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Summary

Title: Modified Gravity with Torsion
Author: Carina Suzana Negreanu

We are at a point in time when alternative gravitational theories are beginning to be
constrained by high precision cosmological and astrophysical data. The work in this thesis
focuses on applications of a particular modified gravity theory, the extendedWeyl Gauge Theory
(eWGT), that was recently developed by Prof. Lasenby and Prof. Hobson. The applications
corresponds to subsets of the full theory that are applicable to different cosmological and
astrophysical sectors.

We start by investigating a simplified scenario that simulates a famous alternative theory
of gravity, Weyl2 Gravity. Recently a couple of issues have been raised regarding the validity
of the theory. Starting from a gauge theory perspective we bring a fresh contribution to the
debate. We argue against the classical formulation by showing that the theory cannot support
astrophysical matter (introduced by a perfect fluid). Furthermore we extend the theory and show
that even if we allow torsion to be present we cannot reach a physical setup. In this process we
have discovered interesting properties of the torsion field that could play an important role in
generalised cosmological setups.

In the next application we consider a cosmology dictated by a Riemann2 Lagrangian that
can accommodate only radiation. We find new physical behaviour in the perturbed regime that
discretises the power spectrum. We prove that the setup admits gravitational waves.

Finally, we construct a new Lagrangian theory for spinning fluids. We show that it is
compatible with current literature for a flat space time. Considering its extensibility we believe
that it can be widely used in future research.
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Introduction

The General Theory of Relativity (GR) has undoubtedly revolutionised our understanding of
the Universe and from 1915 until this day Einstein’s field equations are still the norm when
it comes to describing the behaviour of space-time on macroscopic scales. The considerable
success of the theory has not stopped alternatives being proposed in order to overcome the
worrying shortcomings (e.g. the need for Dark Matter and Dark Energy in our cosmological
model) and in time a class of theories labelled “modified gravity theories” emerged.

A more formal definition can be found in [1]: “ the effect of gravity on matter is tightly
constrained to be mediated by interactions of the matter fields with a single rank-2 tensor.
The term “gravitational theory” can then by functionally defined by the set of field equations
obeyed by the rank-2 tensor, and any other non-matter fields it interacts with. If these equations
are anything other than Einstein’s equations, then it is considered to be a modified theory of
gravity”. There is a vast number of theories that satisfy this definition and each have merits
and shortcomings, without an obvious candidate to replace (or generalize) Einstein’s theory. In
our work we actually employ a theory that lies outside this sphere, where we describe gravity
as a gauge field and our interactions are not defined by a single rank-2 tensor. To ensure some
uniformity we start this thesis by making a general introduction to the main considerations
behind theories of gravity. This description will be heavily based on a recent review of theories
of gravitation, [1] and the staple book in Gauge Theories of Gravity [2].

1



2 Chapter 1. Introduction

The premise behind theories of gravity

Any viable relativistic theory of gravity has to satisfy the foundational requirements (e.g.
universality of free fall and isotropy of space) as well as be compatible with observational
results. In this section we will briefly outline the current results and their importance in
formulating a theory of gravity. We refer the reader to [1] for a more detailed description.

When looking at the foundational requirements the equivalence principle plays an important
role. In the following, we will employ the definitions of Weak Equivalence Principle (WEP)
- once an initial position and velocity have been prescribed all uncharged, freely falling test
particles follow the same trajectories; Einstein Equivalence Principle (EEP) - the WEP is valid
and “the outcome of any local non-gravitational experiment in a freely falling laboratory is
independent of the velocity of the laboratory and its location in spacetime.” (Einstein); Strong
Equivalence Principle (SEP) - the EEP is valid and “the gravitational motion of a small test
body depends only on its initial position in spacetime and velocity, and not on its constitu-
tion.”(Einstein)

From Eötvös-type experiments we have a tight constraint on the relative difference in
accelerations of two bodies to be of order 10−13 [3], which validates the Weak Equivalence
Principle. Moreover, it is worth noting that by having a theory that satisfies the WEP the test
proposed by Einstein in 1916 involving the gravitational redshifting of light is automatically
passed: since energy-momentum is conserved in a closed system then it is only a test of WEP,
and the Eötvös-type experiments have higher accuracy.

Einstein’s Equivalence Principle is considerably more challenging to test than the WEP.
Hughes-Drever experiments (see [4]) provide the most accurate evidence by testing for local
spatial anisotropies by observing the shape and spacing of atomic spectral lines. Beyond
direct experiments there are theoretical reasons that support the EEP as well, namely Schiff’s
conjecture that states “any complete and self-consistent gravitational theory that obeys theWEP
must also satisfy EEP”.

The theories that obey the EEP are often described as being ‘metric’ theories of gravity.
This is misleading as theories with torsion, such as the Poincaré Gauge Theory (PGT), should
also be included. Observational considerations can be used to differentiate between the various
alternatives. The Solar system tests are powerful tools for investigating long-rangemodifications
to Newtonian gravity. For example, good constraints for the ‘unit curvature’ of space can be
found from the tests measuring the spatial deflection of star light by the Sun and the Shapiro
time-delay effect (see [5]). Also from the value of the perihelion procession of Mercury
the non-linear terms in the space-time geometry as well as preferred frame effects can be
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determined.
Other types of experiments that are worth mentioning focus on testing whether the Strong

Equivalence Principle (SEP) holds, since although the ‘metric’ theories must satisfy the WEP
and EEP, they can violate the SEP (the effect is called the ‘Nordtvedt effect’). The most
successful experiment for this effect (a giant Eötvös experiment that uses the Earth-Moon
system in the gravitational system of the Sun) produces no support for the violation of the SEP
and can be used to constrain possible deviations from General Relativity.

Until now we have discussed the constraints involving either the Equivalence Principles or
generalisations of Newtonian gravity, but have yet to mention the ultimate generic prediction
of all known relativistic theories of gravity: gravitational waves. The current theories predict
different types of gravitational radiation and thus the most powerful constraint will be the
nature of the gravitational wave. By measuring the propagation speed (in General Relativity it
is predicted to be the speed of light in vacuum, but not all theories predict null gravitational
radiation), or the polarization of the gravitational wave one could dismiss a significant fraction
of the available theories.

Recently a significant discovery was made by the Laser Interferometer Gravitational-Wave
Observatory(LIGO). At the time this thesis was written the collaboration detected gravitational
waves from binary black hole coalescence (GW150914, GW151226, GW170104, GW170608)
and from binary neutron star inspiral (GW170817). Their analysis strongly agrees with the
gravitational wave representation of General Relativity as explained in [6]. Alternative theories
should therefore have the same prediction.

For instance in the case of General Relativity where only quadrupole radiation with a
positive energy should be emitted, in most other theories dipole gravitational radiation is also
expected and sometimes can carry away negative energy. No evidence for dipolar radiation
exists at this moment and therefore experimental limits can be set on theories that predict such
radiation.

Finally, when evaluating a theory one should take into account theoretical considerations.
In the case of gravitational theories this involves the study of classical and quantum fluctuations
about classical solutions.

A significant number of theories have attempted to explain dark energy by employing
ghosts. To have a cosmic acceleration, an additional repulsive force needs to act between
massive objects at large distance. If the force is mediated by a particle of even spin (a scalar or a
tensor) then the corresponding kinetic term must have the opposite sign, making it a ghost. To
not be in contradiction with the quantum formalism one needs to accept that the eigenvalues of
the ghost are negative. The ghost will generate instabilities if it couples to other fields and when
these fields are already excited the ghost will keep giving away its energy. This is a problem



4 Chapter 1. Introduction

especially in theories based on Lorentz invariance because the process leads to a production of
ghost-non-ghost pairs at a divergent rate [7].

Strong coupling is another problem/virtue for some theories. Although initially considered
a problem since the quantum fluctuations of a classical solution become strongly coupled at
an unacceptably low scale, recently merit has been given for strong coupling on the vacuum.
For example, consider a model that deviates from General Relativity at large distances. This
deviationmust be at leastO(1) on cosmological scales (dark energy) and suppressed to≤O(10−5)
on Solar System scales. Therefore the fields that are responsible for the modification must be
screened within the Solar System and this can happen if the fields are so strongly interacting
that they are frozen together, so they cannot freely propagate (Vainshtein mechanism).

1.1 A brief encounter with Gauge Theories of Gravity

“...the essential achievement of general relativity, namely to overcome ‘rigid’ space is only
indirectly connected with the introduction of a Riemannian metric. The directly relevant
conceptual element is the ‘displacement field’, which expresses the infinitesimal displacement
of vectors. It is this which replaces the parallelism of spatially arbitrarily separated vectors
fixed by the inertial frame by an infinitesimal operation. This makes it possible to construct
tensors by differentiation and hence to dispense with the introduction of rigid space. In the face
of this it seems to be of secondary importance in some sense that some particular Γ field can
be deduced from a Riemannian metric...”(Einstein, 1955)

As early as 1920 É. Cartan hadmanaged to make the connection a concept that is geometric-
ally independent a priori. Inspired by the earlier work of the Cosserat brothers who generalised
the 3-D classical continuum of elasticity and fluid dynamics by additionally attaching each
material point a new director field (spin), Cartan found a new geometry - the Einstein-Cartan
space time. The new setup mimics Einstein’s ‘laboratory’ with two major differences: the point
masses are phased by a Cosseratum continuum and the coordinate systems are substituted by
two coframes. The effect is that Einstein’s procedure is now applied to more general objects
(for instance the spin of matter is included).

