
NatCSNN: A Convolutional Spiking Neural
Network for recognition of objects extracted

from natural images

Pedro Machado1[0000−0003−1760−3871], Georgina Cosma1[0000−0002−4663−6907],
and T.M. McGinnity1[0000−0002−9897−4748]

Computational Neurosciences and Cognitive Robotics Group
School of Science and Technology
Nottingham Trent University
Nottingham, United Kingdom

{pedro.baptistamachado,georgina.cosma,martin.mcginnity}@ntu.ac.uk

Abstract. Biological image processing is performed by complex neural
networks composed of thousands of neurons interconnected via thou-
sands of synapses, some of which are excitatory and others inhibitory.
Spiking neural models are distinguished from classical neurons by being
biological plausible and exhibiting the same dynamics as those observed
in biological neurons. This paper proposes a Natural Convolutional Neu-
ral Network (NatCSNN) which is a 3-layer bio-inspired Convolutional
Spiking Neural Network (CSNN), for classifying objects extracted from
natural images. A two-stage training algorithm is proposed using unsu-
pervised Spike Timing Dependent Plasticity (STDP) learning (phase 1)
and ReSuMe supervised learning (phase 2). The NatCSNN was trained
and tested on the CIFAR-10 dataset and achieved an average testing
accuracy of 84.7% which is an improvement over the 2-layer neural net-
works previously applied to this dataset.

Keywords: SNN, CSNN, bio-inspired neural networks, object classifi-
cation, unsupervised learning, supervised learning, ReSuMe, STDP

1 Introduction

The mammalian visual cortex is responsible for performing advanced, com-
plex and low-power (about 20 watts [13]) image processing. Neuromorhpic archi-
tectures (neuro-biological architectures that can run bio-inspired models of neu-
ral systems) have evolved as a consequence of the rapid miniaturisation of elec-
tronic components, lithography manufacturing process and the developments of
cognitive applications [1]. In particular, Spiking Neural Networks (SNN), which
are characterised by displaying similar spike-timing encoding and plasticity as
real neurons [5], offer a sophisticated low-power and high performance computa-
tional processing paradigm. However, the use of SNN for classification of natural
images with a high accuracy remains a complex task on typical machine/deep
learning benchmarks such as CIFAR-10 [8].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/210586632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 P. Machado et al.

This paper proposes NatCSNN, a bio-inspired Convolutional Spiking Neu-
ral Network for natural image object classification. The proposed architecture,
includes a two phase training approach where: in phase 1, unsupervised Spike
Timing Dependent Plasticity (STDP) learning is used for training the middle
layers; and in phase 2, the ReSuMe supervised learning algorithm is used to train
the Layer 3 neurons. A systematic method for searching for the initial synaptic
weights is also proposed.

The paper is structured as follows: the literature review is discussed in sec-
tion 2, the NatCSNN architecture is discussed in section 3, the experimental
training of the NatCSNN is discussed in section 4, the results are shown in
section 5 and a discussion and future work are provided in section 6.

2 Literature review

The majority of previous works have focused on conventional CSNN and the
MNIST dataset. Wang et al. [20], proposed a similarity search method using a
forward SNN with successively connected encoding. The authors claim an accu-
racy of 100%, 100% and 92% for noise levels of 5%, 20% and 40% respectively
when tested on the MNIST dataset [11]. The authors proposed a new method for
training multi-layer spiking convolution neural networks (CSNN) incorporating
supervised and unsupervised learning. The training process includes two com-
ponents for unsupervised feature extraction and supervised classification using
adapted versions of the Spike-Timing Dependent Plasticity (STDP). Tavanaei
et al. [19] claim that their proposed CSNN achieved an accuracy of 98.60% on
the MNIST dataset [11]. Kheradpisheh et al. [6], designed an STDP-based spik-
ing deep CSNN composed of one Difference of Gaussians (DoG) layer (temporal
encoding) three convolutional layers and three pooling layers, using unsuper-
vised STDP learning. The paper proposes an eight layer architecture SNN and
claim an accuracy of 98.4% when tested in the MNIST dataset. Kulkarni et
al. [10], proposed a three layer architecture trained with a supervised learning
approach using the spike triggered Normalised Approximate Descendent algo-
rithm with an accuracy of 98.17% on the MNIST dataset. In [12], a deep spik-
ing CSNN (SpiCNN) composed of a hierarchy of stacked convolution layers, a
spatial-pooling layer and a fully-connected layer is proposed. The SpiCNN was
trained using unsupervised STDP with an accuracy of 91.1% on the MNIST
dataset.

