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Abstract: Stochastic mortality models have been developed for a range of applications from
demographic projections to financial management. Financial risk based models built on methods
used for interest rates and apply these to mortality rates. They have the advantage of being applied
to financial pricing and the management of longevity risk. Olivier and Jeffery (2004) and Smith (2005)
proposed a model based on a forward-rate mortality framework with stochastic factors driven
by univariate gamma random variables irrespective of age or duration. We assess and further
develop this model. We generalize random shocks from a univariate gamma to a univariate Tweedie
distribution and allow for the distributions to vary by age. Furthermore, since dependence between
ages is an observed characteristic of mortality rate improvements, we formulate a multivariate
framework using copulas. We find that dependence increases with age and introduce a suitable
covariance structure, one that is related to the notion of ax minimum. The resulting model provides
a more realistic basis for capturing the risk of mortality improvements and serves to enhance longevity
risk management for pension and insurance funds.

Keywords: longevity risk; Olivier–Smith model; forward-rate mortality framework; minimum
covariance pattern; copulas

1. Introduction

A variety of empirical studies across many developed nations show that mortality trends have been
improving stochastically; see, e.g., CMI (2005), Luciano and Vigna (2005), Blake et al. (2006), Liu (2008)
and Blackburn and Sherris (2013). Numerous stochastic mortality models proposed in the literature
apply extensions of interest rate term structure modelling, known as short-rate models. In particular,
the Cox–Ingersoll–Ross (CIR) model, Cox et al. (1985), has been adapted in Luciano and Vigna (2005),
who use a time inhomogeneous version of the process to model the mortality dynamics. Furthermore,
Biffis (2005), Russo et al. (2010) and Blackburn and Sherris (2013) develop a variety of affine frameworks
extended from interest rate term structure modelling. Blake et al. (2006), Cairns et al. (2006), Bauer (2006)
and Bauer and Ruß (2006) demonstrate that, if mortality risk can be traded through securities such as
longevity bonds and swaps, then the techniques developed in financial markets for pricing bonds and
swaps can be adapted for mortality risk. Such models have the advantage of being able to incorporate a
price of longevity risk and have applications to the valuation of mortality linked contracts, which can be
used to mitigate longevity risk on life insurance products, including annuities. A typical underlying
assumption in these models is that mortality rates are Gaussian.

An alternative to short-rate models is provided by forward-rate approaches that model forward
forces of mortality and forward survival probabilities. Olivier and Jeffery (2004) and Smith (2005)
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apply a forward-rate mortality framework with stochastic factors driven by univariate gamma random
variables irrespective of age or duration. Although the model is conceptually interesting, not much
has been done to assess the validity of the model assumptions. In addition to restricting the stochastic
factors to identical gamma distributions, another critical assumption is that of independence amongst
these factors across age. We examine these assumptions using England and Wales female mortality
data for 1960 to 2009; a dataset used in Cairns (2007).

Based on the empirical analysis, we generalize the Olivier–Smith model in order to provide a more
realistic basis for capturing the risk of mortality improvements. Previous studies, e.g., Wills and Sherris
(2010) and Jevtić et al. (2013), have verified that dependence plays a critical role in mortality modelling.
A more realistic risk factor structure that captures such features of mortality data has the potential
to provide enhanced risk management techniques for mitigating the longevity risk faced by pension
funds and annuity providers.

We assume random shocks are driven by non-identical univariate Tweedie random variables.
By specifying the Tweedie distribution, we incorporate the Gaussian, compound Poisson, gamma
and inverse Gaussian distributions, which are all characterised by a power variance function;
the Tweedie distribution has been widely adopted in actuarial science, see, e.g., Aalen (1992),
Jørgensen and De Souza (1994), Kaas (2005) and Furman and Landsman (2010). We, thereby, allow
the stochastic components to originate from distributions with varying levels of volatility. Rather
than to generalise further to the exponential dispersion family, we presently restrict our attention
to the Tweedie distribution due to the convenient form of the cumulant function, which leads to
straightforward implementation. Our empirical investigations show this to be highly desirable.
Furthermore, by specifying the Tweedie distribution, we can readily incorporate a relevant set of
marginal distributions. We test both the Gaussian and gamma distributions and provide evidence that
the gamma is the more suitable of the two. Since dependence between ages is an observed characteristic
of mortality rate improvements, we further generalize the model by formulating a multivariate
distribution that incorporates age dependence using copulas. In order to accomplish this, we introduce
a new covariance pattern, one that is governed by the minimum of the two age covariates. That is,
the correlation between mortality rates of two ages depends only on the least of the two; this notion is
applied to the age range 49–99.

In Section 2, we introduce the necessary notation, providing background context for the forward-
rate mortality framework, and describe the Olivier–Smith model. We assess the model using data from
England and Wales in Section 3. In Section 2.3, we introduce a univariate Tweedie generalization and,
in Section 4, consider a multivariate framework using copulas. Section 5 concludes the paper.