In standard particle physics all gauge groups are internal, but when working with the gauge
theories we are not necessarily restricted to internal groups when localizing a symmetry. If
we have a conserved current and a corresponding group, we can describe spacetime using an
external group.

The link between the gauge theory and gravity relies on energy-momentum conservation
of Special Relativity (Alamorgodo,1945) that superseded the mass conservation of classical
physics (Lavoisier, 1790). Therefore the Poisson equation describing Newton’s gravitational
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potential has to be replaced by an equation that uses the energy density of matter (and/or radi-
ation). According to SR this is the time-time component of the symmetric energy-momentum
current ti j = t ji of matter (and/or radiation).

The action of an isolated physical system is invariant under translations in time and space
which is equivalent to saying that the energy momentum current is conserved. Thus the
conserved energy-momentum current and the translational group T (4) acting on Minkowski
space should fully define gravity.

Utiyama realised this early on and started to formulate gravity as a gauge theory in 1956
(see [8]) based on Cartan’s work. He was the first to attempt to recover general relativity by
gauging the Lorentz group SO(1,3). As Hehl points out in [2], Utiyama’s approach had some
problematic aspects - the tetrads eαi were introduced ad hoc, the connection Γαiβ of spacetime
was assumed to be Riemannian, and the angular momentum current ∂kJ k

i j was assumed to be
conserved, where J k

i j = −J
k
ji is the current linked to the Lorentz group. Gravity is coupled to

the conserved and symmetric energy-momentum current tik , taken by Einstein as the source of
gravity in his field equation, and not the angular momentum current, contradicting Utiyama’s
approach.

A successful attempt was made by Kibble (see [9]) who was the first to gauge the Poincaré
group (the semidirect product of the translation group and the Lorentz group) leading to the
Riemann-Cartan geometry: “Starting from special relativity and applying the gauge principle to
its Poincaré-group symmetries leads most directly not precisely to Einstein’s general relativity,
but to a variant, originally proposed by Élie Cartan, which instead of a pure Riemannian space-
time uses a space-time with torsion. In general relativity, curvature is sourced by energy and
momentum. In the Poincaré gauge theory, in its basic version, additionally torsion is sourced
by spin.”(Kibble, 1962).

Kibble’s laboratory encompasses the following setup:
• An unquantized Dirac spinor. An impressive feat as it is more than a decade prior to
the “Colella, Overhauser and Werner” experiment and a significant leap from Einstein’s
point mass (even without quantisation).

• An inertial frame. A generalization of the frame in Einstein’s lab, the inertial frame
is defined by four linearly independent (co)vectors (tetrads), which are chosen to be
orthonormal over the Minkowski space (before the gauge procedure). While in Einstein’s
lab there are four coordinates, in Kibble’s lab there is a coframe consisting of four
covectors (or one-forms).

• A translational and rotational accelerated frame. Compared to Einstein’s lab where we
have only four translational degrees of freedom, we gain six additional rotational Lorentz
degrees of freedom.
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• Homogeneous gravitational fields. Now the local frames inherit non-integrable relative
translations and relative rotations from the torsion and curvature.

• Light rays. Since the connection does not couple to the electromagnetic field, in this
respect there is no difference when compared to Einstein’s lab.

In Kibble’s model by demanding invariance under Poincaré local transformations of the
matter action one needs to introduce two new gravitational gauge fields (hµa and Aab

µ ) which
correspond to the translational and rotational components of the Poincaré group. Using these
two fields one constructs a covariant derivative and can proceed to find the field strength tensors
from the commutator of the covariant derivatives. In the case of Poincaré Gauge Theory
there are two strength tensors: Rab

cd
for the rotational component and T a

bc
for the translational

component, which can be interpreted as the‘curvature’ and the ‘torsion’ terms.
In addition to the matter action, the total action must contain also a term that describes

the dynamics of the gravitational fields. The gravitational Lagrangian is expressed in terms of
the field strength tensors, and for simplicity Kibble chose to use the invariant LG ∝ R which
leads to Einstein-Cartan space time. Although using this form is appealing, other higher-order
invariants can be found from the strength field tensors and cannot be discarded. A constraint
on the order can be made by demanding that the theory produces wave-type field equations.
This implies that the second order partial differential equations obtained from the Lagrangian
must be quasi-linear (here linear in the second derivatives) and thus the Lagrangian must be
quadratic. The most general quadratic Lagrangian has been found in [10] and consists of a
term that describes weak gravity and a (speculative) term that describes strong gravity. If we
ignore the second term we are left with:

LG = κ
−1(aR + Λ) + LR2 + κ−1LT 2, (1.1)

where κ is Einstein’s constant, Λ is the cosmological constant, a a dimensionless free parameter,
and the Lagrangians are constructed from invariants that do not violate parity. The form of the
Lagrangian defines the Poincaré theory, and popular choices are found as particular cases of
the R + R2 + T 2 class of Lagrangians (see [11]).

The next important step in the evolution of gauge theories was based on Weyl’s earlier
work. In the early 1920’s Weyl reconsidered the foundation of the geometry. He realised that
the transition to ds2 is only part of the process to obtain an ‘infinitesimal’ geometry and one
also needs to allow a non-Euclidean ‘recalibration’ of spacetime in which the measure of length
will not remain fixed under parallel transport. In his work, Weyl constructed a new spacetime
that is described by non-zero metricity. The new structure can be thought as an extension of
Riemann-Cartan spacetime by local scale invariance.
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From a gauge point of view, the Weyl group is constructed by adding the group of dilations
to P(1, 3), assuming scale covariance in addition to the P(1, 3) covariance. The associated
current is the dilation (or scale) current (which Weyl had mistaken for the electric current) that
leads to a Weyl-Cartan spacetime with a gauge field that has the dilation current as source.

1.1.1 Making the case for scale invariance

Several authors (including [12], [13], [14]) have taken the route of scale invariance. As this
is the core of our model for gravity we would like to start by bringing arguments in its favour.
We will make use of ’t Hooft’s reasoning as presented in [15].

In a perfectly symmetric world if we had a clear understanding of how one particular
domain worked we would know how the whole universe unfolded by applying a symmetry
transformation. We could use translations to cover the entire space and time, rotations to span
all directions, Lorentz transformations to know how a particle could move if we know how it
is at rest. Unfortunately the microscopic and macroscopic worlds do not seem to agree and it
would be tempting to just discard the concept of symmetry. Scale invariant enthusiasts argue
that instead we could blame the lack of understanding of the symmetry of scale transformations.

In a symmetry-imperfect world, the symmetry (which locally is conformal) must be spon-
taneously broken. This property is induced by further field transformations which can be shown
to leave the vacuum not invariant [16]. Lorentz defined the invariance group as a consequence
of electro-magnetism, so the setup (fully described by Maxwell’s equations) has conformal
symmetry. In practice this leads to having only light rays as measures (only relative size and
time can be observed).

It turns out that spontaneously breaking symmetry is naturally occurring in the Einstein-
Hilbert action by multiplying the metric tensor with the square of a scalar dilaton field φ. It is
argued in [16] that the functional integral over the dilaton field has to be shifted to a complex
contour such that the vacuum value is 〈φ〉 = ±

√
3/4πG. So by fixing the field to have this exact

value we recover Einstein-Hilbert gravity, but one might wonder what would happen otherwise.
’t Hooft argues that we should consider this ‘standard’ gauge as a “unitarity gauge” and we can
get a “renormalizable gauge” if the conformal factor is chosen such that “the amount of activity
in a given space-time volume element is fixed or at least bounded. How to implement such a
gauge choice is not known today”(’t Hooft, 2013).

1.1.2 The world of eWGT

Inspired by these arguments, a new theory of gravity was constructed in the last few years -
the extended Weyl Gauge Theory (eWGT). This description is a summary of eWGT as first
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introduced in [13].
eWGT was constructed to encompass an extended transformation law for the rotational

gauge field under local dilations for which the transformation law in WGT is a particular case.
In WGT the gauge fields h µa and Aab

µ transform covariantly with weights of w ,-1 and 0. In
our case Aab

µ transforms inhomogeneously. This transformation was designed such that the
PGT matter action (for Dirac or for electromagnetic fields) is invariant under local dilations
under the ‘extended’ law as it is for the ‘standard’ law assumed in WGT. Under a global scale
transformation the laws coincide and thus both can be used to gauge the Weyl group.

