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Transmission of natural scene images through
a multimode fibre

Piergiorgio Caramazza', Oisin Moran?, Roderick Murray-Smith@® 2 & Daniele Faccio® '

The optical transport of images through a multimode fibre remains an outstanding challenge
with applications ranging from optical communications to neuro-imaging. State of the art
approaches either involve measurement and control of the full complex field transmitted
through the fibre or, more recently, training of artificial neural networks that however, are
typically limited to image classes belong to the same class as the training data set. Here we
implement a method that statistically reconstructs the inverse transformation matrix for the
fibre. We demonstrate imaging at high frame rates, high resolutions and in full colour of
natural scenes, thus demonstrating general-purpose imaging capability. Real-time imaging
over long fibre lengths opens alternative routes to exploitation for example for secure
communication systems, novel remote imaging devices, quantum state control processing
and endoscopy.

TSchool of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK. 2 School of Computing Science, University of Glasgow, Glasgow G12 8QQ,
UK. Correspondence and requests for materials should be addressed to R.M-S. (email: roderick.murray-smith@glasgow.ac.uk)
or to D.F. (email: daniele.faccio@glasgow.ac.uk)

NATURE COMMUNICATIONS | (2019)10:2029 | https://doi.org/10.1038/s41467-019-10057-8 | www.nature.com/naturecommunications 1


http://orcid.org/0000-0003-4228-7962
http://orcid.org/0000-0003-4228-7962
http://orcid.org/0000-0003-4228-7962
http://orcid.org/0000-0003-4228-7962
http://orcid.org/0000-0003-4228-7962
http://orcid.org/0000-0001-8397-334X
http://orcid.org/0000-0001-8397-334X
http://orcid.org/0000-0001-8397-334X
http://orcid.org/0000-0001-8397-334X
http://orcid.org/0000-0001-8397-334X
mailto:roderick.murray-smith@glasgow.ac.uk
mailto:daniele.faccio@glasgow.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

ptical fibres form the backbone of the Internet and are a

key technology in modern society!. The vast majority of

these fibres are ‘single mode’, i.e. they can transmit only
one single, roughly Gaussian-shaped beam profile, corresponding
to the so-called fundamental mode of the fibre?. It is therefore
impossible to directly transmit images through an optical fibre:
any attempt to do so simply results in transmission of the one
single allowed mode and therefore the detection at the output of
this (Gaussian-shaped) mode, with all other information of the
image completely lost at the fibre input. One possibility to cir-
cumvent this limitation is to resort to an array or bundle of
single-mode optical fibres, each one transmitting the information
of a single pixel in the output image. However, this quickly leads
to fibre-bundled cables that are relatively thick and not optimal
for applications, such as endoscopic or neurological imaging,
where the fibre bundle is inserted inside a body?>.

Another option is to resort to multimode fibres, i.e. fibres that,
due to a larger core diameter, can carry many optical modes that
will have more complex shapes than the fundamental mode and
may encode image information*. For example, a typical 100-um
core diameter fibre might carry around 10,000 modes and could
in principle transmit an image with roughly the same number of
pixels. However, in these fibres, each of these individual modes
propagates at a slightly different velocity, thus leading to an
amplitude and phase mixing of the image, as this propagates
along the fibre®. The image at the fibre output therefore appears
as a random array of bright and dark spots, referred to as a
speckle pattern. This effect cannot be avoided and completely
scrambles and destroys the input image. Full a priori knowledge
of the input image and fibre details could allow to numerically
model the optical propagation®, reconstruct the transmission
matrix and then unscramble the output data, but in practice, this
can be extremely hard. Methods have been developed that allow
to shape the input beam profile, so as to focus the output field
into a single spot that can then be scanned’-!1, with an emphasis
on endoscopy!2~1°. Notwithstanding this notable progress, the
development of a viable method that allows to unscramble the
speckle patterns and thus retrieve high-resolution, general image
information in real time, is an open challenge.

One promising route in this direction is based on the complete
characterisation of the optical fibre in the form of a measurement
of its transmission matrix»1214, This matrix connects certain
orthogonal modes at the fibre input to the fibre output and can
therefore, once known, be used to invert the speckle pattern back
into the original image. This approach requires measurements of
the full complex (amplitude and phase) profile of a large subset of
modes and has been shown to work over fibre lengths of 0.3-1 m.

