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ABSTRACT 

The probability of pressurized flow conditions occurring in existing bridges is forecast to increase due 

to possible changes in extreme precipitation, storm surges and flooding predicted under climate change 

scenarios. The presence of a pressure flow is generally associated with scouring processes in proximity 

to the bridge. Scouring can also occur around bridge piers, possibly causing infrastructure failure. While 

there is a vast literature on bridge pier scour and pressure flow scour, only a few studies have 

investigated their combined effect. This study will provide a new overview of the main features of 

bridge pier scour under pressurized flow conditions, based on laboratory experiences. Special focus is 

placed on the analysis of the flow features under pressure and free surface conditions and to the temporal 

evolution of the scour. A comparison with existing literature data is also conducted. The results 

highlight the nonlinear nature of scour processes and the need to consider pressurized flow conditions 

during structural design, as the interaction between pressure flow and the bridge pier strongly influences 

scour features and leads to scour depths much greater than the sum of the individual scours created only 

by pressure flow or pier presence.  
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1 Introduction 

Road bridges are essential for national transportation systems. Their disruption has severe 

consequences and can cost many lives (e.g. Deng & Cai, 2010; Gaudio et al., 2012; Melville & 

Coleman, 2000; Wardhana & Hadipriono, 2003). Bridge scour is one of the most common causes of 

bridge failure (e.g. Gaudio et al., 2012); Melville & Coleman, 2000; Muzzammil & Siddiqui, 2009; 

Pagliara & Carnacina, 2010; Wright et al., 2012; Zarrati et al., 2004). This kind of bridge failure has 

occurred in several locations and under various hydrological conditions, highlighting that bridge scour 



is a relatively common issue. For these reasons, numerous guidelines and references exist (e.g. FHWA, 

2001, 2009; Ryall, 2000; Zhao, 2012; and many others).  

New challenges have been arising for bridge design due to climate change and anthropization of 

catchments (e.g. Gill et al., 2007; NRC, 2008; Wright et al., 2012). Recent studies on climate change 

have warned about the risks connected to an increase in the magnitude of riverine and coastal flooding 

due to increased precipitation events, storm surges, sea level rise, and hurricane activity (e.g. 

Goldenberg et al., 2001; NRC, 2008; Saunders & Lea, 2005; Solomon, 2007; Lyddon et al., 2018a, b, 

). For example, for the African continent, Chinowsky et al. (2010) estimated that the potential impact 

of climate change for road infrastructure alone was USD 180 billion.  

Several issues are connected to the fact that many existing bridges have been designed based on 

precipitation and flow rates relative to extreme events from past records, without considering the 

signature of climate change and climate non-stationarity. Therefore, in some instances their designed 

discharge capacity is no longer adequate for the current climate (Madsen et al., 2014). Large 

uncertainties exist in regard to the occurrence of extreme events, and the application of safety factor 

standards might not be enough to avoid the risk of submerged decks (e.g. Wright et al., 2012). 

According to Wright et al. (2012), more than 500,000 bridges in the United States are currently deficient 

and vulnerable to climate change, and the total cost for bridge adaptation to climate change has been 

estimated as ranging from USD 140 billion to 250 billion.  

The most common cause of bridge failure is the scouring of bed material around bridge foundations 

during floods. According to Cook et al. (2015), hydraulic damage occurred in 52% of bridge failures, 

with the primary cause being scour. The accumulation of debris and drifts around a bridge pier can then 

substantially modify and increase local scour patterns (Pagliara & Carnacina, 2013). Normal flow 

conditions can cause continuous scour at the bridge, but under normal flow the scouring process is 

frequently slow enough to allow countermeasures via regular maintenance works. Floods have the 

potential to cause the large-scale removal of material over a short period, with no time for the 

application of possible remedies and countermeasures; this could lead to structural instability and failure 

(e.g. Anderson, 2018; Pagliara & Carnacina, 2013). For instance, in the US state of Georgia, in the 1994 

flooding due to Storm Alberto, 500 bridges were damaged with 31 having to be replaced after 

experiencing 4.5–6 m of scour. The total damage, including replacements and repairs to the Georgia 

Department of Transportation highway system, was approximately $130 million (Arneson et al., 2012). 

During major floods, the flow regime can switch to pressure flow if the downstream edge of a bridge 

deck is partially or totally submerged (e.g. Kumcu, 2016). A pressure flow (also defined as vertical 

contraction or orifice flow) is characterized by a decrease in water depth at the bridge deck. This in turn 

accelerates the velocity field with respect to the case without a deck, increases turbulence intensity and 

shear stress, and can cause scour (Umbrell et al., 1998). In comparison to open channel flow, pressure 



flow significantly increases the erosion potential since scouring is one of the ways energy is dissipated 

in flood conditions (Guo et al., 2009; Kumcu, 2016).  