Relevant literature on CSNNs [6, 10, 12, 19, 20] for image processing have
in common: (i) multiple-layer CSNNs, (ii) use of the Leaky-integrate-and-fire
(LIF) neuron model, (iii) use of unsupervised/supervised STDP (or an STDP
adaptation) for training and (iv) all of the relevant work was tested on the
MNIST hand-written black-and-white dataset.

The MNIST dataset is one of the commonly used benchmark datasets, com-
posed only of simple black-and-white images (containing hand-written numbers
from 0 to 9). In contrast, the CIFAR-10 [8] dataset is composed of 50,000 coloured



NatCSNN for recognition of objects... 3

natural images with natural backgrounds and thus represents a sigificantly more
challenging test for image processing algorithms.

More recent works, Sengupta et al. [16] and Hu et al. [4] have proposed hy-
brid architectures by combining classical deep learning architectures with spiking
neural networks. Sengupta et al. [16] proposed an ANN to SNN conversion tech-
nique that is claimed to outperform state-of-the-art techniques, reporting an
12.54% error on the CIFAR-10 dataset when combined with Residual network
architectures. Hu et al. [4], proposed a shortcut normalisation mechanism to con-
vert continued-valued activation’s to match firing rates in SNN; Their proposed
architecture receives the continued-valued activation’s from a Residual Network
and converts them into spiking rates which are fed into a spiking residual network
architecture. Their experiemnts achieved an accuracy of 92.85% when tested on
the CIFAR-10 dataset. Despite the accuracy obtained on the CIFAR-10 using
these hybrid architectures, the proposed architectures are all composed of several
layers and none of the architectures uses biological spiking neuron parameters,
reducing therefore the bio-plausibility of the proposed architectures.

Other work published on the CIFAR-10 has utilised classical deep neural
networks. Krizhevsky et. al. [9] describe how to train a two-layer convolutional
Deep Belief Network(DBN) on the CIFAR-10 and obtained 78.90% accuracy
using a 2 layer architecture similar to the NatCSNN proposed in this paper.
In [18], a 32-layer network, designated as highway networks inspired in Long
Short-Term Memory (LSTM), is proposed and the authors reported an accuracy
of 92.40% on the CIFAR-10 dataset. Springenberg et al. [17], proposed a 10-
layer Network, designated as All-CNN, with an accuracy of 92.40% without
data augmentation on the CIFAR-10 dataset.

The NatCSNN proposed in this paper is a compact, low-layer count (3) bio-
inspired architecture, target at processing natural images where the network
must perform the task of extracting features from CIFAR-10. It is implemented
as a multi-hierarchical SNN composed of three SNN layers connected via exci-
tatory and inhibitory synapses and trained using unsupervised STDP learning
(layers 1 and 2) and supervised learning using ReSuMe (details are presented in
section 3). This paper also proposes a systematic method to search for the initial
synaptic weights and a 2-phase training approach, using a mixture of unsuper-
vised and supervised learning. NatCSNN was compared to two adaptations of
the architecture proposed in [8].

3 NatCSNN architecture

3.1 Spiking Neuron Model

The neuron model used in this work is based on the Leaky-Integrate-and-
Fire (LIF) neuron model was selected because it is considered to be one of the
simplest spiking neuron models describing the biological neuronal cells dynamics
[3]. More complex models with higher computational requirements are available
(e.g. Izhikevich [5]) but demand higher computational requirements. The LIF



4 P. Machado et al.

dynamics can be represented as a RC (Resistance, Capacitance) electronic circuit
as depicted in picture Figure 1.

