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Abstract

The thesis begins with a brief summary of linear programming, three methods for

solving linear programs (the simplex, the affine scaling and the primal-dual methods)

and a brief review of desirability and lower previsions. The first contribution is to

improve these algorithms for efficiently solving these linear programming problems

for checking avoiding sure loss. To exploit these linear programs, I can reduce their

size and propose novel improvements, namely, extra stopping criteria and direct

ways to calculate feasible starting points in almost all cases. To benchmark the

improvements, I present algorithms for generating random sets of desirable gambles

that either avoid or do not avoid sure loss.

Overall, the affine scaling and primal-dual methods benefit from the improve-

ments, and they both outperform the simplex method in most scenarios. Hence, I

conclude that the simplex method is not a good choice for checking avoiding sure

loss. If problems are small, then there is no tangible difference in performance be-

tween all methods. For large problems, the improved primal-dual method performs

at least three times faster than any of the other methods.

The second contribution is to study checking avoiding sure loss for sets of de-

sirable gambles derived from betting odds. Specifically, in the UK betting market,

bookmakers usually provide odds and give a free coupon, which can be spent on



betting, to customers who first bet with them. I investigate whether a customer

can exploit these odds and the free coupon in order to make a sure gain, and if that

is possible, how can that be achieved. To answer this question, I view these odds

and the free coupon as a set of desirable gambles and present an algorithm to check

whether and how such a set incurs sure loss. I show that the Choquet integral and

complementary slackness can be used to answer these questions. This can inform

the customers how much should be placed on each bet in order to make a sure gain.

As an illustration, I show an example using actual betting odds in the market

where all sets of desirable gambles derived from those odds avoid sure loss. However,

with a free coupon, there are some combinations of bets that the customers could

place in order to make a guaranteed gain.

I also consider maximality which is a criterion for decision making under un-

certainty, using lower previsions. I study two existing algorithms, one proposed by

Troffaes and Hable (2014), and one by Jansen, Augustin, and Schollmeyer (2017).

For the last contribution in the thesis, I present a new algorithm for finding max-

imal gambles and provide a new method for generating random decision problems

to benchmark these algorithms on generated sets.

To find all maximal gambles, Jansen et al. solve one large linear program for

each gamble, while in Troffaes and Hable, and also in our new algorithm, this can be

done by solving a larger sequence of smaller linear programs. For the second case,

I apply efficient ways to find a common feasible starting point for this sequence of

linear programs from the first contribution. Exploiting these feasible starting points,

I propose early stopping criteria for further improving efficiency for the primal-dual

method.

For benchmarking, we can generate sets of gambles with pre-specified ratios of

maximal and interval dominant gambles. I investigate the use of interval dominance

at the beginning to eliminate non-maximal gambles. I find that this can make the

problem smaller and benefits Jansen et al.’s algorithm, but perhaps surprisingly,
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not the other two algorithms. We find that our algorithm, without using interval

dominance, outperforms all other algorithms in all scenarios in our benchmarking.
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Chapter 1

Introduction

1.1 Contributions and outline

Consider a situation where we want to model uncertainty about an experiment.

We usually build a statistical model and make a decision under uncertainty based

on information that we have. If a complete probability measure on the state of

nature can be specified, then we can simply model uncertainty through probability

measures. However, we often face difficulties such as incomplete information or a

contradiction between expert opinions. Therefore, we may not be able to specify a

complete probability measure. In that case, we might consider other ways to express

our beliefs.

One way to deal with such difficulties is expressing our beliefs using gambles. A

gamble represents an uncertain reward (for instance, monetary) that depends on the

outcomes of an event. To express our beliefs about the outcomes of the experiment,

we can simply state a collection of gambles that we are willing to accept. A set of

gambles that we accept is called a set of desirable gambles, which can handle partial

information in a more robust way.

We can also model uncertainty about an experiment via acceptable buying (or

1



1.1. Contributions and outline 2

selling) prices for gambles called lower previsions. The study of lower previsions can

be traced back to several early works , for example, Boole [3], de Finetti [5] and

Smith [36]. Based on these works, Williams [48] generalised the idea of previsions and

gave rationality criteria for lower previsions based on axioms of acceptability. The

concept of lower previsions in his work can be seen as lower bounds on expectation.

The theory of lower previsions was developed further by Walley [46].

Since we can choose any gamble to be desirable, there may be some combinations

of desirable gambles that result in a certain loss. In this case, our set of desirable

gambles is not reasonable. To prevent this situation, Williams [48, 49] gave a full

axiomatic treatment for sets of desirable gambles, and formalized a consistency

principle called avoiding sure loss. This concept can be applied to lower previsions

as well. We will briefly review desirability and lower previsions in chapter 6.

We can verify whether a set of desirable gambles avoids sure loss by solving a

linear programming problem [46, p.151] (see section 7.1), which was further studied

and extended by various authors [30, 47]. In the literature, to the best of our

knowledge, there has been little to no discussion about which algorithm should

be used to solve linear programming problems for avoiding sure loss. Walley [46,

p. 511] suggested that Karmarkar’s method may be useful for solving large problems.

However, these days Karmarkar’s method is considered obsolete in favour of other

interior point methods, e.g. the affine scaling and the primal-dual methods [1].

Among several linear programming algorithms, the simplex method is one of the

easiest and most commonly used. The affine scaling method is an improved version

of Karmarkar’s method. The primal-dual method is arguably the best interior-point

algorithm. To understand more about these methods, in chapter 3, we study the

simplex method, in chapter 4, we look at the affine scaling, and in chapter 5, we

study the primal-dual method.

The first contribution in this thesis is a comparative study and analysis of how
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we can solve linear programs for checking avoiding sure loss most effectively by these

three methods. To do so, in chapter 7, we first exploit the structure of this linear

program and its dual. We slightly reduce the size of the linear program and pro-

pose two improvements to the three methods, namely, an extra stopping criterion

to detect unboundedness and a direct way to calculate the feasible starting points,

which therefore can reduce the effort required in the pre-solve phase of some of

these algorithms. We also discuss in more detail both the advantages and disad-

vantages of each method for checking avoiding sure loss. For benchmarking these

improvements, in chapter 8, we provide algorithms that generate random sets of de-

sirable gambles that either avoid or do not avoid sure loss and compare the impact

of our improvements on these three methods. We present results and discussion in

chapter 9.

Next, we move to another contribution which is presented in chapter 10, where we

study sets of desirable gambles derived from betting odds and free coupons, and then

check avoiding sure loss. Specifically, in the UK betting market, bookmakers usually

provide odds and give a free coupon, which can be spent on betting, to customers

who first bet with them. To predict the outcome of a match, the bookmaker may face

some difficulties as mentioned before, for example, a lack of data (e.g. Manchester

United has never played with Leeds United during last five years), limited football

expert opinion, or even contradicting information from different football experts.

These issues can also be handled by using sets of desirable gambles. In this case,

the bookmaker can model his belief about this outcome by stating a collection of

gambles that he is willing to offer.

A bookmaker’s set of desirable gambles avoids sure loss if there are no com-

binations of desirable gambles that result in a sure loss. Therefore, there is no

combination of bets from which customers can make a guaranteed gain. In contrast,

if the set does not avoid sure loss, then there is a combination of bets that customers

can exploit to incur a sure gain.
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In addition to avoiding sure loss, the bookmakers also want to entice new cus-

tomers. There are several techniques that bookmakers can use to encourage cus-

tomers to bet with them. Some bookmakers may offer greater betting odds than

others as greater odds imply a greater payoff to the customers. Another technique

is to offer a free coupon which is a stake that customers can spend on betting. We

view the free coupon as a part of a desirable gamble.

Naturally, bookmakers do not want customers to bet on a combination of dif-

ferent odds and free coupons that incurs a guaranteed profit. Therefore, from the

bookmaker’s point of view, they would like to check whether sets of desirable gam-

bles derived from different odds and free coupons avoid sure loss or not. On the

other hand, in theory, a customer may be interested in the case where the book-

maker’s set of desirable gambles does not avoid sure loss, because then the customer

can make a guaranteed profit. In that case, a customer may want to find a strategy

of bets which results in the best possible sure gain.

Several authors study how customers can exploit betting odds and free bets in

order to find strategies that can make a profit. For example, Walley [46, Appendix

I] and Quaeghebeur et al. [31] study applications of sets of desirable gambles on

sports; Milliner et al. [23], Schervish et al. [35], Vlastakis et al. [45] directly exploit

betting odds, whilst Emiliano [6] takes free bets into account. Emiliano [6] studies

the case of only two possible outcomes, and allows cooperation between customers

against bookmakers. In this thesis, we generalise it to any finite number of possible

outcomes, but we only consider a single customer. We view betting odds and free

coupons as a set of desirable gambles and check whether such a set avoids sure loss

or not. If the set does not avoid sure loss, then we show exactly how a customer

can bet in order to make a sure gain.

For this specific problem, instead of solving a linear programming problem for

checking avoiding sure loss, we can check avoiding sure loss via the natural extension
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which is a tool for deductive inference in desirability [24, p. 40]. In this case, we

can compute the natural extension through the Choquet integral or through solving

a linear program where the optimal value is equal to the natural extension. In

the case of not avoiding sure loss, we show that we can obtain a strategy that

the customer can bet on to make a guaranteed gain by using the Choquet integral

and complementary slackness conditions. We also find optimal solutions of the

corresponding pair of dual linear programming programs without directly solving

them. As an illustration, we show that for some actual betting odds in the market,

all sets of desirable gambles derived from those odds avoid sure loss. However, with

a free coupon, there are some combinations of bets that the customer could make

in order to make a guaranteed gain.

Finally, we turn our attention to decision making with lower previsions. Suppose

that a subject must choose from a set of possible decisions, where each decision leads

to an uncertain reward, depending on her decision and on the state of nature revealed

after the decision. Again, the reward could be anything, for example, money, food,

or a lottery ticket. For simplicity, we assume that rewards are expressed on a utility

scale. In this way, we can view an uncertain reward, and thereby, each decision, as

a gamble.

Naturally, the subject would like to choose gambles that lead to the best possible

reward. Given a set of gambles, the subject may have some criteria to eliminate

some gambles in the set, and the set of all remaining gambles is called an optimal

set.

Maximality [46, §3.9.1-3.9.3, pp. 160-162] and interval dominance [51, §2.3.3, pp.

68-69] are well-known decision criteria induced by partial orders corresponding to

lower previsions [38]. Several authors, for example, Jansen et al. [13], Kikuti et al.

[17] and Troffaes and Hable [40, p. 336], propose algorithms for finding maximal

gambles. Specifically, Jansen et al. [13] propose an algorithm that can verify whether
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a gamble is maximal by solving a single linear program. In contrast, to check

maximality of each gamble by algorithms proposed in Kikuti et al. [17] and Troffaes

and Hable [40, p. 336], one has to evaluate the sign of the lower prevision of several

gambles. This implies that we have to solve several smaller linear programming

problems [40, p. 331].

Troffaes and Hable [40, Algorithm 16.4, p. 336] present an incremental algorithm

where once some maximal gambles in the sets are identified, we should compare the

remaining gambles against those maximal gambles first. Additionally, Troffaes and

Hable [40, p. 336] suggest that sorting all gambles in advance, e.g. by expecta-

tion, might help the algorithm to perform better. Incorporating this suggestion, we

present a new algorithm for finding maximal gambles and benchmark these different

approaches by conducting an extensive simulation study.

Linking to the first contribution, we use the primal-dual method, which is partic-

ularly suitable when working with lower previsions as it can quickly obtain feasible

starting points, to solve these linear programs. In addition, exploiting the fact that

the primal-dual method solves both the primal and dual simultaneously, we propose

early stopping criteria to determine more quickly the sign of lower previsions.

Since all maximal gambles are also interval dominant, if a gamble is not interval

dominant, then it is also not maximal [38]. So, Troffaes [38] suggested to apply

interval dominance first in order to eliminate non-maximal gambles. In the case

that most gambles are not interval dominant, this can eliminate many non-maximal

gambles early on. Therefore, in addition to compare the above mentioned algorithms

for finding maximal gambles, we perform these algorithms with and without applying

interval dominance at the beginning.

The contributions of improving and benchmarking algorithms for finding max-

imal gambles are as follows. We propose a new algorithm for finding maximal

gambles in chapter 11 and compare its performance to the two algorithms proposed
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by Jansen et al. [13] and Troffaes and Hable [40, p. 336] in chapter 12. For the

algorithm in Troffaes and Hable [40, p. 336], and also for our new algorithm, we

solve a sequence of linear programs by the primal-dual method, as we can easily

obtain feasible starting points and early stopping criteria can be implemented in the

method. For benchmarking, we present an algorithm for generating sets of gambles

which have a precisely predetermined number of maximal and interval dominant

gambles. We perform these algorithms on generated sets and then present results

and discussion.

Finally, chapter 13 concludes the thesis. An overview of the structure of the

thesis is given in the diagram in fig. 1.1.
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(chapter 1)
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Figure 1.1: Flow diagram: the structure of the thesis.



Part I

Basic concepts

9



Chapter 2

Linear programming and duality

As we mentioned before, one way to check avoiding sure loss is to solve a linear

programming problem. To study linear programming problems for checking avoiding

sure loss in chapter 7, we need to understand linear programming problems and how

to solve them.

In this chapter, we first explain linear programming problems and study some

relations between primal and dual problems including duality theory and comple-

mentary slackness. These relations will be used when we study two interior point

methods: the affine scaling and the primal-dual methods in chapters 4 and 5. We

will also use complementary slackness again in chapter 10 where we study betting

odds and free coupons.

2.1 Elements of linear programming problems

A linear programming problem is a problem of optimising a linear function subject

to constraints of linear equalities and linear inequalities. Since maximising c>x is

equivalent to minimising −c>x, it is sufficient to consider only minimising the linear

10
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function. We can write every problem in standard form as in eq. (P):

min c>x subject to Ax = b, x ≥ 0, (P)

where A ∈ Rm×n with rank m and m ≤ n, x, c ∈ Rn and b ∈ Rm. Note that if a

constraint is not in the from of equality, for example,

a1x1 + a2x2 + · · ·+ anxn ≤ b1, (2.1)

then we can add non-negative variable, s1, which is called a slack variable, to make

this constraint become an equality constraint:

a1x1 + a2x2 + · · ·+ anxn + s1 = b1. (2.2)

We assume that A has linearly independent rows (i.e. rank A = m). If not, say

A3 = λ1A1 + λ2A2 for λ1, λ2 > 0, then either λ1b1 + λ2b2 = b3 and hence we remove

the third row from A and b or λ1b1 + λ2b2 6= b3 and hence there is no solution for

this linear programming problem.

Definition 1. A vector x is called a feasible solution if x satisfies Ax = b and x ≥ 0.

The collection of all feasible solutions is called a feasible set, namely, F = {x :

Ax = b, x ≥ 0}. A linear programming problem is called feasible if there exists a

feasible solution; otherwise, it is an infeasible problem.

Definition 2. The problem (P) is called unbounded if for all λ ∈ R, there exists a

feasible solution x such that c>x ≤ λ.

Definition 3. An optimal solution x∗ is a feasible solution that achieves the optimal

value of the objective function, and c>x∗ is called the optimal value.

As we assume that A has linearly independent rows, we can define solutions to
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a linear programming problem as follows.

Definition 4. A basis B is a collection of m of the n variables for which the

corresponding m columns of A are linearly independent. If a variable is in the

basis, then it is called a basic variable; otherwise it is called a non-basic variable.

Definition 5. A basic solution is a vector x such that Ax = b and all of the n−m

non-basic variables are zero. In addition, if x ≥ 0, then x is called a basic feasible

solution.

Note that every constraint is either a linear equality or a linear inequality which

forms a feasible half-space or plane. These feasible half-space and planes are convex.

The feasible set which is the intersection of these convex sets is also convex.

Theorem 6. [33, p.40] Let F = {x : Ax = b, x ≥ 0}. The point x is an extreme

point of F if and only if x is a basic feasible solution of the problem (P).

In other words, basic feasible solutions are precisely the extreme points of the

feasible region. The fundamental theorem of linear programming is presented as

follows:

Theorem 7. [20, p.24] If a linear programming problem has an optimal solution,

then an optimal solution can be found at an extreme point.

Definition 8. If a linear programming problem has basic feasible solutions with

n−m+ 1 or more zero elements, then the problem is called degenerate. If all basic

feasible solutions are zero (this happens when b = 0), then the linear programming

problem is called fully degenerate.

In the case of fully degenerate problems, their feasible region are cones, and

therefore have only one extreme point, namely, the origin. As we will see later

chapter 7, one way to check avoiding sure loss is to solve a fully degenerate problem.

The following lemma is useful for finding the optimal value of a fully degenerate

problem.
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Lemma 9. (A generalised version of [44, p. 42, exercise 3.4].) The linear program-

ming problem

min c>x subject to Ax ≥ 0 (2.3)

either has optimal value equal to zero, or is unbounded.

Proof. We will show that this linear program has an optimal value that is either zero

or unbounded in two steps. We first show that zero is always a feasible value for the

linear program. This means that the optimal value of this problem must be less or

equal to zero. Next, we show that if zero is not optimal, then the problem must be

unbounded. Consequently, we conclude that either the optimal value of this fully

degenerate linear programming problem is zero or the problem is unbounded.

1. We see that x = 0 is a feasible solution of eq. (2.3). Therefore, c>x = 0 is a

feasible value for this linear program.

2. Suppose the linear program is feasible for some x∗ such that c>x∗ = α < 0.

Consider any β < 0. Since β
α
> 0 , we can multiply Ax ≥ 0 with β

α
. So,

β
α

(Ax∗) = A(β
α
x∗) ≥ 0. So, this fully degenerate problem is feasible for x = β

α
x∗

with corresponding value β for the objective function. Since we can make β

arbitrarily negative, the problem is unbounded.

Lemma 9 shows that, for fully degenerate problems, if there is a feasible solution

x such that c>x < 0, then the problem is unbounded. Therefore, in our algorithms,

we can stop early as soon as we find a negative value.
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2.2 Duality theory

Duality is one of the most important concepts for solving linear programming prob-

lems. To start this section, we state a standard form of a dual problem. Then we

study the fundamental relations between a pair of primal and dual problems. These

relations include weak and strong duality theorems and complementary slackness

conditions. These concepts are then used to derive several linear programming

methods, for example, the dual simplex algorithm and interior point methods.

Every linear programming problem (P) has an associate linear programming

problem as in eq. (D):

max b>y subject to A>y + t = c, t ≥ 0, y free. (D)

We usually call (P) the primal problem and (D) the dual problem. This pair of

problems are dual to each other, so we can choose either one of the pair as the

primal problem and the other one becomes its dual problem.

If a pair of problems are feasible, then the primal objective value is always

bounded below by the dual objective value:

Theorem 10. (Weak duality [33, p.70].) If x is a primal feasible solution and y is

a dual feasible solution, then c>x ≥ b>y.

Consequently, we derive the following results from the weak duality theorem:

Corollary 11. [33, p.71]

1. Let x be (P)-feasible and let y be (D)-feasible. If c>x = b>y, then x is (P)-

optimal and y is (D)-optimal.

2. If the (P) problem is unbounded, then the (D) problem does not have a feasible

solution.
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3. If the (D) problem is unbounded, then the (P) problem does not have a feasible

solution.

A stronger result shows that the converse of corollary 11 also holds.

Theorem 12. (Strong duality [33, p.71].)

1. If either of (P) or (D) has a finite optimal solution, then so does the other,

and their optimal values are equal.

2. Let (P) have a feasible solution. Then (D) has no feasible solution if and only

if the objective function of the (P) problem is unbounded.

3. Let (D) have a feasible solution. Then (P) has no feasible solution if and only

if the objective function of the (D) problem is unbounded.

2.3 Complementary slackness

We now look at a relationship between the variables of one linear program and the

constraints of its dual. This relation can be used to find an optimal value of the

variables given the optimal values of the slack variables of the other program.

Suppose that a pair of linear programs are in the form (P) and (D). Let x and

y be feasible solutions of the pair of linear programs. As

Ax− b> = 0 and t = c− A>y, (2.4)
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we see that

c>x− b>y = (c> − y>A)x+ y>(Ax− b>) = t>x. (2.5)

The quantity t>x is called as the duality gap. Note that the duality gap is zero, if,

and only if, t>x = 0. This statement leads to the following theorem.

Theorem 13. (Complementary slackness [33, p.75].) Consider a pair of linear

programs of the form (P) and (D). Let x be a primal feasible solution and let y be

a dual feasible solution. Then x and y are optimal solutions of the pair if and only

if they satisfy the complementary slackness condition:

x>(c− A>y) = x>t = 0. (2.6)

Since x and t are non-negative, so eq. (2.6) is equivalent to ∀j = 1, . . . , n: either

xj or tj is equal to zero.

Given an optimal solution for (P) (or (D)), complementary slackness can be used

to find an optimal solution of its dual problem [50, p. 329]. Note that we will use

this technique later in chapter 10.

2.4 The development of methods to solve linear

programs

There are many available methods for solve linear programming problems that are

widely used in practice. The most well-known and simplest method is the simplex

method which was proposed by Dantzig in 1949 [33, p.1]. The simplex method,

which is an iterative method, performs row operations on the simplex table. At

every iteration, the method moves from a current basic feasible solution to another

basic feasible solution which improves the objective function value. The method
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terminates when it cannot decrease the objective function value any more. Note

that, in practical implementation, the revised simplex method is the most commonly

used as it does not need to store the full simplex table. Therefore, the revised simplex

method can save storage and computation.

However, when a linear programming problem is degenerate, that is, at least

one basic variable is zero, the simplex algorithm may perform badly. Specifically,

the simplex algorithm may cycle and it will not find an optimal solution [44, p.30].

Several attempts to prevent cycling are proposed. Two simple ways to avoid cycling

are using lexicographic method or Bland’s rule [7, §3.6].

Unfortunately, the simplex method has another issue called stalling, meaning

that the method performs an exponentially long sequence of degenerate pivots. Klee

and Minty [18] found a linear programming problem with n variables that has 2n

extreme points and the simplex method visits all the extreme points before obtaining

an optimal solution. In that case, the simplex method needs 2n − 1 iterations.

Indeed, the number of iterations may be exponential in the size of linear programs

before obtaining an optimal solution. Although, the simplex method may stall

under degeneracy, in practice, it is still one of the easiest and most commonly used

algorithms.

In 1979, the first algorithm for linear programming problems that requires at

most a polynomial number of iterations in the number of variables to obtain any

optimal solution was introduced by Khachiyan [15]. It is called the ellipsoid method.

Theoretically, the ellipsoid method was able to solve linear programming problems

in a polynomial number of steps (as a function of the size of linear programs) in

the worst case, but it turned out to be highly inefficient when it was implemented

to solve general linear programming problems [20, p.112]. In 1984, Karmarkar [14]

rediscovered a polynomial time algorithm, which was first discovered by Dikin in

1967, for the linear programming problem. This method is called the interior point
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method. The idea of this method is to generate a sequence of interior feasible points

which eventually converges to an optimal solution through the interior region [33,

p.111]. When this method was implemented, it was very competitive with the sim-

plex method, especially for large problems [34, p.273]. After that, several interior-

point methods for solving linear programming problems have been developed, for

example, projective methods, affine scaling methods and primal-dual methods (see

[32] for a list of references). In this thesis, we consider only two interior point

methods: the affine scaling and the primal-dual methods.

2.5 Summary

To summarise, we studied linear programming problems and important relations

of duality. We also reviewed the development of linear programming algorithms.

For each of the next three chapters, we will study each of the following methods:

the simplex, the affine scaling and the primal-dual, for solving linear programs for

checking avoiding sure loss.



Chapter 3

Simplex methods

The first linear programming algorithm that we are going to present is the sim-

plex method. It is the easiest and the most widely used method for solving linear

programming problems.

In this chapter, we first study the simplex method in section 3.1 and present a

summary of the revised simplex method in section 3.2 which is an efficient imple-

mentation for the simplex method. As the simplex method needs a basic feasible

solution to start with, we explain a technique to obtain such a solution in section 3.3.

Finally, in section 3.4, we describe how the simplex method can avoid cycling when

it solves degenerate problems.

3.1 Formulating simplex methods

Consider a linear programming problem of the form:

(P) min c>x subject to Ax = b and x ≥ 0. (3.1)

19
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Let x0 be an initial basic feasible solution. We can permute and relabel variables in

x0 as

x0 = [x0
B x0

N ]> (3.2)

where x0
B ≥ 0 is the vector of basic variables and x0

N = 0 is the vector of non-

basic variables. Then, the constraints and the objective function can be rewritten

corresponding to the basic feasible solution as

A = [B N ] and c = [cB cN ] (3.3)

where B is an m×m non-singular matrix and N is an m× (n−m) matrix. Given

B, elements in every feasible solution x can be reordered as

x = [xB xN ]> where xB ≥ 0, xN ≥ 0. (3.4)

Then, we can rewrite (P) as

(Q) min z := c>BxB + c>NxN (Q1)

subject to BxB +NxN = b (Q2)

xB ≥ 0, xN ≥ 0. (Q3)

The original linear programming problem corresponding to the simplex tableau is

presented in table 3.1.

xB xN value

z −c>B −c>N 0

xB B N b

Table 3.1: The form of the initial simplex tableau.
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As B is invertible, we can solve eq. (Q2) for xB:

xB = B−1b−B−1NxN . (3.5)

If xN = 0, then x = [B−1b 0]> is a basic solution. In addition, if B−1b ≥ 0, then x

is a basic feasible solution. Substituting eq. (3.5) into eq. (Q1) results in

z = c>BxB + c>NxN = c>B(B−1b−B−1NxN) + c>NxN (3.6)

= c>BB
−1b− (c>BB

−1N − c>N)xN . (3.7)

By eq. (3.6) and eq. (3.7), we can express the (Q) problem as a matrix equation:

1 0 c>BB
−1N − c>N

0 I B−1N



z

xB

xN

 =

c>BB−1b

B−1b

 , (3.8)

where I is the identity matrix. Note that eq. (3.8) can be represented in the simplex

tableau as in table 3.2.

xB xN value

z 0 c>BB
−1N − c>N c>BB

−1b

xB I B−1N B−1b

Table 3.2: The form of simplex tableau in the current basis.