Given the likelihood of increased flooding due to future climate conditions, and the shortage of 

publications on the combined effect of pier presence and pressurized flow, more studies are needed to 

understand the risks posed by pressurized flow. The goal of this paper is to investigate bridge pier scour 

and nonlinear effects at the bridge pier under pressure flow conditions. Specifically, this study will 

focus on the maximum scour depth, the temporal scour evolution factor (which represents the rapidity 

of scour development), and the ratio between scour depths under free and pressurized flow conditions. 

A comparison with existing literature data and literature formulations is provided throughout the text. 

2 Literature Review  

Several studies have dealt with the assessment of the maximum scour length, and depth under 

pressure flow and for a vertical flow contraction, but only a few studies have also considered the 

presence of piers or abutments. The scour at bridge piers is the local lowering and erosion of the bed 

elevation around the pier itself (for more details, see Chiew & Melville, 1987; Debnath et al., 2012; 

Khosronejad et al., 2012; Kim et al., 2014). Based on a set of clear-water experiences under pressure 

flow conditions, Abed (1991) suggested that the maximum pier scour hole depth could reach from 2.3 

to 10 times the scour corresponding to free surface conditions (Arneson & Abt, 1999). Umbrell et al. 

(1998) proposed an experimental relationship to predict the maximum scour depth, zmax, underneath a 

bridge. The parameter zmax was defined as the difference between the original bottom elevation and the 

deepest point observed in the groove. The experimental relationship was based on laboratory analysis 

dealing with both orifice and weir flows. According to the experimental results, and on the basis of a 

theoretical approach which assumed that the velocity at scour equilibrium under the contraction would 

attain the critical flow velocity, zmax was estimated as: 

 
𝑧max+ℎ𝑏

ℎ0
= {1.102 [(1 −

𝑤𝑒

ℎ0
)

𝑈

𝑈𝑐
 ]

0.603
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where h0 is the approaching water depth upstream of the bridge crossing, hb is the distance between the 

original bottom and the bridge’s lower deck edge, we is the water elevation over the bridge’s upper deck 

edge, U is the mean upstream flow velocity, and Uc is the critical flow velocity at which the particles 

move (subscript “c”), as defined in Richardson and Davis (2001). In Umbrell et al. (1998), the 

regression analysis of the data showed a coefficient of determination R2 = 0.81 with uniform scattering 

and no detectable systematic errors. Based on Arneson and Abt’s (1999) orifice flow data, Richardson 

and Davis (2001) proposed a different equation for the maximum scour:  
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ℎ0
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ℎ0

ℎ𝑏
) + 4.44 (

ℎ0

ℎ𝑏
)

−1
+ 0.19 (
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𝑈𝑐
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where Ub is the averaged flow velocity through the bridge opening before the scour formation.   



The authors reanalysed the data using a multi-linear regression analysis suggesting an adjusted R2 = 

0.89. Of the independent variables, zmax + hb/h0 is the most significant with a beta coefficient of 0.87. 

The flow intensity Ub/Uc was the independent variable with the least significance, with a beta coefficient 

of 0.13 (Arneson & Abt, 1999). More recently, Lyn (2008) proposed a critical statistical re-examination 

of the Richardson and Davis (2001), and Umbrell et al. (1998) equations: 

 
𝑧max

ℎ0
= min [0.105 (

𝑈𝑏

𝑈𝑐
)

2.95
; 0.5] (3) 

By modifying the term Ub/Uc to account for the presence of piers, Lyn (2008) also suggested that 

Equation 3 could be used to predict the maximum scour for pier pressure flow conditions. The linear 

regression yielding to Equation 3 displayed an R2 coefficient of 0.87 with a mean square error of 0.053 

in log10 scale (Lyn, 2008). 

Another important process connected to the pressurized flow is the generation of buoyant forces, which 

under certain circumstances might be sufficient to lift the bridge deck (Chen et al., 2016). Examples 

include the bridge across Biloxi Bay, Miss., which during Hurricane Katrina was subjected to 609 kN 

due to buoyancy, a value close to the deck weight (e.g. Chen et al., 2009).  

The effect of the girder underneath the bridge deck on pressure flow scour was studied by Guo et al. 

(2009). Assuming all other variables remained constant, they observed that the scour hole increased 

with the structure thickness. Only one flow depth (0.25 m) at the critical flow velocity was tested, which 

in part limits the applicability of their results to more general conditions. Guo et al. (2009) also 

suggested the necessity for further studies on the effect of pier presence under pressure flow conditions 

on the maximum scour hole, to better clarify non-linear interactions between bridge structures.  