Fig. 1: Equivalent electronic circuit of the leaky-integrate-and-fire neuron model. Let
a current I(t) charge the RC circuit. Spikes are generated when the voltage Vm(t) at
the terminals of the capacitance is greater or equal to the threshold Vth making Vm(t)
dropping to EL (reset voltage) during a tref (refractory period).

The LIF neuron model is governed by the equation 1.

τm
δVm
δt

= −Vm +RI (t) (1)

where τm = RC is the time constant, R the membrane resistance, C the
membrane capacitance, Vm(t) the membrane voltage and I(t) is the current at
time t. When Vm(t) reaches the Vth (threshold voltage), the membrane voltage
is set to the reset membrane potential (Vm(t) = EL).

Equation 1 can be improved using the multi-timescale adaptive threshold
predictor and non-resetting leaky integrator (MAT) as described in [7]. MAT
provides an adaptive threshold and prevents the neuron from over-spiking when
exposed to high continuous currents. The adaptive threshold is described by
equations 2 and 3 and taken from the implemented version of the MAT in the
NEST framework [14].

Vth(t) =
∑
k

H(t− tk) + EL (2)

where

[h]H(t) =

L∑
j=1

w
(−tτmj)
j (3)

where Vth(t) is the threshold voltage in time t, tk is the kth spike time, L
is the number of threshold time constants, τmj (j = 1, ..., L) are the jth time
constants, wj (j = 1, ..., L) are the weights of the jth time constants, and EL is
the reset membrane potential value [7].



NatCSNN for recognition of objects... 5

The MAT model, implemented in NEST1, was used in our work as the neuron
model for providing the desired adaptive threshold dynamics.

3.2 Layers and synaptic connectivity

The input layer receives an image of n rows × m columns (n and m ∈ Z);
Layer 1 performs the encoding of the pixel intensity values to spike events, Layer
2a extracts features, Layer 2b provides lateral inhibition, Layer 3 classifies the
object type. The proposed architecture is shown in Figure 2.

Fig. 2: NatCSNN with (i) n×m (n and m ∈ Z) (image input followed by the three
processing layers. Layer 1: Encoding of pixel intensity values to spike events, Layer 2a:
features extraction, Layer 2b: lateral inhibition and Layer 3: classification layer.

Input images to the NatCSNN
Each image is converted into grayscale, normalised (pixel intensity values in

the range of 0.0 up to 1.0) and its pixel intensity value converted into spike train
events. The image pixel intensity values are feed to the Layer 1 neurons using
a one-to-one (1:1) connectivity. Each pixel intensity value is converted into a
current given by equation 4

[h]I(i, j) = p(i, j).IK (4)

where I(i,j) is the current for a the neuron in row i and column j, p(i,j) is
the pixel intensity value in row i and column j and IK is a current constant for
producing the desirable spike rate.

Layer 1: Pixel intensity values encoding Each neuron, in Layer 1, receives a
current proportional to a pixel intensity value given by equation 4. The frequency
of spikes is linearly proportional to the pixel intensity value and therefore a
neuron will spike up to 10 times during a simulation time step if the pixel
intensity value is near the maximum (1.0) or none if near the minimum value
(0.0). The neurons in Layer 1 connect to the neurons in Layer 2a (features
extraction group) via all-to-all connections.

1 retrieved from https://nest-simulator.readthedocs.io/en/latest/models/neurons/
integrate and fire/iaf psc alpha.html?highlight=iaf psc alpha, last accessed on the
26/03/2019

https://nest-simulator.readthedocs.io/en/latest/models/neurons/integrate_and_fire/iaf_psc_alpha.html?highlight=iaf_psc_alpha
https://nest-simulator.readthedocs.io/en/latest/models/neurons/integrate_and_fire/iaf_psc_alpha.html?highlight=iaf_psc_alpha


6 P. Machado et al.

STDP synapses are used during phase 1 training to adjust the weights of the
connections between the pre-neurons (Layer 1) to the post-neurons (Layer 2a).
The weights change based on the STDP parameters (detailed in section 4) and
trained on the training dataset of 50,000 images during 5 epochs (runs).