2. Forward Mortality Framework

Before providing the Olivier–Smith model and a straightforward univariate generalization, we
provide a revision of longevity bonds and their forward price. We note that Section 2.1 provides
contextual background information.

2.1. Longevity Bond Pricing

Let rt denote the short rate at time t, and let Bt be the cash account defined as

Bt = exp
∫ t

0
rsds.

Let P(t, T), the discount bond price, denote the value at time t of receiving 1 at time T:

P(t, T) = EQ
[

exp
∫ T

t
−rsds

∣∣∣Ft

]
,
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where Q is the risk neutral probability measure derived from observable market prices and Ft

represents the available information at time t—in this case, the evolution of the short rate process until
time t is relevant. The discount bond price can also be expressed in terms of forward rates, namely

P(t, T) = exp
∫ T

t
− f (t, s)ds,

where f (t, s) is the instantaneous rate of interest at time s > t implied by the interest rate market at
time t; i.e., the forward interest rate. The discount bond price P(t, T) represents a current value (time t)
using current information (Ft). In general, we might be interested in the future value (say, at time T1)
of receiving 1 at future time (time T2) using current information (Ft); for which we use the notation
P(t, T1, T2):

P(t, T1, T2) = EQ
[

exp
∫ T2

T1

−rsds
∣∣∣Ft

]
= exp

∫ T2

T1

− f (t, s)ds

=
P(t, T2)

P(t, T1)
.

Thereby, we assume independent increments of the interest rate process. In the context of
derivatives, P(t, T1, T2) is the forward price of a T2-maturity bond at T1.

Let µ(t, x + t) denote the force of mortality at time t for age x + t. This implies that x is the age at
time zero. The age-specific survivor index is given by

S(t, x) = exp
∫ t

0
−µ(s, x + s)ds.

The survivor index S(t, x) is the probability an individual aged x at time zero survives to time t.
Notice the similarities of the cash account and the survivor index. Both are based on an instantaneous
process. In the case of the cash account, the short rate; in the case of the survivor index, the force
of mortality. However, unlike the short rate, the force of mortality also includes an age component.
Clearly, B0 = S(0, x) = 1; with the restriction of negative interest rates and forces of mortality, we have
that the cash account increases and the survivor index decreases.

Now, consider a refinement of P(t, T) that incorporates mortality, denote it L(t, T, x), the longevity
bond. Rather than paying 1 at time T, it pays S(T, x), representative of the proportion of survivors.
For example, suppose one is liable to pay 1 at time T to the survivors of a group of individuals, all of
whom are aged x at time zero. Ignoring basis risk, the longevity bond represents a perfect hedging
instrument. The price of the longevity bond is given by

L(t, T, x) = EQ
[

exp
∫ T

t
−
(
rs + µ(s, x + s)

)
ds
∣∣∣Ft

]
,

where Q is the risk neutral probability measure derived from observable market prices and Ft

represents the available information at time t—in this case, both the evolution of the short rate
and mortality processes until time t are relevant.

As before, we can rewrite L(t, T, x) using forward rates. Our aim is to study mortality rates
in isolation, rather than in conjunction with interest rates, and so, we presently assume the two
are independent:

L(t, T, x) = exp
∫ T

t
−
(

f (t, s) + ν(t, s, x + s)
)
ds

= P(t, T) exp
∫ T

t
−ν(t, s, x + s)ds,
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where ν(t, s, x + s) is the instantaneous mortality rate at time s > t for age x + s implied by the
longevity bond market at time t; i.e., the forward mortality rate. Again, we can generalize to the
forward price of the longevity bond to obtain

L(t, T1, T2, x) = EQ
[

exp
∫ T2

T1

−
(
rs + µ(s, x + s)

)
ds
∣∣∣Ft

]
= P(t, T1, T2)× p(t, T1, T2, x),

where p(t, T1, T2, x) represents the forward price of the mortality-component of a T2-maturity longevity
bond at time T1; it is given by

p(t, T1, T2, x) = EQ
[

exp
∫ T2

T1

−µ(s, x + s)ds
∣∣∣Ft

]
= exp

∫ T2

T1

−ν(t, s, x + s)ds.

Here, similarly to the interest rate process, we assume independent increments of the mortality
process. Notice, therefore, that forward prices are multiplicative in the sense that the duration can be
compartmentalized; for example, we have that

p(t, t, T2, x) = p(t, t, T1, x)× p(t, T1, T2, x).

It is clear that the above results depend entirely on the existence of an arbitrage-free market,
which, unfortunately, is not the case. Therefore, as pointed out in Norberg (2010), the application
of risk-neutral pricing is called into question. It is not our intention to enter this debate, rather to
demonstrate the results under these principles and further encourage the emergence of a longevity
bond market.

