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ABSTRACT Color constancy is the capability to observe the true color of a scene from its image regardless of 

the scene’s illuminant. It is a significant part of the digital image processing pipeline and is utilized when the true 

color of an object is required. Most existing color constancy methods assume a uniform illuminant across the 

whole scene of the image, which is not always the case. Hence, their performances are influenced by the presence 

of multiple light sources. This paper presents a color constancy adjustment technique that uses the texture of the 

image pixels to select pixels with sufficient color variation to be used for image color correction. The proposed 

technique applies a histogram-based algorithm to determine the appropriate number of segments to efficiently 

split the image into its key color variation areas. The K-means++ algorithm is then used to divide the input image 

into the pre-determined number of segments. The proposed algorithm identifies pixels with sufficient color 

variation in each segment using the entropies of the pixels, which represent the segment’s texture. Then, the 

algorithm calculates the initial color constancy adjustment factors for each segment by applying an existing 

statistics-based color constancy algorithm on the selected pixels. Finally, the proposed method computes color 

adjustment factors per pixel within the image by fusing the initial color adjustment factors of all segments, which 

are regulated by the Euclidian distances of each pixel from the centers of gravity of the segments. Experimental 

results on benchmark single- and multiple-illuminant image datasets show that the images that are obtained using 

the proposed algorithm have significantly higher subjective and very competitive objective qualities compared to 

those that are obtained with the state-of-the-art techniques. 

INDEX TERMS color constancy, multiple-illuminant, image segmentation, texture.

I. INTRODUCTION 

The colors of objects within a digital image are determined by 

the intrinsic properties of the source illuminant, reflective 

features of the objects’ surface and the sensitivity functions of 

the imaging device [1]. The color of the illuminant may alter 

the real colors of the objects within the scene. Hence, for robust 

color-based systems such as human-computer interaction, 

video analytics, object tracking, color  feature  extraction and 

digital photography, the effect of the illuminant should be 

removed [2, 3]. The retinex system of humans is able to observe 

the actual color of objects by adjusting its spectral response and 

distinguishing the color of the source illuminant. In contrast to 

human eyes, digital imaging devices are unable to efficiently 

filter out the effects of light sources from digital images [4, 5]. 

Hence, the color of the source light can significantly deteriorate 

the color of objects in the image. The key purpose of color 

constancy algorithms is to adjust the color of an image that was 

taken under an unknown illuminant so that the image looks as 

if it captured under white illuminant [6, 7]. 

Color constancy of a digital image can be analyzed using an 

image formation model. Lambertian reflectance is one the most 

often used models, which assumes the reflected intensity of the 

light is independent of the viewing angle. This model ignores 

the specular reflection. By assuming a  Lambertian surface, the 

formation of an image 𝑓 = (𝑓𝑅, 𝑓𝐺 , 𝑓𝐵)𝑇  becomes a function 

of three significant factors including the color of the light 

source 𝐼(𝜆), the sensitivity function of the camera  𝜌𝑐(𝜆) =
(𝜌𝑅(𝜆), 𝜌𝐺(𝜆), 𝜌𝐵(𝜆))𝑇, and the reflectance property of the 

surface 𝑆(𝒙, 𝜆), where 𝜆 is the light wavelength and x is the 

spatial coordinate of the object. The formation can then be 

expressed as follows [8]: 

 

𝑓𝑐(𝒙) = 𝑚(𝑥)∫
𝑤

𝐼(𝜆)𝜌𝑐(𝜆)𝑆(𝒙, 𝜆)𝑑𝜆                         (1)  
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where 𝑚(𝑥) refers to the Lambertian shading.  

This assumes that the scene is illuminated by a single light 

source and the perceived color of light source e depends on the 

𝜌(𝜆) and 𝐼(𝜆): 

𝑒 =  (

𝑒𝑅

𝑒𝐺

𝑒𝐵

) = ∫
𝑤

𝐼(𝜆)𝜌(𝜆)𝑑𝜆                      (2) 

Since camera sensitivity function and the color of the light 

source are unknown, the color constancy becomes an under-

constrained problem that requires additional assumptions to 

solve it. 

A considerable number of color adjustment methods have 

been proposed over the past years, where most of them assume 

that the scene is lit by just one uniform light source [9-30]. 

These algorithms can be classed into four key groups: 

statistical-, gamut-, physics- and learning-based methods. 

Statistical-based color constancy methods use the statistical 

color information of the image to filter out the effect of 

illuminant color from the image. The Gray World color 

constancy method [9] is an example of a statistical-based 

method which is based on the assumption that the average 

reflectance of the RGB components of a digital image are equal 

and representative of the gray level. The Gray World algorithm 

is considered one of the best-performing methods for images 

that have sufficient color variation [10]. However, its resulting 

image becomes biased toward the color of the large uniform 

color patch within the image [11]. Max-RGB, which is also 

known as the White Patch method, is another statistical-based 

method, which assumes maximum values of the three image 

color components represent perfect reflectance [12]. Lam in 

[13] has taken into account the fact that the human visual 

system is more delicate to green than red and blue colors. He 

proposed an algorithm that leaves the green color component of 

the image unchanged and adjusts the red and blue color 

components using the Max-RGB method. However, the data 

dependency of these techniques on the brightest pixels of the 

image often leads to erroneous results, particularly for images 

with lower intensity [14]. Finlayson and Trezzi [15] proposed a 

method, which is called Shades of Gray, that overcomes the 

data reliance of the above two named methods. The authors 

proposed a method that uses the Minkowski p-norm to perform 

color constancy adjustment. This method generates superior 

results and significantly reduces the data reliance of the 

technique. However, in some cases, it generates erroneous and 

over-saturated images. Several refinement techniques have 

been proposed in [16-18] for alleviating the uniform color areas 

of the image and improving the result of the aforementioned 

statistics-based methods. Van de Weijer et al. in [19] have 

shown that pixels within the edge areas of the image carry 

important color information and can be used for color constancy 

adjustment. They proposed a color constancy method that uses 

the edge pixel information and reported significant results. In 

[20], an extension of the Gray Edge method, which is named 

the Weighted Gray Edge method, was presented. This method 

incorporates a general weighting scheme of the Gray Edge 

method by utilizing various edges within the image to perform 

color constancy adjustment.  

Gamut mapping [21] is one of the most remarkable methods. 

It is based on the principle that for a given light source, in a real-

world scene, only a few number of its colors are observable. 

Various gamut mapping algorithms have been reported in [22-

24].  

Physics-based approaches are more elaborate in their 

operation, as the light source estimation is driven by the 

interaction between the source light and the objects’ physical 

features. They assume that a plane in RGB space represents 

each surface’s pixels. They use the interaction between these 

surfaces to estimate the light sources. Many physics-based color 

constancy methods have been reported in [25-28]. Most color 

constancy methods, including those that are reviewed above, 

assume that the scene is uniformly lit by only one illuminant. 

