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Summary

In this thesis, we address some of the open challenges in the area of Performance Driven Fa-

cial Capture and Animation, specifically with the goal of improving the fidelity of the capture

results and making both the Modeling and Capture stages of the animation pipeline robust,

inexpensive, automated and consumer friendly. We present an overview of the process of fa-

cial animation and specifically Performance Driven Facial Animation, including the Modeling,

Capture and Retargeting stages. We then discuss the existing literature in the area in detail and

weigh the pros and cons of the various approaches that have been presented over the last few

decades along with the differences between them. We then present, in detail, our contributions

to the Modeling stage of the pipeline in the form of automating the generation of actor specific

Blendshape Models from a single scan of the actor’s face or alternatively from a few images of

the actor’s face resulting in a pipeline that is automated and inexpensive, while being inclusive

of actor specific nuances. We then present our contributions in the form of our marker-based

Capture pipeline that improves upon traditional marker-based systems by incorporating ad-

ditional features in the form of makeup patterns which are used to train a FACS classifier

that is integrated with our Blendshape weight optimization in a hybrid fashion. We show that

this leads to improved results especially in areas that are otherwise challenging to capture

with markers alone. We then discuss our contributions to the markerless Capture pipeline and

present our approach to track an actor’s face with just a monocular RBG camera. We show that

our method is able to achieve realistic results in spite of the missing information inherent in the

monocular input by making use of static and dynamic prior information gleaned from existing

animations from accurate 3D systems. We quantitatively evaluate our results comparing it with

an approach using a monocular input without our spatial constraints and show that our results

are closer to the ground-truth geometry. Finally, we present our results and conclusions and

discuss future directions of research.
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1 Introduction

Realistic rendering and animation of human faces has been a goal within the computer graph-

ics community for a long time, pioneered by Parke et al. in 1972 [18] and followed by many

others leading to vast advances in this field. The field is very multi-disciplinary and spans

techniques from computer vision, computer graphics and machine learning in order to achieve

efficiency, robustness and accuracy. The difficulty inherent in achieving convincing represen-

tations, renderings and animations of human faces, combined with the revolutionary impact it

will have on various fields including education, medicine, psychology, forensics, human com-

puter interaction, virtual reality and the entertainment industry, has rightfully earned it the title

of the holy grail of computer graphics. Immersive experiences within virtual worlds will not

be complete until we are able to accurately track and render human bodies and faces and vi-

sualize digital avatars in a convincing fashion. Doing so in such a way that it is suitable and

affordable for consumer level applications is also important for the widespread adoption of

these technologies.

Capturing and displaying the geometry, appearance and motion dynamics of the human face is

a very challenging problem owing to many reasons. The human face is an extremely complex

biomechanical system that is very difficult to model. It has many degrees of freedom and is

capable of conveying emotions through very subtle motions and the exact control mechanisms

of the motions is not known to us [2]. The human skin has unique reflective properties and

these are very difficult to simulate accurately. It is a multilayer, anisotropic, viscoelastic tis-

sue, whose mechanical behavior is dominated by collagen fibers present in the dermis [19].

Hence, accurate simulation of skin folding requires a complex volumetric representation with

carefully chosen model parameters [6]. Compounding this problem furthermore, humans are

trained since birth to detect the slightest facial nuance making them extremely sensitive to any

irregularities in both the appearance and motion of faces. Owing to this exposure to the varia-

tions and subtleties in faces, a curious phenomenon known as the Uncanny Valley [20] occurs,

where the disparity of a near perfect facial model elicits an unsettling and creepy aesthetic.

A person’s response to the face shifts from empathy to revulsion as it approaches, but fails to

attain, a lifelike appearance. Examples of this effect can be seen in movies like The Polar Ex-

press [1] and Beowulf [21], even in spite of the many man-hours of post-processing by skilled

and trained 3D artists.

A further constraint is that many of the most accomplished methods for facial animation are

proprietary owned in spite of this being a field where industry and academia work symbioti-

cally. The process of facial capture and animation is yet to revolutionize all industries largely

due to costs, practicality and dependence on trained artists. This is an important point as driv-
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Figure 1: Example of Performance-driven Facial Capture using markers, used in The Polar

Express [1].

Figure 2: The Uncanny Valley [2]

ing realism isn’t the only goal of facial animation. As put by [22], the ultimate goal of this

research is a system that creates realistic animation, operates in real-time, is as automated

as possible and adapts easily to individual faces. [3] presented Digital Emily, a project that

does an excellent job of crossing the uncanny valley into believable animation but still lacks

in the other points mentioned i.e being real-time, being independent of the actor and being as

automated as possible.

Also, a lot of equipment used for facial capture and animation can be expensive and diffi-

cult to obtain for an average consumer. Marker-based systems, multi-camera capture setups
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Figure 3: A rendering of a photorealistic digital face from the Digital Emily project, 2010 [3].

and intrusive scanners other than being expensive, usually also require a complex calibration

setup. Most systems usually require expertise in setting up and operating them and costs of ap-

proximately US$80,000 are required to afford such systems, in addition to a dedicated special

recording studio for the project [23]. Owing to this, these approaches are usually unusable at

the consumer level. Fortunately, recent developments in this area are moving towards cheaper

and easier alternatives that promise the availability of this technology even for the untrained

average consumer. With so many factors affecting it, it is clear why achieving convincing facial

animation is a very challenging problem.

While the subject is debated, many people feel that artist driven manual key-frame animations

may never capture the subtleties of a human face. A slightly different view is that while some

skilled animators may be able to produce convincing facial animations, the consistent produc-

tion of large scale and flawless animations is not practical and very expensive. Owing to this,

the trend in facial animation has moved towards using the human face itself as the driver and

input device for facial animation — the core idea being that extracting information from an ac-

tual performance of facial movements is significantly easier, faster, natural and more scalable

than adjusting dozens of sliders. This lead to the idea of Performance-driven facial animation.

In this context, a ’performance’ is understood to be a visual capture of an actor’s face talking

and emoting which is used to extract information which is used to re-target the motion onto a

digital character.
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Figure 4: The Lightstage apparatus for scanning faces resulting in extremely high-resolution

data [4].

[24] introduced the term Performance Driven Facial Animation to the computer graphics com-

munity in Siggraph 1990. Since then there have been numerous works that have extended the

original idea. In Siggraph 1992, SimGraphics was demonstrated, which showed a custom face-

tracking helmet with physical sensors that tracked gross regions of the face. Hardware motion

capture systems were commonplace in the mid 90s and were used regularly in short demos [2].

1.1 Overview

Broadly speaking, the process of Performance Driven Facial Animation can be split into three

distinctive stages — Modeling, Capture and Retargeting.

MODELING

The Modeling stage of the pipeline has to do with the underlying representation or ’model’ of

the human face such that it can be digitally stored, displayed and modified. Over the course of

the research in facial animation, spanning decades, multiple methods have been presented, each

with their pros and cons. While a clear delineation can be made between the representation, the

capture and the retargeting steps, the choice of representation does have an impact on the final

animation as the model inherently facilitates or limits the expressive capabilities of the face.

Modeling methods range from mesh propagation based methods where a single 3D mesh is
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deformed over the performance [5, 8, 25, 26, 27, 28], 2D statistical models [29], 3D statistical

models based on PCA [30, 31, 32], Blendshape models [33, 34, 35, 36, 37, 38, 39, 17, 40] to

Muscle Based Anatomical models combined with deformable skin [41, 42, 6, 43, 44, 45, 46,

47]. In recent times, mesh based propagation and Blendshape models have been very popular

owing to their relative ease of use and intuitiveness. In our work, we make use of a Blendshape

model representation for our faces.

Figure 5: An example of Mesh Propagation being used for the underlying representation for

the animation [5].

Figure 6: Blendshapes from our Blendshape model for facial animation.

CAPTURE

The tracking or capture stage of the Performance Driven facial animation pipeline can be

thought of as the extraction of relevant useful information from the input video or depth infor-

mation such that this information can then be applied onto the underlying face representation

in order to generate the animation. This capture can be done using methods that are active

and intrusive or using methods that are passive. Active methods include Marker-based capture

where physical markers or dots are placed on the actor’s face and tracked through the perfor-

mance [24, 25, 48, 39, 49, 50, 51] or Structured Light approaches, where a known light pattern

is projected onto the actor’s face [52, 53, 54, 55]. Passive approaches include methods that use

a single or multiple video inputs of the actor’s face without any physical markers added on the

actor’s face [8, 5, 33, 35, 36, 56, 40, 30]. The output of the tracking stage is in the form of

18



Figure 7: An example of an anatomical model based on muscle activations and deformable

skin [6].

parameters of the underlying model that captures, as closely as possible, the performance of

the actor, such that it can be recreated with maximum fidelity.

Figure 8: (a) Marker-based capture using a head mounted device [7]. (b) Passive multiview

stereo capture setup [8]

RETARGETING

The goal of the Retargeting step is to adapt the parameters obtained from the capture stage and

animating the virtual target character. The parameters used to drive this target character can

be different from the obtained capture parameters. This is a highly non-trivial task especially

when the target character isn’t a close replica of the actor and has proportions different from

the actor’s face. There are many approaches to Retargeting including the use of Radial Basis
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mapping [38, 57], Expression Cloning [58], semantic approaches [9, 59], Deformation Transfer

approaches [16] and Neural Networks for Retargeting [60].

Figure 9: Retargeting an actor’s facial expression onto multiple target characters using param-

eter parallel layers [9].
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1.2 Publications resulting from the PhD

The following publications related to this work were produced during my PhD research:

[61] S. Ravikumar, C. Davidson, D. Kit, N. Campbell, L. Benedetti, and D. Cosker, “Reading

between the dots: Combining 3d markers and facs classification for high-quality blendshape

facial animation.,” in Graphics Interface, pp. 143–151, 2016

[62] J. Serra, O. Cetinaslan, S. Ravikumar., V. Orvalho, and D. Cosker, “Easy generation of

facial animation using motion graphs,” Computer Graphics Forum, pp. 1467–8659, 2017

In addition, portions of the work described in this thesis were included in the following non-

refereed materials:

S. Ravikumar, ”Lightweight Markerless Monocular Face Capture with 3D Spatial Priors”,

(Under Review)

K. Reed, S. Ravikumar, D. Cosker, Towards the Generation of Personalized Facial Expres-

sions using 3D Morphable Models, Young Researchers Colloquium, Bristol Vision Institute,

UK, 2016

R. Botham, S. Ravikumar, D. Cosker, Extracting 3D Models from 2D Photographs using 3D

Morphable Models, Young Researchers Colloquium, Bristol Vision Institute, UK, 2017
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1.3 Organization of the Thesis

The work in this thesis is broadly split into two main chapters based on our contributions in

two significant aspects of Performance Driven Facial Animation — our contributions in the

Modeling phase of the pipeline and our contributions in the Capture phase.

Section 1 presents a general overview and introduction to the field of Facial Animation and

specifically Performance Driven Facial Animation and outlines the goals of the research in

this field along with the open challenges present in achieving these results. It also gives an

overview of the main components or stages involved in the process of Performance Driven

Facial Animation and the traditional approaches for addressing each of these components. We

also present publications resulting from this thesis in Section 1.2.

Section 2 presents a comprehensive and concise analysis of the literature done in the area

of Performance Driven Facial Animation over the last three decades. It lists out the various

approaches that have been taken in order to address the various challenges present in the Mod-

eling and Capture stages of the animation pipeline and also discusses the pros and cons of each

approach. A broad categorization of the numerous approaches to Facial Animation based on

the Capture approach is presented.

Section 3 presents our pipeline for automatically generating a complete personalized and ed-

itable Blendshape rig with actor specific nuances and ability to easily visualize and debug

results generated from our animation pipeline. Section 3.2 outlines in detail our approach for

generating a neutral face mesh of the actor starting from a single scan or alternatively, images

of the actor. This is the first step in our automated Blendshape generation pipeline. Section 3.3

then presents our automated pipeline that generates actor specific Blendshapes with nuances

unique to the actor. Finally Section 3.4 discusses our method to visualize and debug the results

of our animation using the rig that was generated using our pipeline.

Section 4 presents our approach and our contributions to the Capture stage of the Performance

Driven Facial Animation pipeline. 4.1 presents a detailed description of our marker-based

pipeline and discusses our approach for improving traditional marker-based capture by aug-

menting markers with additional texture patterns and improving the solve results using FACS

classification from video. 4.2 presents our markerless capture pipeline in detail and discusses

our contributions in the form of using 3D spatial and dynamic priors to improve solve results.

Finally Section 5 presents our conclusions and discussion of future work.
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1.4 Overview of Contributions

In this section, we discuss the novel contributions originating from the thesis.

Modeling - Representation of Digital Faces (Section 3)

In Section 3, we present our automated Blendshape generation pipeline and discuss various

improvements to the basic approach. Our novel contributions in this area are as follows:

• We outline our entire Blendshape generation pipeline starting from a single Neutral face

mesh, obtained either using a scanner or using multiple view geometry reconstruction,

all the way to an animatable Blendshape Rig in a Maya framework, complete with indi-

vidual blendshape controls.

• We present our automatic landmark detection algorithm (Section 3.2.2) for detecting

significant points on the face geometry using a HOG [63] based classification scheme

followed by a lip/eye contour tracing approach based on Iterative Conditional Modes.

We detect these landmarks in UV-space.

• In Section 3.3.4, we present our model for automatic generation of facial expression

Blendshapes, by learning a statistical model of Neutral face to Expression Space. We

compare our results with other approaches to generate Blendshapes from Neutral ex-

pression meshes.

Marker Based Capture (Section 4.1)

In Section 4.1, we present our marker-based capture pipeline. Our novel contributions are as

listed below:

• We propose a novel hybrid blendshape optimization (solve) which combines two modal-

ities of data: traditional 3D marker data and local facial expression classification based

on FACS [64] from video by utilizing the deformation of the sparse make-up patterns

between the markers.

• Both sets of information are integrated directly into our optimizer. This allows for im-

proved flexibility by letting just the markers drive the animation when needed and have

the classification influence the result when required, thus resulting in smooth and high

quality blendshape animations.

• Our classifier is automated and we are able to detect different intensities of Action Units.

• The classifier can be trained once and used on multiple performers.
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• Increasing the number of markers on the face introduces further issues in tracking. As

we use a texture based classifier trained for specific facial expressions our method is able

to handle these situations.

Markerless Capture (Section 4.2)

In Section 4.2, we present our markerless capture pipeline based on learned 3D spatial priors.

Our novel contributions are as follows:

• We present a lightweight monocular markerless capture method that achieves good qual-

ity animation parameters and does not require special equipment, controlled lighting

environments or complex training phases.

• We exploit easily available prior animation data obtained from 3D tracking systems and

use this in a density estimation framework to regularize our objective function and gen-

erate more plausible results. We enable further flexibility by learning separate prior

constraints for the upper and lower face regions.

• We combine initial estimates of 2D landmark points on the face based on an ensemble

of regression trees, with an Active Appearance Model for improved accuracy.

• We handle noise in input 2D features and in the estimation of camera extrinsic parameters

thus eliminating jitter in the resulting animation.

• We also present our lighting optimization approach that uses the inverse rendering equa-

tion to find the optimal values of light intensity and position thus enabling us to relight,

re-texture and overlay the mesh on the original video.

24



2 Background

2.1 History

Facial animation can be traced back all the way to the pioneering work of Parke et al. [18]

in 1972, who outlined a method of representing and animating human faces digitally. They

describe a polygonal model for a face created using photogrammetry, controlled by shape in-

terpolation. Parke et al., 1974 [65], followed this by developing the first parametrically con-

trolled face model. This work laid the foundation for a lot of the work in facial animation that

we see today. The early 1980’s saw some work on anatomically inspired muscle-controlled

face models by Badler et al. [66] who built a face model using masses and springs including

forces generated by muscles, and made use of the Facial Action Coding System (FACS) [67]

for measuring and indexing facial behaviours. Waters et al. [68] in 1987, describe a more gen-

eralized muscle model. Around the same time, Lewis et al. [69] used speech driven animation

which mapped a set of phonemes to mouth shapes of a parametric model. This was extended

by Cohen et al. [70] in 1993 to include coarticulation.

Williams [24], in 1990, introduced the method of ’Performance Driven Facial Animation’.

Since then countless works have built up on this method and presented multiple approaches to

both representing and animating human faces. The progress made in the realistic rendering and

animation of faces has been tremendous over the last few decades and near convincing results,

arguably indistinguishable from real faces in both look and motion, have been achieved [4, 71,

3]. Numerous different methods for tracking, modeling and retargeting have been proposed

over the course of these decades, each with their pros and cons. In this section, we cover these

different approaches and point out the strengths and weaknesses of these approaches.

2.2 Related Work

As mentioned previously, the process of performance driven facial animation can be delineated

into three broad stages, Capture, Modeling and Retargeting. The tracking or capture stage of

the performance driven facial animation pipeline deals with the acquisition of the data either

in the form of sparse or dense information which effectively ’captures’ and parameterizes in-

formation about the movement of the actor’s face, including facial expressions, lip-movements

and other subtle facial movements like wrinkles, bulges and twitches. The form that this ac-

quired data will ultimately take depends on the underlying representation that is specified by the

choice of Modeling approach, but the actual process of acquiring this data falls under the um-

brella of tracking. Widely varying methods for accurately tracking the face have been proposed
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over the years and while these can be reasonably categorized based on a few core distinguishing

traits in the approach, in practice there is a lot of overlap between methods and many meth-

ods use a combination of these varying approaches. Nevertheless, these works can broadly

be distinguished based on whether they are — sparse vs dense methods, active vs passive

methods, marker-based vs markerless approaches, real-time vs off-line approaches, monocular

vs multi-view methods and methods that use depth-sensing devices vs ones that use only 2D

inputs. To add to the complexity, a lot of these methods that share capture pipelines, might

differ in their choice of Modeling approaches. Modeling methods can broadly be categorized

as — Mesh Propagation approaches, statistical models based on PCA, Blendshape models and

physically inspired anatomical models that combine muscle activations with a polygonal skin

representation. Given that a clear taxonomy of methods is not straight-forward owing to there

being significant overlap, in the following sections we categorize the methods based on capture

techniques and point out when they differ and where they are similar both in their choice of

tracking and the modeling approaches.

2.2.1 Marker Based Methods

Williams [24], 1990, first introduced the idea of tracking physical markers placed on the face

in order to capture the performance of an actor. They obtain a single face mesh by scanning

a plaster cast of the actor’s face using the system of Cyberware, Inc. [72]. They stick retro-

reflective markers on the actor’s face, placed manually to avoid proximity to each other, and

track the movements of the face from a 2D frontal video input. They use a mesh deformation

approach where the single mesh of the face is deformed over the sequence using a set of

warping kernels distributed about the face. They make use of a beam splitting apparatus in

order to improve the reflection of light from the markers onto the camera, and assume that

there is little head movement and the view is always frontal. While this work pioneered the

area of Performance Driven Facial Animation, the results are very basic and the method is not

robust enough for practical use.

Guenter et al. [25], in 1998, presented a complete marker-based pipeline for the acquisition

and animation of a face by using multiple camera views of the face and reconstructing the

marker locations in 3D. They scan and digitize the actor’s face and use a mesh propagation

approach in order to deform the face through the animation sequence. They cover the actor’s

face using 182 fluorescent markers of different colors, placed along the contours of the face

and track the movement of these markers using 6 synchronized and calibrated cameras. The

actor’s face is illuminated using a combination of visible and UV light in order to make the

markers stand out. They make use of a color classifier to detect pixels in the video texture and
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track and label the centers of these markers throughout the video sequence and reconstruct the

3D positions of the markers. In order to animate the 3D mesh of the actor’s face, they use a

2 step process where they first use the marker positions to interpolate a set of evenly spaced

grid-points on the 3D face based on their neighboring markers and follow it up with a second

step where they deform the vertices of the mesh based on their neighboring grid-points. In a

post-process step, they obtain the final face texture by removing the markers from the video

texture from each of the 6 cameras by substituting the colored pixels with skin texture. While

their method provides good quality animations, they require studio settings, multiple cameras,

manually placed markers and a scanner in order to obtain the 3D mesh. Their method is not

real-time and requires complex post-processing for obtaining good texture information. This

makes it difficult to apply on a consumer level without costly equipment and expertise.

Choe et al. [46] attempted to bridge the gap between performance driven facial animation

and physically based modeling. They detailed an anatomical model of the face represented by

muscle activations and a skin surface. Their model consisted of 19 parallel and three sphincteral

muscles,and a rotate-able jaw. The skin surface deformation was calculated using a finite

element method. They drive this model using motion capture data obtained by reconstructing

twenty-four 3D markers on the actor’s face from three synchronized and calibrated digital video

cameras. They solve for the muscle activation parameters by solving for a linear model and use

these parameters to synthesize expressions by by sending the data to the finite element method.

As stated by [46], ”An advantage of using muscle actuation parameters is that retargeting

of an expression to other faces becomes a trivial job. This is based on the assumption that

even though muscle size and layout are different for each individual, people use the same

actuation pattern to make a similar expression. Another important advantage is that the muscle

parameters can be easily converted to higher-level control parameters such as Facial Action

Coding System or MPEG-4 Facial Animation Parameters.”

In 2005, Sifakis et al. [6] developed an anatomically accurate model of facial musculature,

tissue and underlying skeletal structure using volumetric data obtained from a living male

subject. This included a triangulated surface for each bone, a tetrahedralized volume and a

B-spline fibre field representation for each muscle and a single tetrahedral mesh for all the

soft tissue. This face model was driven by motion capture markers and controlled by muscle

activations and kinematic bone degrees of freedom. They were able to obtain visually plausible

and anatomically accurate deformations and their system was robust to outliers in motion data.

Furthermore, they show that their system can interact with external stimuli in a realistic manner.

Their template head model was created by a graduate student over a period of 6 months from

visible human data and this template is then morphed to fit data obtained from both laser and

MRI data to create a subject specific model. Their model creation and morphing process is
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quite work intensive and requires some expertise. It also includes eyes and teeth. The important

aspect of their approach is that the search for the optimal control parameters to fit the motion

capture data is done over the space of physically plausible configurations, parameterized by

muscle activations. The flesh is driven based on the muscle activations using a finite element

method. As their model is anatomically accurate, the obtained activations have a biomechanical

meaning to them making it useful in medical applications.

Borshukov et al. [48] in 2006, presented a facial capture pipeline that is very similar to the

work by [25] but they extend this work to include compression of the data which allows them

to achieve interactive rates of animation in the compressed space. Their system uses 8 IR

cameras plus 3 synchronized, high-definition, color cameras framed on the actors face as well

as an ambient lighting setup. 70 small retro-reflective markers are placed on the actors face.

The IR cameras track the light reflected from the markers and simultaneously the hi-def color

cameras capture the subtleties of the actor’s performance. The two data sources are aligned in

time and in space. They make use of a facial bone rig, instead of direct mesh propagation like

[25], and the rig is driven by the marker motion. The number of bones is equal to the number

of markers and the face is moved by using standard skinning approaches. They additionally

address lip-movement separately by assigning separate bones attached to the inner contour of

the lips which are manually adjusted by animators using the video as reference. They obtain the

texture in a fashion similar to [25] et al. by projecting the mesh into the different camera views

and then removing the markers by replacing them with skin texture. Their most important

contribution is that they highly compress the large data sets allowing them to achieve real-time

interactive rates. They propose a novel compression method based on a novel variant of the

PCA compression algorithm that varies the number of components used to represent data. They

go on to show the application of this compression by constructing a motion-graph for faces and

allowing for linear interpolation between poses at interactive rates.

Bickel et al. [51], in 2007, presented a complete marker-based pipeline that addresses multi-

scale representation and acquisition of facial geometry including wrinkles on the face. Their

method decomposes the facial features into fine, medium and coarse spatial scales, each rep-

resenting a different level of motion detail. They first acquire a static scan of the face using

a combination of a commercial scanner combined with photometric stereo. They also capture

high quality reflectance data including the texture albedo, spatially varying BRDF, and sub-

scattering parameters. A traditional motion-capture system using 6 synchronized cameras at

50 fps for triangulating marker locations in 3D is used and on top of this 2 synchronized high-

resolution cameras for tracking the wrinkles are added. They place 80 to 90 blue markers on

the face and mark expression wrinkles with a diffuse color. All the cameras are extrinsically

calibrated. The large scale motion is obtained from the marker data by deforming the high-
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resolution mesh using a linear shell based deformation. They use an image-based algorithm

for tracking wrinkles in video data, fitting 2D B-splines to the wrinkle valleys, and estimating

their cross-section shapes from self-shadowing effects. They then use a physically-inspired

nonlinear shell deformation model that, with the 2D data as input to synthesize medium-scale

3D expression wrinkles and bulging onto the large-scale animation. Like the previous works

before them, they assume uniform ambient lighting and that the subject faces the same direc-

tion through the sequence, with little movement. While this model is suitable for performance

capture and replay it does not provide intuitive parameters for animation control as the motion

is in the form of vertex displacements on the mesh.