Suppose that x0 is a current basic feasible solution, then the objective value z0

is c>BB
−1b in eq. (3.7), as x0

B = B−1b ≥ 0 and x0
N = 0. Consequently, eq. (3.7)

becomes

z = z0 − (c>BB
−1N − c>N)x (3.9)

where x is any feasible solution. Note that we call the vector c>BB
−1N − c>N the

reduced costs. If any of the reduced costs is negative, then the corresponding com-

ponent of x0
N can be increased to obtain a reduction of the objective value z. This is



3.1. Formulating simplex methods 22

equivalent to bringing a non-basic variable into the basis. Consequently, if all of the

reduced costs are non-negative, the current basic feasible solution x is an optimal

solution [7, p. 31].

In the case that the current basic feasible solution is not optimal, we have to

move to another basic feasible solution. In other words, we find a new basis. To do

so, we push one variable out of the current basis and then pick a single non-basic

variable into the basis.

Suppose that there exists a non-basic variable x` that has a negative reduced

cost, so we will bring x` into the basis. In this case, the constraints m rows of

equations eq. (3.8) can be rewritten as

xi + aix` = (B−1b)i (3.10)

for each variable xi. This means that increasing x` will change the values of some

or all of the basic variables; meanwhile, we must take one basic variable out of the

basis. We rewrite eq. (3.10) as follows:

xi = (B−1b)i − aix`. (3.11)

We observe that

• if ai > 0, then xi decreases as x` increases and xi = 0 when x` =
(B−1b)i
ai .

• if ai = 0 or ai < 0, then we can not decrease xi.

Therefore, the only basic variables that can leave the basis are those with ai > 0.

We can increase x` as long as the remaining variables remain non-negative. To do

so, we find an index s that satisfies

(B−1b)s
as

= min
1≤i≤m

{
(B−1b)i
ai

: ai > 0

}
, (3.12)
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and then assign the value of x` as (B−1b)s
as

and choose xs to leave the basis. This

process is called the minimal ratio test [10, p. 131]. Once the previous basic variable

xs is pushed out and a new basic variable x` is assigned the value, we restore the

form of eq. (3.8). The process of changing the basis is also called pivoting [10,

p. 131].

Note that the form of eq. (3.8) can be restored by row operations because it

preserves the equality constraints of the original formulation. For ai > 0, we modify

the x`’s column so that the only non-zero coefficient in that column is in row s

and has value 1. By using row operations, we can keep the form of eq. (3.8) up to

a permutation of columns. Specifically, a basic variable is the one whose column

constructs the identity matrix, while the rest of variables are non-basic variables

[20, p. 41].

In the case that a reduced cost c` < 0 and the corresponding column has all

elements ai ≤ 0 for every row i, then we cannot pivot on any row. This is because

none of the basic variables will decrease in value as x` is increased from zero, and

therefore x` can grow arbitrarily large. This results in an unbounded value of the

objective function:

z = c>BB
−1b− c>` x` −→∞. (3.13)

So in this case, the linear programming problem is unbounded [10, p. 131].

Summarising all previous arguments, we outline the simplex algorithm as follows:

Step 1 (initialization): Given a basic feasible solution x = [xB xN ].

Step 2 (check for optimality): If all of the reduced costs are non-negative, then x

is an optimal solution, and we are done. Otherwise, go to Step 3.

Step 3 (choose entering variable): If there exists a non-basic variable x` that has

a negative reduced cost, then we choose x` to be an entering variable.



3.2. The revised simplex algorithm 24

Step 4 (check unboundedness): If all elements in the reduced cost column are

negative, then we stop here and the problem is unbounded. Otherwise, go to

Step 5.

Step 5 (choosing leaving variable): Apply the minimal ratio test as in eq. (3.12)

to pick one of the current basic variables, say xs, to leave the basis.

Step 6 (update tableau): Restore the form of eq. (3.8) by row operations to obtain

a new basic feasible solution. Go back to Step 2.

Note that row operation can be easily calculated in the simplex tableau which

is suitable for small problems as we can compute it by hand. However, the simplex

tableau may not be suitable for an implementation as we have to store the whole

table. If there are m constraints and n variables, the simplex tableau needs an

(m+1)×(n+1) array. In addition, the complexity is O(mn) arithmetical operations

per every pivot. In the case that n is much larger than m, the standard simplex

method may not be good for an implementation [10, p. 140].

To address this issue, we will study an implementation of the simplex approach

called the revised simplex algorithm. This version needs less storage and less com-

putation compare to the standard simplex method.

3.2 The revised simplex algorithm

In this section, we first study a procedure of the revised simplex algorithm and then

we discuss a storage for this version. We also compare computational work for the

revised simplex with the original version in the simplex tableau.

A procedure of the revised simplex algorithm is as follows [11, p. 208]:

Step 1 (initialisation): Let x = [xB xN ] be a basic feasible solution and let IB :=

{1, 2, . . . ,m} be the index set of the basic variables.
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Step 2 (calculating new feasible solution): Calculate simplex multipliers w by

solving B>w = cB and the reduced cost c̃j = w>Aj − cj for all j 6∈ IB.

Step 3 (checking optimality): If c̃j ≥ 0 for all j 6∈ IB, then we stop here and the

current feasible solution is optimal. Otherwise, we move to Step 4.

Step 4 (choosing entering variable): Choose x` with c` < 0 to be a basic variable,

for some ` 6∈ IB, and update the current column Ã` by solving BÃ` = A`.

Step 5 (checking unboundedness): If Ã` ≤ 0, then we stop here and the problem

is unbounded.

Step 6 (choosing leaving variable): Find an index k such that

(B−1b)k
ak

= min
1≤i≤m

{
(B−1b)i
ai

: ai > 0

}

where all elements ai are in the column Ã`.

Step 7 (update basis): Set

IB ←− IB ∪ {`} \ {k}

B ←− [Aj]j∈IB

x` ←−
(B−1b)k
ak

xj ←− xj − aix`.

Go back to Step 2.

The revised simplex requires two arrays of length m to store the values of xB and

Ã`, an array of length n−m to store the reduced costs c̃j, and an m×m array to

store B. Indeed, if B is a sparse matrix, then it can be compressed and requires less

storage [10, p. 140].
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Note that B−1 is implicitly calculated in Steps 2 and 4 which can be done by sev-

eral methods, for example, the Gaussian elimination, or the LU factorization. These

methods are efficient and usually implemented in computer packages. Therefore, the

complexity per iteration is O(m2) arithmetical operations [10, p. 141].

3.3 Finding initial basic feasible solutions

As we mentioned before, the simplex method needs an initial basic feasible solution

to start with. In this section, we will discuss the two-phase method which is one of

the commonly used methods for obtaining an initial basic feasible solution.

Without loss of generality, we can assume that b ≥ 0 by multiplying the equality

constraint by −1 if it is necessary. If the equality constraint is in the form:

Ax ≤ b where x ≥ 0, (3.14)

then we can add a slack variable s ≥ 0, so eq. (3.14) becomes:

Ax+ s = b where x ≥ 0, s ≥ 0. (S)

In this case, we immediately have a starting basic feasible solution by setting x = 0

and s = b. However, in many situations, the constraints are not in the form of

eq. (S). For example, if constraints are in the form

−15x1 + 10x2 − x3 ≥ 7 (3.15)

x1 + x2 + x3 = 1, (3.16)

then there are no longer slack variables to add as the initial basic variables. In such

a case, we have to find a starting basic feasible solution. This task can be done by

applying the two-phase method.
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Suppose that we have constraints in the form of eq. (P) but not in the form

of eq. (S). We can modify the constraints by adding an artificial variable w, where

w ∈ R, to the constraints. Consider the phase-I problem:

(phase-I) min
k∑
i=1

wi s.t. Ax+ w = b, x ≥ 0, w ≥ 0. (3.17)

With an initial basic feasible point [x,w]> = [0, b]>, we can solve eq. (3.17) by the

simplex method and obtain an optimal solution [x∗, w∗]. If w∗ = 0, then we go to

phase II which is to solve the original problem with x∗ as a feasible basic solution

to start with. Otherwise, the original problem has no feasible solution [7, p. 39].

3.4 Bland’s rule

When the simplex method solves degenerate problems, the method may repeat the

same sequence of degenerate pivots associated with a non-optimal solution. In this

case, the method is said to be cycling and will never terminate [7, §3.5].

To avoid cycling, we can apply Bland’s rule to choose the entering and the

leaving variables to a basis. The idea of Bland’s rule is to determine the choice of

both the entering and the leaving variables. To do so, we first order the variables

x1, x2, . . . , xn. At each iteration, among all non-basic variables with negative reduced

cost, the simplex method selects the entering variable with the smallest index to

enter the basis. Next, Bland’s rule breaks a tie in the ratio test by choosing the

basic variable with the smallest index from all potential leaving variables to leave

the basis [7, §3.6].
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3.5 Summary

To conclude, we studied the simplex algorithm and the two-phase method to obtain

initial basic feasible solutions. For an implementation, we used the revised simplex

method as it needs less storage and less computation. We also discussed how the

simplex method can avoid cycling when solving degenerate problems by applying

Bland’s rule.

For the next two chapters, we will look at two interior point methods: the affine

scaling and the primal-dual methods. Each of them is currently considered to be an

efficient general method for solving linear programs.



Chapter 4

Affine scaling methods

The affine scaling method was first introduced by Dikin in 1967 [10, p.336]. Unfortu-

nately, his work was not widely well-known until several researchers independently

rediscovered that the affine scaling method is a simple version of Karmarkar’s algo-

rithm [44].

In this chapter, we will describe the affine scaling method and its implementation

in sections 4.1 and 4.2. Similar to the simplex method, the affine scaling needs an

interior feasible solution to start with, therefore in section 4.3, we will explain how

to find starting points.

4.1 Formulating affine scaling methods

The affine scaling method solves the linear program in the form of (P), that is,

min c>x subject to Ax = b and x ≥ 0. (P)

The idea of the method is to apply the affine scaling transformation to keep it-

erative points away from the boundary so that it has a decent improvement. At

each iteration, the method generates an interior feasible solution that decreases the

29
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corresponding objective function value.

Let k be the number of iteration. Suppose that we have a strictly positive initial

solution xk which is not optimal, so we must find another solution denoted by

xk+1 = xk + βd, (4.1)

where β > 0 is a step length and d is a direction which decreases the objective

function value. Note that a direction d = −c is a good choice as it makes the

objective function value decrease. To stay in the feasible region, the new point must

satisfy

Axk+1 = A(xk + βd) = Axk + βAd = b. (4.2)

Therefore, the direction d must satisfy Ad = 0 which is equivalent to projecting d

onto the null space of the matrix A [10, p.336]. Since A has full rank, the projection

matrix

PA = I − A>(AA>)−1A (4.3)

maps any direction d onto the null space of A [44, p.348]. Then, we project the

proposed direction −c onto the null space of A and obtain a direction:

d = −PAc. (4.4)

Note that P>A = PA and P 2
A = PA, so

c>d = −c>PAc = −c>PAPAc = −(PAc)
>(PAc). (4.5)

Therefore, d = −PAc also yields a decrease of the objective function value [44,

p.348].
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If PAc = 0, then for any direction γ,

c>xk+1 = c>(xk + βPAγ) = c>xk + β(PAc)
>γ = c>xk. (4.6)

In this case, the objective function value remains the same. Therefore, xk is an

optimal solution [7, Lemma 7.2, p.150].

Note that if a component of xk is closer to the boundary, then the method can

take only a small step without making xk cross zero. Consequently, an improvement

in the next iteration is very small. In fact, this issue can be avoided if xk is near

the centre of the feasible region. Therefore, we should scale xk so that we can make

a decently long step for the next iteration. We also scale the linear programming

problem and compute the scaled direction.

We first formulate a scaled linear programming problem. The following part

follows [10, §10.5]. Let xk > 0 be an interior feasible point of (P). We scale each

component by mapping each of them to unity so that each of them stays at least one

unit away from zero. Let X = diag(xk) be the n×n diagonal matrix whose diagonal

elements are the components of xk. Note that X> = X. As xk is an interior point,

the diagonal elements of matrix X are strictly positive and therefore, X is invertible.

Since Ax = AXX−1x and c>x = c>XX−1x, if we define

z = X−1x, (4.7)

then we have zk = X−1xk = e where e is a vector all of whose elements are equal

one. We must scale A and c as:

Ã = AX and c̃ = Xc. (4.8)
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Taking z, Ã and c̃ back to (P), we obtain the scaled linear programming problem:

min c̃>z subject to Ãz = b and z ≥ 0. (P̃ )

Note that x is feasible in the (P) problem if and only if z is feasible in the (P̃ ) problem

and they have the same objective function value. With a step length β > 0, we move

from a current scaled solution zk to a new scaled solution:

zk+1 = zk + β
d̃

||d̃||
(4.9)

where d̃ = −PÃc̃ is the direction of the next scaled iterate and ||v|| = (
∑n

i=1 v
2
i )

1
2 .

Note that we divide d̃ by ||d̃|| in eq. (4.9) to normalise the direction d̃ [33, p.118].

Again, if PÃc̃ = 0, then by the same argument as in eq. (4.6), we achieve the optimal

value. Finally, we transform the scaled solution zk+1 back to the original variable

[33, p.118]:

xk+1 = X

(
zk + β

d̃

||d̃||

)
= xk + βX

d̃

||d̃||
. (4.10)

For any β > 0, we have

cᵀxk+1 = cᵀxk + cᵀ

(
βX

d̃

||d̃||

)
(by eq. (4.10)) (4.11)

= cᵀxk − β

||d̃||
(c̃ᵀPÃc̃)

(
by c̃ = Xc, d̃ = −PÃc̃

)
(4.12)

= cᵀxk − β

||d̃||
(PÃc̃)

ᵀ(PÃc̃)
(
by P 2

Ã
= PÃ

)
(4.13)

= cᵀxk − β

||d̃||
d̃ᵀd̃

(
by d̃ = −PÃc̃

)
. (4.14)

Therefore, we can detect unboundedness from the sign of d̃.

Lemma 14. [7, p.150] If d̃ ≥ 0 and d̃ 6= 0, then the problem (P) is unbounded.

Proof. Suppose d̃ ≥ 0 and d̃ 6= 0, then for any β > 0, it is seen from eq. (4.14)
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that cᵀxk+1 = cᵀxk − β

||d̃||
d̃ᵀd̃ → −∞ as β → ∞. Therefore, the problem (P) is

unbounded.

On the other hand, if d̃j < 0 for some j, then we choose step length β such that

the new iterative solution is feasible. Indeed, we set β := αβ∗ where β∗ is the largest

step such that

β∗ = sup{β : zk + βd̃ > 0}, (4.15)

and 0 < α < 1 is a step length factor. In this case, β∗ is given by

β∗ =
||d̃||

max
d̃j<0
|d̃j|

. (4.16)

[33, p.118]. The new scaled iterate zk+1 will be

zk+1 = zk + αβ∗
d̃

||d̃||
. (4.17)

Finally, using the relation x = Xz, we derive a new iterate

xk+1 = xk + αβ∗X
d̃

||d̃||
. (4.18)

4.2 Implementation

In this section, we look at step-size and stopping criteria for the affine scaling

method.

Under various step-size α and non-degeneracy assumptions, several authors ad-

dressed convergence of a sequence of iterates generated by the algorithm (see [41]

for a list of literature). With the non-degenerate assumptions, a sequence of iterates

converges to the optimal solution without a restriction on the step size α [33, p.128].

In general, α is set very close to 1, for example, Griva et al. [10, p.338] suggest that
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α = 0.99.

Without the non-degeneracy assumption, Mascarenhas [21] showed a linear pro-

gramming problem that has an optimal solution, but the sequence of iterates con-

verges to a non-optimal solution when α = 0.999. Terlaky and Tsuchiya [42] pre-

sented that for Mascarenhas’ linear programming problem, the sequence of iterates of

the affine scaling method does not converge to an optimal solution for any α ≥ 0.91.

Tsuchiya and Muramatsu [41] ensured that with α ≤ 2/3, the sequence of iterates

will converge to an optimal solution. Therefore, in our implementation to solve

degenerate problems for checking avoiding sure loss, we choose α = 2/3.

A stopping criterion is motivated by a decreasing of the objective function values.

A commonly used criterion is the the relative improvement in the objective is small,

that is, when

c>xk − c>xk+1

max{1, |c>xk|}
< ε (4.19)

where ε is a positive tolerance value [10, p.338]. We can also add a lower bound to

detect unboundedness. Let M > 0 be a very large number. If c>xk < −M for some

k, then we say that the sequence {c>xk} is unbounded and xk does not converge.

Summarising all these arguments, we outline the affine scaling method as follows:

Step 1 (initialisation): Find initial interior feasible point x0. Set k = 0, α = 0.99

(α = 2/3 if the problem is degenerate), ε > 0, and M > 0.

Step 2 (finding directions): Calculate a direction d̃ = −PÃc̃. where PÃ = I −

Ã>(ÃÃ>)−1Ã is a projection matrix.

Step 3 (checking optimality via directions): If d̃ = 0, then an optimal solution

is xk and the optimal value is c>xk. If d̃ ≥ 0 and d̃ 6= 0, then the problem is

unbounded. In both cases, we stop here. Otherwise, we move to Step 4.

Step 4 (moving to new solutions): Calculate a step length β∗ =
||d̃||

max
d̃j<0
|d̃j|

and a
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new iteration xk+1 = xk + αβ∗X d̃
||d̃|| .

Step 5 (checking optimality via objective values): If c>xk+1 < −M , then the

problem is unbounded. If

c>xk − c>xk+1

max{1, |c>xk|}
< ε,

then we find an optimal solution xk+1 and the optimal value c>xk+1. In both

cases, we stop here. Otherwise, we set k = k + 1 and return to Step 2.

4.3 Finding initial interior solutions

The affine scaling method requires an initial interior feasible solution to start with.

Similar to the simplex method, we can find an initial interior feasible point by using

the big-M or the two-phase methods [7, p. 155]. These techniques require solving

an additional linear programming problem. Here, we explain how to apply the two-

phase method to find an initial interior feasible point for the affine scaling method.

Consider constraints Ax = b and x ≥ 0. We choose any interior point x0 > 0 and

calculate z := b− Ax0. If z = 0, then x0 is an interior feasible solution. Otherwise,

we solve

(phase-I) min γ (4.20)

subject to Ax+ zγ = b (4.21)

where x ≥ 0, γ ≥ 0 (4.22)

by the affine scaling method with an interior feasible solution [x γ] = [x0 1]. If we

find an optimal solution [x∗ γ∗] such that γ∗ = 0, then x∗ is an interior feasible

solution of the original problem. Otherwise, the original problem does not have an

interior feasible solution [7, p.156].
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We will use this technique to find interior feasible points later in section 7.4

where we solve linear programs for checking avoiding sure loss by the affine scaling

method.

4.4 Summary

To conclude, we studied and discussed the affine scaling method which is one of the

most commonly used interior point methods. As the method needs to start with an

initial interior solution, we explained how to obtain starting points by applying the

two-phase method. We also discussed a limitation on the step-size when the method

solves degenerate problems.

In the next chapter, we will look at another interior-point method that does not

have a limitation on the step-size and does not need to start with a feasible solution.



Chapter 5

Primal-dual methods

The primal-dual method is one of the most commonly used interior point methods

for solving linear programs. The idea of the primal-dual method is based on applying

a logarithmic barrier function. The primal-dual method can solve primal and dual

problems simultaneously and the method is known to be a polynomial time algorithm

[19, 25].

In this chapter, we first apply a logarithmic barrier function to formulate the

primal-dual method in section 5.1 and then describe the primal-dual method in

section 5.2. We summarise a practical implementation of the method in section 5.3.

5.1 Formulating primal-dual methods

Consider a pair of primal and dual linear programs:

min c>x subject to Ax = b, x ≥ 0, (P)

max b>y subject to A>y + t = c, t ≥ 0, y free. (D)

Let x be a feasible solution to (P) and [y t] be a feasible solution to (D). Remember

that by theorem 13, these points are optimal if and only if the duality gap x>t is

37
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equal to zero. Since x and t are non-negative, x>t is equal to zero if and only if for

all i = 1, . . . , n either xi or ti is equal to zero.

The original idea of the primal-dual method is to optimise the (P) and (D)

problems simultaneously by generating a sequence of interior feasible solutions [x y t]

(i.e. x > 0 and t > 0) that satisfies the complementary slackness condition. We

assume that both (P) and (D) have feasible interior solutions.

For x > 0 in (P), we can apply the logarithm barrier function technique and

then consider the following family of nonlinear programming problems:

(Pµ) min cᵀx− µ
n∑
j=1

log xj (5.1)

subject to Ax = b, x > 0 (5.2)

where µ > 0 is a barrier parameter and this problem is indexed by µ. We will show

that as µ→ 0, the optimal solution of (Pµ) converges to an optimal solution of (P).

To see this, we first note that the objective function of (Pµ) is a strictly convex

function, therefore (Pµ) has at most one global minimum. This can be obtained

by solving the first-order optimality conditions (eqs. (5.6) and (5.7)). We apply the

Lagrangian multiplier method to (Pµ). The Lagrangian function for (Pµ) is

L(x, y) = cᵀx− µ
n∑
j=1

log xj − yᵀ(Ax− b). (5.3)

Taking derivative with respect to each variable and setting them equal to zero, we

obtain the first-order optimality conditions:

∂L

∂xj
= cj −

µ

xj
−

m∑
i=1

yiaij = 0 j = 1, . . . , n (5.4)

∂L

∂yi
= bi −

n∑
j=1

aijxj = 0 i = 1, . . . ,m. (5.5)
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We rewrite these conditions in matrix form:

Aᵀy + µX−1e = c (5.6)

Ax = b, (5.7)

where X = diag(x) denotes a diagonal matrix whose ith diagonal element is xi and

e denotes an n−vector whose elements are all one. Setting

t = µX−1e, (5.8)

eq. (5.6) can be written as

Aᵀy + t = c. (5.9)

Multiplying eq. (5.8) by X, we obtain the following system [7, p.178]:

(PDµ) Ax = b, x > 0 (primal feasiblity) (5.10)

Aᵀy + t = c, t > 0 (dual feasiblity) (5.11)

XTe = µe, (duality gap), (5.12)

which determines the optimal solution of (Pµ). Note that eq. (5.12) can be rewritten

as

xjtj = µ j = 1, . . . , n. (5.13)

Therefore, given µ > 0, x uniquely determines t by eq. (5.13) and y by eq. (5.11).

Theorem 15 states that (PDµ) has a unique solution:

Theorem 15. ([7, p.179]) Suppose that (P) and (D) have feasible solutions. Then

both (PDµ) and (Pµ) have a unique solution.

A solution x of (Pµ) is exactly x in a solution [x y t] of (PDµ). If µ → 0, then

the optimal solution of (PDµ) converges to an optimal solution of (P) (also obtain

an optimal solution of (D) as well). Therefore, we now consider solving (PDµ).



5.2. Primal-dual methods 40

For each µ > 0, let [x(µ) y(µ) t(µ)] be the unique solution to (PDµ). As x(µ)

satisfies eq. (5.10), x(µ) is a feasible solution of (P). Similarly, y(µ) and t(µ) satisfy

eq. (5.11), therefore [y(µ) t(µ)] is a feasible solution of (D). In this case, the duality

gap becomes

c>x(µ)− b>y(µ) = (c> − y(µ)>A)x(µ) (5.14)

= t(µ)>x(µ) = nµ, (5.15)

where n is the length of x. As µ → 0, the duality gap also converges to zero. The

following theorem states that the optimal solution of (PDµ) converges to an optimal

solution of (P):

Theorem 16. ([7, p.179]) Suppose that both (P) and (D) have feasible solutions.

If [x(µ) y(µ) t(µ)] is the unique solution to (PDµ), then as µ→ 0,

1. x(µ) converges to an optimal solution of (P ), and

2. [y(µ) t(µ)] converges to an optimal solution of (D).

5.2 Primal-dual methods

The main computational task in the primal-dual method is to solve the system

(PDµ).

Let k be the number of iterations and let [xk yk tk] be a solution that satisfies

the system (PDk
µ) at some µk. If µk is not close to zero, then we must find a new

solution for a smaller value of µ. To do so, we choose µk+1 to be a smaller value by

setting µk+1 = θµk for some 0 < θ < 1. Let the next iterative solutions be in the
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form:

xk+1 = xk + βPdx (5.16)

yk+1 = yk + βDdy (5.17)

tk+1 = tk + βDdt, (5.18)

of the system (PDµk+1), where βP and βD are step lengths for primal and dual

solutions, and dx, dy and dt are directions. Our goal is to find these directions such

that the new estimate points, xk + dx, y
k + dy, t

k + dt, stay in the feasible region.

Note that we will come back to choose the step length later after we obtain the

directions.

To start, we find the direction dx that maintains the primal feasibility, that is,

Axk+1 = A(xk + dx) = b, (5.19)

and since Axk = b, we have Adx = 0. Similarly, the directions dy and dt satisfy the

dual feasibility,

A>yk+1 + tk+1 = A>(yk + dy) + (tk + dt) = c. (5.20)

Since A>yk + tk = c, we have A>dy + dt = 0. Again, substituting solutions xk and

tk into eq. (5.12), we obtain

(xki + dx)(t
k
i + dt) = µk+1 (5.21)

which is

tki dx + xki dt + dxdt = µk+1 − xki tki . (5.22)

If dx and dt are small, then the term dxdt is much smaller than dx and dt. Therefore,
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we can consider

tki dx + xki dt = µk+1 − xki tki . (5.23)

Next, we calculate the directions dx, dy and dt by solving the following linear system:

Adx = 0 (5.24)

A>dy + dt = 0 (5.25)

Tdx +Xdt = µk+1e−XTe. (5.26)

Denote

D := T−1X and v(µk+1) := µk+1e−XTe, (5.27)

then, by tedious substitution, we obtain

dy = −(ADA>)−1AT−1v(µk+1) (5.28)

dt = −A>dy (5.29)

dx = T−1v(µk+1)−Ddt. (5.30)

Similar to the affine scaling method, if dx > 0 and c>dx < 0, then the primal

problem is unbounded. If dt > 0 and b>dy > 0, then the dual problem is unbounded

[7, p.192].

5.3 Implementation

In order to save computational time, the values of µ should rapidly decrease. In

practice, we can set

µk+1 = θµk (5.31)

for a fixed 0 < θ < 1. By eq. (5.12), we see that µk+1e − XTe < 0. In our

implementation, as suggested by Vanderbei [44, p.307], we set θ to be 1/10.
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However, if µ is dramatically decreasing, then xk+1 and tk+1 may no longer be

positive. To guarantee the positivity of xk+1 and tk+1, we choose βP and βD such

that they are the largest steps for which xk + βPdx > 0 and tk + βDdt > 0. In this

case, we explicitly choose

βP = α ·
(

max
i

{
1,−(dx)i

xi

})−1

(5.32)

βD = α ·
(

max
i

{
1,−(dt)i

ti

})−1

, (5.33)

for some 0 < α < 1. So far, this approach seems to work well in practice [7, p.190].