However, in real-life scenarios, the scene is usually lit unevenly 

by one or more light sources. Hence, current color constancy 

algorithms are incapable to fully filter out the effects of the light 

colors.  

Researchers have proposed a range of techniques that meet 

the needs of color constancy adjustment methods for images 

that were taken from a scene that was either un-evenly lit or lit 

by multiple light sources [29-51]. These methods can be 

divided into groups that are based on local light estimation and 

fusion [29-34], pixel-detection-based techniques [35-37], 

Convolutional Neural Network (CNN)-based methods [42-47] 

and biologically inspired techniques [48-51].  

A superpixel-based segmentation method was proposed in 

[32], which uses various sub-sampling techniques to split the 

image into sub-regions and determine a light-source color 

estimate for each resulting sub-region. Then, the algorithm 

combines the resulting estimates from the same category to 

generate a light color estimate for each pixel. Beigpour et al. 

[33] used the conditional random field algorithm, which 

considers both spatial distribution of local light estimates and 

their colors, to generate a per-pixel light source color estimate. 

The authors formulated a framework as an energy minimization 

task of the spatial distribution, which combines a few physics-

based and statistics-based color constancy methods into a single 

color guesstimate for multiple illuminant scene. Another 

multiple-light-source estimation method was proposed in [34], 

which uses lattices of various scales of the image to calculate a 

per-pixel light color estimate. 

Scene illuminant estimation using sets of pixels is also 

considered in the literature since the process of estimating local 

illuminants is computationally complex and may not be feasible 

for real-time applications [35-37]. Yang et al. [35] suggested a 

technique to efficiently detect gray pixels within an image using 

an illuminant-invariant measure in three logarithmic color 

channels. This method determines an estimation for the color of 

the light source more accurately.  

In the literature, various color constancy algorithms have also 

been reported that attempt to perform illumination estimation 

without relying on the presence of particular sets of pixels [38-

41]. A   two-stage   color   constancy   adjustment   method  for  
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outdoor images was proposed by Lee et al. in [41]. Their 

algorithm casts the shadow and sunlight as two illuminants. In 

the first step, the algorithm determines an estimate for the 

sunlight and its reflectance in the whole image using an existing 

technique that assume the scene is lit by only one light source. 

In the second step, their algorithm estimates the secondary 

illuminant, which corresponds to shaded regions of the image, 

and applies a pixel-based color correction to the shaded regions 

of the image by calculating the RGB adjustment ratio without 

estimating the color of shade. Thus, the authors have proposed 

a way of adopting diverse color constancy approaches for 

primary and secondary illuminant estimation. They have 

demonstrated through experiment that their technique generates 

significantly more accurate results in terms of angular errors on 

outdoor images. 

Several   techniques   use   a   convolutional neural network 

(CNN)-based color constancy approach for multiple 

illuminants as an alternative to the strong-assumption-based 

methods [42-47]. Bianco et al. [42] use a CNN that comprises 

of one convolutional layer, one fully connected layer, and three 

output nodes. This method samples the input image into non-

overlapping patches and applies the histogram stretching 

method to neutralize the contrast of the image. The patch scores, 

which are attained by mining activation values of the last 

hidden layer, are merged to guess the color of source light. 

Baron [43] observed that weighting the color components of the 

image causes a translation in the log-chromaticity histogram of 

the image, which enables the use of tools such as CNN and 

structure prediction. Joze and Drew [44] identifies a 

neighbouring surface from the training data by using both 

inadequately color-constant RGB values and texture features. 

The authors then integrate them as an illuminant estimation for 

the whole image. Aytekin et al. [47] proposed another CNN-

based color constancy technique that estimates the chromaticity 

of the light by pooling local patches from an image pyramid. 

Their algorithm creates the image pyramid, which consists of a 

few scales of the input image, and extracts local patches from 

all resolutions. Then, algorithm trains a CNN to estimate the 

illuminant from the extracted image patches. To eliminate the 

effect of limited content in small patches, it uses two additional 

training features, namely, the mean and the median of the local 

patches, for illuminant estimation. 

Various algorithms that endeavor to mimic the mechanism of 

the Human Visual System (HVS) using a computational model 

for color constancy have been presented in the literature [48-

51]. Gao et al. [48] reported a method that is based on the 

response of Double Opponent (DO) cells to the incident 

distribution of the color. They apply a 𝑚𝑎𝑥- or 𝑠𝑢𝑚-pooling 

mechanism in long-, medium- and short-wavelength color 

space to estimate the illuminant color. A biologically inspired 

computational model was proposed in [50], which depend 

mainly on center-surround calculations of local contrast to 

preserve the object color. Their model mimics the coordination 

between the variable size of the Receptive Field (RF) and its 

surrounding local contrast by weighting contributions of two 

overlapping asymmetric Gaussian kernels. Then, the authors 

estimated the illuminant by modelling higher visual cortical 

areas according to the local contrasts. A color constancy 

method that automatically detects the human eyes and extracts 

the color of the sclera, was proposed by Male et al. in [51]. The 

proposed algorithm assumes that the sclera color contains 

sufficient accurate information to be used to estimate the scene 

light color and, hence, reliably color-balance the face image. 

They reported superior performance compared to other 

techniques. Nevertheless, the use of this technique is restricted 

to images that contain at least one reliable human eye. 

Although the aforementioned color constancy methods 

generate reasonably accurate results, to authors’ knowledge, the 

application of image texture for color constancy adjustment of 

images of scenes illuminated by multiple light sources has not 

been reported in the literature. With advances in multimedia 

technologies, there is increased demand for more reliable, 

accurate and less computation hungry multiple illuminant color 

constancy techniques. This paper presents Color Constancy 

Adjustment using the Texture of the Image (CCATI) for single 

and multiple illuminants. The proposed technique uses a 

histogram-based algorithm to determine sufficient number of 

segments for the input image. The proposed algorithm applies 

an automatic segmentation method that uses the K-means++ 

method to divide the input image into its segments. The 

proposed technique assumes that each resulting segment 

represents a dominant light source. The proposed technique 

then performs entropy analysis on each resulting segment’s 

pixels to extract the texture information of the segment. The 

resulting texture information is used to choose pixels with 

sufficient color variations within the segment. Next, the Gray 

World theorem is applied to compute initial color constancy 

adjustment factors for each segment using its selected pixels. 

