameters grows exponentially with 

added dimensions of the search space. To reduce the complexity, some of the 
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hyperparameters are settled prior to the optimization, which can be found in Table 

3-1. These predefined hyperparameters are either widely used in deep learning 

applications as default settings or have been preliminarily tested. 

As for the optimisation strategy, random search is chosen over grid search. The 

reason is two-fold. Firstly, the dimension of the search space is so high that 

searching over all the possible combinations would be either too time-consuming or 

impossible. Secondly, some of the hyperparameters matter much more than others. 

So performing a random search rather than a grid search is more likely to find a good 

set of hyperparameters as repetitions of the search along the trivial hyperparameters 

are avoided. Comprehensive research on why random search is better than grid 

search in deep learning could be found in [111]. 

The loss function used in the experiment is the mean squared error (MSE), which 

takes the mean of the squares of the losses as given in (3-2). 

 𝐿P =
1
𝑛+

(𝑦PQ − 𝑦RPQ)A
.

Q/@

 (3-2) 

where 𝐿P  is the MSE loss for consumer 𝑖 , 𝑛  is the number of time steps to be 

predicted, 𝑦PQ is the actual standardized load value of consumer 𝑖 at time 𝑡, and 𝑦RPQ is 

the predicted standardized load value of consumer 𝑖 at time 𝑡. 

One assumption that was made for the hyperparameter optimisation in this 

experiment is that despite the diversity and volatility of domestic consumers, the 

complexity of the required deep neural networks is the same. The assumption is 

Table 3-1 Predefined hyperparameters for MLP 

Hyperparameter Setting 

Activation function ReLu 

Weight initialization Glorot 

Regulazizer L2 

Regularization strength 0.1 

Optimizer Adam 

Adam Beta_1 0.9 

Adam Beta_1 0.999 
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reasonably solid as the consumers selected for this experiment are of the same type 

and have exactly the same amount of data, which is assured during data munging. 

Consequently, the optimised hyperparameters for any one of the 100 consumers are 

also optimal for the rest and hence could be directly applied to them. In other words, 

only one consumer is needed for hyperparameter optimisation instead of all the 100 

consumers.  

In this experiment, the consumer with ID 1002 was selected for the hyperparameter 

optimisation. A total number of 10,000 random combinations of hyperparameters 

have been generated and evaluated. It was executed on 10 parallel High 

Performance Computing (HPC) clusters to accelerate the optimisation process. The 

10,000 models for evaluation are trained on the training set specified earlier in this 

chapter and validated on the validation data set. The training and validation are 

performed in an alternative order so that early stopping strategy can be applied to 

avoid overfitting. Particularly, early stopping is set to 4 epochs during the 

optimisation, which means that if the validation accuracy has been decreasing for 4 

epochs, the deep neural network will stop training. Lastly, the trained models are 

tested against the test dataset. The hyperparameters of the model with the best test 

performance will be selected. 

3) Training Individual MLP Models: 

After the optimal set of hyperparameters are found, all of the 100 consumers are 

then individually trained on them. Towards the end of the training, the learning rate 

is reduced to fine-tune the models. Subsequently, all the 100 models are saved for 

later experiments, i.e., all the weights, bias, and connections of the trained networks 

are stored. 

4) Consumer Similarity Analysis: 

The transferability of the trained model from one domain to another is closely related 

to the similarity of the source and target domains [103]. In the context of load 

forecasting, it is assumed that the transferability is correlated with the similarity of 

load profiles between the source consumer and the task consumer. In order to 

assess the assumption, the similarity between different consumers should be 

calculated first. 
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A number of metrics are available to quantify the similarity, e.g., Euclidean distance, 

Minkowski distance, KL divergence, cosine similarity, etc. Euclidean distance of the 

mean daily load profiles of the consumers is chosen as the similarity metric for its 

simplicity and versatility. Taking the mean, instead of all the load profile, is to reduce 

the dimensionality of the original data, which is quite high-dimensional and would 

lead to unreliable result for distance-based metrics. The pair-wise Euclidean 

distance of all the consumers is then calculated according to (3-3). 

 𝒹VWXYPZ[\. = ]^𝑥P − 𝑥_`
I^𝑥P − 𝑥_`, 𝑖 ≠ 𝑗 (3-3) 

where 𝑥P represents the mean load vector of consumer 𝑖, 𝑥_ represents the mean   

load vector of consumer 𝑗. 

5) Transferring Base Models to Consumers With Varying Similarity: 

In the last two steps, the base models have been trained on individual consumers 

and their similarity has been computed. The final step is then to transfer different 

models with a varying number of layers to different consumers. 

Consumer 1 is taken as an example for concreteness. Out of the 99 remaining 

consumers in our data set, the most similar consumer to consumer 1, the most 

different consumer from consumer one, and the consumer with an intermediate 

degree of similarity with consumer 1 are selected. The trained models of the three 

consumers are then transferred to the base consumer, which is consumer 1 in the 

example. However, it would be naïve and non-optimal if all the layers in the model 

 

Figure 3-3 Transferring different layers in a MLP model  
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are transferred as different layers in deep neural networks have varying degrees of 

transferability. In order to evaluate the transferability of different layers and find out 

the optimal number of layers to transfer, an exhaustive transfer test would be 

conducted on each model. To put it into perspective, if the model to be transferred 

has 𝑛 hidden layers, there will be a total number of 𝑛 ways to transfer the model, i.e., 

start with transferring only the first hidden layer, all the way to transferring all the 

hidden layers. Figure 3-3 illustrates the transferring of different layers in a pre-trained 

model with three hidden layers as exan ample. The hollow circles in the figure 

represent the transferred neurons whereas the shaded circles represent the neurons 

(layers) that need to be re-trained. In other words, the transferred layers are held 

constant and the added new layers are re-trained on the same training data. 

3.3.3 LSTM Deep Model Transfer Learning 
Currently, state-of-the-art deep learning models specifically designed for handling 

sequential data are Recurrent Neural Networks (RNNs). They are a family of networks 

that are specialized for processing a sequence of values. They attempt to model the 

time dependency of sequential data by feeding back the output of a neural layer at 

time (𝑡) to the input of the same layer at time (𝑡 + 1). A typical RNN is illustrated in 

Figure 3-4. 

The figure shows what a normal RNN cell would look like. Internally, there still is one 

unit. The unfoldment is more on the temporal domain. It means that, internally, there 

still is one RNN cell. The horizontal cascading of the cells only indicates that the output 

of the previous time (𝑡 − 1) step from the cell is fed to the same cell but at the current 

time step (𝑡). Basically, it is the same cell iterating over the sequential data one at a 

 

Figure 3-4 Unfolding a RNN cell  
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time, taking the previous output (some states) into consideration. In such a way, the 

network prediction would take the time dependency into consideration. 

However, this typical RNN structure looks back at the data only one time step before 

the prediction. The ability to connect to previous data is very limited. Consequently, 

RNNs with this generic form of cells cannot memorize long-term information. 

Long short term memory networks (LSTMs) are a special kind of RNNs that were 

developed to deal with the addressed long-term dependency problems. The LSTM 

block diagram is illustrated in Figure 3-5. It could remember information for a long 

period of time. Besides passing the current output to the next time step, some 

information named cell state is also passed. 

Compared to other RNNs that only have the outer recurrence by connecting cells 

recurrently, LSTM cells also have an internal recurrence (a self-loop) [113]. Different 

from the typical RNN cells, there are four gates in an LSTM cell, each of which is 

fundamentally a single layer neural network. Three of the gates are sigmoid and the 

other is tanh. They work collaboratively to update the cell state and generate output. 

 

Figure 3-5 Unfolding a LSTM cell 
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LSTM networks have manifested themselves to learn long-term dependencies more 

efficiently than the simple RNN cell based networks on different tasks [113]. 

The experiment with LSTM is almost the same as the one for MLP. However, due to 

the innate different structures of the two models, some aspects regarding the 

hyperparameter optimisation and transferring of the layers are performed differently. 

1) Data Munging and Partitioning: 

The munging and partitioning of the raw data are exactly the same as for MLP. 

2) Hyperparameter Optimization:  

The structures of MLP and LSTM cell are fundamentally different. As a result, the 

hyperparameters that need to be optimised are different. For building LSTM 

networks, this experiment takes the following hyperparameters into consideration. 

• Initial learning rate 

• Number of hidden layers (LSTMS cells) 

• Number of units in LSTM cell gates 

• Activation function 

• Weight initialization 

• Dropout rate 

• Batch size 

• Optimizer 

• Regularizer and its strength 

The hyperparameters that are settled prior to the optimization can be found in Table 

3-2. As for the optimisation strategy, random search is chosen over grid search for 

the same reasons that were mentioned earlier. Moreover, MSE is again used as the 

loss for the optimisation. 

The assumption that was made in MLP case holds for LSTM networks for the same 

reasons as well. The assumption is that despite the diversity and volatility of 

domestic consumers, the complexity of the required deep neural networks is the 

same. Therefore, only one consumer is needed for LSTM hyperparameter 

optimisation instead of all the 100 consumers.  

In this LSTM experiment, the consumer with ID 1002 was selected for the 

hyperparameter optimisation again. A total number of 10,000 random combinations 
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of hyperparameters have been generated and evaluated. The 10,000 models for 

evaluation are trained on the training set specified earlier in this chapter and 

validated on the validation data set, which is the same as for MLP. In addition, the 

early stopping is set to 4 epochs during the optimisation as well. Lastly, the trained 

models are tested against the test dataset. The hyperparameters of the model with 

the best test performance will be selected. 

3) Training Individual LSTM Models: 

The training process of all the individually LSTM models is the same as for MLP. 

4) Consumer Similarity Analysis: 

The similarity consumer analysis is the exactly the same as for the MLP. Hence, 

there is no need to repeat this step. The results gained in the previous MLP 

experiment can be directly applied in this LSTM experiment. 

5) Transferring Base Models to Consumers With Varying Similarity: 

Again, the final step is the same as for MLP which is to transfer different models with 

a varying number of layers to different consumers. The difference is that in MLP 

networks, the layers to be transferred are fully connected or dense layers, whereas 

in LSTM networks, the transferred layers are LSTM cells. 

The full and detailed results are given in the following next section, complemented 

by the author’s analysis. 

3.4 Results and Discussion 

The results of the experiments for MLP and LSTM are presented in this section.  

Table 3-2 Predefined hyperparameters for LSTM 

Hyperparameter Setting 

Activation function ReLu 

Weight initialization Glorot 

Regulazizer L2 

Regularization strength 0.1 

Optimizer Adam 

Adam Beta_1 0.9 

Adam Beta_1 0.999 
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3.4.1 Transfer Learning with MLPs 
As mentioned in Section 3.3.2, 10,000 random searches on the hyperparameters have 

been conducted. The optimal hyperparameter set was given in Table 3-3. 

These hyperparameters, combined with the predefined ones in Table 3-1, are then 

used to create deep MLPs for every consumer of the selected 100 consumers. 

To assess the performance of the models, 4 widely used metrics in deterministic load 

forecasting area are chosen, including mean absolute percentage error (MAPE), mean 

absolute error (MAE), root-mean-square error (RMSE), and normalised root-mean-

square error (NRMSE), which are given in respectively. 

 𝑀𝐴𝑃𝐸 =
100%
𝑛 +g

𝑦Q − 𝑦RQ

𝑦Q g
.

Q/@

 (3-4) 

 𝑀𝐴𝐸= @
.
∑ |𝑦Q − 𝑦RQ|.
Q/@  (3-5) 

 𝑅𝑀𝑆𝐸 = l
1
𝑛+

(𝑦Q − 𝑦RQ)A
.

Q/@

 (3-6) 

 𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦n\' − 𝑦nP.
 (3-7) 

where 𝑛 is the number of time steps to be predicted, 𝑦Q is the actual standardized load 

value of at time 𝑡, and 𝑦RQ is the predicted standardized load value at time 𝑡, 𝑦n\' and 

𝑦nP. are the maximum and minimum value in the test set. 

Table 3-3 Optimal hyperparameters for MLP 

Hyperparameter Setting 

Learning rate 0.00696 

Number of hidden layers 4 

Number of neurons for each layer 40 

Dropout 0.120592 

Batch size 23 
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Note that the four metrics are measuring the forecasting performance from four 

different perspectives, whereas the loss function that is used to train the deep network 

is only taking MSE into consideration. In other words, it is very difficult to achieve 

optimal for all the four metrics simultaneously. 

As proposed earlier in this chapter, the transferring performance may be affected by 

the number of layers to be transferred and the similarity of the source and target 

domains. Due to the high-dimensional nature of the experiment data, it is impossible 

to demonstrate all the suspected relations of the data in one figure or table. Hence 

multiple figures are generated for a clearer demonstration purpose. 

 

Figure 3-7 Performance improved by transferring the first hidden layer in MLP 

 

Figure 3-6 Performance improved by transferring the first two hidden layers in 
MLP 



Page 

Chapter 3  Transfer Learning for STLF 

                                                                                                                                                                              
  

39 

Figure 3-7, Figure 3-6, Figure 3-9, and Figure 3-8 demonstrate the performance 

improved by transferring only the first hidden layer, the first two hidden layers, the first 

three hidden layers, and all the four hidden layers respectively. The horizontal axis 

represents the customers. Each subplot in the figure counts for one metric out of the 

four. Moreover, different colours indicate that the models are transferred from 

customers with different similarity levels with respect to the base model customer. 

The values presented in the figures are the relative improvement/decline with respect 

to the base model forecasting performance given by (3-8). 

 

Figure 3-9 Performance improved by transferring the first three hidden layers 
in MLP 

 

Figure 3-8 Performance improved by transferring all four hidden layers in MLP 
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 𝐸𝑟𝑟𝑜𝑟p[Y\QPq[ =
𝐸𝑟𝑟𝑜𝑟r\s[ − 𝐸𝑟𝑟𝑜𝑟Qp\.st[p

𝐸𝑟𝑟𝑜𝑟r\s[
 (3-8) 

where 𝐸𝑟𝑟𝑜𝑟r\s[  is the error of the base model and 𝐸𝑟𝑟𝑜𝑟Qp\.st[p  is the error after 

transfer learning. 

The reason for using the relative error with respect to the base model error is that the 

errors of the 100 consumers are not on the same scale. Plotting all the original errors 

in the same figure will mask a lot of the information for the models who already present 

small error values. Instead, rescaling all the error values to relative values will make 

the values more intuitive and comparable. 

As can be seen for the figures, regardless of which layers are transferred, though there 

are a few cases where the performance decline has been seen, for the majority of 

consumers, the forecasting performance has been improved. This in the figures is 

explained by that most of the lines are above zero. Nevertheless, some metrics have 

been improved more significantly than the others. Specifically, the forecasting 

performance in terms of MAPE and MAE are significantly improved than RMSE and 

NRMSE. Additionally, it is observed that the most downwards spikes that are below 

zero in the figures are mostly in red and green, which indicates that transferring from 

a non-similar consumer seems to improve performance more significantly. That is 

quite the opposite to the previous hypothesis. The potential reason is that though 

transferring a model trained on one consumer to another is transferring from one 

domain to a different one. However, the target domain and the source domain are not 

drastically different. They are very similar in many aspects, unlike other widely 

acknowledged transfer learning examples. Consequently, being mostly similar, 

transferring relatively dissimilar consumers would actually provide more information 

and insights. The extreme example would be that if the data of the target consumer 

and the source consumer in our forecasting task are identical, the performance would 

not be improved at all. 