In a more recent work, Kumcu (2016) presented a new analysis of temporal pressure bridge scour 

evolution. The model proposed was based on clear-water scour conditions for steady and unsteady 

flows. After reanalysing pressure scour data from Arneson (1997), Umbrell et al. (1998), and the new 

dataset, Kumcu proposed a new set of regression equations to evaluate the maximum scour: 

  

𝑧𝑚𝑎𝑥+ℎ𝑏

ℎ0
= 0.65 + 0.5

𝑈𝑏

𝑈𝑐
 for 0.5 ≤

𝑈𝑏

𝑈𝑐
< 1  (4a) 
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ℎ0
= 1.025 + 0.125

Ub

Uc
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Ub

Uc
< 1.8  (4b) 

 

In the present study, maximum flow intensities were varied from clear-water to live bed conditions; that 

is, 0.5 < U/Uc < 1.8 (see also Table 1). Table 1 summarizes the conditions and experimental validity of 

the various previous experiences compared to this work. It is clear that a broad range of applicability of 

the various equations emerges from past studies, with flow intensities that range from clear-water scour 

to live bed scour with maximum tested U/Uc < 4, and various degrees of deck submergence, up to 50% 



of the conveyance section. The duration of tests ranged from a few hours (3.5 in the case of Umbrell et 

al. (1998)), up to 70 hours in the present work. 

3 Methods 

3.1 Experimental apparatus, flume characteristics and tests execution 

All tests were carried out under controlled laboratory conditions. The experimental apparatus consisted 

of a glass-walled tilting recirculating flume of 0.61 m width and 7.6 m length. A Perspex cylindrical 

pier of 0.03 m diameter was embedded inside the sediments at the centre of the flume, and a deck was 

placed over it (Figure 1). Tests were executed as in Pagliara and Carnacina (2010) and Pagliara and 

Carnacina (2011a), using the same experimental apparatus. 

Figure 1 presents a diagram sketch (planar view A, three-dimensional view B, and cross sections C, D) 

of the experimental setup; it also summarizes the main variables used in the tests. In the figure, x, y, and 

z are longitudinal, transverse and vertical coordinates measured from the centre of the pier and from the 

original bottom level; zmax is the maximum scour hole measured at the bridge pier; B is the channel 

width; D is the pier diameter; and q is the water discharge per unit of width. 

The approaching flow depth h0 is the water elevation measured by averaging 4 water depths at the 

transverse section located 10 pier diameters upstream of the bridge deck (Hahn & Lyn, 2010). Tests 

were conducted with different discharge values, different ratios between the water depth underneath the 

bridge deck (hb) and the upstream water depth (h0), different large woody debris accumulations, and 

different deck sizes and shapes. Specifically, we executed tests using flat decks with two different 

widths (Figure 1c, ldk = 6D; ldk = 3D), and with girders along the entire length or only at the ends. 

Further, we tested different large woody debris accumulations (Figure 1d). Large woody debris 

accumulations at the bridge crossing exert an important forcing acting over the bridge deck, and can 

increase the scour depth at the pier base and the likelihood of bridge failure (Pagliara & Carnacina, 

2011b). Reference tests without the pier (only the deck) were also executed. The table in the 

supplementary material details the experimental conditions and results.  

An initial set of flow velocity measurements were collected, first using a fixed bottom and then using a 

mobile bed. The temporal scour evolution at the bridge pier was recorded at regular intervals of time; 

that is, t = 1, 2, 4, 8, 15, 30, 60 minutes and every hour thereafter. Long tests lasting up to 70 hours were 

conducted together with shorter experiments normally lasting up to 6 hours, with the intention to 

provide specific details on temporal scour evolution rather than just in terms of equilibrium. The long 

tests were used to benchmark any extrapolation assumption of shorter duration when assuming a 

logarithmic temporal evolution of scour. 



The critical flow velocity Uc was calculated according to Wu and Wang (1999). Critical flow velocity 

and clear-water conditions referred to the undisturbed section “0”, upstream of the deck.  

Sand of median diameter d50 equal to 1 mm, geometric standard deviation of the grain size distribution 

curve σs = (d84/d16)0.5 equal to 1.2, relative specific sediment density Δ = (ρs/ρ–1) equal to 1.44, and dry 

and wet sediment angles of repose equal to φ = 31° and φ’ = 36° respectively was used for all the 

experiments. A special series of tests included large woody debris accumulations (Figure 1d). 

According to Schmocker and Hager (2010), the flow can be greatly affected both by large woody debris 

and bridge characteristics (Figure 1d, Table 2).  

Hereafter, pd, ld, and wd are the large woody debris thickness, width, and length respectively (subscript 

“d”); hb/h0 is the deck ratio associated with the accumulation; and ΔA = [(wdk–D)(h0–hb)+(wd–

D)pd]/(Bh0)·100 is the additional blockage operated by both the large woody debris and the deck, and 

normalized to the total flow area.  