Bickel et al. [73], 2008, extend the previous work to obtain a pipeline for real-time anima-

tion of highly-detailed facial expressions including proper parameterization of wrinkles so that

they can be efficiently stored and transferred to other face models that do not share the same

topology of the original mesh. Similar to [51], they calculate the large-scale motion using

a marker-based capture system, but they augment this with what they call ’Pose Space De-

formation’ which learns the correspondences between sparse measurements of skin strain to

wrinkle formations from a small set of example poses. Given the example poses, the corre-

sponding fine-scale details are extracted as the difference between the examples and the results

of the large-scale deformation for the same poses, and are stored per-vertex in local tangent

frames. They construct a feature graph who’s edges constitute the regions where skin strain

is measured. For each new pose in the animation, they compute the skin strain according to

the deformed feature graph and use this information to generate wrinkles. Their pose space

deformation is learn as a scattered data interpolation problem using radial basis functions. The

transfer of wrinkles to other face models is done by first establishing correspondences between

the models using a non-rigid deformation step after which the corresponding feature graph for

the new face can be calculated in a straight forward manner.

Ma et al. [74] in 2008, present a method of Polynomial Displacement Maps, quite similar

in spirit to [73], but their method captures not only wrinkles but also dynamic fine-scale pore

detail. The method consists of an analysis phase where the relationship between motion capture

markers and detailed facial geometry is inferred, and a synthesis phase where novel detailed

animated facial geometry is driven solely by motion capture markers. They use a combination

of structured light and photometric stereo to obtain high-resolution face scans and a stereo

pair of high-resolution high-speed cameras synchronized to a video projector and a spherical

gradient illumination device similar to that of [75]. They place 178 tracking dots on the actors

face so that each frame of motion can be registered in a common texture space and also serve

as the basis for the parameter space for facial detail synthesis. Several short sequences as

the subject transitions from the neutral expression to various strong expressions are captured
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and they select between 10 and 30 frames to use as input to the fitting process. They derive

the base mesh using a linear thin shell interpolation technique to deform a neutral mesh to

the basic shape of the current expression, as in [51]. However, instead of using the relative

length of each edge in the feature graph as in [73], they approximate 2D strain as the difference

between the standard deviation of the projected positions of vertices in the current deformation

from the reference neutral expression. Given new poses, they are able to first solve for the base

mesh shape and synthesize both medium scale wrinkles and fine-scale pore details.

Huang et al. [76] describe a face capture pipeline using a marker based system that allows users

to automatically select a minimal set of base poses from a performance that can then be used in

a Blendshape representation. Their method captures fine-scale details including wrinkles and

pore-level details and matches both the spatial resolution of static face scans and the acquisition

speed of motion capture systems. Their pipeline uses the Vicon [7] marker based system

using 12 cameras and 100 markers on the face, combined with an RGB camera for reference

to capture a performance of an actor. The selection of the minimal set of poses from this

sequence is posed as an energy minimization problem. The approach is essentially a greedy

algorithm that adds poses to the basis set one by one if it reduces the overall reconstruction

error and keeps adding poses until a threshold is reached. Once the set of poses has been

selected, they have the actor perform those specific poses again and scan them using a laser

scanner in order to obtain high-resolution meshes including pores and wrinkles. They then

register the markers for those poses with the scans in a 2-step energy minimization framework

where they first solve for the rigid transformation between scanned pose and markers, and then

solve for the non-rigid transform in the form of a weighted sum of the selected marker poses

and perform these steps iteratively until convergence. Finally all the scans are put into dense

correspondence using a 2-step process involving a Laplacian Deformation technique for large-

scale deformation, followed by a fine-scale deformation for registering wrinkles and pores.

This fine level registration is done by splitting the face into 8 separate regions and projecting the

3D vertices into a cylindrical space to obtain images and then performing optical flow in image

space for each of the regions with their closest neighbors. The offsets are then projected back

to 3D in order to obtain the fine-scale registration between the poses. These high-resolution

base poses are then utilized as Blendshapes to solve for the entire performance.

Matthews et al. [31], in 2011, presented a region-based model that is composed of a set of PCA

sub-models which are independently trained, but share boundaries. They show that the region

based model generalizes better than its holistic counterpart when describing motion capture

data. The sub regions allow us to interactively modify the model at a local level. The method

solves for all the sub-regions simultaneously and enforces boundary consistency in a soft least

squares sense which allows discrepancies at the inter-model boundaries. The decomposition
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of the face into regions is determined automatically from training data, the only requirement

being that each region shares at least one vertex with at least one other region. They achieve

this automatic segmentation by grouping vertices on the face that are highly correlated and

ones that are physically close to each other. In order to do this, they use the data from a face

mesh pre-fitted to a motion capture data consisting of FACS sequences, emotional speeches

and range of motions. They calculate a normalized correlation matrix of all the vertices on the

mesh separately for the x,y and z axes and average it into a single correlation matrix. They

also calculate the inter-vertex distance on the mesh using an isomap algorithm to form another

matrix. These 2 values are combined using a weighting factor resulting in an affinity matrix.

Finally spectral analysis using k-means algorithm is performed on the affinity matrix resulting

in segmentation of vertices. The weighting factor controls the number and size of the segments

on the face. The main limitation of the method is that the expressiveness of the model is limited

by the training data.

Bhat et al. [39] present an artist-friendly performance capture pipeline that focuses on the

perceptually important contour features on the face. They augment a traditional marker-based

system with information obtained from the texture in order to improve their solve results. They

incorporate the silhouette contours of the eyelids and the inner mouth to reconstruct accurate

animation. They use an effective heuristic to dynamically associate the tracked curves with

edge contours on the mesh at every frame. The system uses two synchronized HD cameras

attached to a helmet worn by the actor. These cameras are static with respect to the actor’s

face. Markers are placed on the actor’s face and in addition, they manually trace the outline

of the upper and lower eyelids as well as the silhouettes of the inner lip. In order to match the

curves with the face vertices, they choose an edge contour that has the maximum number of

silhouette edges, where a silhouette edge is defined as an edge shared by a visible and invisible

polygon. They then find correspondences between contour vertices and the curve by projecting

the contour vertices into the image, aligning the end points of the contour and the curves and

then use an arc-length based mapping. Their method also makes use of an additional prior

which takes into consideration the fact that eyelids slide on the surface of the cornea. They

incorporate this prior by projecting the eyelid curves onto the cornea from the camera to obtain

a 3D curve which they also use within their 2 step optimization. A standard Blendshape solve

is used to obtain the basic shape and finally, in order to improve the fit, an out-of-subspace

corrective is performed in the form of an energy minimization that uses a cotangent weighted

Laplacian constraint for regularization. This enables them to accurately capture shapes that are

not achievable using the Blendshape model itself.
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2.2.2 Image Based Methods

Yacoob et al. [77] in 1995, proposed the use of local parameterized models of image mo-

tion that can track both rigid and non-rigid facial motions. They interpret these parameters

to recover high level semantic interpretations of facial motions, including recognizing the six

universal facial expressions (surprise, sadness, anger, happiness, disgust and fear). Their core

assumption is that parameterized models of image motion within a region can be represented

by a low-order polynomial. Within small regions on the face, they use an affine model to de-

tect translations, divergence, curls and deformation of facial features. They further augment

this model with parameters for yaw and pitch in order to better detect rigid planar motion of

the face in the video. Non-rigid motions such as curvature of the eye-brows and mouth are

captured with the addition of another parameter to the affine model. The curvature parame-

ter is only able to capture very coarse curvatures and cannot deal with asymmetry but is able

to capture the essential motions for recognition of the basic facial expressions. They recover

these parameters from the image using a robust regression approach. The parameters that are

obtained in this way are then used to derive mid-level facial motions such as horizontal or ver-

tical movement of the mouth or eyebrows, rotations of the head and also high-level expression

recognition. The obtained facial expressions can be divided into temporal segments including

beginning, apex and end.

Essa et al. [78] drive an anatomical muscle based model, combined with a polygonal skin

mesh using a monocular video input. Their system uses optical flow measurements of surface

motion as input. They automatically detect features around the eyes, nose and lips in the

image and use these to register their face image with the canonical face mesh. This enables

them to extract additional feature points on the image that correspond to fixed nodes on the

face mesh. After this initial registration, optical flow is used to obtain pixel-by-pixel motion

estimation that tracks the movement of the head and the face, as long as there isn’t excessive

head motion. The motion vectors obtained from this are projected onto the mesh in order to

obtain the deformation of the skin from which the muscle activations required to produce that

deformation is estimated. In their work, they make an assumption that the input video contains

a limited set of facial motions.

Terzopoulos et al. [79] proposed the concept of a dynamic, elastically deformable model for

inferring the structure and motion of non-rigidly moving objects from images. The proposed

model has intrinsic constraints that enforce certain properties on it, such as surface coherence

and symmetry around an axis with room for deviations, and is subject to extrinsic forces which

are inferred from the images. They show that this model can be extended to temporally varying

non-rigid objects and to multiple views. [80] in 1996, propose a method for the integration
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of the deformable model with optical flow as an external constraint and drive a face model.

Their deformable model is a polygonal face mesh with 10 component parts and the shape

and the motion of the face model is specified by parameters. The variations in the face are

specified using a number of deformations — translations, rotations, scaling and bending. Each

deformation on the face is specified by a small number of parameters and is applied locally

to parts of the face ranging from a single part to the whole face. This model is produced by

a designer who carefully combines these deformations. Their system uses optical flow and

forces computed from edges simultaneously. The tracking of the edges is facilitated by prior

knowledge of what locations on the face model are likely to produce edges in the image. They

only make use of a subset of image points to calculate the optical flow. As they make use

of optical flow, they make an assumption of photometric invariance to satisfy the optical flow

constraint.

Most of the previously mentioned image based approaches are able to detect coarse expressions

and coarse movements but do not achieve the quality required for realistic facial animation. The

motion is restricted to coarse and general motions and are unable to capture subtle movements

and nuances.

Pighin et al. in 1999 [81] present a method to automatically recover the position of the face

and the facial expression from each frame of a video sequence. Their method fits a linear com-

bination of 3D texture-mapped models to the video, each one corresponding to a basic facial

expression — joy, anger, sadness, surprise, disgust, pain. The face is parameterzed using 2

subsets of parameters, one subset for the translation and rotation parameters and one corre-

sponding to the coefficient weights for the linear combinations. They constrain the sum of

these coefficient weights to sum to 1 using what they call ’expression parameters’ and provide

a mapping from the expression parameters to the weight parameters. In order to span a wider

range of facial expressions, the face is split into several regions that are controlled indepen-

dently, each with separate expression parameters. Each of the basic expressions are rendered

and these renderings are blended together using the weights to produce the final image. The

goal of the optimization is to find parameters yielding a rendering that best resembles the target

image. Finally they discuss the applications of their methods for relighting, changing perspec-

tive and adding textures on top of the face in the video.

Cootes et al. [29] in 2001, described a method for matching a statistical model of faces to

images. Their statistical appearance models are generated by combining a model of shape

variation with a model of texture variation. The training data consists of face images marked

with points defining the main features which are aligned across images and a statistical model

of shape is built. The training images are then warped to the mean shape to obtain a shape-

free patch which is used to obtain the texture vectors which are then normalized to obtain the
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texture model. The correlations between shape and texture are learned to generate a combined

appearance model. Their method uses a multi-resolution model based on a Gaussian image

pyramid which fits the model from coarse to finer resolutions allowing for improved speed

and robustness. Finally, they present an iterative approach for matching the statistical model

to a new image. This method makes use of learned correlations between errors in the model

parameters and the resulting residual texture errors and converges very rapidly and reliably

when given a reasonable initial starting position.

Bregler et al., 2002, [82] present a Blendshape based method that decouples the capture and

retargeting phase so that only the Blendshape weights need to be transferred from source to

target. Their method automatically tracks facial features from a source video sequence and

extracts key shapes from the tracked data. Their feature tracker is trained on an annotated

database labelled with facial contours. They present an automatic method to choose appropri-

ate key shapes which they use within a Blendshape framework to represent the entire animation

sequence. Their method chooses the optimum number of shapes to be used based on multiple

heuristics based on maximum spread along principle components, clustering in low dimen-

sional space and choosing shapes that lie along a convex hull in low dimensional space. They

evaluate each of these methods. For the retargeting of the recovered facial motion to the target

shape, the user creates new key shapes for the target model which resemble the key shapes

for the source animation and the decomposed weights for the key shapes in the source video

sequence are used to interpolate the target facial expression.

Chai et al. [83] in 2003, showed that preprocessed motion capture data can be used to generate

rich life-like facial actions and that the user can control these actions by using a single video

camera. They go on to present a retargeting technique that is independent of the complexity of

the character model. Essentially, their method uses knowledge embedded in the motion cap-

ture data in order to convert the low quality and noisy control signals into high quality facial

animations. The motion capture data for the pre-processing is obtained using a Vicon system

and 76 reflective markers, combined with a laser scanner for obtaining the surface model of

the capture subject. Each motion capture frame is associated with animation control param-

eters obtained from the data. During capture, control paramters are obtained automatically

from features detected from the video. The system extracts 15 scalar quantities describing the

movements of the mouth, nose, eyes, eyebrows based on the positions of the features which are

used to map to the high-quality motion data. The motion synthesis consists of a normalization

step that corrects for differences between the control parameters in the tracking and the motion

capture data, followed by a data-driven filtering of the noisy data and a data-driven synthesis

approach to convert the filtered data into high quality motion. The key idea of the filtering

technique is that they use a low-dimensional linear subspace to approximate the local region of
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the high-dimensional nonlinear manifold. Their facial tracking system runs in real time at 20

fps and is user-independent.

Vlasic et al. [84] in 2005 demostrated a multilinear model of 3D face meshes that sepa-

rately parametrizes the space of geometric variations occuring due to identity, expression and

visemes. These parameters are used to drive a 3D textured face mesh which can be seamlessly

rendered back into the target footage. Their method also allows for editing the performance in

order to change identity, expression and pose independently. Their multilinear model is con-

structed by putting a range of 3D face scans performing multiple facial expressions including

neutral, smile, frown, surprise, disgust and others. They also present a method of imputation

for filling in missing data in the tensor using a PPCA [85] formulation. The system is able to

automatically set model parameters from video data using optical flow in conjunction with a

weak-perspective camera model and obtains the texture from the video itself. Their method

is able to produce video-realistic results for new source and target subjects even with a model

estimated from small datasets.

Cootes et al. [86] in 2006 presented the Constrained Local Models approach, that extends

the method of [29] to generate likely feature templates iteratively instead of approximating

image pixels directly. Their method is more robust and accurate than the original AAM search

method. The system learns the variation in appearance of a set of template regions surrounding

individual features. Their joint shape and texture model is built from a training set of 1052

manually labelled faces. Given a new input and current image points, the template generation

process fits a joint model of shape and appearance to regions sampled around each feature

point. These templates are then used to search using Normalized Cross Correlation, generating

a set of response surfaces. The parameters of the shape model are then optimized to maximise

the sum of responses at each point and the search then proceeds iteratively.

Chai et al. [87] presented an interactive system that allows any naive user to model realistic

facial expressions quickly and easily. Their system learns facial priors from pre-recorded facial

expression data which are used to generate natural facial expressions that match the user’s con-

straints. The facial modeling problem is formulated in a probabilistic framework by combining

the user’s constraints with the facial priors. Their pre-recorded data is obtained using a Vicon

system using 55 reflective markers and consists of the subject performing a wide variety of

facial actions including the basic facial expressions and speaking motions. They convert these

recorded motions into a set of deforming models and use PCA to learn a reduced subspace rep-

resentation of the data in an offline step. The user’s constraints can be specified iteratively as

either point, stroke, distance and curve constraints which can be specified in 2D screen space

until desired results are obtained. At run-time, the system solves for the maximum a poste-

riori solution that satisfies the user’s constraints and the statistical properties of the captured
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data. They go on show the application of their method for facial expression transfer between

different subjects.

Furukawa et al. [88] in 2008, proposed an approach for non-rigid and markerless motion

capture from synchronized video streams acquired from calibrated cameras. Their method

represents the geometry of the observed scene using a polyhedral mesh of fixed topology,

which is constructed in the first frame using stereo reconstruction software. The deformation

of the face is captured by tracking the vertices of the mesh over time by optimizing for a local

rigid motion in the neighborhood of each vertex and a global non-rigid motion for the whole

mesh. The tracking algorithm consists of a local motion estimation around each vertex which

is decomposed into normal and tangential components and made robust using an expansion

strategy based on spatial consistency, a global deformation that is regularized for smoothness

and tangential rigidity and finally a filtering step to remove erroneous motion estimates. These

three steps are iterated for each frame. Their method is able to handle complex, long range

motion and also errors due to occlusions. The method assumes locally rigid motion and is

not designed for non-rigid deformations with much stretching, shrinking or shearing which are

common in facial expressions. [89] go on to show that the tangential rigidy assumption made

in the previous work does not work well with intricate facial expressions and present a solution

to this by modeling the tangential non-rigid deformation.

Bradley et al. [8] present a passive multi-camera setup that leverages the pores, blemishes and

hair follicles on the actor’s face and uses them as trackable features. Their method makes use

of an array of cameras and does not require any template facial geometry, makeup, markers or

active lighting. The setup consists of 14 calibrated and synchronized HD cameras arranged in

7 stereo pairs and each pair is zoomed on a small patch of the face surface in high detail. They

make use of an iterative binocular stereo method to handle outliers and reconstruct each of

the 7 patches and then combine them into a single high-resolution mesh. They then propagate

a single reference mesh through the entire sequence using optical flow in order to obtain a

consistent temporal reconstruction. The drift inherent in the optical flow is detected in the

per frame texture maps and corrected. Temporal drift in the 3D geometry appears as a small

2D shift in the texture domain, which is detected by optical flow again. In order to handle

mouth movements during high-speed talking motions, they use a sparse set of points around

the mouth and impose positional constraints on these in image-space. Finally, they post-process

the sequence to provide a smooth realistic facial animation using a saliency based smoothing

technique which preserves more salient features while smoothing the less salient ones.

Beeler et al., 2011 [5] make use of ’anchor frames’ to handle drift in their optical flow based

passive approach. They leverage the fact that facial performances contain repetitive subse-

quences and they automatically identify frames which contain facial expressions similar to a
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reference frame. The system treats each segment between these anchor frames independently

allowing for parallelization and also for splicing unrelated clips. They use a set of seven syn-

chronized cameras and uniform illumination. The anchor frames are detected automatically

using normalized cross-correlation and the sequence is partitioned into clips. Image pixels

from the reference frame are then tracked to the anchor frames first and then sequentially to

all the non-anchor frames. The reference mesh is then propagated through the sequence using

the optical flow motion field, providing an initial estimate of the face motion. This is refined

further in two stages – independently on each frame to optimize for photometric consistency

and smoothness and across frames for temporal coherence.

Saragih et al. [90] in 2011, presented a method for real-time facial puppetry. Their system runs

in real-time and does not demand any special hardware. The actor’s face is tracked using a real-

time 3D non-rigid tracking system and expression transfer is achieved by learning a mapping

from user expressions to avatar expressions. It consists of an offline phase where a basis of

variation that captures changes in shape and texture is learned from an annotated database of

images. A mapping from neutral facial shapes to a set of discrete facial expressions is learnt

from this same database and is used to generate synthetic facial shapes for both the user and

the avatar. In the online phase, the user’s face is tracked in order to obtain the shape and texture

which are then mapped onto the avatar using the mapping learned in the offline phase. Their

system also provides for a failure detection mechanism that allows it to recover from cases

where it fails to track the face by using a linear support vector machine to distinguish between

aligned and misaligned configurations. Gaze tracking is performed by detecting the pupil.

Valgaerts et al. [56] show that good quality facial capture can be done in uncontrolled and time-

varying lighting even in outdoor scenes using just a binocular stereo rig. Their system tracks a

coarse face template through the binocular sequence in order to provide a sequence of coarse

meshes that are in full correspondence with each other using an image based scene flow method

that makes use of brightness constancy assumptions on image pixels across cameras, geometric

relations enforced by epipolar constraints between the cameras and smoothness constraints for

regularizing the motion. The mesh is further refined by projecting it back into the image

and using optical flow to detect corrections which are applied to the mesh. In a second pass,

fine-scale time varying details such as wrinkles and folds are added onto this coarsely tracked

mesh sequence. The algorithm makes use of shading cues in a two stage process where a

clustering approach is used to obtain albedo groups on the face which are used to estimate

the albedo values and incident lighting per frame, using which the coarse geometry is refined

by displacing each vertex along its normal in a MAP framework. Any remaining flicker in

the animation owing to differences in surface normal direction across frames is handled by

averaging normals over a temporal window and adapting the geometry accordingly.
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Garrido et al. [36] present a lightweight approach that makes use of a single monocular video

input and are able to generate a high quality output animation with fine scale details using a

Blendshape model. They track a few sparse landmark feature points on the face reliably using

forward and backward optical flow combined with automatic key-frame selection based on

local binary patterns for robustness. The pose and facial expressions are estimated from these

sparsely tracked points on the face in an iterative fashion. Temporally coherent dense motion

fields tracked from video combined with a smoothness constraint is then used in order to refine

the pose and facial expression. Fine scale details are then added on top using a shape from

shading approach.

Beeler et al., 2014 [91] learn a model of expressiveness for an individual that encodes infor-

mation about subtle spatial and temporal deformation details specific to that individual. This

information is learned from a high-resolution facial capture system that is used to acquire a

representative performance of that individual in which they explore the full range of facial

motion. This information is then used for adding fine-scaled details and expressiveness to

a low-resolution capture sequence. The system also leverages the timing information in the

database and uses it to enhance facial key-frame interpolation to include non-linearities in mo-

tion. They use the method of [5] in order to obtain their high-resolution capture database and

then perform a frequency separation step in order to isolate high-frequency components of the

performance. They encode this information in a shape-space defined in deformation gradients

representing the stretching and rotations of triangles which allows for matching, projection

and interpolation. Given a new performance, each frame is first brought into correspondence

with the database geometry, encoded into shape-space and projected into the database shape-

space in a matching step after which the relevant high-frequency information is interpolated

and added onto the original animation.

Shi et al., 2014 [92] present an end-to-end facial capture system that makes use of a multilinear

face model and is able to reconstruct the pose, large-scale facial deformation and fine-scale

details from uncontrolled monocular videos. This includes a facial feature tracking algorithm

based on a per-pixel classification scheme using a random forest classifier that attributes a

probability to each pixel of being an important facial feature. Their system then makes use

of a preexisting database of labeled images in order to search and obtain closest examples.

They combine this with an Active Appearance Model and and facial priors in order to obtain

the tracked features. The large-scale motion of the face is obtained by finding the appropri-

ate identity and expression parameters of the multilinear model in a space-time optimization

framework regulated by smoothness and expression/identity priors. Finally, the fine-scale de-

tails, unknown incident lighting and face albedo are estimated by minimizing the inconsistency

between hypothesized and observed images and obtaining per-pixel normal maps. The process
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is iterated by refining the large-scale geometry using the per-pixel normal estimates and then

updating the normal maps with the large-scale deformation again.

Kemelmacher et al. [93] also present a method that takes an uncontrolled input video and

reconstructs high detail 3D shapes for each video frame. They do not aim for geometrical

accuracy to ground truth, but rather attempt to obtain convincing reconstructions. Their method

leverages the large amounts of photos which are publicly available on the Internet and use this

to obtain an average face geometry of the individual and also its appearance under a subspace

of illuminations as described in [94]. Their pose estimation is done using an iterative algorithm

that uses optical flow to find correspondences between projected mesh and the 2D image and

made temporally coherent by averaging pose estimates across neighboring frames. They then

use a novel 3D optical flow system that computes dense correspondence between the mesh

and the video for every frame and deforms the reference mesh in order to fit the video. High

frequency details are added on top of this basic deformation by further deforming the mesh

such that the rendered mesh fits the shading in the video as closely as possible.

Cao et al., 2013 [33] presented a method for obtaining real-time performance capture from

monocular input. Similar to our approach, they track 2D points but instead of fitting directly

to the 2D features, they train a user specific two-level boosted regressor trained on labelled

2D points and corresponding 3D shapes, in order to map from 2D to 3D features at run-time.

They then fit a Blendshape model to the obtained 3D features by iteratively solving for trans-

formation parameters and expression weights. Their method requires a training phase where

images of the user in different poses and expressions are captured. Cao et al., 2014 [34] extend

the previous work to be independent of a user and instead learn a regressor from public image

databases. They infer both the 2D facial landmarks and the 3D shape of the face simultane-

ously. Their algorithm adapts to the user’s face at run-time by solving for the user-specific

Blendshapes and the expression co-efficients in an iterative manner. Cao et al. 2015 [35] en-

hance a low-resolution tracked mesh with medium-scale wrinkle details which are generated

by local regressors trained on high-resolution scan data. They require a one-time training phase

in order to learn the mapping from UV space to vertex offsets and can be applied to an unseen

actor at runtime.