Thus in both WGT and eWGT, h transforms as

h
′µ
a = e−ρhµa, (1.2)

whereas A’s transformation is changed from

A
′ab
µ = Aab

µ to A
′ab
µ = Aab

µ + θ(baµP
b − bbµP

a), (1.3)

for ρ the local physical dilation, θ is an arbitrary parameter, Pν ≡ ∂ν ρ and Pa ≡ hµaPν .
A consequence of using this setup is that we end up with transformations for the curvature

and torsion that are more appealing. Under the ‘standard’ transformations the PGT curvature
transforms covariantly with weight -2, whereas the PGT torsion transforms inhomogeneously.

It can be shown that for θ = 1 we find a covariant transformation law with weight -1 for the
PGT torsion. For θ = 0 we recover the ‘standard’ setup and (as previously mentioned) have a
covariant transformation for the curvature. Thus we can accommodate a more balanced setup.
In this work we will ocassionally focus on particular values of θ if we are trying to link our
findings with other approaches (in Chapter 2 we will use θ = 0 and in Chapter 3 θ = 1).

Similarly to other gauge theories, we start with a matter action that is invariant under
global transformations. We want to make it invariant under local transformations where h

and A transform as previously stated. The standard approach is to construct a new covariant
derivative which transforms in the same way as the standard partial derivative under global
Weyl transformations.

We start by introducing a dilation vector gauge field Vµ alongside a new field (that is not
fundamental, but simplifies computation),

A†abµ ≡ Aab
µ + (Vabbµ −V

bbaµ), whereVa = hµaVµ . (1.4)

Using this form it can be shown as in [13] that the new covariant derivative takes the form

D†µφ ≡ (∂µ +
1
2

A†abµ Σab − wVµ −
1
3
wTµ)φ, (1.5)
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where w is the Weyl weight of the field φ and Ta is the trace of the PGT torsion for which we
define Tµ = baµTa.

Furthermore we have a easy transformation law,

T ′µ = Tµ + 3(1 − θ)Pµ, (1.6)

which verifies that the new covariant derivative is as intended given the dilation gauge field
transforms as

V ′µ = Vµ + θPµ . (1.7)

These are the fundaments on which eWGT is built. Throughout this thesis we will look
at various gravitational setups and we will specify at each stage the relevant construction that
we will employ. Although we will hopefully offer convincing results to support the use of the
new theory it is worth mentioning a few key features as advertised in [13]. (i) The equations
of motion from a limited action (that is at most quadratic in the field strength tensors) are
linear in the second derivatives of the gauge fields. This leads to a Hamiltonian that does
not have Ostrogradsky’s instability, unlike other approaches as discussed in [17]. (ii) The
trace of the eWGT translational gauge field strength vanishes. This feature produces highly
desirable simplifications at the level of the torsion-squared part of the free gravitational action
and the Bianchi identities. (iii) Although the energy-momentum tensors derived from the free
gravitational and matter actions are not initially covariant, they become so when accompanying
terms from the gravitational sector are also considered (A†). (iv) The dilation field V does not
explicitly appear in the Lagrangian density and an alternative dilation current can be identified
(which has the added benefit of vanishing identically). (v) eWGT has only two independent
field equations - the h-equation and the A-equation as the φ-equation is just the contraction of
the h equation. (vi) Geometrically eWGT introduces a new space time which is an extension
of Weyl-Cartan Y4. However, like Gauge Theory Gravity [18] on which it is based, the theory
can also be considered as a theory of forces in a flat spacetime, thus simplifying interpretation.

In this work we directly apply eWGT to various scenarios. Our aim is to understand how
specific types of torsion change the cosmology and whether there are general attributes. To our
knowledge we have produced the first rigorous attempt at fully exploring the torsion profile for
various reduced Lagrangians. Nonetheless we will start by conducting a survey of the current
development in torsion theories and we will primarily build on two well known classifications.
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1.2 Torsion Review

When we talk about General Relativity torsion is not usually part of the conversation. It might
come as a surprise that Einstein worked on introducing torsion (teleparallel theories) in collab-
oration with Cartan (as their collection of letters attest [19]) in his later research. Furthermore
it influenced Schrodinger to start his work on unifying gravity and electromagnetism [20]. In
his formalism torsion was related to the electromagnetic potential which led to photons gaining
mass and thus finding the best experimental upper bound for photon mass.

The way most contemporary researchers think about torsion was introduced by McCrea
in the early 90s [21]. As we are also using this formalism we will start by offering a brief
presentation.

By definition, the torsion tensor T c
ab

is the antisymmetric part of the connection coefficients
Γc
ab
,

T c
ab ≡

1
2
(
Γc
ab − Γ

c
ba

)
≡ Γc

[ab], (1.8)

wheremetric compatibility is assumed. Another useful quantity is the contortion tensor, defined
as

Kabc = Tabc − Tbca + Tcab, (1.9)

since we can just write Γc
ab
= Γ̃c

ab
− Kc

ab
, where Γ̃ is the GR version.

Now an important property of torsion is that it can be decomposed (with respect to the
Lorentz group) into three irreducible tensors,

Tα = T (1) + T (2) + T (3) ≡ tentor + trator + axitor. (1.10)

In 4D, the torsion has 24 components out of which 16 are inherited by T (3), 4 by T (2) and 4
by T (1). By construction, we define the axitor as the totally anti-symmetric torsion such that

Tc(3)
ab
≡ gcdS[abd], (1.11)

the trator as

Tc(2)
ab
≡

1
3
(
Taδ

c
b − Tbδ

c
a

)
, (1.12)

and the remaining components get allocated to the tentor

T c(1)
ab
= T c

ab − T c(2)
ab
− T c(3)

ab
. (1.13)
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Such a representation is particularly attractive as it gives us a simple way to restrict the
torsion tensor in applications where working with the general torsion would be too involved. In
recent studies torsion classifications have been found and in this thesis wewill introduce two that
are relevant to our work. We are primarily interested in the classification in terms of irreducible
tensors in 4D as presented in [22] and the classification based on physical manifestations and
experiment as introduced in [23].

Although the analysis in [22] is broad, we will introduce a few results in order to offer a
brief overview of what we currently know about torsion.

Scalar-tensor theories (STT) are a branch we particularly focus on in our research. A
(scalar) field φ generates torsion only in non-minimally coupled theories with a ζφ2R term in
the Lagrangian density, which makes the torsion related to the gradient of the field. The ζφ2R

term is just an example and more general options are available. A great example of STT is
presented in [24] where a generalized teleparallel theory of gravitation is constructed by using
an arbitrary function of the torsion scalar and a scalar field.

Another approach is Soleng’s work [25] which is focused on a theory with spin-torsion
where he employed a scale invariant gravitational Lagrangian. Among the interesting aspects
of his theory one can show that in homogeneous cosmologies a sufficient form for torsion is
given by a time-like T (2), whereas for a Schwarzschild solution one would have a space-like
T (2).

If we look at a Friedmann-Lemaitre-Robertson-Walker universe, we should explore the
formalism presented in [26]. The authors construct a thorough study of spatially homogeneous
and SO(3)-isotropic exact solutions of the 10-parameter Lagrangian of the ‘Poincaré gauge
theory’. One important result is that the torsion must be comprised at most of a time-like T (2)

and T (3).
When we discuss torsion we must mention electromagnetism. Although various ‘naive’

attempts to imitate electromagnetism in gravity were less successful in the 20th century, in
recent times we had more success. A significant step was made by Hammond [27], who
inspired by electromagnetism introduces a torsion potential. Poplawski [28] followed his
approach and formulated the classical Einstein-Maxwell-Dirac theory of spinors interacting
with the gravitational and electromagnetic fields as the Einstein-Cartan-Kibble-Sciama Theory
(ECKS). A more detailed analysis conducted by Baker et al [29] showed that for Riemann-
Cartan spaces there is a restricted class of torsion for which plane null electromagnetic solutions
exist, namely for light-like T (2) and T (3).

We can generate T (3) type torsion using Dirac particles as sources. In [30] Hehl et al.
generalise GR to include dynamical mass with spin in a U4 theory that arises as a local gauge
theory for the Poincaré group. The authors show that we can source space-like T (3) from
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massive classical Dirac particles, light-like T (3) from massless neutrino and time-like T (3) from
tachyon particles.

Significant work was presented in [31] where Hammond proves that the conservation law of
total angular momentum is correct only if torsion (from intrinsic spin) is present. Furthermore
torsion is the gauge field for the local invariance of the chiral transformation that sends "mass
to negative mass” and leaves the Dirac equation invariant. An immediate consequence is a
possible influence on neutron phase shifts.

In the context of Gauge Theories of Gravity, Challinor et al [32] find massive, non-ghost
solutions for the Dirac field coupled self-consistently to gravity. They show that torsion makes
an impact only if the Compton wavelength of the Dirac field is larger than the Hubble radius.