To better demonstrate the impacts of transferred layers in transfer learning, the results 

are then replotted in Figure 3-10, Figure 3-11, and Figure 3-12. These figures are 

plotted using the same results for plotting Figure 3-7, Figure 3-6, Figure 3-9, and 

Figure 3-8. The difference is that this time for each figure, the similarity level is held 

constant so that the relation between transferred layers and the performance change 
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can be illustrated more clearly. 

As depicted in those figures, no matter which layers are transferred, the performance 

of most models have been improved. Yet, transferring all 4 layers seems to crease the 

performance for some consumers in terms of RMSE and NRMSE. In order to more 

precisely and clearly understand how various factors are impacting the performance, 

the mean values of all the metrics are calculated and listed in Table 3-4, Table 3-5, 

Table 3-6, and Table 3-7. 

Evidently, MAPE and MAE performance is improved most significantly. And 

 

Figure 3-10 Performance improved by transferring from the most similar 
consumer for MLP 

 

Figure 3-11 Performance improved by transferring from consumer with medium 
similarity level for MLP 
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transferring the first layer and the first two layers improve the performance the most. 

In addition, as can be seen in the four tables, transferring from a dissimilar consumer 

tend to improve the performance the most. However, the exception in the table is 

transferring only the first layer and measure the performance in MAPE, where 

transferring the most similar consumers brings the most significant improvement. After 

observing Figure 3-7 again, it can be found that for only several consumers, the most 

similar transferring strategy outperforms the most different transferring strategy. In 

addition to that, for the above-mentioned consumers, the most similar transferring 

strategy outperforms the most different transferring strategy by a relatively large 

degree. It can be deduced that it is those cases that list the mean MAPE improvement 

for transferring similar consumers. Hence, the general trend still holds, which is that 

transferring dissimilar consumers rather than similar consumers to the base models is 

more beneficial for load forecasting task.  

 

Figure 3-12 Performance improved by transferring from the most different 
consumer for MLP 
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Table 3-4 MLP MAPE performance improvement results 

Transferred 
Layers Most Similar Medium 

Similarity Most Different 

1 Layer 7.50% 5.93% 6.87% 

2 Layers 7.02% 6.54% 7.80% 

3 Layers 6.31% 5.86% 7.16% 

4 Layers 5.99% 5.71% 7.10% 
 

Table 3-5 MLP MAE performance improvement results 

Transferred 
Layers Most Similar Medium 

Similarity Most Different 

1 Layer 2.68% 2.22% 3.02% 

2 Layers 2.12% 2.11% 3.16% 

3 Layers 1.89% 1.75% 2.68% 

4 Layers 2.17% 2.30% 2.67% 
 

Table 3-6 MLP RMSE performance improvement results 

Transferred 
Layers Most Similar Medium 

Similarity Most Different 

1 Layer 0.25% 0.36% 1.13% 

2 Layers - 0.38% - 0.09% 0.77% 

3 Layers - 0.28% - 0.17% 0.38% 

4 Layers 0.39% 0.55% 0.61% 
 

Table 3-7 MLP NRMSE performance improvement results 

Transferred 
Layers Most Similar Medium 

Similarity Most Different 

1 Layer 0.60% 0.56% 1.52% 

2 Layers -0.21% -0.46% 1.07% 

3 Layers -0.77% -0.98% 0.10% 

4 Layers -0.34% -0.36% -0.26% 
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3.4.2 Transfer Learning with LSTMs 
The optimal hyperparameter set for building LSTM is listed in Table 3-8. These 

hyperparameters, combined with the predefined ones in Table 3-2, are then used to 

create deep LSTMs for every consumer of the selected 100 consumers. 

The average improvements on MAPE, MAE, RMSE, and NRMSE are given in Table 

3-9, Table 3-10, Table 3-11, and Table 3-12 respectively. Detailed plots for individual 

consumers can be found in Appendix A. 

Table 3-9 LSTM MAPE performance improvement results 

Transferred 
Layers Most Similar Medium 

Similarity Most Different 

1 Layer 1.31% 1.64% 1.76% 

2 Layers 0.14% 1.04% 0.63% 

3 Layers -0.27% 0.68% -0.16% 

4 Layers -1.07% 0.26% -1.53% 
 

Table 3-10 LSTM MAE performance improvement results 

Transferred 
Layers Most Similar Medium 

Similarity Most Different 

1 Layer -0.13% -0.16% 0.15% 

2 Layers -0.33% -0.14% -0.07% 

3 Layers -0.45% -0.13% -0.34% 

4 Layers -0.74% -0.31% -0.74% 

 

Table 3-8 Optimal hyperparameters for LSTM 

Hyperparameter Setting 

Learning rate 0.00286048 

Number of hidden layers 4 

Number of neurons for each layer 40 

Dropout 0.327461 

Batch size 128 
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As can be seen from the tables, MAPE and NRMSE can be improved by transferring 

the first two hidden layers in the network, whereas MAE and RMSE drop almost trivially. 

The reason is that the LSTM network already has a strong predictive power. Using the 

LSTM network on its own without transfer learning has already achieved an accurate 

prediction. Hence, the prediction may not be further improved by introducing transfer 

learning to the LSTM network. Additionally, the target domain and source domain have 

the same amount of data, which may not provide extra information to improve the 

prediction. 

In this chapter, a transfer-learning-based framework is proposed to tackle the 

addressed issues by leveraging the learned knowledge from other consumers. The 

key contributions of the research are summarized as follows: 

1) The applicability of transfer learning in STLF has been examined; 

2) The transferability of various forms of deep models has been examined; 

3) The transferability of features in different layers has been examined. 

Table 3-11 LSTM RMSE performance improvement results 

Transferred 
Layers Most Similar Medium 

Similarity Most Different 

1 Layer -0.43% -0.54% -0.06% 

2 Layers -0.24% -0.14% 0.02% 

3 Layers -0.23% -0.05% -0.16% 

4 Layers -0.38% -0.12% -0.29% 
 

Table 3-12 LSTM NRMSE performance improvement results 

Transferred 
Layers Most Similar Medium 

Similarity Most Different 

1 Layer 0.03% 0.09% 0.44% 

2 Layers -0.25% 0.76% 0.17% 

3 Layers -0.38% 0.66% -0.44% 

4 Layers -0.63% 0.31% -0.86% 
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3.5 Chapter Summary 

In this chapter, a novel transfer-learning-based framework is proposed to perform load 

forecasting. Two powerful and popular deep models that are commonly used for 

sequential data prediction are evaluated. The key findings are:  

1) Transfer learning is suitable for load forecasting, in the sense that it could 

significantly simplify the deployment of deep models and improve the prediction 

performance ; 

2) The LSTM network is more capable of forecasting load than MLP network; 

3) Even when the target consumer and the source consumer have the same amount 

of smart meter data, transfer learning could still improve the prediction accuracy of 

MLP and LSTM.  

4) For the MLP networks, on average, MAPE, MAE, RMSE, and NRMSE could be 

improved by 7.80%. 3.16%, 1.13%, and 1.53% respectively; 

5) For the MLP networks, the first several hidden layers have higher transferability 

than the last several layers; 

6) For the MLP network, transferring from a dissimilar consumer is generally better 

than transferring from a similar consumer; 

7) For the LSTM networks, as using it along could already achieve a good prediction, 

the introduction could only improve MAPE and NRMSE by 1.76% and 0.76% 

respectively; 

8) For the LSTM networks, the transferability (measured by improvement of MAPE 

and NRMSE) of first several hidden LSTM units is higher than the last several ones. 
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his chapter proposes an ensemble framework to infer the consumer’s social-economic 
information from smart metering data. Meaningful features are firstly extracted from 
smart metering data and then fed to a gradient boosted ensemble tree structure for 

training. The features that significantly help the inference of the social-economic status are 
lastly identified. 
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4.1 Introduction 

Over the past decade, smart meters have been widely deployed at domestic 

households across the world. The last chapter has demonstrated how deep learning 

can be utilized to forecast load by using the massive amount of smart meter data. 

However, at the same time, owing to the rapid and ongoing digitalization of the society, 

a variety of information about the consumers which was traditionally unattainable has 

also streamed in and becomes available, such as the consumer’s age, education, and 

other social-economic information. 

The two streams of data depict consumers from different angles. The smart metering 

data of the consumers demonstrate the consumption patterns of the consumers 

directly and intuitively, whereas the social-economic or social-demographic status of 

consumers provides deeper insights into the consumers. Provided with the social-

economic information, the retailers and the distribution network operators (DNOs) 

could then utilize it and provide tailored tariffs or services, and implement more 

efficient demand side responses (DSRs).  

Based on the research objective, existing research on the relationship between smart 

metering data and socio-economic data can be broadly categorised into two types: 

3) Research focusing on inferring social-economic/social-demographic status from 

smart metering data [57-60]; 

4) Research focusing on inferring smart metering data/characteristics from social-

economic/social-demographic data [61-64]. 

The proposed research in this chapter falls within the first category. And the challenges 

for the existing methods in this category are two-fold. 

1) The proposed methods in some literature focus more on the interpretability of the 

models. Hence most of them are developed upon traditional or classical 

machine/statistical learning methods, such as k-Nearest Neighbours (KNN), Linear 

Discriminant Analysis (LDA), Support Vector Machine (SVM), etc. These models 

are easy to interpret, which is desirable since deeper insights could be gained from 

it. However, these models rely heavily on feature engineering [114] and the 

prediction is not as accurate as state-of-the-art methodologies, such as deep 

learning. 
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2) Methods based on deep learning inarguably give the best inference performance 

and do not require feature engineering. The downside is the lack of interpretability 

of the model and the features. Though some feature visualization techniques [115-

121] have been developed for deep learning, it is still intuitive and hard to 

understand what really happens inside the deep models. 

This chapter proposes to leverage the power of gradient boosted ensemble trees to 

maintain the interpretability of the model while achieving a decent predicting 

performance. The rest of the chapter is organised as follows: Section 5.2 introduces 

the concept of ensemble learning, especially gradient boosted tree ensembles. 

Section 5.3 explains the details of the proposed framework. Section 5.4 demonstrates 

the results of the proposed methods on the validation data set. And Section 5.5 

summarises this chapter. 

4.2 Tree Based Ensemble Learning 

Tree based learning algorithms empower predictive models with high accuracy, 

stability and interpretability. Methods like decision trees, random forest, and gradient 

boosted trees are widely used to solve a variety of problems. Specifically, extreme 

gradient boost (XGBoost) models [122], a variant of gradient boosted trees, have won 

a large number of machine learning competitions and have been applied in practice 

by a wide range of companies like Tencent and Alibaba. This section will briefly 

introduce ensemble learning with a special focus on gradient boosted trees. In addition, 

the rationale of choosing gradient boosted trees over other machine learning 

algorithms will be explained. 

4.2.1 Ensemble Learning 
Ensemble learning in machine learning is a paradigm where multiple learners are 

trained and combined to make a prediction [123]. The constituent learners of the 

ensemble are called base learners or weak learners. The predictions of all the base 

learners are then unutilized and combined together to form an ensemble model where 

the resultant ensemble learner usually gives a stronger prediction and generalization 

ability empirically. 
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The base learners could be of any type, e.g., decision tree, support vector machine 

(SVM), neural network, etc. If the base leaners are of the same type in an ensemble 

model, they are called homogeneous base learners. In contrast, if multiple types of 

learners are combined, they are usually called heterogeneous learners. 

Decision tree based ensemble models constitute a vital category of ensemble learning. 

To combine all the base tree learners, two techniques are widely used, i.e., Bagging 

[124] and Boosting [125, 126]. In Bagging, a number of base learners are generated 

and trained on data from bootstrap samples in parallel. Boosting, on the other hand, 

builds each base learners sequentially and attempt to reduce predicting errors 

progressively. In recent years, tree boosting models, especially XGBoost, have 

achieved great success in not only competitions but also in real applications. 

4.2.2 Extreme Gradient Boosting Trees 
In 2014, XGBoost demonstrated its significant scalability and predictive performance 

by winning the Higgs Challenge [127] hosted by CERN, whose goal was to use a 

machine learning algorithm to classify signals from the Larger Hadron Collider. Since 

then, XGBoost has been widely used for all kinds of tasks. 

In contrast to Random Forest [128], which uses a modified Bagging technique to 

construct tree ensembles, the XGBoost builds one simple tree at a time and trains the 

new tree to reduce the errors from the previous tree. 

Suppose the objective function of the ensemble model is (4-1). 

 𝑜𝑏𝑗 =+𝐿(𝑦P, 𝑦RP)
.

P/@

++Ω(𝑓w)
x

w/@

 (4-1) 

where 𝐿 is the loss function, Ω is the regularization term, 𝑛 is the number of training 

instances, 𝐾  is the number of trees, 𝑦P  is the real value for instance 𝑖 , 𝑦RP  is the 

predicted value for instance 𝑖, and 𝑓w represents the function of 𝑘-th tree. 

The loss function measures the predictive performance of the model on the training 

data and the regularization term is added as a penalty term to control the complexity 

of the model. Hence, the model is trained with complexity as constraints to be less 

prone to overfitting. 
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The model is trained one step at a time. During each step, what the model has learnt 

previously is fixed and a new tree is added. Let the prediction of the ensemble model 

at step 𝑡 is 𝑦RP
(Q), then the following equations can be developed. 

 𝑦RP
(Q) = +𝑓w(𝑥P) = 𝑦RP

(Q0@) + 𝑓Q(𝑥P)
Q

w/@

 (4-2) 

where 𝑥P is the input. 

The objective function at step 𝑡 then becomes (4-3). 

 

𝑜𝑏𝑗(Q) =+𝐿{𝑦P, 𝑦RP
(Q)|

.

P/@

++Ω(𝑓w)
Q

w/@

 

=+𝐿{𝑦P, 𝑦RP
(Q0@) + 𝑓Q(𝑥P)|

.

P/@

+ Ω(𝑓Q) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(4-3) 

If mean squares error (MSE) is selected as the loss function, the objective function 

becomes 

 

𝑜𝑏𝑗(Q) = +{𝑦P − (𝑦RP
(Q0@) + 𝑓Q(𝑥P))|

A
.

P/@

+ Ω(𝑓Q) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

=+�2{𝑦RP
(Q0@) − 𝑦P|𝑓Q(𝑥P) + 𝑓Q(𝑥P)A�

.

P/@

+ Ω(𝑓Q) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(4-4) 

To get the general form of the objective function for other losses, the Taylor expansion 

of (4-3) is taken to the second order. (4-5) is then obtained.  

 𝑜𝑏𝑗(Q) ≈+�𝐿{𝑦P, 𝑦RP
(Q0@)| + 𝑔P𝑓Q(𝑥P) +

1
2ℎP𝑓Q

A(𝑥P)�
.

P/@

+ Ω(𝑓Q) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4-5) 

where 𝑔P and ℎP are defined as 

 𝑔P = 𝜕(R�
(���)𝐿(𝑦P, 𝑦RP

(Q0@)) (4-6) 

 ℎP = 𝜕
(R�
(���)
A 𝐿(𝑦P, 𝑦RP

(Q0@)) (4-7) 

After all the constants in the equation are removed, the objective function at step 𝑡 

then becomes (4-8). 
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 +�𝑔P𝑓Q(𝑥P) +
1
2ℎP𝑓Q

A(𝑥P)�
.

P/@

+ Ω(𝑓Q) (4-8) 

The objective function is still unclear due to the lack of specification of the 

regularization term. 

Prior to the definition of the complexity of the tree, the tree itself is defined as below. 