Layer 2: Feature extraction
Layer 2 is composed of 2 groups of neurons, one called the features extraction

group and the other the lateral inhibition group. Layer 2a and Layer 2b have
the same number of neurons, which is 25% of the Layer 1 neurons. Each neuron
in the feature extraction group receives input from all Layer 1 neurons. Each
neuron in the feature extraction group presents its output to a single neuron
of the lateral inhibition group via one excitatory synapse and receives incoming
spike events from all the other neurons in the lateral inhibition group.

STDP synapses are used during phase 1 of training to connect the Layer 2a
neurons (features extraction group) to the Layer 2b neurons (lateral inhibition
group) and vice-versa. The number of neurons in both Layer 2a and 2b is the
same. The weights of Layer 2a and 2b neuron’s synapses change accordingly to
the STDP parameters (detailed in section 4) when trained on the training dataset
of 50,000 images during 5 epochs. The number of epochs was experimentally
obtained and 5 epochs was the value that produced better results. Values above
5 epochs made the synaptic weights to saturate in the maximum weights allowed
for each synapse and values below 5 epochs produced lower accuracy.

Layer 3: Classification Layer 3 is composed of 10 groups (one group per
class) of 10 LIF neurons. Each neuron of the Layer 2a feature extraction group
is connected to all the Layer 3 neurons. The 10 LIF neurons per class are used
to improve the classification accuracy by increasing the resolution.

Layer 3 neurons are only trained in phase 2 training after training the Layer
2 neurons (phase 1 training) during the initial 5 epochs. During phase 2 training,
the synapses of the Layer 2 neurons are converted into static synapses with fixed
weights where the final Phase 1 trained weights are used. During phase 2, the
neurons of the feature extraction group are connected using STDP synapses and
their weights are trained on the training dataset during 5 further epochs. As
before, the 5 epochs were selected experimentally.

ReSuMe [15], a supervised learning algorithm, was used for training the re-
sponse of the Layer 3 neurons. In ReSuMe, teacher signals are used for produc-
ing the desired spike pattern in response to a stimulus [15]. Figure 3 shows the
teacher signal (desired spike pattern) nteach being presented to a neuron npost for
delivering a spike pattern by adjusting the synaptic weight w between the pre-
neuron npre and the post-neuron npost. The learning occurs with modification
of the weights.



NatCSNN for recognition of objects... 7

Fig. 3: ReSuMe learning: (A) Remote supervision. (B) Learning windows [15].

The ReSuMe [15] equations are as follows:

[h]Wex(sex) =

{
Aexe

(−sex
τex

), if sex > 0,

0, if sex ≤ 0,
(5)

Wih(sih) =

{
Aihe

(
−sih
τih

)
, if sih > 0,

0, if sih ≤ 0,
(6)

where Aex, Aih, τex and τih are constants. Aex and Aih are positive in exci-
tatory synapses and negative in inhibitory synapses. In both cases τex and τih
are positive time constants [15].

4 Training the NatCSNN

This section specifies the methodology that was followed for training the
NatCSNN network and evaluating its performance on the CIFAR-10 dataset [8].

The simulation was performed using the NEST (NEural Simulator Tool)
version 2.16.0 [14].

4.1 Building the NatCSNN

The simulation setup included the following steps:
Step 1 - Load dataset to memory: The dataset is loaded to memory and

the images converted to grey-scale. The conversion of the images into grey-scale
reduces substantially (a third) the required number of neurons and synapses.
Grey-scale images were used for reducing the number of spiking neurons and its
synapses.