2.2.3 Structured Light Approaches

Wang et al [55], in 2004, presented a method that uses high speed and high-resolution 3D

dynamic data and fits a deformable mesh to the data in order to obtain good quality animations.

Their approach is multi-resolution as they first track a low resolution mesh across frames by

dividing the model into regions and controlling each region using a few parameters in order
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to obtain coarse geometry. This coarse geometry is used to initialize the high-resolution mesh

which is then fit to the frame data using non-rigid registration in order to obtain expression

details. They then go on to present a method that learns a generative model from a set of facial

expression performances from multiple people. This model facilitates the decomposition of

facial expression into content of the expression vs individual style. Their method is based on

the embedding of the facial expression manifolds non-linearly into a low dimensional space

using Locally Linear Embedding, where all the facial expressions are normalized to achieve

a ’unified embedding’. Non-linear mappings are then learned from this embedded space to

the original expression space which allows for separation of personalized style. They go on

to show examples of how this style can be transferred across individuals and also synthesize

novel styles.

Zhang et al. [52] in 2008, presented a system comprising of 6 synchronized video streams — 4

monochrome and 2 color — combined with two video projectors that project grey-scale stripe

patterns onto the face, in order to track a mesh consistently and with correspondences across

the entire facial performance. A novel space-time algorithm is introduced which overcomes

fitting deficiencies by making an assumption that disparity is nearly constant over a 3D space-

time window and the depth is optimized over this entire window leading to improvements

over standard stereo approaches. Their algorithm begins by fitting a template mesh to the first

frame and then tracking the template through the sequence such that the shape matches the

depth input and the vertex motions match the optical flow fields calculated between the frames

of the color image streams. They then go on to show a real-time technique ( faceIK ) for

editing the face to produce new expressions by exploiting correlations in a set of input meshes

to propagate user edits to other parts of the face. Finally, they present a method to exploit

the facial dynamics captured in their reconstructed sequences to produce tools for generating

random facial sequences and for data-driven interpolation of user specified key-frames.

Li et al. [95] in 2009, presented a method that separates the large scale facial motion from

small-scale facial dynamics. The make minimal assumptions about the dynamics of the motion

and without requiring an underlying physical model or kinematic skeleton. A static acquisition

method is used to reconstruct the initial template which is rigidly aligned manually with the

first frame of the sequence. They propose a two-scale approach to reconstruct the sequence – a

template registration stage captures the large scale motion by fitting a coarse template to every

frame of the scan sequence while making use of detail coefficients estimated in the previous

frame to enable locking and improving alignment accuracy, followed by a fine-scale detail

synthesis step obtained by minimizing an energy resulting from point-to-point correspondences

obtained between mesh vertices and scans along the vertex normals subject to a regularization

constraint. In order to transfer details to occluded regions, they perform a separate pass that
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aggregates detail coefficients using an exponentially weighted moving average which ensures

that the influence of past detail decays quickly allowing for the handling of transient details like

wrinkles. The detail aggregation is performed sequentially once forward and once backward

allowing for back-propagating details seen in the future.

Weise et al. [53] in 2009, developed a system for live facial puppetry using a structured light

scanner, thus enabling high-resolution and real-time facial expression tracking and also allowed

for transfer of expressions onto another person’s face. Their system consists of an offline

phase where a generic template mesh is fitted to a sequence of expressions by the actor and a

person specific linear model is learnt and an online phase where the reduced dimension linear

space is used for online facial tracking and expression transfer. During the offline phase, a

face model of the actor is built by having the actor turn his head in front of a scanner with

a neutral expression after which a generic template mesh is fit to the reconstructed face with

manually labeled landmarks for assistance. The actor performs 26 different facial expressions

including long spoken sentences and the template is tracked through the entire sequence. This

tracking stage involves optical flow for enhancing accuracy, a mouth segmentation stage for

improved tracking around the mouth region, a rigid chin alignment step and separate eyelid

tracking. Once the offline tracking is complete, Principle component analysis is used to obtain

a reduced dimensionality and the face is manually segmented into subparts to remove global

dependencies. Using this reduced space, the online tracking is achieved with around 15 fps.

Finally, to enable facial puppetry, a linear subspace for the target face is calculated such that

the face can be driven by the same coefficients as the actor’s PCA model.

Ma et al. [3], in 2010, demonstrated the ’Digital Emily’ project which aimed to cross the

uncanny valley by creating a photo-realistic rendering of a 3D face captured using the USC

ICT’s Light Stage technology. The project succeeded in generating the first photo-realistic

digital face to speak and emote convincingly at medium close-up, although the process involved

a lot of manual interference. The actor’s face was captured with 15 stereo photographs using

off-the-shelf high quality still cameras under different illumination conditions in order to obtain

the geometry and the reflectance information. Colored stripe patterns were projected onto the

onto the face to facilitate robust pixel matching for the reconstruction. The skin texture detail

is obtained by embossing the specular normal maps on top of the 3D mesh by minimizing the

difference between the geometric normal maps and photometric specular normal maps. The

actor’s face is then scanned in 33 different facial expressions loosely based on the FACS coding

system and these scanned expressions are used in a Blendshape framework. The obtained

scanned and netural mesh are cleaned up manually to obtain a consistent re-topologized mesh.

The face rig also contained displacement maps obtained from the original facial expression

scans and these were blended in using the same weights assigned to the Blendshapes per frame.
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This rig was fit to a monocular video of the actor. The 3D pose of the actor was set manually

for multiple frames and optical flow was used to calculate the pose in between these frames.

The lighting of the environment was obtained using a HDR light-probe. The face was re-lit

and re-rendered into the video and a few edits were made to facilitate blending around the

boundaries.

Ma et al. [71] in 2013, attempt to improve upon the ’Digital Emily’ project with the ’Digital

Ira’ system. While ’Digital Emily’ was rendered offline, it involved just the front of the face

and was only medium close-up, in the ’Digital Ira’ project, they aim to render in real-time,

from any viewpoint, any lighting and even under very close range. This system was run in a

production pipeline achieving 180 fps. The actor was scanned in 30 high-resolution expres-

sions using the Light Stage X system in order to obtain 0.1mm resolution geometry and 4K

diffuse and specular reflectance maps per expression. These expressions were merged into an

artistically built back-of-the-head model. The actors lines and facial expressions were shot

under seven views of 30 fps videos. They then use their Vuvuzela tool to interactively corre-

spond all expression texture coordinates to the neutral expression, which was retopologized to

a low-polygon mesh. Their offline animation solver creates a ’performance graph’ from dense

optical flow between the video frames and the expressions and then computes dense optical

flow and 3D triangulation over the sequence and calculate the Blendshape weights per frame.

Surface stress values are used to blend in the diffuse, specular normal and displacement maps

from the high-resolution scans per vertex at run-time.

Fyffe et al. in 2011 [27] present a ’Comprehensive’ facial capture pipeline and list out a few

factors that they denote as essential for a comprehensive framework of facial capture — Dy-

namic capture, Full facial coverage, Detailed geometry, Detailed reflectance and automatic

processing. They go on to present a system that allows reproduction of the performance which

can be rendered from novel viewpoints, lighting conditions and photo-realistic rendering qual-

ity. Their system consists of five high-speed cameras placed in an ’M’ formation in front of

the actor allowing for full coverage and leeway for head movement. They capture the actor un-

der active gradient illumination and from multiple cameras in order to estimate the reflectance

function at each pixel. The estimated geometry is then merged with the reflectance data. This

process is repeated for every frame of the sequence. Notably, they do not consider temporal

correspondence in this system. Their present a novel heuristic for estimating detailed facial

reflectance from gradient illumination photographs and a novel geometry optimization frame-

work that maximizes a likelihood function that combines multi-view stereo and photometric

stereo using a multi-resolution belief propagation approach.

Weise et al. in 2011 [96] presented a face tracking algorithm that combines 3D geometry and

2D texture registration with dynamic Blendshape priors obtained from existing facial animation
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sequences. Their method works even in spite of noisy depth input data. A reduced facial

expression model facilitates real-time processing. In an offline stage, the Morphable Model of

[97] is used to register the mesh to the neutral face expression of the user in order to obtain the

geometry. Facial expressions of the user are scanned and registered to the neutral mesh using

a non-rigid registration approach with texture constraints around the mouth and eye regions to

improve results. The user specific Blendshape set is generated automatically using the method

of [17]. During runtime, unrealistic faces are prevented by regularizing the Blendshape weights

with a dynamic expression prior computed from existing Blendshape animations from previous

captures. A window of consecutive frames is considered in Blendshape vector space in order

to exploit the temporal coherence of the animations. Their system makes use of a Mixture of

Probabilistic Principle Component Analysis method in order to adequately capture the non-

linear structure of the dynamic expression space, whilst also enabling real-time performance.

The parameters of the MPPCA are estimated in the latent space of animations using a PCA and

an Expectation Maximization framework.

Baltrusaitis et al. [98] in 2012, developed a 3D Constrained Local Model (CLM-Z) for tracking

of facial features that integrates both depth and intensity into a unified framework. They also

present a method to combine a rigid head pose tracker with their CLM-Z method and extend

the generalised adaptive view-based appearance model (GAVAM) to use non-rigid tracking

information leading to more accuracy. The use of depth data mitigates the effect of lighting

variations and inconsistency which is a problem in purely video based methods such as the

original CLM method. Their system adapts a two step CLM fitting strategy where an exhaus-

tive local search is performed around the current feature point estimates leading to a response

map for both intensity and depth features around each feature point and then iteratively updat-

ing the model parameters until convergence is reached.

Li et al. [30] in 2013, introduced a real-time capture framework that uses an adaptive PCA

model that learns correctives on-the-fly specifically for the actor’s facial expressions using in-

cremental PCA based learning. This eliminates the need for a training phase or an offline phase

where the system adapts to the user and the capture improves during the performance instead.

Similar to [96], they obtain the neutral face shape by fitting a Morphable Model of faces to the

neutral face accumulated scans and follow it up with a non-rigid deformation to obtain person

specific details. They enhance this fit using 2D feature correspondences using the Live Driver

software [99]. The initial Blendshapes, with crude approximations of the actor’s expressions,

are obtained using the deformation transfer algorithm like in previous works. During run-time,

the Blendshape model is fit to the scans and followed by a Laplacian deformation algorithm,

both making use of 3D and 2D point constraints. In order to train the correctives during run-

time, they collect the new facial expression samples that fall out of the currently used adaptive
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PCA space and these samples are used to add the corrective shapes incrementally to the adap-

tive PCA space using incremental PCA. These correctives adapt to the user’s face and enable

tracking with increased fidelity.

Bouaziz et al. [37] in 2013, attempt to consumerize facial performance capture by introducing

a method that does not require any user-specific training or any manual assistance. Their

system is quite similar to the one by [30] and jointly solves for both the 3D expression model

of the user and for the dynamic parameters. Real-time performance is achieved by the use of a

subspace parameterization. As more and more of the user’s expressions are observed during the

performance, the DEM progressively adapts to the user. A previously hand modeled template

Blendshape model with the expression semantics that need to be transferred to the actor’s

model. A Morphable Model is used to obtain the neutral facial expression, after which a variant

of deformation transfer is used for generating initial Blendshapes. Additional deformation

fields are applied to the Blendshapes at run-time in order to obtain user specific details that

the generic Blendshape does not capture. The optimization alternates between solving for

rigid transformation parameters and Blendshape weights while keeping the DEM constant and

refining the DEM by solving for the deformation coefficients keeping the Blendshape weights

constant. Blendshapes that have been optimized sufficiently based on a threshold are removed

from the optimization thus eventually converging to a final DEM.

Fyffe et al. [28] in 2014, use five high-speed cameras combined with gradient illumination

patterns and obtain high-resolution face captures. Their system makes use of multiple high-

quality static scans in order to account for the high-resolution details of the face. 30 scans of the

actor’s face are obtained including high-resolution geometry, specular and diffuse reflectance

maps using the method of [54]. These scans cover facial expressions that roughly capture

the whole expression space of the actor. Dense optical flow is used to obtain correspondences

between the video frames and the high resolution scans and also between the neighboring video

frames. Their system also computes a per-pixel confidence map for every optical flow based

on Normalized Cross Correlation, ultimately generating a ’Performance Graph’ whose edges

reflect the dense 2D correspondences between all pairs of images and their weights reflect

the level of confidence. These correspondences impose a weighted triangulation constraint

between the static poses and the video frames. Their system is unique in that even partial

correspondences yield drift minimization and this is reflected in the performance graph by

having the confidence vary spatially over the image. Dynamic reflectance maps are achieved

by blending in the static reflectance maps from the scans, after relighting the scans based on

the lighting observed in the video.

Thies et al. [40], in 2015, presented a method for real-time facial reenactment using an RGB-D

input device. Their method allows for an actor to control, in real-time, the facial expressions
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of another person and overlay the re-rendered face into the original video to obtain realistic

animations. They use a statistical model for the identity, expression and albedo of the face and

optimize for the best model parameters in an analysis by synthesis approach. They model the

scene lighting using spherical harmonic basis by assuming that the light source is distant and

the scene is predominantly lambertian. They optimize for the parameters in real-time using a

data parallel GPU solver. Their system re-renders the mesh after relighting it and seamlessly

overlays it on top of the original video leading to expression transfer onto the target actor’s

face. Their method works in real-time and obtains very realistic results. The emphasis of their

method is less on 3D geometrical accuracy and more on obtaining visually plausible results

that can be re-rendered on top of the original face in the video video such that the face can be

reanimated and controlled in an indistinguishable and realistic fashion.

2.3 Conclusions and Motivation

As discussed, the body of work in the area of Performance Driven Facial Animation is vast

and has spanned multiple decades. While there has been tremendous progress that has been

made towards the goal of achieving realistic facial tracking, modeling, retargeting and display,

there are still gaps that need to be filled, especially when it comes to the goal of a system

which combines realistic animations, operates in real-time, is automated, cheap and adapts to

individual faces without the need for cumbersome training phases. e.g. the Modeling phase of

Performance Driven Animation is one of the areas that involves the most manual interference

from 3D modelers in order to obtain realistic face meshes with useful topological properties

such as properly spaced and evenly distributed vertices and contours. This becomes even more

challenging when trying to personalize Blendshapes to a specific individual. The use of au-

tomated methods to do this alleviates this to an extent but as is expected, a lot of individual

nuance is lost as these methods usually transfer details from an underlying template model

which is unaware of these nuances. This means that a 3D artist has to add these details in

a post-process step. In our work, we address this area and provide an automated method of

generating a full animatable Blendshape Rig from a single scan or a few photographs of an

individual. We also present our approach to adding in personalized nuances to Blendshape ex-

pressions. There has been ample use of sparse landmark points in order to aid the Capture stage

of facial animation including both markers and automatically detected features from video. On

the other end of the spectrum, the use of dense texture has also been successfully shown to

produce excellent results while making use of all the texture information available. Both these

approaches have their advantages when it comes to ease vs accuracy. An optimal combina-

tion of these two approaches in order to leverage the best of both worlds is an area that is still

relatively less explored. Making use of localized texture regions on the face and combining it
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with sparse landmarks is something we explore in this work. One of the goals of Performance

Driven Facial animation is for the pipeline to be consumer friendly. This implies complete

automation and the absence of cumbersome training phases, especially one’s that require hard

to obtain training data or for the actor to provide multiple training performances beforehand.

While there has been a clear trend of improvement in this regard, there is still room to make

the capture process more accessible to the average consumer and this is one of the motivations

in this work. In the next sections, we present our contributions to the Modeling and Capture

phases of the Performance Driven Animation pipeline.
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3 Modeling - Representation of Digital Faces

3.1 Overview

One of the important considerations when doing Performance Driven Facial Animation is how

we represent the digital face and how we animate it. While a clear delineation can be made

between the capture method and the representation method, the choice of representation does

have an effect on the final animation in terms of how much of the captured information can be

faithfully recreated. Over the course of a few decades many approaches to how digital faces

are represented and animated have been proposed and each of these have their pros and cons.

In recent years, there has been an emergence of work that captures 3D faces at a high fidelity

based on mesh propagation. In this case, a single mesh of the target’s face is deformed over

time in order to generate an entire capture sequence [8, 25, 26, 27, 5, 28, 93]. The strengths of

this approach is that the underlying representation of the face is not limited within a space and

given accurate capture parameters, it can span the full space of motion of the actor in question.

While this method is relatively straight-forward and can capture very high resolution data, this

is difficult to animate or modify later on by an artist as the capture is usually in the form of

vertex displacements on the mesh and does not provide a meaningful parameterization of the

face. This also restricts immediate use later on, e.g. for facial re-targeting to a second model

with a parallel parameterization. From the perspective of a 3D animator, the vertex motion

over time is not intuitive enough to manipulate and adjust and usually they prefer control

mechanisms that have a semantic meaning with regards to facial expressions.

An alternative method for facial representation involves a parametric model of a face. This

first requires an appropriate parameterization, and various approaches have been proposed.

Statistical models, based on e.g. Principle Component Analysis (PCA), are a convenient means

of providing an orthogonal basis of facial expressions [97, 29, 31]. The drawback with PCA

is that individual modes generally do not reflect meaningful or useful facial shapes and don’t

lend themselves to semantically meaningful interpretation. This makes them inconvenient for

later modification by an artist, or for re-targeting onto other PCA models where the facial

expression basis would generally differ. PCA is very convenient when it comes to reducing the

dimensionality of the expressions space and the individual basis can be obtained automatically

from the actor’s performance itself, but there is no guarantee of what each basis of the model

represents, which can cause unintuitive mixing of multiple facial expressions within a single

basis.

On the other hand, Blendshape based linear models are a more common type of facial model
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used in animation [37, 36, 17, 30, 33, 38]. In this approach, each individual basis of the para-

metric model represents a facial expression represented as a bunch of vertices and triangles

which are in correspondence across the expressions. These expressions/bases are then com-

bined linearly in order to generate new facial expressions. This representation is particularly

very intuitive as each basis corresponds to a semantically and physically meaningful facial ex-

pression. This makes it very easy for 3D artists to create and modify these bases. Although

the model itself is very simplistic and the space of facial expressions is limited by the choice

of basis, in practice it leads to very visually convincing animation and is simple enough to be

applied in real-time. Excellent in-depth recent surveys in the area of Blendshape models, facial

rigging and facial model representation may be found in [100] and [101].

Muscle based anatomical models combined with polygonal skin surfaces have been used in the

past [6, 43, 44, 45, 46, 47] but seem to have lost favor recently. These muscle based models

require considerable effort to create – an anatomical model of muscles represented by splines

or polygons with a polygon mesh as a skin surface on top – and usually require non-linear

activations in order to produce good results [6]. While this method is physically more accurate,

the effort involved in creating the model combined with the complexity of the solver has made

Blendshape models the preferred choice of representation within the VFX industry.

In our work, we make use of Blendshape representations for faces. Traditionally, the creation

of Blendshape models specific to an actor’s face used to be a very skilled and time intensive

task reserved for 3D Modelers. Recently though, many methods either based on statistical

approaches [97, 32] combined with deformation [16] have been proposed that makes the gen-

eration of actor specific Blendshape models a very automated procedure which simplifies the

facial animation pipeline significantly. In the next few sections, we show how we use an ex-

isting template Blendshape model to automatically generate personalized Blendshapes for a

new user saving considerable time which would otherwise be lost in creating these manually.

We then discuss methods to automatically generate Blendshapes that capture the actor specific

nuances which the template Blendshape model might not capture.

3.2 Generating the Neutral Face Mesh

The first step in generating Blendshapes is to obtain a 3D mesh of the actor’s face with appro-

priate geometry i.e. the required number of vertices and triangles. While scanning the actor’s

face will provide a 3D mesh, usually the topology of this mesh is undesirable as it is noisy, has

random number of vertices and triangles and may have holes in the mesh as shown in Figure

10. This needs to be processed in order to generate a 3D mesh that has the desired topology but

maintains the structure and shape of the actor’s face. In the next few sections, we discuss how

48



we obtain this desired mesh using a scanning pipeline followed by non-rigid registration meth-

ods and then go on to present an alternative approach that builds upon the scanning pipeline

and further automates this process by making use of a statistical model of faces in order to

automatically generate this mesh from 2D images of the user.

3.2.1 Blendshape Equation

The basis of our Blendshape model generation pipeline is an existing template model created

by a professional artist. We describe this model using the standard delta form [100], as follows:

A = A0 +
N

∑
i=1

αi(Ai −A0) (1)

where A = [x1y1z1 . . .xnynzn]
T is a vector of n vertices representing the target face, A0 is the

neutral facial mesh, Ai is one of N Blendshapes and αi is the Blendshape weight.

In our existing generic model, there are N = 140 Blendshapes. The Blendshapes in this generic

model have the desirable property that the mesh topology contains edge loops around natural

facial contours and has a smooth surface as shown in Figure 11.

Figure 10: (a) Raw scan with texture, obtained from the 3D scanner [10]. (b) Raw mesh

without texture.

Creating a personalized model first requires the creation of a new Blendshape neutral expres-

sion B0 with the same topology. We use the method of [11] for non-rigidly registering the

template neutral mesh and target 3D scan. While this approach can operate without correspon-

dences, a higher quality registration can be obtained by supplying correspondences between

the source and target meshes. This effect can clearly be seen in Figure 12.
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Figure 11: Our system leverages an existing generic 140 expression Blendshape model encap-

sulated in a Maya interface.

3.2.2 Automatic Correspondence Detection

In order to automatically detect corresponding landmarks in UV-space for a given face mesh,

we propose a HOG [63] based feature detector. Alternatively the landmarks can also be de-

tected using recent approacehs like [102, 103]. In addition to these, we also generate corre-

spondences around the inner mouth and eye regions (which are usually the challenging areas

to register correctly) by automatically tracking a curve along the inner lips and eyelids in UV-

space. See Figure 13 and 14.

We first generate an annotated dataset where 12 regions in the UV-space of the face were

manually marked with rectangles centered on the region of interest i.e. feature points. The

chosen feature points were the ”Nose”, ”Between the Eyes”, ”Right Eye Right Corner”, ”Right

Eye Left Corner”, ”Left Eye Right Corner”, ”Left Eye Left Corner”, ”Left Cheek”, ”Right
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Figure 12: Effect of using landmark correspondences in the non-rigid ICP algorithm. (Left)

the nose tip on the deformed mesh is flatter compared to the ground-truth. (Right) The use of

landmarks on the nose improve deformation results.

Cheek”, ”Left Mouth Corner”, ”Right Mouth Corner”, ”Top of Mouth”, ”Bottom of Mouth”

(See Figure 13). A subset of 30 images were used for training.

The training procedure was as follows:

Each image was first resized to be 1024x1024 and unsharpened using a Gaussian filter. For

each of the images and each landmark in the image a HOG feature of size 32 was extracted.

The same filter was then applied to every point in the image and if the resulting HOG feature

was within a similarity threshold of the landmark in question, it was retained. On top of this if

a feature lay within a 20 pixel radius of the centroid of the rectangle identifying the landmark,

the matching score was recorded as good, otherwise it was recorded as bad.

We then fit a Gaussian distribution for bad scores and the good scores as

N (µgood scores,σgood scores) and N (µbad scores,σbad scores). Furthermore, we modeled the prior

of a feature being at a particular location as a multi-variate normal centered at the mean location

across all images.

So e.g. if a landmark is located at (x,y). Then any pixel within (x-20,y-20), (x+20, y+20) is

considered to be the ”right location”. This allows for a little noise. Presumably things around

x,y will be similar. Now, when we apply the filter at each point within this rectangle it will

produce a scalar. The set ”Good Scores” contains all such scalars. However, we also convolve

the filter with pixels outside the ”right location”. Every scalar from this is put into the ”Bad
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Scores” set. We do this for every image in the training set. The reason we do this is because

we don’t know a priori how well each filter we extracted from the training set will match a

new face. So we want to get an idea of what it means for a filter to be a good match. If the

distributions of ”Bad Scores” and ”Good Scores” overlaps too much then this filter will not be

a good discriminator. Given a new image we apply the filter to each pixel and then compare

that value with the ”Good Scores” set and the ”Bad Scores” set. If that value is more likely to

have come from the ”Good Scores” set then we keep it. If it is more likely to have come from

the ”Bad Scores” set then we discard it.

Given a new UV-space image, we convolve each filter with it and the top scoring 200 fea-

tures are retained. The features that have scores that were more likely to have come from the

bad-scores model were removed. The remaining detected locations were clustered using the

mean-shift clustering algorithm [104] with bandwidth 10. Each cluster was then scored by

multiplying the size of the cluster with the prior on location for that feature and the top scoring

cluster center is marked as the desired landmark.