 𝑓Q(𝑥) = 𝑤�('), 𝑤 ∈ ℝI, 𝑞:	ℝZ → 	 {1,2,3,⋯ , 𝑇} (4-9) 

where 𝑤 is the vector containing all the scores on different leaves of the tree, 𝑞 is a 

leaf index mapping function that maps an input data point to its corresponding leaf, 𝑇 

is the total number of leaves in the tree. Hence, the complexity for the XGBoost model 

is then expressed as (4-10). 

 Ω(𝑓) = 𝛾𝑇 +
1
2 𝜆+𝑤_A

I

_/@

 (4-10) 

As can be seen, the complexity is defined as the weighted sum of the number of leaves 

and the L2 norm of leaf scores. 

Taking (4-9) and (4-10) into (4-8), the equation is then reformulated as 

 

𝑜𝑏𝑗(Q) ≈ +�𝑔P𝑤�('�) +
1
2 ℎP𝑤�('�)

A �
.

P/@

+ 𝛾𝑇 +
1
2 𝜆+𝑤_A

I

_/@

 

=+�(+𝑔P
P∈��

)𝑤_ +
1
2 (+ℎP

P∈��

+ 𝜆)𝑤_A�
I

_/@

+ 𝛾𝑇 

(4-11) 

where 𝐼_ = {𝑖|𝑞(𝑥P) = 𝑗} is the set of indices of data points who are allocated to the 𝑗-

th leaf. 

The objective function could be further reformed as below. 

 𝑜𝑏𝑗(Q) =+�𝐺_𝑤_ +
1
2 (𝐻_ + 𝜆)𝑤_

A�
I

_/@

+ 𝛾𝑇 (4-12) 

where 𝐺_ = ∑ 𝑔PP∈��  and 𝐻_ = ∑ ℎPP∈�� . 
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Given a tree structure 𝑞(𝑥), the optimal 𝑤_ and the best objective function reduction 

are: 

 𝑤_∗ = −
𝐺_

𝐻_ + 𝜆
 (4-13) 

 
𝑜𝑏𝑗∗ = −

1
2+

𝐺_A

𝐻_ + 𝜆

I

_/@

+ 𝛾𝑇 
(4-14) 

4.2.3 The rationale of Applying Gradient Boosted Trees 
Current research on inferring social-economic status generally utilize either classical 

machine learning algorithm in isolation or state-of-the-art deep neural networks. 

Classical models, such as linear models and nearest neighbours, are easy to train and 

interpret. However, the drawback is the predictive power of them is relatively weak. 

Though deep neural networks are powerful, their disadvantages are obvious and 

difficult to overcome: 

1) Training deep models requires a large amount of data. For the addressed task 

in this chapter, the available data are likely to be insufficient for the effective 

training of deep models; 
2) Deep models are difficult to train due to the large number of required 

hyperparameters. In addition, training a deep model is time-consuming, which 

makes it even harder to find the optimal set of hyperparameters; 
3) Interpreting deep models is difficult. Deep neural networks are widely 

recognised as black box models, which means that no insights can be gained 

on how the model makes the decisions. 

Gradient boosting trees, especially XGBoost, have proven to be effective and efficient 

in solving similar problems. The rationale for applying XGBoost is four-fold: 

1) XGBoost has strong predictive power due to its ensemble nature which has 

been proven in many competitions and applications; 
2) XGBoost works well on both big data set and a relatively small dataset. The 

flexibility of changing base tree number and constraining base tree complexity 

enables the XGBoost model to be fairly adaptable to the data set; 
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3) XGBoost model is easy and fast to train. XGBoost has much fewer 

hyperparameters to tune compared to deep models. In addition, XGBoost could 

utilize parallel processing. Hence, it is very fast to train; 
4) XGBoost models are easy to interpret. XGBoost models are constructed by 

combining multiple decision trees. The base trees are relatively simple due to 

the regularization term in the objective function and are hence easy to be 

interpreted. In addition, as given in (4-2), XGBoost takes the linear combination 

of all the individual base trees to make the predictions, which is also relatively 

easy to explain. 

4.3 Proposed Interfering Framework 

The proposed framework addresses the need for ease of interpretation and decent 

prediction accuracy. It consists of three steps, which is illustrated in Figure 4-1. 

4.3.1 Data Pre-Processing 
The data used here are taken from the Smart Metering Electricity Customer Behaviour 

Trials (CBTs) initiated by the Commission for Energy Regulation (CER) in Ireland [112]. 

The trials spanned from July 2009 to December 2010 and contain over 5000 

consumers. The full anonymized data sets are publicly available online and contain 

not only the half-hourly sampled electricity consumption (kWh) from each participant 

but also the customer type, tariff and stimulus description, which specifies customer 

types, allocation of tariff scheme and Demand Side Management (DSM) stimuli. 

Additionally, one pre-trial trial and one post-trial surveys were conducted on the 

participated consumers in CBTs. The surveys are in the form of questionnaire and the 

participated consumers in CBTs. The surveys are in the form of questionnaires and 

the feedback from the participants are provided as well. These surveys contain the 

social-economic information about the consumers. As the answers (social-economic 

data) of the surveys are in the forms of text, such as ‘Yes’ and ‘No’, they have to be 

converted to numerical values first, so that they can be properly used as labels or 

target data in the machine learning workflow. 

The raw smart metering data are unstructured, i.e., they are neither ordered by 

customer ID nor time index. Additionally, the data are split into multiple text format files. 

The raw data are then pre-processed so that they are ordered by customer ID and 



Page 

Chapter 4  Inferring Social-Economic Status 

                                                                                                                                                                              
  

55 

time index. Though data missing issue is not encountered in the dataset. It is found 

that there are continuous days when demand is constantly zero. Such data pattern 

 

Figure 4-1 Proposed inferring framework 
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should be very uncommon in real life, as various appliances have their standby power 

consumption. As a result, periods with such pattern are treated as data missing period 

and are deleted from the data set. 

Despite the smart metering data and the surveys are sampled from the same 

population, it is found that the consumer IDs of the smart metering data are slightly 

different from the IDs of the survey data. Consequently, the intersection of the two 

groups of data (have the same customer IDs) have to be found. 

4.3.2 Load Feature Extraction and Data Partition 
The smart metering data are sampled half-hourly which would add up to 17,520 

features over a year. The high dimensionality of the smart metering data will lead to 

the over-fitting of the XGBoost model as the number of training samples is much 

smaller than the number of features (no more than 5,000). 

In order to reduce the dimensionality of the input data, while maintaining the necessary 

information for classification, a variety of techniques are available, such as clustering 

[129, 130],  Principal Component Analysis (PCA) [131], feature selection [132, 133], 

etc. In this proposed framework, domain knowledge based feature extraction is used 

to extract meaningful and interpretable features, such as daily mean demand and the 

time peak demand. Though the other above-mentioned techniques could possibly 

capture more distinctive characteristics of the smart metering data, none of them is 

able to provide interpretable physical meanings to the features that they extracted. 

Conversely, human-defined features are obviously interpretable, which is crucial for 

post-training analysis. 

Smart metering data features are extracted across different time horizons which are 

depicted in Figure 4-2. Specifically, the features are extracted from annual data, winter 

data, spring data, summer data and autumn data. For each season or the whole year, 

the extraction is performed on finer time horizons, i.e., weekday, weekend and 

holidays. For each specific time interval, four types of features are extracted: 

1) Consumption figure related features, such as daily average demand, evening 

average demand, the average of daily peak demand, etc; 
2) Ratio features. For example, the ratio of mean demand over peak demand; 
3) Occurrence/time-related features. For instance, the time of peak demand; 
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4) Statistical features, such as the average of daily standard deviation. 

Detailed list of extracted features can be found in Appendix B. 

The data are then partitioned into training data set (80%) and test data set (20%). The 

validation data set are not specified as cross-validation (CV) would be used later. 

4.3.3 Hyperparameter Optimisation and Training of XGBoost 
The performance of the XGBoost model depends on the setting of its hyperparameters, 

i.e., maximum depth of the tree, number of base learners, learning rate, etc. In order 

to achieve the optimal performance, the hyperparameters of all the XGBoost models 

are optimised using grid search and cross-validation (CV). To put it into perspective, 

all the possible combinations of the hyperparameters (hence grid search) of an 

XGBoost model are examined using cross-validation. Specifically, in this experiment, 

5-fold CV is used. That means that the original training dataset is randomly split into 5 

datasets of the same size. The model is trained using 4 sets of the data and validated 

using the remaining one. In total, the model could be trained and validated differently 

5 times. The average performance of the model over the 5 different validation set is 

calculated and used as the performance indicator of the model under the specific 

hyperparameter setting. The settings of hyperparameters that give the best CV results 

are recorded. And the final XGBoost model is trained using the corresponding 

hyperparameters. 

 

Figure 4-2 Smart metering data feature extraction  
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4.4 Demonstration and Results 

The proposed method is demonstrated against real data from Ireland, which was 

introduced in the previous section. After pre-processing, a total number of 3977 valid 

consumers are identified, out of which 3181 consumers are used for training. As for 

the social-economic data from the surveys, there are more than 100 questions (and 

answers). Furthermore, some of the social-economic data are very difficult to predict 

or may be unable to predict. For demonstration purpose, the proposed method is 

validated on only 10 of the social-economic questions, which are listed in Table 4-1. 

4.4.1 Performance Evaluation 
The proposed method is validated on the ten questions selected in the table. In 

addition, the proposed model is compared with three commonly used methods, i.e., 

KNN, SVM and Random Forest. 

Classification accuracy is most widely used for evaluating the performance of a 

classification model. However, it is observed that the data in the experiment are 

imbalanced, which means that each class in the data do not have the same number 

of samples. Hence classification accuracy alone is not adequate enough to quantify 

Table 4-1 Selected social-economic questions 

No. Question 
Index Questions 

1 300 Age 

2 310 Employment status of the chief income earner 

3 408 Are there other people in the household that use the intern
et regularly 

4 4333 I/we am/are interested in changing the way I/we use electr
icity if it helps the environment 

5 410 What best describes the people you live with? 

6 430 And how many adults are typically in the house during the 
day 

7 49004 How often do you use dish washer? 

8 4905 How many stand-alone freezers do you have? 

9 4900009 How often do you use stand-alone freezers? 

10 490002 How many desktop computers do you have? 
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the classification performance. F1 score is proposed to complement the quantification 

of the model performance. In a binary case, the classification result can be illustrated 

by Figure 4-3. 

F1 score is defined as: 

 𝐹@ = 2
𝑃𝑟𝑒 ∙ 𝑅𝑒𝑐
𝑃𝑟𝑒 + 𝑅𝑒𝑐 (4-15) 

where 𝑃𝑟𝑒 and 𝑅𝑒𝑐 are the precision and recall respectively and are calculated by the 

following equations. 

 𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (4-16) 

 
𝑅𝑒𝑐 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (4-17) 

In the multi-class case, the average of the F1 score of each class is taken. To account 

for the imbalance of different classes, the micro average of F1 is used, where the TP, 

TN, FP, and FN of all the classes are all taken into consideration. 

 

Figure 4-3 Binary classification  
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The prediction accuracy and F1 scores of the proposed method along with KNN, SVM, 

and Random Forest (RF) are listed in Table 4-2 and Table 4-3 respectively. 

As can be observed from the two tables, the proposed method achieved the best 

accuracies and F1 scores for almost all the 10 social-economic questions except for 

the fifth and the tenth ones. 

4.4.2 Model Interpretation 
While the proposed framework using XGBoost has proven its accurate predictive 

power in the previous subsection, it also comes with sound interpretability, which could 

help the understanding of the model. 

The XGBoost models are built upon a number of base decision trees. To build a tree, 

the training data are divided recursively several times. At the end, a group of 

observations are obtained, which, in our case, are the answers to the selected social-

economic question. Each division operation is called a split. Each group at each 

division level is called a branch and the deepest level is called a leaf. Different features 

in the training data are selected to assist the split. Basically, attaining the best split 

very much depends on the selection of features. Intuitively, the number of the feature 

that appears in the trees, which is termed as weight in XGBoost model, is a reasonable 

indicator of the importance of the features. The feature importance of the first five of 

the social-economic questions in Table 4-1 is plotted in the figure below. The plots of 

feature importance of the rest of the question in the table can be found in Appendix B. 

The names of the features in the plots normally consists of three parts:1) the first part 

specifies the seasonality, i.e., whether it is one of the four seasons or the whole year; 

Table 4-2 Comparison of prediction accuracies of different methods  

 1 2 3 4 5 6 7 8 9 10 
KNN 0.358 0.587 0.702 0.623 0.578 0.420 0.515 0.593 0.595 0.604 
SVM 0.378 0.590 0.697 0.654 0.620 0.477 0.533 0.612 0.623 0.625 

RF 0.360 0.562 0.711 0.643 0.598 0.476 0.533 0.633 0.633 0.637 
Proposed 0.386 0.591 0.725 0.646 0.630 0.486 0.558 0.634 0.636 0.632 

 
Table 4-3 Comparison of F1 scores of different methods  

 1 2 3 4 5 6 7 8 9 10 
KNN 0.358 0.587 0.702 0.623 0.578 0.420 0.515 0.593 0.595 0.604 
SVM 0.378 0.590 0.697 0.654 0.620 0.477 0.533 0.612 0.623 0.625 

RF 0.360 0.562 0.711 0.643 0.598 0.476 0.533 0.633 0.633 0.637 
Proposed 0.386 0.591 0.725 0.646 0.630 0.486 0.558 0.634 0.636 0.632 
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2) the second part specifies the type of the days, meaning that it is workday, weekend 

or holiday; 3) the rest in the name describes the nature of the feature, with ‘ave’ being 

the average, ‘o’ being over (take division) and ‘corr’ being the correlation coefficient. 

 

 

 

Figure 4-4 Feature importance for social-economic question 1 
 

 

Figure 4-5 Feature importance for social-economic question 2 
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Figure 4-6 Feature importance for social-economic question 3 
 

 

Figure 4-7 Feature importance for social-economic question 4 
 

 

Figure 4-8 Feature importance for social-economic question 5 
 



Page 

Chapter 4  Inferring Social-Economic Status 

                                                                                                                                                                              
  

63 

As can be observed from the plots, different social-economic features are affected by 

a different range of smart metering features. 

For the age of the consumer, which is the first question, it is predominantly affected 

by the cold season (autumn, winter) weekday features, especially the consumption 

ratio between evening and noon. This could be explained as that different people of 

different ages have varying degrees of endurance capacity for coldness. Also, the 

second most significant feature is the correlation coefficient during winter time. This 

reflects the consumption pattern consistency over the selected time period. It is 

reasonable considering that people of different ages do have different levels of 

consumption consistency. With the base load in winter being slightly higher, any 

irregular patterns during winter may even be exaggerated. However, these are all 

assumptions and need further investigation to be verified. 

For the employment status of the consumer, there is no obvious strong correlation 

between it and the seasonality. However, the consumption ratio relating to the noon 

during weekdays are quite important. This could be caused by the fact that self-

employed or unemployed people may spend more time during daytime (hence 

consume more electricity) than those who are employed and work in offices. 

The third question is about whether there are other regular internet users in the house. 

As shown in Figure 4-6, it is mostly affected by the evening consumption ratio during 

weekdays. It is quite reasonable considering the fact that most regular internet users, 

especially children or students, would use the internet during the evening. 

As for the fourth question, which is the attitude towards saving energy and protecting 

the environment, no evident correlation with the seasonality can be observed neither. 

The key factors are related to the consumption ratios between noon and morning and 

between noon and evening during weekdays. 

The fifth and the last question that was investigated is regarding the people with whom 

the consumer live with. The answers are 1) live alone, 2) with adults, and 3) with adults 

and children. As can be observed from Figure 4-8, it is primarily affected by the 

consumption ratio between morning and noon during the weekend. This could be 

attributed to the fact that families with child/children would consume electricity quite 

differently. In addition, the annual average demand is also a key factor. It is obviously 
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true that the consumer who lives alone would have a lower average consumption level 

than those who live with others. 