Presently, we assume that the market price of longevity risk is constant, and, for convenience,
zero; this has previously been done in, e.g., in Ziveyi et al. (2013) and Ignatieva et al. (2018) in relation
to the pricing of life insurance products. The result of this work would not be impacted if arbitrary
λ ∈ R were selected to represent the market price of longevity risk, since it is true that, in practice,
investors will certainly demand a risk premium. However, as our interest lies in assessing volatility,
not drift, setting Q = P does not represent an issue and is done for convenience. Consequently, we
have that p, the mortality forward price, is also the expected future mortality spot price:

p(t, T1, T2, x) = EQ
[

exp
∫ T2

T1

−µ(s, x + s)ds
∣∣∣Ft

]
= EP

[
exp

∫ T2

T1

−µ(s, x + s)ds
∣∣∣Ft

]
.

In other words, p(t, T1, T2, x) is the expected probability an individual age x at time zero survives
to time T2 given survival to time T1, based on available information Ft; it is an expected forward
conditional survival probability.

Finally, the requirement of the martingale property implies

p(t, T1, T2, x) = E[p(t + 1, T1, T2, x)|Ft]. (1)

2.2. The Olivier–Smith Model

Rather than suppose a structure for the mortality rate process, volatility can also be imposed
directly via the forward rates with random shocks. This was proposed in the Olivier–Smith model
given below; see Olivier and Jeffery (2004), Smith (2005).
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Model 1. For all ages x and forward-times T = t, t + 1, . . .

p(t + 1, T, T + 1, x) = p(t, T, T + 1, x)b(t,T,T+1,x)G(t+1),

where G(1), G(2), . . . are independent and identically distributed gamma random variables with shape and
rate parameter α, such that EQ[G(t)] = 1 and VarQ(G(t)) = 1/α. Furthermore, the b(t, T, T + 1, x) are
Ft-measurable bias correction functions given by

b(t, T, T + 1, x) = −αp(t, t, T, x)−1/α(p(t, T, T + 1, x)−1/α − 1)
ln p(t, T, T + 1, x)

.

For an arbitrage-free market, we require the martingale property, that is, Equation (1) to be
satisfied. Consequently, we obtain

p(t, t, T, x) =
αα

(α−∑T−1
u=t b(t, u, u + 1, x) ln p(t, u, u + 1, x))α

;

see, e.g., Cairns (2007) for the details of this derivation, which rests on standard properties of the
gamma distribution and the use of moment generating functions.

The model restricts the stochastic nature of mortality evolution by imposing gamma, Γ(α, α),
random variables.

2.3. Univariate Tweedie Generalization

We briefly introduce the Tweedie distribution, first formulated in Tweedie (1984); also see
McCullagh and Nelder (1989).

Let X ∼ ED (θ, λ) denote a random variable belonging to the additive exponential dispersion
family (EDF) with probability measure Pθ,λ, absolutely continuous with respect to Qλ,

dPθ,λ(x) = e[θx−λκ(θ)]dQλ(x),

where κ (θ) is called the cumulant; see Jørgensen (1997), Section 3.1. The parameters θ and λ are called
the canonical and dispersion parameter, respectively, κ (θ) is a twice differentiable function, and the
expectation of X is given by

µ = λκ′(θ).

Furthermore, κ′(θ) is a one-to-one map and there exists an inverse function

θ = θ(µ) = (κ′)−1(µ).

The function V(µ) = κ′′(θ(µ)) is called the unit variance function. The Tweedie subclass, denoted
Twp (θ, λ), is the class of EDF with power unit variance function

V(µ) = µp,

where p is called the power parameter. The values p = 0, 1, 2, 3 correspond to the normal,
over-dispersed Poisson, gamma, and inverse Gaussian distributions, respectively. The cumulant
κp(θ) = κ(θ) has the form

κ(θ) =


eθ , p = 1,
− ln(−θ), p = 2,
α−1

α ( θ
α−1 )

α, p 6= 1, 2,

where α = (p− 2)/(p− 1).
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Model 2. For all ages x and forward-times T = t, t + 1, . . .

p(t + 1, T, T + 1, x) = p(t, T, T + 1, x)b(t,T,T+1,x)Z(t+1),

where Z(1), Z(2), . . . are independent and identically distributed Tweedie random variables, Twp(θ, λ) with
EQ[Z] = λκ′p(θ) and VarQ(Z) = λκ′′p (θ). Furthermore, the b(t, T, T + 1, x) areFt-measurable bias correction
functions given by

b(t, T, T + 1, x)

=
κ−1

p (ln p(t, t, T + 1, x)/λ + κp(θ))− κ−1
p (ln p(t, t, T, x)/λ + κp(θ))

ln p(t, T, T + 1, x)
.

For an arbitrage-free market, we require the martingale property, that is, Equation (1) to be
satisfied. Consequently, we obtain

p(t, t, T, x) = EQ[p(t + 1, t, T, x)|Ft]

= EQ

[T−1

∏
u=t

p(t + 1, u, u + 1, x)
∣∣∣Ft

]

= EQ

[T−1

∏
u=t

p(t, u, u + 1, x)b(t,u,u+1,x)Z(t+1)
∣∣∣Ft

]

= EQ

[
exp

{
Z(t + 1)

T−1

∑
u=t

b(t, u, u + 1, x) ln p(t, u, u + 1, x)
}∣∣∣Ft

]

= MZ|Ft

(
T−1

∑
u=t

b(t, u, u + 1, x) ln p(t, u, u + 1, x)

)
,

where
MZ|Ft

(y) = EQ[eZy|Ft] = exp{λ(κp(θ + y)− κp(θ))}

is the moment generating function of Z ∼ Twp(θ, λ). This reduces to the Olivier–Smith model if we
select p = 2, λ = α, and θ = −α.