3.2 Dimensional analysis  

To analyse the scour-hole features, a non-dimensional analysis and Buckingham Π theorem were used. 

The following variables were identified as affecting the maximum scour, zmax: 

 zmax= Ψ [flow (ν, ρ, q, h0, g, B), sediment (d50, σs, ρs), pier (D, Shp, Alp), time (t), deck (hb, ldk, 

Shdk, Aldk)]   (5) 

where ν = kinematic viscosity, g = gravitational acceleration, Shp = pier shape factor (subscript “p”), Alp 

= pier alignment factor, Shdk, = deck shape factor, Aldk = deck alignment factor, and Ψ is a functional 

symbol.                                                    

By applying the Π–theorem and considering that for our experimental conditions, we tested a single 

cylindrical pier and a deck with zero skewness angle, Equation 5 can be rewritten as:  

 zmax / D = П (D/d50; ρs/ρ; U/(g Δ d50)0.5; UD/ν; Ut/D; hb/h0; h0/D; B/h0; ldk/D, Shdk)  (6) 

where zmax/D is the non-dimensional maximum scour, П is the functional symbol, and the terms in 

parentheses are the non-dimensional parameters that can be used to describe the maximum scour. Given 

Equation 6, the following assumptions can be made, which further simplify the problem:  

a) when the flow is fully turbulent (Reynolds number R = UD/ν > 2000), the effect of the Reynolds 

number can be neglected (Franzetti et al., 1994);  

b) for h0/D = submergence ratio > 1.4, the effect of bow vortex on the scour without a bridge deck can 

be neglected (Melville & Chiew, 1999; Melville & Coleman, 2000) and the maximum scour hole depth 

zmax can be normalized by the pier diameter D (Breusers & Raudkivi, 1991; Ettema, 1980; Melville & 

Sutherland, 1988);  



c) according to Oliveto and Hager (2002), in the case of mineral or plastic sediment, ρs/ρ only slightly 

affects the scour process and its temporal evolution;  

d) we only used one sediment fraction, and therefore one d50, ρs value;  

e) sediment cohesion and bed forms are not present for d50 > 0.9 mm (Melville & Chiew, 1999; Oliveto 

& Hager, 2005; Raudkivi & Ettema, 1983);  

f) sediments can be considered uniform for σs < 1.4 (Dey & Debnath, 2001; Dey & Raikar, 2005), and 

the armoring effect is negligible if σs < 1.3 (Raudkivi & Ettema, 1985);  

g) for an aspect ratio B/h0 > 3, the side wall effect on sediment transport is reduced to less than 20% 

(van Rijn, 1981), and can thus be preliminarily neglected for the conditions tested in this study; and  

h) the densimetric Froude number Fd50 = U/(g Δ d50)0.5 can be reduced to the flow intensity U/Uc, which 

is a parameter more frequently used when dealing with bridge scour equations.  

Thus, the functional relationship in Equation 6 can be simplified as:  

 zmax/D = f (U/Uc; T
*; hb/h0; ldk/D; Shdk) (7) 

 T*= Uth0/[Dh0 + (B – D)(h0 – hb)] (7b) 

where f = functional symbol and T* is the non-dimensional time which also accounts for the flow area 

blocked by the bridge deck (see Pagliara & Carnacina, 2010). 

4 Results 

4.1 Observations of the scour features and of the flow field 

Under the present set of experimental conditions, the scour initially forms in the central part of 

the channel area, and then progresses laterally. Under pressurized flow conditions (deck and no pier), 

the scour is mostly two-dimensional, while in the presence of a pier the scour assumes three-

dimensional features, and the scour depth is much deeper around the pier (Figure 2). Figure 2a presents 

results for U/Uc = 0.5, and Figure 2b presents results for U/Uc = 1. The figure shows how the reciprocal 

interaction between deck and pier strongly influences scour features. Under pressure flow conditions, 

the scour around the bridge pier is significantly deeper and wider than for free flow. Specifically, for 

U/Uc = 0.5, no scour is observed under free flow conditions (EB36). The scour hole under pressure flow 

conditions, and in the absence of a pier, is mostly two-dimensional, although a slight increase in the 

scour is observed toward the corners, which is most likely connected to differences between bottom and 

wall roughness. Pier pressure scour displays three-dimensional features, and the maximum scour depth, 

zmax, is much deeper than the sum of the maximum scour recorded for the two previous configurations 

(test EB55). This suggests that the combined presence of a pressure flow field and a bridge pier has a 

non-linear effect on the scour features. Similarly, for U/Uc = 1, the scour depth under pressure flow 



conditions and in the presence of a pier is significantly larger than the sum of the scours corresponding 

to the sole presence of a pier under free flow, and to the pressurized flow when considered separately.  