4.5 Chapter Summary 

This chapter proposes a prediction framework that infers the social-economic status 

of consumers from their smart metering data. It utilises a tree based ensemble model, 

XGBoost, and consist of three major steps: data pre-processing, feature extraction 

and model training and hyperparameter optimisation. It has been validated on real 

data from Ireland and has been compared with three state-of-the-art methods, KNN, 

SVM and Random Forest. 

Results have shown that the proposed method outperforms the state-of-the-art 

method for almost all features. In addition, due to the tree ensemble nature, the 

developed models could be interpreted by observing the splits of each individual trees. 

Specifically, the importance of the smart metering data features in helping the models 

make their predictions can be explored and ranked. 

The method has proven that it is not only able to predict the social-economic status 

accurately, but also helpful for gaining insights from the data. DNOs and retailers could 

leverage the insights and develop tailored DSR schemes and tariffs. 
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5.1 Introduction 

Household load characteristics, e.g., peak demand and average demand, are 

extracted from smart metering data. They are traditionally unavailable until the recent 

roll-out of smart meters. The attained visibility on household’s load characteristics 

would help consumers save energy usage and choose better tariff, provide energy 

suppliers insights into their customers, and facilitate more efficient Demand Side 

Response (DSR) schemes in the network. However, a large proportion of consumers, 

even in some developed countries, are still using the conventional meters [27], which 

are unable to monitor consumers’ timely energy consumption. Consequently, none of 

the consumers, suppliers nor Distribution Network Operators (DNOs) understands 

how electricity is consumed behind the meters.  

The research problem in the last chapter will be reversed in this chapter. Rather than 

installing costly smart meters, consumers’ social-economic information, which can be 

easily collected by means of surveys, could be used to infer the load characteristics. 

The inferring could be formulated as a classification or regression problem. The main 

challenge for an accurate prediction arises from the fact that social-economic data 

normally consist of a mixture of numerical data, categorical data and ordinal data, 

whereas traditional prediction methods are mostly designed for handling only one type 

of the data. In addition, the prediction of each load characteristic requires the 

development and training of a separate model. Consequently, a tremendous amount 

of effort and time would be devoted to getting a reasonably sized set of useful load 

characteristics. 

This chapter proposes a one-dimensional deep convolutional neural network (DCNN) 

based multi-task learning (MTL) method. It leverages the convolutional kernel and 

deep architecture in DCNN to overcome the hurdle brought by mixed types of data 

and infers multiple load characteristics simultaneously. The rest of the chapter is 

organised as follows: Section 6.2 introduces CNN and MTL. Section 6.3 explains the 

details of the proposed framework. Section 6.4 demonstrates the results of the 

proposed method on the validation data set. And Section 6.5 summarises this chapter. 

5.2 Preliminaries 
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5.2.1 Convolutional Neural Network 
Convolutional Neural Network (CNN) is a special form of neural networks. It was first 

proposed as Neocognitron by Kunihiko Fukushima in the 1980s [134]. This early form 

of CNN was further developed by Yann LeCun in 1998 [135] for hand-written ZIP code 

recognition, which is already quite close to the modern CNN architecture. The major 

breakthrough in CNN was in 2012. AlexNet [99], an architecture of CNN, was designed 

by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton, and won the first place in the 

2012 ImageNet ILSVRC challenge. It outperformed the second runner-up significantly 

and has popularized CNN and Deep Learning (DL). Ever since then, great 

advancement has been achieved in CNNs and DL. Nowadays, CNNs and other forms 

of DL have been widely applied in all kinds of fields for various tasks, such as image 

and video recognition, Natural Language Processing (NLP), and recommender 

systems. 

This section will provide an architectural overview of the CNNs. 

1) Convolutional Layer: 

The convolutional layer is the essential building block of CNNs. Each convolutional 

layer consists of a set of filters. The filters are normally small in size and consist of 

some parameters that are to be learned through training. The term convolution 

actually refers to the operation of taking the dot product of the input data of the filters 

with the parameters within the filters. For example, if the input of the network is a 2-

dimensional matrix, each filter will slide along the width and the height of the input 

matrix, taking the dot product of the input data at every position and producing a new 

2-dimensional matrix called the activation map (the size of the new matrix depends 

how the filters are sided and if the input matrix is padded). 

The filter in convolutional layers is generally much smaller than the input volume. It 

could only receive data from a restricted area from its input. This input area is called 

the receptive field, and it is of the same size as the filers. As each filter slides over 

the input matrix, the data it would receive would change. However, for each filter, 

the parameters are shared during the sliding. To put it into perspective, the same 

set of parameters are used for each filter to the take the dot product during the sliding. 

(5-1) formulates the convolution operation for discrete input data. Figure 5-1 

demonstrates how the convolution operation is performed intuitively in a simple case. 
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Note that the size of the activation map in the plot is made up just for demonstration 

purpose. 

 𝑓X¢.q(𝒙s,𝑾w) = 𝑾𝒌 ∙ 𝒙s + 𝑏w (5-1) 

where 𝒙s is the vectorized received data for filter 𝑘, 𝑾w is the weight vector for filter 

𝑘, and 𝑏w is the bias for filter 𝑘. 

2) Pooling Layer: 

Convolutional layers are usually stacked together so that the features can be 

extracted hierarchically. However, most convolutions are performed to generate 

multiple activation maps with unchanged size, which would progressively increase 

the depths of intermediate features and parameters. A pooling layer is commonly 

added in-between successive convolutional layers. The insertion of a pooling layer 

is not compulsory. Normally, it is added periodically. The main functionality of it is to 

reduce the size of the activation maps progressively. As a result, fewer parameters 

are required to be trained. Like the convolutional layers, the pooling layers also have 

small filters, normally of size 2x2 in CV applications. The most common operation in 

pooling layers is to perform max operation which only returns the maximum value of 

the input data: 

 

Figure 5-1 Convolutional layer demonstration  
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 𝑓¦§¨	 _ª¢¢Y(𝒙s) = max	(𝒙s) (5-2) 

3) Fully-Connected Layer: 

As the name suggests, all the neurons in a fully-connected (FC) layer are connected 

to all the neurons in the upper layer. In other words, unlike the convolutional layers, 

fully-connected (FC) layers can receive all the data from the input data. It can be 

viewed as an extreme case of a non-sliding convolutional layer with a receptive filed 

larger than or equal to the size of the input. It is the same as the layers in MLP. 

However, in a CNN architecture, it is usually used in the last or last few layers. The 

activation maps of different filters are concatenated and connected to an FC layer. 

The rationale for applying CNN in the inferring of load characteristics is two-fold: 

1) Learning features automatically and hierarchically: CNNs have sparse 

interactions as the receptive field is smaller than the input. Interactions of local 

features are learned first. As more convolutional layers are stacked together, 

the latter convolutional layers take in the output of the previous convolutional 

layers and would have an extended view on the input data. Consequently, the 

learned features are becoming more abstract as the layer number increases. 

This means that the CNN models can learn to extract small and meaning 

features themselves and are more robust and powerful [113], which is ideal for 

dealing with the complex social-economic data; 

2) Sharing parameters: as mentioned earlier, each filter in the CNNs shares the 

same set of parameters/weights, regardless of where the filter is. As a result, 

the number of parameters in the model can be drastically reduced and less 

prone to overfit the data.  

5.2.2 Multi-Task Learning 
Multi-Task Learning (MTL) is a learning paradigm in machine learning with the aim to 

leverage useful information contained in multiple related tasks to elevate the 

generalization performance on all the tasks [103]. MTL has been widely studied and 

successfully applied in a variety of applications, such as NLP [136], CV [137], and drug 

discovery [138]. 
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MTL is a learning paradigm, which means it can be achieved on different machine 

learning models. In the context of deep learning, MTL can be achieved through either 

hard or soft parameter sharing of the hidden layers. 

1) Hard Parameter Sharing: 

Hard parameter sharing is demonstrated in Figure 5-2. It is commonly used on 

neural network models to perform MTL. It was first proposed by [139] in 1993. With 

the recent popularity of deep learning, it begins to be more widely used. 

The power of hard parameter sharing lies in its ability to reduce overfitting. As proven 

in [140], by using hard parameter sharing for MLT, the chance of overfitting the 

shared parameters is an order N, where N is the number of tasks, which is smaller 

 

Figure 5-2 Hard parameter sharing in deep learning  
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than overfitting the task-specific parameters. 

2) Soft Parameter Sharing: 

In contrast to hard parameter sharing, one model is developed for each task in soft 

parameter sharing. The sharing of the parameters refers to the fact that during the 

training the parameters of each model is regularized so that the parameters of 

different models become very similar. The regularization is achieved by constraining 

the distances of the parameters of different models. Different distance metrics can 

be used, such as the L2 norm [141] and the trace norm [142]. Figure 5-3 illustrates 

how soft parameter sharing is achieved in deep learning. 

5.2.3 The Rationale for Combining Convolutional Neural 
Network and Multi-Task Learning 

As discussed in the earlier section, CNNs are ideal for processing the complex social-

economic data due to their ability to learn features automatically and hierarchically and 

share weights. However, CNNs are very difficult to build and train. In order to achieve 

a good prediction performance for just one load characteristic (there are many), the 

 

Figure 5-3 Soft parameter sharing in deep learning  
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hyperparameters of the CNN model should be optimised and fine-tuned which would 

not require a lot of computational power but also many times of trials. 

The load characteristics are all extracted from the smart meter data and are inherently 

related. By extending the CNN model and sharing the low-level hidden layers (low-

level features, not task-specific) between different load characteristics, the new MTL 

model may not only generalize better on the individual models but also saves a lot of 

effort to fine-tune each model.  

5.3 Proposed Methodology 

The proposed method consists of three key steps, 1) data pre-processing, 2) feature 

and label generation, and 3) training the model. Figure 5-4 gives a schematic overview 

of the proposed method. 

5.3.1 Data Pre-Processing 
The data used in this chapter are the same as the data used in Chapter 4, which are 

taken from the Smart Metering Electricity Customer Behaviour Trials (CBTs) initiated 

by the Commission for Energy Regulation (CER) in Ireland [112]. The trials spanned 

from July 2009 to December 2010 and contain over 5000 consumers. The full 

anonymized data sets are publicly available online and contain not only the half-hourly 

sampled electricity consumption (kWh) from each participant but also the customer 

type, tariff and stimulus description, which specifies customer types, allocation of tariff 

scheme and Demand Side Management (DSM) stimuli. Additionally, one pre-trial trial 

and one post-trial surveys were conducted on the participated consumers in CBTs. 

The surveys are in the form of questionnaire and the participated consumers in CBTs. 

The surveys are in the form of questionnaires and the feedback from the participants 

are provided as well. These surveys contain the social-economic information about 

the consumers. As the answers (social-economic data) of the surveys are in the forms 

of text, such as ‘Yes’ and ‘No’, they have to be converted to numerical values first. 

The raw smart metering data are unstructured, i.e., they are neither ordered by 

customer ID nor time index. Additionally, the data are split into multiple text format files. 

The raw data are then pre-processed so that they are ordered by customer ID and 

time index. Though data missing issue is not encountered in the dataset. It is found 

that there are continuous days when demand is constantly zero. Such data pattern 
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should be very uncommon in real life, as various appliances have their standby power 

consumption. As a result, periods with such pattern are treated as data missing period 

and are deleted from the data set. 

Despite the smart metering data and the surveys are sampled from the same 

population, it is found that the consumer IDs of the smart metering data are slightly 

different from the IDs of the survey data. Consequently, the intersection of the two 

groups of data (have the same customer IDs) have to be found. 

 

Figure 5-4 Schematic overview of the proposed DCNN based MTL 
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5.3.2 Label Generation and Feature Combination 
As can be seen from Figure 5-4, the second step consists of multiple sub-steps. Details 

of these sub-steps are given below: 

1) Load Characteristics Extraction: 

Smart meter data in their original form are hard to predict using just social-economic 

data and more importantly, do not provide direct and intuitive information about the 

consumer’s consumption characteristics. 

Instead, features of interest could be designed manual and extracted from the smart 

meter data, such as peak demand and average demand. As described in Chapter 

5, the same set of load features/characteristics are extracted here. The full set of the 

features can be found in Appendix B. One problem with the full set of the extracted 

features is the inter-correlation between different features. For example, for most 

people, the average annual peak demand and the average peak demand during 

summer or spring are highly correlated. The prediction of either of the features could 

be directly used as the prediction for the other correlated features. Hence, the full 

set of the data are decorrelated, i.e., only keep one feature for a group of highly 

correlated features. Then a subset of the original feature set can be obtained and is 

used as the dataset of load characteristics. 

2) Load Characteristics Discretization: 

The obtained load characteristics are extracted from the smart meter data and are 

continuous. Instead of forecasting the exact value of the characteristics, the class 

(high, medium, and low) of the characteristic is proposed to be predicted. In order to 

get the classes of different characteristics, the characteristics should be discretized. 

There are many techniques that could convert numerical values to discrete 

counterparts. As the prediction problem in this chapter is formulated as a 

classification problem, a balanced distribution of the different classes are desirable. 

Hence, the equal-frequency discretization strategy is applied on the continuous, i.e., 

the tertiles of each set of load characteristic are used to divide each set of 

characteristics into three equally sized parts (high, medium, and low). Then the 

discretized load characteristics can be used as the labels for the subsequent training 

of the model. For better demonstration purpose, a set of 10 features are used for 

testing the performance of the proposed method. 

3) Social-Economic Feature Combination: 
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The missing data issue has been solved for smart metering data. As for the social-

economic data, the same issue is encountered as well. The difference is the missing 

data in smart meter data is mostly unintentional, for example could be due to 

communication failure and database failure, whereas the missing data in the social-

economic data set are designed so intentionally. 

The social-economic data are essentially converted from the answers from the 

questionnaire. For this particular questionnaire, multiple skipped patterns are 

identified, leading to a situation where all the consumers have missing data. 

In a questionnaire, the skip pattern is a series of questions associated with a 

conditional response. It is designed so to pertain only to certain respondents of a 

question. For instance, in this data set, a question inquiries whether a respondent 

has a dishwasher at home. The skip pattern for this question is asking ‘if you have 

a dishwasher at home, how often do you use it?’. The questions skipped by those 

who do not have dishwashers might refer to issues that are relevant only to those 

who have. Multiple skipped patterns have been identified in the questionnaire and 

are listed in Table 5-1. 

Questions in each skipped pattern are then combined and encoded to one numerical 

value. 
Table 5-1 Skipped patterns in the questionnaire 

No. Question Indexes 

1 405,406 

2 410,420,430,43111,4312 

3 4332,4321,4352,433,434 

4 453,4531 

5 4701,4801 

6 471,472 

7 473,474 

8 49002,49001,49004,490004,4900004,4900005,4900006,4900007,4900008, 
4900009 

9 490002,4902,49022 

10 5414,5145,54155 
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The converted social-economic data and the social-economic data that do not have 

skipped patterns are then standardised, which is given by (3-1). They these 

standardised social-economic data (112) and discretized load characteristics are then 

partitioned into training data set (80%) and test data set (20%). 

5.3.3 CNN based MTL Model Building and Training 
Figure 5-5 demonstrates the structure of the proposed DCNN based MTL model. It 

uses the hard parameter sharing technique, with 7 hidden layers being shared. The 

filter/kernel size in the two convolutional layers is the same, which is 1 × 3. In addition, 

 

Figure 5-5 Proposed structure of DCNN based MTL model  
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5 filters are used in the first convolutional layer and 10 filters are used in the second 

convolutional layer. For the filters in the max pooling layers, the size is set to 1 × 2. 

