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Abstract 

This study introduces a Reverse Adaptive Krill Herd - Locally Weighted Support Vector Regression 

(RKH-LSVR) model.  The Reverse Adaptive Krill Herd (RKH) algorithm is a novel metaheuristic 

optimization technique inspired by the behaviour of krill herds. In RKH-LSVR, the RKH optimizes the 

locally weighted Support Vector Regression (LSVR) parameters by balancing the search between local 

and global optima. The proposed model is applied to the task of forecasting and trading six ETF stocks 

on a daily basis over the period 2010-2015. The RKH-LSVR’s efficiency is benchmarked against a set 

of traditional SVR structures and simple linear and non-linear models. The trading application is 

designed in order to validate the robustness of the algorithm under study and to provide empirical 

evidence in favour of or against the Adaptive Market Hypothesis (AMH). In terms of the results, the 

RKH-LSVR outperforms its counterparts in terms of statistical accuracy and trading efficiency, while 

the time varying trading performance of the models under study validates the AMH theory.  
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1. Introduction  

In the competitive financial world, identifying optimal solutions for a given financial problem is very 

important, but it can also prove utterly challenging. The financial task might not be well defined or might 

suffer from lack of necessary data. Even if this is not the case, simple constraints can often impede closed 

form solutions or the application of standard numerical methods (Lo, 2000; Gilli et al., 2008). This 

usually can be overcome by restating the problem through relaxed assumptions that simplify it and 

consequently its solution. Logically, it should be preferable to adapt an optimization approach around 

the original problem. This can be achieved by heuristic optimization techniques (Hall and Posner, 2007). 

Their success in financial applications is well documented (Chang et al., 2000; Gilli et al., 2008; Oreski 

and Oreski, 2014; Aguilar-Rivera et al., 2015). 

Nonetheless, their use can be computationally demanding compared to traditional models while they can 

trap in local optima and suffer from over-fitting. Metaheuristics are problem-dependent techniques that 

can overcome these issues to some extent (Turmon 1998; Bernstein et al., 2015). They achieve a trade-

off between intensification (local search) and randomization (global search) by intelligent selection of 

random variables, without being problem dependent (Talbi, 2009). Martí et al. (2013) compare several 

heuristics and metaheuristic models and suggest that the best solutions are provided with metaheuristic 

approaches, while computational time is also decreased. This feature made them a popular approach for 

solving complex optimization problems. Their modeling is inspired by activities appearing in nature. 

For example, many algorithms evolve around species evolution and movement (Goldberg, 1989; Yang 

and Gandomi, 2012; Li et al., 2014) while others are based on swarm behavior and intelligence (Liang 

et al., 2006; Karaboga and Basturk, 2008; Yang, 2010; Popescu and Crama (2015)). 

A novel bio-inspired metaheuristic method is the Krill Herd algorithm (KH) as proposed by Gandomi 

and Alavi (2012). KH simulates the herding behavior of krill individuals. Its objective functions are the 

minimum distances of krill from the food location and the location of the highest density of the herd. 

Each krill position is a time-dependent function formulated by three motions. The movement induced 

by other individuals, the foraging motion and a random physical diffusion. In KH the derivative 

information is not necessary because it uses a stochastic random search rather than a gradient search. 

Additionally, KH requires the fine tuning of only one parameter, in contrary to other metaheuristics 

algorithms (such as the particle swarm optimization and the harmony search).  Gandomi and Alavi 

(2012) and Wang et al. (2014) compare the efficiency of KH against the most popular metaheuristics 

optimization models. In both studies, the KH present a superior performance.  It is worth noting that 

there is no application of the KH in a financial forecasting framework. In this paper, we extend the KH 

algorithm by combining the principles of opposition based optimization along with a two-stage adaptive 

operator (CPO) and introduce the Reverse-adaptive KH (RKH) algorithm. RKH provides a substantial 

improvement to the search ability of the KH for best solutions while at the same time adds diversity to 

the generated population. As a consequence, krill move smoother and quicker towards better solutions. 



Additionally, the CPO decreases substantially the probability of trapping to local optima and enhances 

the efficiency between krill exploring and exploiting the search space. 

Support Vector Regressions (SVRs) are non-linear data-adaptive regression techniques. SVRs main 

advantage is their ability to generate nonlinear decision boundaries through linear classifiers, while 

having a simple geometric interpretation (Suykens, 2002). SVR applications exhibit promising results 

in financial forecasting tasks (see amongst others Trafalis and Ince (2000), Hsu et al. (2009), Yeh et al. 

(2011) and Sermpinis et al. (2015)). Their main drawback, though, is the sensitivity to their 

parametrization process. For that reason, evolutionary techniques, especially GAs, are commonly 

combined with SVR in order to form superior forecasting hybrid structures. For example, Pai et al. 

(2006) apply epsilon SVR with genetically optimized parameters (GA-εSVR) in forecasting exchange 

rates. Huang et al. (2010) forecast the EUR/USD, GBP/USD, NZD/USD, AUD/USD, JPY/USD and 

RUB/USD exchange rates with a hybrid chaos-based SVR model. In their application, they confirm the 

forecasting superiority of their proposed model compared to chaos-based NNs and several traditional 

non-linear models. Lin and Pai (2010) introduce a fuzzy SVR model for forecasting indices of business 

cycles. Yuan (2012) suggests that (GA-εSVR) is more efficient than traditional SVR and NN models, 

when applied to the task of forecasting sales volume.  

A more complicated but also promising class of SVRs is the Locally weighted SVR (LSVR). The 

conceptual advantage of the LSVR against the traditional SVR is the better balance between training 

error and model complexity. This is achieved by penalizing past data, while exploiting more the 

information from recent observations. This adaptive feature seems advantageous for financial time 

series. For example, Huang et al. (2006) apply LSVR to the task of forecasting three stock indices. Yang 

et al. (2009) apply a localized SVR forecast financial data and their results are superior to the standard 

SVR. Wu and Akbarov (2011) apply successfully weighted SVRs to the task of forecasting warranty 

claims. Finally, Jiang and He (2012) propose a hybrid SVR that incorporates the Grey relational grade 

weighting function. When applied to financial time series forecasting, the local Grey SVR outperforms 

locally weighted counterparts in terms of computational speed and prediction accuracy.  

The above background motivates us to introduce the hybrid Reverse Adaptive Krill Herd - Locally 

Weighted Support Vector Regression (RKH-LSVR) algorithm. The RKH algorithm tunes the three 

parameters of the LSVR. This hybrid structure, that combines the advantages of RKH and LSVR, does 

not exist in the literature. In the few studies that employ LSVR the tuning of the LSVR is utilized through 

cross validation or grid search. Previous studies in financial forecasting problems either use traditional 

optimized SVRs (Trafalis and Ince, 2000; Hsu et al., 2009) or apply a simple GA in the SVR’s 

parametrization (Pai et al., 2006; Wu et al., 2007; Yuan, 2012). In this study, the most popular SVR 

techniques applied in the relevant literature will act as benchmark to the proposed RKH-LSVR 

algorithm. Namely, the performance of the RKH-LSVR is compared against a LSVR optimized through 



KH, a SVR optimized through a GA, a SVR optimized through grid search, a set of non-linear and linear 

models and a random walk (RW).  

All models are applied to the task of forecasting and trading seven Exchange-Traded Funds (ETFs) on 

a daily basis over the period 2010-2015. ETFs offer investors the opportunity to trade stock indices with 

low transaction costs. The six ETFs under study track some of the most liquid stock indices, currency 

baskets and commodities. In the GA and KH models the practitioner can choose the metaheuristics 

fitness function. In the literature, practitioners usually choose the Mean Square Error (MSE) or the Root 

Mean Square Error (RMSE). However, in financial trading applications statistical accuracy is not always 

synonymous of trading profitability. In this study, three different fitness functions will be explored 

incorporating statistical and trading terms.   

The forecasting and trading exercise covers the European sovereign debt crisis. Its aim is to test the 

performance of the models under study when the markets are in crises, to explore their robustness within 

the out-of-sample and to provide empirical evidence in favour of Adaptive Market Hypothesis (AMH), 

as presented by Lo (2004). For this reason, four forecasting and trading exercises over the period of 

2010-2015 are conducted. In each forecasting exercise, the models under study are evaluated in a 

monthly basis.  AMH suggests that the trading models’ strength varies depending on market conditions 

and that the performance of trading rules dies out through time. It also suggests that in periods of 

financial crises it is more difficult to generate profitable trading rules and that this task is even more 

difficult when the underlying market is advanced. The monthly evaluation of our models, the out of 

sample periods and the markets under study will allow us to check these elements of the AMH. 

In terms of the empirical results, the RKH-LSVR outperforms its benchmarks in terms forecasting 

accuracy and trading profitability. The implementation of KHs and GAs in the SVR structures is 

beneficial in comparison with those applying data driven parametrization. The majority of the SVR 

models produce profitable forecasts after transaction costs, but their success seems sensitive to the 

parameter optimization and the periods under study. We note that the average trading performance of all 

models appears worse in the second forecasting exercise, while the profitability of all models deteriorates 

generally through time. The models generate lower profits for the currency ETFs and higher for the 

commodity ETFs.    

The rest of the paper is organized as follows. Section 2 provides a detailed description of the dataset 

while a theoretical background on SVR and LSVR is given in section 3. The RKH-LSVR algorithm and 

its benchmarks follow in section 4. The statistical and trading performance of all models is presented in 

sections 5 and 6 respectively while the concluding remarks are provided in section 8. Finally, the 

technical characteristics of the models under study are included in the appendix section. 

 



2. Dataset 

In this analysis we examine six ETFs that are designed to replicate currencies and stock indices from US 

and Europe, along with two major commodities over the periods of 2010-2012 and 2013-2015. ETFs 

offer investors the opportunity to trade stock market indices at very low transaction costs1. The 

advantages of ETFs over “conventional trading” are well documented by researchers (Dolvin, 2010; 

Marshall et al., 2013), practitioners (Ferri, 2009; Wagner, 2011), analysts (e.g. ETFdb.com) and 

institutions (e.g. ICI, US Securities and Exchange Commission (SEC)). The details of the seven ETFs 

under study are presented in table 1 below. 

Table 1: The ETFs under study 

MARKETS ETF TRACKING  TICKER 

US 
PowerShares DB US Dollar Index Bullish Fund  Long US Dollar Futures Index (USDX) UUP 

SPDR Dow Jones Industrial Average Trust  Dow Jones Industrial Average DIA 

EU 
Guggenheim CurrencyShares British Pound Sterling Trust  GBP/USD exchange rate FXB 

Vanguard FTSE Europe  FTSE Developed Europe Index VGK 

Commodities 
United States Oil Fund  Light Sweet Crude Oil (WTI) Futures Index USO 

iShares Gold Trust  Gold Bullion IAU 

 

The six ETFs time series are non-normal and non-stationary, while they present negative skewness and 

positive kurtosis.2In order to overcome the non-stationarity issue, all series are transformed into daily 

series of rate returns using the following formula: 

                                          1
ln /

t t t
R CP CP


                                           (1) 

where Rt  is the rate of return and CPt is the closing price (adjusted for dividends and stock splits) at time 

t. The descriptive statistics of the return series are shown in the following table: 

Table 2: Summary statistics 

 

 

 

 

 

                                                           
1 The transaction costs for the three ETFs tracking their respective benchmarks do not exceed 0.5% per annum for medium 

size investors (see, for instance, www.interactive-brokers.com). Before the expansion of ETFs, traders had to pay a separate 

commission for each individual stock of an industry-specific portfolio. Now there are sector-specific ETFs, which allow 

traders to pay only one commission to buy or sell short an entire group of stocks.  
2 The Jarque-Bera statistics (1980) confirm their non-normality at the 99% confidence interval. 