4.2 Scour temporal evolution 

The evolution in time of the maximum scour depth can be studied by following an approach similar to 

that of Oliveto and Hager (2002, 2005) and Link et al. (2008) for reference test bridge pier scour, 

Pagliara and Carnacina (2010) for pier scour under large woody debris accumulation, and Hahn and 

Lyn (2010) for pressure flow conditions without a pier, where the temporal zmax evolution can be 

approximated by a logarithmic law. In particular, Pagliara and Carnacina (2010) proposed the 

following:  

 (zmax/D)T* = ·ln(T*/10) (8) 

in which ξ = temporal scour evolution factor, the validity of which has also been confirmed in the 

presence of pressure flow scour.  

Figure 3a shows the temporal evolution of the non-dimensional scour zmax/D as a function of T* as 

measured from laboratory experiments (scattered points), and as predicted by Equation 8 (continuous 

lines). In the figure, all tests are characterized by a bridge opening of hb/h0 = 0.96, U/Uc = 1, h/D = 5.66; 

values for ldk/D are Shdk are reported in the supplementary material.  

Under free flow conditions (no deck), the pier scour is significantly smaller. The scour significantly 

increases with a larger deck (EB3 to EB5), especially in the presence of large woody debris 

accumulations (EB3 to EB48). In contrast, for the given conditions, the presence of girders does not 

significantly affect the scour (EB3 to EB44). As for the temporal evolution of the scour, Figure 3b 

presents a comparison between the data of our laboratory experiments and literature data observed by 

Hahn and Lyn (2010) for pressure scour. In this panel, the horizontal and vertical axes follow Hahn and 

Lyn (2010): zmax has been normalized by h0 – hb rather than D to facilitate the comparison with the 

ordinal data, and t has been normalized by THL; that is, the time scaling factor proportional to the 

sediment transport rate (eq, 1 in Hahn and Lyn (2010)). Hahn and Lyn’s tests have been carried out for 

hb/h0 = 0.8, a rectangular deck of ldk/h0 = 1.5, with two different flow intensities (U/Uc = 0.64, U/Uc = 

0.73) and no pier. A direct comparison with the test EB29 (reference test, with pier and without deck, 

for U/Uc = 0.75) revealed a different temporal behaviour compared to Hahn and Lyn’s data. In the 

absence of a deck, and for t/THL < 1, our data suggest a slower development, although no information 

on the scour formation at an earlier stage is present in Hahn and Lyn (2010). Despite these differences, 

the scour depth remains of the same order of magnitude when compared to the reference test. In the 

presence of a deck at hb/h0 = 0.8 and a pier (EB30), the scour is more than three times deeper than that 

without the deck and is significantly higher than that observed in Hahn and Lyn’s experiments. A simple 

linear superposition of the two scours, a simple design methodology that could be adopted in the absence 



of any other available dataset, would have produced a significant underestimation of the total scour, 

with a value significantly lower than the scour with pier and deck. This highlights the strong non-linear 

interaction created by the combination of vertical contraction and the presence of pier scour.  

A more detailed analysis of the scour evolution factor, ξ (Equation 8), offers the opportunity to 

investigate further the scour evolution in time and those parameters which are more influential.   

Figure 4a shows the dependence of ξ on hb/h0, for tests carried out with flat decks (Shdk = R), 0.5 < U/Uc 

< 1, 3 < ldk/D < 6, and 2.64 < h0/D < 5.71.  

The variable ξ linearly decreases with hb/h0. In fact, the larger the vertical contraction operated by the 

deck, the smaller the area where discharge can flow (the smaller is hb/h0), the higher the velocity under 

the deck, and the faster the temporal scour evolution observed at the base of the pier. Similarly to 

observations in free surface conditions, increasing flow intensity U/Uc also causes higher erosion rates 

in correspondence with the groove, due to the larger downflow intensities occurring at the base of the 

pier.  

The scour evolution factor, ξ, is also greatly affected by the width of the deck ldk/D. This is because a 

boundary layer develops underneath the deck, which further contributes to increasing the flow velocity 

in proximity to the pier section; the development of this is linked to the deck’s length. For ldk/D = 6, ξ 

always shows larger values compared to ldk/D = 3.  

By using a multiple regression analysis, ξ can be evaluated as follows: 

 𝜉 = 𝑏1 (
ℎ𝑏

ℎ0
) + 𝑏2 (

𝑈

𝑈𝑐
)

2

+ 𝑏3 (
𝑈

𝑈𝑐
) + 𝑏4 (

𝑙𝑑𝑘

𝐷
) (9) 

where b1 = –0.75 (–0.88; –0,61); b2 = –0.595 (–0.74; –0,45); b3 = 1.5 (1.23; 1.75); and b4 = 0.012 (0.006; 

0.018) are bi–th regression coefficients. The values in brackets relate to the 95% confidence intervals of 

the estimated bi–th, which can be used for safety evaluations.  