As for the fully-connected layers, 20 neurons are used for the shared FC layer, and 10 

neurons are used in each of the FC layers for the task-specific layers. 

For the training of the network, Adam optimiser is adopted, with the loss being the sum 

of the ten tasks’  softmax cross entropy. 

In order to prevent the overfitting of the network, the following techniques have been 

used. 

1) Data Argumentation: 

To prevent overfitting of the network, one solution is to increase the size of the 

training dataset. However, in this case, no similar dataset could be found. Instead, 

the social-economic data are augmented by adding Gaussian noise to them; 

2) Dropout: 

A dropout layer is inserted in the shared layers. The function of the dropout layer is 

to randomly set the output a fraction of the neurons to 0 with a preferred probability. 

Dropout has been widely used to prevent overfitting, as it can prevent the network 

from memorising certain instance-specific patterns. 

3) Early Stopping: 

Early stopping comes in many forms. In the training of the proposed model, if 5 

consecutive epochs have passed and no loss improvement has been seen on the 

validation dataset (20% of the training dataset), the training will stop. 

4) Regularization: 

L2 regularization is used to penalize the squared magnitudes of the network 

parameters. Intuitively, this would help reduce the occurrence of spiky parameters 

in the model, unless those weights greatly improve the prediction performance. The 

weight matrix of the model is more likely to be more diffused. Hence, the network 

will become less likely to heavily utilize only a few of the input features and overfit. 

5.4 Results and Discussion 

A set of 10 load characteristics are selected to test the proposed method. They are 

listed in Table 5-2. The details of how the load characteristics are extracted are given 

in Appendix B. 
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The proposed method is tested using the test dataset which was defined in Section 

5.3. The performance of the proposed method is compared with three state-of-the-art 

methods, k-Nearest Neighbour (KNN), XGBoost (XGB), and Support Vector Machine 

(SVM). 

Table 5-3 List of selected load features 

No. Load Features 

1 annual_ave_daily 

2 autumn_ave_peak 

3 annual_holiday_ave_std 

4 summer_weekend_ave_evening 

5 autumn_weekend_ave_noon 

6 summer_weekday_ave_noon 

7 annual_holiday_ave_noon 

8 annual_holiday_ave_valley 

9 autumn_weekday_ave_morning 

10 summer_weekday_ave_night 
 

Table 5-2 Prediction accuracies of different methods 

No. KNN SVM XGB Proposed Improvement 

1 52.79% 57.36% 58.36% 64.17% 9.95% 

2 54.30% 58.62% 59.37% 58.77% -1.02% 

3 50.02% 54.47% 55.35% 56.70% 2.44% 

4 52.79% 56.10% 56.35% 58.88% 4.48% 

5 50.40% 54.09% 55.97% 56.70% 1.29% 

6 48.51% 53.46% 53.33% 57.94% 8.39% 

7 49.90% 53.21% 53.96% 56.70% 5.07% 

8 46.00% 50.82% 52.33% 53.58% 2.40% 

9 48.51% 49.43% 51.70% 54.21% 4.85% 

10 45.50% 49.94% 52.83% 53.48% 1.22% 
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The labels in the dataset are balanced due to the way they were discretised. Hence, 

the prediction accuracy alone is capable of quantifying the prediction performance. 

The prediction accuracies of the proposed method and other benchmarking methods 

are listed in Table 5-3. 

As can be observed from the table, the proposed method outperformed the competing 

methods for all the load characteristics, except for the second load characteristic. For 

the second characteristic, the proposed method is the second best. Additionally, apart 

from the proposed method, XGB gives the most accurate prediction, possibly due to 

that its tree nature is better at handling mixed types of data. 

For the ten selected load characteristics, the proposed method could improve the 

prediction accuracy of the second best model by 3.91% on average. The prediction of 

the first load characteristic could be even improved by 9.95%. Besides the 

performance improvement, only one model was built and trained. 

5.5 Chapter Summary 

The research problem in the previous chapter has been extended to a reverse context 

in this chapter.  

A Deep Convolutional Neural Network (DCNN) based multi-task learning (MTL) 

method is proposed to infer the consumer’s smart metering features from social-

economic data. It leverages the convolutional kernel and deep architecture in DCNN 

to overcome the hurdle brought by mixed types of social-economic data. The MTL 

framework added to the DCNN enables to infer multiple load characteristics 

simultaneously and more accurately. 

Case studies have been conducted to validate the performance of the proposed 

method. Results show that on average, the proposed method outperforms the 

previously best model by 3.91%. For some specific characteristics, the improvement 

could even reach 9.95% and 8.39%. 

The proposed method has provided the necessary analytic for energy consumers, 

retailers, and DNOs to understand the energy behaviours without the need to install 

costly smart meters. 
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6.1 Introduction 

The last two chapters have demonstrated how smart metering data and social-

economic data can be linked together. This chapter will discuss how smart metering 

data could be used for inferring phases, i.e., to identify the physical connectivity of a 

household in an LV distribution network.  

Traditional methods require either inefficient filed check from house to house or 

installation of costly signal injecting equipment. Recently, with the roll-out of smart 

meters, methods based on the analysis of smart metering data have been developed: 

1) Approaches measure similarities of individual consumer’s voltage data. 2) Methods 

treat phase identification as a subset sum problem using load data. The major 

challenges are: voltage data is not commonly available from smart meters and solving 

the subset sum problem to get phase connectivity requires complicated optimization 

algorithm with heavy computation burdens such as Integer Programming (IP) and 

Quadratic Programming (QP). Additionally, the subset sum method requires 

distribution networks with 100% penetration rates of smart meters which are not the 

cases in the UK.  

The major contribution of this chapter is to fill the research gap by developing phase 

identification approaches under incomplete consumer data situation, i.e., to perform 

phase identification with only a proportion of consumers having smart meters in the 

network. 

The content of this chapter is cited from the author’s published article [143] in IEEE 

Transactions on Smart Grid. The structure of this chapter is organised in an 

alternative-based format. The rest of this chapter could be summarised as follows. 

Section 7.2 presents the published paper, which introduces the problem of phase 

identification, the formulation of the problem, the proposed SAS algorithm, experiment 

results, and discussion. Section 7.3 will demonstrate the validity of the proposed 

method with further experiment and results. Conclusions are then drawn in Section 

7.4. 

 

6.2 Phase Identification with Incomplete Data 
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Abstract— Phase identification is a process to determine which of the three phases a 

particular house is connected to. The state-of–the-art identification methods usually 

exploit smart metering data. However, the data sets are not always available and the 

major challenge is hence to identify phases with incomplete data set. This paper proposes 

a novel spectral and saliency analysis (SSA) identification method to overcome this 

hurdle. Spectral analysis is firstly performed to extract the high-frequency features from 

the incomplete data. Saliency analysis is then adopted to extract salient features from the 

variations of high-frequency loads in the time domain. Correlation analysis between 

customer features and the phase features is used to determine customers’ phase 

connectivity. The method is executed iteratively until all customers with smart meters 

have been allocated to a specific phase or no salient features can be found. It is validated 

against real data from over 6000 smart meters in Ireland and achieves an accuracy of 

over 93% with only 10% smart meter penetration ratio in a 100 household network. 

 

Index Terms—Phase identification, spectral analysis, LV distribution network, smart 

metering data, incomplete data set. 
 

I. Introduction 

Traditional research and design on low voltage (LV) distribution level rarely take the phase 

connectivity of individual consumption into consideration [1]. This leads to an urgent problem 

that the existing networks are poorly 3-phase balanced [2]. Such unbalanced loads will lead to 

extra power loss and reduced lifespans of assets. Recently in the UK, the 3-phase imbalance 

issue in the existing LV networks have been further aggravated due to the wide deployment of 

Low Carbon Technologies (LCTs) at household level. In order to accommodate the fast 

growing LCTs meanwhile considering the phase balance of LV networks, a vital problem that 

the Distribution Network Operators (DNOs) are facing is to identify which phase a particular 

house is connected to. 

  Traditionally, the DNOs would send electricians to check the phase connectivity manually in 

the field which is inherently inefficient. Installing advanced signal injecting and receiving 

equipment on both ends of the networks [3], [4] is another option for the DNOs. These devices 

Minghao Xu, Ran Li, and Furong Li, Senior Member, IEEE 

Phase Identification with Incomplete Data 
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are accurate and fast but are at the cost of increased capital and maintenance fees. The 

introduction of other high-precision metering devices [5]-[9] provides another opportunity to 

identify phases in an indirect way. The inevitable high cost of these devices become the main 

obstacle for them to be widely deployed. 

  Recently, with the roll-out of smart meters, data-driven methods based on the analysis of 

smarting data have been developed. By the data type they require, these methods could be 

categorized into two sets: 

1) Voltage data [7], [8], [10], [11]: measuring shape similarities between household voltage 

and phase voltage measured at substation through correlation analysis, regression or clustering 

techniques. It assumes that consumers share similar voltage patterns within the same phase; 

2) Load data [12]-[15]: based on the law of conservation of energy, finding the optimal 

combination of households to provide similar aggregation load as the phase load. 

However, the limitation of the first category of methods is that voltage data are not commonly 

provided by most smart meters [16]. In the second category, the methods are designed for 

handling data with small degrees of loss or error, requiring that the distribution networks to be 

analyzed should have 100% or nearly 100% penetration ratios of smart meters. Whereas smart 

meters are not widely deployed in most places. In the UK consumers could even opt not to 

install smart meters [17]. Therefore, there is a critical need to develop phase identification 

methods with incomplete consumer data i.e., to perform phase identification with only a 

proportion of consumers having smart meters in the network. 

  In this paper, a novel approach based on spectral and saliency analysis (SSA) of consumers’ 

load has been developed. SSA aims to extract customer’s load features from both time and 

frequency domains. Hence it could effectively identify phase connection from limited data 

compared with traditional methods which directly operate on the raw data. Firstly, spectral 

analysis using Fourier Transform on both consumer’s load data and phase load data is 

performed to filter out the low-frequency components. Then the variations of each consumer’s 

remaining high-frequency load are extracted as their features. Following that, the saliency of 

these features are assessed to form the salient feature vectors for consumers. Lastly, the salient 

feature vectors of each consumer are correlated with the corresponding high-frequency 

variations on each of the three phases. Given the load variations in salient feature vector are 

significant, the corresponding phase variations should present similar variation pattern and the 

phase can therefore be identified.  To the best of the users’ knowledge, this is the first time 

phase identification has been achieved under incomplete load data condition. It is validated 

using real smart metering data form Smart Meter Trial in Ireland [18]. This paper has evaluated 

the accuracies of proposed phase identification method under different data conditions. It was 
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carried out by gradually changing the smart meter penetration ratio and time length of the 

available data. 

  The reminder of this paper is organized as follows: Section II shows how the problem is 

mathematically formulated and Section III presents the proposed method. Section IV validates 

the proposed approach and compares it with other technique. Section V draws the conclusions. 

II. Problem Formulation 

  The mathematical model for the problem is developed as follows. 

  Suppose there are n consumers in this network and for each consumer, m measurements of 

load data are taken by smart meters over the time. Since the network is three-phase, the set of 

indices of phases, J, consists only three elements. (1), (2) and (3) represent sets of the indices 

for phases, consumers, and measurements respectively. 

 𝑱 = {𝟏, 𝟐, 𝟑} (1) 

 𝐶 = {1, 2, … , 𝑛} (2) 

  𝑀 = {1, 2, … ,𝑚} (3) 

  Let ℎwP represents the measured load at time 𝑘 for consumer 𝑖. 𝑝wª denotes the substation’s 

load for phase 𝑝 at time 𝑘.	Consumer load matrix H and phase load matrix L are expressed in 

(4) (5) respectively. 

 𝑯 = ·
𝒉𝟏𝟏 ⋯ 𝒉𝟏𝒏
⋮ ⋱ ⋮

𝒉𝒎𝟏 ⋯ 𝒉𝒎𝒏
½				∀𝒏 ∈ 𝑪					∀𝒎 ∈ 𝑴 (4) 

  𝐿 =

⎣
⎢
⎢
⎢
⎡
𝑝@@ 𝑝@A 𝑝@Ä
⋮ ⋮ ⋮
𝑝w@ 𝑝wA 𝑝wÄ
⋮ ⋮ ⋮

𝑝n@ 𝑝nA 𝑝nÄ⎦
⎥
⎥
⎥
⎤
				∀𝑘 ∈ 𝑀 (5) 

  Let 𝑥P_ be the phase indicator of consumer 𝑖 to phase 𝑗. 1 means true and 0 indicates false. 

The connectivity matrix would then be as follows. 

 𝑿 =

⎣
⎢
⎢
⎢
⎡
𝒙𝟏𝟏 𝒙𝟏𝟐 𝒙𝟏𝟑
⋮ ⋮ ⋮
𝒙𝒊𝟏 𝒙𝒊𝟐 𝒙𝒊𝟏
⋮ ⋮ ⋮
𝒙𝒏𝟏 𝒙𝒏𝟐 𝒙𝒏𝟑⎦

⎥
⎥
⎥
⎤
 (6) 

  Traditionally, the problem is formulated as (7) and various optimization techniques could be 

applied to get the optimal mathematical solution of 𝑋. 

 𝑯𝑿 = 𝑳 (7) 
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  However, due to the above formulation, all of the existing methods are fundamentally derived 

from the law of conservation of energy, i.e., the sum of the individual’s loads within the same 

phase is equal to the corresponding phase load monitored at the substation. The inevitable 

problem caused by this is that under incomplete data condition, the accuracy of 𝑋 would be 

fairly poor. 

III. Spectral and Saliency Analysis Algorithm 

To tackle the limitation under incomplete data condition, this paper proposes to extract 

distinct features from individual load profiles and correlate it with phase load to estimate the 

connectivity. Fig 1 is the overall flowchart for this algorithm. It is achieved by executing the 

following several steps. 

Firstly, it filters out the low-frequency load from each household’s and phase load by 

performing Fourier Transform (FT) and Inverse Fourier Transform (IFT). Then it takes the 

variations of the remaining load between two arbitrary time intervals as the features. After that, 

the algorithm analyses the saliency of all the features and extracts the salient variations of each 

consumer. Lastly, depending on the number of salient variations of the consumer, the method 

identifies the phase by either correlation analysis or the contribution factor analysis proposed 

 

Fig. 1. Flowchart for phase identification using saliency analysis algorithm 
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in this paper. The algorithm then removes the identified consumers from the overall data set 

and the above steps will be repeated until: 1) there are no salient variations can be found; 2) no 

consumer’s phase can be identified by analyzing the selected salient variations. Detailed 

explanations are presented in the following subsections. 

A. Spectral Analysis 

The first step is to perform spectral analysis on both the consumers’ load data and the phase 

load data. Discrete Fourier Transform (DFT) is applied in the paper to get the spectrum of the 

data. Suppose b is a time series load profile, which in this paper represents an arbitrary column 

in the consumer load matrix H or an arbitrary column in the phase load matrix L. The DFT of 

b is formulated below. 

 𝑩𝒌 = + 𝒃𝒏𝒆
0𝒋𝟐𝝅𝒌𝒏𝒎

𝒎0𝟏

𝒏/𝟎

	 , 𝒌 = 𝟎,… ,𝒎 − 𝟏 (8) 

where m is the number of measurement and 𝐵w = 𝛽w𝑒_ÓÔ  is the frequency spectrum with 

magnitude 𝛽w and phase angle 𝜃w. 