 Ticker UUP DIA FXB VGK USO IAU 

 

 

2010-2012 

Mean -0.00008 0.00038 -0.000003 0.00013 -0.00021 0.00055 

Standard deviation 0.0053 0.0105 0.0053 0.0185 0.0183 0.0111 

Skewness 0.2197 -0.4173 -0.1588 -0.2733 -0.3209 -0.5289 

Kurtosis 3.6456 6.3288 3.2348 5.9277 4.8466 5.7288 

Jarque-Bera (p value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ADF (p value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

2013-2015 

Mean 0.00022 0.00047 -0.00014 0.00017 -0.00147 -0.00062 

Standard deviation 0.0047 0.0078 0.0047 0.0097 0.0186 0.0109 

Skewness -0.2642 -0.2714 -0.0862 -0.3376 -0.0481 -0.9357 

Kurtosis 5.0977 5.1789 4.7258 4.2069 5.7632 11.4728 

Jarque-Bera  (p value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ADF (p value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 



All returns series exhibit small skewness and high kurtosis. The Jarque-Bera statistic confirms that the 

six return series are non-normal at the 99% confidence level. The Augmented  Dickey-Fuller  (ADF) 

reports that the  null  hypothesis  of  a  unit  root  is  rejected  at  the  99%  statistical level for all ETFs. 

The proposed methodology and its benchmarks are applied on the task of forecasting and trading the 

one day ahead rate of return (E(Rt)) of the six ETFs. More specifically, the models’ performance is 

evaluated through the four forecasting exercises presented in table 3.   

Table 3: The total dataset 
Note: The in-sample periods are the sum of the training and test datasets. The datasets of forecasting exercises 

F2 and F4 are simply formed by rolling the dataset of forecasting exercises F1 and F3 periods respectively by 

six months.  

 

 

 

 

 

 

 

 

 

 

The four forecasting exercises cover the extended European sovereign debt crisis, including its peak (F1, 

F2) and its aftermath (F3, F4). The intuition behind the selection of the dataset is threefold. Firstly, the 

performance of all models will be examined under stressed market conditions. Secondly, this 

performance will be compared through different forecasting exercises aiming at observing the respective 

performances in the US and European markets. Lastly, detecting a connection between the empirical 

results with the AMH proposal will be attempted. Figure 1 presents the performance of the six ETFs 

during the four forecasting exercises.   

 

 

 

 

 

 

 

 

 

FORECASTING 

EXERCISE 
PERIODS TRADING DAYS START DATE END DATE 

F1 

Total Dataset 629 04/01/2010 29/06/2012 

Training Dataset  377 04/01/2010 30/06/2011 

Test Dataset 127 01/07/2011 30/12/2011 

Out-of-sample Dataset 125 03/01/2012 29/06/2012 

F2 

Total Dataset 630 01/07/2010 31/12/2012 

Training Dataset  380 01/07/2010 30/12/2011 

Test Dataset 125 03/01/2012 29/06/2012 

Out-of-sample Dataset 125 02/07/2012 31/12/2012 

F3 

Total Dataset 628 02/01/2013 30/06/2015 

Training Dataset  376 02/01/2013 30/06/2014 

Test Dataset 128 01/07/2014 31/12/2014 

Out-of-sample Dataset 124 02/01/2015 30/06/2015 

F4 

Total Dataset 632 01/07/2013 31/12/2015 

Training Dataset  380 01/07/2013 31/12/2014 

Test Dataset 124 02/01/2015 30/06/2015 

Out-of-sample Dataset 128 01/07/2015 31/12/2015 



Figure 1: The ETFs under study 

Note: The four forecasting exercises are illustrated in the UUP graph. These forecasting exercises apply to all ETF series. 

 



All models will be optimized in the in-sample and their forecasts will be evaluated in the out-of-sample.  

3. Theoretical Framework 

Support Vector Machines (SVMs) are learning machines utilizing the structural risk minimization 

principle to obtain good generalization on limited number of learning patterns (Wu and Liu, 2007). One 

class of SVM methods is the Support Vector Regression (SVR), introduced by Vapnik (1995), which is 

established as a robust technique for constructing data-driven and non-linear empirical regression 

models.  

3.1 v-SVR 

Considering the training data {(x1,y1), (x2,y2)…, (xn, yn)}, where , , 1...
i i

x X R y Y R i n      and n 

the total number of training samples, then the SVR function can be specified as: 

                                                                        ( ) ( )
T

f x w x b                                                              (2) 

φ(x) is the non-linear function that maps the input data vector x into a feature space where the training 

data exhibit linearity (see figure 2c) while w and b are estimated by minimizing the regularized risk 

function: 

 
2

1

1 1
( ) ( , ( ))

2

n

i i

i

R C C L y f x w
n





                                                   (3) 

The parameters C and ε are predefined by the practitioner, yi is the actual value at time i and f(xi)is the 

predicted value at the same period. The ε-sensitive loss 𝐿𝜀 function (see figure 2b) is defined as: 

                                  
0 | ( ) |

( , ( )) ,
| ( ) |

i i

i i

i i

if y f x
L y f x

y f x if other
 



  
  
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                                                    (4) 

Equation (4) identifies the predicted values that have at most ε deviations from the actual values yi. The 

ε parameter defines a ‘tube’ (see figure 2a). The two variables, i
  and *

i
 represent the distance of the 

actual values from the upper and lower bound of the ‘tube’ respectively. 

 

 

 

 

 



 

Figure 2: a) The ε-tube b) The plot of the ε-sensitive loss function c) The mapping procedure by φ(x) 

 

The goal is to solve the following argument: 

  Minimize 
2*
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  

      
 

      

                          (5) 

The quadratic optimization problem of equation (5) is transformed into a dual problem and its solution 

is based on the introduction of two Lagrange multipliers *
,

i i
a a and mapping with a kernel function 

( , )
i

K x x  : 

               

*

1

( ) ( ) ( , )
n

i i i
f x a a K x x b



    where *
0 ,

i i
a a C                            (6) 

The application of the kernel function transforms the original input space into one with more dimensions, 

where a linear decision border can be identified. In this study, the Gaussian Radial Basis Function (RBF) 

for all SVRs is applied. A RBF kernel is in general specified as: 

              
2

( , ) exp( ), 0
i i

K x x x x    
                                               (7) 

where γ is the variance of the kernel function.  

RBFs require only one parameter to be optimized (the γ) and provide good forecasting results in similar 

SVR applications (see amongst others Lu et al., (2009), Yeh et al., (2011) and Kao et al. (2013)).3   

                                                           
3  In this study, we have also experimented with the Wavelet kernel (Zhang et al., 2004) and the Mahalanobis kernel (Ruiz 

and Lopez-de-Teruel, 2001). However, their use did not provide better results than the ones obtained with the application of 

the RBF kernel. For the shake of space, these results are not presented but are available upon request. 



Factor b in equation (6) is computed following the Karush-Kuhn-Tucker conditions. A detailed 

mathematical explanation of the solution can be found in Vapnik (1995). Support Vectors (SVs) are 

called the xi‘s that lie closest to the ε margin, whereas non-SVs lie within the ε-tube.  Increasing ε leads 

to more SVs’ selection, whereas decreasing it results to more ‘flat’ estimates. The norm term 
2

w

characterizes the complexity (flatness) of the model and the term
*

1

( )
n

i i

i

 


 
 


 is the training error, as 

specified by the slack variables. Consequently the introduction of parameter C satisfies the need to trade 

model complexity for training error and vice versa (Cherkassky and Ma, 2004).  

The v-SVR algorithm can be used to make the optimization task easier, by encompassing the ε parameter 

in the optimization process and controls it with a new parameter (0,1)v . In v-SVR the optimization 

problem transforms to: 

 Minimize 
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     (8)  

The methodology remains the same as in ε-SVR and the solution takes a similar form: 

                    *
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Based on the ‘v-trick’, presented by Schölkopf et al. (1999), increasing ε leads to the proportional 

increase of the first term of 
*

1

1
( )

n

i i

i

v
n

  


 
  

 
 , while its second term decreases proportionally to the 

fraction of points outside the ε-tube. So v can be considered as the upper bound on the fraction of errors. 

On the other hand, decreasing ε leads again to a proportional change of the first term, but also the second 

term’s change is proportional to the fraction of SVs. That This means ε will shrink as long as the fraction 

of SVs is smaller than v, therefore v is also the lower bound in the fraction of SVs. For a more detailed 

mathematical analysis of solutions see Vapnik (1995).   

The superiority of vSVRs over the eSVR is well documented in the literature (see amongst others 

Cherkassky and Ma (2004) and Basak et al. (2007)). For this reason, the vSVR approach is followed in 

this study.  

3.2. Locally Weighted Support Vector Regression 

The locally weighted regression (LWR) is a memory-based procedure for fitting a regression surface to 

the data through multivariate smoothing. It is based on the assumption that the nearest to the predictor 

values are its best indicators. This is extremely beneficial in problems such as modelling financial trading 



series, where some training points are more important than others and more recent observations have 

higher weight in predicting the future.  

LWR can approximate an estimate g(x) of the regression surface for every value x in the dimensional 

space of the independent variables. Following the suggestions of Cleveland and Devlin (1988) each point 

of the neighbourhood is weighted according to its distance from point of interest x. The neighborhood 

is set by estimating the distances of q observations xi from x, where 1 q n   Those points that are close 

to x are assigned large weights, while those that are far have small weights. This confirms the local 

element of the method (Lee et al., 2005). The idea of assigning weights to each point of the dataset could 

be expressed as: 

      {(𝑥𝑖, 𝑦𝑖 , 𝑤𝑖)}𝑖=1
𝑛  , 𝑥𝑖 ∈ 𝑋 ⊆ 𝑅, 𝑦𝑖 ∈ 𝑌 ⊆ 𝑅, 0 ≤ 𝑤𝑖 ≤ 1                                         (10) 

A quadratic function of the independent variables is fitted to the dependent variable using weighted least 

squares with these weights. In that way, g(x) is taken to be the value of this fitted function at x. A distance 

function in the space of the independent variables and a weight function to specify the neighborhood 

size are needed. The work of Cleveland and Devlin (1988) provides a detailed description on how to 

select these. The most common approach and the one followed in this study is to use the ratio q/n as a 

smoothness factor. The practitioner should interpret the smoothing factor rather than the q. The reason 

for that is that increasing the smoothing factor provides a smoother g(x) estimate. The selected weight 

function is the tricubic one specified below: 

3 3
(1 ) ,0 1

( )
0,

u u
W u

otherwise
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  
 

       (11) 

Based on these, the weight of each training data (xi, yi) is: 

      
( , )

( )
( )

i

i i

x x
w x W

d x

 
  

 
     (12) 

where ρ is the Euclidian distance and d(x) is the Euclidian distance specifically from the qth-nearest xi to 

x. 4 

From equation (11) it is verified that [0,1]
i

w  .  The weight has its maximum value when xi is closest to 

x and its minimum for the qth-nearest xi to x.   

                                                           
4 For instance, when the daily return for ETFs is desired and  the expected return for the respective time series is roughly equal to zero, 

outliers of 5% gain per ticker could be ignored due to major structural change rather than routine behaviour of the time series. In this 

example x is the expected return target when modelling the deviation from this point, the outlier is xi and wi is the weight the Euclidean 

distance assigns to this observation. 



Applying the principles of LWR to the SVR, we can achieve a Locally Weighted SVR (LSVR), where 

the parameter C is not constant, but locally adjusted as: *
i i

C w C        (13) 

In the case of ε-SVR, the quadratic optimization problem of equation (5) is transformed to: 
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                (14) 

Regarding v-SVR, the quadratic optimization problem of equation (8) becomes the following: 

Minimize 
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               (15) 

The conceptual advantage of the LSVR against the traditional SVR is based on the locally adjusted Ci. 