For the eyes and the mouth, the corner landmarks detected from the previous step, i.e. the

left-most and right-most corners, are used as a starting point in order to trace a curve along

the contour of the eyes/lips. A bounding box (with +-50 pixel border around the center) was

defined around the corner landmarks. An algorithm inspired by [105] was then used to identify

the line separating the upper and lower portions of the eyes and mouth. This line was then

traced subject to constraints that

1. the adjacent points have similar colour/intensity

2. the overall intensity of the curve is lowered

3. and curve smoothness is preserved.

We optimize this line using the Iterative Conditional Modes algorithm. This algorithm starts

from one corner and traces the curve along the contour to the opposite corner by making locally

optimal decisions at each pixel. An initial estimate is given by a line joining the left and right

corners. Starting from the left-most corner it picks the next pixel in the image from the adjacent

column to the right while optimizing for all 3 criteria and then moves on to the next column.

Any points that have intensities greater than 1 standard deviation from the intensities of the

current pixels in the contour are discarded. As this is a local decision, we do not obtain the

solution in the first pass. The algorithm is iterated multiple times until it converges or a thresh-

old is reached. Once the contour is traced along the eyes and mouth, we select evenly spaced

pixels on the contour and obtain the corresponding 3D point on the face mesh by mapping the

pixel to the closest point in UV-space, that corresponds to a 3D vertex on the face. This is done
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for both the template mesh and for the target mesh in normalized UV coordinates. An example

of the landmark points in UV-space and in 3D can be seen in Figure 14. These automatically

detected landmarks are then used by us for correspondences in the Non-rigid ICP algorithm.

Figure 13: We train a HOG based feature classifier in UV space that is trained to detect land-

mark points on the actor’s face. We train our classifier on 30 faces.

Figure 14: We generate a large number of correspondences around the inner mouth and eye

regions by automatically tracing a curve along the inner lips and eyelids in UV-space.

3.2.3 Non-rigid Registration

The target mesh B
′
0 is obtained by scanning a participant in a neutral expression with their eyes

closed using an Artec Eva scanner [10]. In its current form, B
′
0 contains a different topology

from A0. Using the landmark correspondences to assist the non-rigid registration, we generate

a personalized neutral mesh B0 with same topology as A0 as shown in Figure 17.

The cost function for the non-rigid ICP algorithm of [11] can be described as follows:

E(X) := Ed(X)+αEs(X)+βEl(X) (2)

where the terms Ed(X),Es(X) and El(X) are the data-term, the stiffness term and the landmark

term respectively, and α,β are the respective weighting terms.
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The term Ed is given as follows:

Ed(X) := ‖W (DX −U)‖2
F (3)

where W := diag(w1, .....,wn) is a weighting matrix used to weight the importance of the ver-

tices to the deformation. The sparse matrix D is defined as

D :=

[vT
1

...

vT
n

]
(4)

where v1, .....,vn are the known vertex locations on the mesh to be deformed and U := [u1, .....,un]
T

are the corresponding points on the target mesh obtained using a KNN search for closest match.

X contains the unknown transformation matrices Xi applied to each vertex vi.

The stiffness term Es penalizes the differences between the transformation matrices assigned

to neighboring vertices, given by

Es(X) = ‖(M⊗G)X‖2
F (5)

where M is known as the node-arc-incidence matrix and contains one node for each edge of the

the mesh and one column per vertex. If edge r connects the vertices (i, j), the non-zero entries

of M in row r are Mri = −1 and Mr j = 1. The term G is given as: G := diag(1,1,1,1). The

symbol ⊗ represents the Kronecker product.

The landmark term El is similar to the distance term and is given by

El = ‖DLX −UL‖2
F (6)

where DL contains the rows out of D that correspond to the landmark vertices and similarly for

UL.

Finally, the complete cost function is given by

E(X) =

∥∥∥∥∥

[ αM⊗G

WD

βDL

]
X −

[ 0

WU

UL

]∥∥∥∥∥

2

F

= ‖AX −B‖2
F (7)

This can be minimized by setting it’s derivative to zero and solving the resulting system of

linear equations. E(X) takes on it’s minimum at X = (AT A)−1AT B. Here α represents the

stiffness weight that controls how much the stiffness term affects the output. Similarly β
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controls the influence of the landmark points. Please refer to [11] for further details.

Figure 15: [11] Diagram showing the terms involved in equation 3. The template surface

S(green) is deformed by locally affine transformations (Xi) onto the target surface T (red). The

algorithm determines closest points (ui) for each displaced source vertex (Xivi) and finds the

optimal deformation for the stiffness used in this iteration. This is repeated until a stable state

is found. The process then continues with a lower stiffness. Due to the stiffness constraint the

vertices do not move directly towards the target surface, but may move parallel along it. The

correspondences u1 and u4 are dropped as they lie on the border of the target.

Algorithm 1 Non-rigid ICP

1: Initialize X0 to have the identity matrix for each vertex.

2: Initialize the node-arc incidence matrix M based on the edge connectivity

3: for each stiffness α i ∈ {a1, .....,an},ai > ai+1 do

4: while ‖X j −X j−1‖< ε do

5: Use the KNN algorithm to find preliminary correspondences for V X j−1

6: Determine X j as the optimal deformation for the correspondences and α i

It consists of 2 loops. The outer loop finds a series of deformations that bring the template

closer to the target while reducing the stiffness gradually allowing for more localized transfor-

mations. The inner loop is where a deformation is found for a fixed stiffness. The algorithm

assumes a reasonable initial rigid alignment between the template and target mesh before being

applied. This can be done using a simple Rigid ICP algorithm as shown in Figure 16.

Using this algorithm, we obtain our neutral face mesh B0 which we use in the next step of the

pipeline. Results from this algorithm can be seen in Figure 17 and 18.
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Figure 16: Initial rigid alignment performed between the template mesh and target scan before

doing a non-rigid alignment.

Figure 17: The template mesh neutral geometry is deformed non-rigidly towards the 3D scan,

resulting in the deformed geometry.

Figure 18: Example showing the application of algorithm (1) to our template and scanned

mesh.
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3.2.4 Statistical Model For Neutral Face Meshes

While the use of scanners [10] followed by a non-rigid ICP as discussed in the previous section

is an acceptable way of obtaining a neutral face mesh in a desired topology, the prohibitive costs

of scanners might be an issue. Of course methods like [106] that make use of multiview stereo

approaches in order to obtain high quality geometry are another way to obtain a neutral face

mesh. This again needs to be followed up by the non-rigid warping to obtain desired topology.

Many a breakthrough in this sector comes as a result of advances in the scanning hardware,

largely through improved speed and accuracy. The variety of scanning methods are plentiful

and each have their strengths. [12] propose the taxonomy for the various optical acquisition

techniques as shown in Figure 19.

Figure 19: Taxonomy of various optical acquisition techniques [12].

[97] proposed a 3D Morphable Model of faces which is essentially a statistical model of faces

created from multiple laser scans of around 200 individuals which are then put in correspon-

dence with each other. They also propose an algorithm by which, given an image, or a few im-

ages of an individual, the model can be fit to the images in an analysis-by-synthesis approach

that minimizes the difference between the synthesized rendering and the original image. This

is very cost effective as it avoids the use of scanners and also avoids a non-rigid warping step.

This can save considerable time and effort when the need for obtaining the neutral face mesh

for many individuals arises. This is also achievable in real-time as demonstrated by [40, 35]
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making it an extremely useful step to have in the facial animation pipeline. In this section we

discuss our efforts to create a statistical model of human faces in order to further improve our

Blendshape creation pipeline.

The 3D Morphable Model can be described as follows: The geometry of each face in the

model can be represented by a shape vector S = (X1,Y1,Z1, .....Xn,Yn,Zn)
T ∈ R3n that con-

tains the X ,Y,Z coordinates of its n vertices. Assuming that the number of texture values

are equal to the number of vertices, we can represent the texture of the face as a vector

T = (R1,B1,G1, .....,Rn,Bn,Gn)
T ∈ R3n, that contains the R,G,B color values of the n cor-

responding vertices. A morphable face model can then be constructed using a data set of m

exemplar faces, each represented by its shape-vector Si and texture vector Ti. New shapes Smodel

and new textures Tmodel can be expressed in barycentric coordinates as a linear combination of

the shapes and textures of the m exemplar faces.

It is important to be able to quantify the results in terms of their plausibility of being faces. The

probability distribution for the coefficients of the model are obtained from the example set of

faces. This distribution enables us to control the likelihood of the coefficients and consequently

affects the likelihood of the appearance of the generated faces. Thus the generated face does

not deviate far from the space of physically plausible faces.

Principal Component Analysis is then used in order to generate a set of orthogonal bases which

can be combined in order to generate new faces. The model can be specified as follows:

Smodel = S+
m−1

∑
i=1

αisi, Tmodel = T +
m−1

∑
i=1

βiti (8)

where, S and T are the average of the shape and geometry vectors and si and ti are the

eigenvectors of the covariance matrices Cs and CT computed over the mean centered shape

and texture data. The model is parameterized by the coefficients
−→
α = (α1,α2.....αm)

T and
−→
β = (β1,β2.....βm)

T where
−→
α ,

−→
β ∈ Rm−1. The probability distribution over

−→
α is given by:

p(−→α ) = exp[−1

2

m−1

∑
i=1

((αi)/(σi)
2] (9)

where σi is given by the eigenvalues of the shape covariance matrix CS . The probability p(
−→
β )

is computed similarly.

In order to obtain our database of faces, we scanned 30 different people using our Arctec [10]

medium resolution scanner. We then used the algorithm of [11] in order to deform a template
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neutral face mesh with desired topology to our scanned faces, as discussed in Section 3.2.3.

Note that this is different from the way the original authors get the faces in correspondence

using optical flow [97]. While we scanned our own set of faces, one can also make use of the

original set of 200 faces used in by [97]. Also recently, [32] created a Morphable Model from

10000 face scans and tailored for specific age, gender or ethnicity groups. Once we do this, we

have all our faces in correspondence — i.e. with the same number of vertices and triangles. We

then build our morphable model as described above in equation 8. This gives us a statistical

model of faces which can be used to generate a new 3D face (with desired topology), given a

few images of any person. This procedure is described in the next section.

The results of our Morphable Model generated from our scanned faces can be seen in Figure

20 and 21. Figure 22 shows an example of a face generated when we vary the value of the

coefficients beyond ±3 standard deviations from the mean. Figure 23 shows an example of

linear morphing between 2 faces in the model.

Figure 20: Results obtained by varying the first 5 principal components of our 3D Morphable

Model.

Figure 21: Random faces generated from our 3D Morphable Model.

59



Figure 22: Example of an out-of-space face generated using our 3D Morphable Model when

we vary the value of the coefficients significantly beyond ±5 standard deviations from the

mean.

Figure 23: Image showing results of morphing between 2 faces using the 3D Morphable Model.

This shows the variation in space along these axes that our model spans.
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Figure 24: Plots of the first 3 Principal Components of our face data used to build the 3D

Morphable Model.
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3.2.5 Fitting a Morphable Model to an Image

Given the 3D Morphable Model, our objective is to generate a 3D shape for the actor’s face,

with an image or a few images of the actor. This enables us to obtain the 3D shape of the actor

in a relatively inexpensive way compared to manually scanning the actor and then perform-

ing the non-rigid ICP using a template face geometry. In order to do this, our optimization

framework involves simultaneously optimizing for the shape parameters in the 3D morphable

model and the expression parameters for the expression of the actor in the image, in an iterative

way. Our Blendshape model is a pre-existing model created by an artist as shown in Figure 11

and as represented in equation 1. The coefficients of this Blendshape model are constrained

between 0 and 1. Given an image (or multiple images) of the user, the optimization iterates

between solving for the coefficients of the morphable model and the coefficients of the Blend-

shape model. This is because the image of the user can have him or her with a non-neutral

facial expression. We make the assumption that the actor has the same expression if multiple

images are provided. Using multiple images, especially profile pictures of the actor, help with

resolving depth ambiguities, such as how pointy the nose is, that might not be apparent from a

single picture.

The process of using a statistical model in order to generate 3D faces of users can be split into

two main sub-problems — Creating a 3D morphable model and optimising the parameters of

the 3D morphable model to match a 2D image with the goal of creating a new 3D face with the

desired topology.

Within these two sub-problems, there are two themes. The shape of a face, including the facial

expression, and the texture applied to that face. As a result, the process can be split into two

streams which can be combined at the end.

For the 3D shape of the face, the algorithm can be listed as below:

Algorithm 2 Generating the geometry for the face

1: Generate the 3D morphable model for the shape

2: Automatically detect landmarks on an image of the user

3: Estimate camera pose for the given image

4: Specify a Blendshape model for facial expressions

5: Specify the cost function for the shape

6: Optimize the parameters of the model to generate the shape

7: Optimize the parameters for the facial expression

8: Iterate 6-7 until convergence

In order to extract the texture for the model from the images, the process is:
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Algorithm 3 Generating the texture for the face

1: Generate the texture morphable model

2: Specify the cost function for an image

3: Optimize the parameters of the texture morphable model

We now describe the process in detail.

LANDMARK DETECTION

Given the images of the actor, it’s necessary that we detect sparse landmarks on the actor’s

face before we can optimize for the parameters of our model. Once we obtain these, the

corresponding points in 3D are marked by the user in a one time step and these correspond to

vertices in the 3D Morphable Model, with semantically corresponding locations on the face.

In our experiments, we use the algorithm proposed by [14] (Chehra) in order to automatically

detect landmark points in the image. This algorithm detects the face within the image and uses

an iterative method to find 49 landmark points on the eyes, nose and mouth. This is done by

initially using the method of Viola-Jones [13] for face detection, to create an object bounding

box surrounding the face.

The method of Viola-Jones [13] is one of the most efficient methods of face detection. It

combines a selection of weak binary classifiers, such that each has little over 50% classification

rate, to produce a far more efficient classifier. They use a selection of Haar-like features which,

when calculated with the integral image, can be computed in constant time. Haar-like features

are the results of the difference between the sum of two sets of pixels, these show light and

dark areas of an image, the shape of which come from features such as eyes and eyebrows.

Figure 25 shows some examples of Haar-like features, in which the sum of the pixels in the

white rectangle are to be subtracted from the sum of the pixels in the gray rectangle.

Figure 25: Haar features used for a boosted face detection algorithm [13].

The Haar-like features each act as a weak classifier, describing features that are present within

images of faces. The object bounding box surrounding the face provides an initial landmark
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location, sa. A function, g, is trained such that it can map the initial shape from the object

bounding box of image Ii, to the ground truth image s∗i , given a set of features of the image, f .

g(sa, Ii, f ) = s∗i (10)

The features of the image are found by concatenating the results of SIFT, trained using a set of

images with the feature points pre-defined. The shape model used by [14] is a 3D parametric

shape model given by

s(p) = sR(S+φsg)+ t (11)

The above model is trained using a parallel cascade regression function for the set of parameters

p = s,R, t,g, where s is taken from the set of training faces. Please refer to [14] for further

details.

Figure 26 shows an example of Chehra [14] in use, the red points show the initial estimate of

landmark points. The green points show the final estimate of the landmark points. Using this

method ensures that the points detected are consistent and can be identified on the morphable

model. However, this does not allow the shape of the jaw to be modeled. To do this, a selection

of 19 user defined points have been chosen, with a sub section of these points to be used

depending on the images used. This allows for off center images to be used to help to obtain

the depth of the model.

Figure 26: Landmark features detected on a face using the algorithm of [14].

CAMERA PROJECTION ESTIMATION

In order to be able to estimate the error in our objective function, we need to project the 3D

points onto the image. This involves calculating the camera projection matrix. This is known

as the Perspective-n-Point problem. In our experiments, we use the method of [15], which

provides a solution to the Perspective-3-Point (P3P) problem as shown in Figure 27.
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Figure 27: Perspective 3 Point Problem [15].

An implementation for the Perspective-n-Point problem using the method of [15] for MAT-

LAB, estimateWorldCameraPose(), has been provided by MathWorks Documentation (2017b).

This provides an estimation of the location and orientation of the face with respect to the cam-

era, with a set confidence measures and maximum error in the projection.

Given the translation t and the rotation R, we can then specify the projection matrix P of the

camera that projects the 3D points into the image as below:

P = K[R|t] (12)

where K is the intrinsic matrix of the camera. In our experiments, we assume a focal length of

6000 and assume no radial distortion or skew.

OPTIMIZING FOR SHAPE PARAMETERS

Now given the camera’s projection matrix, the 2D landmarks on the images and the corre-

sponding 3D points, our objective function takes the form of a sum-of-squares error, where we

minimize the squared distance of the projected 3D points and the corresponding detected 2D

landmarks, over all the landmarks and over all the images.

Assuming that we have 3 images of a user’s face in a left profile, central/front-on view and

right profile, our objective function looks as below

EFit = EL +EC +ER (13)

where EL, EC and ER correspond to the energy associated with the left-profile, center and right-

profile images of the user.
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The energy associated with each of these images is given as

EL =
n

∑
l=1

‖P(S+
m−1

∑
i=1

αisi)
(vl)−q(l)‖2 −3σi ≤ αi ≤ 3σi (14)

where:

• n is the number of landmarks

• P is the camera projection matrix

• m is the number of eigenvectors

• S is the mean shape vector

• αi is the weight associated with eigenvector i with the constraint as in equation (9)

• si corresponds to the i-th eigenvector

• q(l) represents the l-th 2D landmark point in the image

• vl represents the vertex corresponding to landmark l

• σi is the standard deviation along the PCA dimension i. This constraint is natural as

the weights should ideally not deviate from the training data and as the PCA implicitly

implies a Gaussian fit to the data, 3 standard-deviations cover 99.7% of the training data.

This is a nonlinear constrained optimization problem, which can be solved using the fmincon

function in MATLAB. The process of estimating the camera position and optimising the pa-

rameters for the 3D morphable model is iterated until convergence. This is to reduce the error

in camera rotation matrix and translation vector as this is estimated using the current best 3D

model and so is not exact.

OPTIMIZING FOR FACIAL EXPRESSION PARAMETERS

Once we have the shape parameters of the Morphable Model, we then need to solve for the

facial expression of the user in the image. Our expression model uses a Blendshape basis and

the optimization is done in order to minimize the squared error between projected points and

detected points as before. It can be stated as follows:

EL =
n

∑
l=1

‖P(B0 +
N

∑
i=1

αiBi)
(vl)−q(l)‖2 (15)
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where:

• n is the number of landmarks

• P is the camera projection matrix

• N is the number of Blendshapes

• B0 is the neutral face shape

• αi is the weight associated with Blendshape i, 0 ≤ αi ≤ 1

• Bi corresponds to the i-th Blendshape

• q(l) represents the l-th 2D landmark point in the image

• vl represents the vertex corresponding to landmark l

Our optimization is an iterative process, where we first solve for the parameters of the shape

in the Morphable Model, while keeping the expression parameters constant and then optimize

for the parameters of the facial expressions, while keeping the shape parameters constant. We

perform this optimization as before in MATLAB using the fmincon function for nonlinear

optimization.

Note: The Blendshapes Bi in the previous step are specific to the Neutral face shape B0 for

this current iteration of the algorithm. This means that every time the neutral shape is changed

by fitting the Morphable Model to the images of the actor, the corresponding Blendshapes will

need to be generated from that neutral face. This is a straightforward procedure as our neutral

face shape is already in correspondence with our template Blendshape model. So we make

use of the Deformation Transfer Algorithm [16] from section 3.3.1 in order to do this at every

iteration.

TEXTURE PARAMETERS

To integrate textures into the new 3D model, the shape must be first established. Once the

shape of the model has been found as above, the texture can be extracted from the images.

By projecting the shape model onto the image plane, the error at pixel level for colour can be

established. Initially the average texture should be applied to the 3D model. The parameters

for the 3D texture model can be optimized as with the shape model with the same bounds on

parameters of ±3 standard deviations for 99.7% of the textures to be represented. With each

point projected onto the image plane, the error for each image is described as the mean of the

Euclidean distance between the colour of the projected point, [R,G,B], and the colour of the
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point on the image, [r,g,b], for all pixels within the face.

ET =
1

n

n

∑
i=1

√
(Ri − ri)2 +(Gi −gi)2 +(Bi −bi)2 (16)

However, this method is light sensitive and requires consistent lighting for all the images with

no highlights, causing difficulties during implementation.

Our textures for the 3D Morphable Model are obtained from the 3D scans themselves and they

need to be normalized in UV-space before the model can be built using equation (8). Since our

assumption is that we use a single texture value for each vertex, our texture is interpolated for

values in between vertices. In our case as our mesh has 4096 vertices, we have 4096 texture

samples. Figure 28 shows an example texture obtained using our scanner and the resulting

interpolated texture on our deformed mesh.

Figure 28: Texture quality obtained after interpolation vs ground-truth texture.

ADJUSTING THE COST FUNCTION TO INCLUDE WEIGHTS

The cost function outlined in equation (15) provides acceptable results as shown in Figure 29,

but further improvements can be made. The method so far provides a good estimate for the

internal landmarks, but when the landmarks on the outer contours of the face are included,

the results are affected disproportionately. To combat this, a weighting can be applied to the

internal face landmarks as follows:

EL =
n

∑
l=1

wi ×‖P(B0 +
N

∑
i=1

αiBi)
(vl)−q(l)‖2 (17)
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such that for internal landmarks, i = 1, .....,m and outer contour landmarks j = m+ 1, .....,n,

wi > w j,∀i, j.

Figure 29: Results of fitting the Morphable Model parameters to images of an actor without

weighting the landmarks (top row). Ground truth (bottom row).
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RESULTS

Results using our weighting approach are shown in Figures 30, 31, 32, 33 and 34.

Figure 30: Results of fitting the Morphable Model parameters to images of an actor with

weightings of 1, 5, 10, 15 and 20 to the internal landmarks on the face.

Figure 31: Results of fitting the Morphable Model parameters to images of an actor with

weightings of 1, 5, 10, 15 and 20 to the internal landmarks on the face.

Using the methods described in the previous sections, we can now generate a 3D model of

an actor’s face, with desired topology, using just images of the user. Once we have this single
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Figure 32: Results of fitting the Morphable Model parameters to images of an actor with

weightings of 1, 5, 10, 15 and 20 to the internal landmarks on the face.

Figure 33: Results of fitting the Morphable Model parameters to images of an actor with

weightings of 1, 5, 10, 15 and 20 to the internal landmarks on the face.

mesh of the actor’s face, we can then proceed to the next step in the Blendshape pipeline, which

is generating the Blendshapes specific to the actor. This is discussed in the next section.
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Figure 34: Results of fitting the Morphable Model parameters to images of an actor with

weightings of 1, 5, 10, 15 and 20 to the internal landmarks on the face.

72



3.3 Automatic Generation and Personalization of Blendshapes

Obtaining the neutral expression shape of the user with desired topology is the first step in the

Blendshape generation pipeline. Once we have this, it is necessary to generate Blendshapes for

the actor that are specific to his facial structure. This can be done using a simple vertex offset

transferred from a template Blendshape but better results can be obtained using the method of

[16] who use a triangle based deformation transfer algorithm. Going further, using the method

of [17], user specific nuances which are not present in the template Blendshape can be added in

an organic way into the Blendshapes. This requires a few more scans ( with same topology as

the neutral ) of the actor in different poses. We also present our algorithm to learn a statistical

mapping between a person’s facial structure and facial expression. Finally we discuss how our

pipeline adds in high frequency details that are not present in the template Blendshape and that

are unique to the user. We also discuss how we visualize and manipulate these Blendshapes.

3.3.1 Deformation transfer

Sumner and Popovic [16] in 2004, presented the Deformation Transfer algorithm. Given a

source Blendshape model and a mesh of an actor’s face, the objective of the Deformation

Transfer algorithm is to transfer the change in shape exhibited from the source face to its

individual Blendshapes, onto the target mesh of the actor’s face in order to generate the cor-

responding Blendshape model for the actor’s face. The deformation of the source face is rep-

resented as a collection of affine transformations for each triangle of the source mesh. The

changes in orientation, scale and skew induced by the deformation on the triangle is encoded

in the non-translational portion of the affine transformation. The three vertices of a triangle, by

themselves, do not establish how the space perpendicular to the triangle deforms though and in

order to resolve this, a fourth vertex is added in a direction perpendicular to the triangle.

Let vi and ṽi, i ∈ 1...3, be the undeformed and deformed vertices of the triangle respectively.

The fourth undeformed vertex is computed as follows:

v4 = v1 +(v2 − v1)× (v3 − v1)/
√
|(v2 − v1)× (v3 − v1)| (18)

Similarly the vertex ṽ4 is calculated. The cross product is scaled by the reciprocal of the square

root of its length and this causes the perpendicular direction to scale proportional to the length

of the triangle edges.