Following this work the authors in [33] conjecture that the accelerated expansion of the
universe possibly arises due to the spin correction to the energy momentum tensor for the
Dirac field. Furthermore in [34] it is shown that Dirac fields with torsion have interesting
properties for the problem of Dark Matter: (i) The (space-like) torsion tensors related to spin
are generated by the Weyssenhoff spinning particle and the classical Dirac particle. The first
attempt was presented by Trautman in [35] and interesting cosmological solutions have been
found (e.g big bounce instead of big bang in [36]). (ii) A significant use for T (1) torsion is in
supergravity. Introductory work is presented in [37], where supergravity is sourced only by
vierbein and Rarita-Schwinger fields with supersymmetry transformations for these fields. For
this formalism T (1) is the only surviving form. (iii) The authors in [22] show that since space-
like T (2) and T (3) act in a prefered direction they introduce anisotropies. (iv) Time-like T (3)

type torsion is used in a thorough analysis on cosmological perturbations. Cappoziello et al.
[38] show that the characteristic scales are enhanced by torsion. (v) The presence of light-like
T (3) type torsion has been shown to flip the helicity of fermions. Hammond [39] shows that
the torsion field gives the Dirac equation an extra coupling that acts as a mechanism for spin
flipping. (vi) Gasperini [40] and Trautman [41] show that in ECKS gravity, the presence of
torsion can eliminate the singularity at the big bang and replace it with a bounce. On the other
hand Kerlick [42] has shown that by using a Dirac coupling leads to an enhancement of the
singularity. Although a supporter of inflation, the author shows that torsion has an important
role in particle creation in the early Universe. (vii) Several authors [43], [44] have shown how
problems such as the flatness and horizon problems, the nature of dark matter and dark energy
can be solved by introducing torsion.

In this section we have presented the current progress made to understand the behaviour
and effects of different types of torsion. Although we are far from reaching a consensus on
what is the best approach, there are undeniable torsion effects that cannot be neglected. These
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can be split into three categories (Quantum effects, laboratory tests and large-scale tests) as
introduced in [23].

Quantum effects
As we have previously mentioned, torsion couples to the Dirac equation and thus it should

nurture quantum effects. Unfortunately it has been shown in [45] that the effect of torsion is 17
orders or magnitude smaller than that of the classical magnetic field, which makes experiments
complicated. Instead, we could look for certain secondary effects as the ones we have pointed
to in the previous classification, such as the neutron phase shifts and leptonic current anomalies.
Currently we do not have the experimental power to conduct such tests, but some attempts have
been made. By using atom interferometry in Hughes-Drever-type experiments, Lammerzahl
et al have made a convincing start that will hopefully lead to a new breakthrough in the near
future.

On the other hand, neutrino spin flip has been disproved. When observing neutrinos
travelling outward through the Sun it was found that the spin flip probability is 50% if the
coupling constant is ∝ 1021, seven orders of magnitude too big. Thus there should be a
preferential coupling constant between neutrinos and nucleons, significantly greater than the
one between electrons and nucleons. This work has been explored in [46].

Laboratory tests
As gauge invariance requires the torsion quantum be massless we have a long-range force.

Among the many attempts to measure such a force it is worth mentioning the "Anselm and
Uratsev experiment”. Byworking with a Lagrangian of arions one can find a testable interaction
energy. By using an electromagnet with a ferromagnetic core and alternating the polarity one
could have a setup where electrons spin flip (from the presence of the arion field) resulting in
a measurable emf. The most recent version of this experiment produced a constraint for the
g-factor (also known as the dimensionless magnetic moment) g < 10−3GF , where GF is the
Fermi constant [47].

Other experiments have attempted to measure the torsion effect directly. The "Spin pen-
dulum experiment” and the "Moody experiment” (for macroscopic scalar and pseudoscalar
interactions that were conducted using ion spectroscopy) have found ‘new’ physics that could
be explained with torsion, but several other explanations are as viable.

Large-scale test
Several experiments are awaiting approval in the next decade that would have a better

chance to prove the existence of torsion. Firstly, for an astrophysical source there could exist a
ferromagnetic state in which neutrons are aligned and a torsion field is created. It is hoped that
wraith-like neutrinos (which have been shown to be immune to other forces) could be affected
by torsion and thus experimentally relevant. Secondly, the radiation from spinning neutron
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polarized stars (that some theories predict to be strongly linked to torsion) could be observed.
Similarly the case can be made for pulsars.

Considering the wealth of experiments that have a fighting chance to prove (or disprove)
the existence of torsion, it is a great time to focus on having a better theoretical understanding
of torsion.

In this thesis we have looked at various applications for the eWGT, aiming to answer a few
questions

• how does eWGT relate to other work,
• what can we learn about torsion under this setup,
• does this theory predict new, viable physics .

Considering the nature of eWGT it is unsurprising that one of the first applications used a
Lagrangian dictated by the Weyl2. Prof. Lasenby and Prof. Hobson had focused on creating
a general theory (with unrestricted coupling constants for the matter fields) and believe from
numerical tests that such a formalism should be viable. The current standard in Weyl2 gravity
(or Conformal Gravity) is the formalism presented by Mannheim and Kazanas, [48]. In recent
years the theory attracted significant criticism and thus we decided to join the conversation. In
Chapter 2we show that if we simplify our theory to emulate ConformalGravitywe cannot obtain
a viable perfect fluid representation (even by introducing the most general type of torsion). As
this is a key point in any gravitational theory we have shown that we should rethink Conformal
Gravity and work towards constructing a viable theory. Fortunately, since we worked with a
simple setup we had a great opportunity to explore the behaviour of torsion and construct a
detailed analysis that can help us choose forms of torsion for future models.

In Chapter 3 we start exploring a different Lagrangian, namely Riemann2, as a natural
continuation to Chapter 2. As we have presented the first model in standard tensor algebra,
and our work is primarily in geometric algebra, we will present this work in geometric algebra
as a good parallel. In this application we use perturbation theory in a radiation-only setup to
uncover interesting new physics. In this scenario we use two forms of torsion, find pressure and
density profiles that force a discrete power spectrum and recover gravitational waves.

In Chapter 4 we focus on constructing a viable Lagrangian that describes a spinning fluid.
We decided to pursue this project as current representations in the literature are not easy to
use, especially if we are looking for extensions. In geometric algebra, the formalism simplifies
considerably and we end up with a manageable form that incorporates additional fields. We
focus on showing it is consistent with literature, namely that it represents a Weyssenhoff fluid,
and use it in simple but important applications.
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Finally, we summarise the key results and discuss future applications. In this thesis we have
started the groundwork for employing eWGT in more general scenarios. We have built various
forms of torsion and we believe that we have improved our understanding of how to construct
viable representations. With observational data improving at a fast pace, in the close future we
will be able to test eWGT and hopefully start a new path to a unified theory of gravity.
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Weyl-squared Gravity

2.1 Introduction

Considering that the infancy of gauge theories is contemporary with General Relativity, one
would not be surprised to hear the Weyl2-gravity has a long history. Beginning in 1918, Weyl
proposed the concept of parallel transfer [49], [50] that let vectors associated with different
points on a manifold be compared. He attempted to unify electromagnetism and gravitation
by starting with a quadratic curvature action. Unfortunately when trying to match gauge field
dilatations with the electromagnetic potential he reached a non-integrable form (as pointed out
by Einstein).

Bach found a new quantity, the Weyl curvature [51], that is invariant under the scale
transformations proposed by Weyl. He perservered by constructing a quadratic action in terms
of the new curvature that led to the well known Bach equation. Fifty years later this theory is
the foundation to several modern approaches (such as supergravity [52], biconformal gravity
[53], auxiliary conformal gravity [54]).

Somewhat unexpectedly, a significant revival for “classical” Conformal Gravity started in
the early 90s when Prof. Kazanas and Prof. Mannheim published the equations of motion in an
allegedly viable fourth-order theory of gravity that is based on local conformalWeyl invariance
of the gravitational action. This discovery impressed furtherwith a set of unexpected predictions
and 20 years onwards we are still focusing on this research.

Unlike his predecessors, Mannheim’s primary focus was to develop a testable theory that
was rooted in modern cosmology. In this introduction we will build up on the motivation behind

17
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Mannheim’s work [55] and construct a faithful representations of current developments.

2.1.1 A short motivation

If we go back to first principles with Einstein’s theory the starting point must be the Christoffel
symbols. With their aid one constructs the geodesic equation that enables us to judge distances
intrinsic of the geometry. As we would like to work with a true coordinate tensor, we can use
Christoffel symbols to build a new quantity, namely the Riemann tensor. We now have a tensor
that vanishes iff the spacetime is flat.

Now when the Riemann vanishes the geodesic equation becomes Newton’s second law of
motion for a free particle, in the absence of gravity as viewed in an accelerating coordinate
system. When it is non-zero, there is a choice of values for the Christoffel symbols that enables
this equation to describe Newton’s law of gravity. As the Schwarzschild metric also provides
relativistic corrections to Newtonian gravity, the observation of the predicted gravitational
bending of light by the Sun validated the above formalism.

This leads to the belief that gravity is a covariant metric theory in which the metric describes
the gravitational field. In the vicinity of the Sun it is given by the Schwarzschild metric.