The weighted Ci provides better balance between training error and model complexity, by penalizing 

more (small weight) big slack variables (see figure 3).  

Figure 3: the ε-tube (grey lines), the f(x) curves of SVR (black solid line) and WSVR (grey dashed line) 

 

 

The traditional SVR attempts to track all training data with a specific model complexity through a 

constant C. Conceptually, this suggests that that the size of 
*

,
i i
  does not fluctuate much. The LSVR, 

on the other hand, highly penalizes the errors near x in an attempt to increase predictability. The SVR 

and LSVR models are based on optimizing an objective function that tunes the parameters. In the process 

of optimization/training the kernel as of equations (14) and (15), potential misclassifications are 

penalized. The penalty term can be constant as C or it can be adaptive to some measures as Ci. In the 

proposed algorithm, the penalty term is dependent on the associated weight to the point and the weight 



is defined based on Euclidean distance (equation 12). In this manner, when the previous points (in-

sample) are used to train the kernel in LSVR, their misclassification grade is penalized by the Euclidean 

distance function as of equation (11). LSVR’s predictive performance is increasing gradually, as the 

shape of the weight function is becoming sharper (Lee et al., 2005).5 This is a clear point of superiority 

of LSVR over the non-locally optimized method. Nonetheless, it should be clarified that the weighting 

process does not solve ‘over-fitting’ issues that usually impede the success of SVR applications.   

4. Methodology 

This section summarizes the proposed methodology applied in the study. Initially, the KH algorithm is 

described along with the way it is combined with LSVR. Next, we introduce a novel extension of the 

KH-LSVR. Finally, the SVR input and model benchmark selection is presented. 

4.1 Locally Weighted Krill Herd Support Vector Regression (KH-LSVR) 

As discussed earlier, LSVR provides better balance between the training error and model complexity, 

which is crucial for the success of the SVR method. However, this does not provide a safety net to affront 

the major challenge of ‘over-fitting’. The most common SVR optimization approaches, the cross-

validation and grid search, are data and task biased (Zhang et al., 1999).  

For that reason, we propose a hybrid Krill Herd – Support Vector Regression that embodies a KH 

algorithm for optimal parameter selection to the LSVR process, as shown in section 3.2. The KH 

algorithm, as presented by Gandomi and Alavi (2012), is an innovative metaheuristic optimization 

technique that simulates the herding behavior of krill individuals. The intuition of the analysis is the 

mean-reversion effect of predators’ attacks on the herd of krills. Such attacks result in the reduction of 

the krill density of the herd. After the attack, the herd must increase its density by sensing nearby krill 

but without deviating much from the optimal path to reach food. 

Based on the above, Gandomi and Alavi (2012) propose that the position (P) of each krill in the search 

space is influenced by the movement induced by other krill (M), the foraging action (F) and the random 

diffusion (RD). All these motions can be summarized in one Lagrangian formulation for every krill j: 

j

j j j

dP
M F RD

dt
              (16) 

The new movement motion M t+1 of each krill j is calculated as: 

                                                           
5 The weight of every point for a traditional regression model is 1/n, meaning that the assigned weight is similar for every 

point. In LWR the importance/weight increases continuously, once we move from outliers to more central points. Plotting 

the weight functions for both cases, it is obvious that in the traditional regression the function is a horizontal line, whereas in 

LWR the function is has a bell-shape around the central point. Once the importance of distance is increased through higher 

orders of power, the LWR function plot becomes narrower or in other words sharper. 
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      (17) 

Where: 

 Mmax: the maximum induced speed 

 [0,1]
M

k  : the inertia weight of the motion 

 t

j
M : the previous movement motion  

 
j

eff : the direction of the motion 

 
loc

j
eff ,

argt

j
eff :the local effect by neighbor krill and the target direction effect by the best individual 

krill. 

Gandomi and Alavi (2012) suggest that the local search of the algorithm is based on an 

attractive/repulsive tendency between individual krills. The neighbor krills are identified through a 

sensing distance from the jth one:  

                                                           , k '

' 1

(1 / N )
kN

s j j j

j

d P P


                                                          (18) 

where 𝑁𝑘  is the number of krill individuals. 

The new foraging motion F t+1 of every krill j is also calculated on the basis of two factors, namely the 

food location and its previous experience in locating a correct food position: 

1t t

j F j F j

food best

j j j

F V floc k F

floc floc floc

   
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                                                     (19) 

where: 

 F
V : the foraging speed6 

 [0,1]
F

k  : the inertia weight of the motion 

 
t

j
F : the previous foraging motion 

 
j

floc : the location of the food 

 
food

j
floc ,

best

j
floc : the food attractive and the effect from the best food-locating jth krill so far 

The food attraction is defined to provide global optima for the krill swarm. The third motion RD of krills 

is calculated as a maximum diffusion speed RDmax and a random directional vector δ with values between 

-1 and 1. In other words: max
RD RD                                  (20) 

The equations (17) and (19) suggest the future krill motion towards the optimal position by performing 

two parallel local and global strategies, something that makes the KH algorithm very robust. Krill 

                                                           
6 The maximum induced speed of equation (17) and the foraging speed of equation (19) are set to 0.01 and 0.02 ms-1 

respectively, as Gandomi and Alavi (2012) suggest. 



continue their local search (equation (17)) until the herd density increases. When that happens, more and 

more krill orientate to food (equation (19)) rather than the nearby krill. These two strategies provide the 

fitness values for several effective factors that induce an attractive/repulsive motion response to each 

krill. The equation (20) performs a random search in the proposed search space, diffusing any potential 

biased motion responses to the herd (either towards food locations or neighboring sensed krill). For more 

details on the approximation of these values, refer to the extensive mathematical steps of Gandomi and 

Alavi (2012). The position Pj of each krill at time t+Δt is given as:  

 
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( ) ( )
j

j j

NP

cr r r

r
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P t t P t t

dt

t Z UpB LowB

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                  (21) 

where: 

 [0, 2]
cr

Z  : constant number 

 NP: the number of parameters optimized (in our case NP=3) 

 ,
r r

UpB LowB : the upper and lower bounds of the parameters 

The Δt practically is the only parameter that needs fine tuning. This is the striking advantage of the 

method compared to other more complicated metaheuristics approaches.  

In the KH-LSVR optimization, the practitioner needs to predefine three parameters. The range of the 

bounds of each parameter defines the potential three-dimensional search space. The Zcr is set at values 

lower than 1, because it allows careful search of the space by the krill individuals. Krill behavior suggests 

that herd individuals at an initial point (predator attack) tend to focus on exploration of the search space 

and then its exploitation. For that reason, kM and kF are initially set high (0.9). These parameters are 

linearly decreased to 0.1 at the end to encourage exploitation (Gandomi and Alavi, 2012). Next two 

genetic reproduction mechanisms (mutation and crossover) are implemented in order to further improve 

the performance of the krill positions.  

The KH algorithm is optimized based on a fitness function. In similar applications of metaheuristics, the 

practitioners set as fitness function a simple statistical measure such as the MSE or the RMSE. However, 

in financial forecasting applications the trading performance is of the outmost importance. In this 

research, the algorithm is trained through three different fitness functions. This exercise should improve 

the forecasting performance of our models. The choice of the fitness function is based on the 

performance of the models in the in-sample. The first function aims to minimize the RMSE (equation 

(22)). The second one aims to maximize the annualized return (equation (23)) while the third (equation 

(24)) attempts to provide a balance between statistical accuracy and trading efficiency.  

 



                      1
1 / (1 )Fitness RMSE       (22) 

      2
Fitness Annualized Return       (23) 

      3
10*Fitness Annualized Return RMSE       (24) 

The aim of the algorithm is to maximize equations (22), (23) and (24). The KH algorithms are trained 

in the training sub-period and their performance is evaluated in the test sub-period. The fitness is 

evaluated in terms of Annualized Return. The function that performs better will be applied in the out-

of-sample. The outcome of this process is presented in appendix B. We note that 𝐹𝑖𝑡𝑛𝑒𝑠𝑠3 seems to 

dominate the selection process. Nevertheless, there are several cases that the other two functions are 

selected. These results outline the importance of experimenting on the metaheuristics fitness function in 

the in-sample. Following a priori selections can deter the performance of the metaheuristics algorithm. 

The flowchart of the KH-LSVR is presented in figure 4(i). 

4.2. Reverse-adaptive KH-LSVR (RKH-LSVR) 

The success of the original KH algorithm is well documented in the metaheuristics literature. 

Nonetheless, KH can trap into local optima which constraints the efficiency of the implemented global 

search. Additionally, the KH depends completely on a random search process and as such there is no 

guarantee for a fast convergence to optimal solutions (Bolaji et al., 2016). In order to cope with these 

issues, we propose the novel Reverse-adaptive KH algorithm (RKH) for the parameterization of the 

LSVR. The RKH improves the original KH process by incorporating opposition-based optimization 

(OBL) and a two-stage operator to reach the final optimal solutions. 

4.2.1 Reverse Krill Improvement 

The first enhancement of the KH algorithm is derived by allowing reverse points in the selection of the 

population. OBL has gained significant attention in metaheuristic optimization algorithms (Hu et al., 

2014 ; Huang et al., 2016 ). The basic principle of OBL is that some variables discard their current values 

for their opposite ones, based on their comparison of the goodness of fit. 

In the case of KH, let 
1 2

( , ,..., )
j D

P p p p  the candidate solution in a D-dimensional search space. Based 

on OBL, the reverse point is defined as 
* * * *

1 2
( , ,..., )

j D
P p p p , where *

p p        ,  [ , ]p   

and 1, 2,...D  . Obtaining the reverse position point is crucial, as we can now compare the fitness 

between the original 
j

P  and its opposite 
*

j
P . Such comparison can increase the diversity of the krill 

population through a simple comparison of their density function values F : 

{if 
*

( ) ( )
j j

F P F P , then population is updated with 
*

j
P ; otherwise keep 

j
P  in the population}      (25) 



RKH algorithm computes and evaluates 
j

P  and
*

j
P simultaneously in order to converge to the best 

population. Although it maintains its ability to generate random candidate solutions for the population 

as KH, this happens only partially. Initially, the first half of the population (POP) is randomly formed as 

in the traditional KH, but the other half (POPrev) is generated through rule (25) and (POP). The update 

of the krill positions of the initial POP is done based on the process described in 4.1, while the POPrev 

krill update is always subject to rule (25) and the relevant POP at the time. Once the optimal solutions 

are sorted in each population, the final population is formed by merging POP and POPrev. This approach 

vastly increases the search ability of krill by allowing smoother and quicker movement towards the best 

solutions. It should be noted that with RKH the population size remains unchanged throughout the 

optimization, while solutions are ranked according to fitness. Based on these, identifying the best 

solution in each generation is easier. 

4.2.2 Two-stage operator Improvement 

The RKH process is further enhanced in terms of optimal convergence by applying the Cauchy 

distribution and ‘krill-grip’ for mutation and crossover purposes respectively. This combination 

comprises a hybrid two-stage operator (CPO) that decreases vastly the probability of KH getting trapped 

in local optima. It also further improves the search ability of the algorithm, since the global best 

individual (identified easier through OBL as in section 4.2.1) of each generation is passed on to the next 

generations along with its neighbours. As a consequence, convergence speed gradually increases. The 

CPO follows the reverse population update described in the previous section.  

The Cauchy mutation operator in the RKH context is applied to the best candidate solution of each 

generation through a weight and position update function. The weight function is defined as:  
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W j P N

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 
       (26) 

where 
j j

P is the j th position vector  of the jth krill, K
N is the population size and ( ) [ 1,1]W j   . 

The position update vectors are computed as '( ) ( ) ( ) *P j P j W j C                                              (27) 

where C  is randomly drawn from a Cauchy distribution with τ=17. 