Note that there is no restriction on α as in the affine scaling method. We can set α

to be close to 1, for example α = 0.99.

An advantage of the primal-dual method is that, instead of starting with a

feasible solution, the method can start with arbitrary points xk > 0, yk and tk > 0.

Suppose that we have initial points xk > 0, yk and tk > 0 which are not optimal.

We can find the directions dx, dy and dt that satisfy the system eqs. (5.19), (5.20)

and (5.27) as before. In this case, eqs. (5.19) and (5.20) become

rP := Adx = b− Axk (5.34)

rD := Aᵀdy + dt = c− Aᵀyk − tk, (5.35)

where rP and rD are primal and dual residuals respectively. We perform the same

analysis and obtain the following directions:

dy = −(ADAᵀ)−1[AT−1v(µk+1)− ADrD − rP ] (5.36)

dt = −Aᵀdy + rD (5.37)

dx = T−1v(µk+1)−Ddt. (5.38)

Next, we find the step lengths by eqs. (5.32) and (5.33) and calculate new iterative
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points as in eqs. (5.16), (5.17) and (5.18). Finally, the method will terminate when

(i) the duality gap is less than a tolerance and (ii) both iterative solutions are

feasible, that is, both rP and rD are close to zero [7, p.191].

We summarise an implementation of the primal-dual method:

Step 1 (initialization) Given an initial point (x0, y0, t0), where x0 > 0 and t0 > 0.

Let n be the length of x0. Set k = 0, θ = 1/10, α = 0.99 and a small tolerance

ε > 0.

Step 2 (initial calculation) Compute

µk+1 =
(xk)>tk

n
(5.39)

rP = b− Axk (5.40)

rD = c− A>yk − tk. (5.41)

Step 3 (checking for optimality) If

µk+1 < ε, ||rP || < ε, and ||rD|| < ε, (5.42)

then we stop here and xk, yk and tk are optimal. Otherwise, we go to Step 4.

Step 4 (calculate directions) Compute

D = XT−1 and v(µk+1) = µk+1e−XTe (5.43)

and the directions:

dy = −(ADA>)−1[AT−1v(µk+1)− ADrD − rP ] (5.44)

dt = −A>dy + rD (5.45)

dx = T−1(µk+1)−Ddt. (5.46)
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Step 5 (checking for unboundedness) If

||rP || < ε, dx > 0 and c>dx < 0, (5.47)

then the primal problem is unbounded, so we stop here. If

||rD|| < ε, dt > 0 and b>dy > 0, (5.48)

then the dual problem is unbounded, therefore we stop here. Otherwise, we

go to Step 6.

Step 6 (calculating step lengths) Compute the directions

βP = α ·
(

max
i

{
1,−(dx)i

xi

})−1

(5.49)

βD = α ·
(

max
i

{
1,−(ds)i

ti

})−1

. (5.50)

Step 7 (moving to new points) We update new points:

xk+1 = xk + βPdx (5.51)

yk+1 = yk + βDdy (5.52)

tk+1 = tk + βDdt, (5.53)

and go back to Step 2.

5.4 Summary

To summarise, the primal-dual method can simultaneously solve a pair of primal

and dual problems. Unlike the simplex and the affine scaling methods, the primal-

dual method does not need to start with feasible solutions and does not have any

restriction on solving degenerate problems.
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So far, we have seen three commonly used linear programming methods: the

simplex, the affine scaling and the primal-dual methods. We will come back to

these methods again in chapter 7 where we discuss how to improve these methods

for efficiently solving linear programs for checking avoiding sure loss. Before that,

we will explain the last basic concept: desirability axioms and lower previsions in

chapter 6.



Chapter 6

Desirability and lower previsions

We begin this chapter by studying sets of desirable gambles and basic rationality

criteria called rationality axioms for sets of desirable gambles in section 6.1 and

avoiding sure loss in section 6.2. We also give examples in these two sections. Next,

we discuss the natural extension in section 6.3 and in section 6.4, we discuss the

Choquet integral which can be used to calculate natural extensions. We then study

a special case of checking avoiding sure loss with adding one extra gamble into the

sets that already avoids sure loss in section 6.5. We also discuss several types of

lower previsions that are coherent in section 6.6. Finally, in section 6.7, we study

problems of decision making with lower previsions.

6.1 Gambles and desirability axioms

Let Ω be a finite set of all possible outcomes of an experiment or an observation.

These outcomes ω are assumed to be exhaustive and mutually exclusive. For exam-

ple, in a football match between two teams, a result of the match for one team is

either a win (W ), a draw (D) or a loss (L). Therefore, a set of all possible outcomes

is Ω = {W,D,L}.

47
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Assume that a subject would like to model her uncertainty about the outcomes

of the match. If she has complete information about the match, then she may be

able to model it through, e.g. in this case, a probability mass function. However,

it may be difficult for her to specify precise probabilities because of having limited

structural information about dependencies, lack of data, limited expert opinion, or

even contradicting information from different experts. In that case, various authors

[39, 46, 48, 49] have argued that these issues can be handled by modelling their

beliefs using sets of desirable gambles.

A gamble is a bounded real-valued function on Ω. A gamble f represents an

uncertain reward (e.g. money) that has value f(ω) to a subject if the true outcome

is ω. A reward is expressed in units of utility. We denote the set of all gambles on

Ω by L(Ω).

Example 17. Considering a football match between Manchester United and Liv-

erpool. Suppose that the subject is offered a reward depending on the outcomes of

the match: she receives £10 if Manchester United wins (W ), £5 for a draw (D) and

nothing if Manchester United loses (D). These rewards can be viewed as a gambles

f as follows:

Outcomes W D L

f 10 5 0

From the above example, the subject should accept f since there is no loss in any

outcome and she may gain money in some cases. Let D be a finite set of gambles

that a subject is willing to accept; we call D the subject’s set of desirable gambles .

Suppose that a subject states her set of desirable gambles:



6.1. Gambles and desirability axioms 49

Outcomes W D L

f1 0 0 −1

f2 10 0 −5

f3 2 2 −5

f4 12 2 −10

Even though the subject is pretty sure that the outcome L does not happen, f1

should not be desirable to her because she will gain nothing and lose her money

if the true outcome is L. Suppose that f2 and f3 are desirable to her. If someone

offers her gamble f4, then it should be desirable to her as well because accepting f4

is similar to accept both f2 and f3.

By using utilities to represent the subject’s reward, we satisfy scale invariance.

For example, recall that the subject accepts f2 in the previous table and suppose

that she is offered another two gambles:

Outcomes W D L

g1 1000 0 −500

g2 0.1 0 −0.05

Then, both g1 and g2, which are scaled from f2, should also be desirable.

Taking all these arguments into account, we derive rationality conditions for

desirability [39, p. 29]:

Axiom 1 (Rationality axioms for desirability). For every f and g in L(Ω) and every

non-negative α ∈ R, we have that:

(D1) If f ≤ 0 and f 6= 0, then f is not desirable.

(D2) If f ≥ 0, then f is desirable.

(D3) If f is desirable, then so is αf .

(D4) If f and g are desirable, then so is f + g.
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The first two axioms are trivial as the subject should accept any gamble that she

cannot lose from, but she should not accept any gamble that she cannot gain from.

Axiom (D3) follows the linearity of the utility scale and axiom (D4) shows that a

combination of desirable gambles should also be desirable.

6.2 Avoiding sure loss

Even though the subject specifies a set of desirable gamblesD, it is not necessary that

D satisfies all rationality axioms. However, we can use these axioms to examine the

rationality of D. Indeed, the rationality axioms essentially state that a non-negative

combination of desirable gambles should not produce a sure loss [39, p. 30]. In that

case, we say that D avoids sure loss.

Definition 18. [39, p. 32] A set D ⊆ L(Ω) is said to avoid sure loss if for all n ∈ N,

all λ1, . . . , λn ≥ 0, and all f1, . . . , fn ∈ D,

sup
ω∈Ω

(
n∑
i=1

λifi(ω)

)
≥ 0. (6.1)

We can also model uncertainty via acceptable buying (or selling) prices for gam-

bles. Let f ∈ L(Ω), the subject may be asked to specify how much she is willing

to pay in order to get f . For instance, as in example 17, the subject is offered a

gamble f . Suppose that she is willing to pay £5 to obtain f , then 5 can be viewed

as a buying price for f . Therefore, her total reward will be:

Outcomes W D L

f − 5 5 0 −5

It is obvious that she is willing to pay less than £5, but is she still willing to pay if

it is more than £5? Given any f ∈ L(Ω), we would like to know what is her highest
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price for f? To answer this question, we have a function that represents a subject’s

highest buying price for f .

Definition 19. [39, p.30] A subject’s lower prevision P is a real-valued function on

domP ⊂ L(Ω), where domP is the domain of P .

Given a gamble f ∈ domP , we interpret P (f) as a subject’s supremum buying

price for f , i.e. f − α is deemed desirable for all α < P (f) [39, p. 40].

Any lower prevision P induces a conjugate upper prevision P on domP :=

{−f : f ∈ domP}, defined by P (f) := −P (−f) for all f ∈ domP . P (f) repre-

sents a subject’s infimum selling price for f . This implies that the transaction α−f

is desirable for all P (f) < α [39, p. 41].

A lower prevision P is said to be self-conjugate when domP = − domP and

P (f) = P (f) for all f ∈ domP . We call a self-conjugate lower prevision P a

prevision and write it as P [39, p. 41].

Given a lower prevision, we can construct a set of desirable gambles of P as

follows [39, p.42]:

DP := {f − µ : f ∈ domP and µ < P (f)} . (6.2)

Then, we can check whether P avoids sure loss or not through DP :

Definition 20. [39, p.42] Let Ω be a finite set. We say that a lower prevision P

avoids sure loss if one of the following equivalent conditions holds:

(i) The set of desirable gambles DP avoids sure loss.

(ii) For all n ∈ N, all λ1, . . . , λn ≥ 0, and all f1, . . . , fn ∈ domP ,

sup
ω∈Ω

(
n∑
i=1

λi [fi(ω)− P (fi)]

)
≥ 0. (6.3)
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Proof. A proof of these two equivalent conditions is a part of the proof of six equiv-

alent conditions in [39, p.42]. We prove directly that these two condition are equiv-

alent.

(=⇒) Suppose DP avoids sure loss. Let n ∈ N, all λ1, . . . , λn ≥ 0, and all

f1, . . . , fn ∈ domP . We show that eq. (6.3) holds. Let ε > 0. Then, for each i,

fi − (P (fi)− ε) ∈ DP . Since DP avoids sure loss,

sup
ω∈Ω

(
n∑
i=1

λi [fi(ω)− P (fi)]

)
+

n∑
i=1

λiε ≥ sup
ω∈Ω

(
n∑
i=1

λi [fi(ω)− P (fi) + ε]

)
≥ 0.

(6.4)

Since ε can be arbitrary small, eq. (6.3) holds.

(⇐=) Suppose eq. (6.3) holds. We show that DP avoids sure loss. Let ε > 0.

Then, for n ∈ N, all λ1, . . . , λn ≥ 0 and for i = 1, . . . , n, fi − (P (fi)− ε) ∈ DP and

by eq. (6.3),

sup
ω∈Ω

(
n∑
i=1

λi [fi(ω)− (P (fi)− ε)]

)
≥ sup

ω∈Ω

(
n∑
i=1

λi [fi(ω)− P (fi)]

)
≥ 0. (6.5)

Therefore, DP avoids sure loss.

For simplicity, we write D for DP when there is no confusion. Note that by

definition 19, P avoids sure loss whenever D avoids sure loss.

Let us see some examples of avoiding sure loss.

Example 21. In the football match, suppose that the subject is offered gambles

Outcomes W D L

f1 20 10 5

f2 10 15 5

If the subject specifies P (f1) = 18 and P (f2) = 13, then the total rewards will be:
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Outcomes W D L

f1 − P (f1) 2 −8 −13

f2 − P (f2) −3 2 −8

f1 − P (f1) + f2 − P (f2) −1 −6 −21

She is therefore certain to lose at least −1 regardless of the outcome which violates

definition 20. Therefore, P does not avoid sure loss.

On the other hand, if the subject specifies P (f1) = 5 and P (f2) = 5, then her

total rewards will be:

Outcomes W D L

f1 − P (f1) 15 5 0

f2 − P (f2) 5 10 0

Since

sup {15λ1 + 5λ2, 5λ1 + 10λ2, 0} ≥ 0, ∀λ1, λ2 ≥ 0, (6.6)

in this case, P avoids sure loss.

Consider a special case of lower previsions. Let A denote a subset of Ω, also

called an event. Its associated indicator function IA is given by

∀ω ∈ Ω: IA(ω) :=


1 if ω ∈ A

0 otherwise.

(6.7)

In the chapter 10, we will extensively use upper probability mass functions. An

upper probability mass function p is a mapping from Ω to [0, 1], and represents the

following lower prevision [39, p. 123]:

∀ω ∈ Ω: P p(−I{ω}) := −p(ω), (6.8)

where domP p =
⋃
ω∈Ω{−I{ω}}. We can check whether P p avoids sure loss by

theorem 22.
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Theorem 22. [39, p. 124] P p avoids sure loss if and only if
∑

ω∈Ω p(ω) ≥ 1.

Proof. See [39, p. 124, Prop. 7.2] with lower probability mass function p = 0.

We can interpret an upper probability mass function as providing an upper bound

on the probability of each {ω}, for all ω ∈ Ω [39, p. 123].

6.3 Natural extension

The natural extension of a set of desirable gambles D is defined as the smallest set

of gambles which includes all finite non-negative combinations of gambles in D and

all non-negative gambles [39, § 3.7]:

Definition 23. [39, p. 32] The natural extension of a set D ⊆ L(Ω) is:

ED :=

{
g0 +

n∑
i=1

λigi : g0 ≥ 0, n ∈ N, g1, . . . , gn ∈ D, λ1, . . . , λn ≥ 0

}
. (6.9)

From this natural extension ED, we can derive a supremum buying price for any

gamble f ∈ L(Ω).

Definition 24. [39, p. 46] Let Ω be a finite set and let D be a set of desirable

gambles. The natural extension ED defined on all f ∈ L(Ω) is given by:

ED(f) := sup {α ∈ R : f − α ∈ ED}

= sup

{
α ∈ R : f − α ≥

n∑
i=1

λifi, n ∈ N, fi ∈ D, λi ≥ 0

}
.

(6.10)

Note that ED is finite, and hence, is a lower prevision, if and only if D avoids

sure loss [39, p. 68]. We denote the conjugate of ED by ED which is defined on all
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f in L(Ω) by [46, p. 124]:

ED(f) := −ED(−f) = inf

{
β ∈ R : β − f ≥

n∑
i=1

λifi, n ∈ N, fi ∈ D, λi ≥ 0

}
.

(6.11)

ED is simply denoted by E when there is no confusion.

Similarly, for any f ∈ L(Ω), what does the lower prevision P defined on domP

imply about the supremum buying price for f? Combining definition 24 and eq. (6.2)

together, we can define the natural extension of P :

Definition 25. [39, p.47] Let P be a lower prevision. The natural extension of P

is defined for all f ∈ L(Ω) by:

EP (f) := EDP
(f)

= sup

{
α ∈ R : f − α ≥

n∑
i=1

λi(fi − P (fi)), n ∈ N, fi ∈ domP , λi ≥ 0

}
.

(6.12)

Similarly, EP is finite if and only if P avoids sure loss [39, p. 68]. EP is simply

denoted by E when there is no confusion.

6.4 Choquet integration

In this section, we briefly explain the Choquet integral which can be used to calculate

the natural extension for the type of lower previsions considered later in chapter 10.

Let Ep be the natural extension of P p that avoids sure loss. Because Ep is 2-

monotone, it can be computed via the Choquet integral [39, p. 125]. Based on the

results from [39, Sec. 7.1], we give a closed form expression for this integral.

We simply denote the natural extension Ep(IA) of an indicator IA as Ep(A). We
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can use the following theorem to calculate Ep(A).

Theorem 26. [39, p. 125] Let P p avoid sure loss. Then for all A ⊆ Ω,

Ep(A) = max{0, 1− U(Ac)} and Ep(A) = min{U(A), 1}, (6.13)

where U(A) :=
∑

ω∈A p(ω).

Proof. See [39, p. 125] with lower probability mass function p = 0.

Theorem 27. Let f be decomposed in terms of its level sets Ai, i = 0, 1, . . . , n:

f =
n∑
i=0

λiIAi
(6.14)

where λ0 ∈ R, λ1, . . . , λn > 0 and Ω = A0 ⊃ A1 ⊃ · · · ⊃ An 6= ∅. Then

Ep(f) =
n∑
i=0

λiEp(Ai). (6.15)

Proof. The right hand side is the Choquet integral [39, p. 379, Eq. (C.8)] and the

natural extension Ep(f) is equal to the Choquet integral [39, p. 125, Prop. 7.3(ii)]

(with lower probability mass function p = 0).

Note that theorem 27 also holds for the upper natural extension.

Corollary 28. Let f be a gamble decomposed as in eq. (6.14). Then

Ep(f) =
n∑
i=0

λiEp(Ai). (6.16)

Proof. See appendix B.1.
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6.5 Avoiding sure loss with one extra gamble

Let D = {g1, . . . , gn} be a finite set of desirable gambles that avoids sure loss and

let f be another desirable gamble. We want to check whether D ∪ {f} still avoids

sure loss or not. This concept will be used to check avoiding sure loss of betting

odds with a free coupon in section 10.2.

By the condition of avoiding sure loss in definition 18, D ∪ {f} avoids sure loss

if and only if for all λ0 ≥ 0, n ∈ N, gi ∈ D and λ1, . . . , λn ≥ 0,

max
ω∈Ω

(
n∑
i=1

λigi(ω) + λ0f(ω)

)
≥ 0. (6.17)

We can simplify eq. (6.17) as follows.

Lemma 29. [29, Lemma 1] Let Ω be a finite set. Suppose that D = {g1, . . . , gn} is

a set of desirable gambles that avoids sure loss and f is another desirable gamble.

Then, D∪{f} avoids sure loss if and only if for all n ∈ N, gi ∈ D and λ1, . . . , λn ≥ 0,

max
ω∈Ω

(
n∑
i=1

λigi(ω) + f(ω)

)
≥ 0. (6.18)

Proof. If λ0 = 0, then eq. (6.17) is trivially satisfied as D avoids sure loss. Otherwise

λ0 > 0, and for all i, λi ≥ 0, so λi/λ0 ≥ 0. Therefore eq. (6.17) is equivalent to

max
ω∈Ω

(
n∑
i=1

(
λi
λ0

)
gi(ω) + f(ω)

)
≥ 0. (6.19)

Therefore, D ∪ {f} avoids sure loss if and only if eq. (6.18) holds.

Next, we give a method not only for checking avoiding sure loss of D ∪ {f}, but

also for bounding the worst case loss, which will be useful later in section 10.2.

Theorem 30. [29, Theorem 4] Let f ∈ L(Ω) and let D = {g1, . . . , gn} be a set of
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desirable gambles that avoids sure loss. Then, D∪{f} avoids sure loss if and only if

ED(f) ≥ 0. If D∪{f} does not avoid sure loss, then there exist λ1 ≥ 0, . . . , λn ≥ 0

such that f +
∑n

i=1 λigi, which is a combination of desirable gambles, results in a

loss at least |ED(f)|.

Proof. See appendix B.2.

Note that by definition 25, theorem 30 can also be applied to EP .

6.6 Coherence

Coherence is another rationality condition for lower previsions and is stronger than

avoiding sure loss. Coherence requires that the subject’s supremum buying prices

for gambles cannot be increased by considering any finite non-negative linear com-

bination of other desirable gambles [46, §2.5.2]. In chapter 8, we will use coherent

lower previsions to generate sets of desirable gambles that avoid sure loss.

Definition 31. [46, §2.5.4] A lower prevision P is said to be coherent if for all

n ∈ N, all λ0, . . . , λn ≥ 0 and all f0, . . . , fn ∈ domP ,

sup
ω∈Ω

(
n∑
i=1

λi[fi(ω)− P (fi)]− λ0[f0(ω)− P (f0)]

)
≥ 0. (6.20)

Next, we give some examples of coherent lower previsions. The lower prevision

given by P (f) := inf f for all f ∈ L(Ω) is coherent, and is called the vacuous lower

prevision [46, §2.3.7]. Previsions that avoid sure loss are also coherent:

Theorem 32. [46, p.87] A prevision P is coherent if and only if it avoids sure loss

(as a lower prevision).
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Therefore, for previsions, there is no difference between coherence and avoiding

sure loss. The expectation of f associated with the probability mass function p is

given by

Ep(f) :=
∑
ω∈Ω

p(ω)f(ω). (6.21)

An expectation operator Ep is coherent as well.

Generating probability mass functions is easy (see algorithm 1 further in sec-

tion 8.1), and we can use them to generate other coherent lower previsions via lower

envelopes and convex combinations:

Definition 33. [39, p. 60] Let Γ be a non-empty collection of lower previsions

defined on a common domain K. A lower prevision Q is called the lower envelope

of Γ if

Q(f) = inf
P∈Γ

P (f) for all f ∈ K. (6.22)

Theorem 34. [39, p. 61] If all lower previsions in Γ are coherent, then the lower

envelope of Γ is also coherent.

We define the unit simplex as the set of all probability mass functions:

∆(Ω) :=

{
p ∈ RΩ : p ≥ 0 and

∑
ω∈Ω

p(ω) = 1

}
. (6.23)

Its extreme points are the {0, 1}-valued probability mass functions [46, §3.2.6]. The

credal set of a lower prevision P is defined by

MP := {p ∈ ∆(Ω) : ∀f ∈ domP , Ep(f) ≥ P (f)}. (6.24)

MP completely determines P if P is coherent and there is a one-to-one correspon-

dence between coherent lower previsions on L(Ω) and closed convex subsets of ∆(Ω)

[39, p. 79]. Moreover, it suffices to consider the set of extreme points extMP of

MP [46, p. 145]:
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Theorem 35. (Adapted from [46, p. 146]) Let P be a coherent lower prevision.

Then for every f ∈ domP , there is a p ∈ extMP such that P (f) = Ep(f).

When extMP is finite, then P is called polyhedral. We can construct a polyhedral

lower prevision as follows. Let M be a finite set of probability mass functions on Ω.

A polyhedral lower prevision is then given by [2, §9.2.1]

EM(f) := min
p∈M

Ep(f). (6.25)

Theorem 36. [46, p. 79] Let P 1 and P 2 be lower previsions on the same domain

and δ ∈ [0, 1]. If P 1 and P 2 are coherent, then so is (1− δ)P 1 + δP 2.

Let P0 be a coherent prevision on L(Ω) and δ ∈ [0, 1]. The lower prevision

defined on all f ∈ L(Ω) by

P (f) := (1− δ)P0(f) + δ inf f (6.26)

is called a linear-vacuous mixture [46, §2.9.2], and is coherent by theorem 36.

Note that we will use these coherent lower previsions to generate sets of desirable

gambles later in chapter 8.

6.7 Decision making with lower previsions

In this section, we study three decision criteria: maximality, E-admissibility, and

interval dominance. To see more about the relation between these criteria and their

advantages and disadvantages, we refer to Huntley et al. [12] and Troffaes [38].

We first define two strict partial orders on L(Ω), and then define optimality

through maximality with respect to either of these two strict partial orderings.
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Definition 37. For any two gambles f and g, we say that f � g whenever

E(f − g) > 0. (6.27)

Note that Walley [46, §3.8.1] uses a stronger ordering, which also includes point-

wise dominance. For this study, we follow Troffaes [38], Troffaes and Hable [40,

§16.3.2] and Jansen et al. [13] and simply omit pointwise dominance from our defi-

nition.

Definition 38. [12, p. 194] For any two gambles f and g, we say that f = g

whenever

E(f) > E(g). (6.28)

Given any strict partial order on L(Ω), we can define a notion of optimality

through maximality with respect to that order:

Definition 39. Let >>> be a strict partial order on L, and let K be a finite subset of

L(Ω). The set of maximal gambles in K with respect to >>> is then defined by:

opt>>>(K) := {f ∈ K : (∀g ∈ K)(g 6>>> f)}, (6.29)

We call opt�(K) the set of maximal gambles in K and opt=(K) the set of interval

dominant gambles in K.

Finally, we also need to define E-admissibility, which is yet another decision

criterion. Recall that MP is the credal set of a lower prevision P .

Definition 40 (E-admissibility). [40, p. 336] A gamble f is E-admissible in K if
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there is p ∈MP such that

∀g ∈ K : Ep(f) ≥ Ep(g). (6.30)

The set of all E-admissible gambles in K is denoted by optM(K).

Note that [38]:

optM(K) ⊆ opt�(K) ⊆ opt=(K). (6.31)

If f is an E-admissible gamble in K, then f is immediately maximal [46, §3.9.4]. If

a gamble is not interval dominant, then it is not maximal. Consequently, if there

are many gambles in the set, one may want to eliminate non-maximal gambles in K

by applying interval dominance first [38].

6.8 Summary

To summarise, in this chapter, we briefly reviewed gambles, rationality axioms for

desirability and avoiding sure loss. We also discussed lower previsions, natural

extensions and the Choquet integral that can be used to calculate natural extensions.

We studied coherence which will be used later in chapter 8 to generate sets of

gambles that avoid sure loss. Finally, we studied several decision criteria with lower

previsions. These basic concepts will be useful for the next three contributions in

the thesis.
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Chapter 7

Improving algorithms for checking

avoiding sure loss

This chapter is based on [26, §3–6] and [27, §3]. In this chapter, we first discuss

several linear programs for checking avoiding sure loss. Based on the degenerate

structure of the linear program, we slightly reduce the dimension and propose an

extra stopping criterion. By looking at the three methods mentioned in chapters 3,

4 and 5, we analyse how we can solve linear programs for checking avoiding sure

loss most effectively. To do so, we exploit the structure of the problems and also the

interactions between the structure and the details of the algorithms. We present a

direct way to obtain feasible starting points in various cases. This will reduce the

effort required in the pre-solved phase of some of these algorithms.

