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Abstract Anilines are a vital synthetic core of pharmaceuticals, 
agrochemicals, natural products and building blocks. Metal-catalyzed C-H 
functionalization has emerged as a powerful tool to derivatize biologically 
relevant molecules. To this end, the derivation of anilines via catalytic C-H 
functionalization has been the subject of important new synthetic 
methodology. This review focuses on the tactics used to allow regioselective 
C-H functionalization of anilines. 
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1. Introduction 

Anilines are a ubiquitous chemical structure in a variety of 

active pharmaceuticals, agrochemicals, and natural products.1 

As per the Top 200 Pharmaceutical Product by Retail 2016, 

they are present in 16 active structures.2 They are commonly 

found in oncology agents (imatinib, enzalutamide, nilotinib, 

erlotinib, Figure 1a), as well as cardiovascular treatments 

(rivaroxaban, ranolazine), and respiratory disorders 

(formoterol, ivacaftor). They have also been abundant 

architectures in agrochemical development spanning a variety 

of pesticides (Figure 1b, flumetsulam, metolachlor, iprodione, 

and fluazuron).  

These structures contain substitution patterns at the ortho, 

meta and para positions. For these reasons, regioselective C-H 

functionalization of aniline derivatives could provide a key 

avenue into late stage modification of biologically relevant 

structures or in the synthesis of intermediary building blocks.3 

Transition metal-catalyzed C-H functionalization has emerged 

as a useful tool in the diversification of arenes and 

heteroarenes. The inherent challenge in C-H functionalization 

is the differentiation of sterically and electronically similar C-H 

bonds in an organic structure.4 For these reasons, elegant 

techniques have been designed to enable selective C-H 

functionalization methodologies. The use of a metal-

coordinating directing group has emerged as the most studied 

method in enabling site selective C-H activation via chelation 

assistance.5 This concept has developed rapidly to the use of a 

variety of strongly and weakly coordinating directing groups, 

utilizing a multitude of metal systems.  

Chelation assistance has enabled site selective C-H 

functionalization primarily at the ortho position of an arene. 

The first section of this review will focus on the variety of 

directing groups and systems that have permitted ortho-

functionalization of aniline derivatives (Scheme 1).  
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Figure 1 Biologically Relevant Aniline Structures 

 
Scheme 1 C-H Functionalization at the ortho Position via Directing Group Chelation Assistance

 
2: Ortho-Selective C-H Functionalization 

 

2.1: Palladium 

   The use of palladium catalysis in C-H functionalization 

chemistry has become widespread due to the innate reactivity 

of palladium centres. They have been shown to undergo direct 

C-H activation and functionalization of electronically biased 

systems,6 as well as undergo directed C-H functionalization, 

enabled via chelation assistance.7 

In early 2005, Sanford reported the palladium catalyzed ortho-

C-H arylation utilizing a variety of directing groups. In this 

investigation they reported the use of a pyrrolidinone, 

acetanilide and oxazolidinone aniline derivatives as chelating 

groups (Scheme 2).8 

 
Scheme 2 Palladium Catalyzed ortho-C-H Arylation of Pyrolidinone Derivatives  

In 2010, Dong co-workers reported the ortho-arylation of N-

substituted anilines using benzene as the coupling partner, in an 

attractive oxidative coupling process (Scheme 2a). When 

moving away from benzene to other aromatics such as anisole, 

selectivity issues were shown to be present. However the major 

products shown in these examples had C-H activation taking 

place at the para-position to the arene functionality.9 The same 

group also applied this to the ortho-arylation of N-

aryloxazolidinones.10 This methodology was further developed 

by Yu and co-workers where they found the addition of a 

pyridine based ligand enabled selective para-substitution on the 

arene coupling partner.11 In the same year as Dong’s original 

report, Lipshutz and co-workers reported the ortho-arylation of 

aniline derivatives furnished with a urea directing group 

(Scheme 2b). They utilized aryl boronic acids as coupling 

partners in this wide-scoped chemistry. Unfortunately, they 

found that mono and di-ortho-C-H functionalization selectivity 

issues were observed with para-substituted structures.12 
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Scheme 3 Palladium Catalyzed ortho-C-H Arylation of Aniline Derivatives 