The b functions are derived following a recursive procedure. First, we investigate the case with
a maturity of t + 1. From the above, we have

p(t, t, t + 1, x) = MZ|Ft
(b(t, t, t + 1, x) ln p(t, t, t + 1, x)),

which yields

b(t, t, t + 1, x) =
κ−1

p (ln p(t, t, t + 1, x)/λ + κp(θ))− θ

ln p(t, t, t + 1, x)
.

From this, it is clear that

T

∑
u=t

b(t, u, u + 1, x) ln p(t, u, u + 1, x) = κ−1
p (ln p(t, t, T + 1, x)/λ + κp(θ))− θ,

T−1

∑
u=t

b(t, u, u + 1, x) ln p(t, u, u + 1, x) = κ−1
p (ln p(t, t, T, x)/λ + κp(θ))− θ.

Substracting the two equations from one another leaves

b(t, T, T + 1, x)

=
κ−1

p (ln p(t, t, T + 1, x)/λ + κp(θ))− κ−1
p (ln p(t, t, T, x)/λ + κp(θ))

ln p(t, T, T + 1, x)
.
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Note that ln p(t, t, t, x) = 0, consequently, the expression above holds for the case with maturity
t + 1. Therefore, this is the general expression and we no longer require the recursive argument.

Henceforth, we generalize the stochastic component Z(t + 1) and, instead, make use of the
notation Z(t + 1, T, T + 1, x):

Z(t + 1, T, T + 1, x) = b(t, T, T + 1, x)−1 ln p(t + 1, T, T + 1, x)
ln p(t, T, T + 1, x)

=
ln p(t + 1, T, T + 1, x)

κ−1
p (ln p(t, t, T + 1, x)/λ + κp(θ))− κ−1

p (ln p(t, t, T, x)/λ + κp(θ))
.

3. Model Assessment

The Olivier–Smith model makes two main assumptions regarding the stochastic mortality
component. The first is that of a gamma distribution. The second is that the distribution that generates
the components does not depend on time t; that is, that mortality components are identically
distributed. The Olivier–Smith model was not intended for multiple cohorts. However, it is our
desire to apply the model to multiple cohorts, and so we begin by assuming the mortality components
are also independent across cohorts. Combined, this means that the components are assumed to be
independent and identically distributed. We presently investigate the validity of these assumptions
(the first two specified by the Olivier–Smith model, whereas the latter is our own) using real data.
We assume b = 1 and treat population mortality rates as risk neutral.

In a risk neutral framework with constant annual forces of mortality and one-year forward rates,
we have, for all t, all x, and T = t− 1, . . . , ω− 1− x,

p(t, T, T + 1, x) = exp{−ν(t, T, x + T)},

where ω is the maximum attainable age. Notice that the above formulation of the forward rate does not
include any imposed improvement trend. That is, the forward mortality probability for an individual
aged x in T years is taken from an individual presently aged x + T. We recognize that this may be seen
as rather controversial. Our justification for the above equation is that we believe any inclusion of
trend would largely be a part of bias correction functions b and only have a minor influence on the
volatility. Again, since our aim is to investigate the behaviour of the mortality components Z, rather
than trends, we feel justified in our approach. We do not claim that this is the only way in which to
proceed; however, we feel it is an avenue worthy of exploration.

Consequently, keeping the above in mind, we define for all t, all x, and T = t, . . . , ω− 1− x,

Z(t + 1, T, T + 1, x) =
ln p(t + 1, T, T + 1, x)

ln p(t, T, T + 1, x)
=

µ(t + 1, x + T)
µ(t, x + T)

. (2)

We use female central mortality rates from the Human Mortality Database (2013) for England and
Wales Total Population for the period 1960–2009, and ages 0–105 (ω = 106). We extract observations of
Z(t + 1, T, T + 1, x) from the data. England and Wales data were selected since it is a commonly used
benchmark dataset.

3.1. Independent Distributions

In this section, we investigate whether the stochastic components are independent. We address
this in two ways: by considering the linear correlation structure between appropriately selected
sub-samples, and applying a principal component analysis.

3.1.1. Correlation Analysis

We explore the correlation structure between the stochastic mortality components over time
and forward-age. Figure 1 suggests no particular dependence pattern over time; roughly 90% of the
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correlations have absolute value less than 0.35. That is, the collection of observations of the stochastic
component from calendar year s appear uncorrelated with the collection from calendar year t 6= s.
This is evidence of independence over the time dimension.

Figure 1. Correlations of Z(s + 1, s, s + 1, x) and Z(t + 1, t, t + 1, x).