Figure 4b shows the relationship between the measured and calculated values of ξ (Equation 9). The 

scatter points refer to the laboratory experiments of panel (a), as well as to existing literature data (Abed, 

1991). Errors are generally less than 25% except for one test carried out at U/Uc = 0.5, which might 

have been affected by some bias during its execution and a larger relative error occurring when 

measuring small scour hole depths. Abed’s (1991) data show a good agreement with Equation 9, 

although a general over-prediction of 20% can be assessed. In particular, three of the pier scours under 

pressure flow conditions, and carried out for h0/D = 1.6, are rather over-predicted. However, it is 

important to observe that Abed’s tests were carried out for ldk/D = 12 and different deck and pier 

configurations. Specifically, Abed’s tests were carried out using a round-nose pier of 12D length. In 

those tests, the surface roller was located immediately at the upstream edge of the pier, while in the 



present tests the surface roller is located far from the pier and a second smaller and weaker roller forms 

underneath the deck at the downstream edge of the pier.  

4.3 Differences in scour between free surface and pressure flow conditions 

To assess the effect of pressure flow conditions over the pier scour hole, the deck factor Kdk has been 

defined as the ratio between the temporal scour coefficient ξ under pressure flow conditions and that of 

the reference test ξpt (no deck) under free surface flow. Two sets of tests were thus conducted, with and 

without the deck but with otherwise identical hydraulic conditions. The deck factor is defined as 

follows: 

 Kdk = (zmax/D)T* /(zmax– pt /D)T* = [·ln(T*/10)]/[ pt ·ln(T*/10)] =  /pt (10) 

Figure 5a shows the deck factor, Kdk, as a function of hb/h0. In the presence of a pressure flow field, the 

temporal scour evolution factors are around 2.52 times those for the reference test for hb/h0 = 0.75, and 

ldk/D = 6; this indicates a larger erosion potential observed at the base of the pier, which in turn could 

greatly increase the likelihood of pier failure. The variable Kdk reduces as hb/h0 increases, owing to the 

effect of smaller deck submergences on the pressure flow. Generally speaking, as conditions approach 

free surface flow, the deck factor tends to 1. Accordingly, longer decks (ldk/D = 6) show larger Kdk 

compared to decks with ldk/D = 3, whilst U/Uc only slightly affects Kdk. With the help of a multi-

regression analysis, the equation that best describes the deck factor has been found to be the following:   

 𝐾𝑑𝑘 = (
ℎ𝑏

ℎ0
− 1) (−7.33 + 4.40

𝑈

𝑈𝑐
− 0.68

   𝑙𝑑𝑘

𝐷
 ) + 1 (11) 

For the case without a deck, the functional relationship reduces back to the case of free surface pier 

scour, where for hb/h0 = 1, Kdk = 1.  

Calculated, Kdkcalc, and measured, Kdkmeas values (Figure 5b) show good agreement, with error bars less 

than 25% and R2 = 0.8. Tests with girders are also shown in the figure. The agreement between Equation 

11 and Kdk observed for a deck with girders indicates that, in the tested conditions, the presence of the 

girders only slightly affects the scour process. Conversely, when rectangular large woody debris 

accumulations are present, the factor Kdk can be up to 2.5 times larger than in the absence of 

accumulations (section 4.4). 

4.4 Effect of large woody debris accumulation on pier pressure scour 

Pressure flow conditions increase the scour hole at the base of the pier. This increase is proportional to 

the upstream wetted area blocked by the deck and thus to the ratio hb/h0. The presence of large woody 

debris accumulations further increases the blockage at the pier section (De Cicco et al., 2018).   

To account for the reduction in cross section due to the presence of floating objects, a different 

parameter, referred to as blockage ratio ΔA, can be introduced in the case of pressure flow and debris 



accumulations (Martín-Vide & Prió, 2005; Pagliara & Carnacina, 2010). The blockage ratio ΔA = [(wdk–

D)(h0–hb) + (wd–D)pd]/(Bh0)·100 is the blockage operated by both the debris and the deck, normalized 

to the total flow area. Figure 6 shows the scour evolution factor as a function of the blockage ratio ΔA 

(Figure 6a). The scour evolution factor linearly increases with ΔA and, similarly to what has been done 

for the other parameters, the following equation is proposed to describe the relationship between the 

different variables:  

 𝜉 = 0.0085Δ𝐴 − 0.61 (
𝑈

𝑈𝑐
)

2
+ 1.543 (

𝑈

𝑈𝑐
) + 0.012 (

𝑙𝑑𝑘

𝐷
) − 0.7822 (12) 

Calculated and measured values of ξ are plotted in Figure 6b. Cases with only debris accumulations 

show the largest differences with respect to the values calculated with Equation 12. In fact, the actions 

of debris accumulations differ from those of the deck because debris only covers part of the total flow 

width and debris alone cannot lead to pressure flow conditions. Table 2 illustrates the different levels 

of large woody debris accumulations used in the tests. 