To balance the effect of different light sources represented by 

each segment’s initial color constancy adjustment factors on 

each pixel of the image, the proposed method uses Euclidian 

distance from the pixel to the center of every segment as a 

measure to regulate and fuse the segments’ initial color 

constancy adjustment factors to calculate the color constancy 

adjustment factor for that pixel. This ensures that segments 

which are closer to a given pixel have an increased impact on 

its final color constancy adjustment factors. Experimental 

results on two single-illuminant image datasets and two 

multiple-illuminant image datasets demonstrate that the 

proposed technique’s resulting images exhibit significantly 

higher color constancy compared to those of the state-of-the-art 

techniques. The remainder of the paper is structured as follows: 

Section 2 describes the proposed algorithm, Section 3 discusses 

the experimental results and the paper will be concluded in 

Section 4. 

II. PROPSOED COLOR CONSTANCY ADJUSTMENT 
USING IMAGE TEXTURE 

Fig. 1 shows an illustrative block diagram of the proposed 

technique. In this paper, the K-means++ algorithm along with a 

histogram-based method are used to divide the input image into 

a  number  of  segments. Our  investigation  shows that entropy  
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FIGURE 1. An illustrative block diagram of the proposed technique.

analysis of each image segment provides adequate information 

about the color variations of the pixels. This information is then 

used to select pixels with sufficient color variation within each 

segment. The proposed method determines initial color 

constancy adjustment factors for each segment using its 

selected pixels. The proposed method assumes each image 

segment represents a dominant light source. The proposed 

method then calculates per pixel, color constancy adjustment 

factors by combining the resulting initial color constancy 

adjustment factors of different segments adjusted by the 

Euclidian distances of the pixel from the centroids of the 

segments. This enables the algorithm to balance the effect of 

different light sources represented by different segments on 

each pixel, globally improving overall color constancy of the 

image. The proposed color constancy adjustment method 

includes three parts: automatic image segmentation using the 

K-means++ algorithm, calculation of the initial color constancy 

weighting factors for each segment and computation of the 

color constancy adjustment weighting factor for each pixel by 

fusing the color constancy weighting factors of all segments. 

These three parts are detailed in the following sub-sections. 

2.1 IMAGE SEGMENTATION USING THE K-MEANS++ 
ALGORITHM 

A block diagram of the proposed automatic image segmentation 

method, which uses the K-means++ clustering algorithm [52], is 

shown in Fig. 2. According to Fig. 2, the algorithm takes an 

RGB  color   image  and  transforms  it  into  a  gray scale image. 

The algorithm uses a histogram-based method to calculate the 

number of segments demonstrating color diversity areas within 

image. Hence, it splits the resulting gray scale image data into 

256 bins of a histogram. Then, the resulting histogram is 

smoothed six times using the following Gaussian low-pass 

filter: 

 [0.25  0.5  0.25] 

The required number of image segments are calculated by 

counting the number of the local maxima within the smoothed 

histogram. The presented results are generated by assuming that 

the distance between two local maxima is greater than 30 and 

the local maxima height is greater than one thousandth of the 

total number of image pixels, which was empirically found to 

generate a reasonable number of segments for representing 

color variation within the benchmark color constancy image 

datasets. The calculated number of segments, which is denoted 

as n, is shown as n in Fig. 2. Various image segmentation 

algorithms can be used to split the input image into n segments. 

However, in this research, the K-means++ clustering algorithm, 

which is simple and effective in dividing the color image into a 

predefined number of segments according to the variation of the 

color data, is used. Hence, the input RGB image is converted to 

the 𝐿∗a∗b∗ format, where the lightness and the color 

components of the image are denoted by L*, a* and b*, 

respectively. The a* and b* color components and the 

calculated number of the segments n are fed to the K-means++ 

clustering technique.  

The K-means++ method splits the input image pixels into n 

segments according to their color variations. The K-means++ 

segmentation method’s steps are as follows: 

i. Randomly select the initial n centroids of the segments 

from the a* and b* the input image color component, 

which are named as (c1 … c𝑛)𝑖=0, and set i to zero (i 

denotes the current iteration).  

ii. Segment the a* and b* image color components’ 

coefficients into n segments based on their minimum 

Euclidian distances to the current n centroids, to generate 

n new segments, which are denoted as (𝑐𝑙1 … cl𝑛)𝑖. 

iii. Compute the mean value of each resulting segment’s 

coefficients to determine the n new centroids, denoted as  

(c1 … c𝑛)𝑖 in Fig. 2 and increase i by one. 

iv. Check if i is larger than the predefined number of 

iterations, named as noi in Fig. 2. If i is larger than noi, the 

formerly calculated segments, denoted as  (𝑐𝑙1 … cl𝑛)𝑖, are 

the final segments and the segmentation procedure is 

complete. Change their name to 𝑐𝑙1 … cl𝑛, as shown in Fig. 

2, otherwise, back to step ii. 

2.2 TEXTURE EXTRACTION AND CALCULATION OF THE 
INITIAL CONSTANCY WEIGHTING FACTORS 

A block diagram of the proposed texture extraction, segment   

selection and segment   initial   color constancy weighting 

factors computation   methods   is illustrated   in Fig. 3. Each 

resulting segment from Section 2.1 is processed independently 

as follows:



2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2919997, IEEE Access

                  Md Akmol Hussain, Akbar Sheikh-Akbari, and Edward Abbott-Halpin: Color Constancy for Uniform and Non-uniform illuminant Using Image Texture 

 

VOLUME XX, 2017                                                                                                                                                                                                                                                                                     5 

 
FIGURE 2. Block diagram of the proposed image segmentation algorithm. 

 

i. Calculate the entropy value for each pixel’s color 

components of the segment using 9×9 neighbouring values 

[53] (the entropy value is a statistical measure of the 

randomness and is used to characterize the texture of the 

segment).  

ii. Normalize and map the resulting entropy values to [0, 1]. 

iii. Convert each resulting normalized color component 

segment texture map to binary using two empirical 

threshold values as detailed in the experimental section. 

iv. If all of the resulting binary color component maps are 

non-zero, calculate its gravitational center and set the 

segment’s relevant bit in the decision vector (DV), a vector 

indicating which segments have been selected that was 

initialized to zero. 

v. Determine the segment’s initial color constancy weighting 

factors using the input RGB image pixel values, which are 

identified by the resulting non-zero binary segment’s 

pixels. The weighting factors for the red, green and blue 

color components are denoted as KRi, KGi and KBi, 

respectively, in the block diagram, where   𝑖  represents the 

segment number.  Finally, the Gray World theorem is used 

to compute the weighting factors, as shown in equation (1):  

 

FIGURE 3. Block diagram of the proposed texture extraction, segment 

selection and segment initial color constancy weighting factor calculation 

methods. 