7.1 Linear programming problems for checking

avoiding sure loss

We study linear programming problems for checking avoiding sure loss. The prob-

lems (P1) and (D1) in theorem 41 are similar to the linear programming problems

65
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discussed for lower previsions in [46, p. 175], which was further studied and extended

by various authors [47, p.133].

Theorem 41. The set D = {f1, . . . , fn} avoids sure loss if and only if the optimal

value of (P1) is zero:

(P1) min α (P1a)

subject to ∀ω ∈ Ω:
n∑
i=1

fi(ω)λi − α ≤ 0 (P1b)

∀i : λi ≥ 0 (α free), (P1c)

or, equivalently, if and only if its dual problem, (D1), has a feasible solution:

(D1) max 0 (D1a)

subject to ∀fi ∈ D :
∑
ω∈Ω

fi(ω)p(ω) ≥ 0 (D1b)

∑
ω∈Ω

p(ω) = 1 (D1c)

∀ω : p(ω) ≥ 0. (D1d)

Note that (P1) is fully degenerate, and (D1) is nearly fully degenerate. In fact,

max 0 in eq. (D1a) does not mean that anything is actually to be maximised but

this statement is included to show how this dual problem fits into the standard pair

of linear programs. The real question here is whether a feasible solution exists for

(D1). Clearly, any feasible solution of (D1) is also an optimal solution, since the

objective function is constant. A similar convention applies to (D2), (D4) and (D5).



7.2. Reduced sizes 67

7.2 Reduced sizes

As the simplex and the affine scaling methods require all variables in linear pro-

gramming problems to be non-negative, we present alternative linear programming

problems which are slightly smaller in dimension and have only non-negative vari-

ables. We presented the following theorem in [27, Theorem 6]:

Theorem 42. Choose any ω0 ∈ Ω. The set D = {f1, . . . , fn} avoids sure loss if and

only if the optimal value of (P2) is zero:

(P2) min
n∑
i=1

λifi(ω0) + α (P2a)

subject to ∀ω 6= ω0 :
n∑
i=1

(fi(ω0)− fi(ω))λi + α ≥ 0 (P2b)

∀i : λi ≥ 0 and α ≥ 0, (P2c)

or, equivalently, if and only if its dual problem, (D2), has a feasible solution:

(D2) max 0 (D2a)

subject to ∀fi ∈ D :
∑
ω 6=ω0

(fi(ω0)− fi(ω))p(ω) ≤ fi(ω0) (D2b)

∑
ω 6=ω0

p(ω) ≤ 1 (D2c)

∀ω : p(ω) ≥ 0. (D2d)

Proof. See appendix B.3.

Note that (P2) is still fully degenerate, whilst (D2) is no longer degenerate unless

fi(ω0) = 0 for some ω0.

As primal optimality corresponds to dual feasibility [9, p. 104], if we choose any

ω0 such that most values fi(ω0) are non-negative, then (D2) will be closer to a dual
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feasible solution, and therefore (P2) will also be closer to a primal optimal solution.

For instance, if there is an ω0 for which fi(ω0) ≥ 0 for all i, then we directly obtain a

feasible solution of (D2) by setting p(ω) = 0 for all ω 6= ω0 [26]. The corresponding

optimal solution of (P2) is given by λi = 0 for all i and α = 0.

Next, we discuss how we can improve each linear programming algorithm for

checking avoiding sure loss. Specifically, for each method, we pose problems (P2)

and (D2) in a suitable format of linear programs, and we discuss an improvement

for checking avoiding sure loss.

7.3 Improving simplex algorithms for checking

avoiding sure loss

The whole investigation in this section closely follows [26, §5] and [27, §4.1]. Recall

that to solve linear programs by the simplex method, we need a basic feasible solu-

tion. We can easily obtain a basic feasible solution of (P2) by multiplying eq. (P2b)

by −1 and then adding a non-negative slack variable s(ω):

(P3) min
n∑
i=1

λifi(ω0) + α (P3a)

subject to ∀ω 6= ω0 :
n∑
i=1

(fi(ω)− fi(ω0))λi − α + s(ω) = 0 (P3b)

∀i : λi ≥ 0, ∀ω 6= ω0 : s(ω) ≥ 0 and α ≥ 0. (P3c)

In this case, an initial basic feasible solution is given by setting all λi, α and s(ω) = 0.

Since all the right hand side of the constraints are zero, there is only one extreme

point and that extreme point is zero. Also note that (P3) is fully degenerate, so the

minimum ratios are all zero. Therefore, we apply Bland’s rule to break a tie in the

ratio test.
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We now consider the dual problem (D2) and find a basic feasible starting point.

To start, we add non-negative variables sj to eqs. (D2b) and (D2c) and obtain

equality constraints. To make all the right hand side values become non-negative,

for every j such that fj(ω) < 0, we multiply the corresponding constraint by −1 to

make it become non-negative and then add a slack variable vj ≥ 0. In this case, the

size of the linear programming problem (D3) is slightly bigger:

(D3) min
∑
j∈N

vj (D3a)

subject to ∀j ∈ N :
∑
ω 6=ω0

(fj(ω)− fj(ω0))p(ω)− sj + vj = −fj(ω0) (D3b)

∀j ∈ I \N :
∑
ω 6=ω0

(fj(ω0)− fj(ω))p(ω) + sj = fj(ω0) (D3c)

∑
ω 6=ω0

p(ω) + q = 1 (D3d)

∀ω 6= ω0 : p(ω) ≥ 0, ∀j : sj ≥ 0, vj ≥ 0 and q ≥ 0 (D3e)

with I := {1, . . . , n} and N := {j ∈ N : fj(ω0) < 0}.

An initial extreme point for (D3) is given by vj = −fj(ω0), sj = 0 for all j ∈ N ,

sj = fj(ω0) for all j ∈ I \ N , p(ω) = 0 for all ω 6= ω0 and q = 1. If all fj(ω0)

are non-negative, then we immediately solve the problem. Indeed, (D3) is normally

non-degenerate unless fj(ω0) = 0, for some j.

To sum up, in order to check avoiding sure loss by the simplex method, we can

solve either (P3), which is fully degenerate, or (D3), whose size is slightly larger.

Although the simplex method may stall under degeneracy, in practice, the method

is one of the most commonly used algorithms for solving linear programs. Therefore,

we consider the simplex method for checking avoiding sure loss as well.
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7.4 Improving affine scaling methods for checking

avoiding sure loss

We now look at the affine scaling method for checking avoiding sure loss. Again, we

first pose both problems (P2) and (D2) in the suitable format of linear programs

for the affine scaling method. Next, we discuss an impact of degeneracy to the

performance of the affine scaling method. As the method requires initial interior

feasible points, we also give direct ways to obtain such points. Note that the whole

investigation in this section closely follows [26, §6] and [27, §4.2].

Recall that the affine scaling method solves the linear programming problem in

the form of (P), that is, min c>x subject to Ax = b and x ≥ 0. For (P2), we simply

pose it the form of (P3). For the dual problem (D2), it can be written in the form

of (P) by adding non-negative slack variables:

(D4) max 0 (D4a)

subject to ∀fi ∈ D :
∑
ω 6=ω0

(fi(ω0)− fi(ω))p(ω) + ti = fi(ω0) (D4b)

∑
ω 6=ω0

p(ω) + q = 1 (D4c)

∀ω 6= ω0 : p(ω) ≥ 0, ∀i : ti ≥ 0, q ≥ 0. (D4d)

Even though we can also solve (D3) by the affine scaling method, we prefer to solve

(D4) as it has fewer artificial variables.

As the problem (P3) is fully degenerate, similar to the simplex method, de-

generacy can affect the performance of the affine scaling method. Specifically, the

step-size is not larger than 2/3 [41]. However, unlike the simplex method, the affine

scaling method can apply lemma 9. Indeed, when the affine scaling method solves

(P3), the method can stop as soon as it finds a negative objective function value

[27].
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Remember that we can find an initial interior feasible point by using the two-

phase method. Therefore, in general, the affine scaling normally solves two linear

programming problems: one to find a starting interior feasible point, and another

one to solve the original problem with this starting point.

Fortunately, to each one of (P3) and (D4), the affine scaling method needs to

solve only one linear program. Specifically, for (D4), we only check whether the

problem has a feasible solution or not. This is because every interior feasible point

is also an optimal solution, so we can apply the two-phase method and only need to

solve eq. (3.17). For (P3), due to the structure of the problem, we can immediately

write down an interior feasible point in closed form, therefore in this case, we do not

have to solve eq. (3.17).

Allow us explain how eq. (3.17) looks in the case of (D4). Let Ω \ {ω0} =

{ω1, . . . , ωm}. Consider, for the moment, an arbitrary

x0 =

[
p0(ω1) · · · p0(ωm) t01 · · · t0n q0

]
> 0 (7.1)

and define [r z] := b− Ax0, so

ri := hi − t0i (7.2)

z := 1−

(∑
ω 6=ω0

p0(ω) + q0

)
(7.3)

where

hi := fi(ω0)−
∑
ω 6=ω0

(fi(ω0)− fi(ω))p0(ω). (7.4)

If we choose q0 = p0(ω) = 1/|Ω| for all ω 6= ω0, then z = 0. Choose t0i = 1 (or any

other strictly positive value) for all i where hi ≤ 0. Finally, choose t0i = hi for all i
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where hi > 0, so all corresponding ri are zero. So, eq. (3.17) for (D4) becomes [27]:

(D4’) min γ (D4’a)

subject to ∀i :
∑
ω 6=ω0

(fi(ω0)− fi(ω))p(ω) + ti + riγ = fi(ω0) (D4’b)

∑
ω 6=ω0

p(ω) + q = 1 (D4’c)

∀ω 6= ω0 : p(ω) ≥ 0, ∀i : ti ≥ 0, q ≥ 0 and γ ≥ 0, (D4’d)

with an initial interior feasible point as constructed. Note that for simplicity in our

implementation later, we choose t0i = 1 for all i. If the optimal solution of (D4’) has

γ∗ = 0, then we will have found an interior feasible solution for (D4) (and therefore

also an optimal solution for (D4)), and so D avoids sure loss; otherwise, there is no

feasible solution and D incurs sure loss [27].

For (P3), we simply obtain a starting interior feasible point using theorem 43

below, with λ0
i = 1 for all i.

Theorem 43. [27, Theorem 7] An interior feasible solution of the following system

of linear constraints

∀j ∈ {1, . . . ,m} :
n∑
i=1

aijλi − α + sj = bj (7.5)

∀i : λi ≥ 0, ∀j : sj ≥ 0, α ≥ 0 (7.6)

is given by setting λi = λ0
i for some arbitrary λ0

i > 0, α = 1 + max{0,−δ} with

δ := min
j

{
bj −

n∑
i=1

aijλ
0
i

}
, (7.7)

and sj = bj −
∑n

i=1 aijλ
0
i + α .

Proof. We must show that eq. (7.5) is satisfied, and that all variables are strictly

positive.
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Clearly, eq. (7.5) is satisfied by our choice of sj, all λi = λ0
i > 0, and α ≥ 1 > 0.

Finally, all sj > 0 because

sj = bj −
n∑
i=1

aijλ
0
i + α ≥ δ + α ≥ δ + 1− δ > 0, (7.8)

where we used the definitions of δ and α respectively.

To summarise, to check avoiding sure loss with the affine scaling method, we

either solve (P3) or (D4’). In either case, we have a closed form for obtaining

an initial interior feasible point. In addition, when solving (P3), we can apply

lemma 9 as an extra stopping criterion to detect unboundedness. However, we have

a limitation on the step-size due to degeneracy.

Next, we look at the primal-dual method for which we can also apply lemma 9

and theorem 43, but which does not have a limitation on the step-size and which

has faster convergence as observed in practice.

7.5 Improving primal-dual methods for checking

avoiding sure loss

The primal-dual method is the last one that we will investigate for checking avoiding

sure loss. To start, we pose (P2) and (D2) in the suitable format of linear programs

for the primal-dual method. We then discuss how we can improve this method by

applying extra stopping criteria and a direct way to obtain feasible starting points.

Note that this section closely follows [26, §4] and [27, §4.3].

Recall that the primal-dual method solves both primal and dual problems which
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are in the form of:

(P) min c>x (D) max b>y

s.t. Ax = b, s.t. A>y + t = c,

x ≥ 0 t ≥ 0, y free.

The problem (P3) is already in the form of (P) and its dual is:

(D5) max 0 (D5a)

subject to ∀fi ∈ D :
∑
ω 6=ω0

(fi(ω)− fi(ω0))v(ω) + ti = fi(ω0) (D5b)

q −
∑
ω 6=ω0

v(ω) = 1 (D5c)

∀ω 6= ω0 : v(ω) + p(ω) = 0 (D5d)

∀i : ti ≥ 0, ∀ω 6= ω0 : p(ω) ≥ 0 and q ≥ 0. (D5e)

Because −v(ω) = p(ω) ≥ 0 for all ω, (D5) is equivalent to (D4), as expected. The

primal-dual method solves (P3) and (D5) simultaneously. Note that the primal-

dual method can start with any an arbitrary point (x, y, t) where x > 0 and t > 0.

Fortunately, for (P3), we can apply theorem 43 to obtain an initial interior feasible

point. However, there is no closed form feasible point for (D5) (if we had, then we

immediately would have found an optimal solution). In this case, a starting point

of (D5) can be q0 = p0(ω) = 1/|Ω|, v0(ω) = −1/|Ω| for all ω, and t0i = 1 for all i.

Remember that we can apply lemma 9 to (P3) only if we can keep all iterative

points in the feasible region. Even though (P3) starts with a feasible point, the next

iterative points do not necessarily stay in the feasible region because of numerical

rounding errors. Therefore, it is good practice to calculate the primal residual and

only apply lemma 9 if this error is negligible.

Now, consider solving the problem (D4’) by the primal-dual method. In this
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case, the dual of (D4’) can be written in the form of (D) as follows:

(P4’) max
n∑
i=1

λifi(ω0) + α (P4’a)

subject to ∀ω 6= ω0 :
n∑
i=1

(fi(ω0)− fi(ω))λi + α + s(ω) = 0 (P4’b)

∀i : λi + ui = 0 (P4’c)

α + β = 0 (P4’d)

n∑
i=1

riλi + µ = 1 (P4’e)

∀i : ui ≥ 0, ∀ω 6= ω0 : s(ω) ≥ 0, β ≥ 0 and µ ≥ 0. (P4’f)

To find an initial interior feasible point of (P4’), we first choose λi < 0 such that∑n
i=1 riλi < 1. The ui > 0 are then fixed by eq. (P4’c), and µ is fixed by eq. (P4’e).

Note that µ = 1 −
∑n

i=1 riλi > 0 by construction. Substituting α = −β into

eq. (P4’b), we can then apply theorem 43 to find interior feasible values for β and

s(ω) for all ω 6= ω0. Unfortunately we cannot apply lemma 9 to (P4’), because the

problem is no longer fully degenerate.

To sum up, for checking avoiding sure loss by the primal-dual method, the

method solves either a pair of (P3) and (D5), or a pair of (P4’) and (D4’). For

each case, we have closed forms for obtaining initial feasible points for the primal

problems, i.e., (P3) and (P4’). By exploiting an initial feasible point, lemma 9 can

be applied to (P3) as the problem is fully degenerate, but lemma 9 can not be

applied to (P4’) as it is not fully degenerate.

7.6 Summary

In this chapter, we studied linear programs for checking avoiding sure loss and pro-

posed our linear programs whose size are slightly reduced and have only non-negative
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variables. We investigated how we can improve the simplex, the affine scaling and

the primal-dual methods for efficiently solving our proposed linear programs.

To see an improvement, we will benchmark these three methods for checking

avoiding sure loss. Therefore, in the next chapter, we will provide several algorithms

for generating random sets of desirable gambles that either avoid or do not avoid

sure loss. Then we will benchmark these methods on those randomly generated sets.



Chapter 8

Algorithms for generating sets of

desirable gambles

This chapter is closely following [27, §6 and §7]. The aim of this chapter is to provide

algorithms for generating arbitrary finite sets of gambles that either avoid or do not

avoid sure loss. These arbitrary sets should be sufficiently generic so that we can

use them for benchmarking algorithms for checking avoiding sure loss. We first give

several algorithms for generating those coherent lower previsions that we mentioned

in section 6.6. Next, we use these generated coherent lower previsions to construct

sets of desirable gambles that either avoid or do not avoid sure loss.

8.1 Algorithms for generating coherent previsions

In this section, we give algorithms for generating coherent previsions, polyhedral

lower previsions and linear-vacuous mixtures. All algorithms are presented in [27,

§6]. To start, we first generate coherent previsions via an expectation operator.

Algorithm 1 Generate a coherent prevision [27, Algorithm 1]

Input: set of outcomes Ω

Output: a coherent prevision P on L(Ω)

77
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1. Generate a probability mass function p as follows:

(a) For each ω, sample rω uniformly from (0, 1).

(b) For each ω, set p(ω) :=
ln rω∑
ω∈Ω ln rω

.

2. Generate a coherent prevision P

(a) For any f ∈ L(Ω), P (f) := Ep(f) as in eq. (6.21).

Note that the procedure in the state 1 in algorithm 1 gives − ln rω an exponential

Exp(1) distribution. If there are n outcomes, then this will give p(ω1), . . . , p(ωn) a

Dirichlet Dir(1, . . . , 1) distribution [8, p.12]. This has uniform density over the unit

simplex.

By algorithm 1, we can easily generate a finite set of probability mass functions

which can be used to construct a polyhedral coherent lower prevision as in eq. (6.25).

We present algorithm 2 for generating a polyhedral coherent lower prevision:

Algorithm 2 Generate a polyhedral lower prevision [27, Algorithm 2]

Input: a set of outcomes Ω and k coherent previsions: Q1, . . . , Qk (e.g. obtained

by algorithm 1)

Output: a polyhedral lower prevision P on L(Ω)

1. For any f ∈ L(Ω), P (f) := minkj=1{Qj(f)}.

An algorithm for generating a linear-vacuous mixture is given as follows:

Algorithm 3 Generate a linear-vacuous mixture [27, Algorithm 3]

Input: a set of outcomes Ω, coherent prevision Q (e.g. generated by algorithm 1)

and δ ∈ (0, 1) (e.g. sample δ uniformly from (0, 1)),

Output: a linear-vacuous mixture P

1. For any f ∈ L(Ω), P (f) := (1− δ)Q(f) + δ inf f .

We now have three options to generate coherent lower previsions E, namely,

through (i) coherent previsions (algorithm 1), (ii) polyhedral lower previsions (al-
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gorithm 2) and (iii) linear-vacuous mixtures (algorithm 3). Next, we will use these

coherent lower previsions to generate arbitrary sets of desirable gambles.

8.2 Generating sets of desirable gambles that avoid

sure loss

Given coherent lower previsions, we explain how to generate an arbitrary set of

desirable gambles that avoids sure loss. As we will see later, if this coherent lower

prevision is more generic, then the generated set of desirable gambles will also be

more generic.

We start by generating a coherent lower prevision E on L(Ω) e.g. through one

of the above algorithms. After that, we generate a finite subset of gambles K of

L(Ω) and set P (f) := E(f) for all f ∈ K. Note that P is also coherent because

it is the restriction of a coherent lower prevision [39, p. 58]. Therefore, the set

D := {f − P (f) : f ∈ K} avoids sure loss. We summarised this idea and presented

the following algorithm in [27, Algorithm 4]:

Algorithm 4 Generate a set of desirable gambles that avoids sure loss

Input: a set of outcomes Ω, a number of desirable gambles n := |D| and a coherent

lower prevision E on L(Ω)

Output: a finite set of desirable gambles D that avoids sure loss

1. Generate {fj : j ∈ {1, . . . , n}} : for each ω and j, sample fj(ω) uniformly

from (0, 1).

2. For each i ∈ {1, . . . , n}, calculate E(fi).

3. Set D := {fi − E(fi) : i ∈ {1, . . . , n}}.

An overview of the logical structure of generating coherent lower previsions and

arbitrary sets of desirable gambles is summarised in the diagram of fig. 8.1.



8.2. Generating sets of desirable gambles that avoid sure loss 80

Linear-vacuous mix-
tures (algorithm 3)

Previsions (algorithm 1)

Vacuous lower
previsions

Finite sets of desirable
gambles (algorithm 4)

Polyhedral lower pre-
visions (algorithm 2)

Figure 8.1: A diagram of generating coherent lower previsions and finite sets of desirable
gambles that avoid sure loss.

Next, we investigate which type of coherent lower prevision we should use to

generate sets of desirable gambles that avoid sure loss. This following work is pre-

sented in [27, §5]. To answer this question, we first look at ME and its extreme

points, for various classes of E:

(i) Vacuous lower prevision: ME = ∆(Ω) and its extreme points are all 0 − 1

valued probabilities.

(ii) Coherent previsions: ME = extME = {p}, p ∈ ∆(Ω).

(iii) Polyhedral lower previsions: as in eq. (6.25), when M is finite, ME is a poly-

hedron and has a finite set of extreme points.

(iv) Linear-vacuous mixtures: for p0 ∈ ∆(Ω) and δ ∈ (0, 1), ME = {(1 − δ)p0 +

δp, p ∈ ∆(Ω)} and extME = {(1− δ)p0 + δp, p is a 0− 1 valued probability}.

Figure 8.2 illustrates examples of ME associated with different coherent lower

previsions. For vacuous lower previsions and prevision, the number of extreme

points are trivial. For polyhedral lower previsions, the number of extreme points is

arbitrary (but finite). For linear-vacuous mixtures, the number of extreme points

is limited to the number of outcomes, and the shape of its credal set is fixed (up
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a b

c

(i)
a b

c

.

(ii)
a b

c

(iii)
a b

c

(iv)

Figure 8.2: Simplex representation of different ME for Ω = {a, b, c}: (i) vacuous, (ii)
prevision, (iii) polyhedral lower prevision, (iv) linear-vacuous mixture. Reprinted from
[27, Figure 1].

to scale and translation). Therefore, we do not recommend to use vacuous lower

previsions or previsions to generate finite sets of desirable gambles as indicated by

dashed lines in fig. 8.1.

Suppose that D = {f − P (f) : f ∈ domP} is generated by algorithm 4. Its

credal set associated with D is given by

MD = {p ∈ ∆(Ω): ∀f ∈ D, Ep(f) ≥ 0}. (8.1)

We show that MD and ME are related as follows:

Corollary 44. [27, Corollary 1] Let E be a coherent lower prevision on L(Ω), let

P be a restriction of E to a finite domain, and let D = {f − P (f) : f ∈ domP}.

Then:

(i) ME ⊆MD.

(ii) IfME is a polyhedron, then there is a finite set K ⊆ L(Ω) such that if domP =

K, then MD =ME.
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Proof. (i). We find that

ME =
⋂

f∈L(Ω)

{p ∈ ∆(Ω): Ep(f) ≥ E(f)} (8.2)

=
⋂

f∈L(Ω)

{p ∈ ∆(Ω): Ep(f − E(f)) ≥ 0} (8.3)

⊆
⋂

f∈domP

{p ∈ ∆(Ω): Ep(f − P (f)) ≥ 0} =MD. (8.4)

(ii). By (i), we only need to show thatMD ⊆ME. SinceME is a polyhedron, it

is an intersection of a finite number of half-spaces. Therefore, there exists an n ∈ N,

vectors f1, . . . , fn and numbers α1, . . . , αn ∈ R such that

ME =
n⋂
i=1

{p ∈ ∆(Ω): p · fi ≥ αi} (8.5)

where ‘·’ denotes the dot product. Note that

E(fi) = min
p∈ME

p · fi = min
p
{p · fi : ∀j, p · fj ≥ αj} ≥ αi. (8.6)

Let K = {f1, . . . , fn} and domP = K. Then,

MD =
n⋂
i=1

{p ∈ ∆(Ω): p · fi ≥ E(fi)} (8.7)

⊆
n⋂
i=1

{p ∈ ∆(Ω): p · fi ≥ αi} =ME. (8.8)

Therefore, if we wantMD to have a sufficient number of extreme points so that

D will be generic for benchmarking, then we should generate D by using either a

polyhedral lower prevision, or at the very least using a linear-vacuous mixture [27].

Figure 8.3 visualises the construction of the proof of corollary 44, for various

cases of lower previsions. Corollary 44 implies that we do not necessarily achieve

new extreme points even though we add more and more gambles to D. Therefore, if



8.3. Sequentially generating sets that do not avoid sure loss 83

a b

c

(i)
a b

c

.

(ii)
a b

c

(iii)
a b

c

(iv)

Figure 8.3: Constructing ME by finite half-spaces for Ω = {a, b, c}: (i) vacuous, (ii)
prevision, (iii) polyhedral lower prevision, (iv) linear-vacuous mixture. Reprinted from
[27, Figure 2].

we want to gain new extreme points with every gamble that we add, then algorithm 4

may not be a good choice for generating D [27]. In the next section, we suggest

another algorithm that precisely addresses this issue.

8.3 Sequentially generating sets that do not avoid

sure loss

This whole section closely follows [27, §6.1]. Suppose that we have a set E =

{f1, . . . , fn} that avoids sure loss (which can be obtained by algorithm 4), or we

can also start with an empty set which also avoids sure loss. Suppose that we want

to find a gamble g for which E ∪ {g} avoids sure loss. However, it is not easy to

generate g as we want. Indeed, we can shift g by α such that g − α satisfies this

condition. To do so, we first find the range of values for α such that E ∪ {g − α}

avoids sure loss.

By the condition of avoiding sure loss in definition 18, a constraint on the values

of α must satisfy the following constraint: for all n ∈ N, all λ1, . . . , λn ≥ 0, and all

f1, . . . , fn ∈ E ,

sup
ω∈Ω

(
n∑
i=1

λifi(ω) + g(ω)

)
≥ α. (8.9)

The infimum of this upper bound is precisely EE(g), which can be obtained by

solving a linear programming problem ((Q1) in algorithm 5). So, we proved:
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Corollary 45. [27, Corollary 2] Let E avoid sure loss and let g ∈ L(Ω). E ∪{g−α}

avoids sure loss if and only if α ≤ EE(g).

Hence, if we set α > EE(g), then E ∪ {g − α} does not avoid sure loss. We

presented the following algorithm for generating a set of desirable gambles that

does not avoid sure loss in [27, Algorithm 5].

Algorithm 5 Generate a set of desirable gambles that does not avoid sure loss

Input: a set of outcomes Ω, a set of desirable gambles E that avoids sure loss and
δ > 0 (e.g. sample δ uniformly from (0, 1))

Output: a set of desirable gambles D that does not avoid sure loss.