Up to this point nothing has been said about gravitational field equations. Einstein postulated
that gravity obeys,

−
1

8πG

(
Rµν −

1
2
gµνRαα

)
= Tµν, (2.1)

that originates from the action

I = −
1

16πG

∫
d4x(−g)1/2Rαα + IM, where IM is the matter contribution. (2.2)

We can easily check that if the energy momentum tensor vanishes the Ricci must vanish
and we recover the Schwarzschild solution we previously mentioned. Einstein found a solution
that satisfies our constraint, but he never argued for uniqueness - in his late work he actually
looked for alternatives. Thus it is not surprising that when Conformal Gravity was presented
as an alternative solution it attracted a lot of attention.

In Mannheim’s formalism we start from the action given by

I = −αg

∫
d4x(−g)1/2CλµνκCλµνκ + IM, where Cλµνκ is the Weyl tensor, (2.3)

Cλµνκ ≡ Rλµνκ +
1
6

Rαα (gλµgµκ − gλκgµν) −
1
2

(gλνRµκ − gλκRµνgµνRλκ + gµκRλν). (2.4)

Varying this action with respect to the metric leads to an equation in terms of the Bach
tensor, −4αgWµν + Tµν = 0. As the Bach tensor is defined as
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Wµν = 2∇α∇βCαµνβ + CαµνβRαβ, (2.5)

we can easily see, from the Bianchi equations, that this theory also has a vanishing Ricci as a
vacuum solution.

2.1.2 Pure Weyl2 - the first frontier

Unsurprisingly the idea behind using a Weyl2 Lagrangian is not aleatory. When we build a
theory of gravity, we must prioritise that our physics is invariant under any arbitrary change
of local coordinates, or general coordinate transformation (GCT). A subclass of GCTs are the
conformal transformations, which are defined as preserving the oriented angles between curves
at each point. Bearing this in mind, we can build a conformal geometry by defining a conformal
manifold as a differentiable manifold that has an equivalence class of Riemannian metrics,
where

h ∝ g iff hµν (x) = λ2(x)gµν (x), (2.6)

i.e. two conformal metrics are identical up to a Weyl transformation, a local change of scale.
Although one could construct transformations which preserve angles but not scales, it turns
out that such transformations are not well posed. Thus “Weyl” and “conformal” are used
interchangeably in literature, although we would argue that this is a misnomer as the underlying
groups are not equivalent.

An important aspect is that a conformal metric is conformally flat if one of its representative
metrics is flat. In 2D every conformalmetric is locally conformally flat, but in higher dimensions
we need to look only at the trace-free part of the curvature tensor (as this part is volume-
preserving, but accounts for shape distortions under a GCT).

Thus in 3D we define the Cotton tensor and in 4D the Weyl tensor that have the property
that conformal flatness is achieved if they vanish. The Weyl tensor has the extra property
that it is completely invariant under a conformal transformation. The only other conformally
invariant tensor which is algebraically independent of the Weyl tensor is the Bach tensor. Thus
the gravitational equations become even more appealing.

Returning to the Lagrangian, we are now in a better position to argue for invariance. Under
a rescaling of the metric gµν → gµνeφ(x) the Weyl tensor Cµ

νρσ will be invariant. Thus the
square of the Weyl will transform as C2

µνρσ → e−2φC2
µνρσ and together with the transformation

√
−g → e2φ√−g we show that the action in 2.3 is invariant.
Considering the appealing features one could believe that Pure Weyl2 Gravity should be

the new answer to General Relativity. Unfortunately as in the case for many alternative theories
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of gravity, the simple route turns out to not be the most fruitful. Niederle [56] shows that the
theory has ghost states that come from the opposite-sign propagators to the physical graviton.
If we introduce an Einstein-Hilbert term (m2R) in the action we can show that the ghost states
become massive and the 1/p4 propagators can be resolved. The relevant part of the propagator
will read

1
p4 → −

1
m2

( 1
p2 −

1
p2 − m2

)
, (2.7)

which exemplifies the problematic relative sign between the massless and massive states. If we
look at the limiting cases for m, as m → ∞we enter General Relativity territory and the massive
ghost decouples. Unfortunately for Conformal Gravity (m → 0) we have a pole at 1/m2 and
the limit is not quite smooth as the theory has seven states (massless+massive graviton) that
become six in the m → 0 limit. The reason for the removal of one state is the Weyl symmetry,
or local conformal symmetry, that emerges in this limit.

In order to tackle this problem several generalisations have been proposed. The most com-
mon formalisms focus on a Weyl Theory with either the addition of matter or supersymmetry,
or the addition of non-minimal couplings, or by considering higher-dimensional versions, or
by introducing a Yang-Mills sector.

2.1.3 Recent developments

Bearing in mind all the possibilities that start from a “pure” Conformal Gravity, it is not
surprising that many promising results have been found. We will proceed to briefly introduce
some of the most famous ones, particularly from the vast research carried by Mannheim et al.
We will use a recent review [57] to present their recent efforts.

A few years ago, Mannheim and O’Brien have claimed that Conformal Gravity can be used
to accurately describe the rotation curves of galaxies without the need to invoke dark matter
[58]. Recently they have extended their repertoire by fitting the LITTLE THINGS survey (25
dwarf galaxies) successfully.

The formalism is based on solving the fourth order Bach equation with a source term, in
this case a galaxy. Both local matter inside the galaxy, modelled with a modified Newtonian
potential (extra linear term), and globalmatter exterior to it, given by the background cosmology,
contribute. For comparison, the General Relativity prediction is given by [59],

vGR (R) =

√
N∗M�GR2

2R3
0

((
I0

( R
2R0

)
K0

( R
2R0

)
− I1

( R
2R0

)
K1

( R
2R0

))
, (2.8)

and the conformal gravity prediction by [58],
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vcg (R) =

√
v2
gr +

N∗γ∗c2R2

2R0
I1

( R
2R0

)
K1

( R
2R0

)
+
γ0c2R

2
− κc2R2. (2.9)

In the above formulae N∗ is the estimated number of stars in the galaxy, I and K Bessel
functions, R0 the galactic scale length and γ∗ = 5.43× 10−41cm−1, γ0 = 3.06× 10−30cm−1, and
κ = 9.54 × 10−54cm−2 are Mannheim’s fitted constants.

Using this form for the velocity they show that for a sample of 200 galaxies the scaled
centripetal acceleration of the last observed data point seems to be order one. This universality
is supported by the work of McGaugh et al [60] where it is postulated that such a universality
could be explained by new physics outside GR.

Another significant result regards the missing mass problem in cluster motion. In 1933,
Zwicky applied the virial theorem to his observations on the Coma Cluster and found that the
theoretical mass estimate resulted in a mass to light ratio that was an order of magnitude larger
than the theoretical prediction. Mannheim and O’Brien show that Conformal Gravity solves
the problem without the need for dark matter [61]. They show that the driving term in the
dispersion velocity, in the long range, becomes

3σ2 ≈ κc2R2, where k = 9.54 × 10−50m−2 is found from galactic rotation fitting. (2.10)

This relation makes the same velocity prediction without assuming any dark matter for
observed measured velocities.

Finally, we should mention the applications for the local solar system. Investigating gravit-
ational light bending, O’Brien et al show [57] that the total angular deflection consists of the
general relativity prediction and a conformal correction,

θ ≈
4GM
c2r0

+
Mγ∗r0
2M�

+ γ0r0 − πkr2
0 . (2.11)

For large impact parameters the equation can be rewritten as

M ≈
(πkr0
γ∗

)
M�, (2.12)

which is consistent with the mass one would obtain in clusters by using the virial theorem. This
presents a consistent framework for the constants which were originally described in terms of
rotation curves, with clusters and gravitational bending of light.

Furthermore, Sultana et al [62] have shown that the procession of the perihelion ofMercury
can be accurately predicted. The global parameter of Conformal Gravity (γ) can be constrained
by the Mercury observations and is consistent with the value originally obtained from rotation
curves.
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Although these results are impressive they have attracted as much criticism as praise.
Recently a couple of issues have been raised that have not been resolved to date.

A first concern is outlined in Horne’s work [63]. As we have previously mentioned,
Conformal Gravity should not be used in its pure form and particular care should be carried
when exploring the matter sector. When Mannheim and O’Brien fitted the rotation curves
they neglected the non-constant Higgs field, whose conformal coupling is required. Thus their
galaxy rotation curves have a Higgs field that varies with radius, implying that particle masses
change with radius. When using a conformal transformation to make the Higgs field constant
it is found that there is an additional term from the Higgs field. This term cancels out the
contribution from the linear potential that enables Conformal Gravity to reproduce the flat
rotation curves of galaxies.

In more recent work Horne et al [64] have compared Conformal Gravity cosmology to the
standard ΛCDM cosmology. In the work we have previously mentioned, Mannheim claimed
close agreement with ΛCDM for the distance moduli at redshift z < 1. Using Gamma Ray
Bursts and Quasar data, the Hubble diagram was extended up to z = 8 and it was shown that at
redshift z ≥ 2 ΛCDM significantly outperformed Conformal Gravity.