Figure 2 provides contour plots of correlation between the stochastic components over
forward-age. In contrast to the contour plots over time, we do notice varying levels of correlation
over forward-age, especially amongst the older ages. The correlation appears very volatile for the
younger forward-ages. This is a technical consequence of having comparatively smaller sample sizes
for forward-ages 0–48. Furthermore, correlation patterns are difficult to discern when centenarians
are included. This is related to the high volatility of mortality data for centenarians. Consequently,
we provide the contour plot for ages 49–99 in the second panel of Figure 2. Lighter shades of gray
indicate higher positive correlation; the plot provides clear evidence that correlation increases with
forward-age.

3.1.2. Principal Component Analysis

In the previous section, we found evidence that the stochastic mortality components are correlated
by forward-age, which is especially pronounced for the older ages. In order to further investigate this
form of dependence, we perform a principal component analysis (PCA) for the random components
taken with respect to different forward-ages. We focus on forward-ages 49–99; represented in the
second panel of Figure 2. Therefore, with 49 years of observations, we obtain a 51 by 49 matrix of
stochastic components by forward-age and time.

PCA is applied to multivariate data in order to take advantage of possible redundancy due to
dependence. By using linear combinations of the original variables, we transform the 51 correlated
variables (stochastic components by forward-ages) into uncorrelated ones of a lower dimension.
In general, PCA may either be applied to the covariance, or correlation matrix. PCA applied to the
correlation matrix is typically used when variables are measured in different units. Since this is not the
case in our data, we elect to apply PCA to the covariance matrix. In addition, standardising produces
data with the same variation. This is not desirable since we want to preserve differences in variation
by forward-age.
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Figure 2. Correlations of Z(t + 1, t, t + 1, x− t) and Z(t + 1, t, t + 1, y− t).

Table 1 summarises the results of the PCA applied to the covariance matrix. Note that, as a criteria
for deciding on the number of components, one typically chooses the number of components that
cumulatively account for a meaningful percentage of the variance (typically around 70%). We select
the first 4 components since they account for approximately 74% of the variance; see Table 1.

Figure 3 shows the top four principal components. They represent key movement in the random
component by forward-age. We observe that some factors affect the stochastic components irrespective
of forward-age, while others affect stochastic components from younger and older forward-ages
quite differently. For example, the first principal component, which explains approximately 28% of
the variation, exhibits a clear upward trend. This indicates that stochastic components from older
forward-ages are more influenced than those from lower forward-ages. This confirms the result from
Figure 2 that correlation increases by forward-age. Although the third and fourth principal components



Risks 2019, 7, 61 10 of 22

exhibit a downward trend, they are of less significance since they collectively account for less than 25%
of the variance.

Table 1. PCA results.

Eigenvalue Individual Variance Cumulative Variance

λ1 0.2818 0.2818
λ2 0.2096 0.4915
λ3 0.1416 0.6331
λ4 0.1028 0.7359
λ5 0.0434 0.7793
λ6 0.0312 0.8104
λ7 0.0214 0.8319
λ8 0.0167 0.8485
λ9 0.0156 0.8641
λ10 0.0138 0.8779
λ11 0.0122 0.8901
λ12 0.0112 0.9013
λ13 0.0103 0.9116
λ14 0.0096 0.9213
λ15 0.0074 0.9287
λ15 0.0068 0.9355

Figure 3. Top four principal components.

Finally, the biplots in Figure 4 show the magnitude and sign of each variable’s contribution to
the first two (upper panel) or three (lower panel) principal components, and how each observation is
represented in terms of those components. The axes in the plot represent the principal components,
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the coefficients of the variables (forward-ages) on the principal components are represented as vectors,
and the points are the scores of the observations (years) on the principal components.

Figure 4. Biplots of the principal components.

Both the empirical investigation and the PCA provide evidence of correlation between the
stochastic mortality components, especially among the older ages. The assumption of independent
distributions for the stochastic mortality component is therefore violated.

3.2. Identical Distributions

In this section, we investigate whether the stochastic mortality components come from identical
distributions. Although we have identified potential dependence over forward-age, it is not conclusive,
and, therefore, we also investigate plots of the stochastic component over this dimension.

Figure 5 shows the observations of Z over time t for various fixed combinations of T and x.
Over time t, the Z resembles a random sample. However, the underlying distribution changes with
respect to the forward-age, x + T, of the mortality components. The scale of the first plot is roughly five
times larger than the others. This implies that the first plot demonstrates very high volatility, which is
not surprising given that this plot represents a forward-age of 105.
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Figure 5. The stochastic mortality component over time t for fixed x.

Figure 6 shows the observations of Z over age x for various fixed t. Recall that we have no
observations of Z for T < t; for T > t, we obtain a similar plot as that of T = t, where the only
difference is a shift in the x-axis, representative of a translation of the forward-age. We present
the plots for T = t as they are most informative. Figure 6 reinforces what is observed in Figure 5.
The volatility of the stochastic component clearly varies with age. The forward-ages 0–40 and 90 plus
generally exhibiting high volatility, with the remaining forward-ages, 40–90, exhibiting comparatively
lower volatility.