An affine transformation given by a 3× 3 matrix Q and displacement d transforms these 4
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vertices as follows:

Qvi +d = ṽi, i ∈ 1...4. (19)

Subtracting the first equation from the others to eliminate d, and rewriting in matrix form, we

get QV = Ṽ where:

V = [v2 − v1,v3 − v1,v4 − v1], Ṽ = [ṽ2 − ṽ1, ṽ3 − ṽ1, ṽ4 − ṽ1] (20)

Q is then given by

Q = ṼV−1 (21)

Equation (21) is then used to compute the source transformations S1.....,S|S| that encode the

change in shape induced by the deformation, where S refers to the set of triangle indices for

the source mesh.

In order to account for the proper positioning of triangles, we cannot apply Si directly to the

corresponding target triangle since Si does not encode the position of triangles relative to its

neighbors. This can be seen in Figure 35(A). This is because the deformation representation

allows too many degrees of freedom.

Figure 35: [16] (A) Using only the non-translational component of the source transformations

transfers the change in orientation and scale to the target triangles but does not position them

appropriately relative to their neighbors. (B) Using the source displacements gives a discon-

nected shape since consistency requirements are not enforced. (C) Deformation transfer solves

a constrained optimization problem for a new set of target transformations that are as close as

possible to the source transformations while enforcing the consistency requirements: shared

vertices must be transformed to the same place.

In order to ensure that the affine transformations applied to neighboring triangles that share

vertices are consistent with each other, we have to make sure that the shared vertices are trans-
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formed to the same location.

For the set of target affine transformations T1 +d1.....T|T |+d|T | this requirement is:

Tjvi +d j = Tkvi +dk, ∀i,∀ j,k ∈ p(vi) (22)

where p(vi) is the set of all triangles that share vertex vi.

In order to transfer the source deformation onto the target mesh while maintaining these consis-

tency requirements Figure 35(C). Deformation transfer minimizes the difference between the

non-translational components of the source and target transformations and enforces the consis-

tency constraints in Equation (22) by solving the following constrained optimization problem

for the target affine transformations:

min

T1 +d1.....T|T |+d|T |

|M|

∑
j=1

‖Ss j
−Tt j

‖2
F (23)

subject to:

TjVi +d j = Tkvi +dk,∀i,∀ j,k ∈ p(vi).

A solution of this optimization problem defines a continuous deformation of the target mesh

up to a global translation. The global translation can be defined explicitly by setting the dis-

placement di for any target triangle.

Figure 36: In order to maintain consistency, the affine transformations for all triangles j,k ∈
p(v) that share vertex v must transform v to the same position [16].

While the formulation in Equation (23) can be solved with quadratic programming, the con-

straints can be eliminated by reformulating the problem in terms of vertex positions. This is

achieved by defining the transformation in terms of the triangles’ vertices. Rather than solving

for the entries of the affine transformations, we solve directly for the deformed vertex positions.

For each target triangle, the non-translational part of the affine transformation can be written
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in terms of the undeformed and deformed vertices as T = ṼV−1. The elements of Ṽ are the

coordinates of the unknown deformed vertices.

The minimization problem is then written as:

min

ṽ1...ṽn

|M|

∑
j=1

‖Ss j
−Tt j

‖1
F (24)

The solution to this optimization problem is the solution to a system of linear equations.

min

ṽ1...ṽn

‖c−Ax̃‖2
2 (25)

where x̃ is a vector of the unknown deformed vertex locations, c is a vector containing entries

from the source transformations, and A is a large, sparse matrix that relates x̃ to c.

RESULTS

[16] also describe how to use their method for source and target meshes that do not share the

same topology. In our case though we have already ensured that the target neutral face mesh

has the desired topology so applying this method is straight forward. Results from using this

approach to generate Blendshapes are shown in 37, 38 and 39

Given B0 ( from section 3.2.3 ), and the existing Blendshapes in the generic model we are then

able to create new targets Bi by taking mesh B0 and deforming it towards the target using the

deformation transfer approach of [16]. This results in a clean personalized Blendshape model

for a new person, i.e.

B = B0 +
N

∑
i=1

αi(Bi −B0) (26)
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Figure 37: Results of our Blendshape generation pipeline. The top row shows the template

Blendshape model. The next 3 rows show the Blendshape models generated using our method.
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Figure 38: Results of our Blendshape generation pipeline. The top row shows the template

source mesh (left) and the target face (right). The next 2 rows show the template Blendshape

models and the shapes generated using our method.
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3.3.2 High Frequency Details

Finally, in order to obtain the high frequency detail of an individual’s face, we scan the per-

former in a range of additional expressions using a high resolution Artec Spider scanner [10].

We scan the performer in 5 different poses that elicit wrinkle detail around the forehead and

root and side of the nose. We then add the normal maps obtained from these scanned meshes

to the corresponding Blendshapes. We do this by first rigidly aligning the respective Blend-

shape with the high-resolution scan using manually provided correspondences between the two

meshes and then generate the normal maps from the scan by casting rays from the Blendshape

vertices to the high-res scan and recording the normals at the point of intersection. We do this

within Maya. Figure 39 shows several Blendshapes created using this process.

Figure 39: Automatically generated Blendshapes from 3D scans of new subjects using defor-

mation transfer with the template model as a reference. The wrinkles on the forehead (and

other regions of the face), for each individual, were scanned using a high resolution scanner

and added to the respective Blendshapes in a later step. Our Blendshape models contain 140

Blendshapes within an intuitive interface.
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3.3.3 Example Based Facial Rigging

The Blendshapes obtained so far contain the base geometry of the actor’s face — i.e. the shape

of the actor’s face, but it doesn’t contain the actor specific nuances. This includes dimples,

wrinkles and other visual subtleties. This is because the Deformation Transfer algorithm [16]

only applies the transform from the template neutral mesh onto the target neutral mesh, thus

only preserving the differences already present within the template Blendshape model. While

subtle, these minor differences can make a lot of perceptive difference and can add to the

realism of the animation, especially with regards to the identity of the actor.

In order to address this deficiency, [17] proposed an algorithm that tackles this very issue.

They present a scalable design process, where the user can iteratively add more training poses

to refine the Blendshape expression space. They formulate the optimization in gradient space

yielding superior results as compared to a direct optimization on Blendshape vertices. Their

optimization operates directly in gradient space in order to efficiently solve for Blendshapes

with semantics that corresponds to those of the template rig. The Blendshape reconstruction

can be edited iteratively by either adding training expressions or adapting the blending weights

of the example poses. The user can specify any number of additional expressions to refine the

model toward the specific geometry and motion characteristics of the user. Also in addition to

the Blendshapes themselves, given an initial estimate of the weights, the algorithm also solves

for the optimal weights for a given training expression.

Similar to previous sections, the neutral expression mesh and the training examples provided

for this method are required to be in correspondence with respect to topology. [17] use the

method of [107] in order to do this. In our approach we use the method of [11] as in previous

sections. This produces a set S = {S1, .....,Sm} of complete meshes with connectivity of the

template Blendshape model and shape of the respective scan. These are the training poses

which contain the user specific nuances.

The goal is to compute a new Blendshape model B = {B0, .....,Bn} that better matches the

geometry and the motion of the user. So in order to faithfully reproduce the training poses, we

need to find Blendshapes Bi and corresponding weights αi j that reproduce the training pose —

i.e. S j ≈ B0 +∑
n
i=1 αi jBi.

The solution proceeds iteratively by solving 2 steps : The first step keeps the blending weights

αi j constant and modifies the Blendshapes themselves. Step 2 keeps the Blendshapes constant

and solves for the optimal weights. As an initialization, the user selects appropriate blend-

ing weights on the template model that roughly correspond to each training pose S j, giving

approximate weights αi j∗.
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The optimization for the Blendshapes is done in gradient space similar to [16]. See 3.3.1 for

details. If the actor’s rest pose is given by B0 and each of the training poses by S j, then the

gradient space representations are MB
0 and MS

j respectively. The energy function for faithfully

reproducing the training poses is given as follows:

E f it = ‖MS
j − (MB

0 +
n

∑
i=1

αi jM
B
i )‖2

F (27)

They postulate that the deformation gradients of the user specific Blendshapes Bi and the tem-

plate Blendshapes Ai should be similar. This means that GB0→B0+Bi
≈GA0→A0+Ai

. We can write

GB0→B0+Bi
= (MB

0 +MB
i )(M

B
0 )

−1 and define the regularization energy as

Ereg =
n

∑
i=1

wi‖MB
i −MA∗

i ‖2
F (28)

where MA∗
i := GA0→A0+Ai

·MB
0 −MB

0 , which can be computed from the template shapes and

the target rest pose. The semantics of the prior Blendshape model are preserved by using the

regularization weights wi. The weights wi are given as wi = ((1+ ‖MA
i ‖F)/(κ + ‖MA

i ‖F))
θ .

This weighting term ensures that if the template Blendshape exhibits larger deformation, then

we want the target Blendshape to reflect that and have the deformation gradients deviate more

from the template prior to account for geometric differences of the two characters. Similarly,

if the template shape moves little, then the same applies to the target shape. This whole term

ensures that the semantics of the template Blendshape are preserved, while also capturing user

specific differences.

The final energy is given as EA = E f it +βEreg, where β is a weighting term. Minimizing this

amounts to solving a linear system.

Given the computed set of Blendshapes B, we solve for the optimal weights αi j. The user

specified weights for the training poses α∗
i j are used as soft constraints. The energy function is

given as:

EB =
N

∑
k=1

‖v
B0

k +
n

∑
i=1

αi jv
Bi

k ‖2
2 + γ

n

∑
i=1

(αi j −α∗
i j)

2 (29)

where v
s j

k and v
Bi

k are the vertices of the training pose S j and and Blendshape Bi respectively, and

N is the total number of vertices. γ is a weighting factor that balances fitting and regularization.

The Blendshape weights as usual are constrained between 0 and 1. This optimization can be

solved using quadratic programming.

81



These 2 steps are performed iteratively in order to optimize for the Blendshapes that best cap-

ture the actor’s nuances while keeping the semantic structure of the template Blendshape. This

results in a Blendshape set that is adapted to the actor’s shape and motion characteristics on

top of having the base geometry of the actor’s face.

RESULTS

Figure 40 shows the input template Blendshapes that we use in our algorithm i.e. Ai. Figure

41 shows the target face neutral mesh obtained using the 3D scanner and deformed in order to

have the same topology as A0. Note that when scanning the subject, we have the eyes closed

and we obtain the open-eye version of the same shape using the algorithm of [16], which we

actually feed to the algorithm. We do this because we find it is easier to deal with the folding

of skin around the eyes of the actor in this fashion as opposed to when the actor’s eyes are

open. Figure 42 shows the training poses that are obtained from the scanner and the deformed

versions of these poses i.e. Si, that are fed to the algorithm. Finally the results of applying the

algorithm can be seen in Figure 43.

Figure 40: Source template Blendshapes used as input to our algorithm i.e. Ai.
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Figure 41: Target face neutral shape obtained using scanner (left) and deformed using the

algorithm of [11]. This represents B0.

Figure 42: The training poses obtained from the scanner (Top) and the re-topologized training

poses provided to the algorithm i.e. Si (Bottom).

83



Figure 43: Results of our algorithm. The top row shows the effect of the training poses on

the Blendshapes using the algorithm of [17] compared to the bottom row, which shows the

application of [16] directly, without the training poses.
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3.3.4 Statistical Approach to Blendshape Personalization

The use of Deformation Transfer [16] and Example Based Facial Rigging [17] is a very useful

method for automatically generating Blendshapes of an actor’s face. However, the personal-

ization to the actor’s nuances requires that we obtain extra training scans of the actor’s face in

different facial expressions. This can sometimes be difficult or impossible to obtain. Applying

the generic template Blendshapes onto every actor’s face, irrespective of the shape character-

istics of the actor does not seem reasonable as it is expected that different structures of the

underlying shape will inevitably lead to different facial expressions — e.g. a person with a

smaller jaw structure will not have the same magnitude of smile as someone with a larger jaw

structure. In order to address this problem, we propose an algorithm that learns a mapping

between a person’s neutral face shape/geometry and the facial expression that is personalized

to that face. This is a statistical approach that learns this mapping from training examples of

neutral-pose to expressive-pose face pairs. So given an actor’s neutral face geometry, the algo-

rithm will generate the most plausible facial expression that corresponds to that facial structure

based on the mapping it has learnt from the training data.

Our hypothesis is that there is a relation between the geometrical structure of a person’s face

and the facial expressions that he or she makes. In order to test this hypothesis, we evaluated

our method on the mapping from a neutral face to a smile Blendshape. This can be extended

to other facial expressions.

Our data consisted of 27 (20 male and 7 female) scanned face pairs — in neutral expression

and smile expression, under a controlled lighting environment (two diffuse lights around the

subject). The data was cleaned to remove unwanted artifacts and regions behind the ear and

hair. These faces (both neutral and smile) are required to be in correspondence, so as before

we use the non-rigid ICP method of [11] to deform a template mesh to both the neutral and

smile scans to generate faces in correspondence. Figure 46 shows examples of our scanned and

registered faces. Figure 44 shows the effect of the first 5 principal components on the smile

morphable model. Note that varying the principal component bases built on the smile shapes

also changes the identity of the face and not just the smile shape. This has to be addressed and

we do this later by refining our model.

We propose a multivariate linear regression model to learn the mapping from the principal

components of the neutral face geometry to the smile geometry. We assume that the mor-

phable model for both the neutral expression and the smile expression has been built using the

methods described in the previous sections. The regression learns a mapping between the PCA

representation for the neutral face and the PCA representation of the smile expression shapes.
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Figure 44: Effect of varying the first 5 principal component bases of our morphable model built

on the smile shapes. Note how the identity of the face changes with the PCA variation. We fix

this issue with our reformed model.

The input variables are in the form of a vector X given by

X = (N −N) ·NNNPCA (30)

where N is the neutral face vector containing the vertices of the neutral face shape, N =

{x1,y1,z1.....xn,yn,zn}, n is the number of vertices in the mesh which is 4096 in our case,

N is the mean of all the neutral face shapes and NNNPCA represents a matrix containing the PCA

bases ( the eigenvectors of the covariance matrix ) of the neutral face data.

Similarly the output variables are given by

Y = (S−S) ·SSSPCA (31)

where S is the smile shape vector containing the vertices of the smile expression shape, S =

{x1,y1,z1.....xn,yn,zn}, S is the mean of all the smile face shapes and SSSPCA represents a matrix

containing the PCA bases ( the eigenvectors of the covariance matrix ) of the smile face data.

In our experiments, we use 14 principal components corresponding to the largest variance

within the data for the neutral faces and we use 13 principal components corresponding to the

largest variance within the data for the smile shapes.

We then train a multivariate linear regression model that maps the input vectors X to the output
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Figure 45: Scatter plot of the first 3 principal components of the smile morphable model,

showing the space spanned by our existing data.

Y . Given a test vector Ñ, corresponding to a previously unseen neutral face shape, we obtain X̃

and predict Ỹ which corresponds to the coefficients of the Principal Component representation

of the generated smile face. We then multiply this resulting vector by the transpose of SSST
PCA

and add back the mean S in order to obtain the smile shape vector, S̃.

The results of this approach can be seen in Figure 47. As can be seen in the figure, while this

approach can generate smile shapes that are mapped from the corresponding neutral, there is

an inherent problem with the identity of the generated smile shape being changed from the

input neutral shape. This is undesirable and is a consequence of training the model directly on

the smile data and not on offsets of the smile shapes from their respective neutrals.

To fix this problem, we modify our Y output variables in the training data to be
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Figure 46: Examples of our scanned and registered faces for use in our mapping from neutral

face to smile expression.

Figure 47: Results of our mapping learnt from neutral face to smile shape. As can be seen in

the bottom two rows, although a mapping has been learnt, there is a change in the identity of

the actor in the resulting smiles on the bottom row. This is undesirable.
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Y = (S∆ −S∆) ·SSS∆PCA (32)

where S∆ = S−N, i.e. the offset of the smile shape vector from its corresponding neutral shape

vector, S∆ is the mean of all the S∆ vectors and SSS∆PCA is the PCA bases of the mean centered

S∆ vectors.

With this change, the mapping is now from the PCA representation of the neutral shape vector

to the PCA representation of the smile offsets from the respective neutrals. This decouples the

identity from the smiles and we only obtain the smile offsets as an output of the regression

model.

The results after performing this alteration can be seen in Figure 48.

Figure 48: Results of our mapping learnt from neutral face to smile shape after adjusting for

identity as in equation (32)

89



We compare the results obtained using our method with that obtained by using the Deformation

Transfer algorithm of [16] and also to the results obtained by simply adding the average smile

offset, S∆ to the input neutral face vector Ñ. The results of this comparison can be seen in

Figure 49.

Figure 49: Our results (third column) compared to the results from applying deformation trans-

fer [16] to the neutral face (first column), applying the average smile vertex offsets to the neutral

face (second column) and the input neutral face (last column).

We also performed quantitative analysis of our results by using a sum of squares error between

the generated smile expression and the ground truth expression. We first aligned the faces at

the origin. By performing this test we discovered that our system’s results came back as having

the lowest SSE error, 72% of the time.
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Smile Generation Method Count % SSE

Deformation Transfer 1 4% 8.69E+06

Vertex Offset 6 24% 8.20E+06

Our Method 18 72% 3.74E+06

Table 1: Quantitative results using sum of squared errors of our generated smile shapes from

the ground truth data.
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3.4 Blendshape Rig and Visualization

In order to visualize our results, we make use of the 3D rendering software Maya. Our rig

consists of the Blendshapes generated using our methods discussed in the previous sections

but with additional sliders for convenience and manual editing. Figure 50 shows our Maya

rig which forms the base template from which we export the Neutral mesh and the individual

Blendshapes and use them in order to generate personalized Blendshapes for the actors ulti-

mately resulting in a similar rig for that specific actor. This is used for the visualization and

debugging of the animation once it is applied to the rig.

Figure 50: Example Blendshape rig in Maya which we use for visualization and debugging

of our final animations. Our rig consists of 140 shapes and controllers in the form of sliders

which we use both for editing and for visualization of our animation results.

While both MATLAB and OpenGL are useful for visualization, the quality required by us

for final rendering is not achievable with them. In order to transfer our animation parameters

within a Maya framework, we use custom python scripts which read the output of our solver

(in the form of Blendshape weights ) and also applies the appropriate values to the controllers
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associated with each Blendshape. This allows us to not only visualize how the movement of

the face is reflected on the controller-sliders but also proves invaluable in debugging errors and

editing animations later on. This is very useful because the values on the sliders provide us

information about the which Blendshapes affect the animation at each frame allowing us to

easily detect bugs when they occur.

Over the last few sections, we discussed our Blendshape generation and personalization pipeline.

We now show results of applying this pipeline to our obtained 3D scans of the actor’s face.

Figure 51 shows example results of complete rigs including controllers generated using our

pipeline. This includes the high-frequency details added to the rig.
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Figure 51: Example Blendshape rigs with controllers (right) generated from a single scan of

the actor (left). The sliders provide direct control of Blendshapes and assist in visualizing and

debugging animations The high frequency detail such as wrinkles around the top of the nose

were added using the method described.
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4 Capture - Tracking Facial Movements

4.1 Marker-based Capture Systems

Traditional Marker-based performance capture can be traced back to the seminal work by

Williams et al. [24] in 1990. It consists of covering the face with a large number of circu-

lar dots and sometimes fluorescent markers [25] or retroreflective markers [7]. Many of the

motion capture systems that have been used over the past decade are marker based systems

[23]. The incident lights on the retroreflective markers is reflected back with maximum in-

tensity back into the cameras and can be tracked efficiently. Triangulating 3D positions of

these markers from the 2D inputs of the cameras allows for very accurate and relatively faster

reconstructions of the markers across frames.

Marker-based tracking systems, are very popular and are used heavily in the Visual Effects

community owing to their robustness, speed of acquisition and ease of use [108, 109, 48, 1,

110, 111]. Many marker based systems can be used to track marker positions in real-time giv-

ing the film director the ability to view the animations as the actor performs them, such as in

ILM [23], although arguably at slightly lower fidelity compared to other denser approaches.

While the use of dense motion capture systems [8, 27, 28, 26] is picking up, it is a more chal-

lenging problem to track pixels in the images, that have arbitrary surface texture as compared

to reflective markers.

Marker-based systems excel at tracking and delivering sufficient motion parameters for con-

vincing retargeting of non-human creatures or video game characters [112]. They significantly

simplify the tracking process but also limit the spatial detail that can be captured owing to them

being an inherently sparse feature set. Most of the motion recorded by marker-based systems

have a feeling of diminished expressiveness [23] owing to the characters displaying motion

that is robotic and non-human like. Although marker-based systems have their strengths in

terms of accuracy and speed a lot of information in between the markers is lost. E.g. the Vicon

system [7] can record dynamic facial movements at a very high temporal resolution (2000Hz)

but due to the low spatial resolution (100 - 200 markers) it is not able to capture expressive

facial details like wrinkles and bulges [76]. It is important to capture this information as it’s

perceptually very significant.

In the following sections, we discuss our marker based capture and solving pipeline and pro-

pose a method for combining markers with additional texture information in order to improve

upon the traditional marker-based systems. In traditional marker-based capture, information

between the marker points, such as wrinkles, bulges, complex folding of skin around the eyes
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and lips which can be observed from corresponding video performances is generally over-

looked. In movie production, this is resolved by animators adding this missing detail manually

after motion capture and solving for animation parameters. In our work, we harness this infor-

mation from the video with the use of additional sparse make-up patches between the markers.

The Computer Vision community frequently uses information between sparse points to rec-

ognize facial movements and expressions, including Action Units (AUs) as described by the

Facial Action Coding System (FACS) [64]. A convergence of motion capture data with such

feature based approaches would therefore appear to be a promising direction in order to solve

for optimal Blendshape weights, and one which is considered in our work.

There are some existing works, similar to ours, that use Blendshapes and make use of texture

information on top of sparse features and also some that use all the dense texture information.

We discuss these next and point out the differences with our work. Bhat et al. [39] use curves

tracked along the silhouettes of the inner lips and eyelids and map these to edge contours on

the mesh. They then use an arc-length based mapping to find correspondences between curve

points and contour vertices in order to get a better Blendshape solve. They then also do an

out-of-subspace corrective in order to improve the fit. In contrast our method automatically

detects FACS poses based on the deformation of the additional patterns in order to improve

the solve. Cao et al. [35] use a regression based approach that maps from UV-space to vertex

displacement in order to generate high frequency detail. Their method relies on a one-time

training step that uses high-resolution scans and corresponding UV-maps of different subjects

in different expressions. Given an unseen actor their method can be applied directly without

any pre-processing. In this respect, our method is more intrusive as we require multiple high-

resolution scans of the subject in different expressions in order to obtain the high frequency

data. Garrido et al. [36] densely track and use all available video information in order to

improve their solve. They first track sparse 2D features accurately through the sequence and

then fit the Blendshape model to this. They then compute a temporally coherent dense motion

field using optical flow in order to further correct the model-to-video alignment and deform the

mesh using the corrective 3D motion vector for each vertex.
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4.1.1 Head Mounted System

Our marker based capture pipeline makes use of the CARA [7] head-mounted system that

consists of a wearable helmet with protruding supports on which 4 RGB+infrared cameras are

mounted. These cameras are focused on the actor’s face and are used to track retro-reflective

markers applied on the face with very high precision. The cameras are calibrated in an offline

step. The helmet includes a panel consisting of a known fixed pattern of markers that is used to

provide robustness in the estimation of the cameras positions and orientations relative to each

other. The positions of the markers are triangulated over the performance in a post-processing

step resulting in 3D locations of each marker with high fidelity and high temporal resolution.

Figure 52: The CARA head-mounted system used by our pipeline for tracking markers on the

actor’s face [7]. It consists of 4 cameras that are individually calibrated and track reflective

markers placed on the actor up to 60FPS.

Figure 53: Images showing the Cara system in action. The system consists of a head mounted

device with 4 cameras. The markers on the subjects face are tracked in all 4 cameras and the

system outputs the 3D coordinates of the markers every frame of the sequence.
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4.1.2 3D Marker and Mesh Registration

Before we can actually go ahead and solve for Blendshape weights, one of the important steps

in Performance Based Facial capture is the ’Stabilization’ of the face rig — i.e. getting the face

model into the correct co-ordinate frame and making sure that the correspondence between the

vertices on the mesh and the sparse markers ( 2D or 3D ) is accurate. While this might be less

of an issue in dense capture methods [5, 8] it is still a factor that needs to be addressed. If there

is an error or mismatch between the location of the markers on the 3D face mesh compared

to the location of the sparse landmark on the actor’s face, this will lead to severe perceptual

distortions in the final animation. Even subtle deviations e.g. the mouth opening more than

it should owing to an error in the location of the lip-corner marker, will lead to a completely

different perception of the facial expression. With this goal in mind, we present our algorithm

for ensuring optimal registration of the 3D landmarks on the mesh, with the sparse markers.