 

               𝐾𝐶𝑖 =
𝑆𝑆𝑃𝑚𝑒𝑎𝑛

∑ 𝑆𝑆𝑃𝐶

𝑁

⁄     

                          (1) 

where 𝐾𝐶𝑖  is the initial weighting factor for component 𝐶 ∈
{𝑅, 𝐺, 𝐵}; 𝑆𝑆𝑃𝑚𝑒𝑎𝑛  is the average value of the segment’s 

selected pixel values, which are identified by the non-zero 

binary   segment’s  pixel  values;  ∑ 𝑆𝑆𝑃𝐶   is   the  sum  of 

component C’s segment’s selected pixel values; and N is 

the total number of non-zero binary pixels of the binary 

segment. 

In this research, the Gray World color correction algorithm, 

which is one of the more effective and yet less computationally 



2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2919997, IEEE Access

                  Md Akmol Hussain Akbar Sheikh-Akbari, and Edward Abbott-Halpin: Color Constancy for Uniform and Non-uniform illuminant Using Image Texture 

 

6                                                                                                                                                                                                                                                                                     VOLUME XX, 2017 

expensive techniques compared to other color constancy 

algorithms [4, 10,11,19,20], is used for simplicity to compute 

the initial color constancy weighting factors for segments. 

However, other statistical color constancy methods can be used.  

2.3 CALCULATING THE PER-PIXEL COLOR CONSTANCY 
WEIGHTING FACTORS 

Fig. 4 presents a block diagram of the proposed color constancy 

adjustment weighting factor calculation method for each pixel. 

According to Fig. 4, the proposed algorithm takes the segments’ 

centers, which are denoted as 𝐶1′ 𝐶2′ ⋯ , 𝐶𝑛, the RGB 

input image, the Decision Vector (DV), and the calculated 

initial color correction weighting factors of all the segments and 

computes per pixel color correction weighting factors by 

combining the initial color correction weighting factors of all 

segments, as explained in the following steps: 

i. Calculate the Euclidian distances of the pixel from the 

centers of all segments, which are denoted as d1, d2, … d𝑛 
in the block diagram, using equation (2): 

 

𝑑i = √(𝑥𝐶𝑖
− 𝑥𝑝)

2
+ (𝑦𝐶𝑖

− 𝑦𝑝)
2
           (2) 

               

where 𝑥𝐶𝑖
 and 𝑦𝐶𝑖

 are the 𝑥 and 𝑦 positions, respectively, 

of the center of segment 𝑖; 𝑥𝑝 and 𝑦𝑝 represent the 𝑥 and 

𝑦 positions, respectively, of the pixel in the image; and 𝑑𝑖 

is the Euclidian distance of the pixel from the center of 

segment 𝑖. 

ii. The color constancy adjustment weighting factors for the 

red, green and blue color component of the pixel, which 

are denoted as KR, KG and KB, respectively, are calculated 

by fusing the regulated initial color constancies of the 

segments using equation (3): 

 

𝐾𝑙 =
𝑑1

𝑑1+𝑑2+⋯+𝑑𝑛
× 𝐾𝑙1

+
𝑑2

𝑑1+𝑑2+⋯+𝑑𝑛
× 𝐾𝑙2

+ ⋯ +

          
𝑑𝑛

𝑑1+𝑑2+⋯+𝑑𝑛
× 𝐾𝑙𝑛

     

                             (3) 

 

where 𝐾𝑙  is the weighing factor for component 𝑙 of the 

pixel; 𝑙 ∈ {𝑅, 𝐺, 𝐵}; 𝑑1, 𝑑2, ⋯ , 𝑑𝑛 represent the 

Euclidian distances of the pixel from the centers of 

segments 1 to 𝑛, respectively, which are denoted as 

𝐶1′ 𝐶2′ ⋯ , 𝐶𝑛 in the block diagram; and 

𝐾𝑙1′ 𝐾𝑙2′ ⋯ , 𝐾𝑙𝑛  are the initial color constancy 

weighting factors of color component 𝑙 of segments 1 to 𝑛, 
respectively.  

 

iii. Scale the R, G and B color components of the input pixel 

by the resulting color constancy weighting factors using 

the Von-Kries diagonal model [54], as shown in equation 

(4): 

FIGURE 4. Block diagram of the proposed color constancy weighting factor 

(CCWF) calculation for each pixel by fusing the initial CCWFs of the selected 

segments. 

 

                 (
𝑝_𝑜𝑢𝑡𝑅

𝑝_𝑜𝑢𝑡𝐺

𝑝_𝑜𝑢𝑡𝐵

) = (

𝐾𝑅 0 0
0 𝐾𝐺 0
0 0 𝐾𝐵

) (

𝑝𝑅

𝑝𝐺

𝑝𝐵

)                      (4) 

where 𝑝_𝑜𝑢𝑡𝑅, 𝑝_𝑜𝑢𝑡𝐺 and 𝑝_𝑜𝑢𝑡𝐵 are the color components of 

the color-balanced pixel; KR, KG and KB are the calculated 

weighting factors for the input pixel; and 𝑝𝑅 , 𝑝𝐺  and 𝑝𝐵 are the 

input pixel’s color component values. 

III. EXPERIMENTAL RESULTS AND EVALUATION 
METHODS 

The performance of the proposed color correction method for 

images of scenes, which are lit by a various illuminant is 

assessed and compared with those of the state-of-the-art 

techniques using images from four benchmark image datasets. 

The remainder of this section is organized as follows: the 

datasets are introduced in sub-section 3.1; sub-section 3.2 

explains the assessment criteria; the influence of various factors 

on the performance of the proposed algorithm is discussed in 

sub-section 3.3; and sub-section 3.4 details the experimental 

results. 

3.1 IMAGE DATASETS 

MULTIPLE-ILLUMINANT DATASETS: 

1. The Multiple Light Sources dataset (MLS) [32] consists of 

9 outdoor images of different sizes, which were captured 

under two distinct lighting conditions, and 58 indoor 

images, which were shot under various lighting conditions. 

The ground truth of the images are also generated using 

different methods, e.g. by placing several gray balls in the 

scene and manually correcting the image. 

2. The MIMO dataset [33] consists of 58 laboratory and 20 

real-world images. The laboratory images were shot under 

controlled illumination conditions. 

SINGLE-ILLUMINANT DATASETS:  

3. The Gray Ball dataset [55], contains 11,340 images from 

different scenes, where a gray ball is placed in front of the 

camera. The image of the gray ball is used to assess the 
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scenes’ illuminant. Since, there are many neighbouring 

images of the same scene, two hundred images of various 

scenes and lighting conditions were selected from this 

dataset for subjective evaluation of the proposed algorithm. 

4. The Gehler and Shi image dataset [56] consist of 568 

images covering a wide range of indoor and outdoor 

scenes’ images, which were captured under various 

lighting conditions. A Macbeth color checker chart was 

located in a known place of each scene, which its image is 

used to assess the lighting condition of the scene. One 

hundred images from this dataset are used for subjective 

evaluation of the proposed color correction method. 

