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Abstract—In this paper, a novel Vision-Based Measurement
(VBM) approach is proposed to estimate the contact force and
classify materials in a single grasp. This approach is the first
event-based tactile sensor which utilizes the recent technol-
ogy of neuromorphic cameras. This novel approach provides
a higher sensitivity, a lower latency, and less computational
and power consumption compared to other conventional vision-
based techniques. Moreover, Dynamic Vision Sensor (DVS) has
a higher dynamic range which increases the sensor sensitivity
and performance in poor lighting conditions. Two time-series
machine learning methods, namely, Time Delay Neural Network
(TDNN) and Gaussian Process (GP) are developed to estimate
the contact force in a grasp. A Deep Neural Network (DNN) is
proposed to classify the object materials. Forty-eight experiments
are conducted for four different materials to validate the pro-
posed methods and compare them against a piezoresistive force
sensor measurements. A leave-one-out cross-validation technique
is implemented to evaluate and analyze the performance of
the proposed machine learning methods. The contact force is
successfully estimated with a mean squared error of 0.16 N
and 0.17 N for TDNN and GP respectively. Four materials
are classified with an average accuracy of 79.17% using unseen
experimental data. The results show the applicability of event-
based sensors for grasping applications.

Index Terms—Vision-Based Measurements, Force Estimation,
Material Classification, Haptics, Dynamic Vision Sensor.

I. INTRODUCTION

HUMAN sense of touch comprises different receptors
to acquire a rich information about objects’ properties.

The receptors in the human skin evaluate the contact area
between the objects and body with respect to the applied
force, temperature, and pain sensation [1]. Besides the skin
receptors, other senses such as vision and audition assist
human to extract further properties such as shape, material
and hardness. Combining all of these acquired information
enables humans to perform gripping tasks for unknown objects
with a high degree of robustness. For instance, human can
grasp objects robustly without a prior knowledge of the object
properties such as weight, friction coefficient and materials [2].
Research works on tactile sensing involves measuring the
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contact force magnitude and direction, mapping the force
distribution, classifying the materials, and detecting slippage
by monitoring the physical properties of the contact area [3].

Different types of tactile sensors were developed to simulate
humans sense of touch for robotic hands [4]. A remarkable
progress has been made for various types of tactile sensors. A
capacitive sensor in [5] considers four capacitors to measure
the horizontal and vertical forces. Although the sensor can
measure the displacement in different directions, electronic
interference and sensor hysteresis are remained unsolved. An
application of object’s localization and orientation estimation
is demonstrated in [6] using piezoresistive force sensors. The
sensor is capable of localizing the objects with a high accuracy
while the estimation of the object orientation has a poor
resolution. Another piezoresistive sensor with high durability
and low hysteresis is developed in [7] to measure pressure
under cyclic loading. A magnetic tactile sensor is proposed
in [8] with capability of slip detection as well as estimation of
the contact force in three dimensions. Some other approaches
are utilizing the tactile sensors to extract further information
about the objects properties and classify the materials. For
instance, a piezoelectric multifunctional sensor is used to
acquire objects’ hardness by rolling over the sensor on the
objects surfaces [9].

A hybrid sensor in [10] composes of piezoelectric trans-
ducers, force sensor and inclinometer in order to classify
six different materials. An artificial finger with embedded
PolyVinyliDene Fluoride (PVDF) membrane and strain gauge
sensors are used to classify various materials [11]. Another
research is presented in [12], whereas two piezoresistive tactile
sensors are utilized to classify softness of vegetable using a
decision-tree machine learning technique. Other applications
of object classifications using different types of force sensors
and traditional machine learning algorithms such as Support
Vector Machines (SVM) are presented in [13], [14]. How-
ever, most of the aforementioned tactile sensors have limited
resolution, considerable hysteresis and high sensitivity to the
electromagnetic disturbances. This research focuses on optical
tactile sensing techniques including camera-based methods
that provide higher resolution, low hysteresis and resistant to
electromagnetic disturbances.

Optical sensors with transparent elastomer or rubber, wave
emitters and receivers have been developed for precise tactile
sensing applications [15], [16]. Wave emitters scatter the light
to the surface of the elastomer while receivers capture the
back-scattered beams from the surface. Study of the reflected
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beams regarding the interruption, phase, and magnitude ap-
prises the distribution of force on the surface. The main
advantages of this approach are immunity of the optical
sensors to high electromagnetic disturbances, providing a high
spatial resolution, flexibility and durability with high speed of
signal transmission. In earlier work in [17], the optical tactile
sensor is developed to measure the displacement and surface
roughness with a high spatial resolution using artificial neural
Networks. One of the main approaches in optical sensing
is to place optical fibers in the finger membrane and em-
ploy techniques like intensity modulation, Bragg grating, and
specklegram. In [18], a Fiber Bragg Grating (FBG) sensor is
proposed which has high sensitivity, but low spatial resolution
of 5mm. Another FBG-based tactile instrument is suggested
in [19] to map the force distribution with a minimum weight
sensitivity of 0.05 kg. A new class of optical tactile sensors are
presented in [20] considering PolyDiMethylSiloxane (PDMS).
A high sensitivity for measuring minimum weight of 0.005
kg is demonstrated practically. Furthermore, a technique is
offered to detect an objects’ shape and surface roughness with
the sensors. Most of the optical tactile sensors have a lower
spatial resolution compare to vision-based techniques.