Step 2 - Convert pixel intensity values to currents: Pixel intensity
values have to be multiplied by a current constant Ik to get a spike pattern
proportional to the pixel intensity value and the spikes are regularly spaced
during the period of 100ms (simulation time-step). Ik was modelled so that a
given neuron spikes up to 10 times over a period of 100ms.

Step 3 - Create the network: The NatCSNN architecture is created as
follows: Layer 1: 1024 neurons (32 rows × 32 columns), Layer 2: 512 neurons
(1024 ÷ 4 × 2 groups), Layer 3: 100 neurons (10 classes × 10 neurons).

Step 4 - Create synaptic connectivity using: L1 to L2 are connected via
all-to-all connectivity, L2a (features extraction group) to L2b (lateral inhibition



8 P. Machado et al.

group) via one-to-one connectivity, L2b to L2a via one-to-(n-1) (all the neurons
with exception of the neuron that is connected to the neuron in L2a) and L2a
to L3 via all-to-all connectivity.

Step 5 - Connect the L2a to L3 neurons: The L2 neurons are connected
to the L3 neurons via all-to-all connections. Each L3 neuron of each class receives
connection of one 10% of the L2a neurons). Overall, the 10 neurons per classifier
receives outputs of of the L2b neurons. Each L3 neurons of a given class connect
to all the other L3 neurons classes via inhibitory synapses.

Step 6 - Set the simulation parameters: The simulation is configured
with a time step of t = 100ms and the neurons with the parameters are as
follows: initial Vm=-70.0 mV, EL = -70.0 mV, Cm = 100.0 pF, τm = 5.0 ms,
τsynex = 1.0 mV, τsynin = 3.0 ms, tref = 2.0 ms, tspike = -1.0 ms, τ1 = 10.0 ms,
τ2=20.0 ms, α1 = 37.0 mV, α2=2.0 mV, ω = -51.0 mV, Vth = -51.0 mV and
Vreset = -70.0 mV.

Training phase 1: During phase 1 training the synapses of L1 to L2a, L2a
to L2b and L2b to L2a are trained using unsupervised STDP with the parameters
listed in table 1. The STDP parameterisation was selected from the parameters
suggested by Gerstner et al. [3] that have been observed in the Visual Cortex
and Hippocampal.

The 50,000 training images of the training batch were presented, one-by-one,
for a period of 100ms (one simulation timestep) to the network in 5 epochs
and during the phase 1 of training the weights were adjusted accordingly to the
STDP rules. The weights were stored, into files, every 500 simulation time steps
(or 50000 ms of simulation).

Training phase 2: The synapses of L1 to L2a, L2a to L2b and L2b to
L2a are converted to static synapses using the weights trained in phase 1. The
excitatory and inhibitory synapses are of STDP type. During Phase 2 training,
the weights of the neurons in Layer 3 STDP synapses are trained using the
ReSuMe algorithm and parameters were set as listed in table 1:

Ten extra neurons (one per class) are used to provide the teaching signals to
the classifier neurons as specified using the ReSuMe algorithm. Each teaching
neuron will only spike when a picture being exposed to the neurons in Layer
1 belongs to that class. The 50,000 training images of the training batch were
presented to the network during 5 epochs and during that period the weights
were adjusted accordingly to the STDP rules and to the teaching signals applied
by the teaching neurons to the Layer 3 classifier neurons.

Testing mode: All the STDP synapses were replaced by static synapses
using the weights trained in phases 1 and 2.

