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Abstract
The respiratory chain has been proposed as an attractive target for the development of new therapies to tackle human fungal 
pathogens. This arises from the presence of fungal-specific electron transport chain components and links between respira-
tion and the control of virulence traits in several pathogenic species. However, as the physiological roles of mitochondria 
remain largely undetermined with respect to pathogenesis, its value as a potential new drug target remains to be determined. 
The use of respiration inhibitors as fungicides is well developed but has been hampered by the emergence of rapid resistance 
to current inhibitors. In addition, recent data suggest that adaptation of the human fungal pathogen, Candida albicans, to 
respiration inhibitors can enhance virulence traits such as yeast-to-hypha transition and cell wall organisation. We conclude 
that although respiration holds promise as a target for the development of new therapies to treat human fungal infections, we 
require a more detailed understanding of the role that mitochondria play in stress adaption and virulence.
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Introduction

Invasive fungal infections are a leading cause of morbidity 
and mortality in immunocompromised individuals. Among 
these, candidaemia is the most prevalent fungal bloodstream 
infection, with is accompanied by a high mortality rate of 
up to 40% (Pfaller and Diekema 2007). Patients in intensive 
care units are most susceptible to invasive Candida infec-
tions, and abdominal surgery and neutropenia are major risk 
factors. Colonisation of indwelling catheters by Candida or 
translocation from the gut to the bloodstream is also a fre-
quent source of infection (Blumberg et al. 2001). Resistance 
can also be acquired through selection pressure in individual 
patients, particularly in cases of long-term use and when 
used as prophylaxis (Marr et al. 1998). Taken together, 

the evolution of resistance to current antifungals and the 
increasing involvement of inherently resistant species such 
as Candida glabrata (Sadeghi et al. 2018) and Candida auris 
(Sears and Schwartz 2017) in invasive candidiasis serves as 
an example that there is a need for the development of new 
antifungal targets.

Some of the novel antifungal agents currently under 
investigation target signal transduction pathways, iron 
metabolism and metabolic pathways such as the glyoxylate 
cycle (McCarthy et al. 2017). Several plant fungicides act 
by inhibiting components of the respiratory chain, but tar-
geting of mitochondria has not yet been investigated as a 
therapy against invasive human fungal infections. Although 
the importance of mitochondrial function in fungal patho-
genesis has been documented (Calderone et al. 2015), the 
conservation of the respiratory machinery in eukaryotes 
raises toxicity concerns for drug development and may 
in part explain why the influence of respiration in human 
fungal pathogens has remained an under-researched area. 
However, recent work has revealed the divergence of fungal 
respiratory chain components from those of the human host 
(She et al. 2015). A greater understanding of mitochondrial 
biology in invasive fungal pathogens such as C. albicans 
may expose weaknesses that can be exploited for anti-fungal 
development. Indeed, respiration inhibition has been shown 
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to be effective in the management of malaria and Pneumo-
cystis pneumonia.

Inhibition of respiration in human fungal 
pathogens

Most fungal pathogens possess a classical electron trans-
port chain (ETC) consisting of Complexes I–IV, in addi-
tion to a cyanide-insensitive alternative oxidase (AOX) 
(Fig. 1). The notable exception to this being Candida 
glabrata which, like Saccharomyces cerevisiae, does not 
contain a multi-subunit Complex I or an AOX enzyme 
activity. Evidence for a third “parallel” ETC pathway has 
been described in Candida parapsilosis and C. albicans 
which represents approximately 10% of total respiration 
capacity (Milani et al. 2001; Duvenage et al. 2019). Sev-
eral pathogenic fungi depend on oxidative phosphorylation 
for virulence. For example, respiration deficiency leads 
to attenuated virulence in the fungal pathogens C. albi-
cans (Aoki et al. 1990), C. glabrata (Brun et al. 2005) 
and Aspergillus fumigatus (Grahl et al. 2012). The links 
between respiration and virulence are not well understood 
but may include the energy requirement for adaptation to 

the host environment, the involvement of respiration in 
cellular remodelling processes such as morphogenesis or 
the role of mitochondria in stress signalling. For example, 
high ATP levels resulting from respiratory activity have 
been shown to be crucial for C. albicans yeast cells to 
switch to hyphal growth via Ras1/cAMP/PKA signalling 
(Grahl et al. 2015). In addition, increased ATP from respi-
ration has been shown to be important for morphogenesis 
during the catabolism of morphogenic amino acids, and is 
an important feature of escape of C. albicans from mac-
rophages (Silao et al. 2019).