Recent developments in visual technologies made cameras
available in smaller sizes, lower cost, and higher resolution.
Furthermore, advancements of processors and computational
devices enabled the cameras to be considered as a VBM
instrument to measure physical properties, localization of the
objects, and to classify materials [21]. Camera-based tactile
sensors observe the contact area, object, and elastomer surface
to detect slippage and estimate the applied force. In earlier
work in [22], a camera is combined with a force sensor to
estimate deformation of the elastic object. A camera-based
tactile sensor is introduced in [23], which measures three-
dimensional force vectors on the contact area. Similarly, a
marked elastomer is embedded in the silicone membrane in
[24], to estimate force as well as friction coefficient of the
surface. Further, a vision-based sensor is developed in [25]
to evaluate multi-dimensional force vectors and the object
stick ratio. In [26], three states for the sensor have been
considered for non-contact detection, stick and slippage of the
object. Moreover, a camera, a textured elastomer and a light
diode are used in [27] to compute force magnitude and find
directions for several rigid and soft contacts. Other sensors
demonstrated the capability of vision-based sensors to deal
with deformable objects and detect slippage to feedback the
force controllers of the grippers [28]. In another approach [29],
a conventional camera is used to estimate force magnitude
and direction utilizing hemispherical markers. The markers are
located inside the elastomer with different colors to estimate
force magnitude and direction based on markers displacement.
Later on, this approach became more popular which reflects
the significant progress in camera-based tactile sensors [30]–
[33].

A different approach to reconstruct a 3D geometry map
in order to estimate force using Recurrent Neural Networks
(RNN) with a pair of cameras was presented in [34], [35].
Further, a stereo vision-based sensor is suggested in [36]
to estimate the contact force between tools and body tis-

sues for surgical applications. Another stereo vision-based
measurement instrument [37] inspects the automotive rubber
profiles. An interesting application of visuo-haptic sensors in
[38] allows the robot to measure the contact force and shape
considering a foam rod.

A hybrid method is developed in [39] which considers a
camera and a tactile sensor to classify materials considering
multimodal learning. Two methods are implemented to classify
17 different materials considering both supervised and unsu-
pervised learning. The best performance in both supervised
and unsupervised techniques are achieved through the Mean
Maximum Covariance Analysis (µMCA) with a high accuracy.

Most of the tactile sensors focus on force measurement un-
der stable and static conditions, i.e. without dynamic variation
of the applied forces. However, in many applications including
robotic grasping, applied forces may vary significantly and a
fast response is required to properly handle the grasped object.
Even-though many VBM instruments and hybrid techniques
have been contributing significantly in the field of tactile
sensing, no attention has been paid to utilize neuromorphic
vision sensors in this field. For the first time, in [40], we
proposed a vision-based sensor to detect incipient slip using
DVS which provides a low latency with low power consump-
tion. It is demonstrated that the sensor can detect incipient
slip in grasping applications with an average of 44.1 ms using
traditional image processing methods. The sensor successfully
detects the incipient slippage without a prior knowledge of
the objects properties or friction coefficients. Table I lists
a different techniques for tactile sensing and measurements
applications.

In this paper, a new dynamic-vision-based tactile sensor is
introduced. The sensor is based on a neuromorphic camera
which provides a higher time-resolution, a lower latency, less
computational cost and power consumption compared to other
vision-based techniques.
The contributions of this paper are as follow:

1) To the best of our knowledge, it is for the first time, a
Dynamic-Vision-Based approach is proposed to measure
the contact force and classify materials in a grasp using
a neuromorphic camera (DVS).

2) A Time Delay Neural Network (TDNN) and a Gaus-
sian Process (GP) are developed to find the correlation
between the triggered events and the contact force.

3) A Deep Neural Network (DNN) model is implemented
to classify materials based on the triggered events in a
single grasp.

The rest of the paper is structured as follows. Section
II describes the proposed event-driven sensor prototype. In
Section III, time-series models are designed to estimate force
in a single grasp. In Section IV, a DNN is developed to classify
different materials which is followed by the validation and
results in Section V. The results are analyzed and discussed
in Section VI. Finally, Section VII concludes the paper and
suggest future works.

II. EVENT-DRIVEN TACTILE SENSOR

Vision-based tactile sensors estimate the applied force on
the surface of the fingertip (silicone membrane) by observing
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Table I: A list of different tactile sensing techniques for various applications

Reference Sensors Purpose Specifications

[5] Capacitive Measure the the force vector (3D) •Low parasitic capacitance effect
•Resolution of 12.5 µm
•A considerable hysteresis

[13] Capacitive and actuators Object classification •Objects are varied in shape, size and stiffness
•High accuracy of object recognition
•Non-time series machine learning technique

[10] Piezoelectric transducers Classify materials •Time and frequency domain analysis
•Multiple environments performance
•High accuracy with static applied force threshold

[7] Piezoresistive Measure the pressure •High linearity factor
•100 cycles hysteresis
•Time analysis of the measurements

[6] Laser and piezoresistive Object recognition and orientation detection •High classification accuracy
•Limited orientation measurements
•Non-time series machine learning technique

[17] Optical fiber Measure displacement and surface roughness •Measuring range of ±(0.8 mm)
•Displacement error of ±(0.5 µm)

[20] Optical fiber Measure the force and shape detection •High sensitivity of 0.005 kg
•Latency of 600 ms
•Limited range of few grams

[30] Conventional camera Measure the force vector (3D) •High spatial resolution (4 mm)
•Low sampling rate of 30 FPS
•Static approach based on markers displacement

[31] Conventional camera Estimation of slippage angle and stick ratio •High spatial resolution
•Low sampling rate of 30 FPS
•Static approach based on markers displacement