Our goal is getting the 3D motion capture data vS (the first frame of the performance which

we assume to be a neutral pose without loss of generality) and points in B0, the neutral face

Blendshape, in the same space, so they correspond properly. More specifically, we need to

select points vB corresponding to vS, from B0.

The most straightfoward approach is to manually select vertices vB from the neutral Blendshape

B0 that correspond to the facial marker placement. However, if the selection does not exactly

match the facial marker placements, which is the likeliest scenario given the discrete nature of

the vertices in the Blendshape model, then the solver will be influenced. This is because the

optimizer will select Blendshapes to minimize this difference, adding weights to expressions

which are the result of alignment error as opposed to expressions occurring on the performer’s

face. This is particularly problematic when the Blendshape model is low resolution, as the like-

lihood of vertices in the model exactly matching the placement of facial markers is lower. One

minor improvement that can be done after the manual selection is a rigid-alignment between

the corresponding marker-vertex points followed by a K-Nearest neighbor search for the clos-

est vertex on the mesh to the markers. An example of this can be seen in Figure 54 We propose

to determine the optimal selection of vB with respect to minimizing the overall animation error

(see Figure 55).

Similar to existing approaches [51], we begin with manual selection of n landmark points vB′

on the Blendshape model that are deemed to be at physically similar positions to the n 3D face

markers vS. Using these points, Procrustes analysis is performed to estimate a rigid rotation,

translation and scale between the Blendshape model and the 3D marker points of the neutral

expression.
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Figure 54: Initial stabilization for getting the 3D face and the Cara markers in the same space.

(Top Left): Image showing the position of the Cara markers, indicated by the green crosses,

with respect to the face. The markers are adjusted manually using the image of the subject

as a reference. (Top Right): The mesh with the vertices corresponding to each Cara marker,

shown by a red spot. The vertices are obtained using a KNN search between the markers

and vertices. (Bottom):Image showing the error in the rest position. The crosses are the Cara

marker locations and the nearest corresponding vertices on the mesh are shown in red. As seen

there is significant error on the rest pose and there is much scope for improvement.

The initial rigid alignment will have errors, i.e. vB′ 6= vS. Our aim is to reduce this error by

finding the optimal placement of vB′
. In order to do this, we ask the performer to do a Range of

Motion (ROM) performance and iteratively solve for the best vB′
using the following approach:
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Figure 55: Barycentric optimization: (a) Rigid alignment between the Blendshape model

(green dots) and the 3D motion capture (crosses), (b) closest model vertex (green) to the 3D

point (cross) after rigid alignment, (c) new position (green) after Barycentric projection, (d) fi-

nal position (green) after optimization over all frames of a Range of Motion (ROM) capture of

the performer.
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Algorithm 4 Optimal Registration of markers and vertices

1: For each marker vS
i find the nearest triangle Ti in B0.

2: Estimate the Barycentric projection of vS
i on Ti, and set the corresponding position of vB′

i

to that value.

3: Using equation(33) (explained in Sec. 4.1.8), solve for the Blendshape weights over the

entire ROM, giving a resultant performance P j.

4: For each marker vS
i , consider the nearest Q triangles in B0, estimate its Barycentric pro-

jection on these Q triangles, and re-estimate its total error over all frames across the ROM

performance P j for each of these triangles. The value Q should be chosen based on the

mesh triangle-density and our tolerance for how much the marker position can drift from

the manually selected initialization.

5: For each marker vS
i , let Ti be the triangle which gives the lowest overall marker error Mi

over all frames.

6: Repeat (2-6) until Mi converges.

Finally we set vB = vB′
, to be the optimal marker locations on the mesh after convergence.

The iterative process terminates when the error per marker over the entire ROM sequence (Mi)

converges i.e. the change is lower than a threshold. We use a threshold value of 0.1. In

our experiments, this typically requires 3-4 iterations. The intuition here is that the marker

position which gives least error over the entire ROM will better capture the variation in motion

of the performer even in extreme poses without inducing a very large error and influencing the

solve. Finally, before the solve, we make sure to subtract the error in initialization (Mi), from

the target positions of the respective markers every frame. This ensures that our solver isn’t

influenced by the error in initialization, but is only affected by the movement of the markers.

4.1.3 Solving for Blendshape Weights

Our basic marker-based pipeline, built upon traditional approaches and without any modifi-

cations is outlined at a high level in Figure 56. The pipeline initially creates a high quality

Blendshape model from a 3D scan of a performer in a neutral expression and uses 5 more high

resolution scans of the performer in different expressions for acquiring the high frequency data

as described in Section 3. These may also be acquired using a range of off-the-shelf or be-

spoke approaches [113, 106]. In our work, we use a combination of two commercial systems

to acquire high quality 3D scans – Artec Eva and Spider scanners [10]. The former provides

medium scale facial detail, while the latter provides small scale details such as fine wrinkles.

We next use a commercial head mounted facial motion capture system – Vicon Cara [7] – to

acquire facial performances of the same person. This results in 3D motion capture data (50-

100 marker locations) as well as 4 video streams of the performer from the respective Head

Mounted Cameras (HMC). The Blendshape model is registered to the neutral expression frame
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Figure 56: 3D Marker-based Pipeline Overview: (a) Given a template Blendshape model’s

neutral mesh we non-rigidly deform it to (b) a new 3D scan of a face, using an automatic

landmark detection algorithm to assist with the non-rigid deformation, in order to obtain (c)

the deformed mesh of the new face. (d) We then create a personalized Blendshape model using

deformation transfer. (e) Given a new HMC performance, (f) 3D motion capture data is fed to

our 3D objective function optimization to (i) produce a high quality Blendshape animation.

of the performance and then optimally solved for the remainder. The solver uses the 3D points

to determine the optimal Blendshape combination. Given a solved performance, this is easily

retargeted to new faces.

Given a personalized Blendshape model rigidly aligned to the neutral pose markers, the next

task is to fit this model to the performance by optimizing the parameters of the model. As

described previously, the most popular approach for achieving this reliably, especially in pro-

duction, is using 3D marker positions derived using HMCs.
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4.1.4 3D Objective Function

We now present our 3D objective function and explain the factors affecting the quality of the

solve and how we can control them. Our objective function follows the recent trend in solving

Blendshapes[17, 37]. Given a Blendshape model, with N Blendshapes and n markers on each,

our core objective function is

E3D = argmin
α

‖B0 +Bα −T‖2
2 +β‖α‖1 +αT Γα (33)

where:

• B0 is a 3n×1 vector representing the neutral face.

• B is a matrix of size 3n×N, that contains the deltas for each of the Blendshapes Bi...N . In

order to ensure high quality and stable solutions, the rank of the B matrix should ideally

be greater than or equal to N. This depends on the number of markers, the location of

these markers on the face and the Blendshape set that we use.

• α is a N ×1 vector of weights with the constraint 0 ≤ αi ≤ 1.

• T is a 3n×1 vector representing the target markers.

• The term ‖α‖1 is an L1-norm on α that penalizes the sum of weights. This term adds a

sparsity constraint to the solver that forces the solver to choose as few Blendshapes as it

possibly can to solve for the weights. It also prevents the solver from choosing opposing

shapes which would cancel each other out. A sparse solution is very useful as it makes

it easier for an animator to later modify the animations.

• β is a weighting factor on the L1 regularizer. The value of β should be chosen such

that the term β‖α‖1 is of the same order of magnitude as the sum of squares of marker

errors; too high a value of β will suppress the weights leading to muted animations.

• The Γ term is a Tikhonov regularizer that ensures that the function is convex and has

a unique global solution. Γ = ε I where ε is a very small constant and I is the identity

matrix of size N ×N.

In the next section, we show results obtained using the above objective function applied to 3D

marker inputs.
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4.1.5 Results - Using Only Marker Information

We now show some results and metrics to show the performance of our 3D Objective Function.

Figure 57 show the result of using our 3D objective function to solve for Blendshape weights

using motion capture data using the head mounted system discussed previously. The images to

the right show the resulting animations applied to the Blendshape Rig along with the activation

of the controllers corresponding to the individual Blendshapes for that frame of animation.

Note that this solve is done after doing the rigid registration step from Section 4.1.2 using

Algorithm 4.

Figure 58 shows the plot of the Root Mean Square error distance between all the markers and

corresponding vertices on the mesh (y-axis) for every frame of the animation.

Figure 59 shows a plot of the frontal view and the side view of the 3D markers (red cross) and

the corresponding vertex position (blue cross) and the error between them, for a single frame

of the animation.

Figure 60 (Top) shows the plot of the curve for the sum of all Blendshape weights per frame of

the animation. Figure 60 (Bottom) shows an example curve for a single Blendshape over the

course of the animation. Note that both curves are continuous and smooth. Each Blendshape

should ideally have a smooth weight curve over the course of the animation. This is essential

as it indicates that the resulting animation is smooth and free of jitter. As a consequence of

this, the curve for the sum of the Blendshape weights should also be a smooth curve.
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Figure 57: The result of using our 3D objective function to solve for Blendshape weights

using motion capture data from the head mounted system. The images to the right show the

resulting animations applied to the Blendshape rig along with the activation of the controllers

corresponding to the individual Blendshapes for that frame of animation.



Figure 58: Plot showing the curve of the Root Mean Square error distance between all the

markers and corresponding vertices on the mesh (y-axis) for every frame of the animation. The

regions of high error correspond to facial movements where our Blendshape model struggles

to accurately match the motion capture data. Low error values indicate that our model is able

to accurately span the movement space of the actor.
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Figure 59: A plot of the frontal view (Top) and the side view (Bottom) of the 3D marker

locations (red cross) and the corresponding vertex position (blue cross) for a single frame of

the animation. The lines between the red and blue crosses show the correspondence between

marker and vertex and the distance between them shows the error.



Figure 60: (Top) shows the plot of the curve for the sum of all Blendshape weights per frame

of the animation. (Bottom) shows an example curve for a single Blendshape over the course

of the animation. Note that both curves are continuous and smooth. Each Blendshape should

ideally have a smooth weight curve over the course of the animation. This is essential as it

indicates that the resulting animation is smooth and free of jitter. As a consequence of this, the

curve for the sum of the Blendshape weights should also be a smooth curve.



4.1.6 Movement of the HMU and handling of spatial offsets

One challenging issue when using a head mounted unit for face capture is that there is in-

evitably some spatial movement of the helmet with regards to the face. This can be because the

scalp moves with relation to the head, or because there is jerky movement and inertia causes

the helmet to move in relation to the head rather than exactly with it. This is a well-known

issue in performance capture. This can drastically affect the result of the solve as if the spatial

offset isnt taken care of, it can influence the position of markers with respect to their targets

and this completely throw the solve because the markers with the artificially induced distance

will dominate the solve. In order to handle the spatial offsets (translations and rotations) of the

helmet with regards to the face, we propose the use of dummy Blendshapes which we add to

the solver to absorb the offsets or errors caused due to this.

In the case of translations, we add 6 new Blendshapes to the solve that are obtained as an offset

added to the neutral shape B0 of the Blendshape:

B0 ± (10,0,0), B0 ± (0,10,0), B0 ± (0,0,10) (34)

i.e. we translate the neutral face by 10 units along the positive and negative direction along

each axis. With these Blendshapes added to the mix, the solver is able to absorb the translations

caused by the movement of the helmet with respect to the face and thus concentrate only on the

changes caused due to the marker offsets. Figure 61 shows the effect of adding these dummy

translation vectors to the Blendshape set.

In order to similarly handle the rotation caused by the movement of the helmet with respect to

the face, we do the following: Let us consider the rotation about the y-axis.

If we make a shape R1 which is a 90-degree rotated around the y-axis version of the neutral

face (around some origin, say). Then

R1 =

[ 0 0 1

0 1 0

-1 0 0

]
×B0 +XTrans +ZTrans (35)

where B0 is the neutral face Blendshape vector. XTrans,ZTrans are translations on the x and z

axes induced because of the rotation being about an arbitrary origin. We do not need to worry

about these as the previously mentioned dummy Blendshapes for translations will take care of

these.
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So then we can form the Blendshape equation

S = B0 +(R1 −B0)t (36)

where t is the weight allocated to the Blendshape in order to account for rotation about the

y-axis. We can see that t = sin(θ). For small values of θ , we can assume sin(θ)≈ θ .

Substituting equation (35) in (36), we get

S = B0 + t ·
[ 0 0 1

0 1 0

-1 0 0

]
·B0 +XTrans +ZTrans (37)

So if we introduce that shape t ·
[ 0 0 1

0 1 0

-1 0 0

]
·B0 as a Blendshape delta, then provided we soak

up the non-nodal part by allowing for large translations using equation (34), we can have our

linear solver solve for small rotations of the head with respect to the Head Mounted System in

a linear fashion.

We add one shape each for all 3 axes and for positive and negative rotations. Note that for large

rotations, in real life, the movement is non-linear, i.e. along an arc, so the solver cant handle

it but for small rotations, the effect is negligible. Thus with a combination of the dummy

rotations and dummy translations, we are able to handle spatial offsets cause by the sliding of

the helmet with respect to the face.

The effect of adding dummy rotation Blendshapes on our solver can be seen in Figure 62.
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Figure 61: Graphs showing the weights assigned to the dummy translation shapes for each

frame of the sequence. The weights go from 0 to 1. The 6 graphs correspond to the dummy

translation shapes along the X, Y and Z axes by 10 mm on the positive and negative directions.

As seen, the solver assigns weights to these shapes thus indicating that there is a need to address

spatial translation caused due to the helmet moving with respect to head.



Figure 62: Graphs showing the weights assigned to the dummy shapes for each frame of the

sequence. The weights go from 0 to 1. The 6 graphs correspond to the dummy rotation shapes

about the X, Y and Z axes by 90 degrees about the positive and negative directions. As seen,

the weights go up to 0.04, which is about 4 degrees rotation. Note: The solver can only solve

for small rotations as larger rotations involve non-linear motion and will not look correct.



4.1.7 Incorporating Appearance In the Solver

Figure 63: Overview of our modified pipeline with FACS Classification: (a) Given a template

Blendshape model’s neutral mesh we non-rigidly deform it to (b) a new 3D scan of a face, using

an automatic landmark detection algorithm to assist with the non-rigid deformation, in order to

obtain (c) the deformed mesh of the new face. (d) We then create a personalized Blendshape

model using deformation transfer. (e) Given a new HMC performance, (f) 3D motion capture

data and (g) video are acquired and used within a hybrid optimization. FACS unit classification

based on the (h) extracted features is combined with 3D marker data to predict (i) optimal

Blendshape weight combinations to produce a high quality Blendshape animation.

Figure 63 shows the overview of our modified pipeline which makes use of appearance in-

formation in order to improve upon the traditional marker-based approach discussed in the

previous section. In our work, we extend the traditional marker-based approach to incorporate

additional FACS classification from sparse make-up patterns in the video between the markers

and show that this improves results.

We use the Vicon Cara system to acquire 50+ high accuracy 3D marker positions from a facial
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performance. The system also provides 4 synchronized video feeds of the face. In addition,

we paint extra patterns between the markers using off-the-shelf white reflective paint. This is

a pragmatic decision: while facial expression recognition based on classification is a mature

field, it is still not without error and unreliability on occasion due to differences in skin texture

and appearance. Also areas such as the sides of the forehead and cheeks don’t have much

texture variation and classification in these areas is difficult. Using additional patterns greatly

improves the robustness of video based classification in these regions. Figure 64 shows our

head mounted system, as well as marker locations and painted patterns.

Figure 64: Video feeds acquired from the Vicon Cara HMC system.

We propose a novel hybrid Blendshape optimization (solve) which combines two modalities of

data: traditional 3D marker data and local facial expression classification based on FACS [64]

from video by utilizing the deformation of the sparse make-up patterns between the markers.

Both sets of information are integrated directly into our optimizer. This allows for improved

flexibility by letting just the markers drive the animation when needed and have the classifica-

tion influence the result when required, thus resulting in smooth and high quality Blendshape

animations. We use the term hybrid to reflect this combination of modalities. Our classifier is

automated and we are able to detect different intensities of AUs. The classifier can be trained

once and used on multiple performers.

Traditional solving of Blendshape weights using motion capture markers alone, does not cap-

ture the performance with complete fidelity owing to errors in the motion capture process.

Production studios use 3D animators to manually add in these missing details [100]. We

attempt to automate this process by looking at sparse make-up data from video between the

markers and predict Blendshapes to improve visual fidelity. Traditional marker based methods

work under the assumption that the solve that minimizes the objective function is essentially
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the best solve. But these methods fail to take into account subtle visual cues from the video

which are obvious to 3D artists. In Section 4.1.8 we analyze the objective function and discuss

the factors affecting this solve.

Increasing the number of markers on the face introduces further issues in tracking. Markers can

get close to each other and get mistaken for a single marker or they can be erroneously swapped

causing popping in the animation. The more markers we add, the more intractable this problem

becomes, necessitating manual intervention. We demonstrate that our approach can result in

better Blendshape predictions, even when using a smaller number of markers. Another issue is

that complex areas like the eyes and lips have frequent occlusions of markers owing to complex

folding and overlapping of skin and flesh, making it difficult to track accurately. As we use a

texture based classifier trained for specific facial expressions our method is able to handle these

situations.

4.1.8 Hybrid Objective Function

The solution so far still only considers 3D marker data. We therefore use video classification

in localized facial regions to further influence the choice of selected Blendshapes in the op-

timization thus making use of the region in between markers to improve the visual quality.

Expression classification, particularly AU detection based on video, is a widely studied area

in the Computer Vision community [114, 115]. However, to our knowledge, integrating ex-

pression classification into Blendshape solving is a novel direction in the computer graphics

community. We extend our objective function to

E = argmin
α

E3D +
N

∑
i=1

γ (α̃i) [αi − α̃i]
2 (38)

α̃i is the (smoothed) Blendshape weight curve predicted by our classifier, where 0 ≤ α̃i ≤ 1,

and is further explained in Section 4.1.12. The γ (·) term weights the influence of the video

classification. It is calculated offline as a function of α̃i and it varies smoothly over the se-

quence. The use of the γ (·) term allows us to provide a general framework by which we can

have the classifier influence the result when needed by gradually increasing the value of γ (·)
or have just the markers drive the animation by driving the value of γ (·) to zero. The max-

imum value of this term should be in the order of the squared error of the markers so that it

sufficiently influences the solve result. In our experiments we used a maximum value of 4 for

this term. This parameter is calculated as follows. For every frame of the sequence, we set γ (·)
to its maximum value when the classifier detects an input for which we want it to affect the

results and we set it to zero when it detects an input where we want the markers to take over.
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We then apply a temporal filter over the frames using a weighted moving average filter that fits

a second order polynomial. We set the smoothing window size to be 15 frames. This value was

set empirically. The net effect is that the solver’s error will be guided by this additional term,

and will therefore modify the weight of the corresponding Blendshape αi to compensate.

4.1.9 Reflective Patterns and FACS Action Units

Figure 65: Video classification is performed using SVM classifiers. These are trained over

a set of regions, highlighted blue, red, yellow and green in the Figure. The forehead classi-

fier uses two regions initially, and merges their Gabor features for training and classification.

The bottom row shows one of the patterns on the training subject(left), the pattern on the test

subject(center) and the binary thresholded pattern after optical flow from test to training image.

As seen in Figure 65, we draw patterns on the performer’s face in addition to the markers,

using off-the-shelf reflective white paint. This allows us to apply a brightness threshold and

only consider the pattern itself and ignore the skin texture if desired. This enables us to provide

a certain level of indifference to performer identity during classification and allows us to use the

classifier on multiple people. This can also be done using color paint but as our video is gray

scale, we use reflective paint. Our experiments give us good classification results on different
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performers but arguably training the classifier separately for each actor will give better results

as the features are more specific to him/her at the cost of increased training time.

Our choice of patterns was based on muscle movement for FACS [64]. We draw patterns that

capture the deformation around the inner eyebrows (AU 1), outer eyebrows (AU 2), between

the eyebrows (AU 9 and AU 4). In addition, we draw patterns over the upper and lower eyelids

in order to track the lid movements (AU 45 and AU 7) and handle the case of (AU 6+43),

which corresponds visually to closing of the eyelids and compressing the regions around the

eye. Finally we also draw patterns around the upper and lower lip to assist with lip animation.

4.1.10 Gabor Filters and SVM

In order to classify the AUs, we need to extract the relevant regions of the face and extract

useful features from it. We tested our classifier using multiple features – HOG, Gabor filters

and edge-detectors[116]. In our experiments, we found Gabor filters to give best classification

results. We use 8 Gabor filters, at 2 scales and 4 orientations in 45◦ increments.

Figure 66: Gabor Filters with 2 scales and 4 orientations at 45◦ increments.

One important point to note is that in order for this classification to be robust, we need these

regions on the face to be extracted with consistency. That means we need to track and stabilize

these regions with respect to the camera. In our case, we make use of the fact that the HMC

is relatively stable with respect to the head. We pick a point on the HMC that is visible in

our video, and track this point through the sequence using optical flow [117] and use it for

stabilization in combination with 2 stabilizing markers on the sides of the face. We found in

our experiments that this results in good stabilization of the face with respect to the camera and

lets us extract these regions accurately.

4.1.11 Training the Classifier

For the training phase, we ask the performer to perform 7 AUs around 4-5 times each. We then

extract the regions of the face from the video. Figure 65 highlights facial areas of interest, as
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well as the distinct painted patterns. The images are thresholded to extract the reflective pat-

terns. For each AU and each region, we separately perform K-means-clustering on the largest

mode of variation in the video-texture, resulting in 4 clusters which correspond to 4 intensi-

ties of activation. These clusters are used to label the data for training. Figure 67 shows the

intensity levels obtained using this approach for AU 1+2. We then apply Gabor filters on these

extracted images to get our feature vectors and perform a Principal Component Analysis (PCA)

for dimensionality reduction. The PCA retains the basis that capture 90% of variance in the

features. Finally we normalize our training data and train the SVM using a linear kernel. Our

features are large in dimension (2x4xNumOfPixels) and hence a linear-kernel gives sufficient

separability as evidenced during cross-validation with accuracies of 98%. Using an RBF-kernel

didn’t improve performance. We use the one-vs-one approach for multi-class classification.

Thus, each SVM is trained on labeled data for each action in that region. Our classifier was

trained to detect AU 1+2, AU 7, AU 4, AU 9, AU 45 and AU 6+43 on the upper face. Also, in

order to demonstrate the applicability of our method for improving lip animation, we trained

our classifier to detect the lip pucker combined with a sideways motion (AU 10(L/R) + 12(L/R)

+ 18(L/R) + 23(L/R)) [64], as an example see Figure 69 (right).

Figure 67: K-means clustering is performed on individual Action Units which clusters the

motion into 4 groups corresponding to 4 intensities. These labels are then used to train the

classifier. The image shows 4 intensities for AU 1 + 2 automatically obtained using this ap-

proach.

4.1.12 Classifying Action Units

Given a performance, we extract the regions from the face and process them in the same manner

as during the training phase. In order to account for possible differences in the extracted regions

between the training and testing videos and for slight variations in the patterns, we first make
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sure to resize the extracted test images to be consistent with the training data and then also

perform dense non-rigid image alignment to the neutral pose of the training subject using

optical flow [118]. This gives us a UV flow field for the neutral pose, which is applied to every

frame of the performance in order to adjust for the variations in the pattern shapes. This is

shown in Figure 65 on the bottom row.

The output of the SVM classifier predicts which FACS action units are triggered and at what

intensity, for every frame of the performance. The mapping between the FACS action units and

the Blendshapes is trivial and needs to be done only once per rig. The Blendshape weights pre-

dicted by the SVM are still discrete. In order to make these continuous, we apply a smoothing

function. We use the Savitzky-Golay filter in Matlab which is a weighted moving average filter

that fits a polynomial of a specified order over a specified number of samples in a least-squares

sense. We found this to be better than using a simple averaging window as it preserves high

frequency data better. We used different smoothing-window sizes for different AUs, ranging

from 20-30 frames and a second order polynomial. These were chosen empirically, and consis-

tent across subjects. We then normalize these values between 0 and 1, thus getting continuous

weight values α̃i over the sequence for the Blendshapes. We use these blendweight predictions

α̃i as mentioned in equation 38.
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Figure 68: Training the classifier using Gabor features as input to the Support vector machine.

The classifier outputs Blendshape weights that correspond to FACS units detected in the image.

The results of the classifier are combined with the motion capture input in the hybrid objective

function to give us the final Blendshape weights for the frame.
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4.1.13 Results - Using Markers and FACS Classification

In this Section we compare example frames from animations solved using our method with

those from methods using purely marker based approaches. The results for our purely marker

based outputs were generated using equation 33, which is standard. The accompanying supple-

mentary video material gives an overview of our system, and shows multiple animation results

with comparisons.