Other approaches pioneered by Takagi et al.l%, have recently
been proposed, that used artificial neural networks (ANNSs) using
deep-learning encoders to infer images from the speckle patterns
without any need for an a priori mathematical model of the
fibrel7-19. These have used multi-layer convolutional ANNs and
have shown that it is possible to reconstruct handwritten digits
from the MNIST database?0 that consists of patterns with 28 x
28-pixel resolution: training of the network and testing of its
reconstruction abilities are both performed on digits from the
same database. ANNs have also been shown to allow, for exam-
ple, to focus a beam through a thin scattering medium (as well as
through a multimode fibre) in ref. 2!, where both single-layer and
multi-layer real-valued neural networks have been implemented.
When used for imaging, these approaches are mostly expected to
work for classes of objects that belong to the same class used for
the training, as explicitly pointed out by Psaltis et al.1”. First steps
towards generic imaging have been made in ref. 18: these
approaches present a very promising route forward if the suit-
ability for general-purpose imaging applications can be addressed.

We have developed an approach that allows us to transmit and
reconstruct images of natural scenes at high resolution and frame
rates. Our method resorts to building an approximate model of
the inverse of a complex-valued, intensity transmission matrix of
the optical fibre. This approach does not require the use of deep
(multi-layer) ANNs and enables the full reconstruction of
detailed images. Full colour images and videos can be recorded at
20 fps and could be scaled up to kfps.

Results

Experiments. The experimental layout is shown in Fig. la. We
use an SLM (maximum frame rate of 20 Hz) to impart greyscale
(100 greyscale levels) intensity images onto a continuous-wave
laser beam (532-nm wavelength). This image is then coupled into
a multimode fibre (step index core, core diameter 105 pm, fibre
lengths of 1 and 10m, ~9000 propagating optical modes and
image spot size at fibre input is ~2 pm) and then coupled out
using identical objectives for the fibre input and output (focal
length, f=34 mm, NA = 0.26). The speckle pattern at the fibre
output (near field) is imaged onto a CMOS camera at 350 x
350-pixel resolution.

The goal is to transmit ‘natural scenes’, i.e. photographs of
everyday-life scenes. The importance of this choice lies in the
significant additional complexity of natural scenes when com-
pared with, e.g. MNIST-database digits or other simple geometric
features. As sample images, we use a selection of 50,000 images
from the Imagenet database?2, sized at 92 x 92 pixels, so as to have
less pixels than optical fibre modes. These images have been
selected randomly from the Imagenet database while looking for
almost square images, so as to facilitate projection into the fibre.
The output speckle patterns with amplitude distribution, x (i.e. x is
the square root of the measured speckle intensity patterns),
together with the knowledge of the image (intensity distribution, I)
that generated each speckle pattern, are used in the algorithm
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Fig. 1 Experimental layout. a An SLM combined with a polarising beam
splitter (PBS) and a half-wave plate (1/2) is used to imprint intensity
images onto a laser beam that is then coupled into a multimode fibre. The
fibre output is collected with a lens and recorded on a CMOS camera. b A
schematic overview of the computational processing steps of the inversion
process: output speckle data, x from a series of images (in our experiments,
50,000 images from the ImageNet database22) are fully connected to a
complex matrix, W which provides an output image | = |Wx|2. This image is
compared with the actual original image (ground truth) through a cost
function: the total cost { is then back-propagated to W and the process is
repeated for a fixed number of loops (epochs), ensuring minimisation of ¢
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described below to approximate the inverse of a complex
transmission matrix, W. This matrix is then used to retrieve
images that were not part of the sample dataset from intensity
measurements of their output speckle patterns, I=|Wx|2.
Examples are images and videos from the Muybridge collection,
such as a running horse, a jumping cat and a flying parrot. We
also tested the imaging on videos of a rotating Earth and Jupiter.
Both of these are in full colour, obtained by projecting and then
recombining the R, G and B channels independently.