In 2011, Wu and co-workers described the ortho-arylation of N-

pyridylanilines using ArBF3K salts as coupling partners.13 Here 

they showed that under the reaction conditions they formed the 

ortho-C-H arylated product (A, Scheme 4).  They also isolated 

the carbazole structure (B), formed via in situ N-C bond 

construction. The ratios of these products were prone to 

variation from almost 1:1 to roughly 2:8. These transformations 

manifest the power of palladium catalysis to undergo cascade C-

H functionalization reactions to build up complexity rapidly. The 

same group then developed this methodology further to enable 

selective mono-arylation and subsequent selective carbazole 

formation.14 

 
Scheme 4 Palladium Catalyzed ortho-Arylation of Aniline Derivatives 
Furnished with a Pyridine Directing Group and in situ Carbazole Formation 

Combining photoredox catalysis and traditional cross coupling 

chemistry has the potential to unlock new synthetic 

transformations as well as enabling milder reaction 

conditions.15 

In 2011, Sanford and co-workers developed the dual 

photoredox / C-H activation catalysis system with a Ru(bpy)3Cl2 

/ Pd(OAc)2 catalyst couple. This enabled the use of 

aryldiazonium salts in ortho-arylation chemistry using visible 

light at room temperature (Scheme 5a). As with their previous 

reports, a multitude of directing groups were employed 

including the aniline based pyrrolidinone. The authors proposed 

a dual catalyst cycle with palladium and ruthenium catalysts 

working in synergy to produce the ortho-arylated products.16 

This work was expanded on by Xu in a recent report where a 

variety of anilides were employed in a dual organophotoredox / 

palladium C-H activation cycle (Scheme 5b).17 

 
Scheme 5 Photoredox / Palladium Catalyzed ortho-C-H Arylation of Aniline 
Derivatives 

In 2006, Sanford and co-workers developed the ortho-C-H 

oxygenation of a variety of arenes. This chemistry enabled both 

C-H acetoxylation and C-H alkoxylation using a variety of 

directing groups, including pyrrolidinone (Scheme 6a).18 This 

work was further developed by Wang and co-workers to utilize 

acetanilide directing groups and a wider range of alcohol 

coupling partners (Scheme 6b).19 

 

Scheme 6 Palladium Catalyzed ortho Alkoxylation/Acyloxation of Anilide 
Derivatives 

In 2006 Shi and co-workers reported the ortho-C-H 

halogenation of acetanilide derivatives. Here they utilized 
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palladium acetate and copper halide salts to enable efficient and 

selective C-H chlorination and bromination reactions (Scheme 

7a). As acetanilide is an electron rich ortho/para director, 

substrates were often biased to disfavour any competing para-

functionalization.20 Sanford and co-workers later that year 

reported a full investigation into mechanistic aspects behind the 

ortho/para competition (Scheme 7b).21 Bedford and co-workers 

later added to this investigation, exploring solvent-free 

palladium catalysis and how this impacts the regioselectivity 

observed.22 

 
Scheme 7: Palladium Catalyzed ortho-Halogenation of Acetanilide 

The carbonylative palladium catalyzed cross coupling has 

become a ubiquitous transformation in the synthetic toolbox. 

This methodology was first applied to C-H activation of aniline 

derivatives by Lloyd-Jones, Booker-Milburn and co-workers in 

2009.23 Here they employed a urea directing group with 

palladium acetate in a CO atmosphere, which was shown to 

cyclize to form the oxazinone ring, and the carboxy ester when 

using an alcoholic co-solvent (Scheme 8a). Yu and co-workers 

described the use of this chemistry in an ortho-C-H 

carboxylation reaction (Scheme 8b). Here they found that the 

use of acetanilide directing group and the use of acetic acid as 

co-solvent gave the free carboxylic acid product (with no 

cyclization).24 This carbonylative C-H activation methodology 

has also been employed by Zhu and co-workers showing that a 

pyridine directing group led to cyclization to form the 

pyrimidine-4-one ring (Scheme 8c).25 In 2015, Lei and co-

workers disclosed the elegant transformation of N-alkylanilines 

into isatins via a double carbonylation to form the 5-membered 

ring (Scheme 8d).26 

 
Scheme 8: Palladium Catalyzed ortho-Carbonylation of Anilines 
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In 2010, Cui and Wu and co-workers described the palladium 

catalyzed synthesis of naphthalenes from acetanilides using 

direct ring construction using two equivalents of alkyne 

coupling partner (Scheme  9).27 This enabled the C-H activation 

of both ortho and meta-C-H bonds, where the cascade reaction 

was shown to be efficient with symmetrical diarylalkynes. This 

chemistry was expanded upon by Zhang and co-workers who 

displayed under complementary rhodium catalysis, the anilide 

directing group could undergo in situ removal resulting in a 

traceless directing group strategy.28 

 