1. For each ω ∈ Ω, sample g(ω) uniformly from (0, 1).

2. Calculate EE(g) by solving the following linear program:

(Q1) min β (Q1a)

s. t. ∀ω ∈ Ω:
∑
fi∈E

fi(ω)λi − β ≤ −g(ω), λi ≥ 0 (β free). (Q1b)

3. Set D := E ∪ {g − EE(g)− δ}.

Note that since there is only a single gamble in sets of gambles generated by

algorithm 5 that violates avoiding sure loss, these sets are the most computationally

challenging sets to identify not avoiding sure loss. Consequently, they are the most

suitable sets for benchmarking, as any measurable improvement on these sets implies

an at least as large improvement on any simpler scenarios.

Next, we provide an algorithm for generating sets of desirable gambles that still

avoid sure loss. The next section closely follows [27, §6.2]
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8.4 Sequentially generating sets that avoid sure

loss

Consider a set E := {f − Q(f) : f ∈ domQ} that avoids sure loss where Q is a

coherent lower prevision. Let g be a gamble in L(Ω) \ domQ. By corollary 45, we

know that the larger set D := E ∪{g−α} still avoids sure loss as long as α ≤ EE(g).

Note that the number of extreme points of MD can be less than ME after adding

{g − α}, as shown in fig. 8.4.

a b

c

ME

a b

c

adding a gamble
a b

c

MD

Figure 8.4: Simplex representation of a credal sets after adding a gamble. Reprinted from
[27, Figure 3].

How can we keep the number of extreme points after adding {g − α}? If P is

a coherent extension of Q to domQ ∪ {g}, then MP must have at least as many

extreme points as MQ. This is because by coherence, for every f ∈ domQ, P (f)

and Q(f) must be achieved at some extreme point of MP and MQ, respectively

[46, p. 126]. However, since P (f) = Q(f) for all these gambles f , MP cannot have

fewer extreme points than MQ, because otherwise P (f) > Q(f) for at least one

gamble f . Consequently, the number of extreme points does not decrease if we can

preserve coherence.

Theorem 46. (adapted from [46, p. 126]) Let Q be a coherent lower prevision

and let g be a gamble in L(Ω) \ domQ. Suppose that P is an extension of Q to
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EQ(g) E
∼ Q

(g) EQ(g)

coherence
avoiding sure loss

Figure 8.5: Ranges of avoiding sure loss and coherence. Reprinted from [27, Figure 4].

domQ ∪ {g}. Then P is coherent if and only if P (g) ∈ [EQ(g), E
∼ Q

(g)], where

E
∼ Q

(g) := inf
fi∈domQ,
λi≥0

{
max
ω∈Ω

(
g(ω) +

n∑
i=1

λi(fi(ω)−Q(fi)))− λ0(f0(ω)−Q(f0))

)}
.

(8.10)

Given a coherent lower prevision Q, fig. 8.5 illustrates ranges of avoiding sure

loss and coherence of g.

We can easily calculate EQ(g) by solving a single linear programming problem

((Q4) in algorithm 6). However, for E
∼ Q

(g), we first have to solve a separate linear

programming problem for every fj ∈ domQ:

(Q2) min β (Q2a)

s.t. ∀ω ∈ Ω :
n∑

i=1, i6=j

λi(fi(ω)−Q(fi))− λj(fj(ω)−Q(fj))− β ≤ −g(ω) (Q2b)

∀i : λi ≥ 0 (β free). (Q2c)

Next, E
∼ Q

(g) is obtained by minimising the optimal values among these linear pro-

grams (Q2). Also note that each separate linear program is very similar to the

linear program for calculating EQ(g) ((Q3) in algorithm 6) and has the same size.

So, instead of evaluating E
∼ Q

(g), we prefer to calculate EQ(g) and EQ(g) (or EE(g)

where E = {f − Q(f) : f ∈ domQ}), because for each of them, we solve only one

linear programming problem. Next, if we choose a very small number δ ∈ (0, 1)

and set P (g) := (1 − δ)EQ(g) + δEQ(g), then P (g) is slightly larger than EQ(g),
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nevertheless it is less than E
∼ Q

(g). Consequently, E ∪ {g − P (g)} still avoids sure

loss as we desire. We presented this approach in [27, Algorithm 6].

Algorithm 6 Sequentially generate a set of desirable gambles that avoids sure loss

Input: a set of outcomes Ω, a lower prevision Q that avoids sure loss (e.g. Algo-

rithms 1, 2 or 3) a set E = {f − Q(f) : f ∈ domQ} that avoids sure loss and

δ ∈ (0, 1).

Output: a larger set of desirable gambles D that avoids sure loss.

1. For each ω ∈ Ω, sample g(ω) uniformly from (0, 1).

2. Calculate EQ(g) by solving

(Q3) min β (Q3a)

subject to ∀ω ∈ Ω:
n∑
i=1

(fi(ω)−Q(fi))λi − β ≤ −g(ω) (Q3b)

∀i : λi ≥ 0, fi(ω)−Q(fi) ∈ E (β free). (Q3c)

3. Calculate EQ(g) by solving

(Q4) max γ (Q4a)

subject to ∀ω ∈ Ω:
n∑
i=1

(fi(ω)−Q(fi))λi + γ ≤ g(ω) (Q4a)

∀i : λi ≥ 0, fi(ω)−Q(fi) ∈ E (γ free). (Q4a)

4. Set P (g) := (1− δ)EQ(g) + δEQ(g).

5. Set D := E ∪ {g − P (g)}.

Note that in our benchmarking, we will not use algorithm 6 to generate sets of desir-

able gambles that avoid sure loss. Instead, we use a combination of algorithm 2 and

algorithm 4, which generates constraints via a set of probability mass functions, as

this is computationally faster. We provide algorithm 6 for the sake of completeness,

as an alternative algorithm for generating constraints directly.
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8.5 Summary

To summarise, we gave several algorithms for generating coherent lower previsions,

i.e., algorithm 1 for coherent previsions, algorithm 2 for polyhedral lower previsions

and algorithm 3 for linear-vacuous mixtures. We then discussed how these lower

previsions can be used to generate sets of desirable gambles that either avoid (algo-

rithms 4 and 6) or do not avoid sure loss (algorithm 5) for benchmarking. In the

next chapter, we will perform a simulation study and present benchmarking results.



Chapter 9

Benchmarking and discussion

In this simulation study, we compare the impact of those mentioned improvements

for the simplex, the affine scaling and the primal-dual methods on randomly gen-

erated sets of desirable gambles that either avoid or do not avoid sure loss. We

present benchmarking results and discuss an efficiency of our improved methods for

checking avoiding sure loss. This chapter is based on [26, §7 and §8] and [27, §7

and §8]. Note that the plots in figs. 9.2 and 9.3 are presented in [26, §7 8] while the

plots in figs. 9.1, 9.4, 9.5, 9.4, 9.5, 9.8, 9.9, 9.10 and 9.11, where we further run ex-

tra simulations comparing the impact of different improvements on the primal-dual

methods.

9.1 Benchmarking results

To benchmark our theoretical improvements for these three methods, we first gen-

erate random sets of desirable gambles and then pose them as linear programming

problems in the form that are suitable to different methods. Next, we solve these

linear programs by our improved methods.

We generate sets of desirable gambles for benchmarking as follows. We generate

89
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Figure 9.1: The average computational time for different methods for checking avoiding
sure loss when varying k and fixed |D| = |Ω| = 24. All sets avoid sure loss

two cases of random sets: (i) sets that avoid sure loss, and (ii) sets that do not. For

each case, we consider the size of sets of desirable gambles D for which |D| = 2i

for i ∈ {1, 2, . . . , 8} and the size of sets of outcomes Ω for which |Ω| = 2j for

j ∈ {1, 2, . . . , 8}. Random sets of desirable gambles that avoid sure loss are generated

as follows:

1. We use algorithm 1 to generate k coherent previsions. We fixed k = 25, since

we observed that varying k has little impact on the results (see fig. 9.1).

2. From these k coherent previsions, we use algorithm 2 to generate a polyhedral

lower prevision.

3. We use algorithm 4, with this polyhedral lower prevision, to generate a random

set of desirable gambles E that avoids sure loss.

Next, starting from a set E that avoids sure loss, we generate a set that does not

avoid sure loss using algorithm 5 with δ = 0.05.
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Linear programs
Methods

Simplex Affine scaling Primal-dual

(P3) X X X

(D3) X

(D4’) X X

Table 9.1: List of different methods for solving different linear programs for checking
avoiding sure loss. Note that the primal-dual method also solves the dual problem simul-
taneously, i.e., (D5) for (P3) and (P4’) for (D4’) [27, Table 1].

For each random set of desirable gambles, we assume that we do not know

whether it avoids sure loss or not. To find out, we pose the linear programming

problem in the suitable format for each of the different methods. Table 9.1 gives an

overview of these different algorithms solving different linear programming problems.

Note that the primal-dual method simultaneously solves the primal and the dual

problems.

To compare these three methods, we wrote our own implementation of the affine

scaling and the primal-dual methods. We used an implementation of the revised

simplex method written by Strang [37]. Recall that the revised simplex method

is mathematically equivalent to the standard simplex method, but is much more

efficient and numerically stable [7, §3.7]. We used the revised simplex method to

solve both problems (P3) and (D3). For the affine scaling method, a standard version

is used for solving (D4’), while an improved version, which implements the extra

stopping criterion and our mechanism for calculating feasible starting points, is used

to solve (P3). For the primal-dual method, we have two improved versions: (i) the

first version that has the extra stopping criterion and the mechanism for calculating

feasible starting points is used for solving (P3) and (D5), and (ii) the second version

that has only the mechanism for calculating feasible starting points is used to solve

(D4’) and (P4’).

For each method, we run the algorithm twice in order to remove any warm-up

effects that may happen in the first run, and we only measure the corresponding
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Avoiding sure loss Not avoiding sure loss

|D
|=

22
|D
|=

24
|D
|=

26
|D
|=

28

Figure 9.2: Comparison plots of the average computational time for three methods. The
left column avoids sure loss and the right column does not. Each row represents a different
number of desirable gambles where we vary the number of outcomes. The labels indicate
different linear programs solved by different methods. Reprinted from [27, Figure 5]

computational time taken in the second run. The process is repeated 1000 times

and a summary of the results is presented in figs. 9.2 and 9.3.

Figures 9.2 and 9.3 presents the average computational time taken during each

method when solving different linear programs for checking avoiding sure loss. In the

left column, the sets of desirable gambles avoid sure loss while in the right column,

they do not avoid sure loss. In fig. 9.2 each row represents a different number of

desirable gambles, and the horizontal axis represents the number of outcomes. In

contrast, in fig. 9.3, each row represents a different number of outcomes, and the
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Avoiding sure loss Not avoiding sure loss
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Figure 9.3: Comparison plots of the average computational time for three methods. The
left column avoids sure loss and the right column does not. Each row represents a different
number of outcomes where we vary the number of desirable gambles. The labels indicate
linear programs solved by different methods. Reprinted from [27, Figure 6].
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horizontal axis represents the number of desirable gambles. In both figures, the

vertical axis shows the computational time which is averaged over 1000 random

sets of desirable gambles. The error bars on the figures represent approximate 95%

confidence intervals on the mean computation time. These bars are barely visible as

the sample size is large, except in some rare cases where we observed large variability

in the simplex method (possibly due to the numerical issues that we discussed earlier

in section 2.4).

In the avoiding sure loss case, note that the sets of desirable gambles are always

generated from coherent lower previsions. However, in some applied problems, this

may not be the case. To address this point, we ran one further experiment where we

added a negative bias in order to remove coherence whilst the sets still avoid sure

loss. Specifically, in Stage 3 of algorithm 4, we set D := {fi − E(fi) + η(fi) : i ∈

{1, . . . , n}}, for some η(fi) > 0. For this experiment, we considered two scenarios:

(i) we uniformly sampled each η(fi) from the open (0, 1) interval, and (ii) we fixed

each η(fi) := 0.01. This made no practical difference. In particular, the plots in

figs. 9.2 and 9.3 for the avoiding sure loss case remained nearly identical, with no

change in general conclusions.

In addition to presenting mean times and error bars from the simulation, we

give information on the spread of times associated with some cases of these mean.

Specifically, figs. 9.4 and 9.5 present box-and-whisker plots of the computational time

for different algorithms for checking avoiding sure loss. Each box-and-whisker plot

summarises the computational time for checking avoiding sure loss of 1000 random

sets of desirable gambles. In the left column, the sets of desirable gambles avoid

sure loss while in the right column, they do not avoid sure loss. In both figures, the

horizontal axis represents different algorithms solving different linear programs. In

fig. 9.4 each row represents a different number of desirable gambles, while, in fig. 9.5,

each row represents a different number of outcomes.
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Avoiding sure loss where |Ω| = 26 Not avoiding sure loss where |Ω| = 26

|D
|=

23
|D
|=

25
|D
|=

27

Figure 9.4: Comparison box-and-whisker plots of the computational time for three meth-
ods. The number of outcomes is |Ω| = 26. The left column avoids sure loss and the right
column does not. Each row represents a different number of desirable gambles. The hori-
zontal axis represents different algorithms solving different linear programs. On each box,
the central mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data
points not considered outliers, which are values that are more than three scaled median
absolute deviations away from the median. The outliers are plotted individually using the
‘+’ symbol.
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Avoiding sure loss where |D| = 26 Not avoiding sure loss where |D| = 26
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|=

25
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|=

27

Figure 9.5: Comparison box-and-whisker plots of the computational time for three meth-
ods. The number of desirable gambles is |D| = 26. The left column avoids sure loss and
the right column does not. Each row represents a different number of outcomes. The hori-
zontal axis represents different algorithms solving different linear programs. On each box,
the central mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data
points not considered outliers, which are values that are more than three scaled median
absolute deviations away from the median. The outliers are plotted individually using the
‘+’ symbol.
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Avoiding sure loss Not avoiding sure loss

Figure 9.6: Comparison scatter plots of the computational time for different pairs of
methods. The number of desirable gambles is |D| = 26 where we vary numbers of outcomes
for which |Ω| = 2j for j ∈ {1, 2, . . . , 8}. The left column avoids sure loss and the right
column does not. Each axis shows computational time for each of different algorithms.
The red line is the identity line.
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Avoiding sure loss Not avoiding sure loss

Figure 9.7: Comparison scatter plots of the computational time for different pairs of
methods. The number of outcomes is |Ω| = 26 where we vary numbers of desirable gambles
for which |D| = 2i for i ∈ {1, 2, . . . , 8}. The left column avoids sure loss and the right
column does not. Each axis shows computational time for each of different algorithms.
The red line is the identity line.



9.1. Benchmarking results 99

We also present some scatter plots of the computational time for one method

against the time for the other method for checking avoiding sure loss. This would

show whether the computational times under the two methods are related to each

other and perhaps whether there are distinct groups of simulations where one method

has done better than the other.

Figures 9.6 and 9.7 present scatter plots of the computational time for different

pairs of algorithms for checking avoiding sure loss. In the left column, the sets of

desirable gambles avoid sure loss while in the right column, they do not avoid sure

loss. In both figures, the horizontal and vertical axis represent the computational

time of one method against the computational time for the other. In fig. 9.6 we

fix the number of desirable gambles to be |D| = 26 and vary numbers of outcomes

for which |Ω| = 2j for j ∈ {1, 2, . . . , 8}. In fig. 9.7, we fix the number of outcomes

to be |Ω| = 26 and vary numbers of desirable gambles for which |D| = 2i for

i ∈ {1, 2, . . . , 8}.

We also compare our suggested improvements on the primal-dual methods. Specif-

ically, when we solve (P3) and (D5), we investigate an impact of implementations

of extra stopping criterion and feasible starting points in the primal-dual method.

For solving (D4’) and (P4’), we only investigate an impact of an implementation of

feasible starting points.

Figures 9.8, 9.9, 9.10 and 9.11 present the average computational time for dif-

ferent improved primal-dual methods for solving different linear programs. Specif-

ically, we fix the number of desirable gambles and change the number of outcomes

in figs. 9.8 and 9.9 while in figs. 9.10 and 9.11, we fix the number of outcomes and

change the number of desirable gambles. In these figures, the sets of desirable gam-

bles in the left column avoid sure loss while in the right column, they do not avoid

sure loss. The vertical axis represents the computational time which is averaged

over 1000 random sets of desirable gambles. The error bars on the figures show
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Avoiding sure loss Not avoiding sure loss
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Figure 9.8: Comparison plots of the average computational time for different improved
primal-dual methods (PD) for solving (P3) and (D5) where we fix the number of desirable
gambles and vary the number of outcomes. The labels indicate different improved primal-
dual methods.
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Avoiding sure loss Not avoiding sure loss
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Figure 9.9: Comparison plots of the average computational time for an improved primal-
dual method and a standard primal-dual method (PD) for solving (D4’) and (P4’) where
we fix the number of desirable gambles and vary the number of outcomes. The labels
indicate two different primal-dual methods.
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Figure 9.10: Comparison plots of the average computational time for different improved
primal-dual methods (PD) for solving (P3) and (D5) where we fix the number of outcomes
and vary the number of desirable gambles. The labels indicate different primal-dual meth-
ods.
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Figure 9.11: Comparison plots of the average computational time for an improved primal-
dual method and a standard primal-dual method (PD) for solving (D4’) and (P4’) where
we fix the number of outcomes and vary the number of desirable gambles. The labels
indicate two different primal-dual methods.
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approximate 95% confidence intervals on the mean computation time. These bars

are barely visible as the sample size is large, except in few cases.

9.2 Discussion

The discussion in this section closely follows from the discussions in [26, 27]. Accord-

ing to our numerical results, the relative performance of the three methods depends

on the number of desirable gambles and the number of outcomes. Specifically, if

the number of outcomes is much larger than the number of desirable gambles, then

solving either (D3) or (D4’) is faster than solving (P3). However, if the number

of outcomes is much less than the number of desirable gambles, then we prefer to

solve (P3). From this result, we conclude that for checking avoiding sure loss, these

algorithms solve linear programs which have the number of constraints less than

the number of variables faster than solving linear programs where the number of

variables is larger than the number of constraints. When the two numbers are of

similar magnitude, there is no clear difference.

Even though the simplex method can easily find a basic feasible starting point,

it cannot apply the extra stopping criterion. In the results, the simplex method is

outperformed by the affine scaling and the primal-dual methods in most scenarios.

Hence, the simplex method is not a good choice for checking avoiding sure loss.

On the other hand, the affine scaling and the primal-dual methods can benefit

from these improvements. Specifically, when we solve (P3), these two methods can

apply the extra stopping criterion and a simple way to obtain feasible starting points.

In this case, the primal-dual method performs very well, especially when we do not

avoid sure loss and the number of desirable gambles is large.

When we solve (D4’), these two interior-point methods can easily construct fea-

sible starting points. In this case, the affine scaling method performs very well in
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small problems whilst the primal-dual method does better when the problems are

bigger.

Overall, if linear programs are small, then there is no big difference in the time

taken to solve either (P3) or (D4’), and there is also no big difference between the

performance of the methods. When the linear programs are large, the primal-dual

method is the best choice. In this case, if the number of desirable gambles is large,

then we solve (P3), and if the number of outcomes is large, then we solve (D4’).

We discuss the impact of using our improvements in the primal-dual method

as follows. When the sets avoid sure loss, using our feasible starting point in the

primal-dual method shows a very slight improvement, regardless of which linear

programs. Similarly, the extra stopping criterion does not help at all in this case,

quite logically so, because it will never be invoked in this case. This implies that it

also does not hinder performance; the overhead of the extra check is thus negligible.

Consider the case that sets do not avoid sure loss. When we solve (P3), both

the extra stopping criterion and the feasible starting point considerably improve

performance. Using both improvements gives the best results. Similarly, when we

solve (D4’), the primal-dual method with feasible starting point performs much

better than the standard primal-dual method. Therefore, the feasible starting point

definitely improves its performance.

Note that these improvements benefit all applied problems as they reduce the

computational burden of the original algorithms. Our benchmarking study quanti-

fied these benefits for a wide range of situations. In the case of not avoiding sure

loss, we tested the hardest case where only a single gamble violates consistency. Any

positive computational gain in these cases implies at least as large a gain for more

general applied cases where multiple gambles violate consistency.

Also note that we can make the procedure 1. in algorithm 1 more general.
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Specifically, if for i = 1, . . . , n we assign Ri a gamma Ga(ai, 1) distribution, inde-

pendently, and set p(ωi) :=
Ri∑n
j=1 Rj

, then this will give p(ω1), . . . , p(ωn) a Dirichlet

Dir(a1, a2, . . . , an) distribution [8, p.12]. This would allow us to change both the

mean and the variance of p(ω1), . . . , p(ωn) and the resulting sets of desirable gambles

might have different, collective, characteristics. This would affect the comparison of

the algorithms in the benchmarking as some algorithms might tend to do better, or

worse, in particular regions of the space of possible sets of desirable gambles. This

might provide a means of further exploration of the comparison.

9.3 Summary

The first contribution based on [26, 27] is summarised as follows. We studied lin-

ear programming problems for checking avoiding sure loss. We then discussed and

improved the simplex, the affine scaling and the primal-dual methods to efficiently

solve linear programs for checking avoid sure loss. The improvements of these meth-

ods are, namely, (i) an extra stopping criterion, and (ii) a simple and quick algorithm

for finding feasible starting points in these methods.

To measure our improvements, we also gave several algorithms for generating

random sets of desirable gambles that either avoid or do not avoid sure loss. We

compared the performance of different methods on generated sets.

We presented the relative performance of the three methods as a function of

the number of desirable gambles and the number of outcomes. Overall, the affine

scaling and primal-dual methods which benefit from the improvements outperform

the simplex method in most cases. Therefore, the simplex method is not a good

choice for solving linear programs for checking avoiding sure loss. If problems are

small, then there is no big difference in performance between all methods. For large

problems, our improved primal-dual method performs at least three times faster
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than any of the other methods.

In the next contribution, we will look at checking avoiding sure loss for betting

schemes, where we view betting odds and free coupons as a set of desirable gambles.

For that specific problem, in addition to checking avoiding sure loss by solving

a linear programming problem, we will show that we can calculate the natural

extension for checking avoiding sure loss through the Choquet integral.
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Chapter 10

Betting odds and free coupons

This chapter closely follows [29] which we publish in International Journal of Ap-

proximate Reasoning, volume 106, which is available in March 2019. In that work,

we study whether and how customers can exploit betting odds and free coupons in

order to make a sure gain. To start, in section 10.1 we introduce a betting scheme

and explain fractional fixed odds. As betting odds can be viewed as a set of de-

sirable gambles, we also check whether such a set avoids sure loss or not. Next, in

section 10.2 we view a free coupon as part of a desirable gamble which is added

to the set that avoids sure loss, and then we check whether such a larger set still

avoids sure loss or not through the natural extension. We show that we can apply

the Choquet integral to calculate natural extensions, and, with the complementary

slackness conditions, to find a combination of bets in order to make a guaranteed

gain. Finally, in section 10.3, we illustrate our results via some actual betting odds

and free coupons in the market.

10.1 Betting schemes

This section closely follows [29, §3]. In the UK, a bookmaker usually offers fixed

fractional odds on possible outcomes of an event that customers are interested in. For
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example, in the European Football Championship 2016, customers are interested in

the winner of the championship. Suppose that a bookmaker sets odds on England,

say 17/2, and one customer accepts this odds. For every stake of £2 that the

customer bets on England, he will win £17 plus the return of his stake. So the

bookmaker will lose £17 in total when England is the winner of the championship.

Otherwise, the bookmaker will pay nothing and keep £2.

Suppose that a customer accepts odds a/b on an outcome x, he can simply

calculate his return as follows. For every amount b that the customer bets, he will

either gain a plus the return of his stake (in case the bet is won, i.e. the true outcome

is x) or get nothing (in case the bet is lost, i.e. the true outcome is not x). The

bookmaker often writes a/1 as a. As the bookmaker accepts this transaction, the

total payoff can be seen as a desirable gamble, say g, to the bookmaker:

g(ω) =


−a if ω = x

b otherwise.

(10.1)

Note that −g can be viewed as the total payoff to the customer, so −g is a desirable

gamble to the customer.

Throughout this chapter, let Ω = {ω1, . . . , ωn} be a finite set of outcomes. Sup-

pose that for each i, the bookmaker sets ai/bi to be the betting odds on ωi. By

eq. (10.1), these odds can be viewed as a set of desirable gambles D = {g1, . . . , gn},

where

gi(ω) :=


−ai if ω = ωi

bi otherwise.

(10.2)

Let ai/bi be the odds on ωi. Suppose that we want to modify the denominator in

this odds to be bj. To do so, we can multiply ai/bi by bj/bj to be

aibj/bibj =

(
aibj
bi

)
/bj. (10.3)
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Are the new odds still desirable? By the rationality axioms for desirability, the

modified odds are still desirable; see lemma 47 below.

Lemma 47. [29, Lemma 2] Let a/b be desirable odds on an outcome ω̃ . Then, for

all α > 0, the odds αa/αb on ω̃ are also desirable.

Proof. Consider the desirable gamble corresponding to the odds a/b:

g(ω) :=

−a if ω = ω̃

b otherwise.

(10.4)

By rationality axiom (D3), for any α > 0, the gamble αg is also desirable. Hence,

the corresponding odds αa/αb are also desirable.

Lemma 47 will be very useful in the case that we want to modify odds to have

the same denominator.

Before the bookmaker announcing betting odds for all possible outcomes in Ω,

the bookmaker may want to check whether there is a combination of bets from

which customers can make a sure gain. In other words, the bookmaker wants to

check whether he avoids sure loss or not [46, Appendix 1, I4, p. 635]:

Theorem 48. [29, Theorem 5] Let Ω = {ω1, . . . , ωn}. Suppose ai/bi are betting

odds on ωi. For each i ∈ {1, . . . , n}, let

gi(ω) :=

−ai if ω = ωi

bi otherwise,

(10.5)

be the gamble corresponding to the odds ai/bi. Then D := {g1, . . . , gn} avoids sure

loss if and only if
n∑
i=1

bi
ai + bi

≥ 1. (10.6)
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Proof. Theorem 48 follows from theorem 51 (proved after) for m = 1. (Note that

theorem 48 is not used in the proof of theorem 51.)