5 Results

The NatCSNN was trained using the 50,000 testing images in two phases,
phase 1, training of the Layer 2 neurons synapses, using unsupervised STDP

2 L1 to L2a neurons
3 from L2a to L2b neurons



NatCSNN for recognition of objects... 9

Table 1: Unsupervised STDP and ReSuMe parameters

Parameter Description unsupervised STDP ReSuMe

Wex initial excitatory weight random(600.0± 10%)2 241.
excitatory synapse random(490.84± 10%)3

Wih initial inhibitory weight random(−100.0± 10%) -120.
inhibitory synapse

τex time constant of short pre-synaptic trace 10. ms 10.0 ms

A+
ex weight of pair potentiation rule of the 0.001 0.001

excitatory synapse

A−
ex weight of pair depression rule of the 0.0005 0.0

excitatory synapse

A+
ih weight of pair potentiation rule of the 0.001 0.001

inhibitory synapse

A−
ih weight of pair depression rule of the 0.0005 0.0

inhibitory synapse

Wmaxex maximum allowed weight of the 1200. 1200.
excitatory synapse

Wmaxih maximum allowed weight of the -1200. 1200.
inhibitory synapse

learning for 5 epochs and phase 2, training of the excitatory and inhibitory
synapses of the layer 3 neurons, using supervised learning using ReSuMe for 5
epochs.

The remaining 10,000 CIFAR-10 images were reserved for testing. One of the
most challenging tasks in spiking neural network simulations is the definition of
the starting weights for the network. In this case we have used the Monte Carlo
algorithm to select the initial weight values for the STDP synapses between the
L2a features extraction group and the L3 neurons. The initial values of the L2a
to L3 synapses is crucial because the selection of a low or high value will impact
on the overall accuracy. The initial value was selected using the Monte Carlo
algorithm. The accuracy of the NatCSNN was improved by using 100 neurons
(10 per classifier) and using the connectivity shown in Table 2. The average
value of the obtained accuracy using the 10 neurons per classifier (100 neurons)
was 84.70% with a standard deviation of 1.579%. All neurons’ action potentials
were reset before exposing the next image to the NatCSNN. Forcing the neurons
to start with the reset voltage is necessary to prevent receipt of an inhibitory
stimulus (i.e. neurons from Layer 2a and Layer 3), which would cause a drop in
membrane action potential to a very low value preventing neurons from spiking
when exposed to the excitatory stimulus. The neuron parameters are the same for
all the neurons. The initial minimum weight of the STDP excitatory synapses
was selected experimentally. Neurons with all-to-all connectivity receive spike
contributions from many neurons and therefore the initial weight must below the
current required to make the neuron spike (see table 1) and below the maximum
value (1200.0 µA, see Table 1) that makes neurons spike constantly.



10 P. Machado et al.

Table 2 compares the performance of NatCSNN with other relevant ap-
proaches. The works in [17], [2] and [9] have tested their methods on the colour
images while the NatCSNN was tested on grey-scale images. To enable a grey-
scale comparison, we have re-implemented CDBN [9] o utilise grey-scale images
and applied it to the CIFAR-10 dataset, because it has the same number of layers
as NatCSNN, resulting in two variants (a) CDBN-ANN 1 with two convolutional
layers followed by a dense layer with 10 neurons and CDBN-ANN 2 with three
convolutional layers followed by a dense layer of 10 neurons. Both CDBN-ANN
1 and CDBN-ANN 2 receive grey images. For a fair comparison the CDBN was
tuned to achieve its highest accuracy. Both the CDBN-ANN 1 and CDBN-ANN2
implementations were trained with 100 epochs. Table 2 shows that the networks

Table 2: Classification accuracy of the NatCSNN compared with other classical CNNs
tested on the CIFAR-10 dataset

Architecture CIFAR-10 accuracy [%] Number of layers images type

All-CNN [17] 92.75 10 Colour

Highway Network [2] 92.40 32 Colour

CDBN [9] 78.90 3 Colour

NatCSNN (grey) 84.70 3 Grey

CDBN-ANN 1 (grey) 80.54 3 Grey

CDBN-ANN 2 (grey) 82.4 4 Grey

Table 3: Classification accuracy of the NatCSNN using 10 neurons per classifier

Class NatCSNN [%] CDBN-ANN 1 [%] CDBN-ANN 2 [%]