3.2 ASSESSMENT CRITERIA  

To evaluate the color constancy of images, both objective and 

subjective measures are widely used in the literature [1,33,40, 

57, 58]. Angular error, which is an objective measure, is often 

used to assess the color constancy of an image when the ground 

truth of the image is available. In this case, the angular distance 

between the color-corrected image and its respective ground 

truth, which is also known as the recovery angular error [59], is 

determined using equation (5): 

 𝑑𝜃(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦) =  cos−1(
𝑒.�̂�

‖𝑒‖‖�̂�‖
)   (5) 

where 𝑑𝜃 represents the angular error, 𝑒. �̂� indicates the dot 

product of the ground-truth and the color-corrected image 

vectors, respectively, and ‖. ‖ denotes the Euclidian norm of the 

specified vector.  

Angular error is the most frequently used measure in 

assessing the performance of color correction techniques, 

where the average of the mean or median angular errors of 

various techniques on a large set of color-balanced images is 

calculated and used for comparison. The images of an algorithm 

that has the lowest average of the mean or median angular errors 

have the highest color constancy. 

Recently, Finlayson et al. [60] have criticized the application 

of the (recovery) angular error measure based on the argument 

that it produces different results for identical scenes viewed 

under different color light sources. They proposed an improved 

version of the recovery angular error measure, called 

reproduction angular error, which is defined as the angle 

between the image RGB of a white surface when the actual and 

estimated illuminations are ‘divided out’. The reproduction 

angular error metric can be calculated using equation (6): 

 

𝑑𝜃(𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛) =  𝑐𝑜𝑠−1 (
(𝑒/�̂�)

‖𝑒/�̂�‖
 . 𝑤)  (6) 

where 𝑤 =  
𝑒/�̂�

√3
   is the true color of the white reference. 

Both recovery and reproduction angular error have been used 

to assess the objective quality of the color corrected image by 

computing  the  average  of  the  mean  or  median reproduction  

 

FIGURE 5. Sample outdoor image from the Gray Ball dataset and its resulting 

segments that were obtained using the proposed segmentation algorithm: 

(a) original image and (b-d) the resulting three segments. 

 

angular errors of different methods on a large set of color-

corrected images and using them for comparison. The images 

of the method that have the lowest average of the mean or 

median reproduction angular errors have the highest color 

constancy. 

 Although angular error often provides very similar results to 

human perception, contradictory results have also been reported 

by researchers in [61, 62]. Since human eyes are the ultimate 

critic of the color constancy of images, subjective evaluation is 

considered the most reliable assessment method, regardless of 

its difficulty in terms of time consumption and required 

resources. Mean opinion score (MOS) is a subjective measure 

that is widely used to compare the visual quality of color-

balanced images [63, 64]. In  this  method, a set of images that 

contain various color variations, objects, and backgrounds and 

are captured under various light sources are selected and color-

balanced by various color constancy adjustment techniques. 

The resulting images are shown to observers who score the 

images based on their color constancy. For comparison, the 

MOS for each algorithm is generated by considering the 

average scores for the images of a dataset. 

According to Fig. 5, the proposed algorithm divided the input 

image into three segments, where the pixels within each 

segment are of similar color and the three segments mainly 

cover leaves, a tree log, and the ball and the blue sky, 

respectively. 

According to Fig. 6, which is an indoor image of a scene that 

is lit by multiple illuminant, the proposed algorithm has split 

the image into five segments of similar-color areas, which 

represent the colors of the objects, the colors of the local light 

sources and the light reflections of various objects that are 

illuminated by local sources.  The experiments were conducted 

on many sample images from the four datasets that are 

introduced above. It was visually ascertained that the proposed 

algorithm determines an acceptable number of segments such 

that the resulting segments exhibit similar color patches, which
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is key to the success of the proposed color correction method. 

The impact of number of segments on the performance of the 

proposed color constancy technique will be further investigated 

in the experimental results section.  

3.3 THRESHOLD SELECTION AND DEMONSTRATION 

In the proposed algorithm, as explained in Section 2.2, two 

threshold values are used to extract pixels with sufficient color 

variation to be used to calculate the initial color constancy 

weighting factors for the segment (these thresholds are applied 

on the normalized gray entropy pixel values of each segment). 

This operation also excludes pixels of the uniform-color areas 

from being used for image color constancy adjustment. In 

general, the existence of a large uniform-color area causes the 

color-corrected image to be biased to the color of the large 

uniform area. The range of the threshold values lies between 0 

and 1. To empirically determine lower and upper threshold 

values, which clearly define areas with sufficient color 

variation, an extensive empirical investigation on a wide range 

of images of different datasets was conducted. Initial results 

showed pixels with normalized entropy value less than 0.05 and 

above 0.95 mainly represent uniform color areas and areas with 

significant edges, which do not contain adequate color 

variation. Hence the initial lower and upper threshold values 

were initialized to 0.05 and 0.95 prior to empirically determine 

their values precisely. 

The following steps were applied to many sample images 

from the four abovementioned image datasets to empirically 

determine the two required threshold values, which are named 

as the upper and lower threshold values and denoted as T𝑢 and 

T𝑙 , respectively: 

i. Assign 0.05 and 0.95 to Tl and Tu, respectively. 

ii. Apply the thresholds to the texture of a segment that 

contains uniform color areas, e.g., blue sky, and set the 

unselected pixels of the segment to zero. 

iii. Visually inspect the resulting segment. 

iv. If the uniform-color area of the segment has almost 

disappeared, go to step vi. 

v. Set Tl =  Tl + 0.05 and Tu =  Tu − 0.05 and go to step 

ii.  

vi. The current threshold values are the empirical threshold 

values for this image. 

Then, the average of the resulting threshold values for the 

selected images from the four datasets were calculated and used 

as the general empirical values for the proposed method, which 

are 0.3 and 0.7 for Tl and Tu, respectively. 

To give a visual sense of the performance of the algorithm, 

one outdoor image that contains uniform blue sky and one 

indoor image that contains a uniform-color area were 

segmented using the proposed algorithm. The entropy values of 

the segments that contain uniform areas were calculated and the 

general empirical threshold values were applied. The original 

images, their uniform-color segments and the resulting selected 

pixels of the segments are shown in Fig. 7 and Fig. 8. According 

to Fig. 7c and Fig. 8c, the pixels with adequate color variation 

are selected by the proposed technique and the uniform-color 

areas are excluded from contributing to the color constancy 

correction of the images. 

3.4 EXPERIMENTAL RESULTS  

The performance of the proposed Color Constancy Adjustment 

using the Texture of Image (CCATI) method is assessed and   

compared   with   those   of   the state-of-the-art techniques using 

the images of  the four  aforementioned benchmark datasets.  