Scheme 9 Palladium Catalyzed ortho-/meta-Annulation of Anilide Derivatives  

In 2011, Kwong and co-workers reported the ortho-acylation of 

acetanilide derivatives utilizing Pd(TFA)2 as the catalyst and 

TBHP as oxidant (Scheme 10). This transformation was shown 

to offer wide scope with a variety of arenes and aryl and alkyl 

aldehyde coupling partners undergoing this chemistry.29 

 
Scheme 10 Palladium Catalyzed ortho-C-H Acylation of Anilide Derivatives 

In 2013 Sanford and co-workers described the use of alkyl-

trifuoroborate salts in the ortho-alkylation of anilides (Scheme 

11). They described the key use of MnF3 as an oxidant and a 

carefully designed solvent mixture to maximize reaction 

efficiency.30 It must be noted that this methodology will be 

mechanistically similar to that described above by Lipshutz and 

co-workers.12 

 
Scheme 11 Palladium Catalyzed ortho-C-H Alkylation of Anilides using 
Trifluoroborate Salts  

In 2016, Kapur and co-workers developed the use of N-

pyrimidinylanilines in ortho-C-H nitration methodology using 

silver nitrite as the nitro source (Scheme 12). They did however 

find competing para-SEAr nitration in some examples.31 

 
Scheme 12 Palladium Catalyzed ortho-C-H Nitration of N-pyrimindinylanilines   

2.2: Rhodium 

Rhodium catalyzed C-H functionalization has become a powerful 

asset to the synthesis of a wide range of biologically relevant 

structures and building blocks.32 

In 2008, Fagnou and co-workers were the first to apply rhodium 

catalysis to the derivation of aniline structures. Here they 

utilised an anilide directing group in an annulation reaction with 

acetylenes (Scheme 13a). This chemistry led to the formation of 

C2 / C3 di-substituted indole derivatives.33 This work was 

followed by a report from Li and co-workers who reported the 

annulation of pyridyl-anilines with acetylenes (Scheme 13b) and  

α,β-unsaturated esters (Scheme 13c).34 This catalysis was 

shown to lead to cyclization at the ester position to give the 

quinolone structure, with some selectivity issues when using 

unsymmetrical arenes. 

 
Scheme 13 Rhodium Catalyzed Annulation of Anilines to form Indoles and 
Quinolones 

N-nitrosoanilines have been shown as versatile substrates for C-

H functionalization methodology. In 2013, Zhu and co-workers 

reported the rhodium catalyzed ortho-alkenylation of N-

nitrosoaniline. This reaction was shown to be widespread and 

the nitroso directing group remaining intact (Scheme 14).35 N-



Synthesis Review / Short Review 

Template for SYNTHESIS © Thieme  Stuttgart · New York 2018-03-29 page 6 of 14 

nitrosoanilines have also been applied in ortho-cyanation,36 

annulation (rhodium/cobalt catalyzed),37 acetoxylation,38 and 

acylation39 chemistry (both palladium catalyzed). 

 
Scheme 14 Rhodium Catalyzed ortho-C-H alkenylation of N-nitrosoaniline 
derivatives  

Up to this point all of the methods discussed in the 

regioselective C-H functionalization have utilized some form of 

N-substitution. Despite this, in 2015, Balaraman and co-workers 

reported the rhodium catalyzed annulation of free aniline with 

an alkyne coupling partner and a carbon equivalent (in para-

formaldehyde) which enabled the construction of quinoline 

structures (Scheme 15). Despite the mechanistic complexity and 

potential for multiple by-products this methodology was shown 

to be wide scope and predominantly high yielding.40 

 
Scheme 15 Rhodium Catalyzed Annulation of Anilines to Form Quinolines  

Rhodium catalysis has been universal to promoting 

metallocarbenoid chemistry.41 There has been interest in 

combining these methods with C-H activation. In 2016 Yao and 

co-workers achieved this in the rhodium catalyzed coupling of 

pyrimidinylanilines and α-diazo esters, to form the C-H 

alkylated products (Scheme 16a).42 Swamy and co-workers also 

disclosed similar chemistry finding pyridylanilines underwent 

an in situ lactamization to form the oxindole structures (Scheme 

16b).43 

 

 

Scheme 16 Rhodium Catalysed Indole Formation Using Diazo Esters  

2.3: Ruthenium 

Ruthenium catalyzed C-H functionalization has received 

substantial interest in recent years, due to its low-cost cf. 