Furthermore, Phillips [65] has shown that under closer examination the predictions for the
Solar System do not hold as well as we previously thought. The author argues that the form of
the linear potential as chosen byMannheim is incorrect. His claim is supported by other authors
such as Yoon (2013) and Walker (1994). By working in the weak field limit, where a linear
approximation is appropriate, Phillips shows that near the Sun the solution is incompatible with
observations.

Although there seem to be several questions left unanswered, one cannot deny the potential
of Conformal Gravity - a quantum gravity theory in the making. In this brief introduction we
have presented the way this theory is viewed from a “traditional” perspective, in the hope that
it will offer some insight. From now on we will shift to a different approach as we will discuss
Conformal Gravity in the context of Gauge Theories of Gravity.

As we have previously mentioned, in our work we use a specific GTG, namely the
‘extended’-Weyl Gauge Theory (eWGT). Considering the nature of Conformal Gravity we
have decided that it would be ideal as one of the first applications of eWGT. We will work
with a restricted theory that simulates Mannheim’s Conformal Gravity for static, spherically
symmetric systems that are torsion-free. We aim to bring a new perspective to the “traditional”
formalism and then extend to a new regime that includes torsion.
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2.2 A different perspective

“The effect of gravity onmatter is tightly constrained to bemediated by interactions of thematter
fields with a single rank-2 tensor. The term “gravitational theory” can then be functionally
defined by the set of field equations obeyed by the rank-2 tensor, and any other non-matter
fields it interacts with. If these equations are anything other than Einstein’s equations, then it is
considered to be a modified theory of gravity.” [1]

Under the large umbrella of alternative theories of gravity several approaches have tried
to address various shortcomings of GR. One such class of theories are the Gauge Theories of
Gravity (GTG) that arose from the need to construct a unified theory with quantum mechanics.
The quintesscence of a gauge theory is the requirement that the global symmetry group linked
to the conserved current under consideration has to be local. As the Lagrangian needs to remain
invariant, we have to introduce a gauge potential that transforms accordingly. This leads to a
mechanism that creates a new interaction from a conserved current via the Noether theorem
and its symmetry group.

Fortunately we can also use this structure to describe gravity. The source of gravity is stored
in the energy-momentum current of matter. For an isolated system this quantity is conserved
with the action being invariant under translations in space and time. So we can describe gravity
with the aid of the conserved energy-momentum current and the translational group acting in
Minkowski spacetime.

As early as 1920 É. Cartan had managed to make the connection a concept that is geometric-
ally independent a priori which led to a new geometry, namely the Einstein-Cartan spacetime.
As discussed in Chapter 1, based on this new construction Utiyama started to formulate gravity
as a gauge theory in 1956 by requiring that the global symmetry group (that is related to the
conserved current under consideration) to be made local.

A first successful attempt, as discussed in Chapter 1, was made by Kibble who gauged the
Poincare group. He started from a Minkowski spacetime in which a matter field with energy
momentum and spin-angular-momentum is distributed continuously. The corresponding action
is then demanded to be invariant with respect to Poincare transformations and thus one arrives
to new gravitational gauge field variables (hµa for translational part of the Poincare group and
Aab
µ for the rotational part). In turns these fields lead to two field strength tensors respectively
T a
bc

(h, ∂h, A) and Rab
cd

(h, A, ∂A).
Although significant effort has been made in quantising PGT, no approach has yet yielded

a theory that has all the desired characteristics of a theory compatible with quantum mechanics
and with the correct classical limits. In recent years alternative theories have become quite
popular. Extensions of the theory can be reached by imposing new gauge symmetries such
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as local scale invariance. This can be obtained by working with the Weyl group and a new
gravitational gauge field Bµ corresponding to the dilation part of the group. Furthermore by
requiring a more general transformation for the rotational gauge field under local dilations one
can further extend to the eWGT. In WGT the transformations are given by,

A′abµ (x ′) =
∂xµ

∂x′µ
(
Λa
cΛ

b
d Acd

ν − Λ
bc∂νΛ

a
c

)
,

B′µ (x ′) =
∂xν

∂x′µ
(
Bν (x) − ∂ν ρ(x)

)
,

h
′µ
a (x ′) =

∂x
′µ

xν
e−ρ(x)Λb

ahνb, (2.13)

where Λ is the local Lorentz rotationand ρ the local physical dilation.
It can be shown that we do not lose the invariance property if we generalise the dilation part

of the transformation of A to

A
′ab
µ = Aab

µ + θ(baµP
b − bbµP

a), (2.14)

where Pν ≡ ∂ν ρ, Pa ≡ hµaPµ and θ is an arbitrary parameter that can take any value. In the
Space Time Algebra description of Gauge Theories of Gravity, [18], we write A as Ω. This
extension is the cornerstone for the new theory.

From now on we will call the dilation vector gauge field Vµ to differentiate from the one in
WGT. We will require the modified covariant derivative to transform covariantly for which we
need Vµ to transform as

V ′µ = Vµ + θPµ, the ‘extended’ part of (2.13). (2.15)

2.3 Our framework

In any new theory we start by looking at a simple scenario to get a taste of the things to come.
As we are working in Gauge Theories of Gravity we are employing a“Palatini-type” approach
so we will be treating the spin connection and tetrad as independent concepts. We will find the
field equations by varying with respect to both of these which leads to two sets of equations
of motion describing the spacetime. As a consequence in our formalism having a rigorous
understanding of the choice of Lagrangian and metric is fundamental. In the remainder of this
section we will discuss our choices and set the groundwork for the cosmological model.
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2.3.1 The Lagrangian

The most general form for the Lagrangian, as presented in [13], is daunting at first sight.
As usual we construct the total action as the sum of the matter and free gravitational actions.
Considering the structure of eWGT, we will write the free gravitational action in terms of the
three gauge fields and their derivatives. In the matter part, most generally we will have a matter
field ψ and a ‘compensator’ scalar field φ. As explained in [13] the total Lagrangian density
will thus take the form

LT = LG (h, ∂h, ∂2h, A, ∂A,V, ∂V ) + LM (ψ, ∂ψ, φ, ∂φ, h, ∂h, A, ∂A,V, ∂V ). (2.16)

A suitable form can be found by employing Dirac’s formalism, as explained in [13]. Note
that ∂2h is not used in the gravitational part whereas ∂h is not used in matter part. In our
simplified scenario we have no torsion so we will be looking at

LM = Lψ + Lφ + φ2LR†, (2.17)

where

Lψ = Lψ (ψ, ∂ψ, h, ∂h, A,V, φ),

Lφ =
1
2
νD†aD

†aφ − λφ4,

LR† = −
1
2

aR†. (2.18)

In this notation we introduce D† as the covariant derivative under Weyl transformations.
For the moment we keep the Lagrangian for the matter field in the most general form in order
to make the connection to [13] obvious.

For the gravitational sector the Lagrangian density will be written in terms of the field
strength tensors and in the most general case it will be at most quadratic in R† and H (which
represent the rotational part of the Poincare group and respectively the dilation part of the Weyl
group), namely

LG = LR†2 + LH †2 . (2.19)

As a first application we would like to look at the toy model in which we discard the
former term. In this setup the dilations will be present intrinsically but not at the level of the
gravitational action. This simplification leads to the following Lagrangian
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LG = α1R
†2 + α2R

†

ab
R†ab + α3R

†

ab
R†ba + α4R

†

abcd
R†abcd

+α5R
†

abcd
R†acbd + α6R

†

abcd
R†cdab (2.20)

Furthermore the field strength R†
abcd

satisfies the Gauss-Bonnet identity, so we are free to
set one of α1, α3 or α6 to zero without loss of generality.

In order to recoverWeyl2, Mannheim [48] employed Lanczos’s formalism [66]. The author
showed that the quantity,

(−g)1/2
(
RλµνκRλµνκ − 4RµκRµκ + (Rαα )2

)
(2.21)

is a total divergence and thus the Weyl action can be represented in terms of more familiar
forms.

In this chapter we will employ the following notation for our work,

L f ull = βRabcdR
abcd + αR2 +

1
2
κφ2R + λφ4 − 8πLmat −

1
2
ηD†aD

†aφ. (2.22)

By setting β + 6α = 0 we produce the ‘Weyl2’ Lagrangian.

2.3.2 Framework for Spherical Systems

In our work we employ a tetrad-basedmethod for solving the field equations. This approach was
originally constructed in geometric algebra in [18] and has recently been used in spherically
symmetric applications in cosmology [67], [68].