Based on these weights, the neighbourhood of each best solution is selected. Although the previous 

process increases the convergence speed, it needs to be ensured that the algorithm maintains the balance 

between the search space exploration and exploitation. This balance is distorted when position values 

become very large for distant krill from the best solutions. For that reason, we also introduce position 

                                                           
7 From an algebra point of view, the one-dimensional Cauchy density function is given by 

2 2
( ) / ( * ), , 0f t x R         . The Cauchy distributed function is calculated by 1

( ) 0.5 ( arctan( / ))F    
  . 



constraints to krill movement in order to ‘grip’ krill that distance themselves too much from the best 

candidate. This second stage of the CPO simply creates a maximum bound for the global search by 

clamping the positions of krill. To put it simply, once a krill j in the j th dimension searches too far 

from the best ones, then its position is set to the maximum allowed position max
j j

P . Given these, the 

update of the position based on clamping is: 

'( 1), ( 1) max
( 1)

max,

j j j j j j

j j

j j

P t if P t P
P t

P otherwise

    
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    (28) 

These two steps complete the CPO operator. Once the CPO is applied to the merged population (POP, 

POPrev), the best solution is found and evaluated through the same fitness functions as in the KH-LSVR 

(equations (22), (23), (24)). If not, the iteration starts again from the usual three-motion KH process. 

Similarly to the case of KH-LSVR,  𝐹𝑖𝑡𝑛𝑒𝑠𝑠3 dominates the selection process. This is shown along with 

all the technical characteristics of the KH algorithms in appendix B. The flowchart of the proposed novel 

RKH-LSVR is shown in figure 4(ii) below. 

 

 

 

 

 

 

 

 

 

Figure 4: The KH-LSVR (i) and RKH-LSVR (ii) flowcharts 



 

4.3 Input Selection 

In order to select the SVR inputs, a set of potential linear and non-linear predictors for the in-sample is 

generated. The linear pool includes Simple Moving Averages (SMA), Exponential Moving Averages 

(EMA), Autoregressive terms (AR), Autoregressive Moving Average (ARMA) models, Rate of Change 

Indicators (ROC), and a Pivot Point Indicator (PPI). The non-linear Smooth Transition Autoregressive 

Models (STAR), Nearest Neighbors Algorithms (k-NN), a Multi-Layer Perceptron (MLP), a Recurrent 

Neural Network (RNN), a Higher Order Neural Network (HONN), a Psi-Sigma Neural Network (PSN), 

Adaptive RBF and PSO Neural Network (ARBF-PSO), Genetic Programming (GP) and Gene 

Expression Programming (GEP) complete the input pool. These predictors create a pool of three hundred 

and forty eight individual predictors in total for each forecasting exercise and each ETF series. All 

predictors have been successfully applied in financial forecasting applications. The proposed models 



will combine the best predictors in order to generate superior out-of-sample performance. Combining 

individual linear and non-linear forecasts to improve forecast accuracy is common practice among 

practitioners and researchers (Timmermann, 2006; Park and Irwin, 2007). Forecast combinations 

generate more robust signals and in trading applications offer the benefits of model diversification. A 

short summary of the models that consist the input pool is provided in Appendix A. The dimensions of 

the potential input vector are large. In order to cope with the dimensionality issue, we perform a simple 

PCA analysis (Jolliffe, 2002). PCA allows us to discard highly correlated variables, while preserving 

those ones that account for the 95% variance of the dataset. The outcome of this analysis provides the 

principal components that are going to be used as final input sets to the SVR models. These sets are 

presented in table 4.  

Table 4: The SVR sets of inputs    

 UUP DIA FXB VGK USO IAU 

F1 

AR(2), EMA(4), 

MLP, RNN, 

HONN, PSN 

EMA(6), 

ARMA(2,3), MLP, 
HONN, GP, GEP, 

ARBF-PSO 

MLP, RNN, HONN, 
PSN, ARBF-PSO 

MLP, RNN, HONN, 
PSN, ARBF-PSO 

LSTAR(4), ARMA(1,4), 

PSN, GP, GEP, ARBF-

PSO 

ARMA(2,4), EMA(4), 

MLP, RNN, HONN, 

GEP 

F2 

ARMA(1,6), 

ROC(3), MLP, 

RNN, ARBF-PSO 

SMA(5), ESTAR(5), 

MLP,  GP, GEP, 

ARBF-PSO 

AR(5), SMA(3), 

MLP, RNN, HONN, 

PSN, GP 

SMA(8), k-NN, MLP, 

RNN, PSN, GEP, 

ARBF-PSO 

AR(5), ARMA(1,6), 
ARMA(3, 3), 

ESTAR(6), MLP 

HONN, PSN, GP, 
ARBF-PSO 

AR(3), EMA(5), MLP, 

RNN, HONN, PSN, 

GP, GEP 

F3 

AR(2), SMA(4), 

EMA(3), MLP, 

RNN, HONN, 
PSN, GP, GEP 

ROC(4), k-NN, MLP, 
RNN, HONN, PSN, 

ARBF-PSO 

MLP, RNN, PSN, 

ARBF-PSO 

AR(3), ARMA(4,6), 
HONN, GP, GEP, 

ARBF-PSO 

MLP, RNN, HONN, 
PSN, GP, GEP, ARBF-

PSO 

AR(3), ARMA(4,6), 

ARMA(4, 8), HONN, 

PSN, GP, GEP, 
ARBF-PSO 

F4 

AR(4), 

ARMA(3,6), PSN, 
GP, GEP, ARBF-

PSO 

MLP, RNN, PSN, 
ARBF-PSO 

AR(1), ARMA(1,2), 

MLP, PSN, GP, 

GEP, ARBF-PSO 

SMA(7), ARMA(3, 8), 

MLP, RNN, PSN, 

ARBF-PSO 

SMA(4), ESTAR(3), 

MLP, RNN, PSN, 

ARBF-PSO 

PSN, GP, GEP, 
ARBF-PSO 

 

The above table shows that the PCA analysis decreases substantially the dimensions of the input pool. 

The non-linear models dominate the selected input sets.  

4.4 Benchmark Models  

The efficiency of the RKH-LSVR is evaluated in this study through several benchmarks. SVR 

practitioners face a constant tackle, the optimal selection of the model’s parameters (C, ε or v and kernel 

function parameter). The most well documented parameterization technique is the grid search, while 

GAs8 dominates the metaheuristics literature on SVR optimization.  Based on this fact, a SVR optimized 

through grid search (vSVR) and a SVR optimized through GA (GA-vSVR) act as benchmarks to the 

proposed model. In order to examine the benefits of RKH over the KH algorithm, a LSVR optimized 

through KH (KH-LSVR) will benchmark the RKH-LSVR performance. All SVR procedures use a set 

of inputs selected from a large pool of linear and non-linear potential predictors (see table 4). In order to 

study the utility of the SVR algorithms, the best models from this pool in terms of in-sample statistical 

                                                           
8 For more details on the GA algorithm see Holland (1975). Its characteristics are presented in Appendix B. Similarly, as the 

KH, the GA algorithm is centered around a fitness function, The fitness function selection process that is presented on section 

4.1 is also applied to the GA-vSVR model. These results are also presented in Appendix B. 



accuracy (RMSE) and trading performance (annualized return) in the in-sample will also act as 

benchmarks. These models are presented in table 5. 

Table 5: The best individual predictors (linear and non-linear benchmarks)  

 
 UUP DIA FXB VGK USO IAU 

R
M

S
E

 

 

F1 EMA(4) 

 

GP 
 

PSN 

          

        PSN 
 

LSTAR(4) ARMA(2,4) 

F2 ARBF-PSO ARBF-PSO PSN ARBF-PSO ESTAR(6) GEP 

F3 EMA(3) PSN ARBF-PSO ARMA(4,6) PSN GEP 

F4 PSN PSN MLP RNN SMA(4) MLP 

A
n

n
u

a
lized

 R
etu

rn
 

F1 PSN ARBF-PSO PSN ARBF-PSO ARBF-PSO GEP 

F2 ARBF-PSO ESTAR(5) GP GEP GP HONN 

F3 GEP PSN ARBF-PSO ARBF-PSO PSN GP 

F4 ARBF-PSO RNN PSN PSN ARBF-PSO PSN 

 

A simple random walk (RW) with no trend will also act as naïve benchmark.  

5. Statistical Evaluation 

This section provides the out-of-sample statistical performance of all models applied. In 5.1 the statistical 

accuracy of the proposed models is presented while in 5.2 the genuineness of the forecasts is evaluated 

through the Giacomini and White (GW) (2006) test.  

5.1 Statistical Accuracy 

The statistical accuracy of the obtained forecasts is evaluated through the RMSE (see appendix C), the 

Pesaran-Timmermann (PT) (1992) test and the Diebold-Mariano (DM) (1995) test. The PT test is used 

to examine whether the directional movements of the real and forecast values are in step with one 

another. The null hypothesis is that the model under study has no power on forecasting the relevant ETF 

return series. The DM test checks the null hypothesis of equal predictive accuracy between our models’ 

forecasts9. For more details on the PT and the DM test see Pesaran and Timmermann (1992) and Diebold 

and Mariano (1995) respectively. The out-of-sample results are summarized in table 6. 

 

 

 

Table 6: Out-of-sample Statistical Performance 

                                                           
9 In our exercise we apply the DM test to couples of forecasts (RKH-LSVR vs. another forecasting model). A rejection of the 

null hypothesis suggests that the first forecast (the RKH-LSVR) is more accurate. 



Note: The table reports the RMSE values of each forecast while the PT statistics are in the parenthesis. ***, ** and * 

denotes that the DM null hypothesis is rejected at the 1%, 5% and 10% significance level respectively. Best1 and Best2 refer 

to the best individual predictors in terms of statistical and trading performance respectively in the in-sample period (as 

outlined in table 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above table provides some interesting results. The proposed RKH-LSVR outperforms the original 

KH counterpart across different forecasting exercises and ETFs. Thus, the proposed improvements to 

the KH algorithm are indeed beneficial to the forecasting accuracy of the model. Additionally, the GA-

vSVR is consistently superior to the traditional SVR, but it does not manage to match the forecasting 

efficiency of the two KH counterparts. The superiority of the SVR and hybrid SVR models is confirmed, 

since in all cases the best individual predictors (linear and non-linear) are inferior in terms of accuracy. 

the This suggests that using a large pool of predictors to extract optimal inputs based on the previous 

described PCA process leads to increased forecasting accuracy. As expected, the best individual 

 Market ETF RW Best1 Best2 vSVR GA-vSVR KH-LSVR RKH-LSVR 

F1 

US Currency UUP 0.0073 

(5.15)*** 

0.0070 

(6.90)*** 

0.0071 

(6.25)*** 

0.0068 

(7.34)*** 

0.0067 

(7.57)*** 

0.0063 

(7.88)*** 

0.0059 

(8.39) 

US Stock DIA 
0.0068 

(5.95)*** 

0.0061 

(6.87)*** 

0.0063 

(6.74)*** 

0.0060 

(7.52)*** 

0.0058 

(8.17)*** 

0.0057 

(8.67)*** 

0.0055 

(9.05) 

EU Currency FXB 
0.0075 

(4.18)*** 

0.0072 

(5.97)*** 

0.0073 

(5.05)*** 

0.0070 

(6.54)*** 

0.0069 

(7.29)*** 

0.0065 

(7.87)** 

0.0062 

(8.98) 

EU Stock VGK 
0.0071 

(5.45)*** 

0.0067 

(6.04)*** 

0.0069 

(6.72)*** 

0.0065 

(6.15)*** 

0.0063 

(7.43)*** 

0.0062 

(8.04)*** 

0.0055 

(8.72) 