5 Discussion 

Bridge pier scour has been extensively analysed and discussed in several studies (e.g. Brandimarte, 

2012; Qi et al., 2016). However, despite the important economic and social impacts of bridge failures, 

the problem is far from being solved, due to the complexity of the processes at play. Furthermore, as 

illustrated in the previous literature review, there is a paucity of studies focussed on the scour at bridge 

piers under pressure conditions. 

To provide further insights into relationships that can possibly be used to predict the maximum scour 

depth at the bridge pier under pressure conditions, the non-dimensional scour depth as measured in all 

the tests is compared against the non-dimensional scour depth calculated from different equations; that 

is, Equations 1, 2, 3 and 4 and a normalized form of Equation 8. Equations 1, 2 and 4 refer to the scour 

under pressure conditions and without a pier; Equation 3 refers to the pier scour, and has been proposed 

as suitable for both pressure and free surface flow (Arneson, 1997; Hahn & Lyn, 2010; Umbrell et al., 

1998). 

The range of variables tested by Arneson (1997) and Umbrell et al. (1998) have been summarized by 

Hahn and Lyn (2010); Lyn’s (2008) elaborations were based on the datasets of Arneson (1997) and 

Umbrell et al. (1998). Umbrell et al.’s (1998) equations were based on short test durations (3.5 hours), 

while Arneson’s (1997) test duration was not reported. Hence, to compare the performance of their 

equation with the present datasets, measured final scour hole depths have been normalized by h0, and 

Equation 8 has been rewritten as: 

 (zmax/h0)T* = ·ln(T*/10)/(h0/D) (13) 



Equation 13 shows an overall good agreement with our experimental data (Figure 7). However, when 

comparing the present dataset with previous literature equations, a general scatter is observed. Equation 

3, which is the only one referring to the pier scour, largely underestimates the data. Scours calculated 

from Equation 1 also underestimate (zmax/h0)meas, with a larger scatter than that of Equation 3. Finally 

Equation 2 both underestimates and overestimates (zmax/h0)meas. It is worth observing that overestimated 

values generally refer to hb/h0 > 0.94; these are values outside the range tested by Arneson (1997) (see 

Lyn, 2008).  

The underestimation of the scour can be further highlighted by considering the maximum scour as a 

function of flow intensity as predicted by one of the equations (e.g. Equation 3, Figure 7b). Equation 3 

is based on the definition of contracted velocity Ub/Uc. Lyn (2008) suggests that the contracted velocity 

can indirectly account for both pressure flow and pier presence. However, the underestimation of the 

scour illustrated in the present dataset highlights the possible importance of the non-linear interactions 

between pier presence and pressure flow. In fact, the pressure flow pier scour does not linearly depend 

on the contracted velocity; rather, it is connected to a scour evolution close to the bridge pier scour 

mechanics, which is not fully considered in the definition of contracted velocity. Additionally, Kumcu 

(2016) observed how the duration of the test in Arneson’s and Umbrell’s dataset could have possibly 

biased Equation 3. Specifically, the duration of the tests was deemed not sufficient to attain the 

maximum scour; this could potentially lead to a dangerous underestimate of design scour conditions. 

This is further highlighted when comparing the data of Figure 7a, which generally show a deeper 

calculated scour than that of Equation 3. The non-linear effect is again highlighted when comparing 

Equation 4 with the present dataset, especially for larger values of zmax/h0.  

6 Conclusions 

Bridge pier scour is a remarkably complex phenomenon; pressurized flow conditions further enhance 

the complexity of the problem. Understanding the full scour potential is extremely important for 

increasing bridge resilience and reducing the risks to life and economic losses. In this context, a series 

of laboratory experiments were used to quantify bridge pier scour features with different deck 

configurations and discharge values, and with and without debris accumulations. The results show that 

pressure flow conditions accelerate the scour hole’s temporal evolution compared to reference tests 

under free surface conditions. Large woody debris accumulations further increase the scour. The 

temporal scour evolution is affected by the following: the ratio between the water depth underneath the 

bridge and the free surface water level, the flow velocity, the width of the deck, and the blockage ratio 

accounting for large woody debris accumulation. Based on a non-dimensional analysis and data 