This    assessment    covers    both     subjective   and   objective 

evaluation on a wide range of images of scenes that are lit by 

either a single or multiple light source.  

 

 

 
FIGURE 6. Sample indoor image from the Gray Ball dataset and its resulting segments that were obtained using the proposed segmentation algorithm: (a) 

original image and (b-f) the resulting five segments. 
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FIGURE 7. Sample outdoor image from the Gray Ball dataset: (a) original image, (b) a segment that contains a uniform-color area, and (c) selected pixels for 

color constancy adjustment within the segment that represents the non-uniform-color area. 

 
 FIGURE 8. Sample indoor image from the Gray Ball dataset: (a) original image, (b) a segment that contains the uniform-color area, and (c) selected pixels for 

color constancy adjustment within the segment that represents the non-uniform-color area. 

SUBJECTIVE RESULTS 

To assess and compare the subjective performance of the 
proposed CCATI algorithm, five sample images from the four 
image datasets that  contain  images that were captured under 
single and multiple light sources in outdoor, indoor, natural and 
laboratory   settings   are   color-corrected  using  the  proposed 
CCATI and the state-of-the-art color correction methods. The 
results are shown in Fig. 9-14. Fig. 9 illustrates a sample image 
from the Gray Ball dataset, the ground truth of the image, and 
color-corrected images that were generated using Gray Edge-2, 
Weighted Gray Edge, Double Opponency and the proposed 
CCATI method. According to Fig. 9, the proposed method’s 
image exhibits the highest color constancy, whereas the 
Weighted Gray Edge, Gray Edge-2 and Double Opponency 
images, in order, have visually lower color corrections, which is 
inconsistent with their angular errors, which are indicated on the 
images. To obtain better insight into the achieved color 
constancy, the gray ball areas of the images that are obtained 
using the various techniques, which correspond to the area that 
is highlighted by the red window on the original input image, are  
shown in Fig. 10. According to Fig. 10a, which shows the gray 
ball part of the input image, the ball color exhibits a strong 
yellow color cast compared to its ground truth, as shown in Fig. 
10b, which illustrates the true gray color of the ball. The Gray 
Edge-2 method’s image, which is shown in Fig. 10c, exhibits a 
light brown color cast compared to the ground truth. The 
Weighted Gray Edge method’s image is illustrated in Fig. 10d. 
This image has weaker color cast in comparison to the input 
image, but still suffers from a high level of yellow color cast. 
Fig. 10e shows the Double Opponency technique’s image. This 
image exhibits a high level of orange color cast. Finally, Fig. 10f, 
which shows the proposed method’s image, seems to have the 
weakest color cast compare to the other methods’ images and is 
the closest to the ground-truth image. Therefore, it is concluded 
that the proposed CCATI technique’s images exhibit the 
uppermost color corrections compared to the other 
abovementioned algorithms. 
Fig. 11a and 11b show a sample image from the Gray Ball 
dataset, which seems to have a yellow color cast, and its ground 
truth,  respectively.  A large  part  of  this  image  is the blue sky,  

which could degrade the performance of the statistical-based 
color constancy algorithms. According to Fig. 11c, which shows 
the Max-RGB method’s image, the color cast of the gray ball 
image, the color cast of the gray ball is very similar to that of the 
input image. This implies that the Max-RGB algorithm was 
unable to fully adjust the color of the image. The Shades of Gray 
algorithm’s image, which is shown in Fig. 11d, exhibits 
significantly weaker color cast compared to the original image, 
mostly around the gray ball area of the image, whereas the 
background of image shows higher yellow color cast than the 
input image. The Gray Edge-1 technique’s image, which is 
shown in Fig. 11e, exhibits a similar color casts to that of the 
Max-RGB method’s image. Although it shows slightly higher 
color constancy than that of Max-RGB, the gray ball area of its 
image does not have the pure gray color of the ground-truth 
image. Fig. 11f shows the Gray Edge-2 method’s image. This 
image demonstrates superior color constancy, and in particular, 
the area within the gray ball of this image appears to have a 
reduced level of yellow tint. Nonetheless, the shore and the tree 
branches still show some levels of color cast. The Weighted 
Gray   Edge   methods’   image,   which  is  shown  in  Fig.  11g, 
exhibits a strong yellow color cast; the gray ball, the tree branch 
and the shore areas of the image seem to have an extremely 
strong yellow color cast. The proposed CCATI technique’s 
image is shown in Fig. 11h. This image exhibits the uppermost 
color correction compared to all the other techniques’ images. 
The color cast from the tree branches, the shore and the gray ball 
areas of the image is almost removed and the image is closest in 
color to the ground-truth image. 

Fig. 12 illustrate a sample image from the MIMO (real-image 

group) dataset, its ground truth, and its color-corrected images 

that are generated using Gray Edge-2, Weighted Gray Edge, 

Gray Pixel and the proposed CCATI method. According to Fig. 

12a, the original image is yellow-color-casted. The Gray Edge-

2 algorithm’s image, which is shown in Fig. 12c, does not show 

a noticeable improvement over the original image. The 

Weighted  Gray  Edge’s  image,  which  is  shown  in  Fig.  12d, 

exhibits an extremely strong blueish color cast. The Gray Pixel 

method’s image is shown in Fig. 12e. It exhibits significant color  
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FIGURE 9. Sample image from the Gray Ball dataset, its ground truth and its 
color-balanced images: a) original, b) ground-truth, c) Gray Edge-2, d) 
Weighted Gray Edge, e) Double Opponency and f) the proposed CCATI 
method’s images. 

correction  compared  to  the  Gray Edge-2  and  Weighted Grey 

Edge images, but it still exhibits noticeable differences from the 

ground-truth image. Fig. 12f shows the proposed CCATI 

algorithm’s image. This image shows uppermost color 

constancy amongst all the techniques’ images, despite its slight 

yellow color cast. Moreover, the proposed method exhibits the 

lowest angular error compared to the other techniques’ images. 

Fig. 13 shows two images and their ground truths from the 

Gehler  and  Shi   dataset   and   their   respected  color-corrected 

images that were generated using Bianco et al.’s local-to-global 

regressor and the proposed CCATI algorithm. The angular error 

of each image has been calculated and is shown in the lower-left 

side of each image. According to Fig. 13a, the original images 

have various levels of green color cast. According to Fig. 13c 

and Fig. 13d, which illustrate the Bianco et al. and the proposed 

algorithm’s images, both methods’ images have  a low  level  of 

blue color cast. However, the proposed method’s images show 

much higher color constancy compared to Bianco et al.’s 

images. By comparing the angular errors of these images, it is 

concluded that the subjective image quality is in agreement with 

the objective measures. 