Image reconstruction. There are two possible approaches to
reconstructing an image from a speckle pattern. The first is to
attempt to build a forward model that describes how the images
or optical modes propagate down the fibre and then invert this or,
the approach followed here, one can try to directly construct an
approximation of the inverse model. This is achieved statistically
(i.e. by employing data from many images) through a single, fully
connected complex-valued transformation matrix.

Complex inversion. A schematic overview of the approach used
to reconstruct W is shown in Fig. 1b. The full transmission matrix
of an optical fibre is complex valued. This motivates the
assumption that W is also complex valued, connecting the input
and output of the fibre I =|Wx|? 23-26, This also motivates the
idea that a deep-learning ANN approach is not required here. We
only measure the intensity of the speckle pattern, from which we
take the amplitude x (square root of the intensity) and therefore
represent x with amplitude only, and zero phase. The values of x
are passed to a fully connected (‘dense’) complex matrix
—equivalent to multiplication by the complex-valued matrix W
(arrows in Fig. 1b) that shows some of these connections as an
example. An image is then obtained as I=|Wx|2. We calculate
the derivatives d(/ dw;; of the cost function {, with respect to the i,
jth element of W. We then apply a stochastic gradient descent
approach to make small changes to W that reduce the cost
function, and the process is repeated for a fixed number of loops
(epochs), ensuring convergence of { to a minimum value. The
complex-weighted inversion was implemented as a novel layer
with Keras?” and TensorFlow?? (the code is provided in Sup-
plementary Note 4). The final W, constructed from a database of
50,000 images, can then be used to obtain an estimate of the
ground truth image for all future transmitted data corresponding
to images not used as part of the training and indeed, even
transmitted at a completely different time (e.g. several days) after
the training is completed.

Experimental results. In Fig. 2, we show a first set of results
obtained from data transmitted through a 1-m-long fibre
(wrapped in a loose coil on the table), by applying the estimated
W to a series of videos that do not form part of the ImageNet
database and are significantly diverse, in order to demonstrate the
robustness of our approach. These videos are taken from the
Muybridge recordings from the 1870s that marked the historically
important breakthrough of the first ever high-speed photography
images. The running horse in Fig. 2a is probably the most iconic
of the Muybridge videos, but the others, a jumping cat in Fig. 2b,
a flying parrot in Fig. 2c and a punching boxer in Fig. 2d provide
a broad scene variability and all show good image reconstruction
over the full greyscale spectrum, as opposed to the binary black/
white MNIST images often used in previous work. We also note
that the MNIST database, given the limited set of symbols, will
tend to create what is essentially a simple classification system,
with a decoder to generate the associated image. True imaging
capability should therefore demonstrate functionality beyond this
dataset, as shown in Fig. 2 (see Supplementary Fig. 3 for futher

examples). Under each reconstructed image in Fig. 2, we also give
a quantitative measure of the reconstruction quality based on the
‘structural similarity index’ (SSIM) and the ‘Pearson correlation
coefficient’ (see Supplementary Note 2). These coefficients mea-
sure the similarity between the ground truth and retrieved images
with a maximum value of 1 (indicating image identity).

We also observed no degradation in the video quality even
when the data were transmitted, recorded and reconstructed
more than 48 h after transmission of the original first set of
‘training’ data had been completed (see Supplementary Note 3),
thus indicating robustness to subsequent environmental changes,
such as temperature fluctuations (of the order of a few degrees)
and vibrations (the setup is not placed on a vibration-
isolated table).

In Fig. 3, we show examples of full colour video transmission of
a rotating Jupiter and a rotating Earth. Each individual R, G and
B channel was transmitted and reconstructed separately and then
recombined. We note that the same matrix W obtained for
greyscale images is used for all three R, G, B channels when
imaging in full colour mode. Subtle features, such as the Red Spot
on Jupiter or slightly lighter areas in the Northern region of
Africa (roughly corresponding to the Nile delta region in Egypt),
can be observed in the reconstructed images (other examples are
shown in Supplementary Fig. 2).