If we look at each point in spacetime we have coordinate basis vectors eµ that are related to
the metric via eµ · eν. We can also attach a local Lorentz frame with another set of orthogonal
basis vectors êi that are instead related to the Minkowski metric via êi · êj = ηµν. These sets of
basis vectors can be linked by tetrads (or vierbeins):

êk = eµ
k
eµ eµ = ekµ êk . (2.23)

It follows that we can write the metric elements in terms of tetrads as gµν = ηi jeiµe j
ν or

gµν = eµ · eν. For a spherically-symmetric system, the tetrads can be defined in terms of
unknown functions f1, f2, g1 and g2 such that the non-zero tetrad components are

e0
0 = f1, e0

1 = f2, e1
0 = g2,

e1
1 = g1, e2

2 = 1/r, e3
3 = 1/(r sin θ). (2.24)
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It has been shown that a natural gauge choice is one in which f2 = 0, commonly known as
the ‘Newtonian gauge’. By using the tetrads we can calculate the coefficients and find the line
element

ds2 =
g2

1 − g
2
2

f 2
1 g

2
1

dt2 +
2g2

f1g
2
1

drdt −
1
g2

1
dr2 − r2dΩ2. (2.25)

In our simplified scenario we can further simplify g2 = 0 as the system is static, which leads
to the final form for the metric:

ds2 =
1
f 2
1

dt2 −
1
g2

1
dr2 − r2dΩ2. (2.26)

Furthermore we need to set up the apparatus relevant for the astrophysical model. It will be
useful to define two linear differential operators

Lt ≡ f1∂t + g2∂r,

Lr ≡ g1∂r . (2.27)

Additionally it is also useful to construct explicitly the spin-connection coefficients F and
G as described in [18]. The coefficients are position-gauge convariant and can let us write

[Lt, Lr ] = GLt − FLr . (2.28)

Since we are assuming there is no torsion, the spin connection can be written entirely in terms
of tetrad components and their derivatives. The full equations for matter in the form of a perfect
fluid can be found in [18]. By looking at the Bianchi identities one can notice that for a radially
symmetric field, G can be identified as the radial acceleration and F as the Hubble function. In
this static case G will be effectively playing the same role as F does in the cosmological case.
We are particularly interested in the relation that fully defines G:

Lr ( f1) = f1G ⇒ G =
g1∂r f1

f1
. (2.29)

Thus we would like to express our system in terms of a scale-gauge covariant quantity
linked to G. We can show that

g ≡ rG − g1, (2.30)

is a suitable candidate as it is scale-gauge covariant and in fact invariant.
We can make the transition between our work and the “standard” approach by writing in

terms of metric coefficients A and B as presented in [48]:

ds2 = A(r)dt2 −
1

B(r)
dr2 − r2(dθ2 + sin θ2dφ2),where A(r) = B(r) [48] (2.31)
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Our covariant quantity thus takes the form

g ≡

√
B

2A
(r A′ − 2A), (2.32)

and we can show that if we insist that A = B then g = rg′1 − g1.
We will proceed to write the equations of motion governing the gravitational sector in terms

of g, g1 and V .

2.4 Looking at vacuum

In this section wewant to show that we can recoverMannheim’s solution in vacuum as presented
in [48]. Considering that we are looking at vacuum solutions we will be working with the
gravitational Lagrangian only. As we have mentioned in the Introduction in eWGT we find
equations by just varying with respect to h and A. We introduce V as the dilation gauge field.
The full derivation in Geometric Algebra for a Riemann2 Lagrangian can be found in Chapter
3 and thus we will just present the final forms for our equations. Variation of the action with
respect to the h field reduces to three coupled gravitational field equations

(rg1g
′ − 1 + g2)(−2g2

1 + rg1g
′ + 2r2g1V ′ − 2rVg1 + 2rg1g

′
1 − 2r2V 2 + g2 + 1) = 0, (2.33)

(rg1g
′−1+g2)(−g2

1 +rg1g
′+r2g1V ′−rVg1+rg1g

′
1−r2V 2+rVg+gg1+g

2+1) = 0, (2.34)

(rg1g
′ − 1 + g2)(rg1g

′ + 2gg1 + 2rVg + g2 + 1) = 0, (2.35)

and similarly we can show that the A-variation becomes,

g′′ =
1

r2g2
1

(
− rg1(2g1 + Vr + 2g + g′1r)g′ − (g2 − 1)(Vr + g1)

)
. (2.36)

We can easily see that a solution to the equations is obtained by setting rg1g
′ − 1 + g2 to

zero.

2.4.1 Recovering the A = B solution

If we introduce the extra constraint that g1 = f −1
1 =

√
1
B we can find an equation for B

1
2

r2B′′ − rB′ + B − 1 = 0, (2.37)

which has the general solution

B = 1 + c1r + c2r2, for some constants c1 and c2. (2.38)
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Although this is a viable solution, we will not consider it in our work since it does not admit
a central singularity.

Another solution can be found by looking at the remainder of the coupled equations,

− 2g2
1 + rg1g

′ + 2r2g1V ′ − 2rVg1 + 2rg1g
′
1 − 2r2V 2 + g2 + 1 = 0, (2.39)

− g2
1 + rg1g

′ + r2g1V ′ − rVg1 + rg1g
′
1 − r2V 2 + rVg + gg1 + g

2 + 1 = 0, (2.40)

rg1g
′ + 2gg1 + 2rVg + g2 + 1 = 0. (2.41)

It can be shown that this system is in fact a linear combination of the following two equations,

rg1g
′ + 1 + g2 + 2(g1 + rV )g = 0, (2.42)

V ′r2g1 + rg1g
′
1 − g

2
1 − (g + rV )(g1 + rV ) = 0. (2.43)

We now have two equations for three quantities and thus inherit a residual gauge freedom.
In order to find a solution we would need further constraints, like imposing A = B. The above
equations would lead to an equation for V

V ′ =
V (g′1 + V )

g1
⇒ V =

g1
c1 − r

, (2.44)

and then an equation for B

1
2

r2(r − c1)B′′ − r2B′ + (r + c1)B + r − c1 = 0, with the solution (2.45)

B = c1
2 + 3c2c1

3r
− 1 − 3c1c2 + 3c2r + c3r2. (2.46)

We can rewrite this solution to correspond to the one found by Mannheim and Kazanas
[48] by employing the following substitution

c1 =
3β′γ − 2

γ
, c2 =

γ

3
, c3 = −k . (2.47)

⇒ B = 1 −
β′(2 − 3β′γ)

r
− 3β′γ + γr − kr2. (2.48)

We notice straight away that for γ = 0 and k , 0 we regain the regime in General Relativity
(with a cosmological constant) so the value of 1 − 3β′γ will account for the departure of the
Weyl theory from the norm. We could worry that this structure does not support the standard
representation of flat space at infinity. Considering models with a cosmological constant-type
term do not have this property either, a linear term can’t be criticised on these grounds.
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Some readersmight recognise this result as the trademark forConformalGravity as proposed
byMannheim andKazanas [48]. This solution has a remarkable property, namely that it satisfies
the 4th order version of the vacuum Poisson equation

∇4B = 0. (2.49)

Taking advantage of this form, Mannheim and O’Brien replace the righthand side with
a source term and derive rotational curves for a large sample of galaxies as described in the
Introduction of this chapter.

2.4.2 A dangerous constraint

When we recovered Mannheim’s vacuum solution we started from the strong assumption that
we should be working with a ‘conformally extended’ Schwarzschild metric from General
Relativity:

ds2 = A(r)dt2 −
1

B(r)
dr2 − r2(dθ2 + sin θ2dφ2),where A(r) = B(r) [48] (2.50)

In this section we will start from first principles and show that by using this metric ansatz
we do not accomplish an extension, but actually the Schwarzschild de Sitter solution. As a
result we believe that keeping A(r) , B(r) is crucial and we will base our further investigation
on the corrected metric.

In [48] Mannheim et al find that the 4th order equation 2.49 reduces to

B−1W rr =
1

3r4

(
1 + y3 dy

dr

)
, for y2(r) ≡ r4 d(B(r)/r2)

dr
, (2.51)

and can be further simplified in vacuum since W rr = 0 to

γ = y′2 −
1
y2 ,

γr = (1 + γy2)1/2 + 3βγ − 1,

for conveniently defined integration constants γ, β. This leads to the general solution

A(r) = B(r) = 1 − 3βγ −
β(2 − 3βγ)

r
+ γr − kr2. (2.52)

Clearly we can also have a degenerate solution by setting γ = 0,

A(r) = B(r) = 1 −
2β2

r
− k2r2, (2.53)

which is just the Schwarzschild de Sitter solution if we identify β2 = M and k2 =
1
3λ.
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As previously stated, the Conformal Gravity action is invariant under both local transform-
ations gµν (x) → g̃µν (x) ≡ Ω2(x)gµν and under general coordinate transformations xµ → x

′µ

for which

g′µν (x ′) =
∂xρ(x ′)
∂x′µ

∂xσ (x ′)
∂x′ν

gρσ (x(x ′)). (2.54)

So the combined transformation leads to

g̃′µν = Ω
2(r ′)g′µν (x ′) = Ω2(r ′)

∂xρ(x ′)
∂x′µ

∂xσ (x ′)
∂x′ν

gρσ (x(x ′)), for r =
r ′

Ω(r ′)
. (2.55)

Going back to the general line element 2.50 we can write after the combined transformation

ds2 = Ã′(r ′)dt2 −
1

B̃′(r ′)
dr ′2 − r ′2(dθ2 + sin θ2dφ2), where (2.56)

Ã′(r ′) = Ω2(r ′) A(r (r ′)), and (2.57)

B̃′(r ′) =
(
1 − r ′

d ln Ω
dr ′

)−2
B(r (r ′)). (2.58)

We proceed to show that we can find a combined transformation (as the one presented in
2.56) that relates solutions 2.57 and 2.58. This proves that when we set A = B in the metric we
lose the extra degree of freedom required to reach a novel solution.