Commodity: Oil USO 
0.0066 

(6.31)*** 

0.0058 

(7.55)*** 

0.0060 

(7.08)*** 

0.0056 

(7.68)*** 

0.0054 

(8.40)*** 

0.0053 

(9.15)*** 

0.0051 

(9.50) 

Commodity: Gold IAU 
0.0064 

(7.12)*** 

0.0060 

(7.88)*** 

0.0062 

(7.45)*** 

0.0056 

(8.63)*** 

0.0052 

(9.28)*** 

0.0050 

(9.45)*** 

0.0047 

(10.36) 

F2 

US Currency UUP 
0.0076 

(4.54)*** 

0.0072 

(5.65)*** 

0.0074 

(5.07)*** 

0.0070 

(6.28)*** 

0.0068 

(7.05)*** 

0.0065 

(7.65)** 

0.0062 

(8.53) 

US Stock DIA 
0.0070 

(5.31)*** 

0.0066 

(6.97)*** 

0.0065 

(6.41)*** 

0.0062 

(7.65)*** 

0.0060 

(8.75)*** 

0.0059 

(8.95)*** 

0.0053 

(9.11) 

EU Currency FXB 
0.0078 

(3.34)*** 

0.0075 

(5.23)*** 

0.0077 

(4.15)*** 

0.0074 

(5.98)*** 

0.0072 

(6.47)*** 

0.0069 

(7.18)** 

0.0065 

(8.04) 

EU Stock VGK 
0.0074 

(4.38)*** 

0.0070 

(5.37)*** 

0.0072 

(5.79)*** 

0.0069 

(6.73)*** 

0.0066 

(7.41)*** 

0.0063 

(7.56)*** 

0.0060 

(8.35) 

Commodity: Oil USO 
0.0068 

(5.15)*** 

0.0062 

(6.23)*** 

0.0064 

(5.87)*** 

0.0059 

(7.88)*** 

0.0056 

(8.47)*** 

0.0055 

(8.86)*** 

0.0053 

(9.35)* 

Commodity: Gold IAU 
0.0066 

(5.44)*** 

0.0061 

(6.63)*** 

0.0063 

(6.22)*** 

0.0058 

(7.54)*** 

0.0054 

(8.36)*** 

0.0052 

(9.08)*** 

0.0050 

(10.07) 

F3 

US Currency UUP 
0.0071 

(5.15)*** 

0.0068 

(6.80)*** 

0.0069 

(6.35)*** 

0.0068 

(7.45)*** 

0.0066 

(8.20)*** 

0.0062 

(8.88)*** 

0.0058 

(9.58) 

US Stock DIA 
0.0066 

(5.99)*** 

0.0060 

(7.02)*** 

0.0061 

(7.55)*** 

0.0058 

(7.80)*** 

0.0057 

(8.35)*** 

0.0055 

(9.15)** 

0.0051 

(9.64) 

EU Currency FXB 
0.0074 

(4.50)*** 

0.0070 

(6.58)*** 

0.0072 

(5.74)*** 

0.0069 

(6.90)*** 

0.0067 

(7.58)*** 

0.0063 

(8.41)*** 

0.0060 

(9.24) 

EU Stock VGK 
0.0069 

(5.87)*** 

0.0066 

(6.34)*** 

0.0067 

(6.81)*** 

0.0064 

(7.36)*** 

0.0063 

(7.97)*** 

0.0060 

(8.75)** 

0.0054 

(9.27) 

Commodity: Oil USO 
0.0064 

(6.25)*** 

0.0056 

(7.12)*** 

0.0058 

(6.86)*** 

0.0053 

(8.07)*** 

0.0051 

(8.80)*** 

0.0049 

(9.04)*** 

0.0046 

(9.94) 

Commodity: Gold IAU 
0.0061 

(6.80)*** 

0.0056 

(7.95)*** 

0.0058 

(7.40)*** 

0.0052 

(8.36)*** 

0.0050 

(8.99)*** 

0.0047 

(9.48)*** 

0.0043 

(10.77) 

F4 

US Currency UUP 
0.0072 

(5.13)*** 

0.0068 

(7.15)*** 

0.0070 

(6.87)*** 

0.0067 

(7.35)*** 

0.0065 

(8.41)*** 

0.0061 

(9.25)*** 

0.0056 

(9.68) 

US Stock DIA 
0.0063 

(5.54)*** 

0.0054 

(7.42)*** 

0.0058 

(6.35)*** 

0.0052 

(8.26)*** 

0.0050 

(8.99)*** 

0.0048 

(9.85)*** 

0.0044 

(10.25) 

EU Currency FXB 
0.0073 

(4.90)*** 

0.0069 

(6.85)*** 

0.0070 

(6.22)*** 

0.0068 

(7.05)*** 

0.0067 

(8.07)*** 

0.0062 

(9.05)*** 

0.0058 

(9.41) 

EU Stock VGK 
0.0069 

(4.42)*** 

0.0065 

(5.57)*** 

0.0067 

(5.79)*** 

0.0065 

(6.73)*** 

0.0063 

(6.99)*** 

0.0059 

(8.57)*** 

0.0053 

(9.05) 

Commodity: Oil USO 
0.0062 

(5.96)*** 

0.0054 

(7.78)*** 

0.0056 

(6.93)*** 

0.0050 

(8.66)*** 

0.0047 

(9.10)*** 

0.0045 

(9.80)*** 

0.0042 

(10.32) 

Commodity: Gold IAU 
0.0058 

(6.30)*** 

0.0055 

(8.14)*** 

0.0056 

(7.05)*** 

0.0050 

(8.50)*** 

0.0047 

(9.33)*** 

0.0044 

(10.41)*** 

0.0041 

(11.05) 



predictors in terms of statistical performance in-sample (Best1) remain superior in the out-of-sample 

compared to Best2. The DM test further demonstrates the superiority of the RKH-LSVR forecasts in all 

ETFs and periods under study. The significant PT statistics reveal that all models are capable of 

capturing the directional movements of the six ETF return series. The statistical accuracy of the forecasts 

deteriorates during F1 and F2 periods. In particular, the worst out-of-sample results are obtained in F2. 

Finally, it is also evident that forecast errors appear the smallest in the analysis of commodities and 

largest in the cases of currencies.  

5.2. Giacomini-White test 

The previous statistical results are further authenticated by computing the unconditional GW test for the 

out-of-sample predictive ability testing and forecast selection. The null hypothesis of the GW test is the 

equivalence in forecasting accuracy between two forecasting models. The sign of the test statistic 

specifies the superior model according to its forecasting performance. A positive realization of the GW 

test statistic indicates that the second model is more accurate than the first one whereas a negative 

specifies the opposite. The test is calculated based on the MSE loss function. The outcomes of the GW 

test are presented in table 7 below. 

Table 7: The Giacomini-White test for all out-of-sample periods. 

Note: The table displays the p-values of the statistic under the null hypothesis that the column 

model shows equivalent performance compared with RKH-LSVR for every ETF separately. *** 

at the 1% significance level respectively. Best1 and Best2 refer to the best individual predictors 

in terms of statistical and trading performance respectively in the in-sample period (as outlined 

in table 5). 

 

 

 

 

 

 

 

 

 

 

 

 

The above results further validate the statistical findings of the previous section. RKH-LSVR is found 

to be statistically superior to its benchmarks, since the null hypothesis of the GW test is rejected in all 

cases at 1% significance level. Here it should be noted, that the predictive ability tests can be 

ETF Models RW Best1 Best2 vSVR GA-vSVR KH-LSVR 

 

 

 

F1 

UUP RKH-LSVR 0.000*** 0.000*** 0.001*** 0.000*** 0.002*** 0.006*** 

DIA RKH-LSVR 0.000*** 0.000*** 0.000*** 0.001*** 0.001*** 0.005*** 

FXB RKH-LSVR 0.001*** 0.003*** 0.003*** 0.003*** 0.004*** 0.012** 

VGK RKH-LSVR 0.000*** 0.000*** 0.002*** 0.001*** 0.007*** 0.007*** 

USO RKH-LSVR 0.002*** 0.002*** 0.001*** 0.000*** 0.005*** 0.008*** 

IAU RKH-LSVR 0.000*** 0.000*** 0.000*** 0.004*** 0.002*** 0.003*** 

       

 

 

F2 

UUP RKH-LSVR 0.000*** 0.000*** 0.000*** 0.001*** 0.008*** 0.020** 

DIA RKH-LSVR 0.000*** 0.000*** 0.000*** 0.000*** 0.007*** 0.006*** 

FXB RKH-LSVR 0.001*** 0.001*** 0.003*** 0.005*** 0.004*** 0.015** 

VGK RKH-LSVR 0.000*** 0.000*** 0.000*** 0.001*** 0.006*** 0.008*** 

USO RKH-LSVR 0.000*** 0.000*** 0.000*** 0.003*** 0.007*** 0.007*** 

IAU RKH-LSVR 0.001*** 0.000*** 0.000*** 0.001*** 0.003*** 0.004*** 

 

 

F3 

UUP RKH-LSVR 0.000*** 0.000*** 0.000*** 0.005*** 0.009*** 0.010** 

DIA RKH-LSVR 0.000*** 0.000*** 0.000*** 0.001*** 0.005*** 0.006*** 

FXB RKH-LSVR 0.000*** 0.000*** 0.000*** 0.006*** 0.008*** 0.008*** 

VGK RKH-LSVR 0.000*** 0.000*** 0.000*** 0.001*** 0.003*** 0.005*** 

USO RKH-LSVR 0.003*** 0.001*** 0.004*** 0.001*** 0.002*** 0.004*** 

IAU RKH-LSVR 0.000*** 0.000*** 0.000*** 0.006*** 0.006*** 0.005*** 

 

 

F4 

UUP RKH-LSVR 0.000*** 0.000*** 0.000*** 0.002*** 0.005*** 0.007*** 

DIA RKH-LSVR 0.003*** 0.000*** 0.002*** 0.004*** 0.003*** 0.012** 

FXB RKH-LSVR 0.000*** 0.000*** 0.000*** 0.001*** 0.003*** 0.003*** 

VGK RKH-LSVR 0.000*** 0.000*** 0.000*** 0.004*** 0.002*** 0.005*** 

USO RKH-LSVR 0.000*** 0.000*** 0.000*** 0.002*** 0.005*** 0.005*** 

IAU RKH-LSVR 0.000*** 0.000*** 0.000*** 0.001*** 0.003*** 0.006*** 



distinguished as conditional and unconditional types. The unconditional type attempts to answer which 

model is performing better in forecasting on average. On the other hand, the conditional type tries to 

evaluate which model can predict better in the future over unseen inputs. DM and GW are two distinct 

tests for unconditional predictive ability (Clark and McCracken, 2010). The literature of conditional and 

unconditional testing procedures generally explores either the necessary assumptions to conduct the test 

or the asymptotic result of the different tests. Both DM and GW tests are well-accepted test for 

comparison of forecasting models. Nonetheless, it is very difficult to select one test as optimal across 

different datasets. This is the main reason for comparing all models by these two leading tests in the 

literature. 

6. Trading Performance 

Generating profitable trading signals is the main focal point of every trader. Trading profitability is not 

necessarily aligned with statistical accuracy. In this application, the trading performance evaluation of 

all models is done through a simple trading strategy. Namely, we go ‘long’ and ‘short’ when the 

forecasted return is positive and negative respectively. A ‘long’ or ‘short’ position means that we buy or 

sell respectively the ETF under study at the current price. Transaction costs severely impede the success 

of daily trading strategies, but ETFs offer investors the opportunity to trade stock indices with low 

transaction costs. In our case, the expense ratios for the all ETFs do not exceed 0.5% per annum.10 The 

out-of-sample performance of all models is presented in the following table. The trading performance 

measures are given in appendix C.  