airplane 84.005 83 84

automobile 87.021 92 91

bird 86.119 75 74

cat 85.3 67 66

deer 83.436 78 81

dog 83.421 74 78

frog 86.732 73 81

horse 82.502 88 88

ship 83.35 88 88

truck 85.115 87 89

with better accuracy are the ones with more layers and that the NatCSNN has
a better accuracy when compared with the colour CDBN [9], the CDBN-ANN 1
(re-implemented by the authors) and the CDBN-ANN 2 (re-implemented by the
authors). It can be seen that the number of layers and the conversion of colour
to grey-scale images negatively affects the classification accuracy. Therefore, it
will be possible to improve the accuracy of the NatCSNN by adding more layers,
although this would increase the complexity of training with the increase of neu-
ron and its synaptic connectivity. We also note that Table 3 illustrates a more
uniform level of accuracy of NatCSNN across classes, as compared to CDBN.



NatCSNN for recognition of objects... 11

6 Discussion and Future Work

This paper proposes, NatCSNN, a bio-inspired convolutional spiking neural
networks trained and tested on the CIFAR-10 dataset. The CIFAR-10 dataset
was selected because the authors aim to use the target architecture in robotics
applications and processing live images captured by RGB cameras. The pro-
posed architecture incorporates 2 types of learning, namely, phase 1: unsuper-
vised STDP learning for training the synaptic connections between the L1 and
L2a, L2a and L2b, and L2b and L2a; Inhibitory synapses are used to connect
the neurons from L2b to L2a for providing lateral inhibition and phase 2: Re-
SuMe is used for training the synaptic connections between the L2a and L3,
and intra L3 neurons connectivity. LIF neurons with adaptive threshold were
used to inhibit neurons from spiking with very high spike rates when exposed
to very high currents. The CIFAR-10 pixel intensity values were normalised and
the current constant Ik was tuned for producing a spike rate proportional to
the pixel intensity value. Also, the Monte Carlo algorithm was used for selecting
the initial STDP weights for synapses connecting L2a and L3 neurons. Static
synapses were used during the testing phase and the trained weights loaded into
those synapses. Only the spike rate was used to select the correct class using
the winner-takes-all. The NatCSNN was trained on the 50,000 training batch
and tested on the 10,000 testing batch of the CIFAR-10 dataset. The NEST-
simulator was used to implement the NatCSNN because, it is currently being
used by the Neurorobotics platform for emulating bio-inspired neural networks.
The main contributions of this paper are (a) a 3-layer bio-inspired convolutional
neural network architecture designed to process natural images with no pre-
processing required that exhibits a better accuracy than 3-layer classical CNN
or ANN. (b)the use of combination of unsupervised learning for training the
middle layers, (c)incorporation of lateral inhibition for reducing the background
interference and (d) a flexible architecture that enables the possibility of process-
ing live captured images (during test mode). Future work, includes expanding
the current work to live-captured images and process such images on-the-fly.
A more detailed analysis of the pre-trained weights and a pruning approach for
synapses/neurons that have no influence over the simulation (weights not trained
during the training phases) will be conducted. The adaptation of the NatCSNN
to work with coloured images may include the use of hybrid approaches where
the convolution layers could be replaced by efficient computer vision and deep
learning approaches. Further testing under different test conditions (e.g. different
light conditions, different image size, more objects per scene, etc.) will also be
conducted. Finally we intend to apply the NatCSNN in both robotic simulation
(i.e. Gazebo) and in real robotic applications.

References

1. Chen, Y., Li, H.H., Wu, C., Song, C., Li, S., Min, C., Cheng, H.P.,
Wen, W., Liu, X.: Neuromorphic computing’s yesterday, today, and tomor-
row an evolutional view. Integration 61(July 2017), 49–61 (mar 2018).