Figure 6. The stochastic mortality component over age x for fixed t.
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In Figure 7, we fix the year-of-birth and plot over time, which is representative of tracking a single
cohort. We notice that volatility varies with forward-age, which is visible to a greater or lesser extent
depending on which forward-age-range the cohort traverses; notice the different scales of the plots in
this figure. However, given the contour plots in Section 3.1, the samples in Figure 7 most likely violate
the independence assumption. Therefore, caution must be exercised when interpreting these plots.
Figures 6 and 7 provide evidence that the volatility of the stochastic component are not homogeneous
over forward-ages. The assumption of identical distributions for the stochastic mortality component is
therefore violated.

Figure 7. The stochastic mortality component for fixed year-of-birth.

3.3. Appropriate Parametric Distribution

From the data shown in Figures 5–7, it is difficult to conclude whether the gamma distribution
provides a good fit to the data. Fitting the data presumes independent and identically distributed
observations, both of which may be violated.

However, we present quantile-to-quantile (QQ) plots and formal distributional (goodness-of-fit)
tests to investigate the suitability of the gamma distribution. Figures 8–10 show the QQ plots
corresponding to Figures 5–7, respectively. They contrast the quantiles of the empirical distribution
with those from the estimated gamma distribution. A deviation from the 45 degree line indicates
a departure from the assumed distribution. The results indicate the gamma distribution provides
a reasonable fit for the stochastic mortality component over time t; see Figure 8. Figures 9 and 10 are
less relevant, since they represent fitting the distribution over age and year-of-birth, respectively, where
we have evidence that the independent and identical distribution assumption is violated. This means
that the lack in fit is not very informative.

We apply the goodness-of-fit tests suggested in D’Agostino and Stephens (1986) and
Stephens (1974). We test the null hypothesis that the data belongs to the theoretical (hypothesized)
gamma distribution, that is, H0 : F̂n(x) = Fn(x), where F̂n(x) represents the empirical cumulative
distribution function (cdf) and Fn(x), the theoretical cdf with estimated parameters obtained from
maximum likelihood. Let the xi be ordered observations, and zi = Fn(xi), the resulting estimated
quantiles. We consider the following test statistics:
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1. The Anderson–Darling statistic A2, given by

A2 = −n− 1/n
n

∑
i=1

(2i− 1)(ln(zi) + ln(1− zn+1−i)).

2. The Kolmogorov statistic D, given by D = max(D+, D−), where

D+ = max
1≤i≤n

[(i/n)− zi],

D− = max
1≤i≤n

[zi − (i− 1)/n].

The modified form statistic proposed in Stephens (1974) together with the critical values
corresponds to D(

√
n + 0.12 + 0.11/

√
n).

3. The Cramér–von Mises statistic W2, given by

W2 = 1/12n +
n

∑
i=1

(zi − (2i− 1)/2n)2.

The modified form statistic reported in Stephens (1974) is given by (W2− 0.4/n + 0.6/n2)(1+ 1/n).

The critical values for the above tests are specified in Table 2, as provided in D’Agostino and
Stephens (1986) and Stephens (1974).

Figure 8. The stochastic mortality component over time t for fixed x; quantile-to-quantile (QQ) plot
corresponding to Figure 5.



Risks 2019, 7, 61 15 of 22

Figure 9. The stochastic mortality component over age x for fixed t; QQ plot corresponding to Figure 6.

Figure 10. The stochastic mortality component for fixed year-of-birth; QQ plot corresponding to Figure 7.
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Table 2. Critical values for the goodness-of-fit tests.

Stat. Crit.5% Crit.1%

A2 2.492 3.857
D 1.358 1.628

W2 0.461 0.743

Table 3 summarizes the results for the goodness-of-fit tests; * and ** indicate the gamma
assumption is not rejected at a 1% and 5% significance level, respectively, where the gamma density is
given by

f (x) =
βα

Γ(α)
xα−1e−βx.

The distributional tests confirm the results observed from the QQ plots. The gamma distribution
is not rejected at either significance level for the observations of stochastic mortality component over
time (Panel A). The results for stochastic mortality component over age for fixed calendar year (Panel
B) and over time for fixed year-of-birth (Panel C) are mixed. Again, the mixed results in Panel B
and C are likely due to the violation of the independent and identical distribution assumption of
these samples. Finally, note from Table 3 that the estimates of the shape and rate parameters, α and
β, are approximately equal, which confirms the assumption that the expected value of the stochastic
component is one.

Table 3. Distributional test results.