Tests were also performed to investigate the role of the class of
images used for retrieving W. The images in Fig. 4 were
downsampled to 28 x 28 pixels in order to simplify the problem
and demonstrate that, if desired, one may also reconstruct the
inversion matrix W with a completely ‘agnostic' approach, i.e.
with no prior assumption on the images. This is obtained by
using 50,000 completely random greyscale images. As can be
seen, this completely agnostic approach is still able to correctly
reconstruct the images, although with a clear loss of quality. We
noticed a good insensitivity to fibre length (as already pointed out
by Psaltis et al.l”) and an improvement of image quality with
increasing the number of random images used for the W matrix
retrieval, although GPU RAM limitations did not allow us to
investigate this further.

We also noted that changing the size of the focused image at
the fibre input significantly impacts the final reconstruction. By
placing a telescope after the SLM so as to rescale the image at the
focusing objective input, we noticed a significant increase of the
final image quality with increasing the size at the focusing
objective input pupil (corresponding to an increasing effective
NA, ie., to an increasing angular spread at the fibre input). This
was also accompanied by a clear decrease in the average speckle
spot size at the fibre output, indeed indicating the excitation of
higher spatial frequency modes (see Supplementary Note 1 and
Supplementary Fig. 1).

A matter of concern in many studies is the robustness to
changes in the fibre configuration. A change in the fibre geometry
(e.g. by bending the fibre) will lead to a different propagation of
the individual modes, which ultimately leads to a different output
speckle pattern. Without precise knowledge of how the fibre has
been changed, it is not possible therefore to reconstruct the image
using the inversion matrix W from a different configuration!4. A
recent solution has been proposed by using specially designed
fibres that have a parabolic refractive index profile in the core?’.
For a long-range transmission system, such a solution might be
appropriate under the assumption that a long-haul fibre would
remain in a relatively fixed position over time.

In future realisations, we expect that a combination of fibre
design, position classification and/or extensive training over fibre
configurations, will allow to efficiently remove this last obstacle
that for the time being, is beyond the scope of this work that is
aimed at demonstrating that high pixel-density, colour images
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Fig. 2 Reconstruction of Muybridge videos for a 1-m-long fibre. Individual frames of video data taken from the Muybridge collection: a running horse,

b jumping cat, ¢ flying parrot and d punching boxer. All videos are greyscale, scaled to 92 x 92 pixels and transmitted at four frames per second. The first
column shows the original input video. The second column shows the speckle patterns (x) measured at the fibre output. The full videos are available in
the supplementary information (Supplementary Movie 1). SSIM and PCC indicate the structural similarity index and Pearson correlation coefficient that

quantify the quality of the reconstruction (see Supplementary Note 2)

can be transmitted efficiently through a static fibre and at video
frame rates.

Discussion

Imaging through a single multimode fibre is an outstanding
challenge and has so far been limited to relatively low frame rates,
small image sizes or short fibre lengths. Imaging of natural scenes
increases this challenge further, as it ideally entails video frame
rates, colour detail and sufficient image resolution to allow
identification of the scene details. The technique developed here is
based on a physically informed model of the imaging system that
retrieves an approximation to the full transmission matrix. In this

sense, our approach sits somewhere between the techniques
devised for reconstructing the actual transmission matrix and
deep-learning approaches that do not make any explicit
assumptions on the system. This allows for efficient video and
data transmission through fibres and promises applications
beyond endoscopic imaging, such as direct video or multimode
data transmission over long fibres for communication systems
and fibre sensing by, for example, exploiting the image sensitivity
to changes along the fibre length. Moreover, one could also
exploit the intrinsic random nature of the multimode coupling
and output speckle patterns to securely encode and authenticate
data as proposed recently3%31, where the transmission fibre itself
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Input Reconstruction

Fig. 3 Full colour results for a 1-m-long fibre. Individual frames of video data in full colour of a rotating Jupiter (credit: Damian Peach) (a) and Earth (b)

Input Output Reconstruction

1-m-long fibre

10-m-long fibre

=

Fig. 4 Image reconstruction of an ostrich taken from the Muybridge collection after transmission through a 1- and 10-m-long fibre. The inversion matrix
was constructed using only random greyscale patterns

would play the role of the encoding medium, with possible Data availability
extensions also to the control of quantum states for quantum An example of the code is provided along with data for 1 m at https://doi.org/10.5525/
sensing and simulation32. gla.researchdata.751.
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Code availability
The code has been presented and explained in Supplementary Note 4: Software.
Furthermore, a code example is available at the DOI link.
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