[40] DVS Incipient slip detection •High spatial resolution
•Angular view of camera with 44.1 ms response time
•Traditional image processing algorithms

This
work

DVS Force estimation and material classification •High spatial resolution of 0.04 mm2

•Force measurement range of 0.15-3.7 N
•Sensitivity of 0.01 N
•Low computational cost and logical response time of 21 ms
•Maximum size of the contact region: 48x36 mm

the contact area directly or indirectly. Direct methods monitor
the contact area between the object and fingertip whereas
indirect approaches observe extra elements inside the fingertip.
Some of the indirect methods use the markers inside the
silicone membrane and track the displacement of the markers
[30], [31], [41]. Due to the flexibility of the elastomer, the
markers are displaced when a force is applied to the object.
The contact force vector can be calculated based on the
elasticity theory considering the displacement of markers. In
[42], the force vector is formulated by assuming linearity and
uniformity of the elastomer.
Although camera-based tactile sensors provide a high resolu-
tion of the contact area, a low sampling rate (normally 30 FPS)
and limited dynamic range reduce the sensor performance
in unknown environments. To satisfy requirements for fast
grasping applications, it is essential to consider a sensor with a
higher sampling rate and sensitivity. Furthermore, processing
images is often involved with a lot of redundant pixels which
adds a further computational and memory requirements to the
system. Thus, the research in this paper considers an event-
based sensor with a high dynamic range and a low latency to
observe the contact area.
Asynchronous event-based cameras are bio-inspired sensors

that consider intensity changes (events) in the scene with pre-
cise timestamps and a high dynamic range. DVS is one of the
well known frame-free sensors with a high temporal resolution
of few microseconds [43], [44] which is significantly faster
than ordinary cameras. This vision sensor captures intensity
changes logarithmic ally at each pixel rather than capturing
the whole scene in a fixed interval. Each pixel compares the
current intensity value with the previous value repeatedly (in
microseconds). If the compared value exceeds a threshold
level, then the sensor fires either a positive or a negative event.
DVS has a resolution of 240×180 pixels with a latency of 12
microseconds for the mean of 20 events. The sensor streams
positive and negative events with precise timestamps and pixel
location (x, y). Moreover, DVS requires a lower power (4-15
mW) and memory compared to conventional cameras.
The threshold level of the events is a crucial parameter for
filtering noise and changing the sensitivity of the sensor. In
this work, several threshold levels are examined to balance
the noise level and sensitivity of the sensor. The relationship
between the triggered events and intensity changes is loga-
rithmic which is formulated in [43]. Equation 1 presents the
correlation of temporal contrast (TCON) and photo-current
(I). A threshold is considered for the temporal contrast to fire
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positive (higher intensity) or negative (lower intensity) which
can be modified to change the sensor sensitivity and filter the
noise.

TCON =
d(ln(I(t)))

dt
(1)

To establish the event-driven tactile sensor, a semi-transparent
silicone fingertip is located between the object and gripper.
When a force is applied on the object, the silicone deforms due
to the elasticity. Therefore, DVS captures the changes within
the contact area and triggers both positive and negative events.
The silicone membrane is molded with dimension of 4.0 ×
2.0 × 0.2 cm to cover the contact area between the gripper
plane and the object. The silicon properties and depth of the
fingertip have a significant impact on the sensor sensitivity and
the range of force estimation. Figure 1 illustrates a diagram of
the sensor including transparent grippers, a semi-transparent
silicone fingertip, DVS, and the object.

Figure 1: Event-based tactile sensor diagram

III. FORCE ESTIMATION

Camera-based approaches consider different techniques to
estimate magnitude and direction of the contact force. For
instance, the force magnitude and direction are estimated by
detecting the markers displacement in the elastomer using a
single frame-based camera [30], [31], [41]. On the other hand,
a number of researches investigate the force estimation using
geometrical reconstruction techniques [34]–[36]. Frame-based
stereo cameras are used to reconstruct a depth map within the
contact area to estimate magnitude and direction of the applied
force. In this paper, a novel event-driven (dynamic) method is
presented to estimate force by observing the intensity changes
within the contact area.

A. Concept

As mentioned in Section II, DVS fires either positive or
negative events depending on the intensity changes in the
scene. Since a semi-transparent silicone has an opaque surface,
the contact area is barely visible prior to the contact of an
object to the membrane. Due to the deformation of the silicone
membrane, the visible part of the contact area becomes larger
by applying more force, and intensity of the contact area
increases significantly.
Accordingly, an increase of the applied force triggers the

negative events while a decrease of the applied force triggers
positive events. In this paper, positive and negative events are
presented in green and red respectively.
Deformation of silicone under a pressure is highly non-linear
which depends on the type and size of the membrane as well as
the range of the applied force. Other factors such as direction
of force, shape of the contact area and temperature can affect
this relationship. Consequently, the correlation between events
and the contact force is highly non-linear considering the
following parameters: (i) The deformation of silicone mem-
brane [45]; (ii) The logarithmic relation between changes in
intensity and triggered events which is presented in (Equation
1).
To visualize the correlation of triggered events to the contact
force, events are accumulated over a time interval whereas
the applied force increases significantly. Figure 2 represents
the triggered events and image of the contact area where the
contact force is increased.

(a) (b) (c)

Figure 2: (a) Image of the contact area when a low amount
of force is applied. (b) Accumulation of events over a 40 ms
time window during a grip. (c) Image of the contact area when
a high amount of force is applied.

As it can be observed in Figure 2(b), events are triggered
in most regions of the contact area by applying force to the
object. On right bottom of the contact region, a number of
events are triggered due to the noise and a slight displacement
of the silicone membrane.