palladium, iridium, and rhodium, as well as lower toxicity 

profiles, higher abundance and the potential to unlock unique 

chemical reactivity.44 

The ortho-C-H functionalization of arenes using weakly 

coordinating directing groups has been explored heavily using 

ruthenium catalysis with pioneering contributions from 

Ackermann45 and Jeganmohan.46,5b 

In 2012, Ackermann and co-workers utilized acetanilide 

substrates in ortho-alkenylation chemistry. This work was also 

shown to react efficiently using KPF6 as co-catalyst and with 

water as solvent (Scheme 17a). This is an attractive feature in C-

H activation chemistry as often high boiling polar aprotic 

solvents are used. This methodology was limited to electron 

deficient alkene coupling partners.47 By switching from a basic 

to an acidic environment, Jeganmohan achieved a 

complementary hydroarylation reaction which enabled 

installation of electron rich alkene substituents (Scheme 17b).48 

Jeganmohan has also reported a development of Ackermann’s 

alkenylation chemistry however in this case carrying out the 

oxidative C-H functionalization leaving only hydrogen gas as a 

by-product.49 
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Scheme 17 Ruthenium Catalyzed ortho-Alkenylation of Acetanilides via Heck-
type Couplings and Hydroarylation  

In 2016, Frost and co-workers disclosed two reports on the 

ortho-alkenylation of arenes using the biologically relevant 

oxazolidinone and hydantoin heterocycles as directing groups. 

This chemistry was shown to be amenable to a wide variety of 

arenes, and amino acid derived oxazolidinone and hydantoin 

heterocycles (Scheme 18).50 

 
Scheme 18 Ruthenium Catalyzed ortho-Alkenylation of N-aryloxazolidinones 
and N-arylhydantoins  

Ackermann and co-workers also showed that under similar 

conditions to their work above they could achieve an ortho-C-H 

arylation reaction of acetanilides using aryl boronic acid 

coupling partners (Scheme 19). This chemistry was shown to 

tolerate a vast array of anilides and boronic acid coupling 

partners without detriment to yield.51 

 
Scheme 19 Ruthenium Catalyzed ortho-Arylation of Acetanilide  

2.4: Nickel 

The use of base metals in cross coupling and C-H activation 

chemistry has come to the forefront of recent developments in 

catalysis. Due to the innate similarities with palladium, nickel 

has emerged as a vital candidate in the pursuit of greener 

catalysis systems.52 

Ackermann and co-workers employed nickel(0) catalysis in the 

annulation of N-pyrimidinylanilines to give substituted indoles 

(Scheme 21). This transformation has been discussed 

previously, however the authors have provided the most 

sustainable route with respect to catalyst.53 

 
Scheme 20 Nickel Catalyzed Annulation of N-Pyrimidinylaniline Derivatives 

Ackermann has since followed this seminal report on the C-H 

functionalization of anilines using nickel catalysis with a 

number of other innovative applications. The first of these 

demonstrates the ortho-alkylation of anilines furnished with a 

pyrimidine directing group in excellent yields and with a huge 

number of examples (Scheme 21a). Here they suggest an ortho-

nickelated complex can generate alkyl radicals via a single 

electron transfer mechanism, with a Ni(II)/(Ni(III) oxidation 

state change.54 In 2017 the group applied this chemistry to the 

ortho-alkylation of purine derivatives, applying this to the 

derivation of nucleosides and the formation of potential 

fluorescence probes (Scheme 21b).55 The same group also found 

that under identical conditions they could couple bromo-

alkynes with both pyrimidine and purine directing groups in 

good yields (Scheme 21c).56 In 2016 they found that their nickel 

system could also be applied to the chalcogenation of aniline 

derivatives installing sulfide and selenide functionality (Scheme 

21d).57 
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Scheme 21 Nickel Catalyzed ortho-C-H Functionalization of Arenes using 
Pyrimidine and Purine Directing Groups  

3: Meta-Selective C-H Functionalization of Anilines  

In order to move beyond the scope of ortho-selectivity, new 

synthetic methodologies have been designed to grant access to 

meta-selective C-H functionalization. These synthetic techniques 

have relied on three main methods; template directing groups, 

transient mediator chemistry and σ-activation. All three of these 

important methods have been applied to the meta-

functionalization of aniline derivatives and will be discussed in 

this review, with a particular focus on the mechanism involved 

in these chemistries.4  

Meta-selective C-H functionalization has been an area of great 

interest in recent years due to the synthetic potential it holds in 

complete control of regioselectivity in C-H activation chemistry. 