The low-frequency components of load data mostly follow a regular pattern while high-

frequency components are different from house to house, representing the unique energy usage 

habit of the customer. After setting a cut-off frequency, 𝑓X, the magnitudes of the low-frequency 

harmonics, whose frequencies are below 𝑓X, are all set to zeros. Due to the symmetry property 

of DFT, the harmonics that are symmetrical with the low-frequency harmonics about the 

Nyquist frequency should be set to zeros as well to completely filter out the low-frequency 

harmonics. Then the high-frequency load profile in time domain can be obtained by applying 

Inverse Discrete Fourier Transform (IDFT) with the remaining frequency spectrum. 

 

 𝒃𝒏𝒓 =
𝟏
𝒎
+ 𝑩𝒌𝒆

𝒋𝟐𝝅𝒌𝒏𝒎

𝒎0𝟏

𝒌/𝟎

	 , 𝒏 = 𝟎,… ,𝒎 − 𝟏 (9) 

where 𝑏p is the reconstructed time series load profile.  

After performing DFT and IDFT on the consumer load matrix H and phase load matrix L, 

the high-frequency parts of the consumer load 𝐻×PØ× and phase load 𝐿×PØ×are obtained. 

 𝑯𝒉𝒊𝒈𝒉 = �
𝒉𝒉𝒊𝒈𝒉𝟏𝟏 ⋯ 𝒉𝒉𝒊𝒈𝒉𝟏𝒏

⋮ ⋱ ⋮
𝒉𝒉𝒊𝒈𝒉𝒎𝟏 ⋯ 𝒉𝒉𝒊𝒈𝒉𝒎𝒏

�				∀𝒏 ∈ 𝑪					∀𝒎 ∈ 𝑴 (10) 
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 𝐿×PØ× =

⎣
⎢
⎢
⎢
⎡
𝑝×PØ×@@ 𝑝×PØ×@A 𝑝×PØ×@Ä

⋮ ⋮ ⋮
𝑝×PØ×w@ 𝑝×PØ×wA 𝑝×PØ×wÄ

⋮ ⋮ ⋮
𝑝×PØ×n@ 𝑝×PØ×nA 𝑝×PØ×nÄ⎦

⎥
⎥
⎥
⎤

				∀𝑘 ∈ 𝑀 (11) 

 

B. Feature Extraction 

  The second step is to extract the features from the remaining high-frequency load profiles. As 

mentioned in the introduction section, there exist identification methods using signal injecting 

equipment. The injector poses a unique electric signal from the demand side. At the substation, 

there are three receivers waiting to detect the signal. The phase at which the receiver captures 

the injected signal is the phase which the household is connected to. This is in nature to detect 

the external turbulence in the network. Similarly, the saliency analysis method is proposed in 

this paper. Instead of injecting external signals into the network, the proposed method seeks 

salient high-frequency load variations of consumers. For example, during a period, all the 

households are consuming electricity at a steady level, except for one household. The residents 

living in this house may return home late and turn on the light, kettle, etc. As a result, the 

demand or consumed energy within this period for this particular household would increase 

significantly. On the substation side, the corresponding phase load would increase accordingly. 

Since other households in the network are consuming energy almost constantly during this 

period, the load increase at the corresponding phase should be quite noticeable. The phase of 

the household could then be identified. In this paper, the high-frequency loads are obtained to 

reveal the unique energy usage habit of the households, and the variations of the high-frequency 

loads are extracted as features. 

  The variation of consumer 𝑖 between two adjacent time intervals 𝑘 and (𝑘 + 1) are calculated 

by (12). They can reflect the change of consumer’s energy behavior. 

 
𝑽𝒉𝒉𝒌𝒊 = 𝒉𝒉𝒊𝒈𝒉(𝒌Û𝟏)𝒊 − 𝒉𝒉𝒊𝒈𝒉𝒌𝒊 

∀𝒌 ∈ 𝑴				𝒌 ≠ 𝟏				∀𝒊 ∈ 𝑪 
(12) 

  The variation of phase 𝑗 between periods 𝑘 and (𝑘 + 1) is expressed as (13). 

 
𝑽𝒑𝒌𝒋 = 𝒑𝒉𝒊𝒈𝒉(𝒌Û𝟏)𝒋 − 𝒑𝒉𝒊𝒈𝒉𝒌𝒋 

∀𝒌 ∈ 𝑴				𝒌 ≠ 𝟏				∀𝒋 ∈ 𝑱 
(13) 

  Hence, the variation matrices of consumer load and phase load are shown in (14) and (15) 

respectively. 

 𝑽𝑯𝟏 = �
𝑽𝒉𝟏𝟏 ⋯ 𝑽𝒉𝟏𝒏
⋮ ⋱ ⋮

𝑽𝒉(𝒎0𝟏)𝟏 ⋯ 𝑽𝒉(𝒎0𝟏)𝒏
� (14) 
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  𝑉𝐿@ =

⎣
⎢
⎢
⎢
⎡
𝑉𝑝@@ 𝑉𝑝@A 𝑉𝑝@Ä
⋮ ⋮ ⋮

𝑉𝑝w@ 𝑉𝑝wA 𝑉𝑝wÄ
⋮ ⋮ ⋮

𝑉𝑝(n0@)@ 𝑉𝑝(n0@)A 𝑉𝑝(n0@)Ä⎦
⎥
⎥
⎥
⎤

	 (15) 

  The above variation matrices only represent the variations between two adjacent time 

intervals. The variation matrices could be further expanded by introducing variations between 

any two time intervals. Fig 2 demonstrates all the possible load variations of consumer 𝑖. There 

are 𝑚 − 1 pairs of columns and each column represents the consumer’s load data with 𝑚 

measurements. The right-hand-side column in each pair slides downwards gradually. By 

subtracting the right-hand-side data from the corresponding left-hand-side data, all the 

variations can be calculated. For consumer with 𝑚  measured loads, the total number of 

variations, 𝑁q\, is given by (16). 

 

 𝑵𝒗𝒂 = (𝒎− 𝟏) + (𝒎− 𝟐) + (𝒎− 𝟑) +⋯+1 
= (𝒎− 𝟏)𝒎/𝟐                        𝒎 > 𝟏 (16) 

  The variation of consumer 𝑖’s load between time interval 𝑘 and (𝑘 + t) can then be expressed 

as (17). 

 𝑽𝒉𝒌𝒊𝒕 = 𝒉𝒉𝒊𝒈𝒉(𝒌Û𝒕)𝒊 − 𝒉𝒉𝒊𝒈𝒉(𝒌𝒊)			 
	∀𝒕 ∈ 𝑴				𝒕 ≠ 𝒎				∀𝒌 ∈ 𝑴				𝒌 ≠ 𝟏				∀𝒊 ∈ 𝑪 (17) 

  The load variation of phase 𝑗 between periods 𝑘 and (𝑘 + t) 

 𝑽𝒑𝒌𝒋𝒕 = 𝒑𝒉𝒊𝒈𝒉(𝒌Û𝒕)𝒋 − 𝒑𝒉𝒊𝒈𝒉(𝒌𝒋)				 
∀𝒕 ∈ 𝑴				𝒕 ≠ 𝒎				∀𝒌 ∈ 𝑴				𝒌 ≠ 𝟏				∀𝒋 ∈ 𝑱 (18) 

  The variation matrices of consumer load then become (19). 

 
Fig. 2.  Load variations between two arbitrary time intervals 
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 𝑽𝑯 =

⎣
⎢
⎢
⎢
⎡
𝑽𝑯𝟏
⋮

𝑽𝑯𝒕
⋮

𝑽𝑯𝒎0𝟏⎦
⎥
⎥
⎥
⎤
				∀𝒕 ∈ 𝑴				𝒕 ≠ 𝒎 (19) 

where  𝑉𝐻Q represents 

 𝑽𝑯𝒕 = �
𝑽𝒉𝟏𝟏𝒕 ⋯ 𝑽𝒉𝟏𝒏𝒕
⋮ ⋱ ⋮

𝑽𝒉(𝒎0𝒕)𝟏𝒕 ⋯ 𝑽𝒉(𝒎0𝒕)𝒏𝒕
� (20) 

		The variation matrix of phase load is given in (21).	

 𝑽𝑳 =

⎣
⎢
⎢
⎢
⎡
𝑽𝑳𝟏
⋮
𝑽𝑳𝒕
⋮

𝑽𝑳𝒎0𝟏⎦
⎥
⎥
⎥
⎤
				∀𝒕 ∈ 𝑴				𝒕 ≠ 𝒎 (21) 

where  𝑉𝐿Q represents 

 𝑽𝑳𝒕 =

⎣
⎢
⎢
⎢
⎡
𝑽𝒑𝟏𝟏𝒕 𝑽𝒑𝟏𝟐𝒕 𝑽𝒑𝟏𝟑𝒕
⋮ ⋮ ⋮

𝑽𝒑𝒌𝟏𝒕 𝑽𝒑𝒌𝟐𝒕 𝑽𝒑𝒌𝟑𝒕
⋮ ⋮ ⋮

𝑽𝒑(𝒎0𝒕)𝟏𝒕 𝑽𝒑(𝒎0𝒕)𝟐𝒕 𝑽𝒑(𝒎0𝒕)𝟑𝒕⎦
⎥
⎥
⎥
⎤

				 

∀𝒕 ∈ 𝑴				𝒕 ≠ 𝒎				𝒌 ∈ 𝑴				𝒌 ≤ 𝒎− 𝒕 

(22) 

C. Saliency Analysis 

After extracting the variations as the feature, the next step is to analyze the features, i.e., to 

identify the salient variations. Within the same time step, if a consumer’s load variation is 

significantly higher than the sum of other loads’ variation, this load variation is defined as a 

salient variation. Mathematically, the salient changes are defined as the changes which satisfies 

the following condition. 

 |𝑽𝒉𝒌𝒊𝒕| ≥ 𝑻𝑯 × + 𝑽𝒉𝒌𝒄𝒕

𝒏

𝒄/𝟏,𝒄é𝒌

 (23) 

where: 

𝐕𝒉𝒌𝒊𝒕 The load change of consumer 𝒊 during time interval 𝒌 + 𝒕 and 𝒌;  

𝒏 The consumer number in the network;  

𝑻𝑯 The threshold value to adjust how salient the changes are.  

  The reason for selecting the salient variations is that they are more likely to be observed from 

phase load variation. In other words, since each consumer is connected to only one phase, the 

salient variation of one consumer is more likely to cause the load variation of the corresponding 

phase. 𝑇𝐻  can be changed so that the saliency is adjustable according to various data 

conditions. 
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D. Phase Identification 

  For each consumer with 𝑚 measurements, there are in total  (𝑚 − 1)𝑚/2 variations could be 

calculated. Suppose there are 𝑔 salient variations for consumer 𝑖. There salient variations form 

a row vector 𝑆𝑉ℎP. 

 𝑺𝑽𝒉𝒊 = [𝑺𝑽𝒉𝒊𝟏 𝑺𝑽𝒉𝒊𝟐 ⋯ 𝑺𝑽𝒉𝒊𝒈] (24) 

 

 

  Accordingly, 𝑙 phase load variations can be found for each phase, 𝑆𝑉𝑙P@, 𝑆𝑉𝑙PA, 𝑆𝑉𝑙PÄ. 

 𝑺𝑽𝒍𝒊𝟏 = [𝑺𝑽𝒍𝒊𝟏𝟏 𝑺𝑽𝒍𝒊𝟏𝟐 ⋯ 𝑺𝑽𝒍𝒊𝟏𝒈] (25) 

  𝑆𝑉𝑙PA = [𝑆𝑉𝑙PA@ 𝑆𝑉𝑙P@A ⋯ 𝑆𝑉𝑙P@Ø] (26) 

  𝑆𝑉𝑙PÄ = [𝑆𝑉𝑙PÄ@ 𝑆𝑉𝑙PÄA ⋯ 𝑆𝑉𝑙PÄØ] (27) 

  The consumer’s salient variations are correlated with the corresponding phase variations on 

each of the three phases. Three correlation coefficients are then obtained for each consumer. 

By selecting the phase which is tightly coupled with the consumer’s load variations, the phase 

connectivity of the consumer can then be identified. Pearson’s correlation coefficient is adopted 

to indicate how strong the consumer’s load variation and the phase load variation are correlated 

with each other. It is formulated below. 

 
𝝆^𝑺𝑽𝒉𝒊, 𝑺𝑽𝒍𝒊𝒋` =

𝒄𝒐𝒗^𝑺𝑽𝒉𝒊, 𝑺𝑽𝒍𝒊𝒋`
𝝈𝑺𝑽𝒉𝒊	𝝈𝑺𝑽𝒍𝒊𝒋

 

=
𝟏

𝒈 − 𝟏
+

(𝑺𝑽𝒉𝒊	𝒊𝒏𝒅 − 𝝁𝑺𝑽𝒉𝒊)(𝑺𝑽𝒍𝒊𝒋	𝒊𝒏𝒅 − 𝝁𝑺𝑽𝒍𝒊𝒋)
𝝈𝑺𝑽𝒉𝒊𝝈𝑺𝑽𝒍𝒊𝒋

𝒈

𝒊𝒏𝒅/𝟏

 
(28) 

where: 

𝑺𝑽𝒉𝒊 Salient variations of consumer 𝒊;  

𝑺𝑽𝒍𝒊𝒋 Corresponding salient variations of consumer 𝑖 on phase 𝑗;  

𝒄𝒐𝒗(𝑺𝑽𝒉𝒊, 𝑺𝑽𝒍𝒊𝒋) Covariance of 𝑆𝑉ℎP  and 𝑆𝑉𝑙P_;  

𝝈𝑺𝑽𝒉𝒊 Standard deviation of 𝑆𝑉ℎP;  

𝝈𝑺𝑽𝒍𝒊𝒋 Standard deviation of 𝑆𝑉𝑙P_.  

𝒈 Number of salient variations for consumer 𝑖, 𝑔 > 1;  

𝒊𝒏𝒅 Index of salient variation in the row vector;  
𝝁𝑺𝑽𝒉𝒊 The mean value of 𝑆𝑉ℎP;  

𝝁𝑺𝑽𝒍𝒊𝒋 The mean value of 𝑆𝑉𝑙P_.  

𝜌 is a quantitative measure of the correlation between two series. After computing the three 

coefficients for each consumer, phase of the consumer is identified by selecting the phase with 

maximum correlation coefficient. 
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  However, when the load data are not measured for a long period (𝑚 is small), the number of 

salient variations (𝑔) of the consumer is likely to be small. When there is only one salient 

variation, (𝑔 − 1) and the two standard deviations equal to zero. As a result, (28) cannot be 

used. As for consumers with two salient variations, the correlation coefficients could only 

reflect the changing trend of the two series. In other words, whatever the two variations are in 

the two series, 𝜌 will be either 1 or -1. This is proved as follows. 

  Suppose the two salient variations for consumer 𝑖 are as (29). 

 𝑺𝑽𝒉𝒊 = [𝑺𝑽𝒉𝒊𝟏 𝑺𝑽𝒉𝒊𝟐] (29) 

  The corresponding load variation on phase 𝑗 is as follows. 

 𝑺𝑽𝒍𝒊𝒋 = [𝑺𝑽𝒍𝒊𝒋𝟏 𝑺𝑽𝒍𝒊𝒋𝟐] (30) 

  Substitute the variables in (29), (31) is obtained. 