B. Grasping Procedure

The contact force estimation from DVS events can be
approached as a time series regression problem. A single grasp
can be divided into three main phases: (i) Grasping phase;
(ii) Holding phase; (iii) Releasing phase. The contact force
changes significantly in the grasping and releasing phases
while in the holding phase the force variation is related to
the vibration. This research aims to estimate the contact force
in both grasping and releasing phases without consideration of
the holding phase (vibration). The grasping phase includes the
first instance where the object touches the silicone membrane
and the applied force is increased until it reaches a constant
value (holding phase).At the first instance when the object
touches the membrane, a lot of negative events are triggered
due to the intensity changes in all of the correspondent pixels
of the contact area. Therefore, a first touch is determined when
the first significant number of negative events are triggered.
Once the contact is obtained, negative and positive events
represent the changes in the applied force and vibration of
the object. It is noteworthy to mention that after a certain
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amount of increase in force, the silicone membrane reaches
a saturation point where further increase of the applied force
does not deform the membrane. Hence, the sensor can estimate
a limited range of force which depends on the silicone
membrane properties which is a case for all the camera-based
tactile sensors with a silicone membrane.
In the holding phase, the applied force varies due to vibration
and noise which are not considered in this research. Finally,
in the releasing phase, the applied force is decreased which
leads to trigger positive events within the contact area. Figure
3 illustrates the normalized value of events and the measured
force in a single grasp over a time.
Both number of events and the measured force are framed
over 7 ms intervals. The framing process helps to differentiate
meaningful events and reduce the impact of noise over a longer
period. In an ideal grip, the grasping phase must include only
negative events. However, the object vibrates slightly in a short
amount of time to reach stability which causes triggering the
positive events. There is a trade-off between the filtering of
the unwanted events and the sensor sensitivity which can be
adjusted by changing the DVS threshold.
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Figure 3: Normalized value of the force which is measured by
a piezoresisitve force sensor (blue), number of negative events
(red), number of positive events (green) in a single grasp.

In Figure 3, the first peak in the negative events represents
the first touch of the object and the fingertip. The peaks
of the negative events indicate a significant increase of the
contact force. The threshold of the positive events are lower
than the negative events which makes the sensor to have a
higher sensitivity for the decrease of the contact force. In
an ideal grasp, only negative events are expected to trigger
by applying more amount of force. However, vibration and
instability of the grasp results in triggering positive events
as well as negative events. The first significant spike in the
releasing phase demonstrates a loss in the contact area which
leads to the object slippage.
To correlate the triggered events and the contact force, a
robust time-series learning technique is required to capture
the non-linear relationship over a time. In this work, TDNN
and GP models are chosen since these models are able to
model time-series data with non-linear relationship between
variables. Accordingly, the force values are measured by a

piezoresistive force sensor at each time interval to train and
test the machine learning methods. It should be noted that the
measured force values are used to train the models and the
accumulation of triggered events are considered as the inputs
to the models.

C. Time Delay Neural Networks

One of the well-known time-series machine learning models
is TDNN which is widely applied on speech recognition, text
recognition and regression problems [46]. The main advantage
of TDNNs is the ability to relate temporal sequences to each
other, enabled by their main characteristic, the delay nodes.
Number of delay nodes is a crucial parameter in TDNN
network which specifies a time interval to capture patterns of
a signal.
Another advantage of TDDNs is a faster training time
compared to Recurrent Neural Networks (RNNs) due to the
constant value of the delay nodes. The delay node in TDDNs
is often assigned to a short time to capture the relationship
of the current point with the previous observations. A
fixed and small number of time delay nodes helps to avoid
vanishing gradient problem which is a well-known problem
in traditional RNNs with long-term dependencies [47].
In this research, a variety of networks with different number
of hidden layers and neurons are tested to find the best
architecture. The events are accumulated over time to provide
a full memory of the sequences to the network which
improves the detection of global features. The accumulation
of positive and negative events are passed to the network
separately to identify decrease and increase of the contact
force respectively. Followed by the input layer, k fully-
connected hidden layers with n neurons in each layer are
considered to capture the non-linear relationship between the
events and the applied force.
The sigmoid activation function is assigned to all hidden
layers after some initial experimentation. A variety of
experiments are performed to find appropriate parameters for
the model to achieve a good performance. In Section V, a
variety of network architectures are analyzed comprehensively
to investigate the impact of the number of neurons and hidden
layers on the network performance. Figure 4 demonstrates
the deep TDNN network for the force estimation. A cost
function is defined based on the error of the estimated
force from events in comparison to the measured force
using a piezoresistive force sensor. To optimize the error
of the network, the cost function can be approached as a
minimization of the sum of squares of a non-linear function
(Equation 2) whereas F (x) represents the error function. One
common approach to solve a minimization problem is the
Levenberg-Marquardt (Equation 3). The Levenberg-Marquardt
uses the Gauss-Newton method to search for a direction in
order to decrease F (x) at each iteration. In Equation 3, the
Jacobian matrix and damping factor (non-negative scalars)
are denoted as (J) and (λ) respectively. Damping factor is
considered as 0.01 which is multiplied by an identity matrix
(I) to vectorize the parameter. The Levenberg-Marquardt
method searches the directions which is given by a solution
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Figure 4: A deep TDNN model with a time delay of three
nodes (21ms) to estimate force from accumulative events.

