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Abstract  21 

Lignin is a key component of soil dissolved organic carbon (DOC) and is recently 22 

suggested to track 14C-young DOC components. However, direct evidence is still lacking to 23 

prove this hypothesis in the soil. Here, utilizing molecular radiocarbon dating, we present the 24 

first 14C dataset on dissolved lignin through a Podzol soil profile. Dissolved lignin and hydroxy 25 

phenols had similar 14C content as soil organic carbon (SOC) and DOC in the surface organic 26 

layer. However, in contrast to SOC, both DOC and dissolved lignin phenols exhibited 27 

consistent and higher ∆14C values in the mineral soils. Coupled with lignin phenol 28 

concentration data, our results suggest that dissolved lignin comprises a key DOC component 29 

throughout this Podzol profile and is mainly supplied by surface leachates with young 14C ages.  30 

 31 

Keywords: Soil organic carbon, dissolved organic carbon, lignin phenols, hydroxy phenols, 32 

compound-specific radiocarbon analysis. 33 

 34 

Dissolved organic carbon (DOC) is the most bioavailable and reactive fraction of soil 35 

organic carbon (SOC; Kalbitz et al., 2000), whose source and age are related to DOC dynamics 36 

and the potential stability of SOC (Moore et al., 2013). As such, dissolved organic matter from 37 

fresh litter, root exudates and pre-aged roots with decadal turnover times supplies 14C-enriched 38 

DOC to the soil (Hansson et al., 2010; Wu et al., 2014), albeit with minimal influences on the 39 

leaching of slow-cycling SOC (Tu et al., 2011). By contrast, dissolved organic matter released 40 

from old soil organic matter (SOM) introduces relatively 14C-depleted DOC (Hagedorn et al., 41 

2004; Lee et al., 2018), representing a critical pathway for the loss of relatively stable SOC 42 

(Moore et al., 2013). Hence, delineating the above source and age variations of soil DOC is 43 

essential for accurately assessing DOC dynamics and its impact on SOC stability. As bulk 44 

DOC consists of complex components with varied sources and ages (Kaiser et al., 2004), it is 45 
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difficult to fully understand patterns and drivers for its age variation. It is also challenging to 46 

routinely analyze DOC-14C, especially for low-DOC samples. Therefore, there has been an 47 

interest in seeking a potential indicator of young (and vice versa, old) DOC components in the 48 

soil to track their relative variations with changing environment (Benk et al., 2018).  49 

Plant-derived lignin moieties are an important component of forest soil DOC (Kalbitz et 50 

al., 2006). Litter accumulating on the forest floor is considered to be the primary source of 51 

DOC and dissolved lignin (Wu et al., 2014), conferring both a young age in surface soils 52 

(Trumbore et al., 1992). With increasing depths, lignin-derived compounds may be selectively 53 

retained by sorption to reactive iron minerals and become less abundant in deeper soils relative 54 

to microbial-derived products (Kalbitz et al., 2003a). In mineral soils, desorption and/or SOM 55 

degradation may also introduce old (non-lignin) components into DOC (Hagedorn et al., 2004; 56 

Jia et al., 2017; Lee et al., 2018), thereby increasing age offsets between dissolved lignin and 57 

DOC with depth. Somewhat in line with this postulation, lignin phenols have been shown to 58 

trace relatively young surface carbon pools in the arctic watersheds by molecular radiocarbon 59 

dating (Feng et al., 2013; 2017). Moreover, using ultra-high resolution mass spectrometry, 60 

Benk et al. (2018) found that lignin-derived phenolic compounds (especially dimers) were key 61 

molecular species associated with young 14C age in terrestrial dissolved organic matter in the 62 

critical zone. However, radiocarbon dating of lignin phenols, first used in marine and riverine 63 

systems (Feng et al., 2013; 2017), has not been conducted in soils so far to provide direct 64 

evidence for this emerging hypothesis. Filling the gap will help to verify dissolved lignin 65 

phenols as a tracer for young DOC in terrestrial environments and to improve our 66 

understanding of soil DOC dynamics.   67 

Here we utilize a well-monitored site in a Norway spruce forest at the Long-term Forest 68 

Ecosystem Research (LWF) station of Beatenberg, Switzerland (46°43′N, 07°46′E; Schaub et 69 

al., 2011), where soil DOC is regularly sampled and easily accessible along an organic-rich 70 
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profile. We employ the recently developed method of radiocarbon dating dissolved lignin 71 

(Feng et al., 2017), and present a benchmark study to analyze the 14C content of dissolved 72 

lignin relative to bulk DOC and SOC along an 80-cm soil profile. By comparing 14C offsets 73 

among these components, we attempt to examine source variations (from fresh litter, pre-aged 74 

14C-enriched roots with decadal turnover times and old SOM) in DOC and dissolved lignin 75 

with depth. We also demonstrate the use of compound-specific 14C analysis in testing dissolved 76 

lignin as a potential tracer for young DOC components in soils (Benk et al., 2018). 77 