As an innate ortho / para director the ability to access selective 

meta-C-H functionalization of anilines could provide a vital 

synthetic tool in future developments. 

In 2009, Gaunt and co-workers disclosed a pioneering report in 

remote functionalization methodology on the meta-arylation of 

anilides using aryliodonium reagents (Scheme 22a). Here they 

used pivanilide as a model substrate, which they proposed could 

undergo electrophilic cupration through a conjugate addition-

style system through the benzene ring (Scheme 22b).58 They 

then suggested rearomatization and oxidative addition of the 

hypervalent iodine coupling partner would give them a meta-

cuprated arene. This structure could then form the C-C bond 

through traditional reductive elimination chemistry. 

 

Scheme 22 Copper-Catalyzed meta-Arylation of Anilide Derivatives 

The use of templated directing groups which selectively 

cyclometalate at the meta-position has become a widespread 

and well-researched area of remote functionalization (Scheme 

23a).4d,59 

Yu and co-workers applied their templated directing group 

methodology to aniline derivatives in 2014. They demonstrated 

that this concept was applicable to meta-C-H alkenylation and 

meta-C-H acetoxylation reactions (Scheme 23b). They proposed 

a 12-membered metallacycle which can then undergo C-H 

functionalization.60 In a following report they also applied this 

concept to the selective meta-functionalization of indoline 

derivatives at the C6 position.61 
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Scheme 23 Template-Assisted Palladium-Catalyzed meta-Arylation of Aniline 
Derivatives 

Ackermann and co-workers reported the meta-alkylation of 

aniline derivatives via a σ-activation process.62 Ruthenium 

catalyzed σ-activation focuses on the concept of using stable and 

planar ruthenacycles as transient electronic para-directors 

(Scheme 24a). This can be used with anilines to override the 

inherent predisposition to react at the ortho and para positions. 

They propose that a single electron transfer process enables the 

formation of tertiary alkyl radicals which the interact with the 

arene (Scheme 24b).63 It must be noted that this selectivity is 

complementary to their report discussed above under nickel 

catalysis.54 

 
Scheme 24 Ruthenium-Catalyzed meta-Alkylation of Aniline Derivatives via σ-
Activation 

Another method that has been used to access remote meta-

functionalization is the use of a transient mediator. This concept 

uses an ortho/ortho-functionalization to give net meta-

functionalization (Scheme 25a).  

In 2016 Yu and co-workers coupled this concept with the 

Catellani reaction64 in a meta-arylation reaction using anilines 

furnished with a specialized pyridine auxiliary (Scheme 25b).65 

With regards to mechanism they used directed cyclopalladation 

ortho to the acetamide directing group, which then allowed 

norbornene coordination and migratory insertion, to give the 

Catellani-type intermediate. This then enables cyclopalladation 

in the meta C–H bond, and subsequent oxidative addition / 

reductive elimination gives the C–H functionalised intermediate. 

Protodemetalation then takes place to give the meta substituted 

arene.  

The same group then applied these same bespoke anilines to 

meta-amination,66 alkynylation,66 and chlorination67 

methodologies (Scheme 25c). 
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Scheme 25 Ligand-Promoted meta-Functionalization of Aniline Derivatives 

 
4: Para-Selective C-H Functionalization of Anilines 

 

The ability to go further beyond meta-selectivity to para-

selective C-H functionalization relies less heavily on metal 

chelating directing groups and more on electronic and steric 

effects.4b Despite this, there have been examples of the careful 

manipulation of extended directing groups.68 As a strongly 

electron donating group, anilines have become widely studied 

model substrates in this chemistry, and the contributions to this 

date will be explored. 

The first example of transition metal catalyzed para-C-H 

functionalization of aniline derivatives came from the Gaunt lab 

in 2011. Here they described the copper-catalyzed para-C-H 

arylation of anisole and aniline derivatives using hypervalent 

iodine salts (Scheme 26).69 Surprisingly, at slightly higher 

temperatures this reaction was shown to proceed in the absence 

of a copper catalyst. 