Fig. 14 shows an image from the Multiple-Illuminant Light 

Source dataset, its ground truth and its color-corrected images 

that were generated using Gray Edge-1, Weighted Gray Edge, 

Gray Pixel and the proposed CCATI method. According to Fig. 

14a, the original image shows a colorful doll that has been 

placed   in   front  of   a   multi-colored  bag  and  illuminated  by 

multiple  artificial  light  sources. The  luminance  of  the  image 

 

FIGURE 10. Highlighted area of the sample image from the Gray Ball dataset, 
its ground truth and its color-balanced images: a) original image, b) ground 
truth, c) Gray Edge-2, d) Weighted Gray Edge, e) Double Opponency and f) 
the proposed CCATI method’s images. 

background is lower than that of its foreground and parts of the 

image suffer from red or orange color casts. The Gray Edge-1 

technique’s image is shown in Fig. 14c. This image exhibits a 

noticeable reduction of the color cast on its lower-left side; 

however, the color cast of the image on its lower-right side is 

evident. Fig. 14d shows the Weighted Gray Edge method’s 

image. This image shows superior color constancy than the Gray 

Edge-1 method’s image; however, it still shows an obvious color 

cast on its right-hand side. The Gray Pixel technique’s image is 

shown in Fig. 14e. This image appears to have much weaker 

color cast than previously explained techniques’ images; 

however, a slight orange color cast on the left side of the image 

on the carpet and an extreme purple illuminant on the lower-

right side of the image are still obvious. The proposed 

algorithm’s image is illustrated in Fig. 14f.  The color of the 

lower-left side of the image seems as if it has been illuminated 

by a white light. Comparing this image with other techniques’ 

images and the ground truth, it is obvious that the proposed 

method’s image has the closest color constancy to the ground-

truth image, despite a slight color cast on the lower-right side of 

the image. According to the calculated angular errors, which are  

shown  on  the  images, the proposed image has the lowest 

angular error, which implies that it has the highest objective 

quality. 

To generate the Mean Opinion Scores (MOSs), 13, 78, 200 

and 100 images from the MLS, MIMO, Gray Ball and Gehler 

and Shi image datasets,  respectively,  were randomly selected 

and color-balanced using Weighted Gray Edge (WGE), Gray 

Pixel,   Double  Opponency,   Convolutional   Neural   Network  
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FIGURE 11. Sample image from the Gray Ball dataset, its ground truth and 
its color-balanced images: a) original image, b) ground truth, c) Max-RGB, d) 
Shades of Gray, e) Gray Edge-1, f) Gray Edge-2, g) Weighted Gray Edge, and 
h) Proposed CCATI method’s images. 
 

TABLE I 
MEAN OPINION SCORES (MOSs) OF THE PROPSOED CCATI AND 

WEIGHTED GRAY EDGE (WGE), GRAY PIXEL, DOUBLE 
OPPONENCY, AND CONVOLUTIONAL NEURAL NETWORK (CNN) 

ALGORITHMS. 

 Method 

Dataset (number 

of images) 
WGE 

Gray 

Pixel 

Double 

Opponency 
CNN Proposed 

MLS (13 outdoor) 3.25 3.134 4.02 3.26 4.12 

MIMO (78) 3.71 4.05 4.11 3.88 4.16 

Gray Ball (200) 4.00 3.87 3.813 4.07 4.11 

Gehler and Shi 

(100) 
3.80 3.82 3.136 4.05 4.01 

(CNN) and the proposed CCATI techniques. The color-
corrected images were shown to 10 viewers, who scored the 
images on a scale from 1 to 5, where score 5 corresponds to 
excellent and 1 to unacceptable color constancy of the image. 
The  average  of  the  resulting  scores  for  the  images of each 
dataset and color constancy technique were computed and 
tabulated in Table 1. 

According to Table 1, the proposed method’s images have the 

highest MOSs, which implies that the proposed method’s 

images have the highest subject color constancy amongst the 

considered techniques’ images. 

 

FIGURE 12. Sample image from the MIMO (real-image group) dataset, its 
ground truth and its color-balanced images: a) original image, b) ground 
truth, c) Gray Edge-2, d) Weighted Gray Edge, e) Gray Pixel and f) the 
proposed CCATI method’s images. 

 

OBJECTIVE EVALUATION 

In this section, the performance of the proposed Color 
Constancy Adjustment using the Texture of Image (CCATI) 
method is objectively compared with those of the state-of-the-
art techniques using angular error criteria on images from the 
four   aforementioned   datasets.   In   the   first   part   of    the 
experiment, the images of the Gray Ball dataset were color-
balanced using the proposed CCATI, the Gray World, the Max-
RGB, the Shades of Gray, the 1st- and 2nd-Order Gray Edge, 
the Pixel-based Gamut Mapping, the Edge-based Gamut 
Mapping, the Intersection-based Gamut, the Exemplar, the Gray  
Pixel  and  the  Adaptive Surround Modulation (ASM) color 
constancy methods. The average mean and median of both 
recovery and reproduction angular errors of   the color-balanced 
images are tabulated in Table 2. According to Table 2, the 
proposed CCATI technique’s images have the lowest average 
mean and median recovery and reproduction angular errors 
amongst all the statistics- and gamut-based color constancy 
methods, which implies that the proposed  technique’s images  
have  the  uppermost objective color constancies compare to the 
images of the statistics- and gamut-based techniques. With 
respect to the learning-based methods, the proposed technique’s 

average mean angular error equals 4.4°, which is equal to the 

lowest angular error of the learning-based methods. 4.0°. The 
proposed algorithm’s mean reproduction angular error is 3.9°,   
which is  the lowest amongst all techniques and However, the 

proposed algorithm’s average median angular error equals 4.1°, 
which is slightly higher than that of the best-performing 
learning-based method, namely, the exemplar-based method, 
which is the median reproduction angular error is 3.2°, which is 
lower than those of the statistics and gamut-based methods. This
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FIGURE 13. Two sample images from the Gehler and Shi dataset, their ground-truth images and their color-balanced images: a) original, b) ground truth, c) 

Bianco et al. (local-to-global regressor) and d) the proposed CCATI method’s images.

 
FIGURE 14. Sample image from the Multiple-Illuminant Light Source image 

dataset, its ground truth and its color-balanced images: a) original image, 

b) ground truth, c) Gray Edge-1, d) Weighted Gray Edge, e) Gray Pixel, and 

f) the proposed CCATI method’s images. 

demonstrates that the proposed method’s images have very 

competitive objective results compared to those of the 

learning-based methods.  