The use of respiratory chain inhibitors can replicate the 
in vitro growth defects of respiration-deficient mutants. For 
example, in C. albicans, inhibitors such as Antimycin A and 
cyanide lead to inhibition of growth, and increased oxida-
tive stress (Ruy et al. 2006). Similarly, phenolics that inhibit 
mitochondrial function inhibit the growth of A. fumigatus 
(Brun et al. 2005). These observations suggest that a phar-
macological approach to inhibition of respiration may prove 
effective as an approach to treating fungal infection.

Fig. 1  Inhibitors of the fungal electron transport chain. The majority 
of fungal pathogens possess the classical respiratory chain consisting 
of Complexes I–IV, as well as an alternative oxidase (AOX). Inhibi-
tors of each component are shown. Respiration inhibition inhibits 

growth and leads to cell wall remodelling in C. albicans but enhances 
virulence if inhibition is relieved following adaptation. SDH succinate 
dehydrogenase, TTFA 2-thenoyltrifluoroacetone, NO nitric oxide
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Complex I inhibition

Complex I (NADH:ubiquinone oxidoreductase) is present in 
most fungal pathogens (although it is absent in some yeasts 
such as S. cerevisiae and C. glabrata). Recent work has iden-
tified important Complex I regulatory proteins in C. albicans 
as well as subunits of the complex itself to be fungal specific 
(She et al. 2015). Deletion of these proteins leads to defi-
ciencies in respiration and virulence, making them attractive 
drug targets. (She et al. 2015, 2018). The Complex I subunits 
Nuo1 and Nuo2 are conserved in several fungal pathogens 
including other Candida species, A. fumigatus and Crypto-
coccus neoformans (Li and Calderone 2017). Dysfunction of 
Complex I is one of the main sources of mitochondrial ROS 
accumulation, which can promote fungal cell death (Li et al. 
2011). Therefore, inhibitors of fungal Complex I have the 
potential to have both a fungistatic effect, by limiting ATP 
production, as well as a fungicidal activity via increased 
ROS levels. This potential was demonstrated by the fungi-
cidal effects of honokiol, derived from Magnolia officinalis, 
caused through inhibition of Complex I (Sun et al. 2017). 
The putative mitochondrial fission inhibitor mdivi-1, which 
has been shown to inhibit mammalian Complex I as a sec-
ondary target, prevents hyphal growth in C. albicans (Koch 
and Traven 2019). However, it is suggested that this mech-
anism of action may not be Complex I dependent, as the 
effects of mdivi-1 were replicated in the respiration-deficient 
nuo1Δ mutant (Koch et al. 2018). Instead, the authors sug-
gest that mdivi-1 may regulate Nrg1, an important repressor 
of filamentous growth (Su et al. 2018).

Complex II inhibition

Complex II, succinate:ubiquinone oxidoreductase, transfers 
succinate-derived electrons directly to the ubiquinone pool 
of the respiratory chain and not to soluble NAD+ interme-
diates. Its activity connects respiration to the TCA cycle, 
which supplies intermediates for biosynthesis of macromol-
ecules in addition to its role in supporting respiration. Inhibi-
tors of Complex II include 2-thenoyltrifluoroacetone (TTFA) 
which inhibits its quinone reduction activity, and 3-nitro-
propionate, a succinate analogue which inhibits succinate 
oxidation activity. Succinate dehydrogenase inhibitors are a 
fast-growing class of fungicides against plant fungal patho-
gens, which act by binding the (Qp) ubiquinone binding site 
(Sierotzki and Scalliet 2013; Guo et al. 2019; Amiri et al. 
2019). The role of Complex II in the virulence of human 
fungal pathogens is not well understood, and thus its inhibi-
tion has not yet been explored as an antifungal therapy. How-
ever, there is evidence that Complex II function is important 
for morphogenesis, as inhibition of quinone reduction activ-
ity with TTFA was shown to completely inhibit filamenta-
tion in C. albicans (Watanabe et al. 2006).