 𝝆^𝑺𝑽𝒉𝒊, 𝑺𝑽𝒍𝒊𝒋` =
(𝑺𝑽𝒉𝒊𝟏 − 𝑺𝑽𝒉𝒊𝟐)(𝑺𝑽𝒍𝒊𝒋𝟏 − 𝑺𝑽𝒍𝒊𝒋𝟐)
|𝑺𝑽𝒉𝒊𝟏 − 𝑺𝑽𝒉𝒊𝟐||𝑺𝑽𝒍𝒊𝒋𝟏 − 𝑺𝑽𝒍𝒊𝒋𝟐|

 (21) 

  For each consumer with only two salient variations, three 𝜌 values can be obtained. While as 

can be seen from the above equation, the 𝜌 value will be only 1 or -1. This does not provide 

enough information for phase identification. To tackle the problem caused by consumers with 

no more than two salient variations, the contribution factor is defined as follows. 

 𝑪𝑭𝒊	𝒋	𝒊𝒏𝒅 =
𝑺𝑽𝒉𝒊	𝒊𝒏𝒅
𝑺𝑽𝒍𝒊𝒋	𝒊𝒏𝒅

 (32) 

where: 
𝒊𝒏𝒅 Index of salient variations of consumer 𝒊 in the row vector;  
𝒋 Phase index, ∀𝑗 ∈ 𝐽  

𝑪𝑭𝒊	𝒋	𝒊𝒏𝒅 The contribution factor of the 𝑖𝑛𝑑’s salient variation of consumer 𝑖 

to the corresponding load variation on phase 𝑗; 
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The ratio,𝐶𝐹P	_	P.Z , is a measure of how much the phase variation is contributed by the 

consumer’s load variation. With larger value of	𝐶𝐹P	_	P.Z, there is more confidence in estimating 

that the consumer is connected to this phase. The contribution factor could be used to help 

identify phase connectivity for consumer with no than two salient variations. Fig 3 shows how 

phase is identified for a consumer with no more than two salient variations. This is part of the 

overall algorithm shown in Fig 2. 

 

IV.  Validation and Results 

The proposed approach is validated using real smart metering data from the Smart Metering 

 
Fig. 3. Phase identification flow chart for consumers with no more two salient variations 
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Electricity Customer Behaviour Trials (CBTs) initiated by Commission for Energy Regulation 

(CER) in Ireland [18]. The data were taken on a half-hourly basis from 1st July 2009 to 31st 

December 2010. 

A. Improvement of Correlation 

Unlike voltage data, load data are highly dependent on consumers’ behaviours and they do 

not share any similar patterns within the same phase. In this part, the test shows how the 

individual consumption correlates with its phase load and how the proposed SSA method 

improves the degree of correlation. 

In this preliminary test, 90 consumers out of 100 in the network have installed smart meters. 

A total length of two-month data were used to perform phase identification. The black line in 

Fig 4 (a) shows the load variations over 100 consecutive intervals of a randomly selected 

consumer connected to phase 3 in the network. As for the red, green, and blue curves, they 

represent the load on phase 1, phase 2 and phase 3 respectively. As can be observed, both the 

amplitude and the shape of the curves vary a lot from each other. No noticeable correlated 

relationship can be observed. 

Fig 4 (b) takes the same consumer as in Fig 4 (a) but extracts the consumer’s salient variations 

after spectral analysis as the salient feature vector, represented by the black curve. The red, 

green, and blue lines demonstrate the load variations during the same periods as the salient load 

variations on phase 1, phase 2 and phase 3 respectively. Phase 3, which is in blue, is obviously 

correlated with the consumer’s salient load variations. This intuitively indicates that the 

consumer is connected to phase 3 which matches the real case. 

Table I gives the Pearson correlation coefficients between the consumer and the three phases. 

 
Fig. 4. Correlation improvement: (a) Original load for the consumer and the three phases; (b) Salient variations of the consumer and the 
three phase variations during the corresponding intervals. 
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The original load of selected consumer and phase 3 are only correlated by a coefficient of 

0.1773, which is even lower than the coefficient with phase 1. However, after SSA, the 

correlation coefficient is significantly improved to 0.9301, which is much higher than the other 

two phases. 

B. Performance Evaluation of the Proposed Method 

This section takes the same distribution network as in Section A which consists of 100 

domestic consumers. A comprehensive evaluation is performed by gradually adjusting the 

smart meter penetration ratio and length of data to be used. 

The results of the evaluation are presented in Table II. As shown in the table, the penetration 

ratio of smart meters in the network increases from 10% to 100% along the horizontal direction 

and the data length increase from 1 month to 12 months along the vertical direction. Under 

each data condition, phase identification is performed for multiple times to get an average 

accuracy. It can be observed in the table that all the identification accuracies are satisfactory 

and are all above 95% except the most upper-left condition which is identification with one-

month data and with 10% smart meter penetration ratio. With fixed data length, the general 

trend is that the identification accuracy would increase gradually with the increase in smart 

meter penetration ratio. The reason is that during saliency analysis, each household’s high-

frequency loads has to be compared with all others’ high-frequency loads. With higher smart 

meter penetration ratio, the saliency analysis becomes more thorough and will return results 

with more precision and confidence. 

C. Comparison with Other Published Method 

TABLE I 
CORRELATION COEFFICIENTS BETWEEN CONSUMER AND PHASES  

Type Phase Number Correlation 
Coefficients 

Correlation analysis 
of original data 

Phase 1 0. 1864 
Phase 2 0. 1662 
Phase 3 0. 1773 

Correlation analysis 
after SSA 

Phase 1 -0.1020 
Phase 2 -0.4662 
Phase 3 0.9301 
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  To our best knowledge, the most comparable method to the proposed algorithm is [12], 

where the identification process is formulated as a Mixed Integer Quadratic Programming 

(MIQP) problem. However, this method is designed for handling data with small degrees of 

loss or error. Additionally, the MIQP method was validated using artificially generated load 

data and has never been tested under real incomplete data condition. In the paper, the authors 

replicated the work with small modifications by considering the missing data as noise. Due to 

license issue, the optimization solver used in this paper is Gurobi instead of CPLEX which was 

used in the original paper. 

  To demonstrate the significance of the proposed method over the MIQP method in larger 

networks, the comparison are performed in 200, 400, 600, 800, and 1000 households networks 

under various data condition. The results are in Fig. 5. In the figure, there are in total 10 

rectangles in two rows wherein the upper row represents the results using the proposed SSA 

method and the lower row represents the results using MIQP method. Each rectangle consists 

of 120 (12 × 10) colour coded sub-rectangles and is a graphical representation of the 

identification accuracy. Within each rectangle, the vertical direction indicates the data length 

used (1-12 months) and the horizontal direction shows the penetration ratio of smart meters 

ranging (from 10% to 100%). All of the ten rectangles share a unified colour bar as shown on 

the right-hand side in Fig. 5. The colour varies from deep blue to deep red with deep red 

representing 100% identification accuracy. 

As illustrated in the figure, several findings are: 

1) Both of the methods provides 100% accuracies under complete data condition, i.e., the 

smart meter penetration ratio is 100%; 

2) The performance of both of the methods decrease as the smart meter penetration ratio 

TABLE II 
OVERALL IDENTIFICATION ACCURACY 

Time 
length 

(month) 

Smart meter penetration ratios in the network 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

1 93.29% 96.33% 96.00% 96.84% 98.16% 99.04% 99.96% 99.63% 100.00% 100.00% 

2 95.32% 97.35% 97.35% 99.88% 100.00% 99.71% 98.80% 100.00% 100.00% 100.00% 

3 99.38% 97.35% 99.38% 98.87% 99.78% 98.70% 100.00% 100.00% 100.00% 100.00% 

4 97.35% 96.33% 97.35% 98.36% 98.57% 98.02% 100.00% 100.00% 100.00% 100.00% 

5 100.00% 100.00% 96.00% 97.86% 100.00% 99.04% 99.38% 100.00% 100.00% 100.00% 

6 97.35% 96.33% 96.67% 99.38% 98.16% 98.70% 100.00% 100.00% 99.60% 100.00% 

7 99.38% 100.00% 96.67% 99.38% 98.97% 98.70% 100.00% 100.00% 100.00% 100.00% 

8 100.00% 95.32% 98.70% 98.87% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

9 97.35% 96.33% 96.00% 99.38% 96.94% 98.70% 100.00% 99.88% 100.00% 100.00% 

10 100.00% 98.36% 100.00% 99.38% 100.00% 100.00% 99.96% 100.00% 100.00% 100.00% 

11 95.32% 97.35% 97.35% 100.00% 98.16% 99.71% 99.38% 100.00% 100.00% 100.00% 

12 100.00% 99.38% 98.02% 99.88% 99.38% 99.04% 99.67% 100.00% 100.00% 100.00% 
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decreases or the data length decreases;  

3) With the increase in network size, both of the methods tend to become less accurate 

slightly. For SSA, the reason is that, with larger network size, the salient features of 

individual households are more likely to cancel out with each other through aggregation 

on the phase load and hence it becomes more difficult to find these salient features. For 

MIQP, with increased network size, the number of possible combinations of households 

to provide similar aggregation load would increase significantly and hence the accuracy 

would drop accordingly; 

4) The proposed SSA method outperforms the MIQP method under almost every scenario, 

especially when the data is incomplete (low smart meter penetration and short data 

length). This can be observed in the top left of every rectangle in Fig. 5 as the upper row 

are much ‘redder’ than the ones in the lower row. 

To give a clear comparison, the identification accuracy with 10% smart meter penetration 

ratios in each rectangle are calculated are given in Table III. Compared with the MIQP method, 

the proposed method lifts the accuracy for networks with 200, 400, 600, 800, and 1000 

 
Fig. 5. Comparison of the Performance of the proposed SSA method and MIQP Method: (a) Overall identified accuracies vary with used 
time and penetration ratios of smart meters using the proposed SSA method in 200, 400, 600, 800, and 1000 households networks; (b) 
Overall identified accuracies vary with used time and penetration ratios of smart meters using MIQP method in 200, 400, 600, 800, and 
1000 households networks. 

TABLE III 
COMPARISON OF IDENTIFICATION ACCURACIES WITH 10% SMART METER 

PENETRATION RATIO 

Households 
Number 

Average Accuracy Accuracy 
Improvement 

Percentage MIQP Method 
Proposed 
Method 

200 75.87% 91.86% 21.08% 
400 75.27% 87.29% 15.97% 
600 74.74% 84.97% 13.69% 
800 73.46% 81.38% 10.78% 

1000 72.79% 80.04% 9.96% 
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households by 21.08%, 15.97%, 13.69%, 10.78%, and 9.96% respectively. 

V. Conclusion 

This paper proposes a novel phase identification method based on spectral and saliency 

analysis which can be used under incomplete data conditions. It essentially changes the rule on 

which most of the current identification methods are based. Also, it successfully develops a 

contribution factor and introduces correlation coefficient to help identify phases after SSA. 

To demonstrate the significance of the method, an LV distribution network of 100 domestic 

consumers has been constructed using real smart metering data from Ireland to perform a 

preliminary test. Subsequent to the test, a comprehensive and thorough evaluation of the 

proposed method has been undertaken. Additionally, the performance of the proposed method 

has been compared with the available optimization method. Results have shown that: 

• The SSA could help reveal the correlation between the consumer and the 

corresponding phase; 

• The identification performance of the proposed method would grow with the increase 

in smart meter penetration ratio and load data length; 

• The identification performance of the proposed method would decrease slightly with 

the increase in network size, i.e., the increase in the total number of household in the 

network; 

• The proposed method outperforms the available method in almost every aspect. 

Under the extreme data condition where the smart meter penetration ratio is 10% in 

a 200-household network, the proposed method achieved an average identification 

accuracy of 91.86 % which is 21.08% higher than the available MIQP method.  

The proposed method cannot only reduce uncertainties during the development of smart grid, 

but also provide necessary tool for DNOs to balance current networks. 

Future work will focus on dynamic salience analysis, i.e., saliency criteria will adjust 

according to different data conditions. Additionally, the proposed method will be validated 

using networks with multiple consumer types. 
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6.3 Results and Discussion 

The previous section has presented the SAS algorithm to identify phases. However, 

the rationale and results for combining both the spectral and saliency analysis were 

not given. To demonstrate the assessment, a network where 10 out of 100 consumers 

do not have smart meters has been created as an example. As plotted in Figure 6-1, 

the black line represents a random consumer’s load and the red, green, and blue 

represent the loads on phase 1, phase 2, and phase 3 respectively. It is almost 

impossible to identify the phase connection from the raw data (correlation to three 

phases: 0.19, 0.21, and 0.20). 

Firstly, the spectral analysis method is performed. In Figure 6-2, the black line 

represents the high-frequency components of the same consumer and the red, green, 

and blue lines are for the high-frequency components of phase 1, phase 2 and phase 

3 respectively. As can be seen, the correlation to phase 3 increases, but the 

confidence is still low (0.18, 0.18, 0.20). 

Secondly, saliency analysis on the same consumer was performed. As plotted in 

Figure 6-3, the black line represents the consumer’s salient load variations and the 

red, green, and blue lines are for the corresponding load variations at each phase. 

 

Figure 6-1 The selected consumer’s original load over three months VS three 
phases load 
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This time, it is quite obvious that the consumer is highly correlated with phase 3 and it 

turns out that the consumer is indeed connected to phase 3. 

Thirdly, the combined Spectral and Saliency Analysis was conducted. Spectral 

analysis is performed through Discrete Fourier Transform (DFT). After filtering out the 

low-frequency harmonics, Inverse Discrete Fourier Transform (IDFT) is performed to 

get the high-frequency load. Then saliency analysis is performed on the high-

frequency load. The results were depicted in Figure 6-4. The black line represents the 

 

Figure 6-2 Customer’s high-frequency load VS three phases high-frequency 
load 
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Figure 6-3 Customer’s salient variations VS three phases salient variations 
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consumer’s high-frequency salient load variations and the red, green, and blue lines 

are for the corresponding high-frequency load variations at each phase. It can be 

confidently concluded that the customer is connected to phase 3. 

Finally, a comprehensive test was performed in networks with a different number of 

customers and smart meter penetration rates. The average identification accuracies 

of the three methods are given in Table 6-1. As can be seen, the combined Spectral 

and Saliency Analysis (SSA) method significantly improves the identification accuracy 

compared with both methods on their own. 

The underlying rationale for the combination is: the saliency analysis is able to extract 

customers’ features in the time domain while the high-frequency components (by 

spectral analysis) are equivalent to the features in the frequency domain. The 

 

Figure 6-4 The high-frequency salient variations VS three phases high-
frequency salient variations 
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Table 6-1 Overall identification accuracy 

Method 
Time length (month) 

1 2 3 4 5 6 7 8 9 10 11 12 
Saliency 
Analysis 

(%) 
88.2 91.0 90.8 89.6 91.0 89.2 89.0 91.0 90.9 91.0 90.2 91.4 

Spectral 
Analysis 

(%) 
91.5 91.4 92.7 93.3 91.1 91.4 90.2 90.8 88.6 92.1 90.5 90.8 

SSA 
(%) 96.9 98.2 98.2 98.2 98.6 99.0 99.4 100.0 100.0 99.8 100.0 100.0 
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combined method could effectively identify phases from limited data by extracting 

features from both time and frequency domain. 

6.4 Chapter Summary 

This chapter proposes a combined Spectral and Saliency Analysis (SSA) method to 

identify phase, which is more practical and fundamentally different from the existing 

methods found in the literature. It is validated using real data from Ireland.  

Results have shown that the proposed method can identify the phases for networks 

where smart meters are not 100% penetrated. It outperforms the state-of-the-art 

method in almost all scenarios, especially when the smart meter penetration ratio is 

low. Performance of SAS follows the rule that the more measurements the network 

take and the fewer non-smart-meters the network has, the higher accuracy would be. 