 

 

 

 

 

 

 

 

 

 

                                                           
10 See, www.ishares.com/us/index 
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Table 8: Out-of-sample trading performance of every model for each ETF 

Note: The table reports the annualized returns after transaction costs of every model and its respective information ratio 

in the parenthesis. Best1 and Best2 refer to the best individual predictors in terms of statistical and trading performance 

respectively in the in-sample period (as outlined in table 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above table shows that RKH-LSVR delivers the best trading performance for all series and periods 

under. The second best model in terms of annualized return and information ratios after transaction costs 

appears to be the KH-LSVR. For example, during F1 on average RKH-LSVR presents 0.77% higher 

annualized returns and 0.26 higher information ratio after transaction costs. Both KH-LSVR hybrids 

consistently outperform their genetic counterpart in terms of profitability. In the same period, the KH 

methods outperform GA-vSVR on average by 1.51% and 0.36 in terms of profits and information ratios. 

These results suggest that our trading strategy benefits from the application of the KH and RKH 

optimization to the locally weighted SVR process. Finally, the vSVR provides higher profits and 

 Market ETF RW Best1 Best2 vSVR GA-vSVR KH-LSVR RKH-LSVR 

F1 

US Currency UUP 
-1.88% 

(-0.95) 

1.84% 

(0.74) 

3.38% 

(1.44) 

5.20% 

(1.77) 

6.33% 

(1.82) 

7.70% 

(2.05) 

8.42% 

(2.32) 

US Stock DIA 
-1.37% 

(-0.45) 

4.40% 

(1.38) 

5.64% 

(1.71) 

7.05% 

(1.84) 

7.68% 

(2.14) 

8.41% 

(2.32) 

9.35% 

 (2.64) 

EU Currency FXB 
-3.02% 

(-0.95) 

1.25% 

(0.48) 

2.37% 

(1.32) 

4.28% 

(1.45) 

5.15% 

(1.60) 

6.90% 

(1.82) 

7.25% 

 (1.94) 

EU Stock VGK 
-2.88% 

(-0.76) 

3.09% 

(1.27) 

4.80% 

(1.62) 

5.97% 

(1.80) 

6.48% 

(1.92) 

8.26% 

(2.17) 

8.77% 

(2.51) 

Commodity: Oil USO 
-1.22% 

(-0.34) 

5.56% 

(1.65) 

7.25% 

(1.78) 

8.13% 

(1.91) 

8.71% 

(2.23) 

9.35% 

(2.48) 

10.22% 

(2.79) 

Commodity: Gold IAU 
-2.11% 

(-0.58) 

6.33% 

(1.76) 

7.48% 

(1.89) 

8.69% 

(2.10) 

9.15% 

(2.48) 

9.62% 

(2.70) 

10.82% 

(2.92) 

F2 

US Currency UUP 
-2.57% 

(-0.75) 

1.35% 

(0.42) 

2.66% 

(1.15) 

3.51% 

(1.28) 

4.23% 

(1.54) 

5.84% 

(1.62) 

7.09% 

(1.82) 

US Stock DIA 
-1.85% 

(-0.56) 

3.35% 

(1.26) 

5.48% 

(1.59) 

6.90% 

(1.75) 

7.35% 

(1.80) 

8.50% 

(1.97) 

9.15% 

(2.29) 

EU Currency FXB 
-3.28% 

(-0.94) 

0.65% 

(0.12) 

1.65% 

(0.85) 

2.05% 

(1.12) 

3.20% 

(1.22) 

4.85% 

(1.38) 

6.38% 

(1.64) 

EU Stock VGK 
-2.09% 

(-0.82) 

2.42% 

(0.63) 

4.51% 

(1.40) 

5.68% 

(1.57) 

6.35% 

(1.74) 

7.62% 

(1.83) 

8.20% 

(2.15) 

Commodity: Oil USO 
-1.54% 

(-0.48) 

4.23% 

(1.55) 

6.33% 

(1.63) 

7.28% 

(1.89) 

7.92% 

(1.95) 

9.28% 

(2.21) 

9.85% 

(2.37) 

Commodity: Gold IAU 
-1.32% 

(-0.47) 

6.12% 

(1.70) 

7.32% 

(1.84) 

8.35% 

(1.94) 

9.08% 

(2.34) 

9.47% 

(2.53) 

10.40% 

(2.82) 

F3 

US Currency UUP 
-1.24% 

(-0.62) 

3.35% 

(1.55) 

4.57% 

(1.70) 

6.15% 

(1.81) 

6.92% 

(1.94) 

8.12% 

(2.22) 

8.84% 

(2.47) 

US Stock DIA 
-2.03% 

(-0.88) 

6.02% 

(1.68) 

7.10% 

(1.80) 

7.66% 

(1.85) 

8.12% 

(2.14) 

9.02% 

(2.42) 

9.60% 

(2.74) 

EU Currency FXB 
-1.67% 

(-0.70) 

2.86% 

(1.45) 

3.52% 

(1.55) 

5.35% 

(1.69) 

6.05% 

(1.75) 

7.04% 

(1.87) 

7.78% 

(1.99) 

EU Stock VGK 
-3.19% 

(-0.81) 

4.23% 

(1.60) 

5.35% 

(1.75) 

6.47% 

(1.82) 

7.61% 

(2.01) 

8.33% 

(2.31) 

9.24% 

(2.56) 

Commodity: Oil USO 
-2.74% 

(-0.85) 

7.20% 

(1.75) 

7.55% 

(1.82) 

8.15% 

(1.95) 

9.14% 

(2.36) 

9.80% 

(2.55) 

10.62% 

(2.86) 

Commodity: Gold IAU 
-0.95% 

(-0.30) 

7.35% 

(1.80) 

8.07% 

(1.92) 

9.20% 

(2.14) 

9.39 % 

(2.49) 

10.01% 

(2.82) 

10.95% 

(2.98) 

F4 

US Currency UUP 
-3.84% 

(-1.02) 

4.35% 

(1.65) 

5.38% 

(1.73) 

6.48% 

(1.79) 

7.14% 

(2.13) 

7.99% 

(2.24) 

9.20% 

 (2.41) 

US Stock DIA 
-1.39% 

(-0.65) 

6.22% 

(1.81) 

7.16% 

(1.94) 

7.69% 

(2.08) 

8.30% 

(2.20) 

9.15% 

(2.36) 

9.95% 

(2.80) 

EU Currency FXB 
-2.52% 

(-0.89) 

3.12% 

(1.60) 

4.10% 

(1.65) 

5.55% 

(1.73) 

6.35% 

(1.80) 

7.66% 

(1.94) 

8.15% 

(2.19) 

EU Stock VGK 
-1.32% 

(-0.65) 

5.46% 

1.78) 

6.45% 

(1.81) 

6.79% 

(1.86) 

7.56% 

(1.95) 

8.08% 

(2.12) 

 9.42% 

(2.50) 

Commodity: Oil USO 
-1.56% 

(-0.61) 

7.44% 

(1.82) 

8.15% 

(2.02) 

8.62% 

(2.27) 

9.54% 

(2.42) 

10.23% 

(2.64) 

11.02% 

(2.92) 

Commodity: Gold IAU 
-3.44% 

(-1.43) 

7.35% 

(1.92) 

8.50% 

(2.19) 

9.35% 

(2.35) 

9.95% 

(2.63) 

10.60% 

(2.92) 

 11.12% 

(3.20) 



information ratios than all individual predictors (linear or non-linear). Accounting for both the 

performance of Best1 and Best2 in period F1, individual predictors are found inferior to vSVR on average 

by 2.10% annualized returns and 0.39 information ratio. The above results are similar also in the rest of 

the forecasting exercises. Table 9 below examines the average trading performances of all models for 

all forecasting exercises.  

Table 9: Average trading performances per forecasting exercise 

Note: The table reports the average annualized returns after transaction costs of all models. Their 

information ratios are presented in the parenthesis. The Total Average corresponds to the average trading 

results over all ETFs under study. US and EU Averages refer to the average trading performance of all 

models over UUP, DIA and FXB, VGK respectively. Currency and Stock Averages refer to the average 

trading performance of all models over UUP, FXB and DIA, VGK respectively. Commodities Average 

refers to the average trading performance of all models over US and IAU. 

 

 

 

 

 

As it turns out, the total average trading performance is worse in periods 2010-2012 and especially F2. 

The best results are provided during F4. This is expected since F2 includes the peak of the global 

financial crisis, while the effects of the crisis are minimized during the end of 2015 (F4).  ETFs tracking 

the performance of the US markets are found to be more profitable than EU ones throughout both 

periods. This is also not surprising because the US economy was affected less by the European sovereign 

debt crisis. Additionally, the US ETFs recover more during 2013-2015. Examining the results in terms 

of different markets, currency ETFs present substantially lower annualized returns during 2010-2012. 

The pattern is similar but less strong when it comes to stock ETFs, while commodity ones appear less 

affected by the crisis. Nonetheless, they also seem to perform better in terms of annualized returns and 

information ratios during the aftermath of the European crisis.  

The outcomes of the above trading exercises show that all models generate profits even in volatile 

economic periods, while complex techniques prove to be more successful than the simple ones. It is also 

worth noting that the trading performance of all models seems to vary through time. These two 

observations are consistent with one of the hypothesis of the AMH. Namely, the hypothesis that states 

that the performance of trading models varies through time and it deteriorates in times of market 

turbulence.    

The next set of results refer to the decomposition of the trading performance of our models in the out-

of-sample periods. This will allow us to test one further main implication of the AMH. The hypothesis 

that the profitability of all models is diminishing through time (else trading models are not robust in the 

 F1 F2 F3 F4 

Total Average 5.45% 

(1.54) 

4.81% 

(1.38) 

6.07% 

(1.67) 

6.32% 

(1.72) 

US Average 
4.81% 

(1.38) 

4.36% 

(1.23) 

5.87% 

(1.63) 

5.98% 

(1.68) 

EU Average 
4.19% 

(1.30) 

3.44% 

(0.99) 

4.93% 

(1.49) 

5.35% 

(1.53) 

Currency Average 
3.94% 

(1.20) 

2.69% 

(0.89) 

4.83% 

(1.48) 

4.94% 

(1.50) 

Stock Average  
5.40% 

(1.58) 

5.11% 

(1.33) 

5.97% 

(1.64) 

6.39% 

(1.71) 

Commodities Average 
7.01% 

(1.84) 

6.63% 

(1.70) 

7.41% 

(1.88) 

7.63% 

(1.95) 



long run). Additionally, it will be interesting to see the “decay rate” of the profitability of the competing 

models in the different periods. AMH implies that the rate should be higher when the market is in crisis. 

Table 11 presents the monthly trading performance of all models and periods for the most profitable 

ETFs tracking currencies, stock indices and commodities. Namely, we will analyse UUP, DIA and IAU11 

Table 10: Monthly Out-of-sample Trading Performance of selected ETFs 

Note: The table reports the monthly annualized returns after transaction costs of every model. UUP, DIA and IAU cases are 

presented as they are the most profitable currency, stock and commodity ETFs respectively (on average). 

                                                           
11 The results of the remaining three ETFs are not presented here for the sake of space. The pattern of their returns is similar 

with those presented in table 11.   