 
Scheme 26 Copper Catalyzed para-Arylation of Anilines 

Shortly after this initial work by Gaunt, Zhang and co-workers 

reported the para-sulfonimidation of anilide derivatives. Using 

N-fluorobenzenesulfonimide (NFSI) as a coupling partner they 

showed using ortho-methoxy anilides they could enable 

selective para-C-H functionalization (Scheme 27). With regards 

to mechanism they propose an electrophilic cyclopalladation at 

the ipso-position using the methoxy as a non-innocent arene 

substituent.70 

 

Scheme 27 Palladium Catalyzed para-Sulfonamidation of Anilides 

In 2012, Waser and co-workers applied gold catalysis to the 

para-alkynylation of aniline derivatives using hypervalent 

iodine reagents (Scheme 28). This was shown to be incredibly 

selective for the para-position and a modest scope of aniline 

derivatives was reported by the authors.71 

 
Scheme 28 Gold Catalysed para-Alkynylation of Anilines 

In 2015, Suna and co-workers reported the para amination of 

electron rich arenes. This was achieved by using an electrophilic 

iodination selectively at the para position which can then 

undergo copper catalyzed Ullmann cross coupling chemistry to 

give the para-aminated structure (Scheme 29). They applied 

this concept to pyrrolidinone substituted arenes and 

oxazolidinones, where they demonstrated the application of this 
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methodology to the total synthesis of oxazolidinone-based 

antibacterial linezolid.72 

 
Scheme 29 Electrophilic Iodonation / Copper Catalyzed Coupling Relay in the 
para-C-H Functionalization of Anilines 

Recently there have been two reports on the use of 

cyclocuprated species in the para-functionalization of aniline 

derivatives. The first of these came from Manolikakes and co-

workers on the para-sulfonation of bespoke anilide 

derivatives.73 Here they suggested that a cyclocuprated 

structure could enable single electron transfer with the arene. 

This radical cation arene could then interact with sulfonyl 

radicals formed via interaction between the stoichiometric 

manganese oxidant and the sulfinate salts (Scheme 30). 

 
Scheme 30 Copper-Catalyzed para-Sulfonylation of Anilides 

The second of these examples also utilizes copper redox 

catalysis. However, Weng and Lu and co-workers report the use 

of a cyclocuprated structure which can form tosyl radicals itself 

via single electron transfer (Scheme 31).74 They applied this 

concept to the para-sulfonation of 2-aminonaphthalene 

derivatives. The authors also demonstrated the unoptimized 

para-selective acetoxylation, bromination, iodination, 

sulfonimidation, and trifluormethylation of 2-aminonaphthalene 

derivatives. 

 

Scheme 31 Copper Catalyzed para-Sulfonylation of Aminonaphthalene 
Derivatives 

As with ortho and meta-C-H functionalization the ability to carry 

out selective C-H functionalization of unsubstituted aniline has 

proved challenging. Despite this, Deng and co-workers reported 

the para-acylation of free aniline using copper catalysis (Scheme 

32). They suggest a mechanism using copper redox catalysis to 

generate the anilno radical in situ which can then interact with 

acetophenone via its enol tautomer. They then suggest that 

aerobic redox oxygenation takes place at the benzyl position to 

give the diketone structure.75 

 
Scheme 32 Copper Catalyzed para Oxalation of Aniline 

In 2017, Frost and co-workers reported the para-C-H alkylation 

of aniline derivatives utilizing a radical protocol.76 The authors 

suggest that an N-H activated complex can form (similar to 

Weng and Lu,73 and Manolikakes74) rather than a C-H activated 

complex (similar to Ackermann63) in Ru-C σ-activation 

methodology (Scheme 33a). They then suggest that this 

organometallic species can undergo radical functionalization at 

the para position cf. meta with the work of Ackermann and co-

workers. The transformation was shown to take place with 

tertiary α-halocarbonyl coupling partners in modest yields 
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(Scheme 33b). DFT studies also validated the base dependent 

switch in energy barriers between N-H activation and the 

complementary C-H activation. 

 
Scheme 33 Ruthenium Catalyzed para-Selective C-H Functionalization of 
Aniline Derivatives 

 
5. Conclusion 
 

Anilines are a vital structure in organic synthesis, present in a 

wide range of biologically relevant structures. Due to this the 

development of anilines as C-H activation templates has 

received an influx of new methodologies in recent years. These 

innovative processes have enabled the selective ortho 

(predominated by traditional directing group chemistry), meta 

(applying modern remote functionalization techniques), and 

para (manipulating electronic effects) functionalization of a 

variety of aniline structures. The advancement of regioselective 

C-H functionalization will continue to grow rapidly, and break 

through from proof of concept methodology to mainstream 

synthesis, and it is undoubted that anilines will play a vital role 

in that development.  
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