Complex III inhibition

Complex III, the cytochrome bc1 complex, transfers elec-
trons from the ubiquinol pool to cytochrome c. Along with 
Complex I, Complex III is a major source of mitochondrial 
ROS accumulation (Meunier et al. 2013). Inhibition of Com-
plex III with antimycin A in C. albicans was effective in 
decreasing proliferation, which in part may be the result of 
an increase in oxidative stress (Ruy et al. 2006). Inhibitors 
of Complex III may bind to the ubiquinol oxidation (Qo) or 
ubiquinone reduction (Qi) site. QoI fungicides inhibit mito-
chondrial respiration in plant pathogenic fungi by binding to 
the Qo site of Complex III (Fernández-Ortuño et al. 2008). 
Although effective, resistance to QoI fungicides is a growing 
problem, mediated by both acquisition of mutations in the 
cytochrome b gene as well as the increased activity of AOX 
enzymes (Fernández-Ortuño et al. 2008). The hydroxynaph-
thoquinone atovaquone also acts by inhibiting the Qo site 
and has been shown to be effective against malaria parasites 
as well as the opportunistic fungal pathogen Pneumocystis 
jirovecii (Fisher and Meunier 2008). One study reports the 
resistance of C. albicans to Atovaquone and that it is not 
effective in repressing glucose-dependent growth. However, 
the report also describes its efficacy in inhibiting respira-
tion to a degree comparable to antimycin A (Minagawa et al. 
2010).The failure of Atovaquone to suppress C. albicans 
growth in this case may be due to induction of alternative 
respiration. The efficacy of Atovaquone against Plasmodium 
falciparum was increased when used in combination with 
AOX inhibitors (Murphy and Lang-unnasch 1999), although 
whether this holds true for fungal pathogens is unknown. A 
recent study reported a fungal-specific inhibitor of Complex 
III in C. albicans resulting from a screen of a 300,000-com-
pound library. The authors identified a compound that could 
specifically inhibit fungal Complex III by binding to the Qo 
site, that was synergistic with fluconazole (Vincent et al. 
2016). Inhibition of Complex III through use of ubiquinone 
analogues is also an attractive strategy, as suitable com-
pounds have the potential to inhibit the activities of both 
Complex III and AOX, leading to complete inhibition of 
respiration.

Complex IV inhibition

Complex IV (cytochrome c oxidase) is the terminal oxidase 
of the classical ETC, reducing oxygen to water. It belongs to 
the heme–copper oxidase superfamily and in S. cerevisiae, 
it consists of 11 subunits (Geier et al. 1995). The conserva-
tion of Complex IV between mammals and fungi has made 
it less attractive as an antifungal target. However, it has long 
been known that Complex IV of microbes is susceptible to 
inhibition by nitric oxide (NO) and in recent years, the appli-
cations of NO against pathogenic fungi have been an active 
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area of research (Macherla et al. 2012; Ahmadi et al. 2016; 
Mordorski et al. 2017). NO binds the oxygen-binding site, 
and can either be reversible and competitive with oxygen, 
or irreversible, with higher NO– and lower oxygen concen-
trations favouring the latter (Brown and Borutaite 2002). 
Due to its vasodilation effect, NO may not be suitable for 
systemic fungal infections, unless specific targeting and 
controlled release systems can be developed. In addition, 
achieving a sustained high level of NO—given its very short 
half-life in vivo—and effective targeting of NO donors to 
organs affected by deep-seated fungal infections poses a 
considerable challenge. Instead, NO may be best employed 
as a preventative measure. For example, as indwelling cath-
eters are a major cause of disseminated Candida infections, 
medical devices which release NO could be effective in pre-
venting such infections, as has been investigated for nitric 
oxide-charged catheters (Margel et al. 2017).

Targeting alternative oxidase function

In addition to the classical ETC, many pathogenic fungi 
possess a cyanide-insensitive alternative pathway, not found 
in mammals, which permits respiration when the classical 
chain is inhibited (Huh and Kang 1999). AOX activity is 
not coupled to the generation of a proton gradient across 
the mitochondrial membrane, and thus alternate respira-
tion produces significantly less ATP than classical oxida-
tive phosphorylation (Helmerhorst et al. 2002). This sug-
gests that AOX-based respiration does not have a key role in 
energy production but permits respiration under conditions 
of classical chain inhibition. Although alternative respira-
tion is energetically less favourable, it allows respiration to 
continue upon inhibition of the classical electron transport 
system, thus maintaining essential metabolic functions of the 
mitochondrial compartment and supporting viability. There-
fore, a combination of classical- and alternative respiratory 
pathway inhibitors may be the most effective antifungal 
strategy and limit the development of resistance.

AOX is inhibited by hydroxamic acids such as salicyl-
hydroxamic acid (SHAM), n-propyl gallate and the natural 
antibiotic ascofuranone, a potent inhibitor of trypanosome 
AOX (Menzies et al. 2018). The importance of AOX in mor-
phogenesis and resistance to oxidative stress has been dem-
onstrated in several fungal pathogens, including A. fumigatus 
(Magnani et al. 2008), C. neoformans (Akhter et al. 2003) 
and Paracoccidioides brasiliensis (Martins et al. 2011). 
However, despite these important functions, reports sug-
gest that AOX is dispensable for virulence in some fungal 
pathogens, including C. albicans (Huh and Kang 2001) and 
A. fumigatus (Grahl et al. 2012). Therefore, AOX inhibitors 
may not be universally successful as antifungals, at least not 

as a monotherapy. It is likely that inhibition of AOX could 
be effective in combination with classical ETC inhibitors or 
antifungals which induce oxidative stress, although this has 
not yet been tested in vivo due to a lack of suitable fungal 
and highly specific AOX inhibitors.