Note that, at least
∑n

i=1
bi

ai+bi
is equal to 1; otherwise bookmakers do not avoid

sure loss. However, in practice,
∑n

i=1
bi

ai+bi
is normally strictly greater than 1 and

100×

(
n∑
i=1

bi
ai + bi

− 1

)
(10.7)

is called the over-round margin [6, 45].

Let us see an example of theorem 48.

Example 49. Suppose that a bookmaker provides betting odds 4/9 for W, 7/2 for

D, and 8/1 for L. As

9

4 + 9
+

2

7 + 2
+

1

8 + 1
= 1.026 ≥ 1, (10.8)

by theorem 48, the bookmaker avoids sure loss. Therefore, a customer cannot exploit

these odds in order to make a sure gain.

Note that the condition for avoiding sure loss of D in theorem 48, which is a set

of desirable gambles derived from betting odds, is exactly the same as the condition

for avoiding sure loss of P p in theorem 22. This condition is also equivalent to

Proposition 4 in Cortis [4].

Next, we show that those odds can be modelled through an upper probability

mass function:

Lemma 50. [29, Lemma 3] Let Ω = {ω1, . . . , ωn}, let ωi ∈ Ω and let g be the

corresponding gamble to the odds on ωi defined as in eq. (10.2), that is,

gi(ω) :=

−ai if ω = ωi

bi otherwise,

(10.9)
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where ai and bi are non-negative. If p is a probability mass function, that is∑
ω∈Ω p(ω) = 1 and p(ω) ≥ 0 for all ω ∈ Ω, then

∑
ω∈Ω

gi(ω)p(ω) ≥ 0 ⇐⇒ bi
ai + bi

≥ p(ωi). (10.10)

Proof. Suppose that
∑

ω∈Ω p(ω) = 1 and p(ωi) ≥ 0 for all i, then

∑
ω∈Ω

gi(ω)p(ω) ≥ 0 ⇐⇒ −aip(ωi) + bi
∑
ω 6=ωi

p(ω) ≥ 0 (10.11)

⇐⇒ −aip(ωi) + bi(1− p(ωi)) ≥ 0 (10.12)

⇐⇒ bi
ai + bi

≥ p(ωi). (10.13)

In order to avoid sure loss, the odds ai/bi on ωi must satisfy eq. (10.13) [46,

§3.3.3 (a)] (see the proof of theorem 51 for more detail). Therefore, the collection

of these odds can be viewed as an upper probability mass function, that is,

∀i ∈ {1, . . . , n} : p(ωi) :=
bi

ai + bi
. (10.14)

In general, there is more than one bookmaker in the market. The next challenge

is whether a customer can exploit odds from different bookmakers in order to make

a sure gain. To do so, we model betting odds from different bookmakers as a set

of desirable gambles, and we check avoiding sure loss of this set. We recover the

known result that it is optimal to pick maximal odds on each outcome [45]. Since

greater odds are corresponding to a higher payoff to a customer, a sensible strategy

for the customer is to choose the greatest odds on each outcome.

Theorem 51. [29, Theorem 6] Let Ω = {ω1, . . . , ωn}. Suppose that there are m

different bookmakers. For each k ∈ {1, . . . ,m}, let aik/bik be the betting odds on
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ωi provided by bookmaker k. For each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, let

gik(ω) :=

−aik if ω = ωi

bik otherwise.

(10.15)

be the desirable gamble corresponding to the odds aik/bik. Let a∗i /b
∗
i be the maximal

betting odds on outcome ωi, that is,

a∗i /b
∗
i :=

m
max
k=1
{aik/bik} . (10.16)

Then the set of desirable gambles D = {gik : i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}} avoids

sure loss if and only if
n∑
i=1

b∗i
a∗i + b∗i

≥ 1. (10.17)

Proof. See appendix B.4.

Therefore, to check avoiding sure loss of several bookmakers, by theorem 51, we

only need to consider the greatest odds on each outcome. Let us see an example.

Example 52. [29, Example 2] Suppose that in the market there are three book-

makers providing different odds for outcomes W, D, and L as in table 10.1.

Outcomes
Betting companies

Maximum odds
River Mountain Forest

W 4/5 17/20 3/4 17/20

D 13/5 14/5 13/5 14/5

L 10/3 3 16/5 10/3

Table 10.1: Table of odds provided by three bookmakers [29, Table 1].

Let D be the set of desirable gambles corresponding to all of these odds. Note that
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the maximal betting odds are 17/20 for W, 14/5 for D and 10/3 for L. As

20

17 + 20
+

5

14 + 5
+

3

10 + 3
= 1.034 ≥ 1, (10.18)

by theorem 51, we conclude that D avoids sure loss. Therefore, a customer cannot

exploit these odds to make a sure gain.

Suppose that there is a customer who is interested in odds provided by the three

bookmakers as in table 10.1. A sensible strategy to him is to choose the greatest

odds on each outcome. However, this implies that the customer will never pick any

odds provided by Forest, because all of Forest’s odds are less than or equal the odds

provided by other bookmakers. Therefore, to encourage customers to bet with them,

Forest may offer free coupons, which can be spent on betting, to the customer under

certain conditions. In the next section, we will look at these free coupons in more

detail.

10.2 Free coupons for betting

A free coupon is a free stake that is given by a bookmaker to a customer under some

condition. For example, a free coupon is offered to a customer who first bets with a

bookmaker. The free coupon can be spent on some betting odds that the customer

wants to bet. In fact, the free coupon is not truly free, since the customer firstly has

to bet on some odds before he claims the free coupon. In addition, the bookmakers

usually set some requirements, for instance, a limit on the amount of free coupons

that customers can claim, or a restriction of choices that customers can spend their

free coupons.

In this study, we are interested in whether customers can exploit those given

odds and free coupons in order to find a strategy of betting that incurs a sure gain.

If there is a possible way to do that, then we will find an algorithm that gives such
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a strategy. Note that the rest of this section closely follows [29, §4].

For simplicity in this study, we decide standard requirements for claiming free

coupons from the bookmakers as follows:

1. Once the customer has placed his first bet, the bookmaker will give him a free

coupon whose value is equal to the value of the bet that he placed.

2. The bookmaker announces the maximum value of the free coupon.

3. The free coupon only applies to the customer’s first bet with the bookmaker.

4. The customer must spend his free coupon with the same bookmaker on other

outcomes.

5. The customer must spend his free coupon on only a single outcome.

Here is an example of claiming free coupons.

Example 53. (Adapted from [29, Example 3]) Suppose that Forest has the following

offer: a free coupon will be given to a customer who first bets with Forest, and the

value of the coupon is equal to the value of the first bet that the customer placed.

The maximum value of the free coupon is £100 and the customer must spend his

free coupon on only a single outcome.

From table 10.1, suppose that Tim, who is a customer, has never bet with Forest

and he decides to place £5 on the odds 13/5 of the outcome D, then he will pay £5

to Forest and he will claim a free coupon valued £5. Tim can use his free coupon

to bet on other outcomes with Forest, that is either W or L, but he cannot separate

his free coupon to bet on both of them.

Once Tim receives a free coupon, he can spend his free coupons as in the next

example.

Example 54. (Adapted from [29, Example 4]) Continuing from the previous ex-

ample, Tim has his free coupon valued £5 from Forest. Since Tim must spend his
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free coupon valued £5 on only a single outcome, by lemma 47, we modify odds 3/4

by multiplying them by 5/5. Now all odds have the same denominator which is 5.

Outcomes W D L

odds (
3 · 5

4
)/5 13/5 16/5

Table 10.2: Table of modified odds [29, Table 2].

If Tim spends his free coupon to bet on L and the true outcome is L, then Forest will

lose £16; otherwise Forest will lose nothing. On the other hand, if Tim spends the

coupon to bet on W and the true outcome is W, then Forest will lose £3·5
4

; otherwise

Forest will lose nothing. The total payoff to Forest is summarised in table 10.3.

Betting a free coupon on
Outcomes

W D L

L 0 0 −16

W −3 · 5
4

0 0

Table 10.3: Table of total payoff to Forest [29, Table 3].

Suppose that the customer first bets £bi on an outcome ωi with corresponding

odds ai/bi. The payoff to the bookmaker is represented as a gamble gωi
in the

table 10.4. As this is his first bet, the customer obtains a free coupon valued bi, and

he can spend this free coupon to bet on a single outcome. Suppose that he bets on

ωj with corresponding odds aj/bj. As the denominators are not necessarily equal,

we multiply odds aj/bj by bi
bi

. The modified odds are (
aj ·bi
bj

)/bi. Note that as the

free coupon must be spent on other outcomes, ωj cannot coincide with ωi.

If the true outcome is ωj, then the bookmaker will lose
aj ·bi
bj

. Otherwise the

bookmaker will gain nothing. This payoff corresponding to the free coupon to the
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bookmaker is viewed as a gamble g̃ωj
in the table 10.4. As gωi

and g̃ωj
are desirable

to the bookmaker, by rationality axiom (D4), gωi
+ g̃ωj

is also desirable.

Outcomes ωi ωj others

gωi
−ai bi bi

g̃ωj
0 −aj ·bi

bj
0

gωi
+ g̃ωj

−ai (bj−aj)bi
bj

bi

Table 10.4: Table of the first-free desirable gamble to the bookmaker [29, Table 4].

We denote gωiωj
:= gωi

+ g̃ωj
and call it the first-free desirable gamble to the

bookmaker. Note that −gωiωj
is desirable to the customer. Also note that the

customer can still bet on other odds, but he will not gain any free coupon from his

additional bets. This is because the bookmaker gives him the free coupon only once.

In the actual market, there is usually more than one bookmaker offering a free

coupon. Therefore, the customer can first bet with different bookmaker in order

to gain several free coupons. These can be viewed as a total first-free desirable

gamble combining from several first-free desirable gambles. In this study, we only

consider the case that the customer first bets and claims a free coupon from a single

bookmaker. In this case, we face a combinatorial problem over all first-free desirable

gambles.

We want to check whether the bookmaker avoids sure loss or not for this situa-

tion. In other words, we check whether D ∪ {gωiωj
} avoids sure loss or not. Recall

that theorem 30 implies that: if D avoids sure loss, then D∪{gωiωj
} avoids sure loss

if and only if E(gωiωj
) ≥ 0. In the case that D ∪ {gωiωj

} does not avoid sure loss,

by theorem 30, the bookmaker will lose at least |E(gωiωj
)| which is the customer’s

highest sure gain. Therefore, the customer can combine gωiωj
and a combination of

gi to yield a sure gain |E(gωiωj
)| from the bookmaker.
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Let f be any first-free desirable gamble to the bookmaker. To apply theorem 30,

we have to check whether D avoids sure loss. If P p does not avoid sure loss, then

without a free coupon, there is a non-negative combination of gambles that the

customer can exploit to make a sure gain. On the other hand, if P p avoids sure loss,

then we can write f in terms of its level sets and use corollary 28 to calculate the

natural extension of f .

Example 55. (Adapted from [29, Example 5]) Recall that Forest provides betting

odds on W, D, and L as in table 10.1. By eq. (10.14), we have

p(W ) =
4

7
p(D) =

5

18
p(L) =

5

21
. (10.19)

Since p(W ) + p(D) + p(L) ≥ 1, P p avoids sure loss by theorem 22 which coincides

with example 52.

Continuing from example 54, suppose that Tim first bets on D and spends his

free coupon to bet on L. Then, the first-free desirable gamble gDL to Forest is as

follows:

Outcomes W D L

gD 5 −13 5

gL 0 0 −16

gDL 5 −13 −11

Table 10.5: Table of desirable gambles to Forest [29, Table 5].

We decompose gDL in terms of its level sets as

gDL = −13IA0 + 2IA1 + 16IA2 (10.20)
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where A0 = {W,D,L}, A1 = {W,L} and A2 = {W}. By theorem 26, we have

Ep(A0) = min{p(W ) + p(D) + p(L), 1} = 1 (10.21)

Ep(A1) = min{p(W ) + p(L), 1} =
17

21
(10.22)

Ep(A2) = min{p(W ), 1} =
4

7
. (10.23)

Substitute Ep(Ai), i ∈ {0, 1, 2} into eq. (10.20). By corollary 28, we have

Ep(gDL) = −13Ep(A0) + 2Ep(A1) + 16Ep(A2) = −47

21
. (10.24)

As Ep(gDL) = −47

21
< 0, by theorem 30, Forest does not avoid sure loss. Therefore,

spending his free coupon, there is a combination of bets for Tim to make a sure

gain.

Next, we explain a strategy for Tim to bet in order to get £
47

21
. Remember that

Ω = {ω1, . . . , ωn} and that gi is the corresponding gamble to the odds ai/bi on ωi:

gi(ω) =


−ai if ω = ωi

bi otherwise.

(10.25)

Also recall that we can calculate Ep(f), or EDPp
(f), by definition 25, for any gamble

f by solving the following linear program:

(S) min α (Sa)

subject to


∀ω ∈ Ω: α−

∑n
i=1 gi(ω)λi ≥ f(ω)

∀i = 1, . . . , n : λi ≥ 0,

(Sb)

where the optimal value of α gives Ep(f). If the optimal value of α is strictly

negative, then the optimal values of λ1, . . . , λn give a combination of bets for a
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customer to make a sure gain. The dual of (S) is given:

(T) max
∑
ω∈Ω

f(ω)p(ω) (Ta)

subject to


∀gi :

∑
ω∈Ω gi(ω)p(ω) ≥ 0∑

ω∈Ω p(ω) = 1

∀ω : p(ω) ≥ 0.

(Tb1)

We apply lemma 50 to the constraints in eq. (Tb1) to be:

subject to


∀ω : 0 ≤ p(ω) ≤ p(ω)∑

ω∈Ω p(ω) = 1.

(Tb2)

We see that the objective function eq. (Ta) is Ep(f) which is the expectation of f

with respect to the probability mass function p. As the optimal value of (T) is Ep(f),

if we can find a p that satisfies (T)’s constraints eq. (Tb2) and Ep(f) = Ep(f), then

we have found an optimal solution of (T).

In algorithm 7, we first construct a p, by assigning as much mass as possible to

the smallest level sets. Then, in theorem 56, we show that this p satisfies eq. (Tb2)

and Ep(f) = Ep(f).

We then show that p in eq. (10.30) satisfies eq. (Tb2) and Ep(f) = Ep(f).

Theorem 56. [29, Theorem 7] The probability mass function p defined by eq. (10.30)

satisfies eq. (Tb2) and Ep(f) = Ep(f).

Proof. Let Ω = {ω1, . . . , ωn} be ordered as in eq. (10.27), and let k be the smallest

index such that
∑k

j=1 p(ωj) ≥ 1. By eq. (10.30),
∑n

i=1 p(ωi) = 1 and

p(ωk) = 1−
k−1∑
j=1

p(ωj) ≤
k∑
j=1

p(ωj)−
k−1∑
j=1

p(ωj) = p(ωk), (10.31)
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Algorithm 7 Construct an optimal solution p of (T) [29, Algorithm 1]

Input: A gamble f , a set of outcomes Ω.
Output: An optimal solution p of (T).

1. Rewrite f as

f =
m∑
i=0

λiAi (10.26)

where Ω = A0 ) A1 ) · · · ) Am ) ∅ are the level sets of f and λ0 ∈ R,
λ1, . . . , λm > 0.

2. Order ω1, ω2, . . . , ωn such that

∀i ≤ j : Aωi
⊆ Aωj

, (10.27)

where Aω is the smallest level set to which ω belongs, that is

Aω =
m⋂
i=0
ω∈Ai

Ai. (10.28)

So, we start with those ω in Am, then those in Am−1 \ Am, then those in
Am−2 \ Am−1, and so on.

3. Let k be the smallest index such that

k∑
j=1

p(ωj) ≥ 1. (10.29)

There is always such k because P p avoids sure loss. Define p as follows:

p(ωi) :=


p(ωi) if i < k

1−
∑i−1

j=1 p(ωj) if i = k

0 if i > k.

(10.30)
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so for all i ∈ {1, . . . , n}, 0 ≤ p(ωi) ≤ p(ωi). Therefore, p satisfies eq. (Tb2). Next,

we will show that for all level sets Ai,

min

{∑
ω∈Ai

p(ω), 1

}
= Ep(Ai). (10.32)

Remember that Aωk
is the smallest level set that contains ωk. By eq. (10.30), for all

Ai ( Aωk
, we know that p(ω) = p(ω) for all ω ∈ Ai, and so

min

{∑
ω∈Ai

p(ω), 1

}
=
∑
ω∈Ai

p(ω) =
∑
ω∈Ai

p(ω). (10.33)

For all Ai ⊇ Aωk
, we know that

∑
ω∈Ai

p(ω) = 1 and
∑

ω∈Ai
p(ω) ≥ 1, so

min

{∑
ω∈Ai

p(ω), 1

}
= 1 =

∑
ω∈Ai

p(ω). (10.34)

Hence, eq. (10.32) holds. Therefore,

Ep(f) =
m∑
i=0

λiE(Ai) (by eq. (6.16)) (10.35)

=
m∑
i=0

λi min

{∑
ω∈Ai

p(ω), 1

}
(by eq. (6.13)) (10.36)

=
m∑
i=0

λiEp(Ai) (by eq. (10.32)) (10.37)

= Ep(f). (10.38)

To sum up, we can use eq. (10.30) to construct an optimal solution p of (T).

In general, the complementary slackness condition in theorem 13 can be used

to find an optimal solution of the dual of (T) [50, p. 329]. Note that, as the dual

problem (T) has an optimal solution and the dual problem is bounded, then by the

strong duality theorem [33, p. 71], an optimal solution of the primal problem (S)
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exists and achieves the same optimal value. In addition, a pair of solutions to (S)

and (T) is optimal if, and only if, they satisfy the complementary slackness condition

[7, p. 62]. Specifically, in our case, the condition holds for any non-negative variable

and its corresponding dual constraint [10, p. 184, ll. 3–5]. In particular, precisely, let

p(ω1), . . . , p(ωn) be any feasible solution of (T), and let α, λ1, . . . , λn be any feasible

solution of (S). Then, by complementary slackness, these solutions are optimal if,

and only if, for all j ∈ {1, . . . , n}, we have that

(
α−

n∑
i=1

gi(ωj)λi − f(ωj)

)
p(ωj) = 0 and (p(ωj)− p(ωj))λj = 0. (10.39)

This is equivalent to

1. if p(ωj) > 0, then α−
∑n

i=1 gi(ωj)λi = f(ωj), and

2. if p(ωj) < p(ωj), then λj = 0.

Therefore, if we have an optimal solution p(ω1), . . . , p(ωn) of (T) and the optimal

value α, then we can use these equations as a system of equalities in λ1, . . . , λn. Note

that some solutions of this system may not satisfy feasibility, i.e. they may violate

λi ≥ 0. However, all solutions of this system that satisfy λi ≥ 0 are guaranteed to

be optimal solutions of (S) [29, p. 139].

What does this system of equalities look like? Remember that in algorithm 7, k

is defined as the smallest index such that
∑k

j=1 p(ωj) ≥ 1. According to eq. (10.30),

for all j ∈ {1, . . . , k−1}, we have that p(ωj) > 0, so we have the following equalities:

for all j ∈ {1, . . . , k − 1},

α−
n∑
i=1

gi(ωj)λi = f(ωj). (10.40)

For all j ∈ {k + 1, . . . , n} we have that p(ωj) = 0 < p(ωj), so λj = 0 for all

j ∈ {k + 1, . . . , n}. For j = k, if p(ωk) < p(ωk), then we can also set λk = 0.
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Otherwise, we know that p(ωk) = p(ωk) > 0 and so we can simply impose the same

equality as for j ∈ {1, . . . , k − 1}. In conclusion, let k′ be the largest index j for

which p(ωj) = p(ωj). Then as the optimal solution of (S) exists, it can be obtained

by solving the following system:

∀j ∈ {1, . . . , k′} : α−
k′∑
i=1

gi(ωj)λi = f(ωj) (10.41)

∀j ∈ {k′ + 1, . . . , n} : λj = 0. (10.42)

So, effectively, all we are left with is a system of k′ variables in k′ constraints [29,

p. 139].

Note that by lemma 47, we can modify the odds to have the same denominator

(all bi are equal), so it will be much easier to solve the new system.

Also note that in the first-free coupon scenario, to make a sure gain, the customer

has to bet on every outcome. This implies that the only coefficients λi whose value

can be zero are those corresponding to the gambles in the first-free gamble chosen

by the customer. Hence, in that specific case, k′ ≥ n− 2 [29, p. 139].

Now, we go back to find a strategy for Tim to bet with Forest.

Example 57. [29, Example 6] Continuing from example 55, to calculate E(gDL),

we can solve the following corresponding linear programs:

(S1) min α (S1a)

subject to


α + 3λW − 5λD − 5λL ≥ 5

α− 4λW + 13λD − 5λL ≥ −13

α− 4λW − 5λD + 16λL ≥ −11

(S1b)

and λW ≥ 0, λD ≥ 0, λL ≥ 0, α free, (S1c)
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(T1) max 5p(W )− 13p(D)− 11p(L) (T1a)

subject to



0 ≤ p(W ) ≤ 4/7

0 ≤ p(D) ≤ 5/18

0 ≤ p(L) ≤ 5/21

p(W ) + p(D) + p(L) = 1.

(T1b)

By eq. (10.27), we see that

AW ⊆ AL ⊆ AD, (10.43)

so an optimal solution of (T1) is obtained as follows:

p(W ) =
4

7
, p(L) =

5

21
, p(D) = 1−

(
4

7
+

5

21

)
=

4

21
. (10.44)

As p(W ) = p(W ) and p(L) = p(L), whilst p(D) < p(D), by the complementary

slackness, the optimal solution of (S1) must have λD = 0 and can be obtained by

solving the following linear system:

α + 3λW − 5λL = 5 (P1b1)

α− 4λW + 16λL = −11, (P1b2)

where the value of α is −47

21
. We solve this system and get an optimal solution:

λW =
18

7
and λL =

2

21
.

We can read a strategy for Tim to make a guaranteed gain from the optimal

solution of (S1) as follows. Once he first bets £5 on D and claims a free coupon

valued £5 to bet on L, he then additionally bets £
18

7
on W and £

2

21
on D. By this

strategy, he definitely makes a sure gain of £
47

21
from Forest regardless of the true

outcome.

So far, we have seen theoretical results with some examples of checking avoiding

sure loss for betting odds and free coupons. Next, we will apply these theoretical

results to some actual odds in the market. Indeed, we will check whether and how
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a customer can exploit those actual odds and free coupons in order to make a sure

gain. Note that the next section closely follows [29, §5]

10.3 Actual football betting odds

In 2016, the 15th UEFA European Championship was held in France from 10 June to

10 July 2016 where 24 teams participated. In this event, customers were interested

in which team will be the winner of the European Championship.

Consider table C.1 which is in appendix C.1 where we list actual betting odds

provided by 27 bookmakers on the winner of the European Football Championship

2016. From table C.1, the greatest betting odds on each outcome are listed in

table 10.6.

Nations Odds Nations Odds Nations Odds

France 10/3 Austria 45 Czech Republic 135

Germany 23/5 Poland 50 Slovakia 150

Spain 5 Switzerland 66 Rep of Ireland 170

England 9 Russia 85 Iceland 180

Belgium 57/5 Turkey 94 Romania 275

Italy 91/5 Wales 100 N Ireland 400

Portugal 20 Ukraine 100 Hungary 566

Croatia 27 Sweden 104 Albania 531

Table 10.6: Table of maximum betting odds for the European Football Championship
2016 [29, Table 6].

For all i ∈ {1, . . . , 24}, let a∗i /b
∗
i be the maximal betting odds in table 10.6. As∑24

i=1
b∗i

a∗i +b∗i
= 1.0349 ≥ 1, by theorem 51, the set of desirable gambles derived from
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the odds in table C.1 avoids sure loss. Therefore, there is no combination of bets

which results in a sure gain. In this case, a customer cannot exploit odds from

different bookmakers to make a sure gain.

Suppose that James is a new customer who is interested in betting with one of

bookmakers, say Bet2 in table C.1. Since he has never bet with Bet2 before, Bet2

will give him a free coupon on his first bet with them. With the free coupon, we

will find whether and how James can bet in order to make a guaranteed gain from

Bet2.

Let D be a set of desirable gambles corresponding to the odds provided by Bet2.

Let g be any first-free desirable gamble to Bet2. We will check whether D ∪ {g}

avoids sure loss or not. As there are 24 possible outcomes of this event, the total

number of different first-free desirable gambles with Bet2 is 24× 23 = 552.

Suppose that James first bets £1 on France and then spends his free coupon

valued £1 on Spain. So, the first-free desirable gamble gFG is

Outcomes France Spain others

gF −3 1 1

g̃S 0 −5 0

gFS −3 −4 1

Table 10.7: Table of James’ first-free gamble [29, Table 7].

where F and S denote France and Spain respectively. Again, to calculate E(gFS)

by the Choquet integral, we first decompose gFS in terms of its level sets as

gFS = −4IA0 + IA1 + 4IA2 (10.45)

where A0 = Ω, A1 = Ω \ {S} and A2 = Ω \ {F, S}. By theorem 26, we have

E(A0) = 1 E(A1) = 0.9810 E(A2) = 0.7310. (10.46)
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By corollary 28, we substitute E(Ai), i ∈ {0, 1, 2} to eq. (10.45) and obtain

E(gFS) = −4E(A0) + E(A1) + 4E(A2) = −0.0950. (10.47)

Therefore, D ∪ {gFS} does not avoid sure loss.

Among all possible first-free gambles, we observe that there are three further

gambles whose E is also less than zero, namely E(gFG) = −0.2093, E(gGF ) = −0.0117

and E(gGS) = −0.0950, where G denotes Germany. So, by theorem 30, D∪{g} does

not avoid sure loss when g ∈ {gFS, gFG, gGF , gGS}; otherwise D ∪ {g} avoids sure

loss. Therefore, if

1. James first bets on France and then spends his free coupon to bet on either

Spain or Germany, or

2. James first bets on Germany and then spends his free coupon to bet on either

France or Spain,

then there is a combination of bets for him to bet in order to make a guaranteed

gain from Bet2.

Consider the case where James first bets £1 on France and claims his free coupon

valued £1 to bet on Spain. We can find a strategy for James to bet in order to

make a sure gain £0.0950 as follows: We first construct an optimal solution of the

corresponding problem (T) (see column p(ωi) in table 10.8) through algorithm 7.

Next, we can find the optimal solution of the corresponding problem (S) by using the

optimal solution of (T) with the complementary slackness condition. After solving

the linear system, the optimal solution of (S) is presented in column λi in table 10.8.