12 P. Machado et al.

https://doi.org/10.1016/j.vlsi.2017.11.001
2. Coates, A., Carpenter, B., Case, C., Satheesh, S., Suresh, B., Wang, T.,

Wu, D.J., Ng, A.Y.: Text Detection and Character Recognition in Scene
Images with Unsupervised Feature Learning. In: 2011 International Confer-
ence on Document Analysis and Recognition. pp. 440–445. IEEE (sep 2011).
https://doi.org/10.1109/ICDAR.2011.95

3. Gerstner, W., Kistler, W.M., Naud, R., Paninski, L.: Neuronal Dynamics: From
Single Neurons to Networks and Models of Cognition. Cambridge University Press,
New York, NY, USA (2014)

4. Hu, Y., Tang, H., Wang, Y., Pan, G.: Spiking Deep Residual Network (2018)
5. Izhikevich, E.: Which Model to Use for Cortical Spiking Neurons?

IEEE Transactions on Neural Networks 15(5), 1063–1070 (sep 2004).
https://doi.org/10.1109/TNN.2004.832719

6. Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based
spiking deep convolutional neural networks for object recognition. Neural Networks
99, 56–67 (mar 2018). https://doi.org/10.1016/j.neunet.2017.12.005

7. Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model
equipped with a multi-timescale adaptive threshold. Frontiers in Computational
Neuroscience 3, 9 (2009). https://doi.org/10.3389/neuro.10.009.2009

8. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.
(2009)

9. Krizhevsky, A.: Convolutional deep belief networks on cifar-10 (2010)
10. Kulkarni, S.R., Rajendran, B.: Spiking neural networks for handwritten digit recog-

nitionSupervised learning and network optimization. Neural Networks 103, 118–
127 (jul 2018). https://doi.org/10.1016/j.neunet.2018.03.019

11. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
12. Lee, C., Srinivasan, G., Panda, P., Roy, K.: Deep Spiking Convolutional Neural

Network Trained with Unsupervised Spike Timing Dependent Plasticity. IEEE
Transactions on Cognitive and Developmental Systems 8920(c), 1–1 (2018).
https://doi.org/10.1109/TCDS.2018.2833071

13. Ling, J.: Power of a Human Brain - The Physics Factbook (2001)
14. Linssen, C., Peyser, A., et al.: Nest 2.16.0 (neural simulation tool). Zenodo 2(4),

1430 (2018). https://doi.org/10.4249/scholarpedia.1430
15. Ponulak, F., Kasiski, A.: Supervised Learning in Spiking Neural Networks with Re-

SuMe: Sequence Learning, Classification, and Spike Shifting. Neural Computation
22(2), 467–510 (2010), pMID: 19842989

16. Sengupta, A., Ye, Y., Wang, R., Liu, C., Roy, K.: Going Deeper in Spiking
Neural Networks: VGG and Residual Architectures 13(March), 1–10 (2018).
https://doi.org/10.3389/fnins.2019.00095

17. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: The all convolutional net pp. 1–14 (2014)

18. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training Very Deep Networks pp. 1–9
(jul 2015). https://doi.org/10.1109/CVPR.2016.90

19. Tavanaei, A., Kirby, Z., Maida, A.S.: Training Spiking ConvNets by STDP and
Gradient Descent. In: 2018 International Joint Conference on Neural Networks
(IJCNN). pp. 1–8. IEEE (jul 2018). https://doi.org/10.1109/IJCNN.2018.8489104

20. Wang, Z., Ma, Y., Dong, Z., Zheng, N., Ren, P.: Spiking Locality-Sensitive
Hash: Spiking Computation with Phase Encoding Method. In: 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN). pp. 1–7. IEEE (jul 2018).
https://doi.org/10.1109/IJCNN.2018.8489085

https://doi.org/10.1016/j.vlsi.2017.11.001
https://doi.org/10.1109/ICDAR.2011.95
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.3389/neuro.10.009.2009
https://doi.org/10.1016/j.neunet.2018.03.019
https://doi.org/10.1109/TCDS.2018.2833071
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/IJCNN.2018.8489104
https://doi.org/10.1109/IJCNN.2018.8489085

	NatCSNN: A Convolutional Spiking Neural Network for recognition of objects extracted from natural images