 F1 (Out-of-sample) F2 (Out-of-sample) 

ETF Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

UUP 

RW -3.44% -0.98% -3.12% -2.10% -0.22% -1.42% -3.17% -2.23% 0.52% -6.57% 1.22% -5.21% 

Best1 4.12% 2.98% 3.15% 1.15% 0.71% -1.05% 3.45% 2.65% 2.52% 0.92% -0.08% -1.35% 

Best2 7.38% 4.58% 2.99% 2.35% 1.68% 1.28% 6.25% 4.68% 2.60% 1.53% 0.94% -0.04% 

vSVR 8.59% 7.22% 5.62% 4.26% 3.30% 2.19% 7.54% 4.94% 3.95% 2.27% 1.25% 1.12% 

GA-vSVR 9.47% 9.21% 5.71% 5.63% 4.12% 3.82% 10.55% 8.45% 2.35% 1.95% 1.92% 0.13% 

KH-LSVR 10.89% 10.24% 8.63% 6.74% 5.84% 3.85% 11.34% 9.56% 4.56% 3.76% 3.45% 2.39% 

RKH-LSVR 12.25% 12.48% 8.54% 7.20% 5.92% 4.12% 11.93% 9.10% 8.19% 6.48% 5.20% 1.65% 

DIA 

RW -1.72% -1.23% 0.36% -2.34% -0.88% -2.43% -2.24% -1.27% 0.86% -0.97% -2.24% -5.25% 

Best1 6.56% 5.57% 4.47% 4.18% 3.30% 2.29% 5.52% 5.25% 3.89% 3.81% 1.29% 0.32% 

Best2 7.35% 6.67% 6.14% 5.54% 4.87% 3.25% 7.98% 6.23% 5.36% 4.87% 4.95% 3.46% 

vSVR 10.25% 9.23% 8.14% 6.55% 5.05% 3.10% 9.12% 8.45% 8.12% 6.58% 5.28% 3.82% 

GA-vSVR 12.23% 10.94% 8.84% 6.55% 4.26% 3.25% 11.30% 10.84% 8.42% 5.67% 4.43% 3.45% 

KH-LSVR 12.84% 10.48% 9.87% 8.24% 4.48% 4.56% 12.45% 11.87% 9.48% 8.03% 6.47% 4.12% 

RKH-LSVR 13.02% 12.64% 10.87% 9.14% 5.59% 4.84% 12.66% 11.95% 11.44% 9.13% 6.35% 3.38% 

IAU 

RW -2.35% -1.05% -2.20% -1.80% -1.15% -4.12% -2.10% 0.95% -1.75% 0.05% -3.70% -1.34% 

Best1 8.81% 8.15% 7.02% 5.89% 4.99% 3.14% 7.89% 7.05% 6.54% 5.99% 5.23% 4.02% 

Best2 8.84% 8.42% 7.94% 7.60% 6.19% 5.86% 9.40% 9.13% 8.45% 7.62% 5.21% 4.12% 

vSVR 10.52% 9.53% 9.12% 8.84% 7.42% 6.70% 11.25% 10.85% 9.25% 8.17% 5.74% 4.85% 

GA-vSVR 10.45% 10.95% 9.68% 8.66% 8.26% 6.92% 11.56% 10.85% 9.84% 9.42% 7.70% 5.12% 

KH-LSVR 11.85% 11.02% 9.84% 9.23% 8.17% 7.62% 12.05% 11.42% 10.24% 9.25% 7.92% 5.95% 

RKH-LSVR 12.25% 11.74% 11.41% 10.23% 9.84% 9.46% 13.02% 11.25% 10.36% 9.45% 9.32% 9.02% 

 F3 (Out-of-sample) F4 (Out-of-sample) 

ETF Models Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

UUP 

RW -3.47% -1.85% -1.54% 1.15% -1.38% -0.34% -5.67% -5.48% -0.22% -2.38% -3.92% -5.38% 

Best1 6.25% 5.21% 3.23% 2.56% 1.52% 1.34% 6.84% 5.45% 4.49% 3.26% 3.28% 2.78% 

Best2 8.06% 6.32% 5.08% 3.53% 2.99% 1.42% 8.17% 6.41% 5.23% 5.28% 4.06% 3.15% 

vSVR 9.24% 7.58% 6.47% 5.87% 4.41% 3.30% 9.05% 8.12% 7.40% 6.24% 4.98% 3.07% 

GA-vSVR 10.54% 9.58% 6.58% 6.05% 5.72% 3.05% 9.98% 8.87% 8.49% 6.58% 6.10% 2.84% 

KH-LSVR 10.97% 9.97% 8.21% 7.23% 6.63% 5.68% 11.25% 10.94% 9.41% 7.52% 5.78% 3.06% 

RKH-LSVR 11.34% 10.58% 9.48% 7.89% 7.64% 6.13% 11.82% 11.25% 10.84% 9.63% 8.41% 3.25% 

DIA 

RW 0.85% -4.86% -1.96% -3.05% -2.34% -0.84% 3.84% -2.57% -1.23% 0.42% -6.45% -2.35% 

Best1 8.84% 8.45% 7.85% 5.10% 3.48% 2.37% 9.26% 9.28% 8.42% 6.45% 3.52% 0.38% 

Best2 9.94% 8.56% 8.12% 6.12% 5.58% 4.28% 9.66% 8.85% 8.74% 8.25% 4.32% 3.15% 

vSVR 10.23% 9.04% 9.98% 7.25% 6.33% 4.85% 10.45% 9.52% 9.05% 8.14% 5.68% 3.30% 

GA-vSVR 11.95% 10.85% 10.32% 7.56% 4.69% 3.34% 11.23% 10.23% 9.56% 7.95% 6.58% 4.25% 

KH-LSVR 12.05% 11.24% 9.21% 8.23% 7.23% 6.15% 11.85% 11.02% 10.18% 9.26% 7.42% 5.15% 

RKH-LSVR 12.95% 12.25% 10.28% 8.89% 7.75% 5.45% 12.25% 12.35% 10.42% 9.48% 8.45% 6.74% 

IAU 

RW 0.55% -1.89% 0.14% -2.45% -1.85% -0.17% -2.65% -6.26% 1.32% -2.64% -6.08% -4.31% 

Best1 9.85% 9.12% 8.25% 7.23% 5.49% 4.14% 8.86% 8.45% 7.95% 7.26% 6.25% 5.35% 

Best2 10.12% 9.15% 8.64% 8.40% 6.30% 5.80% 10.23% 9.85% 9.47% 8.53% 7.03% 5.90% 

vSVR 10.62% 10.15% 9.25% 9.10% 8.58% 7.48% 10.60% 10.35% 10.13% 9.45% 8.74% 6.85% 

GA-vSVR 11.20% 10.85% 10.45% 9.84% 7.89% 6.10% 10.96% 10.52% 10.27% 9.74% 9.34% 8.84% 

KH-LSVR 11.75% 11.09% 10.74% 9.94% 9.05% 7.48% 12.30% 12.07% 11.57% 9.98% 9.12% 8.53% 

RKH-LSVR 12.56% 11.84% 10.78% 10.46% 10.23% 9.84% 12.56% 12.94% 12.24% 10.84% 9.14% 9.01% 



The above results show that the profitability of all models is declining as time passes by. The declining 

speed seems to be increased after the third month of the out-of-sample. In order to further examine this 

behavior, a decay speed is calculated as below: 

                      
current month average return - previous month average return

decay rate 
previous month average return

                         (29) 

 This decay rate and its average for each forecasting exercise is presented in Table 11 below. 

Table 11: Monthly Returns Decay Speed 

Note: Columns (1)-(5) present the decay rate for the second to the sixth month of the out-of-sample. 

The last column is the average, while in the parenthesis is the p-value of the test of equal means between 

the current exercise and the previous one for each ETF. RW is excluded from these calculations. ***, 

** and * denote a rejection of the null hypothesis at the 1%, 5% and 10% significance level respectively. 

 

 

 

 

 

 

 

 

 

 

Table 12 shows that decay rate is generally increasing through time. It is worth noting that on average 

the decay rate is higher on F2 throughout the four exercises. The returns appear to erode quicker in the 

case of the currency ETF, while for the commodity ETF the returns decrease with the least speed. The 

p-values suggest that the decay rates for UUP and DIA are statistical different between F1, F2 and F2, 

F3. It seems that the decay rates during the European debt crisis is statistically different and higher.  

Although the results for the case of IAU follow a similar pattern as with UUP and DIA, the differences 

are statistically insignificant. This is expected since commodity markets where the least affected market 

during the crisis period. These results allow us to conclude that for the periods under study our models 

are less robust, when the underlying forecasted market is in crisis. Under normal or near to normal 

market conditions the decay rates seem similar.   

 

ETF Forecasting Exercise (1) (2) (3) (4) (5) Average 

UUP 

F1 -11.37% -12.84% -18.10% -21.08% -34.12% -15.85% 

F2 -22.88% -38.62% -39.04% -45.01% -79.24% 
-36.39% 

(0.005***) 

F3 -13.67% -20.55% -19.56% -9.62% -33.16% 
-15.85% 

(0.009***) 

F4 -11.88% -13.65% -9.88% -15.49% -55.20% 
-12.73% 

(0.377) 

DIA 

F1 -7.80% -8.97% -13.82% -21.47% -22.72% -14.95% 

F2 -11.52% -18.43% -18.45% -44.47% -65.52% 
-31.68% 

(0.043**) 

F3 -8.44% -7.67% -20.61% -18.75% -21.59% 
-15.41% 

(0.062*) 

F4 -5.33% -7.97% -12.13% -27.38% -36.14% 
-17.79% 

(0.297) 

IAU 

F1 -6.64% -8.03% -8.29% -11.06% -11.52% -9.11% 

F2 -5.09% -9.69% -8.74% -15.60% -14.55% 
-10.73% 

(0.097*) 

F3 -5.90% -7.58% -6.40% -15.52% -14.09% 
-9.90% 

(0.119) 

F4 -3.03% -3.97% -9.46% -13.08% -11.36% 
-8.18% 

(0.114) 



7. Conclusions 

In this research a hybrid RKH-LSVR model is introduced. The RKH algorithm is a novel metaheuristic 

optimization technique inspired by the behaviour of krill herds. The RKH is used to optimize the LSVR 

parameters by balancing the search between local and global optima. The proposed model is evaluated 

through three different fitness functions, while its statistical and trading performance is benchmarked 

against a set of traditional SVR structures, non-linear and linear models and a RW. The inputs of the 

SVR models are selected through a large pool of linear and non-linear predictors and PCA analysis. All 

models are applied in four forecasting and trading exercises over six ETFs during the period 2010-2015. 

The purpose of the trading applications is to test the robustness of the models under study and to provide 

empirical evidence in favour of the AMH. 

In terms of the results, RKH-LSVR architectures outperform their counterparts in terms of statistical 

accuracy and trading efficiency. The trading application provides evidences in favour of the AMH. This 

work should go forward on convincing researchers, practitioners and academics to explore further hybrid 

SVR techniques. It should also serve as caution on the implications of the AMH and the robustness of 

trading models.  
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Appendix  

A. Predictors’ pool 

This appendix section is a short description of the linear and non-linear models used to populate the 

individual forecast pools. 

A.1 Linear Predictors 



The linear models used are SMA, EMA, AR, ARMA, ROC and PPI. Their specifications are provided 

in the following table. In total, the linear models’ forecasts sum up to 300. 

 

Table A.1: The specification of the linear models 

LINEAR MODELS DESCRIPTION 
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SMA (q) 
1

( ) ( ... ) /
t t t q

E R R R q
 

    

Where: 

 q=3...25 

 

23 

EMA (q') 

q' 1

1 2 '

q' 1

(1 ') ... (1 ')
( )

' (1 ') ... (1 ')

t t t q

t

R a R a R
E R

a a a



  



    


    
 

 Where: 

 q'=3...25  

 a'=2/(1+Ndays), Ndays is the number trading days 
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Where: 

 q''=1,…,20  

 
0
,

i
    the regression coefficients  

 

20 

ARMA (m', n') 

0 0

1 1

( )
m n

t j t j k t k

j k

E R R a w a 
 

    

  

      

Where:  

 m', n'=1,..,15 
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j
    the regression coefficients  

 0
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t k
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w   the weights of the residual terms 
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Where:  

 p'=3,..,25 
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A.2 Non-linear Predictors 

A.2.1. Smooth Transition Autoregressive Models (STAR) 

STAR as proposed by Chan and Tong (1986) are extensions of the ARs. The STAR combines two AR 

models with a function that defines the degree of non-linearity (smooth transition function).    