elaborations, we developed simple equations aimed at quantifying the maximum scour depth and the 

temporal evolution of the scour as functions of the above-mentioned variables. We also provided a 

comparison with existing literature data. The results highlight the need to consider the occurrence of 



pressurized flow conditions during structure design, as the interaction between pressure flow and bridge 

piers strongly influences scour features and leads to a bridge scour much larger than the sum of the 

scours created only by the pressure flow or the pier. Such a scenario is especially important during 

extreme flood conditions, when maximum scour processes are expected to occur within a small time 

frame. Our results suggest that practitioners should consider pressurized flow conditions as a likely 

scenario during flooding, as flood conditions are potentially more deleterious in terms of risk to 

infrastructures. 

Data availability  

The data that support the findings of this study are available from the corresponding author upon 

reasonable request. 
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Table 1. Comparison of experimental ranges for pressure flow scour with the setup.  



Variable   Umbrell et al., 

1998  

Richardosn and 

Davis, 2001;  

Lyn, 2008 

Kumcu, 2016 Present study  

Pier  [-] no yes no yes 

hb/h0 [-] 0.5 ÷ 0.95 0.3÷1 0.19÷065 0.46÷0.99 

U/Uc [-] 0.42 ÷ 1.06 0.3÷4 0.56÷1.8 0.5 ÷ 1 

d50 [m] 0.0003 ÷ 0.0024 0.0006 ÷ 0.0033 0.9 0.001 

h0 [-] 0.305 NA 0.115÷0.131 0.07 ÷ 0.176 

hb  [-] 0.153 ÷ 0.305 0.17÷0.43 0.05÷0.075 0.038 ÷ 0.165 

zmax  [-] 0.004 ÷ 0.13 NA NA 0.099 

tmax [h] 3.5 NA 32 6 (70 max) 

B [m] 1.8 0.914 1.5 0.6 

zmax/h0 [-] 0.013 ÷ 0.43  -0.1÷0.6 
 

0 ÷ 1.23 

Notes [-]   After Anerson and 

Abt 1999 data  

ldk = 0.30 m 9<ldk<0.12 m  

 

 

Table 2. Large woody debris accumulation: flow shallowness, bridge openings, large woody debris 

dimensions and blockage ratios 

Accumulation h0/D hb/h0 pd/D wd/B ld/D ΔA¶ 

[-] [-] [-] [-] [-] [-] [-] 

D1 2.66 ‡ 

5.66 § 

>1 † 2 ‡ 

4 § 

0.5 3 4.35 ‡  

30.5 § 

D2 5.66 0.95 2 0.35 3 15.23 

D3 5.66 0.75 2 0.32 3 33.31 

D4 2.66 0.95 1 0.33 3 15.23 

D5 2.66 0.65 0.5 0.41 3 40.02 

† free surface flow conditions, ‡ minimum and § maximum range of tested values,  

¶ nominal values 

 

 

 

 

List of figures 

Fig 1. Diagram sketch of the experimental apparatus and notation: (a) top view; (b) three-dimensional 

view of the cross section in panel (a), scour hole indicated on the left side. c) side view of the cross 



section in panel (a) for two different deck widths, ldk=6D and ldk=3D. Girders are indicated as well, note 

that pdk is defined from the girders edges when present; (d) side view and transverse view of tests with 

large woody debris accumulation underneath the deck.  

Fig. 2 Transverse scour sections for (a) U/Uc =0.5 and (b) U/Uc=1 

Fig. 3. (a) Non-dimensional maximum scour as a function of the non-dimensional time. Scatter points 

are experimental data, continuous lines represents equation 8. (b) Comparison with Hahn and Lyn 

(2010) data. 

Fig.4 (a) dependence of the scour evolution factor ξ from hb/h0 at different U/Uc and ldk/D for flat shaped 

decks. (b) calculated versus measured ξ, R2=0.93 (symbols are as in (a)). 

Fig. 5 (a) dependence of Kdk from hb/h0 for Shdk=R at different U/Uc and ldk/D, and (b) calculated 

Kdk (Eq.10) agreement versus measured Kdk, R
2=0.8.   

Fig. 6 (a) dependence of the scour evolution factor ξ from ΔA at different U/Uc and ldk/D for flat shaped 

decks (R); (b) calculated ξ (Equation 12) versus measured ξ. 

Fig. 7 (a) comparison between measured values of (zmax/h0), and values calculated from present study 

equation (Eq.13), Umbrell et al. (1998) (Equation 1), L. A. Arneson (1997) (Equation 2), and Lyn 

(2008) (Equation 3), Kumcu (2016) (Equation 4) (b) pier scour in pressure flow conditions and Lyn 

(2008) equation (Equation 3). 

 