(pk).

min(f(x)) =
∑
i=1

F 2
i (x) (2)

(J(xk)
TJ(xk) + λkI)pk = −J(xk)TF (xk) (3)

D. Gaussian Process

Gaussian Process (GP) is a stochastic modeling method to
predict and forecast variables based on combination of random
variables over the data points. A variety of kernels can be con-
sidered to fit a function with random variables corresponding
to the multivariate normal distribution [48]. The choice of the
kernels and hyper-parameters have a significant impact on the
model to estimate the function between inputs and outputs.
As mentioned in Section II, the triggered events and intensity
changes in the scene have a logarithmic relationship. On the
other hand, the silicon membrane behaves non-linearly over
different contact forces. Therefore, we consider the Automatic
Relevance Determination (ARD) squared exponential covari-
ance kernel to build a robust model in order to find a highly
non-linear correlation between events and the contact force.
Equation 4 presents the kernel function whereas xi,xj are two
inputs, σf is the signal standard deviation, and θ represents
the parameterized version of the covariance function. Each
predictor (m) can have a different length scale (σm) whereas
m = 1, 2, · · · , d.

k(xi, xj |θ) = σ2
fexp[

−1
2

d∑
m=1

(xim − xjm)

σ2
m

] (4)

One of the most important hyper-parameters in a GP model
is the length scale (σm) which affects the model performance
significantly. In order to optimize the length scale, a Bayesian
optimization technique is performed over 10 iterations to find
the best length scale. Afterwards, the length scale with the best
performance is selected and replaced in the kernel function.
To improve the GP performance to estimate force in a grasp,
timestamps are also passed to the GP model as an input. In

other words, the GP model considers positive events, negative
events, and time to estimate the contact force.

IV. MATERIAL CLASSIFICATION

Acquiring information about the object properties such as
material, friction coefficient, stiffness and weight facilitate the
grasping process. This research proposes a novel technique to
classify objects materials using DVS events from the grasp-
ing and the releasing phases. In the proposed classification
method, the input consists of two features (accumulation of
positive and negative events) for all the sequences of each
grip for different materials. Figure (5) illustrates accumulation
of events for different materials in a single grasp considering a
similar range of applied force. It can be observed from Figure
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Figure 5: Four different materials are considered in a single
grasp with a similar range of the contact force. (a) Accumu-
lation of positive events. (b) Accumulation of negative events.

(5) that the accumulation of negative and positive events are
distinguishable for different stiffness in a similar range of the
applied force. The objects and the silicone membrane deform
differently for each material during the grasping phase and the
releasing phase. The number of positive and negative events
follow different patterns for each object. Other factors such
as background noise and shape of the contact area affect the
number of events.
A Deep Neural Network (DNN) model is developed to classify
materials considering the grasping and releasing phases. The
network consists of k fully-connected hidden layers and n
neurons in each layer. The sigmoid activation function is se-
lected for all the layers after initial experiments. Furthermore,
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a soft-max function is used in the output layer to classify
different materials. The Scaled Conjugate Gradient (SCG)
back-propagation method is used to train the network. Figure
6 demonstrates the architecture of the proposed network for
the material classification.

Figure 6: A DNN model for material classification

V. VALIDATION AND RESULTS

This section describes the validation of the proposed models
for force estimation and material classification. Detailed in-
formation on the experimental setup, data collection, synchro-
nization process, as well as experimental results are provided
in the following sections.

A. Experimental Setup And Data Collection

The experiments are designed to grasp four objects with
different Young’s modulus: (i) Foam; (ii) Rubber; (iii) Sili-
con; (iv) Steel. All the objects are formed in a same shape
(hexagon) and dimension (0.75×0.65×3.55) cm. To increase
the contrast with an opaque surface of the silicone membrane
and eliminate the effect of light reflection for different mate-
rials, all the objects are colored in black. Since the objects are
in the same shape and color, the classification method only
relies on the elasticity of the objects rather than the objects
texture or color.
The gripper consists of a static and a dynamic transparent
finger. In each experiment, each object is gripped and a
constant pressure is applied to hold the object for 700 ms.
Then, the gripper returns to the starting position to release
the objects. The DVS sensor is located in a distance of 5 cm
from the static finger to minimise the noise and capture the
changes in the contact area. A lens with 4.5 mm focal length
is mounted on the camera which can be adjusted regarding
the size of the objects. The linear horizontal field of view
of the lens corresponds to 9.8 cm in 10 cm distance. In this
setup, each pixel of the scene corresponds to 0.04 mm2 area
on the silicon surface. Consequently, the maximum sensing
region is 48x36 mm which can be changed by use of different
lens, changing the camera position and silicone thickness. On
the dynamic finger, a piezoresistive force sensor (FlexiForce-
A201) is located to measure the contact force.

The dynamic finger is controlled by a servo motor (AX-12A
Dynamixel) using a micro-controller (Arduino) to control the
gripper acceleration and position. The force is applied to the
object by the dynamic finger with an angle of 15◦ with respect
to the z-axis. Figure 7(a) demonstrates the experimental setup:
The DVS observes the contact area through a static finger of
the gripper. Figure 7(b) illustrates the contact area from the
view of the DVS.

(a)

(b)

Figure 7: (a) Experimental setup includes the piezoresistive
force sensor, DAVIS 240C, AX-12A Dynamixel servo motor,
and two transparent finger. (b) The image of the contact area
from the DVS point of view.