AOX inhibitors for trypanosomiasis have not yet reached 
the clinical trial stage but research in this area seems promis-
ing, with the discovery of new inhibitors such as ascofura-
none as well as optimisation of existing inhibitors (Ott et al. 
2006). Development of fungal AOX inhibitors is hampered 
by the fact that so far, Trypanosoma brucei AOX is the only 
alternative oxidase protein structure available. Neverthe-
less, optimisation of N-phenylbenzamide derivatives showed 
promise against the phytopathogen Moniliophthora perni-
ciosa (Barsottini et al. 2018).

In our recent study of the response to C. albicans to res-
piration inhibition with the NO donor, sodium nitroprus-
side (SNP), and the alternative oxidase inhibitor, salicyl-
hydroxamic acid (SHAM), we found that cells which had 
been exposed to inhibitors showed a more rapid transition 
to hyphal growth when inhibition was relieved (Duvenage 
et al. 2019). SNP + SHAM-pretreated C. albicans exhib-
ited increased virulence in the mouse model of systemic 
candidiasis, with the kidneys of infected animals showing 
a higher fungal burden and an increased immune infiltrate 
compared to infection with untreated C. albicans. Part of the 
adaptation to respiration inhibitors includes the induction of 
Aox2 levels which leads to an increase in alternative respi-
ration capacity. We found that AOX has an important role 
in this hyphal switching phenotype, as we did not observe 
increased hyphal switching, as seen in the wild type, in an 
aoxΔ mutant following SNP + SHAM pretreatment. This 
highlights a requirement for a better understanding of the 
role of mitochondria in stress signalling, if respiration inhib-
itors are to be developed as successful therapeutics.

Respiration inhibition can be synergistic 
with current antifungals

Due to the connection between mitochondrial function and 
other cell processes such and ergosterol synthesis and cell 
wall maintenance (Dagley et al. 2011), respiration inhibi-
tors have the potential to enhance the effects of current 
antifungals. Fungal-specific inhibitors of Complex III 
were identified in a screen to identify compounds which 
reverse azole resistance (Vincent et al. 2016). In addition 
to reversing fluconazole resistance, one of the compounds 
(Inz-5) also enhanced the ability of macrophages to con-
trol growth of C. albicans, demonstrating that respiration 
inhibitors alone may be effective by complementing the 
immune response. Inhibition of mitochondrial aerobic 
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respiratory metabolism with tetrandrine caused increased 
sensitivity to fluconazole (Guo et al. 2014). The authors 
suggest that decreased ATP levels may inhibit resistance 
by decreasing the action of drug efflux pumps. Lastly, 
there is some evidence that the alternative oxidase can 
contribute to fluconazole resistance. A combination of 
SHAM and fluconazole showed a degree of synergism 
against C. albicans (Yan et al. 2009).

Respiration-deficient mutants show a defect in ergos-
terol biosynthesis, and thus are sensitive to polyenes such 
as Amphotericin B (Geraghty and Kavanagh 2003a). Respi-
ration inhibition can replicate this effect: erythromycin, an 
inhibitor of cytochrome synthesis (particularly cytochrome 
 aa3 of Complex IV), enhances sensitivity to Amphotericin 
B (Geraghty and Kavanagh 2003b). Although the links 
between respiration and lipid metabolism are well known, 
the effect of respiration inhibition on the fungal cell wall 
is an under-studied area. Inhibition of Complex III and the 
alternative oxidase in combination enhances susceptibility to 
caspofungin in C. parapsilosis (Chamilos et al. 2006). How-
ever, in our recent study of C. albicans, respiration inhibition 
with SNP and SHAM was found to decrease caspofungin 
susceptibility. This suggests that inhibition of different clas-
sical respiratory chain components may have different out-
comes on cell wall targeting drug susceptibilities, or that the 
connection between respiration and cell wall regulation may 
vary by species.

In summary, due to the connection of mitochondria to 
pathogenesis, cell wall regulation and lipid metabolism, res-
piration inhibitors may prove to be effective against fungal 
pathogens either in isolation or in combination with current 
antifungals. However, the conservation of the respiratory 
machinery in eukaryotes and the robust and adaptive nature 
of fungal respiration is a challenge for drug development. 
The discovery and characterisation of fungal-specific respir-
atory chain components are needed, together with a deeper 
understanding of the roles of those already characterised, 
such as the AOX.
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