α β A2 D W2

Panel A: The Stochastic Mortality Component over Time t for Fixed x

Z(t + 1, T = 2009, x = 56) 12.943646 12.624253 0.2181661 ** 0.5312711 ** 0.1075524 **
Z(t + 1, T = 2009, x = 36) 415.72498 421.08874 0.2475575 ** 0.5700078 ** 0.1057159 **
Z(t + 1, T = 2009, x = 16) 452.03843 458.56811 0.4509184 ** 0.6866471 ** 0.1270422 **
Z(t + 1, T = 2005, x = 0) 331.04846 335.43804 0.6111859 ** 0.7313687 ** 0.1552846 **

Panel B: The Stochastic Mortality Component over Age x for Fixed t

Z(t + 1 = 1961, T = 1960, x) 71.337103 69.005897 3.843054 * 1.571849 * 0.7661192
Z(t + 1 = 1967, T = 1966, x) 127.56511 132.22064 2.624833 * 1.256487 ** 0.5699055 **
Z(t + 1 = 2000, T = 1999, x) 312.29324 325.31700 2.905791 * 1.167076 ** 0.5625603 *
Z(t + 1 = 2009, T = 2008, x) 297.92308 317.92973 1.075193 ** 1.010486 ** 0.2789330 **

Panel C: The Stochastic Mortality Component for Fixed Year-of-Birth

Z(t + 1, t, t + 1, 56) 497.3803 502.4013 0.8524845 ** 0.9784892 ** 0.2081623 **
Z(t + 1, t, t + 1, 36) 444.92502 454.13746 0.5299603 ** 0.5954966 ** 0.1529977 **
Z(t + 1, t, t + 1, 16) 107.80345 109.21021 1.463862 ** 1.020509 ** 0.332074 **
Z(t + 1, t, t + 1, 1) 53.05649 53.04923 2.440254 * 1.390677 * 0.520064 *

4. Multivariate Generalization

We begin by formulating the most general model.

Model 3. For all ages x and forward-times T = t, t + 1, . . .

p(t + 1, T, T + 1, x) = p(t, T, T + 1, x)b(t,T,T+1,x)Z(t+1,T,T+1,x),

where Z follows any multivariate distribution. The b(t, T, T + 1, x) are some Ft-measurable bias
correction functions.
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To preserve the martingale property, we have

p(t, t, T, x) = EQ[p(t + 1, t, T, x)|Ft]

= EQ

[
exp

{T−1

∑
u=t

Z(t + 1, u, u + 1, x)b(t, u, u + 1, x) ln p(t, u, u + 1, x)
}∣∣∣Ft

]
.

To proceed further, a multivariate distribution must be specified for the Z. We do so using copulas.
Copulas provide the means to effectively study any form of dependence; see, e.g., Embrechts et al.
(2002), Breymann et al. (2003), and McNeil et al. (2005). We focus on the use of the elliptical family.
Previous work modelling dependence using the elliptical family include Hult and Lindskog (2002),
Fang et al. (2002), and Frahm et al. (2003). Figure 2 suggests that the correlation between any pair of
stochastic components depends on the smallest of the two associated forward-ages. This produces
the “L” shapes intersecting the diagonal of the plot; see Figure 2 above. To accommodate this form of
dependence, we introduce the minimum covariance pattern.

4.1. Minimum Covariance Pattern

The minimum covariance pattern makes the assumption that the correlation between any pair
of responses is determined solely by the minimum value of the corresponding covariate; in this case,
forward-age. That is, Corr(Zi,j, Zi,k) = ρmin(j,k). Note that this results in n− 1 correlation parameters:

Corr(Zi) =



1 ρ1 ρ1 . . . ρ1 ρ1

ρ1 1 ρ2 . . . ρ2 ρ2

ρ1 ρ2 1 . . . ρ3 ρ3
...

...
...

. . .
...

...
ρ1 ρ2 ρ3 . . . 1 ρn−1

ρ1 ρ2 ρ3 . . . ρn−1 1


.

4.2. Capturing Dependence with Copulas

Copulas are multivariate distribution functions relating d one-dimensional standard uniform
marginals to a joint distribution. If F is a d-dimensional distribution function with marginals F1 . . . , Fd,
then, for every x1, . . . , xd ∈ R, there exists a copula C with

F(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}.

Equivalently, if C is a copula and F1, . . . , Fd are distribution functions, then the function F
defined above is a joint distribution function with marginals F1, . . . , Fd. If F1, . . . , Fd are continuous,
then C is unique. Thus, if X = (X1, . . . , Xd)

> is a random vector with distribution X ∼ FX and
continuous marginals Xj ∼ FXj (j = 1, . . . d), then the copula of X is the distribution function CX of
u = (u1, . . . , ud)

> ∈ [0, 1]d, where uj = FXj(xj):

CX(u1, . . . , ud) = FX{F−1
X1

(u1), . . . , F−1
Xd

(ud)}.

The above formulation is found in Sklar’s Theorem; see Joe (1997) for a proof.
Two scatter-plots shown in Figure 11 highlight the different levels of dependence between

observations from younger versus older forward-ages. We investigated the scatter-plots originating
from observations of all possible pairs of forward-ages and found no evidence of non-standard types
of dependence. Therefore, we consider the Gaussian copula. In order to allow for the presence of
tail-dependence, we also consider the Student’s t copula. We note that other copulas, including
those generating asymmetric tail dependence, would be interesting to consider; we leave this for
future research.
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Figure 11. Scatter plots for observations by forward-age.