B. Force Sensor and Synchronization

A piezoresistive force sensor of FlexiForce A201 type
is used as a tactile sensor to validate the proposed event-
based sensor. The force sensor has a response time < 5
µs, percentage error ± < 3%, hysteresis < 4.5% of full
scale and is adjusted to measure forces from 0 − 111 N.
Moreover, experiments are performed for a range from 0 to 3.7
N. This range is selected based on the saturation of silicone
deformation. The force sensor is covered by a silicone layer
in order to mimic the same friction coefficient on both sides
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of the objects.
A Light-Emitting Diode (LED) is used to synchronize the DVS
camera and the force sensor. In each experiment, the LED is
turned on and after few milliseconds off prior to the grasp.
When the LED is turned off, the time is recorded by the micro
controller to start recording the force measurements. This time
is also detected by the DVS by finding a significant spike
of negative events (LED OFF) in the scene. Afterwards, the
artificial frames are constructed by accumulation of positive
and negative events during 7 ms window. Each experiment is
divided into the grasping phase (from the 1st frame to 22nd

frame), the holding phase (from 23rd frame to 122nd) and the
releasing phase (from 123rd frame to 144th frame).
The measured force varies significantly due to the vibration
and movement of the dynamic finger. A third order median
filter is applied to smoothen the force values and filter the
noise. Figure 8 illustrates the distribution of force over 48
experiments each of them is captured for all timestamps.
As shown in Figure 8, the contact force decreases significantly
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Figure 8: Each row represents an experiment over 144
timestamps whereas the color indicates the contact force at
each point. The dotted green lines show the signal clipping
boundaries for the grasping, holding and releasing phases

during the releasing phase. Since the force sensor is mounted
on the dynamic plane and it is covered by a silicone layer, the
measured contact force is small but non-zero.

C. Force Estimation

This section presents and analyzes the results of the pro-
posed models for the force estimation. The most common
approach to evaluate a machine learning method is to partition
the data into training and test subsets. The model design and
hyper-parameters are tuned to achieve the highest performance
on the test set. The training set is given to the machine
learning method to find appropriate hyper-parameters in order
to minimize the error. The test subset (unseen data) is not
involved in the training process. A significant disadvantage of
this approach is that researchers changes the model design and
hyper-parameters based on the assessment on the test subset.

Therefore, the test subset is in-directly involved in the design
of the method which makes a bias in this process.
Another approach is to divide the dataset into three different
partitions (training, validation and test). The validation set
assists the training process to stop when the network reaches
the saturation point, and therefore, it reduces the time of the
training process. Afterwards, the hyper-parameters are opti-
mized on the validation set. An appropriate machine learning
model and kernels can be selected by considering the method
performance on the validation set. Finally, the test subset only
is used to report the performance of the network rather than
finding the optimum model and hyper-parameters.
In this paper, the data is divided into three subsets: 87.5% for
training (forty-two experiments), 10.4% for validation (five
experiments) and 2.1% for test (one experiment). The five
experiments in the validation set are selected randomly from a
wide range of forces to make sure that all possible values of the
applied force are covered. Furthermore, an exhaustive leave-
one-out cross-validation method is deployed to test each ex-
periment individually over 48 folds. The leave-one-out method
provides a comprehensive evaluation by testing the models on
all of the experiments individually.
The TDNN error is calculated over all the folds (48 folds)
and the average of Mean Squared Error (MSE) is calculated
to compare different network architectures. To find the optimal
architecture, number of neurons and hidden layers are varied.
All the weights in the network are initialized randomly and
biases are set to zero at the first place. The networks are
trained in parallel on a CPU with double precision (Corei7-
8700 6cores) using MATLAB neural network toolbox. Table
II demonstrates the average MSE over all folds for different
number of hidden layers (k) and neurons (n). The lowest

k/n n=5 n=10 n=15 n=20 n=25 n=30 n=35 n=40
k=1 0.23 0.19 0.18 0.19 0.20 0.18 0.16 0.16
k=2 0.21 0.19 0.16 0.17 0.17 0.17 0.17 0.17
k=3 0.19 0.20 0.18 0.18 0.16 0.17 0.17 0.17
k=4 0.20 0.19 0.16 0.17 0.18 0.17 0.17 0.15
k=5 0.20 0.16 0.20 0.18 0.18 0.16 0.17 0.16

Table II: Mean Squared Error of the estimated force(N) on the
validation set whereas the lowest error is highlighted in bold.

validation error (0.15 N) is achieved through a network with 4
hidden layers and 40 nodes. Since the validation experiments
are chosen from a wide range of forces, it is expected to
achieve a generalized model for the force estimation. Note
that choosing different experiments for the validation partition
changes the performance of the network. Table III presents the
average MSE over 48 folds for the sequences of the unseen
experiments. The average MSE is highlighted for the proposed

Table III: Mean Squared Error of the estimated force(N) on the
test set whereas the error of the proposed network architecture
is illustrated in bold.

k/n n=5 n=10 n=15 n=20 n=25 n=30 n=35 n=40
k=1 0.16 0.24 0.15 0.22 0.19 0.16 0.24 0.15
k=2 0.17 0.16 0.16 0.16 0.17 0.18 0.15 0.35
k=3 0.18 0.18 0.16 0.17 0.16 0.16 0.16 0.16
k=4 0.18 0.17 0.16 0.16 0.16 0.17 0.19 0.16
k=5 0.18 0.16 0.24 0.17 0.20 0.15 0.24 0.18
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network architecture which is the second best accuracy overall.
Similar performance of the network for both validation and test
partitions indicates a good generalization of the network.
Figure 9 illustrates the multilayer TDNN response (red) and
the measured force (ground truth) for an experiment tested
on unseen data considering leave-one-out cross-validation
method. As it can be observed, the estimated force follows
the measured force pattern with a high accuracy during the
grasping phase whereas the estimated force drops to a steady
level. In the beginning of the releasing phase, the object loses
all of the contact area with the fingertip which leads to a
significant spike in number of triggered positive events. After
this moment, a slight number of events are fired which in-
dicates environment noise. Therefore, the network recognizes
the frames that the object is not in contact with the fingertip
and it remains steady. Since the force sensor is mounted on the
dynamic plane of the gripper, the measured force is affected
by noise due to the motion of the gripper in the releasing
phase. Moreover, the force sensor hysteresis adds a further
delay to the measured force over the time. Consequently, the
amount of measured force is decreasing slower over the time
rather than a sharp drop at the first frame of the releasing
phase. To evaluate the proposed GP model, the same folds as
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Figure 9: Measured force and estimated force for the TDNN
model on the unseen experiment during the grasping phase (a)
and the releasing phase (b).