Soils at the study site are classified as Podzols with a sandy texture and have a thick 78 

organic layer (20 cm; van der Voort et al., 2017). Bulk soils were collected using a soil corer 79 

from four depths in November 2012: 20 cm above the mineral soil surface (‘surface sample’; 80 

denoted depth of –20 cm) and at –5, 30 and 60 cm (all referred to as ‘subsurface samples’; 81 

Graf Pannatier et al., 2011; 2012). The first two depths were in the organic soil layer. Soil 82 

solutions were sampled periodically from July 2011 to October 2012 at the same depths using 83 

the established facilities including zero-tension lysimeters (for the surface sample) and 84 

ceramic suction cups (for the subsurface samples; Graf Pannatier et al., 2011; 2012). In total, 85 

23 solution samples were collected, including 11 samples with ample quantities for lignin 86 

phenol quantifications. Samples collected in May 2012 from the depths of –20, 30 and 60 cm 87 

were further used for 14C analysis of individual phenols.  88 

Soil solutions were filtered through pre-washed 0.45-µm filters, stored in plastic bottles 89 

and kept in the fridge in the dark at 4ºC before analysis. The filtrates and bulk soil samples 90 

were acidified with hydrochloric acid to remove inorganic carbon. A subset of the filtrate was 91 

kept frozen before DOC measurement on a Shimadzu TOC-V organic carbon analyzer. 92 

Another subset (~5–8 mL) was freeze-dried using an oil-free vacuum-pump powered freeze 93 

dryer (Christ, Alpha 1-4 LO plus). The freeze-dried filtrates and bulk soil samples were then 94 

measured on the Mini radioCArbon DAting System (MICADAS) accelerator mass 95 
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spectrometry (AMS) system coupled to an elemental analyzer (Wacker et al., 2010) for 14C 96 

contents of DOC and SOC, respectively. All 14C data were reported as ∆14C (‰). Lignin and 97 

hydroxy phenols were released using alkaline copper oxide oxidation (Feng et al., 2015) with 98 

individual phenols isolated by high-performance liquid chromatography (Feng et al., 2017) 99 

and measured as CO2 for 14C content on the Mini radioCArbon DAting System (MICADAS; 100 

Wacker et al., 2013). Radiocarbon contents were corrected against procedural blanks as 101 

described in Feng et al. (2017). Further details on analytical methods and blank assessment 102 

can be found in the Supplementary Information (SI) and Fig. S1.  103 

Along the soil profile, DOC concentrations decreased with depth whereas lignin and 104 

hydroxy phenols exhibited large variability in abundance (Table 1). Dissolved lignin and 105 

hydroxy phenols showed positive correlations with DOC concentrations in the subsurface (P 106 

< 0.05) but not surface samples (Fig. 1), suggesting that lignin is a key component of DOC in 107 

the mineral soils. Our results contrast with the down-profile decrease of lignin phenols relative 108 

to carbohydrates in the DOC of two forest soils (Kaiser et al., 2004). These differences may 109 

be attributed to (i) the strong leaching process and low content of reactive minerals (i.e., clay, 110 

iron and aluminum oxides) in the examined Podzols (van der Voort et al., 2017), preventing 111 

strong sorption and retention of lignin in the upper soils (Kalbitz and Kaiser, 2008), and/or (ii) 112 

preferential biodegradation of non-phenolic DOC components (such as carbohydrates and 113 

proteins) during transport to depth (Kalbitz et al., 2003b), leading to relatively consistent 114 

contribution of lignin to bulk DOC.  115 

The ∆14C values of bulk SOC showed clear evidence for the presence of ‘bomb 14C’ 116 

(Trumbore, 2009), peaking at the bottom of the organic layer (~167‰ at –5 cm) and decreasing 117 

to ‒173‰ at 60 cm (Fig. 2a), reflecting rapid accumulation of organic carbon at this site (van 118 

der Voort et al., 2018). In contrast to SOC, DOC displayed relatively constant ∆14C values 119 

throughout the profile during the sampling period (74~108‰; Fig. 2a and Table S1). These 120 
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DOC-∆14C values, similar to those reported for DOC collected at the same site during May-121 

September 2015 (van der Voort et al., 2017), are close to that of surface SOC (~82‰). Our 122 

observations are similar to those reported for soils from an old Norway spruce forest where 123 

surface soil DOC was more 14C-enriched than the atmosphere (Karltun et al., 2005). Given 124 

that atmospheric CO2 had a ∆14C value of ~38‰ during our sampling years (Levin et al., 2013), 125 