The method has proven that smart metering data can not only be used for load 

forecasting but also can be effectively used to infer physical property of households. 

The proposed SAS method not only reduced uncertainties in distribution network at 

an affordable cost but also provided necessary techniques and tools for distribution 

network operators and designers to better accommodate LCTs in the network and 

make the distribution network 3-phase power flow in a more balanced manner. 
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his chapter draws the conclusion to the thesis by outlining the major contributions and 
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Traditional data analytics in the power systems were mainly developed for 

transmission networks or higher-level systems due to the limited visibility on domestic 

consumers and distribution networks. The emergence of smart meters not only brings 

a compelling opportunity to increase the distribution network’s visibility and 

accessibility but also poses tremendous challenges to traditional data analytical tools. 

This thesis aims to develop a range of novel analytical methods to handle the smart 

meter data, which are highly volatile, extremely large in volume, and are constantly 

generating at a fast speed. Specifically, the research works in the thesis are developed 

to address two major challenges: 

1) The incapability of traditional methods to uncover the underlying patterns of the 

smart metering data efficiently and effectively, specifically in the area of load 

forecasting; 
2) The incapability of traditional methods to reveal the interconnection between 

smart meter data and consumer’s data from other aspects. 

Two main contributions that correspond to the arisen challenges are made in the thesis 

and are summarized as follows: 

1) Development of transfer learning based short-term load forecasting model for 

domestic consumers. The large amount of smart metering data are ideal for 

developing deep neural networks for load forecasting. The adoption of transfer 

learning for the deep models leverages the knowledge learned from one 

forecasting task for forecasting another, which not only reduces the required 

computational power compared to training from scratch but also improves the 

forecasting accuracy; 

2) Development of predictive models for i) the two-way inference between smart 

meter data and consumers’ social-economic/demographic status, and ii) the 

inference of consumer’s phase connectivity in the network from smart meter 

data. 

In summary, the research in the thesis demonstrates how to mine useful information 

about the consumers from smart meter data and other sources of data. 

In detail, the research was carried out on the following five perspectives: 
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7.1 Load Forecasting for Individual Domestic 
Consumers 

Short-term load forecasting (STLF) for the individual residential consumer was 

traditionally unattainable until the rollout of smart meters. Research has shown that 

direct application of traditional forecasting methods on smart meter data cannot reach 

a good prediction. 

A novel transfer-learning-based framework is proposed to perform load forecasting. It 

utilizes the state-of-art deep learning models and applies transfer learning on top of 

that. By doing so, the strong predictive power of deep learning models can be exploited, 

at the same time reducing a lot of computational power and efforts to fine-tune each 

model from scratch. 

Two powerful and popular deep models, MLP and LSTM, that are commonly used for 

sequential data prediction, are evaluated. The following observations are reached:  

1) Transfer learning is suitable for point load forecasting, in the sense that it could 

significantly simplify the deployment of deep models and improve the prediction 

performance ; 

2) The LSTM network is more capable of forecasting load than MLP network; 

3) Even when the target consumer and the source consumer have the same amount 

of smart meter data, transfer learning could still improve the prediction accuracy of 

MLP and LSTM.  

4) For the MLP networks, on average, MAPE, MAE, RMSE, and NRMSE could be 

improved by 7.80%. 3.16%, 1.13%, and 1.53% respectively; 

5) For the MLP networks, the first several hidden layers have higher transferability 

than the last several layers; 

6) For the MLP network, transferring from a dissimilar consumer is generally better 

than transferring from a similar consumer; 
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7) For the LSTM networks, as using it along could already achieve a good prediction, 

the introduction could only improve MAPE and NRMSE by 1.76% and 0.76% 

respectively; 

8) For the LSTM networks, the transferability (measured by improvement of MAPE 

and NRMSE) of first several hidden LSTM units is higher than the last several ones. 

7.2 Inferring Social-Economic Status from Smart 
Meter Data 

Owing to the rapid and ongoing digitalization of the society, a variety of traditionally 

unavailable information about the consumers has streamed in and becomes available, 

such as the consumer’s age, education, and other social-economic information. Such 

social-economic information about the consumers is of great significance for not only 

the retailers but also and DNOs to gain deeper insights on their consumers. However, 

only a fraction the consumers in the power systems have the social-economic data 

currently. 

A prediction framework that infers the social-economic status of consumers from their 

smart meter data is proposed to tackle the above-mentioned challenge. It utilises a 

tree based ensemble model, XGBoost, and consist of three major steps: data pre-

processing, feature extraction and model training and hyperparameter optimisation. It 

has been validated on real data from Ireland and has been compared with three state-

of-the-art methods, KNN, SVM and Random Forest. 

Results have shown that the proposed method outperforms the state-of-the-art 

method for almost all features. In addition, due to the tree ensemble nature, the 

developed models could be interpreted by observing the splits of each individual trees. 

Specifically, the importance of the smart metering data features in helping the models 

make their predictions can be explored and ranked. For example, it can be observed 

that knowing the ratio of consumer’s average consumption during noon and evening 

in cold seasons (Autumn and Winter) would help identify the consumer’s age. 

The method has proven that it is not only able to predict the social-economic status 

accurately, but also helpful for gaining insights from the data. DNOs and retailers could 

leverage the insights and develop tailored DSR schemes and tariffs. 
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7.3 Inferring Load Characteristics from Social-
Economic Data 

Following the research on inferring the social-economic status of consumers, the 

problem could also be extended to a reverse context. Rather than installing costly 

smart meters, consumers’ social-economic information, which can be easily collected 

by means of surveys, could be used to infer the load characteristics. 

The main challenge for performing an accurate prediction in a reverse way arises from 

the fact that social-economic data normally consist of a mixture of numerical data, 

categorical data and ordinal data, whereas traditional prediction methods are mostly 

designed for handling only one type of the data. 

A Deep Convolutional Neural Network (DCNN) based multi-task learning (MTL) 

method is proposed to tackle the problem. The convolutional kernel in DCNN is able 

to extract features automatically and hierarchically, which is ideal for processing mixed 

types of data. In addition, the MTL framework added to the DCNN enables to infer 

multiple load characteristics simultaneously and more accurately, which is much more 

efficient than predicting each characteristic individually. 

Case studies have been conducted and show that on average, the proposed method 

outperforms the previously best model by 3.91%. For some specific characteristics, 

the improvement could even reach over 8%. 

The proposed method has provided the necessary analytic tool for energy consumers, 

retailers, and DNOs to understand the energy behaviours without the need to install 

costly smart meters. 

7.4 Inferring Phase Connectivity from Smart Meter 
Data 

Lastly, the smart meter data are used to infer the consumer’s phase connectivity, i.e., 

to identify which of the three phases the consumer’s house is connected to in a 

distribution network. 
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The state-of-the-art identification methods usually exploit smart meter data. However, 

the datasets are not always complete and the major challenge is hence to identify 

phases with incomplete data set.  

A novel spectral and saliency analysis (SSA) identification method is proposed to 

tackle the challenge. Spectral analysis is firstly performed to extract the high-frequency 

features from the incomplete data. Saliency analysis is subsequently adopted to 

extract salient features from the variations of high-frequency loads in the temporal 

domain. Correlation analysis between customer features and the phase features is 

used to determine customers’ phase connectivity.  

The proposed method has been validated against real data from Ireland and achieves 

an accuracy of over 93% with only 10% smart meter penetration ratio in a 100 

household network. 

The method has proven that smart metering data can not only be used for inferring the 

social-economic status of a consumer but also can be effectively used to infer the 

physical property of a household. The proposed SAS method not only reduced 

uncertainties in distribution networks at an affordable cost but also provided necessary 

techniques and tools for distribution network operators and designers to better 

accommodate LCTs in the network and make the distribution network 3-phase power 

flow in a more balanced manner. 
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8.1 Applications of Transfer Learning Based Load 
Forecasting 

The research in the thesis has already proven the applicability of the proposed transfer 

learning based load forecasting method for domestic STLF, which is widely 

acknowledged as one of the most challenging forecasting tasks in the area of load 

forecasting. There is a wide range of other forecasting paradigms as well. 

The proposed method could be adapted for: 

1) Network level or system level load forecasting: Load profiles at higher 

aggregation levels are generally smoother and less volatile. In addition, the 

accompanied information at higher aggregation level is usually more complete, 

for example, the temperatures and sunshine conditions are available most of 

the time. These data are useful for improving the forecasting performance, 

However, the relationship between the load and other information are highly 

non-linear and complex, hence is very difficult to learn and model. By applying 

the proposed method, the complex relationship learned from one forecasting 

task can be passed onto the next forecasting task, which would save a lot of 

computation power and efforts to learn from the start. 
2) Load forecasting with multiple datasets: The potential of transfer learning has 

not been fully exploited yet as it is especially powerful when the source domain 

has more data than the target domain. In the load forecasting context, it means 

that the new consumer whose load profiles are to be forecasted should have 

less data than what has already been available and used for training the model. 

That actually reflects the real situation. By combining multiple datasets and 

training all the consumers together, a single well-tuned powerful model can be 

obtained. The model could then be effectively transferred to new consumers 

with much less data. A significant improvement on the forecasting performance 

can then be expected. 

8.2 Unsupervised Load Feature Extraction 

In the proposed methods, the inference between social-economic data and smart 

meter utilizes the extracted features from smart meter data. The features are extracted 



Page 

Chapter 8  Future Works 

                                                                                                                                                                              
  

111 

manually, meaning they are designed by the researcher using domain knowledge. The 

benefit of doing so is that the features are highly meaningful and interpretable. 

However, manual extraction of the features is not only inefficient but also leads to 

significant information loss. 

Recent research on image processing and natural language processing has shown 

that, with enough data, features extracted from unsupervised learning could also be 

applied for supervised tasks, which is classification in our case. As the features are 

extracted in an unsupervised way, they are more general than the features extracted 

from task-specific supervised learning. Hence, they could be potentially applied to a 

wide variety of tasks. 

In addition, the load feature extraction is, in essence, a way of compressing the original 

smart meter data. Hence, by applying unsupervised feature extraction, deeper insights 

into smart meter data compression could also be gained. 

8.3 Interpretations of the Deep Learning Model for 
Inferring Load Characteristics 

The proposed DCNN based MTL model is capable of predicting multiple load 

characteristics simultaneously. However, it is unclear how the DCNN model makes its 

predictions. 

Though deep learning models have been widely acknowledged as ‘black box‘ models, 

there have emerged some techniques that are trying to understand what features the 

deep models are looking for. For example, gradient ascent could be used to inversely 

construct a set of input features that will minimise the loss. Alternatively, each feature 

in the input could be masked to assess its impact on the model’s performance and 

eventually get a saliency map of the input feature. 

These techniques could also be applied in the proposed DCNN model. Though 

applying these techniques would not enable us to fully understand how the DCNN 

works or makes predictions, it would potentially help us recognize which of the input 

features (social-economic data in our case) are important for making the decision. 

Such knowledge would provide deeper insights into the relationship between 

consumer’s energy behaviours and consumer’s social-economic status. 
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8.4  Development of Tariff and DSR Recommender 
System  

Recommender systems are widely used by online shopping websites or medium-

service (videos and music) providers. The recommender system analyses the 

historical behaviours of the consumers and recommends contents that the consumers 

may be interested in. 

As identified earlier in the thesis, smart meter data and social-economic data are 

crucial for consumers in the sense that they can help consumers save energy (through 

DSR or EMS) and choose better tariffs. However, it is very complicated and time-

consuming for the consumers to do so. Moreover, for consumers without any domain 

knowledge in the field, they are very likely to under-utilize the data and make non-

optimal decisions. Building a tariff and DSR scheme recommender system is hence 

useful to make decisions or provide suggestions for the consumers. 

8.5 Interconnecting Datasets from Other Domains  

The smart meter data have been linked with consumers’ social-economic data and the 

phase connectivity in this thesis. With the rapid development of the internet and IoT, 

there will be an increasing amount of consumer-related data from various domains 

that can be linked with the smart meter data. Such as consumer’s driving patterns 

monitored by the vehicles and consumer’s availability at home monitored by smart 

appliances. 

Datasets from different domains or sectors depict the consumers’ different 

characteristics. These datasets can then be linked together to infer one from the others. 

Alternatively, the datasets can be used collectively to construct a recommender 

system, which would provide much better suggestions.   
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Appendix. A 
Randomly Selected Consumers 

The randomly selected consumers are differentiated by their unique smart meter IDs. 

The selected consumers are given in Table A-1. 

Table A-1 IDs of selected consumers 

ID ID ID ID 
1002 3600 4755 6272 

1060 3617 4785 6281 

1507 3661 4825 6312 

1530 3686 4835 6321 

1548 3718 4891 6383 

1657 3908 5053 6433 

1664 3923 5078 6460 

2029 4027 5218 6591 

2041 4052 5254 6661 

2099 4059 5385 6678 

2404 4120 5396 6720 

2424 4241 5443 6751 

2532 4244 5499 6770 

2562 4284 5573 6811 

2635 4300 5799 6854 

2684 4311 5835 6969 

2749 4358 5843 6978 

2926 4365 5848 7040 

2956 4373 5951 7225 

2968 4469 6026 7251 

2988 4477 6048 7289 

3281 4493 6107 7365 

3293 4575 6120 7396 

3495 4640 6145 7436 

3589 4644 6214 7437 
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Performance Improvement by Transfer Learning 
for LSTM Networks 
There are 4 hidden layers (LSTM cells) in the LSTM network. The improvement on 

MAPE, MAE, RMSE, and NRMSE by transferring different number of hidden layers 

from consumers with different degrees of similarities are demonstrated in the following 

figures.  

 

 

 

Figure A-1 Performance improved by transferring the first hidden layer in 
LSTM 

 

Figure A-2 Performance improved by transferring the first two hidden layers in 
LSTM 
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Figure A-3 Performance improved by transferring the first three hidden layers 
in LSTM 

 

Figure A-4 Performance improved by transferring all four hidden layers in 
LSTM 
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Appendix. B 
Smart Metering Data Feature Extraction 

Features are extracted from consumers’ smart metering data. They are extracted 

across different time horizons. Specifically, the features are extracted from annual data, 

winter data, spring data, summer data and autumn data. For each season or the whole 

year, the extraction is performed on finer time horizons, i.e., weekday, weekend and 

holidays. For each specific time interval, four types of features are extracted whose 

detailed descriptions are given in Table B-1. 

 

 

Table B-1 Extracted features of smart metering data 

Category Descriptions 

Consumption 

Average of the whole day 
Average of daytime (6am-10pm) 
Average of evening (6pm-10pm) 
Average of morning (6am-10am) 
Average of night (1am-5am) 
Average of noon (10am-2pm) 
Average of daily peak demand 
Average of daily valley demand 

Ratios 

Average of mean over max 
Average of minimum over mean 
Average of minimum over max 
Average of morning over noon 
Average of evening over noon 
Average of noon over daily mean 
Average of night over daily mean 

Occurrence/Time Time when the demand is above mean 
Average peak demand time 

Statistics 
Standard deviation 
Average of correlation coefficient of current day and previous 
day 
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Feature Importance of Selected Social-Economic 
Questions 
The features importance of the last five of the questions in Table 4-1 are plotted below. 

 

 
 

 
 

 

 

 

Figure B-1 Feature importance for social-economic question 6 
 

 

Figure B-2 Feature importance for social-economic question 7 
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Figure B-3 Feature importance for social-economic question 8 
 

 

Figure B-4 Feature importance for social-economic question 9 
 

 

Figure B-5 Feature importance for social-economic question 10 
 