                             1 2
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   the lagged endogenous transition variable, ζ' the parameter that defines the smoothness 

of the transition between the two regimes, λ' the threshold parameter and ut’  the error term. In this case, 

we estimate two-regime logistic (LSTAR) and exponential (ESTAR) STARs (Lin and Teräsvirta, 1994). 

For both models the orders 1 to 20 are explored.  

A.2.2. Nearest Neighbors Algorithm (k-NN) 

Nearest Neighbors (k-NN) is a non-linear and non-parametric forecasting method based on the work of 

Fix and Hodges (1951). It is based on the idea that pieces of time series in the past have patterns which 

might have resemblance to pieces in the future. Similar patterns of behavior are located in terms of 

nearest neighbors using a distance called the Euclidean distance and these patterns are used to predict 

behavior in the immediate future. We follow the guidelines of Dunis and Nathani (2007) to define the 

parameters. The optimal set of parameters is selected based on the highest trading performance in the 

in-sample period.  

A.2.3. Neural Networks (NNs) 

In this analysis, five NN architectures are applied. The simpler and most popular is the MLP. A standard 

MLP has at least three layers. The first layer is called the input layer (the number of its nodes corresponds 

to the number of explanatory variables). The last layer is called the output layer (the number of its nodes 

corresponds to the number of response variables). An intermediary layer of nodes, the hidden layer, 

separates the input from the output layer. Its number of nodes defines the amount of complexity the 

model is capable of fitting. In addition, the input and hidden layer contain an extra node called the bias 

node. This node has a fixed value of one and has the same function as the intercept in traditional 

regression models. Normally, each node of one layer has connections to all the other nodes of the next 

layer.   

The training of the network (which is the adjustment of its weights in a way that the network maps the 

input value of the training data to the corresponding output value) starts with randomly chosen weights 

and proceeds by applying a learning algorithm called back-propagation of errors (Shapiro, 2000). The 

maximum number of the allowed back-propagation iterations is optimized by maximizing a fitness 

function in the test dataset (see table 2) through a trial and error procedure. More specifically, the 

learning algorithm tries to find those weights which minimize an error function (normally the sum of all 

squared differences between target and actual values). Since networks with sufficient hidden nodes are 

able to learn the training data (as well as their outliers and their noise) by heart, it is crucial to stop the 

training procedure at the right time to prevent overfitting (this is called ‘early stopping’). This is achieved 

by dividing the dataset into 3 subsets respectively called the training and test sets used for simulating the 



data currently available to fit and tune the model and the validation set used for simulating future values. 

The network parameters are then estimated by fitting the training data using the backpropagation of 

errors. The iteration length is optimized by maximizing the forecasting accuracy for the test dataset. 

Then the predictive value of the model is evaluated applying it to the validation dataset (out-of-sample 

dataset).  

A Recurrent Neural Network is also applied. For an exact specification of recurrent networks, see Elman 

(1990). A simple recurrent network has an activation feedback which embodies short-term memory. In 

other words, the RNN architecture can provide more accurate outputs because the inputs are (potentially) 

taken from all previous values. Although RNN require substantially more computational time (see Tenti 

(1996), they can yield better results in comparison with simple MLPs due to the additional memory 

inputs. The third NN model included in the feature space is the Higher Order Neural Network (HONN). 

HONNs are able to simulate higher frequency, higher order non-linear data, and consequently provide 

superior simulations. For more information on HONNs see Dunis et al. (2011). Psi Sigma Networks 

(PSNs) are considered as a class of feed-forward fully connected HONNs. First introduced by Ghosh 

and Shin (1991), the PSN creation was motivated by the need to create a network combining the fast 

learning property of single layer networks with the powerful mapping capability of HONNs, while 

avoiding the combinatorial increase in the required number of weights. The order of the network in the 

context of PSN is represented by the number of hidden nodes. In a PSN the weights from the hidden to 

the output layer are fixed to 1 and only the weights from the input to the hidden layer are adjusted, 

something that greatly reduces the training time.  

The last NN used is the ARBF-PSO. Its complexity, architecture and characteristics differ from the 

previous mentioned NNs. Compared to them, in the ARBF-PSO the parameters are optimized through 

a Particle Swarm Optimization (PSO)12 algorithm. This protects the ARBF-PSO from the dangers of 

over-fitting and data snooping. However, the practitioner still needs to select the network’s inputs as 

with the previous NNs. For a complete description of the ARBF-PSO see Sermpinis et al. (2013). Table 

B.2 summarizes the learning algorithm, hidden and output node activation functions for all previous 

structures.  

Table A.2: Neural Network Design and Training Characteristics 

Note: The input of every node is zψ, where ψ = 1… n'' and n'' is the number of nodes of the previous layer. The vector indicating the center of the 

Gaussian function is C' and σ' is the value indicating its width. 

                                                           
12 The PSO algorithm is a population based heuristic search algorithm based on the social behavior of birds within a flock 

(Liang et al, 2006).  
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There is no formal theory behind the selection of the NN inputs and their characteristics, such as number 

of hidden neurons, learning rate, momentum and iterations. We conduct NN experiments and a 

sensitivity analysis on a pool of autoregressive and autoregressive-moving average terms of all series in 

the in-sample dataset.  For example for the number of iterations, our experimentation started from 1.000 

iterations and stopped at the 100.000 iterations, increasing in each experiment the number of iterations 

by 1.000. This is a very common approach in the literature (Tenti, 1996). Based on these experiments 

and the sensitivity analysis, the sets of variables selected are those that provide the higher trading 

performance for each network in the in-sample period.   

A.2.4. Genetic Programming predictors  

The final two non-linear models are the GP and GEP. These techniques are domain-independent problem 

solving methods based on the Darwinian principle of reproduction and survival of the fittest.  GP, as 

class of GAs, creates an initial population of models and evolves it using genetic operators (crossover 

and mutation). The result is to perform mathematical expressions that best fit to the given input (data). 

When designing a GP algorithm the main focus is on optimizing execution time and limiting the ‘bloat 

effect’, a similar issue to over-fitting in NNs mentioned earlier. This genetic procedure creates superior 

offsprings, replacing the worst models (tournament losers), and rearranges the initial population for the 

next iteration. The iterations stop and the final forecast results are obtained when the model reaches the 

critical value of the termination criterion. GP holds a greater selection strength and genetic drift from a 

typical GA.  The functionality aspects of GP and the genetic operators are described in detail by Koza 

and Poli (2005).  

GEP is based on symbolic strings of fixed length that represent the genotype of an organism. Its 

chromosomes consist of multiple genes with equal lengths. Each gene includes a head (detailing symbols 

specific to functions and terminals) and a tail (only includes terminals). The set of terminals included 

within both the heads and tails of the chromosomes comprises constants and specific variables. Each 

gene holds the capacity to code for multiple and different expression trees. Valid expression trees are 

always generated when using GEP, while it can operate also when the first element of a gene is terminal. 

This is not guaranteed in GP. GEP is also able to code for sub-expression trees with interlinking functions 

in order to enable reproduction when multiple generations arise. In general, GEP is considered superior 

to GP because fitness is established through the genotype and phenotype of an individual based on its 

chromosomes and expression trees respectively. Ferreira (2001) provides details on the exact procedure 

of GEP. 

B. Parameters and training characteristics 
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The table B.1 summarizes the training characteristics of the GA and both KH algorithms for all ETFs 

and forecasting exercises.   

Table B.1: GA and KH training characteristics 

 

Table B.2 presents the selected fitness functions for the proposed RKH-LSVR and its GA-vSVR and 

KH-LSVR benchmarks. 

 

 

 

 

 

Table B.1: Selected Fitness Functions 

 
GA KH / RKH 

Forecasting Exercise 1 2 3 4 Forecasting Exercise 1 2 3 4 

U

U

P 

Population Size 50 50 50 50 Population Size 50 50 50 50 

Maximum 

Generations 
900 900 900 900 Δt , Zcr 

22.32, 

0.43 

21.78, 

0.66 

19.40, 

0.60 

22.56, 

0.44 

D

I

A 

Population Size 60 60 60 60 Population Size 60 60 60 60 

Maximum 

Generations 
1000 1000 1000 1000 Δt , Zcr 

11.48, 

0.64 

23,56, 

0.95 

18.01, 

0.52 

16.02, 

0.54 

F

X

B 

Population Size 55 55 55 55 Population Size 55 55 55 55 

Maximum 

Generations 
1000 1000 1000 1000 Δt , Zcr 

10.19, 

0.80 

13.30, 

0.78 

21.14, 

0.60 

20.10, 

0.31 

V

G

K 

Population Size 80 80 80 80 Population Size 80 80 80 80 

Maximum 

Generations 
800 800 800 800 Δt , Zcr 

13.03, 

0.65 

15.84, 

0.55 

25.13, 

0.39 

18.14, 

0.48 

U

S

O 

Population Size 90 90 90 90 Population Size 90 90 90 90 

Maximum 

Generations 
750 750 750 750 Δt , Zcr 

19.44, 

0.76 

18.05, 

0.42 

12.98, 

0.80 

20.98, 

0.74 

I

A

U 

Population Size 60 60 60 60 Population Size 60 60 60 60 

Maximum 

Generations 
850 850 850 850 Δt , Zcr 

24.40, 

0.36 

29.13, 

0.66 

26.90, 

0.29 

25.68, 

0.50 

A 

L 

L 

 

E 

T 

F 

s 

Selection Type Roulette Wheel Selection Foraging Speed 0.02 ms-1 

Elitism 
Best individual is kept in the 

next generation. 
Maximum 

Motion Speed 
0.01 ms-1 

Crossover 

Probability 
0.9 

Maximum 

Diffusion Speed 
[0.002, 0.010] ms-1 

Mutation 

Probability 
0.1 Inertia Weights [0,1] 

 Series GA-vSVR KH-LSVR RKH-LSVR  Series GA-vSVR KH-LSVR RKH-LSVR 

F1 

SPY Fitness1 Fitness2 Fitness3  

 

F2 

SPY Fitness1 Fitness3 Fitness3  

QQQ Fitness3 Fitness3 Fitness3 QQQ Fitness2 Fitness3 Fitness3 

DIA Fitness2 Fitness3 Fitness3  DIA Fitness2 Fitness3 Fitness3  

FEZ Fitness3 Fitness3 Fitness2  FEZ Fitness3 Fitness2 Fitness3 

VGK Fitness3 Fitness1 Fitness3 VGK Fitness3 Fitness3 Fitness1  

EWG Fitness3 Fitness3 Fitness2  EWG Fitness3 Fitness1 Fitness3  

F3 

SPY Fitness3 Fitness1 Fitness3  

F4 

SPY Fitness3 Fitness2 Fitness3 

QQQ Fitness2 Fitness3 Fitness3 QQQ Fitness3 Fitness3 Fitness3 

DIA Fitness2 Fitness2 Fitness3  DIA Fitness1 Fitness3 Fitness2  

FEZ Fitness3 Fitness3 Fitness1  FEZ Fitness3 Fitness1 Fitness3  

VGK Fitness1 Fitness1 Fitness3 VGK Fitness1 Fitness2 Fitness1 



 

 

 

 

 

 

 

 

 

 

C. Statistical and trading performance measures. 

The statistical and trading performance measures are calculated as shown in table C.1. 

 

Table C.1: Statistical and Trading Performance Measures 

STATISTICAL PERFOMANCE  DESCRIPTION 
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TRADING PERFOMANCE  DESCRIPTION 

Annualized Return  
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is the daily return and TCA is the annualized transaction cost 

Information Ratio  
A

A

R
IR


  where 

A is the annualized volatility 

 

EWG Fitness3 Fitness2 Fitness3  EWG Fitness2 Fitness3 Fitness3  