DOC emanating from recently synthesized litter and root exudates was unlikely to make a 126 

large contribution to soil DOC at our study site. By the same token, degradation products of 127 

old SOM in the mineral soils are likely minor contributors to DOC at depth. Instead, leachates 128 

from the surface organic layers appeared to the main source of DOC throughout the examined 129 

profile. 130 

Similar to bulk DOC, individual lignin phenols showed similar and positive ∆14C values 131 

(78‒180‰) throughout the profile (Fig. 2b and Table S2). For the surface sample, hydroxy 132 

phenols potentially derived from proteins, tannin-like compounds and/or demethylation of 133 

lignin (Goñi et al., 2000) exhibited higher ∆14C values (108‒180‰) than that of DOC (96‰), 134 

indicating that non-phenolic DOC components with somewhat lower 14C contents (likely from 135 

newly synthesized organic matter) comprise a larger proportion of DOC in the organic layer. 136 

This interpretation is consistent with the contrasting relationships between DOC and dissolved 137 

phenol concentrations in the subsurface versus surface samples (Fig. 1). For subsurface 138 

samples, dissolved lignin phenols exhibited higher ∆14C than bulk SOC or solvent-extractable 139 

lipids isolated from the same depth (van der Voort et al., 2017), suggesting minor contribution 140 

from SOM decomposition.  141 

Overall, we conclude that lignin is a key DOC component in the Podzol subsurface soil 142 

and remains relatively young throughout the examined profile, providing first direct evidence 143 

for the recent postulation that dissolved lignin phenols may trace 14C-young DOC in terrestrial 144 

(soil) settings (Feng et al., 2017; Benk et al., 2018). Leachates from the surface serve as the 145 
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main source of DOC and dissolved lignin in the deeper soil while contributions from pre-aged 146 

roots and SOM decomposition are minimal at our site. However, these patterns need to be 147 

further confirmed using dissolved lignin 14C analysis in deeper soil horizons that were not 148 

available at this study site and for soils without thick organic layers and/or contain more 149 

reactive minerals to interact with lignin and/or experience less intensive leaching. We postulate 150 

that larger 14C offsets may be found between (young) dissolved lignin and (old) bulk DOC in 151 

the latter soils due to higher inputs from aged non-lignin components (such as microbial 152 

carbon or black carbon) to bulk DOC at depth. If this is the case, quantification of dissolved 153 

lignin phenols may open an analytical window for assessing the relative variation of young 154 

terrestrial DOC in complex systems when the expensive and sensitive 14C analysis is not 155 

allowed. Coupled with bulk DOC measurement, this advance will also facilitate the evaluation 156 

of old DOC release from terrestrial settings (such as the arctic rivers) and improve our 157 

understanding of DOC dynamics. 158 
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Table 1. Concentrations of dissolved organic carbon (DOC), lignin and hydroxy phenols in 

the Podzol soil profile at three sampling times. 

Depth 

(cm) 

DOC Lignin phenols1 Hydroxy phenols2 

(mg L–1) (μg L–1) (mg g–1 DOC) (μg L–1) (mg g–1 DOC) 

2011/07 

–20 64.0 86.7 1.4 53.1 0.8 

–5 41.6 219.4 5.3 92.7 2.2 

30 28.3 59.0 2.1 29.7 1.1 

60 26.4 83.4 3.2 36.3 1.4 

2011/10 

–20 52.6 416.8 7.9 85.6 1.6 

–5 59.5 235.0 4.0 104.1 1.8 

30 37.3 141.0 3.8 47.7 1.3 

60 36.6 189.4 5.2 58.3 1.6 

2012/05 

–20 38.8 219.4 5.7 41.0 1.1 

–5 n.a. n.a. n.a. n.a. n.a. 

30 22.7 68.2 3.0 15.4 0.7 

60 26.5 110.7 4.2 19.3 0.7 

n.a.: not available. 

1Lignin phenols include eight monomers: vanillyl, syringyl and cinnamyl phenols.  

2Hydroxy phenols include p-hydroxybenzaldehyde, p-hydroxyacetophenone, and p-

hydroxybenzoic acid.  
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Figure captions 

Fig. 1. Correlations of dissolved organic carbon (DOC) with dissolved lignin (a) and hydroxy 

phenols (b) in the Podzol profile. Blue dashed line shows linear regression for the subsurface 

samples (n = 8). 

 

Fig. 2. The ∆14C values of dissolved organic carbon (DOC; sampled from July 2011 to October 

2012 and May-September of 2015; a) and individual phenols isolated from soil solutions in 

May 2012 (b) in comparison to bulk soil organic carbon (SOC; sampled in September 2012). 

Black dotted line shows the changing pattern of SOC Δ14C with depth. Errors represent 

propagated analytical error of 14C measurement (with procedural blanks considered). †∆14C 

values of DOC for May-September of 2015 are obtained from van der Voort et al.(2017); #p-

hydroxybenzaldehyde and p-hydroxyacetophenone were combined for 14C measurement; 

*vanillin and acetovanillone were combined for 14C measurement at 30 cm.  
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