Hybrid Solver: We used one of our participants to train our bank of SVM classifiers, as de-

scribed in Section 4.1.11. We then captured the same performer and two others carrying out

a range of facial expressions and dialogues. Figure 70 shows example video inputs from the

HMC and corresponding frames from the resulting animations, using our method and for purely

marker based approaches. In the bottom row, notice how the addition of the FACS classifica-

tion affects the regions between the eyebrows (AU 4 and AU 9). These differences are very

subtle but completely change the way the expression is perceived. These subtle differences are

not captured using markers alone. Although the normal maps obtained from the high resolu-

tion scans are baked into the corresponding Blendshapes and trigger when the corresponding

Blendshapes are activated, the markers by themselves don’t drive the Blendshapes accurately

resulting in subdued expressions. This is caused by a few factors. As mentioned in Section

4.1.2, we find the optimal barycentric co-ordinates for the markers based on an iterative error

minimization over a ROM sequence. In spite of this, the markers may not attach themselves

to the exact location on the mesh corresponding to their location on the face during the rigid-

alignment phase. This problem is especially exacerbated when the mesh is low resolution. One

solution is to manually modify the position of the marker on the mesh by visually inspecting

its position on the face. This is reasonable in locations that are visually discernible like the

tip of the nose and lip corners but difficult in areas without distinguishing features like the

forehead and cheeks. Also this gets prohibitive as the number of markers increases. Another

factor is that because the individual Blendshapes are generated from the template model using

deformation transfer, there is an inherent scale error in that the range of movements of the sub-

ject do not match precisely with that of the model. On the other hand our method makes use

of the additional texture information and the classifier is able to detect the deformation in the

patterns accurately. It is able to recognize the FACS units and gauge their intensities exactly

and influence the Blendshape weights such that the expression is recreated correctly and the

normal map blended in appropriately.

Figure 69 (right) shows an example of our method being used to improve lip animation. The

markers alone aren’t able to capture any information about the inner lips and are oblivious to

the fact that the lips are closed and hence the solver gives an incorrect result. Our method on
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the other hand is aware of this pattern deformation as it has been trained to detect it and hence

predicts correct weights. The accompanying video shows the same animations, which show

themselves to be both high quality and visually close to the input videos in terms of expression

and speech motions.

Figure 69: Our system solves for the optimal Blendshape combination from motion-capture

data by considering both 3D markers and video based FACS classification from sparse make-

up patches between the markers. The middle image for each 3-tuple shows solutions to the

Blendshape model without video classification, while the right image for each tuple shows

solutions using video based FACS classification to guide the optimization. Our method is able

to capture information from the video that markers alone aren’t able to capture accurately, such

as the region around the eyes in the left tuple and the lips in the right.

Adding more markers: In order to assess whether our result using 3D markers alone wasn’t

optimal due to there not being enough present on the performer, we conducted a second experi-

ment. We applied 54 markers to the upper face of a performer alone, and few more on the lower

face. Figure 71 shows still images of the performer and corresponding Blendshape model out-

put, while the accompanying video shows an animation of the corresponding sequence. It is

clear that even with a dense set of markers on the face, the 3D only solver does not capture all

the detail. Subtle motions like the furrow between the brows (AU 4) and challenging expres-

sions like AU 6+43, are not captured using markers alone, while our method is able to capture

these.

4.1.14 Discussion

In our experiments, we trained our classifier to detect only a few AUs. Of course this can be

extended to as many isolated AUs as the performer can train for. Adding more AUs to our

system implies that we have to consider combinations of these AUs during training. Note that

while we’ll need to train for these combinations we can choose to have the classifier output

affect the solve just for a few desired combinations and have only the markers handle the rest.

Given good training data that covers the general variations within a particular movement, the

classifier is able to reliably handle these when solving for the performance.
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Figure 70: Animation Results: The left-most image of each 3-tuple shows an example image

from our HMC. Middle images show results using only markers. The right images show results

using markers combined with video classification. Our method is able to capture subtle motions

between the eyes such as AU 9 (top-left tuple) and AU 4 (bottom row) which are missed when

using only markers. This drastically changes the way the facial expession is perceived. Also

increased control over Blendshape selection allows us to detect when wrinkles should show up

( top-right and center-left tuples)

Figure 71: Example comparison using significantly larger number of facial markers (54 in

the upper face region alone). Left 2 tuples show the marker-only approach while the right 2

tuples show our approach. As seen, even when using significantly larger number of markers in

the concerned region, it still results in missing facial detail when using only markers which is

otherwise captured when using our method. Results are shown for AU 6+43 and for AU 4.

The strength of our approach lies in the fact that we can have just the markers drive the anima-

tion in general but also have the classifier influence the result for more challenging motions. In
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Figure 72: Result comparing the solve using just a traditional marker based solve vs our

method.

order to do this we make 2 passes. In the first pass, we use the classifier to predict Blendshape

weights from video as described in Section 4.1.12 to obtain weight curves α̃i. The weighting

factor γ (·) is calculated as described in Section 4.1.8. In the second pass, we use the curves

from the first pass and solve equation (38) to obtain the final weights. We use the quadprog op-

timizer in Matlab with the interior-point-convex algorithm to minimize our objective function

and impose the linear inequality constraints on αi. As we smooth over the classifier weight

outputs, our method is not real-time.

For our purposes, we want to detect the presence or absence of certain poses and have the
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Figure 73: Figure showing the retargeting of our blendhape weights onto multiple Blendshape

rigs using parallel parameterization.

classifier affect the results when needed. The use of a classifier lets us provide a general frame-

work to allow this when used in conjunction with the γ (·) parameter. In theory a regression

based approach can be used to achieve the same effect but we’ll nevertheless have to make a

few choices about the complexity of the model and the values of thresholds which amounts

to the same choice as the smoothing window size for our γ (·) and α̃i parameters when using

classifiers. Noise in the input data would be another factor to consider which may necessitate

a smoothing operation on the predicted output curves just like in the classification case.

As discussed in section 4.1.9, we extract the patterns in the texture thus enabling the classifier to

work on multiple people independent of identity. As expected, the accuracy of the classification

degrades slightly when we train on one participant and use it on another, in spite of the non-

rigid image alignment between subjects. This is due to sensitivity of the classifier to local

transformations occurring due to inherent differences in the motion between participants. This

is especially noticeable around the eye region as it has the most variation between subjects.

This manifests itself as misclassified frames causing inconsistency between actual performance

and recreated animation. This issue can be alleviated by making the classifier invariant to local
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Figure 74: Results showing the effect of the sparity constraint (Section 4.1.4) on the solve.

Note that the lack of the sparsity constraint causes overfitting, where the solver tries to add in

more Blendshapes to account for minute errors between markers and vertex-points and adds

in additional Blendshapes to account for these. This causes distortions as seen in the result

(Middle).

transformations of the input. This can be done by augmenting our training data with random

locally transformed replicas of the training patterns at the cost of increased training time or

by using more robust classifiers that have the invariance property built into them such as in

convolutional neural networks. Ideally the classifier should be trained on AUs from multiple

people. There are limitations to this and AUs for subjects with drastic differences in scale or

whose FACS movements are very different compared to the training data can be misclassified.

In this case, the classifier will work better when trained specifically on the individual.

4.1.15 Conclusions and Future Work

We have presented a novel method that uses information between markers in the form of sparse

make-up patterns in the video and classifies FACS units in order to better fit Blendshape mod-

els to facial performances. Our approach guides the overall optimization function to include

movements difficult to detect using 3D motion capture alone. Our resulting animations are

high quality and effectively parameterize the actions of the performer. We have compared our

hybrid solving approach to traditional motion capture methods that use only 3D markers and

shown that our results are more faithful to the performance.

Our method can be extended to handle dimples and other micro-expressions in the future.

Although we have used SVMs in our method, we plan to consider classifiers that might be
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more optimal such as Relevance Vector Machines or Deep Learning architectures with the aim

of improving robustness of classification.

We believe there is also room to improve our method to allow detection of AUs without special

makeup. This is still however an area of research in computer vision, especially given captures

in environments with broadly changing lighting variation. However, recent work in machine

learning for AU detection [114] shows promise in this area, and may allow for the recognition

of many subtle motions across a wide variation of performers.
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4.2 Markerless Capture System

Over the last few years many methods for facial performance capture have been developed.

These methods range in complexity from active marker based approaches with multiple cam-

eras, head-mounted devices and controlled environments [24, 7, 27, 89, 28, 8, 5, 31, 119, 49,

25, 39, 56, 74] to methods that use depth sensing devices like the Microsoft Kinect and others

[52, 53, 96, 30, 37]. Although many of these methods provide good quality animations, the

time taken to setup the environment including the time taken to apply markers on the actor’s

face can be a hindrance to the quick application of these methods, similarly the capture de-

vices used may be custom built and not easily available or cheap enough for general consumer

use. The use of markers or structured light makes it difficult to simultaneously capture both

geometry and texture thus requiring either in-painting of markers as in [48] or sacrificing tem-

poral resolution by interleaving structured light with uniform light. Additionally these active

methods can be uncomfortable for the actors and affects their performance [8].

As stated by Chris Bregler [23], ”In a way, Makerless Face Capture for animation is as old

as the trade of traditional animation, taught by Disney and others in the early 20th century.

Animators always look at example recordings, especially for facial animations. For example,

the idiosyncrasies and mannerisms of the Step-Mother’s facial expressions in Cinderella were

based on filmed recordings of actress Eleanor Audley. In some cases, the animations were even

a direct copy of the hand-traced motions from film, like in scenes of Snow White. Performing

such tracing and tracking automatically by a computer has been the topic of computer vision

research over the past 20 years. Just recently new techniques have become available that have

good enough quality for animation in the entertainment industry.” Several companies have

come out with systems for markerless face captures, including Mova Contour [120], Image

Metrics Live Driver [99], DI4D [113].

In general, there seems to be a trade-off between the quality of capture data and the complexity

of the hardware or setup process. On the other end of the spectrum are passive, single camera

systems and these have been the focus of research in recent times [93, 90, 33, 34, 35, 36]. Due

to the challenging nature of uncontrolled lighting environments and unreliable textures, the

tracking is usually limited to distinctive facial features such as eyes, eyebrows, pupils, inner and

outer contours of the lips and contours of the jaw. Most faces do not have sufficient medium-

scale texture to establish dense correspondences in different viewpoints or across frames.

That being said, there is ample data that exists from legacy systems, easily available, captured

from multiple people performing a range of facial movements and speech. One of the prob-

lems with 2D monocular inputs is that information along the depth axis is inherently missing

and this proves to be a challenge. Even though the solver may minimize the error in the ob-
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jective function, the true 3D shape may be ambiguous. In the following sections, we present

a lightweight approach that achieves good quality solves using just a monocular input while

exploiting this existing data from legacy systems and using it to learn a prior in order to make

sure physically implausible results aren’t generated. Our contributions are as below.

• We present a lightweight monocular markerless capture method that achieves good qual-

ity animation parameters and does not require special equipment, controlled lighting

environments or complex training phases.

• We exploit easily available prior animation data obtained from 3D tracking systems and

use this in a density estimation framework to regularize our objective function and gen-

erate more plausible results. We enable further flexibility by learning separate prior

constraints for the upper and lower face regions.

• We combine initial estimates of 2D landmark points on the face based on an ensemble

of regression trees, with an Active Appearance Model for improved accuracy.

• We handle noise in input 2D features and in the estimation of camera extrinsic parameters

thus eliminating jitter in the resulting animation.

• We also present our lighting optimization approach that uses the inverse rendering equa-

tion to find the optimal values of light intensity and position thus enabling us to relight,

re-texture and overlay the mesh on the original video.

In this work, our objective is to capture the movement of the actor’s face using a lightweight

method that doesn’t require expensive equipment or lighting apparatus and using only a single

monocular off-the-shelf camera while simultaneously addressing the issue of missing depth in-

formation. In light of this, we will mainly discuss previous work that is similar to our approach

in these regards.

Our approach is most similar in spirit to Garrido et al. [36]. They present a lightweight ap-

proach that makes use of a single monocular video input and are able to generate a high quality

output animation with fine scale details using a Blendshape model. They track a few sparse

landmark feature points on the face reliably using forward and backward optical flow com-

bined with automatic key-frame selection based on local binary patterns for robustness. The

pose and facial expressions are estimated from these sparsely tracked points on the face in an

iterative fashion. Temporally coherent dense motion fields tracked from video combined with a

smoothness constraint is then used in order to refine the pose and facial expression. Fine scale

details are then added on top using a shape from shading approach. Although their method

produces good results, as it is a monocular system, it doesn’t account for inherent loss of infor-

mation along the depth dimension. Our method uses a prior constraint in order to regularize the
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data which alleviates the error due to the lack of depth information. Also our method doesn’t

depend on optical flow across the sequence, but only on the current and previous frames and

thus can be implemented in an online fashion.
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4.2.1 System Overview

Figure 75: Our system uses the input from a 2D feature detector based on an ensemble of

decision trees as an initialization and further feeds it to an Active Appearance Model trained

on 15 images of the user with varied facial expressions. This allows us to accurately detect the

features on the actor’s face even during extreme facial expressions. We then feed the result of

this step into a Kalman filter for online smoothing. We use 2 Kalman filters, one for the 2D

features and one for the camera’s extrinsic parameters.

Our pipeline fits a Blendshape model to automatically tracked 2D feature points in the video.

In order to generate our Blendshapes (Sec.4.2.3), we first deform the neutral expression mesh

from an existing template Blendshape model to a 3D scanned face of the actor to obtain the

mesh of the actor in a desired topology. We then automatically generate the user-specific

Blendshape expressions for this actor. Our 2D landmark features are initially obtained using

the method of [103] giving us 68 distinct landmarks (Sec.4.2.2). These landmarks are detected

per frame and although they provide a good starting point, the detections are not accurate

enough for our purposes and give unacceptable results especially for extreme facial expres-

sions. In order to address this, we use the Fast Simultaneous Inverse Compositional algorithm

of [121], trained on a few images of the user which is applied on top, using the results from

[103] as an initialization. This gives us more robust landmark detections especially in extreme

facial expressions. We solve for the camera extrinsic parameters using the Perspective-n-Point

approach with the Levenberg-Marquardt algorithm for non-linear optimization (Sec.4.2.4). In

order to address the inherent noise from estimating landmarks and camera parameters per

frame, we smooth the noise in the 2D features and the camera parameters using a Kalman filter
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Figure 76: Our system makes use of prior data in the form of existing animation sequences

obtained from previous captures using accurate 3D tracking systems. This includes multiple

facial expressions and speech movements across multiple people. We learn this prior within a

density estimation framework on existing data, using a Parzen window scheme with a radial

basis kernel. We also perform a data binning operation in order to make sure that the density

estimate isn’t affected by the frequency of the data points in the prior data.

(Sec.4.2.5). Finally in order to regularize our solve results, we make use of a prior energy con-

straint (Sec.4.2.7 and Sec.4.2.8) that estimates the probability of the solution and factors it into

the objective function (Sec.4.2.9) resulting in more plausible shapes. Our optimization func-

tion then solves for the optimal coefficients of the Blendshapes that minimize the re-projection

error of the landmark vertices whilst taking into consideration its likelihood. Finally, we use

an inverse rendering equation (Sec.4.2.11) to optimize for the lighting parameters that allows

us to relight, re-texture and overlay the face on the video.
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4.2.2 2D Facial Feature Detection

To obtain our initial 2D features, we first use the algorithm of [103] implemented within the

Dlib library [122], to detect 68 landmarks on the face on a frame by frame basis. The algorithm

uses an ensemble of regression trees to accurately predict the optimal displacement of each

landmark at each level, based on differences in pixel intensity around that landmark. We trained

the ensemble of regression trees using the images from the HELEN, LFPW, AFW, IBUG and

300 faces In-the-wild databases [123, 124, 125], to give a total of 4213 training images with a

wide variety of pose, lighting and shape variations. We used a cascade depth of 10, tree depth

of 10, 500 trees per cascade, a feature pool of 400 and 50 test splits ( see [103] for details ).

This gives us reasonable initial detections of landmarks on the user’s face but isn’t accurate

or robust enough for the application of performance capture as shown in the accompanying

video. The landmark detections are incorrect during extreme expressions and this leads to

unacceptable solve results.

In order to improve upon this, we further train an Active Appearance Model [29] using the

Fast Simultaneous Inverse Compositional approach of [121], on a few select images of the

user performing a few facial expressions. We used 15 facial expressions that included a few

that elicit the extreme range of the user’s facial movements (jaw-open, lip-swing) and also a

few challenging expressions that generate lip and eye occlusions (pucker, squinch). We then

use the result of the previous step as a starting point and then use the AAM to improve landmark

tracking through the sequence. In our experiments, this gives us much more robust detections

and also covers the full range of the user’s expressions as shown in the accompanying video.

The results of this landmark detection are further fed into the Kalman filter to account for

discrepancies between frames and to remove noise in an online fashion.

Figure 77: Landmark points initialized using an ensemble of regression trees and updated by

the AAM
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Figure 78: Non-rigid ICP from template mesh to scan resulting in user specific Blendshapes

4.2.3 Automatic Blendshape Generation

The Blendshape generation step for obtaining the actor’s Blendshapes is exactly as described in

Section 3. We briefly describe this process here again. In order to obtain the neutral expression

mesh of the actor, we scan the actor in a one-time pre-processing step. The resulting scanned

mesh has a random noisy topology which cannot be used directly. In order to rectify this, we

then deform the neutral expression mesh from an existing template Blendshape model to this

scanned mesh using the algorithm of [11] to obtain a new mesh with the desired topology. We

then automatically generate the expression Blendshapes for the actor’s face by applying the

Deformation Transfer approach of [16] to give us 140 unique Blendshapes. This gives us a

linear Blendshape model with N Blendshapes for use in our solver as below:

B = B0 +
N

∑
i=1

αi(Bi −B0) (39)

where, B0 is the neutral expression Blendshape, αi is the weight associated with Blendshape i

and Bi corresponds to the i-th Blendshape.

The vertices on the 3D mesh that correspond to the automatically detected landmarks from

Sec.4.2.2, are chosen by the user in a one time manual step.
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4.2.4 Camera Calibration for Facial Projection

We calibrate our camera using a standard checkerboard pattern in order to obtain our camera

intrinsic matrix K in a one time step. We then calculate the extrinsic parameters [R|t] i.e.

the rotation and translation that take the 3D face mesh from model coordinates to camera

coordinates. This is essentially a Perspective-n-Point problem between the vertex coordinates

on the mesh and the corresponding landmarks in 2D. The calculation of the projection matrix

has to be independent of the facial expression of the actor and thus we choose a subset of

the landmarks that correspond to stable regions on the face. This includes the landmarks on

the upper/outer contours of the face and along the bridge of the nose, as shown in Figure77.

In our experiments this gives us satisfactory results. Given these correspondences, we then

solve for the camera extrinsic parameters every frame using the Levenberg-Marquadt non-

linear optimization framework combined with RANSAC for robustness. This gives us the

[R|t] values every frame that we combine with the camera intrinsic matrix K to give us our

projection matrix – K[R|t]. In order to account for differences between adjacent frames, we

further process these results and smooth them across frames by feeding these into the Kalman

filter.

4.2.5 Online Facial Feature Smoothing

The 2D features and the camera extrinsic parameters so far, are obtained on a frame by frame

basis. Both the 2D landmark detections and the camera extrinsic estimates are prone to noise

and this independence between the frames inevitably leads to jitter in the final animation as

shown in the accompanying video. This necessitates a smoothing operation in order to ensure

consistency and avoid sudden changes. We use a Kalman filter in order to smoothly transition

these values between frames. The Kalman filter predicts the value of the landmarks and ex-

trinsic parameters every frame and then uses the observations to update its belief about what

the parameters should actually be, based on the value of the Kalman-gain-factor, which it cal-

culates based on the noise in observation and the noise in the process. This ensures that any

updates made to the landmarks and the extrinsic parameters are updated smoothly. We use

one Kalman filter for updating the changes in all the 2D landmarks and one for updating the

changes in rotation and translation parameters for the camera extrinsics.

The location of the landmark point detections are predicted every frame by taking into account

the velocity and acceleration along each dimension of the tracked points based on the previous

frames and then combined with the observations at that frame. A similar process is applied

for the translation values in the camera extrinsics. As for the rotations, the orientations in 3D
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Figure 79: Results from the projection of our 3D face mesh onto the video

have 3 degrees of freedom ( yaw, pitch and roll ) but our rotation matrix has 9 parameters.

Smoothing the rotation matrix directly in this space will not constrain the values properly and

will not ensure valid rotation values. Hence we perform the smoothing in quaternion space.

This removes ambiguity and also constrains the rotations better thus ensuring that our rotation

values are valid throughout the sequence.

This process of online smoothing using Kalman filters greatly helps with tackling noise inher-

ent in the 2D feature detection and camera extrinsics and ensures that our objective function

isn’t affected by noise. The results of our updated landmarks and camera projection matrix can

be seen in Figure 79 and in the accompanying video.

4.2.6 2D Objective Function

Given the corrected 2D landmarks and the projection parameters from the previous step, we

then solve for the facial expressions by calculating the optimal coefficient weights for the

Blendshape model using the following objective function, similar to [33].

E2D(α) =
n

∑
l=1

‖ΠQ(M(B0 +
N

∑
i=1

αiBi)
(vl))−q(l)‖2 (40)

where:

• n is the number of landmarks

• ΠQ is the camera projection matrix

• M is the rigid transform from object space to camera coordinates
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• N is the number of Blendshapes

• B0 is the neutral expression Blendshape

• αi is the weight associated with Blendshape i with the constraint 0 ≤ αi ≤ 1

• Bi corresponds to the i-th Blendshape

• q(l) represents the l-th 2D landmark point in the image

• vl represents the vertex corresponding to landmark l

This objective function by itself only considers the 2D landmarks to reduce the error and is

inherently under constrained as the information along the depth axis is missing in the video.

This leads to insufficient constraining and to errors that show up especially along the depth

axis. In Section 4.2.7 and 4.2.8 we tackle this problem by improving on our objective function

and making use of prior constraints.

4.2.7 3D Spatial Constraints

One of the problems inherent in monocular capture approaches is that the information along

the depth dimension is lost. This leads to situations where the optimization function described

above is able to obtain coefficients that minimize the squared distance between the projected

vertices and the corresponding 2D landmarks but it does so with solutions that no longer adhere

to physically plausible shapes of the face. This effect is especially visible around the mouth

region as there is a lot of variation in the depth dimension during speech. This can also be seen

when opening the jaw as there is movement along the depth axis. In order to ensure that our

objective function provides physically plausible results, we need to ensure that our results are

regularized to stay within such a solution space. In general 3D face capture systems can be less

flexible compared to monocular marker-less systems and placing physical markers on the actor

can be very time-consuming, but these systems provide accurate tracking of points. There is

ample data available from legacy 3D face capture systems from multiple people performing

different facial expressions and speech sequences. It makes sense to use this data in order

to regularize our results. We can use the data from these accurate 3D systems and use it to

constrain our results while still retaining a monocular marker-less approach.

In a one time training step, we use prior data in the form of 3D marker locations over capture

sequences from previous captures using the Vicon Cara 3D head-mounted device [7]. Our data

spanned multiple sequences of speech and facial expressions from 5 different people perform-

ing diverse facial movements. In order to use this data for our purposes, we first need to solve
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for the Blendshape coefficient weights specific to our Blendshape model. We do this using the

standard objective function [17] for 3D solves, as shown below.

E3D(α) = argmin
α

‖B0 +Bα −T‖2
2 +β‖α‖1 +αT Γα (41)

where:

• B0 is a 3n×1 vector representing the neutral face, where n is the number of markers.

• B is a matrix of size 3n×N, that contains the deltas for each of the Blendshapes Bi...N ,

where N is the number of Blendshapes.

• α is a N ×1 vector of weights with the constraint 0 ≤ αi ≤ 1.

• T is a 3n×1 vector representing the target markers.

• The term ‖α‖1 is an L1-norm on α that penalizes the sum of weights.

• β is a weighting factor on the L1 regularizer.

• The Γ term is a Tikhonov regularizer that ensures that the function is convex and has

a unique global solution. Γ = ε I where ε is a very small constant and I is the identity

matrix of size N ×N.

Solving this for our multiple training sequences gives us valid coefficient weights over multiple

people. We use this data Dprior, in order to estimate the posterior of the solution in a probabilis-

tic framework. Essentially given a solution vector of coefficient weights i.e. our likelihood,

we need to estimate the posterior P(α|Dprior), given the prior P(α). We can learn this prior

P(α) using a Kernel Density Estimation method - the Parzen window with an RBF kernel as

explained below:

p(α) =
1

n

n

∑
i=1

1√
2πσ

exp

(
−(αi −α)2

2σ2

)
(42)

where n is the number of prior data points, α is the estimated coefficient vector and αi are the

prior points. The bandwidth or standard deviation σ is obtained as shown in the next section.