In the second part of the experiment, the images of the 

MIMO dataset were color balanced using the proposed 

CCATI, the Gray World, Max-RGB and Shades of Gray, 1st- 

and 2nd Order Gray Edge, Gisenji et al., MIRF and Gray Pixel 

(GP) color constancy methods. The average mean and median 

angular errors of the color-corrected real and laboratory 

images that were obtained via different the various techniques 

were determined and tabulated in Table 3. From Table 3 it can 

be seen that the proposed technique’s MIMO (real) images 

have the lowest average median and the second-lowest mean 

angular errors between the images of the statistics-based 

techniques. Moreover, the proposed method’s MIMO 

laboratory images exhibit the lowest mean and the second-

lowest median angular errors. Hence, it is concluded that the 

proposed method’s images have almost the uppermost 

objective color constancy compared to those of the statistical-

based methods. Compared to those of the learning-based 

methods, the proposed technique’s images have very 

competitive objective qualities.  

Table 4 presents the average median angular errors of the 

proposed CCATI, the Max-RGB, Gray World, Gray Edge-1, 

Gray Edge-2 and Gisenji et al. methods on 9 outdoor images 

from the Multiple Light Source dataset. According to  this  

table,   the   proposed   techniques’   images   have  the lowest 

median angular errors amongst all the techniques. From the 

objective   results   that   are   presented   in  Tables 2-4,  it  is 

concluded that the proposed CCATI method’s images exhibit 

almost the uppermost objective color constancy compared to 

the images of the other considered techniques. 

PERFORMANCE EVALUATION FOR A FIXED NUMBER OF 
SEGMENTS VERSUS AUTOMATIC SEGMENTATION  

In this section, it will be empirically shown that the application 

of the automatic segmentation algorithm significantly 

improves the performance of the proposed color constancy 

technique. To do this, the proposed technique, with and 

without its automatic segmentation method, is applied to the 

images of the MIMO (real), MIMO (laboratory) and Multiple 

Light Sources (MLS) (outdoor images) image datasets. The 

average median angular errors of the resulting images were 

calculated and are tabulated in Table 5. Results highlight that 

the proposed method’s images have the lowest average 

angular error when the proposed technique uses its automatic 

segmentation algorithm rather than a fixed number of 

segments. 
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TABLE 2  

AVERAGE MEAN AND MEDIAN ANGULAR ERRORS OF COLOR 

CONSTANCY METHODS’ IMAGES OF THE GRAY BALL DATASET 

 

TABLE 3 
AVERAGE MEAN AND MEDIAN ANGULAR ERRORS OF COLOR 

CONSTANCY METHODS’ IMAGES FROM THE MIMO DATASET 

 

Recovery Error Reproduction Error 

Method Mean Median Mean Median 

Statistics-based methods 

Gray World 7.1° 7.0° 10.1° 7.5° 

Max_RGB 6.8° 5.3° 9.7° 7.5° 

Shades of Gray 6.1° 5.3° 
6.9° 3.9° 

Gray Edge-1 5.1° 4.7° 6.3° 3.6° 

Gray Edge-2 6.1° 4.1° 5.8° 3.6° 

Proposed CCATI  4.4° 4.0° 3.9° 3.2° 

Gamut-based methods 

Pixel-based Gamut 7.1° 5.8° 4.2° 2.8° 

Edge-based Gamut 6.8° 5.8° 4.5° 2.7° 

Intersection-based 

Gamut 
6.1° 5.8o 

- - 

Learning-based methods 

Exemplar-based  4.4° 3.4o 
- - 

Gray Pixel (std) 4.6° 6.2° 
- - 

ASM 4.7° 3.8° 5.2° 2.3° 

 

COMPUTATIONAL COMPLEXITY  

The proposed Color Constancy Adjustment using the Texture 

of Image (CCATI) and the Grey World color constancy 

adjustment methods were run on the same Microsoft Windows 

10 based personal computer, running on Intel® Core (TM) i3-

6006U CPU with 1.99 GHz processor, 4.00 GB of RAM, 

without any additional dedicated graphic processing unit.  

These two methods were timed when applied to color balance 

the images of the MIMO, the Grey Ball and the Color Checker 

benchmark image datasets. Experimental result show that the  

TABLE 4  

AVERAGE MEDIAN ANGULAR ERRORS OF THE PROPOSED CCATI 

AND OTHER COLOR CONSTANCY METHODS ON 9 OUTDOOR 

IMAGES FROM THE MULTIPLE LIGHT SOURCE DATASET 
Method Median error 

Max-RGB 7.8° 

Gray World 8.1° 

Gray-Edge-1 6.4° 

Gray-Edge-2 5.0° 

Gisenji et al. 5.1° 

Proposed CCATI 4.8° 

  
TABLE 5 

ANGLUAR ERRORS OF THE PROPSOED METHOD FOR DIFFERENT 

NUMBERS OF SEGMENTS 

Median Angular Error 

Number of 

Segments (NS) 

MIMO 

(real) 

MIMO 

(lab) 

MLS 

(outdoor) 

2 5.13° 6.11° 7.82° 

3 5.78° 5.84° 6.14° 

4 4.51° 4.14° 5.30° 

5 4.14° 3.26° 5.81° 

6 6.32° 5.13° 6.57° 

Automatic 

segmentation 
3.81° 2.60° 4.82° 

 

 

proposed technique requires 3.19 times more computation time 

than the benchmark Grey World method.   

 
IV. CONCLUSION 

In this paper, the Color Constancy Adjustment using the 

Texture of Image (CCATI) method was presented. The 

proposed technique employs a histogram-based method to 

efficiently calculate the sufficient number of segments for the 

input image according to the image’s color variation. Then, 

the algorithm applies a K-means++ method on the input image, 

which divides the input image into segments. It determines the 

entropy of the pixels within each segment and uses it to choose 

pixels with sufficient color variation for calculating the initial 

color constancy weighting factors for the segment and reduce 

the effect of large uniform-color areas on the overall 

performance of the algorithm. Finally, the proposed CCATI 

method calculates per pixel color correction  adjustment 

factors by regulating the resulting initial color constancy 

weighting factors of all segments using the Euclidian 

distances of the pixel from the centers of gravity of all 

segments. Experimental results were generated using four 

benchmark image datasets. The results showed the merit of the 

proposed technique. 

 

MIMO (real) MIMO (lab) 

Method Mean Median Mean Median 

Statistics-based methods 

Gray world  4.2° 5.2° 3.2° 2.1° 

Max_RGB 5.6° 6.8° 7.8° 7.6° 

Gray Edge-1 3.1° 5.3° 3.1° 2.8° 

Gray Edge-2 4.7° 6.0° 3.2° 2.1° 

Proposed CCATI 3.8° 3.8° 2.6° 2.6° 

Learning-based methods 

Gijsenij et al. 4.2° 3.8° 4.2° 4.8° 

MIRF 4.1° 3.3° 2.6° 2.6° 

GP(std)(M = 2) 5.7° 3.3° 2.5° 3.1° 

GP(std)(M = 4) 5.5° 3.4° 2.3° 2.1° 
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