Therefore, if James additionally bets on other teams as in column λi, then he will

make a sure gain of £0.095 from Bet2.
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Order ωi Nations Odds p(ωi)
Optimal solutions

p(ωi) λi

1 Germany 4 1
5

1
5

1

2 England 9 1
10

1
10

0.5

3 Belgium 10 1
11

1
11

5
11

4 Italy 16 1
17

1
17

5
17

5 Portugal 18 1
19

1
19

5
19

6 Croatia 25 1
26

1
26

5
26

7 Austria 40 1
41

1
41

5
41

8 Poland 50 1
51

1
51

5
51

9 Switzerland 40 1
41

1
41

5
41

10 Russia 66 1
67

1
67

5
67

11 Turkey 80 1
81

1
81

5
81

12 Wales 80 1
81

1
81

5
81

13 Ukraine 66 1
67

1
67

5
67

14 Sweden 80 1
81

1
81

5
81

15 Czech Republic 100 1
101

1
101

5
101

16 Slovakia 100 1
101

1
101

5
101

17 Rep of Ireland 150 1
151

1
151

5
151

18 Iceland 150 1
151

1
151

5
151

19 Romania 100 1
101

1
101

5
101

20 N Ireland 250 1
251

1
251

5
251

21 Albania 250 1
251

1
251

5
251

22 Hungary 250 1
251

5
251

5
251

23 France 3 1
4

1
4

1
4

24 Spain 5 1
6

586
579

0

Table 10.8: Table of a summary of odds provided by Bet2, the upper probability mass
function p(ωi), and optimal solutions of (T) and (S) [29, Table 8].
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10.4 Summary

For this contribution, we studied whether and how a customer can exploit given

betting odds and free coupons in order to make a sure gain from bookmakers. To do

so, we viewed these odds and free coupons as a set of desirable gambles and applied

theorem 30 to check whether such a set avoids sure loss or not via the natural

extension. For this specific problem, we showed that we can easily calculate the

natural extension through the Choquet integral by using corollary 28.

If the set does not avoid sure loss, then there is a combination of bets which

results in a sure gain to customers. This combination can be derived from the

optimal solution of the corresponding linear programming problem. In this case,

we presented how to use the Choquet integral and the complementary slackness

condition to directly obtain the desired combination of bets, without actually solving

linear programming problems, but instead just solving a linear system of equalities.

This technique can be applied to arbitrary problems involving upper probability

mass functions.

We applied the results to some actual betting odds in the market, that is, betting

odds on the winning of the European Football Championship 2016. We found that

any sets of desirable gambles derived from those odds avoid sure loss. However, with

a free coupon, we identified sets of desirable gambles that no longer avoid sure loss.

Consequently, in this case, when a free coupon is added, there was a combination of

bets from which the customer could have made a sure gain.
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Chapter 11

Improving algorithms for finding

maximal gambles

This chapter closely follows [28, §3] which we submitted to International Journal

of Approximate Reasoning on 10 December 2018. The aim of this chapter is first

to study several algorithms from the literature for finding maximal gambles and

propose a new algorithm for finding maximal gambles in section 11.1. Next, in

section 11.2 we study an algorithm for finding interval dominant gambles which

can be used to eliminate non-maximal gambles. Finally, to speed up the process

of evaluating natural extensions in these algorithms, we investigate the structure of

linear programs and propose an improvement in section 11.3.

11.1 Algorithms for finding maximal gambles

In this section, we discuss algorithms for finding opt�(K). We first study two algo-

rithms from the literature, and then propose a new algorithm based on a suggestion

from Troffaes and Hable [40, p. 336].

133
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One can see that a gamble f is maximal in K only if

∀g ∈ K : E(f − g) ≥ 0. (11.1)

Suppose that there are m possible outcomes in Ω, k gambles in K and n gambles

in domP where P avoids sure loss. In order to determine whether f is maximal in

K, we have to calculate E(f − g) for all g ∈ K \ {f}. If there exists g such that

E(f − g) < 0, which is equivalent to E(g − f) > 0, then f is dominated by g and

therefore f is not maximal. Denote h := g − f . We can calculate E(h) through

solving either (A1) or (B1):

(A1) min
∑
ω∈Ω

h(ω)p(ω) (A1a)

subject to ∀gi ∈ domP :
∑
ω∈Ω

(gi(ω)− P (gi))p(ω) ≥ 0 (A1b)

∑
ω∈Ω

p(ω) = 1 (A1c)

where ∀ω : p(ω) ≥ 0, (A1d)

(B1) max α (B1a)

subject to ∀ω ∈ Ω:
n∑
i=1

(gi(ω)− P (gi))λi + α ≤ h(ω) (B1b)

where ∀i : λi ≥ 0 (α free), (B1c)

where E(h) is precisely the optimal value of (A1) (or (B1)). The problem (B1) is

an unconditional case of the linear program in [2, p. 331]. Note that (A1) has n+ 1

constraints and m variables. So, to determine all maximal gambles of K, we must

solve at most k(k − 1) of these linear programs.

Troffaes and Hable [40, algorithm 16.4, p. 336] proposed the following strategy



11.1. Algorithms for finding maximal gambles 135

for finding maximal gambles: once a non-maximal gamble is detected, it is no longer

compared with other gambles. Indeed, if f is non-maximal, then there will be some

gamble g that dominates f . However, if g dominates f , and f dominates h, then g

will also dominate h as well. Consequently, every non-maximal gamble is dominated

by at least one maximal gamble in K. Therefore, the algorithm no longer needs

to consider non-maximal gambles as soon as they are deemed non-maximal (see

algorithm 8).

Algorithm 8 Find the set of maximal gambles in K [28, Algorithm 1]

Input: a set of k gambles K = {f1, . . . , fk}
Output: an index set of opt�(K)

1: procedure Maximal2(K)
2: I ← ∅ . an index set of opt�(K)
3: for i = 1 : k do
4: if IsNotDominated2(fi, I, i) then
5: I ← I ∪ {i} . fi is maximal
6: end if
7: end for
8: return I
9: end procedure

10: procedure IsNotDominated2(f, I, i)
11: for j ∈ I ∪ {i+ 1, . . . , k} do
12: if E(fj − f) > 0 then
13: return False . f is dominated by fj
14: end if
15: end for
16: return True
17: end procedure

Note that for algorithm 8, if the first considered gamble happens to be the only

maximal gamble in K, then the algorithm only needs to solve 2(k−1) linear program-

ming problems. Specifically, to verify that none of the gambles in the set dominates

the first gamble, the algorithm first needs to solve k − 1 linear programs. Next, for

each remaining gamble, the algorithm compares it with the maximal gamble, so the

algorithm additionally solves k−1 linear programs. If all gambles in K are maximal,

then the algorithm must solve k(k − 1) linear programs [40, p. 336].
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We can speed up algorithm 8 by early identification of some maximal gambles

in K, for example, via E-admissibility. Specifically, if a gamble f is E-admissible in

K, then f is also maximal in K [12, p. 196]. Fortunately, we can simply find one

of the E-admissible gambles as follows. We first sort all gambles in K as f1, . . . , fk

such that for some p ∈M, for all j > i:

Ep(fj)− Ep(fi) ≥ 0. (11.2)

Then fk has the highest expectation, and therefore fk is E-admissible in K. We

can then improve algorithm 8 by initially setting opt�(K) = {fk}. Note that if

we repeat this process by sorting gambles in K by the expectation with respect to

a different p ∈ M, say g1, . . . , gk, then we are not necessarily guaranteed to find

another E-admissible gamble, as gk may be exactly as fk. Hence, we will use this

technique only once at the beginning [28].

Note that one can early identify more maximal gambles by finding all E-admissible

gambles. Troffaes and Hable [40, p. 337] recommended efficient algorithms in [16]

and [43] for identifying E-admissible gambles. However, these algorithms cannot

find all E-admissible gambles without solving many linear programs. Therefore, we

do not apply those algorithms at the beginning.

In addition to identifying one E-admissible gamble in K, sorting gambles with

respect to the expectation also saves many comparison steps in algorithm 8 for

finding opt�(K). Specifically, to determine whether gamble fi is maximal in K, we

need to evaluate only E(fj−fi) such that j > i, because we immediately know that

[28]:

∀i < j : E(fi − fj) ≤ Ep(fi − fj) ≤ 0. (11.3)

An algorithm for finding maximal gambles that exploits sorting gambles is presented

in algorithm 9.
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Algorithm 9 Find the set of maximal gambles in K [28, Algorithm 2]

Input: a set of k gambles K = {f1, . . . , fk} such that for some p ∈ M, we have
that Ep(f1) ≤ Ep(f2) ≤ · · · ≤ Ep(fk).

Output: an index set of opt�(K)
1: procedure Maximal3(K)
2: I ← {k} . an index set of opt�(K)
3: for i = 1 : k − 1 do
4: if IsNotDominated3(fi, i) then
5: I ← I ∪ {i} . fi is maximal
6: end if
7: end for
8: return I
9: end procedure

10: procedure IsNotDominated3(f, i)
11: for j ∈ {k, k − 1, . . . , i+ 1} do
12: if E(fj − f) > 0 then
13: return False . f is dominated by fj
14: end if
15: end for
16: return True
17: end procedure

Even though we have to do extra work to sort gambles at the beginning, we

do not have to make as many comparisons in algorithm 9 as in algorithm 8. In

particular, in the case that the set K has one maximal gamble, algorithm 9 only

needs to solve k−1 linear programs. On the other hand, if all gambles are maximal,

algorithm 9 needs to evaluate k(k−1)
2

linear programs. In both cases, they are only

half of the number of comparisons of algorithm 8.

Instead of solving multiple linear programs, Jansen et al. [13] suggest to solve

just a single linear program (A0) to determine whether a single gamble in K is
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maximal or not:

(A0) max
k∑
j=1

∑
ω∈Ω

pj(ω) (A0a)

subject to ∀j = 1, . . . , k :
∑
ω∈Ω

pj(ω) ≤ 1 (A0b)

∀j = 1, . . . , k, ∀gi ∈ domP :
∑
ω∈Ω

(gi(ω)− P (gi))pj(ω) ≥ 0 (A0c)

∀j = 1, . . . , k :
∑
ω∈Ω

(f(ω)− fj(ω)) pj(ω) ≥ 0 (A0d)

where ∀j = 1, . . . , k, ∀ω : pj(ω) ≥ 0. (A0e)

If the optimal value of (A0) is equal to k, then f is a maximal gamble in K [13].

Therefore, to determine those k gambles, we need to solve only k linear programs

(see algorithm 10). However, the size of linear program is much bigger as it has

k(3 + n) constraints and mk variables.

Note that if we modify the constraint eq. (A0b) to the following equality:

∀j = 1, . . . , k :
∑
ω∈Ω

pj(ω) = 1, (A0b’)

then (A0) is equivalent to:

(A0’) max 0 subject to eqs. (A0b’), (A0c), (A0d) and (A0e). (11.4)

Therefore, if (A0’) has a feasible solution, then f is a maximal gamble in K [13].

Note that in our simulation study, we will solve (A0’) because it is in a more suitable

format for the primal-dual method, as it needs fewer artificial variables [28].

We will benchmark these algorithms 8, 9 and 10 later in chapter 12.
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Algorithm 10 Find the set of maximal gambles in K [28, Algorithm 3]

Input: a set of k gambles K = {f1, . . . , fk}
Output: an index set of opt�(K)

1: procedure Maximal1(K)
2: I ← ∅ . an index set of opt�(K)
3: for i = 1: k do
4: Solve linear program (A0’) for fi
5: if (P0’) has a feasible solution then
6: I ← I ∪ {i} . fi is maximal
7: end if
8: end for
9: return I

10: end procedure

11.2 Algorithms for finding interval dominant

gambles

Recall that every maximal gamble in K is also interval dominant. Therefore, before

running each algorithm in section 11.1, we can eliminate some non-maximal gambles

in K by finding opt=(K). To check whether a gamble f is interval dominant in K,

we first calculate maxg∈KE(g). Then f is interval dominant if

E(f) ≥ max
g∈K

E(g). (11.5)

Overall, to handle k gambles, we have to solve 2k−1 linear programs [40, p. 337]. An

algorithm for finding interval dominant gambles in K is summarized in algorithm 11.

In chapter 12, in addition to benchmarking these three algorithms for finding

opt�(K), we will also run these three algorithms applied to interval dominance.

Specifically, we will run algorithm 11 at the beginning to delete non-maximal gam-

bles in K, and then run those three algorithms on opt=(K). This may speed up

those three algorithms to find maximal gambles.
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Algorithm 11 Find the set of interval dominant gambles in K [28, Algorithm 4]

Input: a set of k gambles K = {f1, . . . , fk}
Output: an index set of opt=(K)

1: procedure IntervalDom(K)
2: I ← ∅ . an index set of opt=(K)
3: `← arg maxkj=1E(fj)
4: for i ∈ {1, . . . , k} \ {`} do
5: if E(fi) ≥ E(f`) then
6: I ← I ∪ {i} . fi is interval dominant
7: end if
8: end for
9: return I

10: end procedure

11.3 Fast calculation of natural extensions inside

algorithms

In this section, we exploit the fact that we only need to find the sign of E(g − f),

but not its exact value, to verify whether f is dominated by g or not. So, we can

speed up the process of calculating the natural extension through (A1) or (B1) as

follows.

Since we minimize the objective function in (A1), the optimal value of (A1) is

less than or equal to other feasible objective values. Therefore, we can stop as soon

as we find a feasible solution that achieves a negative objective value, because then

we know that the optimal value of (A1) is also negative. In this case, f is dominated

by g, and therefore f is not maximal in K.

Similarly, as we maximize the objective function in (B1), the optimal value of

(B1) is larger than or equal to other feasible objective values. Consequently, we can

stop as soon as we find a feasible solution that obtains a positive objective value,

because the optimal value of (B1) is also positive. In this case, f is not dominated

by g, so we must continue to compare f with other gambles in K.

Figure 11.1 illustrates these extra stopping criteria.
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Stop if (B1) value
is positive

Stop if (A1) value
is negative

Optimal value

F
(B1) value (A1) value

Figure 11.1: Early stopping criterion [28, Figure 1].

We can solve linear programming problems (A1) and (B1) by many methods

that we mentioned before, for example, the simplex, the affine scaling or the primal-

dual methods. As we know from the first contribution that the primal-dual method

is particularly suitable for working with lower previsions (see chapter 9), we only

consider the primal-dual method. Moreover, the primal-dual method solves both

primal and dual problems simultaneously, and can therefore exploit both stopping

criteria simultaneously.

Recall that, in practice, the primal-dual method can start with an arbitrary point

and then generates a sequence of (not necessarily feasible) points that converges to

an optimal solution [7, §7.3]. On the other hand, given initial feasible points, the

method will generate a sequence of feasible points converging to an optimal solution

[7, §7.3]. Therefore, to apply the early stopping criterion, we first have to find initial

feasible points for (A1) and (B1). Fortunately, there is an efficient way to achieve

initial feasible points for the linear programs (A1) and (B1).

For (A1), we can apply the first phase of the two-phase method to obtain an

initial feasible probability mass function p(ω) as in [27, §4.2]. This technique is

usually used for finding interior feasible points for the affine scaling method [7,

§7.1.2]. Since the constraints of (A1) do not change, once we find a feasible starting

point, we can reuse it for other problems (A1) with different objective functions.

Therefore, we only need to do this once for any given lower prevision, and it is

independent of the decision problem.

For (B1), we can very quickly calculate a feasible starting point without solving

a linear program, using a result from Nakharutai et al. [27, Theorem 7].
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Unfortunately, there is no direct way to obtain feasible starting points for the

linear programming problem (A0’) (otherwise we would have immediately solved the

problem). Therefore, we simply solve (A0’) by the standard primal-dual method.

11.4 Summary

To summarise, we studied several algorithms for finding a set of maximal gambles

from the literature and proposed our algorithms. We also studied an algorithm

for finding interval dominant gambles which can be applied to delete non-maximal

gambles. We suggested a fast calculation to evaluate the sign of natural extensions

in these algorithms.

To compare a performance of these algorithms, we are going to benchmarking

them in the next chapter. Therefore, we will generate random sets of gambles such

that we can pre-specify the numbers of maximal gambles and interval dominant

gambles in the sets. We will perform these algorithms on those generated sets.



Chapter 12

Benchmarking and discussion

This chapter closely follows [28, §4 and §5] which we submitted it to International

Journal of Approximate Reasoning on 10 December 2018. Remember that we want

to compare our proposed algorithm for finding maximal gambles to two other algo-

rithms: one proposed by Jansen et al. [13] and another proposed by Troffaes and

Hable [40, p. 336]. To do so, we first provide an algorithm for generating sets of

gambles with pre-specified ratios between maximal and interval dominant gamble

in section 12.1. For a simulation study, we compare the performance of those al-

gorithms on generated sets. We also present results in section 12.2 and discuss the

efficiency of those algorithms for finding maximal gambles in section 12.3.

12.1 Generating sets of gambles to benchmark

As we mentioned before, we would like to generate a set of gambles K for bench-

marking algorithms 8, 9 and 10 for finding opt�(K) and algorithm 11 for finding

opt=(K). How can we generate a set K such that |K| = k, | opt�(K)| = m and

| opt=(K)| = n where m ≤ n ≤ k?

A naive idea is to first generate K = {g}, so obviously, opt�(K) = opt=(K) =

143
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{g}. Next, we generate a gamble h such that

opt�(K ∪ {h}) = opt�(K) ∪ {h} & opt=(K ∪ {h}) = opt=(K) ∪ {h}, (12.1)

and then we add h to K. We repeat this process until we have |K| = | opt�(K)| =

| opt=(K)| = m. After that, we generate a gamble h that satisfies

opt�(K ∪ {h}) = opt�(K) & opt=(K ∪ {h}) = opt=(K) ∪ {h}. (12.2)

Again, we add h to K and repeat this process until we have |K| = | opt=(K)| = n,

whilst | opt�(K)| = m. Finally, we generate a gamble h such that

opt�(K ∪ {h}) = opt�(K) & opt=(K ∪ {h}) = opt=(K), (12.3)

and then we add h to K. We repeat this process until we have |K| = k while keeping

| opt�(K)| = m and | opt=(K)| = n as we require.

In practice, a randomly generated gamble h may not easily satisfy eq. (12.1),

eq. (12.2) or eq. (12.3). We may need to sample many gambles until h satisfies the

desired conditions, and therefore the process may take a while to obtain such a set

K that we want.

Surprisingly, for any generated gamble h, we can modify h by shifting it by α,

for some α ∈ R, so that a new gamble h− α meets any of the above requirements.

To do so, we explain for what range of α, the gamble h−α satisfies either eq. (12.1),

eq. (12.2) or eq. (12.3). Specifically, we identify for which values of α this results in

one of the following:

(i) opt�(K ∪ {h− α}) = opt�(K) ∪ {h− α},

(ii) opt�(K ∪ {h− α}) = opt�(K) and opt=(K ∪ {h− α}) = opt=(K) ∪ {h− α},

(iii) opt=(K ∪ {h− α}) = opt=(K).
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Let K be a set of gambles. Given any gamble h, lemma 58 shows for which α, h−α

is a maximal gamble in K ∪ {h− α}.

Lemma 58. [28, Lemma 1] Let K be a set of gambles and let h be another gamble

and α ∈ R. Then h− α is maximal in K ∪ {h− α} if and only if

min
f∈opt�(K)

E(h− f) ≥ α. (12.4)

Proof. See appendix B.5.

Lemma 58 gives an upper bound on α for which h−α is maximal in K∪{h−α}.

However, if we set α too low, then h − α may dominate other maximal gambles

in opt�(K), that is, we risk having gambles f such that f ∈ opt�(K) but f /∈

opt�(K ∪ {h− α}). The following lemma tells us how to avoid this situation.

Lemma 59. [28, Lemma 2] Let K be a set of gambles and let h be another gamble

and α ∈ R. Then all maximal gambles in K are still maximal in K∪ {h− α} if and

only if

max
f∈opt�(K)

E(h− f) ≤ α. (12.5)

Proof. See appendix B.6.

Lemma 59 provides a lower bound on α such that h− α does not dominate any

other maximal gambles in K ∪ {h− α}.

Finally, by eq. (11.5), we know that h − α is interval dominant in K ∪ {h − α}

if and only if

E(h− α) ≥ max
f∈K

E(f), (12.6)
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which is equivalent to

α ≤ E(h)−max
f∈K

E(f). (12.7)

The next lemma ensures that these bounds on α are always ordered in the same

way:

Lemma 60. [28, Lemma 3] Let K be a set of gambles and let h be another gamble.

Then, the following holds:

max
f∈opt�(K)

E(h− f) ≤ min
f∈opt�(K)

E(h− f) ≤ E(h)−max
f∈K

E(f). (12.8)

Proof. See appendix B.7.

Theorem 61 brings everything together, and summarises for which ranges of α

we have that h− α satisfies either eq. (12.1), eq. (12.2) or eq. (12.3).

Theorem 61. [28, Theorem 1] Let K be a set of gambles and let h be another

gamble and α ∈ R.

1. If we choose

max
f∈opt�(K)

E(h− f) ≤ α ≤ min
f∈opt�(K)

E(h− f) (12.9)

then

opt�(K ∪ {h− α}) = opt�(K) ∪ {h− α} (12.10)

opt=(K ∪ {h− α}) = opt=(K) ∪ {h− α}. (12.11)

2. If we choose

min
f∈opt�(K)

E(h− f) < α ≤ E(h)−max
f∈K

E(f), (12.12)
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then

opt�(K ∪ {h− α}) = opt�(K) (12.13)

opt=(K ∪ {h− α}) = opt=(K) ∪ {h− α}. (12.14)

3. If we choose

α > E(h)−max
f∈K

E(f), (12.15)

then

opt�(K ∪ {h− α}) = opt�(K) (12.16)

opt=(K ∪ {h− α}) = opt=(K). (12.17)

Figure 12.1 illustrates theorem 61. From theorem 61, algorithm 12 generates sets

of k gambles K such that | opt�(K)| = m and | opt=(K)| = n where m ≤ n ≤ k.

Note that if we choose α to be much larger than E(h)−maxf∈KE(f), then h−α

can be more easily dominated.

Also note that we require the following condition for all i and j:

E(hi − hj) < E(hi)− E(hj). (12.18)

This ensures that there exists an α satisfying the strict inequality in eq. (12.12),

because in that case, the left hand side of eq. (12.12) will be strictly less than the

right hand side of eq. (12.12) (see eq. (B.50) in the appendix; the inequality there

will be a strict inequality under the assumed condition). In this way, there is always

an α for which h− α is not maximal but still interval dominant. Equation (12.18)

requires that E is non-linear (i.e. genuinely imprecise), and that the gambles hi
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max
f∈opt�(K)

E(h− f) min
f∈opt�(K)

E(h− f) E(h)−max
f∈K

E(f)
α

opt�(K ∪ {h− α}) = opt�(K) ∪ {h− α},

opt=(K ∪ {h− α}) = opt=(K) ∪ {h− α}

opt�(K ∪ {h− α}) = opt�(K),

opt=(K ∪ {h− α}) = opt=(K) ∪ {h− α}

opt�(K ∪ {h− α}) = opt�(K),

opt=(K ∪ {h− α}) = opt=(K)

Figure 12.1: Ranges for α such that h − α satisfies either of the situations described in
theorem 61 [28, Figure 2] .

Algorithm 12 Generate a set of k gambles K such that | opt�(K)| = m and
| opt=(K)| = n where m ≤ n ≤ k [28, Algorithm 5] .

Input: (a) Numbers m, n, k where m ≤ n ≤ k, and (b) a sequence of k gambles
h1, . . . , hk such that E(hi − hj) < E(hi)− E(hj) for all i, j ∈ {1, . . . , k}

Output: a set of k gambles K such that such that | opt�(K)| = m and | opt=(K)| =
n where m ≤ n ≤ k

1: procedure GenerateSet(m,n, k)
2: K ← {h1}
3: for i = 2 : m do . m maximal and interval dominant
4: Choose α such that max

f∈opt�(K)
E(hi − f) ≤ α ≤ min

f∈opt�(K)
E(hi − f)

5: K ← K ∪ {hi − α}
6: end for
7: for i = m+ 1 : n do . n−m interval dominant but not maximal

8: Choose α such that min
f∈opt�(K)

E(hi − f) < α ≤ E(hi)−max
f∈K

E(f)

9: K ← K ∪ {hi − α}
10: end for
11: for i = m+ n+ 1 : k do . k − (m+ n) not interval dominant

12: Choose α such that α > E(hi)−max
f∈K

E(f)

13: K ← K ∪ {hi − α}
14: end for
15: return K
16: end procedure
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are non-constant and linearly independent. For example, if for each ω, we sample

hi(ω) uniformly from [0, 1], then this requirement is practically always satisfied, and

if not, we can simply re-sample hi until it is.

Also note that algorithm 12 has to calculate many natural extensions for each new

generated gamble. This is required to ensure that the numbers of maximal gambles

and interval dominant gambles in the sets are exactly as specified. Otherwise, we

cannot have precisely the number of maximal and interval dominant gambles as we

require. Therefore, we limit the size of the set outcomes and the set of gambles,

specifically, we consider |Ω| ≤ 26 and |K| ≤ 28.

12.2 Benchmarking results

To benchmark those algorithms 8, 9, 10 and 11 from chapter 11, in this section, we

generate random sets of gambles. We consider the case that |Ω| = 22 and |Ω| = 26

and the number of gambles in K where k = 2j for j ∈ {4, 6, 8}. For each case,

random sets of gambles K are generated as follows.

1. We first generate a lower prevision P that avoids sure loss. To do so, we use

[27, algorithm 2] with 24 coherent previsions to generate a polyhedral lower

prevision. Next, we use [27, algorithm 4] under this polyhedral lower prevision

to obtain a lower prevision P that avoids sure loss, with domP = 24.

2. We generate k gambles, say, h1, . . . , hk as follows. For each ω and i, we sample

hi(ω) uniformly from [0, 1] and check whether they satisfy eq. (12.18).