With respect to the marginals, we consider both the gamma and the Gaussian distributions.
The gamma distribution because it was originally considered in the Olivier–Smith model; we choose
to compare it with the Gaussian distribution since it is the most widely used member of the Tweedie
family. The Gaussian distribution was also considered in Olivier and Jeffery (2004). They claimed
results similar to the gamma distribution, although no formal analysis was provided.

The literature suggests various approaches to estimate copulas; see, e.g., Joe (1997) and
Cherubini et al. (2004). We make use of the so-called inference for marginals (IFM) method, which is
a sequential two-step maximum likelihood approach. First, one estimates the marginal parameters;
subsequently, the copula to obtain the pseudo log-likelihood function, which is then maximized
with respect to the copula dependence parameter. For details on the IFM and alternative estimation
techniques, see MacLeish and Small (1988) and Joe (1997).

The minimum covariance pattern described above is not implemented in any statistical packages
we are aware of. Therefore, we fit the Gaussian and Student’s t copulas with an unstructured correlation
matrix, given below:

Corr(Zi) =



1 ρ1,2 ρ1,3 . . . ρ1,n−1 ρ1,n
ρ1,2 1 ρ2,3 . . . ρ2,n−1 ρ2,n
ρ1,3 ρ2,3 1 . . . ρ3,n−1 ρ3,n

...
...

...
. . .

...
...

ρ1,n−1 ρ2,n−1 ρ3,n−1 . . . 1 ρn−1,n
ρ1,n ρ2,n ρ3,n . . . ρn−1,n 1


.

Using the output, ρ̂j,k, we construct the parameter estimates from the minimum covariance pattern
as follows:

ρ̂j =
1

n− j

n

∑
k=j+1

ρ̂j,k, j ∈ {1, n− 1}.

The ability to specify the minimum covariance pattern would enhance estimation. Figure 12
shows the estimation of the correlation parameters for the Gaussian copula with gamma marginal
distributions in the unstructured and minimum covariance patterns. The similarities between the two
contour plots confirm that the minimum covariance pattern is suitable in this case. Figure 13 shows
the equivalent using the Student’s t copula.

Figure 14 shows the estimated variance of the gamma marginal distributions by forward-age.
A very similar result is produced under the assumption of Gaussian marginals. The fluctuations in the
variance clearly demonstrate that the marginal distributions vary by forward-age.
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Figure 12. Contour plots for the Gaussian copula.
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Figure 13. Contour plots for the Student’s t copula.
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To produce the contour plots and the variance plot (Figures 12–14), we make use of the inversion
of Kendall’s tau method developed in Joe (1990). This was done because likelihood-based methods
cannot readily estimate 51-dimensional copulas.

Finally, to examine the performance of the considered copula models, we use the Akaike Information
Criterion (AIC) introduced in Akaike (1974):

AIC = −2l(α; x1, . . . , xT) + 2q,

where l(α; x1, . . . , xT) denotes the maximized value of the log-likelihood and q the number of estimated
parameters. Smaller values of AIC indicate a better fit.

We compute the AIC for groups of forward-ages, as summarized in the first column of
Table 4. We split the sample into five sub-samples of 11 forward-ages in order to overcome the
dimensionality issue arising when fitting a 51-dimensional copula using the likelihood-based IFM method.
The Gaussian copula outperforms the Student’s t copula for forward-ages up to 79, and under-performs for
forward-ages above 79. This provides evidence of tail-dependence at the older forward-ages. With respect
to the marginal distributions, the gamma consistently outperforms the Gaussian distribution. Since many
models rely on Gaussian marginals, the result that the gamma outperforms the Gaussian distribution
is rather significant. The fact that the gamma distribution outperforms the Gaussian distribution may
lead some to thinking that the generalisation is overcomplicated rather than necessary, but, in fact, this
conclusion rests on the existence of the generalisation in the first place, thereby confirming its value.
The fact that the modelling framework advocated in this paper allows for this added flexibility in the
choice of marginal distributions is shown to be a very desirable attribute.

Table 4. Model comparison (Akaike Information Criterion).

Forward-Ages
Gaussian Copula Student’s t Copula

Gaussian Gamma Gaussian Gamma

49–59 −5.95 −7.29 −3.93 −5.26
59–69 −23.45 −27.46 −21.44 −25.43
69–79 −145.26 −154.93 −143.23 −152.91
79–89 −223.68 −241.29 −246.88 −266.26
89–99 −403.88 −410.02 −405.27 −410.61

5. Conclusions

We investigate the Olivier–Smith model and show that, using population mortality data for
England and Wales, the model requires a more general framework, with additional emphasis on age
dependence and marginal distributions that vary by forward-age. The gamma distribution provides
a reasonable fit, but is a restrictive assumption. We improve the model by specifying a more general
distribution, namely the Tweedie class of the exponential dispersion family. In addition to allowing
the distribution to vary by forward-age, we also incorporate dependence between forward-ages using
copulas. To accommodate the nature of the dependence, we specify a new covariance pattern related
to the notion of minimum.
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