TDNN are considered to allow the comparison of models. The
Bayesian optimization is performed on each fold individually
over ten iterations to tune the hyper-parameters. Figure 10
illustrates the estimated force by the GP model for the unseen
experiment in one of the folds. The avaraged MSE of 0.17 N
is achieved through the time-series GP method. The response
of this technique appears to be able to estimate the force in the
grasping phase with a high accuracy. In the releasing phase,
the GP response decreases with a slight slope compare to
the measured force in this selected fold. Since the number of
triggered events are close to zero in the releasing phase, the GP
method learns to estimate the measured force by considering
the force values as a function of time. Figure 11 illustrates the
averaged MSE and standard deviation for the estimated force
on the all folds at each timestamp for both TDNN and GP.

To calculate the sensitivity of the sensor, the estimated force
values on the test experiments are considered over all folds.
Flexible piezoresistive sensors often have a lower accuracy
and high level of noise within the low range of the applied
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Figure 10: Measured force and estimated force by GP model
on the unseen experiment during the grasping phase (a) and
the releasing phase (b).

(a) (b)

Figure 11: Red and blue lines present the average MSE of
the estimated force over all folds at each timestamp during the
grasping phase (a) and the releasing phase (b). The standard
deviation of MSE is presented by a highlighted area over the
average of MSE.

force [49]. Therefore, all the data points with the force value
of less than 0.2 N are eliminated for the purpose of sensitivity
calculation. The minimum value of changes in the estimated
force for all the points over 0.2 N is determined for each
fold individually. Finally, the minimum value of changes in
the estimated force is averaged over all folds. The TDNN
and GP models provide the sensitivity of 0.01 N and 0.02
N respectively. The TDNN model provides a slightly better
sensitivity due to the high number of parameters which allow
the network to learn a highly non-linear relationship between
the contact force and events.

D. Material Classification

Obtaining further information about the objects facilitates
the grasping tasks. The elasticity of the objects is one of the
key factors in differentiate objects. The proposed classification
model classifies the objects with different Young’s modulus
considering the grasping and releasing phases. As mentioned
in Section V-A, the objects are considered with same size and
shape to eliminate these features in the classification process.
Furthermore, all the objects are covered with a layer of
black colour to minimize effect of light reflection and objects
texture during the experiments. Therefore, our classifier is
fed with fewer features which makes the classification task
harder to learn a highly non-linear relationship between objects
materials and the events independent of size, shape, location,
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texture and color. The experiments are repeated for each
material as the following: Foam (11), Rubber (9), Silicone
(14), and Steel (14).
Four experiments are chosen for the validation set and leave-
one-out cross validation is implemented to evaluate the classi-
fication network accuracy. Table IV represents accuracy of the
network for different numbers of hidden layers and nodes. The

Table IV: Accuracy of the material classification on the
validation data

k/n n=5 n=10 n=15 n=20 n=25 n=30
k=1 80.21 76.56 83.33 84.38 85.94 83.85
k=2 70.31 81.25 84.38 85.94 86.98 90.10
k=3 64.06 77.60 81.77 85.42 86.98 88.54
k=4 67.19 77.60 78.65 84.38 84.90 89.06
k=5 60.42 68.75 76.56 81.25 86.46 90.10
k=6 60.94 69.79 74.48 81.77 85.42 86.46

highest accuracy for the validation set is achieved through two
models with 30 nodes. A higher number of neurons and hidden
layers might lead to achieve a better result while increases the
training and testing time significantly. Therefore, the network
with 2 hidden layers (k=2) and 30 neurons (n) is selected
to classify materials. Table V illustrates the accuracy of the
proposed network for the unseen experiments over 48 folds.

Table V: Accuracy of the material classification model on the
unseen data (test set)

k/n n=5 n=10 n=15 n=20 n=25 n=30
k=1 70.83 68.75 62.50 70.83 62.50 68.75
k=2 58.33 62.50 68.75 75.00 60.42 79.17
k=3 50.00 58.33 56.25 72.92 72.92 77.08
k=4 60.42 58.33 72.92 68.75 60.42 75.00
k=5 50.00 45.83 54.17 62.50 68.75 72.92
k=6 39.58 58.33 66.67 58.33 70.83 75.00

The highest accuracy (79.17%) for the unseen test data
stands for the proposed network. Figure 12 demonstrates the
confusion matrix for these experiments considering leave-one-
out cross-validation method.

As observed in Figure 12, the rigid material (Steel) has
the highest accuracy with only one error over all folds.
The classification of soft materials with a closer Young’s
modulus is a more challenging process. The results indicate
an average accuracy of 73.3% for Foam, Rubber and Silicone.
As mentioned in Section I, many approaches consider multiple
force sensors to classify materials and objects. A similar
neural network approach is implemented over all folds to
classify materials with different Young’s modulus using the
force sensor measurements instead. The best network indicates
accuracy of 50% on the unseen data which is 29.17% lower
than the accuracy of the event-based proposed sensor.