More details about how we solve this objective function and how we learn our priors can be

found in the Appendix at the end of the thesis.
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4.2.8 Data Binning

One of the issues with using a density estimation technique directly is that it will give higher

probability to points that occur more frequently in our prior data Dprior. This is not desirable

as we assume that all of our prior data is accurate as we obtained it from a high accuracy

3D capture system and we want to weight them equally. So in order to overcome this, we

essentially need to perform a data-binning operation where we replace multiple data points by

a single vector corresponding to the mean of the cluster to which they belong. This makes

sense as it allows us to give equal weight to different valid facial configurations without letting

its frequency affect the probability. We use the Mean Shift algorithm [104] to cluster our prior

data.

The mean shift algorithm is a non-parametric clustering algorithm which does not require the

knowledge about the number of clusters. It works by updating candidates for centroids to be

the mean of the points within a given region. Given a candidate centroid xi for iteration t, the

candidate is updated according to the following equation:

xt+1
i = xt

i +m(xt
i) (43)

where m is the mean shift vector that is computed for each centroid that points towards a region

of the maximum increase in the density of points

We make use of an automatic method of bandwidth selection [126, 127, 128] for use with the

mean shift algorithm. This gives us our bandwidth, σ in equation 42. We then use the means of

the clusters thus obtained (αi) within the Parzen window density estimation framework (Eqn.

42) in order to obtain the prior probability of a solution.

4.2.9 Objective Function with 3D Spatial Prior

Finally, we factor this probability into our objective function in order to obtain optimal coef-

ficients α that adhere to physically plausible face configurations. Since the probability of the

upper face coefficients should be independent of the lower face coefficients — e.g. to avoid the

probability of the eyebrows being raised being affected by the jaw being open — we perform

the density estimation of these coefficients separately. This is essential since our prior data is

not guaranteed to cover all possible combinations of the upper-face and lower-face shapes in

tandem. Our updated objective function is as shown below:

EFinal(α) = E2D +
λ

P(α)
(44)
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where λ is the weight given to the prior term and P(α) is the prior on the coefficients. This

ensures that the solution provided by our objective function lies within the valid space of facial

expressions which is controlled by the prior data. As seen in the results in Figures 81,83,84

and 85, this yields significant improvement over the solve using just the 2D landmarks. This

is especially visible in regions around the mouth as this is where majority of the variation in

depth occurs.

4.2.10 Including Priors for Dynamics

So far in our markerless pipeline, we have considered solving for the Blendshape coefficient

weights on a frame by frame basis. We do use a Kalman filter for online smoothing in between

frames, but while this smooths out the noise in the landmark detections, it does not do so

in a way that utilizes information about the dynamics of facial movements in general. Our

existing data from the accurate 3D capture system not only consists information about the

prior probability of coefficient weights, but also contains inherent information about how the

coefficient weights change over time i.e. dynamic information. While the human face is a

very complex system with many degrees of freedom, the space of human facial expressions

and movements still lie within a smaller manifold within this larger space — i.e. human beings

tend to perform facial expressions and speech in relatively predictable ways. It makes sense

to extract this information and utilize it in order to improve the results of our solve. In order

to do this, we propose a dynamic prior based on information from previous frames in the

performance in order to predict the probability of the current frame, given the likelihood. We

propose learning this prior using a Gaussian Process regression model.

A Gaussian Process can be thought of as a family of functions with certain properties of that

family which is specified by the covariance matrix. An underlying assumption made in this

case is that the family of functions is assumed to be smooth, which is a reasonable assumption

to make in our case as the change in our coefficients over time is naturally smooth owing to

the smooth movements of the face. This covariance matrix is a function of the existing pairs

of input data points and can take the form of the family of Mercer Kernels, which are positive

semidefinite. One way of thinking about this is to imagine a multivariate Gaussian distribution

that is fit to our data points. Given a new input point, the value of the output can be obtained

as the mean of a conditional Gaussian distribution, conditioned on the existing points and the

variance is obtained similarly. As described in [129], this can be stated formally as:

The Multivariate Gaussian Distribution Theorem [130] states that – given x = (x1,x2) is jointly

Gaussian with parameters
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µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, Λ = Σ−1 =

(
Λ11 Λ12

Λ21 Λ22

)
(45)

Then the marginals are given by

p(x1) = N (x1|µ1,Σ11)

p(x2) = N (x2|µ2,Σ22)
(46)

and the posterior conditional is given by

p(x1|x2) = N (x1|µ1|2,Σ1|2)

µ1|2 = µ1 +Σ12Σ−1
22 (x2 −µ2)

= µ1 −Λ−1
11 Λ12(x2 −µ2)

= Σ1|2(Λ11µ1 −Λ12((x2 −µ2)))

Σ1|2 = Σ11 −Σ12Σ−1
22 Σ21 = Λ−1

11

(47)

Our purpose is to use Gaussian Processes for regression, so with this in mind, we’ll discuss

regression and show how Gaussian Processes provide a Bayesian approach to regression. Con-

sider a model defined as a linear combination of M fixed basis functions given by the vector

φ(x) so that

y(x) = wT φ(x) (48)

where x is the input vector and w is the M-dimensional weight vector. If we consider a prior

over w given by an isotropic Gaussian of the form

p(w) = N (w|0,α−1I) (49)

where α represents the precision of the distribution. The probability distribution over w

induces a probability distribution over y(x). The joint distribution of the function values

y(x1), .....,y(xN), which we denote by y is given by

y = Φw (50)

where Φ is the design matrix with elements Φnk = φk(xn). y is Gaussian distributed with mean
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and covariance given by:

E[y] = ΦE[w] = 0

cov[y] = E[yyT ] = ΦE[wwT ]ΦT =
1

α
ΦΦT = K

(51)

where K is the Gram matrix with elements

Knm = k(xn,xm) (52)

with k(x,x′) is the kernel function.

We also need to take into account the noise on the observed target values, given by

tn = yn + εn (53)

where yn = y(xn) and εn is a random noise which is Gaussian so that

p(tn|yn) = N (tn|yn,β
−1) (54)

where β is a hyperparameter representing the precision of the noise. The joint distribution of

the target values t = (t1, ....., tN)
T is given by:

p(t|y) = N (t|y,β−1IN) (55)

By equation 51,

p(y) = N (y|0,K) (56)

The Kernel function K is typically chosen to have the property that for points that are similar (or

closer), the corresponding values of y(xn) will be more strongly correlated than for dissimilar

points. This ensures the condition of smoothness. The marginal distribution p(t) is given by

p(t) =
∫

p(t|y)p(y)dy = N (t|0,C) (57)

where the covariance matrix C has the elements

C(xn,xm) = k(xn,xm)+β−1δnm (58)
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The Kernel function we use is the exponential of the quadratic form given by

k(xn,xm) = θ0 exp

{
− θ1

2
‖xn − xm‖2

}
(59)

Now given a new target variable tN+1 for a new input vector xN+1, we evaluate the predictive

distribution p(tN+1|tN). From equation 57, the joint distribution over t1, ....., tN+1, will be given

by

p(tN+1) = N (tN+1|0,CN+1) (60)

where

CN+1 =

(
CN k

kT c

)
(61)

where the elements of CN are given by equation 58, k has elements k(xn,xN+1) and the scalar

c = k(xN+1,xN+1) + β−1). Using the results from equation 45, the conditional distribution

p(tN+1|t) is a Gaussian distribution with mean and covariance given by

m(xN+1) = kTC−1
N t (62)

σ2(xN+1) = c− kTC−1
N k (63)

Using equations 62 and 63, we are able to predict the coefficient weights of the current frame

in the animation, given the previous frames in the animation. Our input to the Gaussian Pro-

cess regression model, i.e. the xi values correspond to a window of coefficient weight vectors

appended together — αn,αn+1, .....,αn+ j−1 and the corresponding output value yi is given by

a vector of coefficient weights given by αn+ j. This data is obtained from our existing prior

animation data ( from section 4.2.7 by sliding a window of size j over the sequence of solved

coefficient weights.

This gives us a prior probability for the coefficient weights αi given the coefficient weights

over the previous j frames , αi− j, .....,αi−1

αi = GP(α(i− j):(i−1)) (64)

The predicted value of αi is given by equation 62. Equation 63 gives us a measure of how

confident we are about the predicted value of αi.

Finally, we incorporate this predicted dynamic value of the coefficient weights for the current
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frame into our objective function to give us

EFinal(αi) = E2D +
λ

P(αi)
+ γ‖αi −GP(α(i− j):(i−1))‖2

2 (65)

where γ is a weighting constant that balances the effect of the dynamic prior and is a function

of the variance returned by the Gaussian Process regression — i.e. γ = 1
V

, where V is given by

equation (63).

Equation 65 has two constraints on the coefficient weights for the Blendshapes — one enforc-

ing the prior probability given by equation (42) and the other enforcing the constraint on the

dynamics which is a function of the previous j frames of the performance, given by equation

(64).

4.2.11 Lighting and Texturing

In order to be able to properly relight and re-texture our 3D mesh – e.g to overlay texture on top

of the video for virtual makeup – we need to optimize for the lighting parameters. This includes

the intensity of the light, the position of the light and the ambient intensity of the environment.

We do this using an inverse rendering operation and optimize for these parameters. The idea

is to find the values for these parameters such that the squared difference in pixel intensities

between the re-projected mesh vertices and the video texture is minimized. We assume a

Lambertian reflection model and a single point light source.

The Lambertian rendering equation is given by:

Ivi
= IaKa + IpKd(N

′ ·L′) (66)

where:

• Ivi
is the resulting intensity at a vertex vi

• Ia is the ambient light intensity,

• Ka is the ambient coefficient,

• Ip is the point-light intensity,

• Kd is the diffuse coefficient

• N′ is the normalized surface normal at a vertex vi,

• L′ is the normalized light direction which depends on the light position Lpos,
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Figure 80: Results obtained after relighting, re-texturing and overlaying our 3D mesh on top

of the video.

• · is the dot product operator

The colour Cvi
at a vertex vi on the mesh is then given by

Cvi
= Ivi

Tvi

where Tvi
is the texture colour value for the vertex vi. Our lighting objective function then aims

to to minimize the error over all the vertices on the mesh

Elight(Ia,Ip,Lpos) = minIa,Ip,Lpos ∑
i

||CIi
−Cvi

||2

where CIi
is the pixel colour in the original video input at which the vertex vi is projected onto.
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This gives us the optimal values for the position and intensity of the light in the scene, which

allows us to reproject the 3D face back in the video using our projection matrix calculated in

Section 4.2.4. The results of our relighting and re-texturing can be seen in Figure 80.

Note that we need to obtain the texture information of the actor’s face beforehand in order to

do this lighting optimization. In our experiments, we use the texture returned to us from the

3D scanner([10]). This has to be a diffuse texture, i.e. it cannot have shading artifacts such as

shadows embedded within it. This is because the lighting in the scene can only be obtained

when we have an artifact free representation of the actor’s face texture, as the optimization uses

the artifacts in the video as cues in order to figure out the lighting location and intensity. This

can be done by having uniform illumination from all directions on the actor’s face when the

texture is obtained. Similarly, the video that we are solving for cannot be used as the source

of the texture itself as this will mean that the optimizer will give the trivial solution where the

texture values are unaltered in order to match the video, resulting in no optimization being done

at all. Ghosh et al. [54] presented a method to obtain very high quality diffuse and specular

albedo and normal maps of an actor’s face using the Light Stage technology which, in theory,

would enable one to estimate the lighting parameters with accuracy.
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4.2.12 Results and Discussion

We render our 3D model within an OpenGL framework combined with OpenCV for calculation

of the projection matrix and solving the perspective-n-point problem. In order to perform

our optimization, we make use of the Ceres solver, an open source C++ library for modeling

and solving constrained non-linear optimization problems. Our method is online as it doesn’t

require any operations across frames, although it isn’t real-time owing to speed bottlenecks.

Our system consists of a 4th generation Intel-I7 2.80GHz quadcore processor with 16GB RAM

and an NVIDIA GTX765M graphics card.

While the 2D feature detector used for initializing the landmarks per frame is independent of

the user (as it’s trained on different faces), in our experiments it wasn’t accurate enough, espe-

cially for extreme facial expressions including ones with occlusions. The Active Appearance

Model is trained on 15 images of the user performing few facial expressions that elicit the range

of his expressions both on the upper and lower face regions. These training images are marked

semi-automatically – initialized using the previous 2D feature tracker and then corrected where

needed. Although this makes our system dependent on the specific actor, it is a small price to

pay for the improvement in tracking especially considering only 15 images were sufficient to

track accurately through a video sequence of over a thousand frames.

The accompanying video shows the improvements obtained owing to our Kalman filtering

operation performed both on the 2D features and on the camera projection parameters.
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As seen in the results in Figures 81,83,84 and 85, the addition of the prior makes our results

more reliable. The improvements can be seen in general but specifically around the mouth

region where the changes in depth are most prominent. Areas where occlusions are common,

around the eyes and mouth, stand to benefit the most as these regions are prone to loss of infor-

mation in the 2D input. As our density estimator involves the Radial Basis Function as a kernel

in the Parzen Window scheme, our objective function becomes non-linear, but because we ini-

tialize the parameters with the solutions from the previous frame, we do not run into popping

in the animations owing to local minima. Nevertheless, the Parzen window density estimator

is the prime bottleneck in taking this approach from merely online to real-time. In future work

we will consider more efficient mechanisms for calculating prior probabilities such as Proba-

bilistic PCA [85] or Gaussian Process Latent Variable models [131]. Our prior data consisted

of animation sequences over 5 people and multiple facial expressions and speech movements

to give us a total of 45817 frames of animation. Our automatic bandwidth estimation gives us

a bandwidth of 0.3066 and 81 clusters for the lower face and a bandwidth of 0.1202 and 82

clusters for the upper face.

Finally, our lighting optimization enables us to re-texture and re-render the 3D mesh and over-

lay it on top of the video allowing us to augment the input video with desired textures which

blend in with the user’s face as can be seen in the accompanying video. In our experiments

although we place no restrictions on the lighting environment, we do assume that the light-

ing doesn’t change during the sequence, so we are able to perform the lighting optimization

only on the first frame of the video and use the obtained parameters through the sequence. Of

course this condition can be relaxed if we do the optimization every frame at the expense of

computational efficiency.
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Figure 81: Comparison of a pucker expression using only 2D points vs the improvements

obtained using our Prior constraint.

Figure 82: Results from our solver re-targeted onto multiple face models. As seen in the side

views, our method is able to handle ambiguities in depth, inherent in monocular input, and

achieve results that are physically plausible even in areas with occlusions like around the lips.
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Figure 83: Comparison of a full face squeeze motion using only 2D points vs the improvements

obtained using our Prior constraint.

Figure 84: Comparison of angry expression using only 2D points vs the improvements obtained

using our Prior constraint.
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Figure 85: Comparison showing results around the mouth regions using only 2D points vs the

improvements obtained using our Prior constraint.

Figure 86: Comparison showing a smile expression using only 2D points vs the improvements

obtained using our Prior constraint.
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Figure 87: Comparison showing a frown expression using only 2D points vs the improvements

obtained using our Prior constraint.

Figure 88: Comparison showing a lip-swing motion using only 2D points vs the improvements

obtained using our Prior constraint.
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Figure 89: Comparison showing a lip-swing motion using only 2D points vs the improvements

obtained using our Prior constraint.

Figure 90: Comparison of the frown expression using only 2D points vs the improvements

obtained using our Prior constraint.
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Figure 91: Comparison of the mouth region using only 2D points vs the improvements obtained

using our Prior constraint.

Figure 92: Comparison of results for angry expression using only 2D points vs the improve-

ments obtained using our Prior constraint.
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4.2.13 Quantitative Evaluation - Comparison with Ground Truth

In order to evaluate the results of our algorithm quantitatively, we needed to collect ground

truth data for comparisons. For this purpose, we recorded one of our subjects using 6 high-

definition cameras with baselines offsets that capture the actor’s face from 5 different angles.

These cameras were synced with each other using our gen-lock mechanism allowing us to ob-

tain video frames from the performance sequence from different views that are temporally in

correspondence with each other. We use the data from these cameras for a few expressions and

reconstruct the 3D geometry of the actor’s face for those frames using the Agisoft Photoscan

software [132] and obtain high detail textured meshes as shown in Figure 93. The obtained

meshes have a random topology and hence we use the method of Amberg et al. [11] to deform

the neutral face of the actor to the reconstructed 3D meshes. This gives us ground truth ge-

ometry with the same topology as our Blendshapes which we use for quantitative evaluation.

We generate a heat map based on the per-vertex error of our results compared to the ground-

truth. The results of this evaluation can be seen in Figure 94. The heat map was generated

by using the error value per vertex (after scaling between 0 and 1) as a UV coordinate on a

color gradient image. The gradient image goes from green at 0 to red at 1. Regions that have

higher error show up in red and regions with lower error show up in green. The total error from

ground truth geometry for the lip-swing expression was: 4.4908e+05 units (without prior) and

3.3752e+05 (with prior). The total error from ground truth geometry for the frown expression

was: 5.5391e+05 units (without prior) and 4.3288e+05 (with prior).

Figure 93: Ground-truth geometry obtained by reconstructing synchronized frames from mul-

tiple views of the actor’s face.
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Figure 94: Ground-truth evaluation for the lip-swing expression (top) and the frown expres-

sion (bottom). The total error from ground truth geometry for the lip-swing expression was:

4.4908e+05 units (without prior) and 3.3752e+05 (with prior). The total error from ground

truth geometry for the frown expression was: 5.5391e+05 units (without prior) and 4.3288e+05

(with prior). The ground truth geometry was reconstructed from 5 different views of the ac-

tor’s face. We generate a heat map based on the per-vertex error of our results compared to the

ground-truth. The heat map was generated by using the error value per vertex (after scaling

between 0 and 1) as a UV coordinate on a color gradient image. The gradient image goes from

green at 0 to red at 1. Regions that have higher error show up in red and regions with lower

error show up in green.
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4.2.14 Conclusion

We have presented a lightweight markerless approach for capturing the facial movements of

a user using only a 2D monocular input resulting in high quality animation parameters. We

make use of prior constraints on the solve results, obtained from pre-existing accurate 3D

captures and use this to improve the physical plausibility of our solve results which helps

tackle the loss of information in depth that is inherent in 2D monocular inputs. We combine

2D landmark detections based on an ensemble of regression trees with an Active Appearance

Model for improved accuracy. We make use of Kalman filters to handle noise across frames

in an online fashion, both in 2D feature detection and in estimating the camera parameters

giving us improved tracking and solves. Finally we also present our optimization for the light

intensity and positions, which enables us to accurately relight and re-texture the 3D models

allowing us to overlay desired textures on top of the input video.
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5 Conclusions

In this thesis, we have presented a completely automated pipeline for Performance Driven

Facial Capture and Animation. We have discussed the state of the art in this area and the pros

and cons of various capture methods. Our work mainly makes novel contributions in both the

Capture and Modeling stages of the animation pipeline. Our automated pipeline for generation

of the Neutral face mesh in a desired topology from either 3D scans or from multiple images

of the actor’s face and the automatic generation of the Blendshape set and the actor specific

nuances along with the high-frequency details such as wrinkles, significantly reduces the effort

required in the Modeling stage which is significant step in the direction of consumer friendly

facial animation. Our contributions to marker-based facial capture systems improves upon

the state of the art by accounting for details that were previously difficult to capture using

only markers, by the addition of additional features in the form of reflective patterns which

are used in a FACS classification framework to improve animation results. Finally we make

contributions to markerless facial capture systems using only a single monocular video input

with the use of both static and dynamic priors learnt from previously captured data using more

accurate capture systems, thus removing the need for costly equipment, multiple cameras and

controlled studio settings.

Over the last decade, many of the pressing challenges involved in Performance Driven Facial

Capture and Animation have been addressed by multiple approaches and in many cases they

have been tackled effectively and efficiently. While tremendous progress has been achieved in

the automation, consumerization and democratization of Performance Driven Facial Capture

and Animation over the last decade, there does not exist, yet, a one-stop approach which can

allow for an actor to easily be captured with high realism and fidelity, without markers or any

makeup, without training phases, with free movement of the head and body at large angles to

the camera, with drastically changing lighting conditions, using a single monocular camera, no

user intervention with automatic acquisition and tracking of the eyes and teeth. As mentioned

in the introduction section of this thesis, the ultimate goal of facial animation is a system that

creates realistic animation, operates in real-time, is as automated as possible and adapts to

different individual faces easily. Many of the methods over the last decade have addressed

some or all of these points and have achived considerable success, even if at the cost of a

trade-off between them. Most of the approaches address the overall face in general itself and

do not concentrate their efforts on the eyes, teeth and hair and quite frequently, they are put

in post-capture and post-retargeting by 3D artists. There have been some promising efforts at

automatically generating meshes and texture along with reflectance data for the eyes as seen in

Beeler et al. 2014 [133], but the work addresses static reconstruction and deformation of the
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iris while the dynamic aspects of the eyeball and its complex motion patterns are not addressed.

Similarly, the teeth are usually added in with the help of a 3D artist after the capture session and

not obtained as a part of the capture pipeline. Thies et al. [40] re-render the teeth in the interior

region of the face in their re-targeted and re-rendered image but it is only a 2D approximation

as opposed to a realistic 3D acquisition which can be animated along with the mouth. Luo et

al. [134] presented an approach for synthesizing realistic hair in 2013, but it still hasn’t been

organically incorporated into the facial capture and animation pipeline and stands as a separate

system.

Most of the work in facial animation has either made an assumption of little or no motion of

the face with respect to the cameras. To our knowledge, none of the approaches allow for

fully free motion of the actor and the actor’s face spanning multiple large angles, drastically

changing lighting and large motions of the actor with respect to the camera. Head Mounted

Systems allow the actor to move but the location and angle with respect to the camera is still

fixed. An interesting and useful direction to pursue in the future will be to allow for fully free

motion of the actor without a Head Mounted Device, without any markers or special makeup

and using multiple cameras. Using multiple cameras and automatic feature detection it would

be possible to track the actor’s face and combine information from all the cameras in order

to track the actor with completely free movement of the head and body. There is also lot of

information about identity of an individual encoded in the dynamics of the facial expression as

recently shown by Girges et al. [135]. Another promising future direction would be in learning

the actor specific dynamics of facial motion and using this to modify a performance by another

actor in order to simulate identity.
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Appendices

Learning The Prior

Given a set of Blendshapes and the 3D marker locations every frame obtained from the Cara

system, we learn our prior by first solving for coeffecient weights x. The basic equation we are

trying to optimize for is a quadratic of the following form.

(Basis∗ x− target)2

= (b∗ x− t)T ∗ (b∗ x− t)

= xT ∗ (bT ∗b)∗ x−2∗ (tT ∗b)∗ x+ tT ∗ t

(67)

Where:

• b (Basis) is a matrix of size 3n×N, that contains the deltas for each of the Blendshapes

Bi...N , where N is the number of Blendshapes and n is the number of markers.

• x is a N ×1 vector of weights with the constraint 0 ≤ xi ≤ 1.

• t (target) is a 3n×1 vector representing the target marker locations.

Now Matlab’s quadratic programming method solves for x in the following equation

minx

1

2
xT Hx+ f T x such that





A · x ≤ B,

Aeq · x = beq,

lb ≤ x ≤ ub

(68)

H, A, and Aeq are matrices, and f , b, beq, lb, ub, and x are vectors.

A and B allow us to specify the inequality on x i.e. 0 ≤ x ≤ 1

Aeq and beq are not needed as we don’t have any equality constraints.

So in our case, if we compare equation 68 and equation 67, we find that H = bT ∗ b+ ε ∗ I,

where I is an N ×N identity matrix and ε is a very small value used for regularization.

Also according to our equation, f = bT ∗ t
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Now the way we add in the L1 norm on x, i.e. β‖x‖1, is as follows:

We add the term β ∗1 to f i.e. f = f +β ∗1 where 1 is a N ×1 vector.

This works because in equation 68, f T gets multiplied by x. So the value β which we add

into f is multiplied by the Blendshape weights x and added to the error. Because our values

of x are strictly positive, this acts as an L1-norm, effectively penalizing by a value of β ∗ xi for

each Blendshape weight xi that is added. This penalizes the use of excessive weights.

The above equations are used to calculate the coeffiecients in the 3D case, which we use to

learn the prior on the coefficients.

Equation (33) essentially does exactly what is described above. α in equation (33) corresponds

to x in the discussion above.

We solve using the above method for every frame in our existing data (from the Cara system)

and obtain multiple x values for each frame. We then perform the mean shift operation on all

the obtained x vectors in order to cluster the data points and keep only the means, which we

use in the next step.
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