3. We use algorithm 12 to generate random setsK such that |K| = k, | opt�(K)| =

m and | opt=(K)| = n wherem ≤ n ≤ k, where we use the previously generated

P to evaluate E and E. Note that in algorithm 12, we choose α in the first
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loop as follows: we sample δ uniformly from (0, 1), and set

α := δ max
f∈opt�(K)

E(hi − f) + (1− δ) min
f∈opt�(K)

E(hi − f). (12.19)

For α in the second loop, we choose it as follows: sample δ uniformly from

(0, 1), and set

α := δ min
f∈opt�(K)

E(hi − f) + (1− δ)
(
E(hi)−max

f∈K
E(f)

)
, (12.20)

For the last loop, we set α := E(hi) − maxf∈KE(f) + ε, where we sample ε

uniformly from (0, 1).

In the simulation, we would like to cover a range of possible options of m, n, and

k that satisfy m ≤ n ≤ k. Therefore, for each different size of K, we consider 10

options that vary the number of maximal gambles m and the number of interval

dominant gambles n in K which are illustrated in fig. 12.2 and table 12.1.

These 10 options can be grouped as follows. Options a to d represent the cases

where we fix m = 1 while increasing n from 1 to k. Options d, g, i, and j represent

the cases where we fix n = k while increasing m from 1 to k. Options a, e, h, and j

represent the cases where we fix m = n while increasing m and n jointly from 1 to

k. Finally, option f represents a case where m < n < k.

We then apply algorithms 8, 9 and 10 on each generated set of gambles K. For

algorithm 8 from [40, algorithm 16.4, p. 336], and our algorithm 9, we use our

implementation of the primal-dual method that includes all of the improvements

discussed in section 11.3 (feasible starting points and early stopping criteria). For

algorithm 10, we simply solve (P0’) by the primal-dual method.

To investigate whether interval dominance is helpful for finding maximal gambles,

we also run each algorithm with and without algorithm 11. Specifically, we run

algorithms 8, 9 and 10 as such, but additionally we also run algorithm 11 to obtain
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m
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i

j

k

f

h

e

a b c d n

Figure 12.2: The area of m ≤ n ≤ k and 10 options label the different m and n that we
consider in the simulation (see table 12.1) [28, Figure 3].

Options
|K| = 24 |K| = 26 |K| = 28

m n m n m n

a 1 1 1 1 1 1

b 1 5 1 21 1 85

c 1 11 1 42 1 170

d 1 16 1 64 1 256

e 5 5 21 21 85 85

f 5 11 21 42 85 170

g 5 16 21 64 85 256

h 11 11 42 42 170 170

i 11 16 42 64 170 256

j 16 16 64 64 256 256

Table 12.1: Table of points that indicate different sizes of set K with vary the number of
maximal gambles m and the number of interval dominant gambles n in K [28, Table 1].
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|Ω| = 22 |Ω| = 26

|K
|=

24
|K
|=

26
|K
|=

28

Figure 12.3: Comparison plots of the average computational time for algorithms 8, 9
and 10 for finding maximal gambles and for algorithm 11 for finding interval dominant
gambles (ID). The number of outcomes in left column is 22 and 26 in the right column.
Each row represents a different number of gambles with various options of the numbers of
maximal gambles and interval dominant gambles in the set (see table 12.1 for each option).
The labels indicate algorithms with and without algorithm 11. We fix |domP | = 24 [28,
Figure 4].

a set of interval dominant gambles, and then again run each of algorithms 8, 9 and 10

on just the resulting set of interval dominant gambles. In all cases, we measure the

total computational time taken, i.e. including the time taken on algorithm 11 when

applicable. Note that computational time to run algorithm 9 includes the time for

sorting gambles from the lowest to the highest expectation as in eq. (11.2). To do

so, we used quicksort which is available in MATLAB (R2016a) [22]. We repeat this

process 100 times. Figure 12.3 summarizes the results.

Figure 12.3 shows the average computational time taken during each algorithm
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| domP | = 22 | domP | = 26
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Figure 12.4: Comparison plots of the average computational time for algorithms 8 and 9 for
finding maximal gambles and algorithm 11 for finding interval dominant gambles (ID). In
the left column, | domP | = 22 and in the right column, | domP | = 26. Each row represents
different numbers of gambles and outcomes with various options of the numbers of maximal
gambles and interval dominant gambles in the set (see table 12.1 for each option). The
labels indicate algorithms with and without algorithm 11 [28, Figure 5].

with and without algorithm 11. The average computational time taken for only

algorithm 11 is also presented there. In the top left plot, we show the average

computational time for algorithms 8, 9 and 10. In the remaining plots, the average

computational time for algorithm 10 is so high that its performance is completely

dominated by the performance of the other algorithms, and is therefore not presented

in these plots. In the left column, the number of outcomes is 22 and in the right

column, it is 26. Each row indicates a different size of K.

We also consider an impact of the size of domP . Figure 12.4 shows the average

computational time taken for algorithms 8 and 9 with and without algorithm 11. In

the left column, the number of gambles in the domain of P is 22 and in the right

column, it is 26. Each row represents different numbers of outcomes and gambles.

In both figs. 12.3 and 12.4, the horizontal axis indicates different options of m, n,
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and k that we consider in table 12.1. The vertical axis presents the computational

time which is averaged over 100 randomly generated sets of gambles. The error

bars on the figure represent approximate 95% confidence intervals on the mean

computational time.

We also solved (A0) by the simplex method in algorithm 10, using the default

simplex method available in MATLAB (R2016a) [22]. However, this was still slower

than algorithms 8 and 9. As there is no change in general conclusion, we do not

show those plots here.

12.3 Discussion

According to our numerical results, the relative performance of algorithms 8, 9

and 10 depends on (i) the numbers of outcomes and gambles in the sets, (ii) the

ratios of maximal and interval dominant gambles, and (iii) the number of gambles in

the domain of lower previsions. In particular, if one of these numbers is increasing,

then, generally, the average computational time taken by the algorithm is longer. In

contrast, the average computational time taken by algorithm 11 does not depend on

the ratios of maximal and interval dominant gambles, but it depends on the numbers

of outcomes and gambles in the set and the number of gambles in the domain of

lower previsions. This is because algorithm 11 has to evaluate the same number of

natural extensions regardless of the structure of the problem.

We observed that performing interval dominance (algorithm 11) at the beginning

benefits algorithm 10 as it makes the linear program smaller, especially if there are

many non-interval dominant gambles. Therefore, when using algorithm 10, we would

strongly recommend to run algorithm 11 first.

In contrast, perhaps surprisingly, interval dominance (algorithm 11) does not

help algorithms 8 and 9. Even though using algorithm 11 can eliminate some non-
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maximal gambles, applying algorithm 11 first and then performing algorithm 8 or

algorithm 9 is still slower than performing only algorithm 8 or algorithm 9. There-

fore, we do not recommend applying algorithm 11 before algorithm 8 or algorithm 9.

Overall, both algorithms 8 and 9 outperform algorithm 10 by an order of mag-

nitude. Algorithm 9 also outperforms algorithm 8 in all cases in the simulation,

especially when there is only one maximal gamble in the set. In the case that the

numbers of maximal gambles in the set are increasing, there is no big difference in

the time taken on algorithms 8 and 9, but algorithm 9 still slightly outperforms al-

gorithm 8. When we vary the number of gambles in the domain of lower previsions,

the conclusion does not change, i.e., algorithm 9 still outperforms algorithm 8.

Given the range of our benchmarking study, we conclude that our newly proposed

algorithm, algorithm 9, is a good choice for implementations, as it outperformed all

other algorithms tested over all scenarios considered.

12.4 Summary

We summarise the third contribution here. In this work, we proposed a new al-

gorithm (algorithm 9) for finding maximal gambles and compared its performance

with Jansen et al. [13] (algorithm 10) and Troffaes and Hable [40, p. 336]’s algo-

rithms (algorithm 8). We also studied the impact of applying interval dominance

(algorithm 11) to eliminate non-maximal gambles as this can reduce the size of the

problem.

To find the set of all maximal gambles, Jansen et al. [13]’s algorithm solves a

single large linear program for each gamble, while Troffaes and Hable [40, p. 336]’s

algorithm and our new algorithm solve a larger sequence of smaller linear programs.

For the second case, we proposed early stopping criteria to evaluate the sign of calcu-

lating natural extensions in these algorithms. Based on earlier work [27], we applied
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common feasible starting points for the entire sequence of linear programs. We found

that the primal-dual method can exploit these improvements most effectively, and

performs best overall.

To benchmark these algorithms, we presented a new algorithm for generating

random sets of gambles with a pre-determined proportion of maximal and interval

dominant gambles. This algorithm can be useful for others who want to test their

algorithms. We compared computational performance of algorithms 8, 9 and 10

with and without algorithm 11 on these generated sets.

We observed that applying interval dominance benefits Jansen et al. [13]’s algo-

rithm, but not the other two algorithms. However, Jansen et al. [13]’s algorithm

is outperformed by the other two algorithms. We found that our algorithm, with-

out using interval dominance, outperforms all other algorithms in all scenarios in

our benchmarking. Therefore, we recommend our newly proposed algorithm, algo-

rithm 9 for an implementation for finding maximal gambles.
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Conclusion

Several authors studied and provided algorithms for solving linear programs for

checking avoiding sure loss and for finding maximal gambles. However, as far as we

know, there was no comparative study and analysis of how to improve algorithms for

solving these linear programs. Moreover, there was no framework for testing these

algorithms. Therefore, we investigated three commonly used linear programming

methods for checking avoiding sure loss and for finding maximal gambles. To set up

the framework for checking avoiding sure loss, we provided algorithms for generating

sets of desirable gambles that avoid or do not avoid sure loss. We also gave the

algorithm for generating sets of gambles with a predetermined ratio of maximal

and interval dominant gambles. This algorithm can be used to set up a framework

to test algorithms for finding maximal gambles. In addition, we presented a case

of checking avoiding sure loss for sets of desirable gambles derived from betting

odds and a free coupon though the Choquet integral. The thesis consists of three

contributions which are outlined below.

The goal of the first contribution was to investigate algorithms for efficiently

solving linear programs for checking avoiding sure loss. To achieve this goal, we

studied basic concepts including: linear programming problems in chapter 2 and

157
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three algorithms, namely, the simplex, the affine scaling and the primal-dual meth-

ods in chapters 3, 4 and 5 respectively, and desirability and lower previsions in

chapter 6. Based on the structure of the linear programs for checking avoiding sure

loss, we slightly reduced their sizes and suggested two improvements for these three

methods, that is, direct ways to calculate the feasible starting points and an early

stopping criterion in chapter 7. To benchmark these improvements, in chapter 8, we

gave algorithms for generating random sets of desirable gambles that either avoid or

do not avoid sure loss, and conducted a comparative study for these three methods

on generated sets. In chapter 9, we found that as the affine scaling and primal-dual

methods benefited from the improvements, they outperformed the simplex method

in most scenarios in the simulation. Consequently, the simplex method was not a

good option for checking avoiding sure loss. The results suggested that in the case

of small problems, the performances of all methods were similar, but if problems

were large, the improved primal-dual method was at least three times faster than

other methods.

Note that our algorithms for generating sets of desirable gambles that either

avoid or do not avoid sure loss can be a basic framework which benefits a wide

range of situations for testing algorithms for checking avoiding sure loss. Moreover,

as we tested the hardest case where only a single gamble violates the condition of

avoiding sure loss, any positive computational gain in these cases implied an at least

as large gain for more general applied cases where more than one gamble violates

consistency.

Overall, this study was the first step to improve algorithms to efficiently solve

linear programs for checking avoiding sure loss. This research is not only useful to

efficiently solve linear programs for checking avoiding sure loss, but also applicable

to other linear programs that have a similar structure as it can reduce the effort

required in the pre-solve phase of some of these linear programming algorithms,

and speed up the performance of evaluating the sign of lower previsions. A further
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implication was presented in the third contribution.

For the second contribution in chapter 10, we studied whether and how customers

can exploit betting odds and free coupons in order to find strategies that can make

a profit. To find out, we viewed betting odds and free coupons as a set of desirable

gambles and checked whether such a set avoids sure loss or not. For this specific

problem, unlike checking avoiding sure loss in the first contribution, we showed that

we can check avoiding sure loss by evaluating the natural extension through the

Choquet integral which is equal to the natural extension. If the set does not avoid

sure loss, then we showed that a strategy for the customer to bet in order to make

a guaranteed gain can be read from an optimal solution of the linear programs. We

showed that this optimal solution can be obtained by using the Choquet integral

and complementary slackness. As an illustration, we presented some actual betting

odds in the market and showed that all sets of desirable gambles derived from those

odds avoid sure loss. However, with a free coupon, there are some combinations of

bets that the customer could make in order to get a profit.

As the natural extension in the second contribution is 2-monotone, it can be

computed through the Choquet integral [39, p. 125]. The technique of applying the

Choquet integral and complementary slackness to obtain an optimal solution could

be applied to evaluate any natural extension which is 2-monotone. Moreover, this

approach is useful to other linear programs that involve the same structure.

For the last contribution, we proposed our new algorithm for finding maximal

gambles and compared it with two existing algorithms; one is proposed by Jansen

et al. [13] and another by Troffaes and Hable [40, p. 336]. Based on the first contri-

bution, we presented efficient ways to find common feasible starting points in these

algorithms. We then exploited these feasible starting points to develop early stop-

ping criteria for the primal-dual method, further improving efficiency. We found

that the primal-dual method works best. Since applying interval dominance at the
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beginning could reduce the size of the problems, in addition to comparing the above

mentioned algorithms for finding maximal gambles, we performed these algorithms

with and without applying interval dominance.

To set up a framework for benchmarking these algorithms, in chapter 12 we

presented the algorithm for generating sets of gambles with pre-specified numbers

of maximal and interval dominant gambles, and conducted a comparison test for

these algorithms on generated sets. We found that using interval dominance at the

beginning to eliminate non-maximal gambles benefits Jansen et al. [13]’s algorithm

as this can make the problem smaller, but not the other two algorithms. Based

on theoretical considerations, our newly proposed algorithm, algorithm 9, is a good

choice for implementations as it reduced the number of linear programs, as well as

the number of iterations. Our benchmarking study quantified these improvements,

and we found that without using interval dominance, it outperformed all other

algorithms in all cases in our simulation.

Note that in order to generate sets of gambles for benchmarking algorithms for

finding maximal gambles, we are unable to increase the size of the set of outcomes

and the set of gambles due to the massive computational time required. This is

because the algorithm has to evaluate many natural extensions for each new gener-

ated gamble in order to ensure that the numbers of maximal gambles and interval

dominant gambles in the sets are exactly as specified. This leads to a huge compu-

tational effort when the size of the outcomes and the number of the gambles in the

sets are large. Because of this time consuming issue, we limited our range of the size

of the outcomes and the number of the gambles to be |Ω| ≤ 26 and |K| = 28. Our

method for generating sets of gamble clearly has some limitations. Nevertheless we

believe our method could be a framework for situations that require pre-specified

numbers of maximal and interval dominant gambles. In the future work, it would

be interesting if we can increase the size of the problems in our benchmarking, for

example, by parallelizing the task of calculating natural extensions.
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Throughout these contributions, we have managed to fill a gap in the literature

and we have formed a novel framework for comparative study. We have clearly

improved methods to efficiently solve linear programs for checking avoiding sure

loss and to efficiently find maximal gambles. Specifically, our investigations into

this area have shown a significant improvement to linear programming algorithms.

For an implementation, we have demonstrated that the primal-dual method, which

mostly benefited form this improvement, was a good choice to solve linear programs

for lower previsions.

Results so far have been very encouraging to investigate other linear programs

that have similar structures, for example, to check coherence for lower previsions or

to improve algorithms for finding interval dominant gambles. Especially, to improve

an algorithm for finding interval dominant gambles, we can investigate an early

stopping criterion for evaluating the difference between natural extensions and direct

ways to obtain feasible starting points. This approach may lead to an improved

version of algorithms for finding interval dominant gambles.
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Appendix A

A.1 Symbols and notations

Symbol Description Where defined

R Set of real numbers section 2.1, p. 10

N Set of natural numbers definition 18, p. 50

c> The transpose of c section 2.1, p. 10

I The identity matrix section 3.1, p. 21

Ω Finite set of all possible outcomes section 6.1, p. 47

ω An element of Ω section 6.1, p. 47

f, g, h Gambles (mapping from Ω to R) section 6.1, p. 47

L(Ω) Set of all gambles section 6.1, p. 47

D Set of desirable gambles section 6.1, p. 48

P , P , P Lower/upper previsions, prevision section 6.2, p. 50

domP The domain of P definition 19, p. 51

DP Set of desirable gambles of P section 6.2, p. 51

IA Indicator function of A section 6.2, p.53

p Lower probability mass functions section 6.2, p.53

p Upper probability mass functions section 6.2, p.53

p Probability mass function section 6.6, p. 59

ED Natural extension of D as a set of gambles definition 23, p. 54
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Symbol Description Where defined

ED Natural extension of D as a lower previ-

sion

definition 24, p. 54

ED The conjugate of ED section 6.3, p. 55

EP Natural extension of P definition 25, p. 55

Ep Natural extension of P p section 6.4, p. 55

Ep Expectation operator with respect to p section 6.6, p. 59

∆(Ω) Set of all probability mass functions section 6.6, p. 59

M(P ) Credal set of P section 6.6, p. 59

extM(P ) Set of extreme points of M(P ) section 6.6, p. 59

�, = Strict partial orders on L(Ω) section 6.7, p. 60

opt>>>(K) Set of maximal gambles in K with respect

to >>>

definition 39, p. 61

opt�(K) Set of maximal gambles in K section 6.7, p. 61

opt=(K) Set of interval dominant gambles in K section 6.7, p. 61

optM(K) Set of all E-admissible gambles in K section 6.7, p. 61

a/b Betting odds section 10.1, p. 109



Appendix B

B.1 Proof of corollary 28

Proof (from Appendix A in [29]). Since A0 = Ω, we can write f as

f =
n∑
i=1

λiIAi
+ λ0 (B.1)

where λ0 ∈ R, λ1, . . . , λn > 0 and A1 ) · · · ) An ) ∅. Then

−f = −
n∑
i=1

λi(1− IAc
i
)− λ0

= −
n∑
i=1

λi − λ0 +
n∑
i=1

λiIAc
i
.

(B.2)

Therefore,

Ep(f) = −Ep(−f) (B.3)

= −

(
−

n∑
i=1

λi − λ0 +
n∑
i=1

λiEp(A
c
i )

)
(B.4)

= λ0 +
n∑
i=1

λi(1− Ep(A
c
i ) (B.5)

= λ0 +
n∑
i=1

λiEp(Ai), (B.6)
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where eq. (B.4) holds by constant additivity and comonotone additivity [39, p. 382,

Prop. C.5(v)&(vii)].

B.2 Proof of theorem 30

Proof (from Appendix B in [29]). For the first part, suppose that f ∈ L(Ω) and

D = {gi, i ∈ {1, . . . , n}} is a set of desirable gambles that avoids sure loss. We find

that

ED(f) = inf

{
α ∈ R : α− f ≥

n∑
i=1

λigi, λi ≥ 0

}

= min

{
max
ω∈Ω

(
f(ω) +

n∑
i=1

λigi(ω)

)
: λi ≥ 0

}
,

(B.7)

where the inf is actually a min because D is finite. So, by lemma 29,

ED(f) ≥ 0⇐⇒ ∀λi ≥ 0,max
ω∈Ω

(
n∑
i=1

λigi(ω) + f(ω)

)
≥ 0. (B.8)

For the second part, if D ∪ {f} does not avoid sure loss, then ED(f) < 0. So, by

eq. (B.7), there exists an ω∗ in Ω and some λi ≥ 0 such that

ED(f) = f(ω∗) +
n∑
i=1

λigi(ω
∗) ≥ f(ω) +

n∑
i=1

λigi(ω), ∀ω ∈ Ω. (B.9)

Hence there is a sure loss of at least |ED(f)|.

B.3 Proof of theorem 42

Proof (from Appendix A in [27]). We only show that D avoids sure loss if and only

if the optimal value of (P2) is zero since the proof that the dual problem, (D2), has

feasible solutions follows immediately by theorem 12.

Firstly, by lemma 9, the optimal value of (P2) is either zero or unbounded. Next,
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we show that if D avoids sure loss, then the optimal value of (P2) is zero, and vice

versa. Note that eq. (P2b) can be written as

max
ω∈Ω

(
n∑
i=1

λifi(ω)

)
≤

n∑
i=1

λifi(ω0) + α. (B.10)

Suppose D avoids sure loss, then by definition 18, for all n, all λ1, . . . , λn ≥ 0, and

f1, . . . , fn ∈ D,

0 ≤ max
ω∈Ω

(
n∑
i=1

λifi(ω)

)
. (B.11)

So, by eq. (B.10),

0 ≤
n∑
i=1

λifi(ω0) + α. (B.12)

So, the optimal value is non-negative. Now, by putting λi = 0 for all i, and α = 0,

we obtain
n∑
i=1

λifi(ω0) + α = 0. (B.13)

Therefore, the optimal value of (P2) is zero.

Conversely, supposeD does not avoid sure loss. There are non-negative λ1, · · · , λn
such that

sup
ω∈Ω

(
n∑
i=1

λifi(ω)

)
< 0. (B.14)

Set

s = sup
ω∈Ω

(
n∑
i=1

λifi(ω)

)
(B.15)

and choose

α = s−
n∑
i=1

λifi(ω0). (B.16)

Now we have α ≥ 0 and

∀ω 6= ω0 :
n∑
i=1

λifi(ω) ≤
n∑
i=1

λifi(ω0) + α = s < 0. (B.17)

This means that
n∑
i=1

λifi(ω0) + α < 0 (B.18)
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is a feasible value of (P2). By lemma 9, the optimal value is unbounded.

B.4 Proof of theorem 51

Proof (from Appendix C in [29]). Note that for each i and k, we have

aik
bik
≤ a∗i
b∗i

⇐⇒ b∗i
a∗i + b∗i

≤ bik
aik + bik

. (B.19)

So,
b∗i

a∗i + b∗i
= min

k

{
bik

aik + bik

}
. (B.20)

(=⇒) Suppose the set of desirable gambles D avoids sure loss. We will show that

eq. (10.17) holds. As D avoids sure loss, the following system of linear inequalities:

∀i : p(ωi) ≥ 0 (B.21)

n∑
i=1

p(ωi) = 1 (B.22)

∀i, k :
n∑
i=1

gik(ωi)p(ωi) ≥ 0. (B.23)

has a solution [46, p. 175, ll. 10–13], say p = (p(ω1), . . . , p(ωn)). By lemma 50, for

each i and k,
bik

aik + bik
≥ p(ωi). (B.24)

Then, by eq. (B.19) for each i,

b∗i
a∗i + b∗i

≥ p(ωi). (B.25)

Therefore,
n∑
i=1

b∗i
a∗i + b∗i

≥
n∑
i=1

p(ωi) = 1. (B.26)
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(⇐=) Suppose
∑n

i=1
b∗i

a∗i +b∗i
≥ 1 holds. Let

S =
n∑
i=1

b∗i
a∗i + b∗i

and p(ωi) =
b∗i

S(a∗i + b∗i )
, (B.27)

If we show that p is a feasible solution of eqs. (B.21), (B.22) and (B.23), then D

avoids sure loss. Note that by eq. (B.27), p(ωi) ≥ 0 for all i,
∑n

i=1 p(ωi) = 1 and

with eq. (B.19), bik
aik+bik

≥ p(ωi). So, by lemma 50,
∑n

i=1 gik(ω)p(ωi) ≥ 0 holds for

all gik. Therefore, p is a feasible solution of eqs. (B.21), (B.22) and (B.23) and by

[46, p. 175, ll. 10–13], D avoids sure loss.

B.5 Proof of Lemma 58

Proof (from Appendix A in [28]). By eq. (11.1), we have

h− α ∈ opt�(K ∪ {h− α})⇔ ∀g ∈ K : E(h− g − α) ≥ 0, (B.28)

⇔ ∀g ∈ K : E(h− g) ≥ α, (B.29)

⇔ min
g∈K

E(h− g) ≥ α. (B.30)

Note that

E(h− g) ≥ E(h− f)− E(g − f). (B.31)

Suppose that if g /∈ opt�(K), then we have E(g − f) < 0 for some f ∈ opt�(K)

because g is dominated by at least one maximal gamble in K [40, p. 336]. Therefore,

for all g /∈ opt�(K):

∃f ∈ opt�(K), E(h− g) ≥ E(h− f). (B.32)

Consequently,

h− α ∈ opt�(K ∪ {h− α})⇔ min
f∈opt�(K)

E(h− f) ≥ α. (B.33)
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B.6 Proof of lemma 59

Proof (from Appendix B in [28]). Let f be any maximal gamble in K. We first show

that f is a maximal gamble in K∪{h−α} if and only if E(h− f) ≤ α. We see that

f ∈ opt�(K ∪ {h− α})⇔ ∀g ∈ K ∪ {h− α} : E(f − g) ≥ 0, (B.34)

and since ∀g ∈ K: E(f − g) ≥ 0,

⇔ E(f − h+ α) ≥ 0 (B.35)

⇔ E(f − h) ≥ −α (B.36)

⇔ E(h− f) ≤ α. (B.37)

Consequently, all maximal gambles in K are still maximal in K∪{h−α} if and only

if

max
f∈opt�(K)

E(h− f) ≤ α. (B.38)

B.7 Proof of Lemma 60

Proof (from Appendix C in [28]). We first show that

∀f, g ∈ opt�(K) : E(h− f) ≤ E(h− g). (B.39)
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holds. Let K be a set of gambles and let opt�(K) be the set of maximal gambles.

Suppose that h is another gamble. Then, for any f, g ∈ opt�(K), we have

0 ≤ E(f − g) (B.40)

= E(f − h+ h− g) (B.41)

≤ E(f − h) + E(h− g) (B.42)

= −E(h− f) + E(h− g). (B.43)

Therefore, by eq. (B.43), for any f, g ∈ opt�(K):

E(h− f) ≤ E(h− g). (B.44)

Consequently,

max
f∈opt�(K)

E(h− f) = E(h− f ∗) for some f ∗ ∈ opt�(K) (B.45)

≤ E(h− g) for all g ∈ opt�(K) (by eq. (B.39)) (B.46)

≤ min
g∈opt�(K)

E(h− g). (B.47)

Next, we show that

min
f∈opt�(K)

E(h− f) ≤ E(h)−max
g∈K

E(g). (B.48)

We see that

min
f∈opt�(K)

E(h− f) = min
g∈K

E(h− g) (by eq. (B.32)) (B.49)

≤ min
g∈K

(
E(h)− E(g)

)
(B.50)

= E(h)−max
g∈K

E(g). (B.51)
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