VI. DISCUSSION

The proposed TDNN achieved slightly higher accuracy
than the GP model. The delay nodes in TDNN enable the
modelling of temporal coherence of the sequences through
a time window. As regards to Figure 11, both TDNN and
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Figure 12: Confusion matrix for the material classification
over the all folds with overall accuracy of 79.17%

.

GP methods identify the start of the the grasping and the
releasing phases faster than the tactile sensor due to the force
sensor hysteresis and experimental setup. The estimated force
by TDNN drops rapidly to a low steady level, indicating the
low latency of this method. Interestingly, this phenomenon is
evident through most of the experiments. Figure 13 illustrates
the same behaviour of the TDNN in a different fold.
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Figure 13: Responses of the estimated force and the measured
force (ground truth) considering two different folds.

Unlike the TDNN, the GP response shows a slight decrease
during the releasing phase. Even though the triggered events
in this phase is close to zero, the GP model estimates the force
as a function of time. Therefore, the GP model has a lower
error than the TDNN where the number of the triggered events
are low. However, the actual contact force must drop rapidly
when the object releases. Since the force sensor is mounted on
the moving gripper, the measured force includes noises until
the gripper stops. Moreover, the force sensor hysteresis leads
to have a considerable delay to measure the real contact force
when the force varies significantly in a short amount of time.
As presented in Figure 11, the MSE of TDNN is lower than
the GP model in the grasping phase. Although the GP model
has a better response for the last 8 timestamps whereas the
measured force are not correlated with the triggered events,
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this part of the releasing phase represents only noise since the
object is not in contact with the gripper.

In this work, we consider a measurement range between
0.15-3.7 N for our sensor based on observations and initial
experiments. We initially conducted experiments for 0-6 N
and the proposed models are performed to estimate the force.
Based on the selected silicone membrane, it is observed that
the sensor was able to capture contact area changes for the
contact forces up to 3.7 N. The silicone membrane properties
such as stiffness, shape, and thickness as well as DVS thresh-
old can be altered in order to change the measurement range
of the sensor.

In order to compare our sensor with others, we consider
main parameters of the sensors such as sensitivity, range and
latency. In [27], a resolution of 0.05 N for a maximum range
of 7 N is presented whereas each frame takes 55 ms to capture.
Even though our proposed sensor currently has a lower range
of measurements, we achieved a lower latency 21 ms which
makes our sensor suitable for real-time applications. It is
worthy to mention that some vision-based force measurement
sensors such in [50], are designed for precise applications with
high resolution in µN-mN range. However, the sampling rate
of 30 FPS and high computational cost of processing coloured
images will increase the response of time of the vision-based
sensors.

The proposed classification model achieves a accuracy of
79.17% on the unseen test data considering the leave-one-
out cross-validation method. Most of the miss-classifications
are between the soft materials with a close Young’s modulus.
In [11], the average accuracy of 95%is presented to classify
different materials. The sensor includes strain gauges and
PVDF sensors embedded in the fingertip. The materials have a
different texture which provides further information to sensors
in order to classify the materials.
The proposed event-based sensor is the first-ever attempt to
utilize event-based cameras to estimate the contact force and
classify materials. There is clearly a high potential to achieve
better accuracy results, similar to the mentioned vision-based
sensors. The main advantages of the proposed sensor com-
pared to other vision-based techniques as follows:

1) Events are captured in a high time-resolution of few
microseconds. In contrast, the sampling rate of conven-
tional cameras is normally 30 ms which is significantly
higher than event-based cameras. Therefore, our pro-
posed event-driven sensor demonstrates shorter latency
than what could be achieved by conventional cameras.

2) Event-driven cameras have a lower power consumption
compare to the conventional camera. Moreover, captur-
ing and processing images require high computational
power and memory requirements whereas neuromorphic
cameras provide intensity changes in binary representa-
tion.

3) The proposed sensor does not require any markers inside
the silicone membrane. Therefore, the fingertip can be
easily changed by replacing a new transparent silicone
membrane.

In addition, our proposed TDNN solution for the event-
based force estimation seems to have a much lower hysteresis

than the piezoresistive force sensor, despite the fact that it has
been trained using data from the force sensor.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel event-driven tactile sensor is proposed
to estimate the contact force and classify different materials in
a grasp. A deep TDNN model with time delay of 3 nodes, four
fully-connected hidden layers, and 40 neurons at each layer
is implemented to estimate force measurements. The TDNN
estimates the contact force with the averaged MSE of 0.16 N
during the grasping and the releasing phases of an unseen grip.
Moreover, a time-series GP model is developed which achieves
the averaged MSE of 0.17 N. The results indicate a promising
relation between the triggered events and the contact force
variation, especially if one takes into account that the source
of the estimated errors may come from the hysteresis of the
piezoresistive force sensor that was used to provide the ground
truth.
Forty-eight experiments are performed on four different mate-
rials with a similar dimension and different Young’s modulus.
A multilayer neural network is suggested to classify materials
in a single grasp using events only. The proposed network
achieves a accuracy of 79.17% on the completely unseen
experiments, almost 30% higher accuracy compared to the
piezoresistive sensor.
For future work, we aim to increase the sensor sensitivity
and accuracy by performing advanced time-series machine
learning algorithms and using different types of force sensor
with a higher accuracy and sensitivity.
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