Demanding the two solutions to be equivalent,

1 − 3βγ −
β(2 − 3βγ)

r ′
+ γr ′ − kr ′2 =

(
1 − r ′

d ln Ω
dr ′

)−2 (
1 −

2β2Ω

r ′
−

k2r ′2

Ω2

)
(2.59)

leads to the equation

kΩ′2r5 − Ω′(2kΩ + γΩ′)r4 + (kΩ2 + 2γΩ′Ω + 3βγΩ′2 − Ω′2 − k2)r3 +

(2ΩΩ′ − 3β2γΩ′2 − γΩ2 − 6βγΩ′Ω + 2βΩ′2)r2 + βΩ(6βγΩ′ + 3γΩ − 4Ω′)r −

Ω2(2β2Ω − 2β + 3β2γ) = 0, where we have dropped the prime on r for convenience.

By imposing the trial solution Ω = ar + b, for constants a and b, the above simplifies to

r3(kb2−k2+a2−2β2a3)+r2(2a−γb−6β2a2)b+r (3βγ−6β2a)b2+b2 (2β−3β2γ−2β2b
)
= 0.

(2.60)
Now we demand the coefficients of r i to vanish and find
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b =
β(2 − 3βγ)

2β2
from the coefficient of r0,

a =
βγ

2β2
from the coefficient of r1,

k =
β2γ2(βγ − 1) + 4β2

2 k2

β2(2 − 3βγ)2 from the coefficient of r3.

Finally, we need to ensure that A(r) transforms correctly. Using 2.56, if the ansatz for Ω is
already satisfied, when we transform from 2.58 to 2.57 we require that

(
1 − r ′

d ln Ω
dr ′

)−2 (
1 −

2β2Ω

r ′
−

k2r ′2

Ω2

)
= Ω2

(
1 −

2β2Ω

r ′
−

k2r ′2

Ω2

)
⇒ Ω = cr ± 1, (2.61)

so we can identify c = a and b = 1 considering that b is positive for βγ � 1, β2 > 0.
Now since b = 1,

β2 = β
(
1 +

3
2
βγ

)
⇒ a =

γ

2 − 3βγ
and k2 = k +

γ2(1 − βγ)
(2 − 3βγ)2 .

So we have found a combined solution Ω = 1 +
γr

2 − 3βγ
for which the two solutions are equivalent.

We have shown that using the Mannheim-Kazanas metric does not give us more freedom
than just by using Schwarzschild de Sitter. As we have been able to go from one to another just
by gauge transformations within the theory the two must be physically equivalent. This result
was anticipated, but to our knowledge not proven before. Therefore we will keep the metric
parameters independent and conduct a general analysis.

2.5 Adding Matter

2.5.1 The original formalism

When we were discussing the vacuum solution we touched on the fact that in order to find
galactic rotation curves we do not have to directly introduce matter. The approach employed
can be found in [58]. In short, the authors use the vacuum static, spherically symmetric solution
and introduce a source term, i.e.

∇4B =
3

4αgB
(T0

0 − Tr
r ) = f (r). (2.62)

For a localized system such as a star the source function f (r) is restricted to its interior
region. Unlike the standard Poisson equation, where only local material within a galaxy
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contributes to the gravitational force, material from outside the galaxy also contributes. This
is because the fourth-order solution is sensitive to the homogeneous cosmological background
and the inhomogeneities in it. In the weak limit, keeping linear and quadratic potential terms,
one finds a generalised centripetal velocity,

v2
TOT (R) = v2

LOC (R) +
γ0c2R

2
− κc2R2, (2.63)

where vLOC is the contribution of the material in a galaxy.
The authors could use this simple formalism, as on galactic scales one has the luxury to work

in the weak limit and the sources are fairly uninvolved. If we want to explore other sectors we
need to make appropriate modifications at the level of the Lagrangian to accommodate matter
intrinsically. This is a priori non-trivial since the SET of ordinary matter has non-vanishing
trace, which could be expected to be incompatible with a scale-invariant theory.

The initial approach was developed in [69] and has been used widely as the groundwork
for many studies, including [63], [70].

The main idea is to introduce mass that is developed by fields that spontaneously break
symmetry. It is convenient to start working with massive scalar fields (S) that are introduced
via a non-minimally coupled curved space action,

IM = −
∫

d4x(−g)1/2
(

1
2

S;µS∗;µ +
1
2

m2SS∗ −
ζ

12
SS∗Rµµ

)
. (2.64)

ζ = 1 is imposed such that the coupling of the scalar field to the geometry is conformal, with
the massless action (m = 0) being invariant under local conformal transformations.

In a plane wave solution to the ∂µ∂
µS = m2S wave equation of the form S(x) =

eik ·x/V
1/2E1/2

k , where kµkµ = −m2,Ek = (k2 + m2)1/2 and V is the 3-volume, Tµν becomes

Tµν =
kµkν
V Ek

. (2.65)

In order to recover a perfect fluid one needs to incoherently add a set of six plane waves
moving in the ±x, ±y, ±z directions, with the same k and Ek , such that the energy-momentum
reads

T00 =
6Ek

V
, Txx = Tyy = Tzz =

2k2

EkV
, Tµµ = −

6m2

EkV
. (2.66)

This is indeed a perfect fluid with ρ = 6Ek/V and p = 2k2/EkV .
In the above analysis it is shown how one can recover a perfect fluid from a field theory.

Unfortunately it does not recover the process that develops mass. To investigate what is to
happen in the dynamical mass case, it is convenient to consider a spin one-half matter field
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fermion (ψ). We get its mass through a real spin-zero Higgs scalar field (S). The action used
reads as

IM = −
∫

d4x(−g)1/2
(

1
2

S;µS;µ −
1
12

S2Rµµ + λS4 + iψγµ (x)[∂µ + Γµ (x)]ψ − hSψψ
)
, (2.67)

where γµ are the Dirac matrices, Γµ the fermion spin connection,and h and λ dimensionless
constants. The action chosen is the matter action for ψ and S that is invariant under the local
conformal transformations.

Varying the action with respect to the matter fields yields the equations of motion

iγµ (x)
(
∂µ + Γµ (x)

)
ψ − hSψ = 0, (2.68)

and

S;µ
;µ +

1
6

SRµµ − 4λS3 + hψψ = 0. (2.69)

Varying the action with respect to the metric gives the conformal stress-energy tensor

Tµν = iψγµ (x)(∂ν + Γν)ψ +
2
3

S;µS;ν −
1
6
gµνS;αS;α

−
1
3

SS;µ;ν +
1
3
gµνSS;α

;α −
1
6

S2
(
Rµν −

1
2
gµνRαα

)
− gµνλS4. (2.70)

In the presence of a spontaneously broken non-zero constant expectation value S0 for the
scalar field, for λ = 0, the energy momentum simplifies to

Tµν = iψγµ (x)[∂ν + Γµ (x)]ψ −
1
4
gµνhS0ψψ −

1
6

S2
0

(
Rµν −

1
4
gµνRαα

)
, (2.71)

In the flat space limit, the energy-momentum becomes

Tµν = iψγµ∂νψ −
1
4
ηµνhS0ψψ, and the fermion obeys (2.72)

uγµ∂µψ − hS0ψ = 0. (2.73)

This translates in a straightforward quantization - a free fermion with mass m = hS0

and yields one particle plane wave eigenstates of four-momentum kµ = (Ek, k) with Ek =

(k2 + m2)1/2. Thus the energy-momentum reads

Tµν =
1
V

*.......
,

Ek 0 0 −k

0 0 0 0
0 0 0 0
−k 0 0 k2/Ek

+///////
-

+
1
V

*.......
,

−m2/4Ek 0 0 0
0 m2/4Ek 0 0
0 0 m2/4Ek 0
0 0 0 m2/4Ek

+///////
-

(2.74)
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We recognise a two-component structure to the fermion-energy momentum tensor, a stand-
ard kinematic piece and a dynamic part coming from symmetry breaking. On incoherently
averaging over the directions of k, the energy momentum tensor is then found to take the form

Tµν = (ρ + P)UµUν + pηµν + Ληµν, where (2.75)

ρ =
6Ek

V
, p =

2k2

V Ek
, Λ =

3m2

2V Ek
. (2.76)

This shows how we can recover a perfect fluid with a cosmological constant Λ that arises
naturally.

This proof shows how in Conformal Gravity one can use field theory to imitate a perfect
fluid. The method proposed started with the most general (suitable) Lagrangian for the scalar
and fermion fields. After standard analysis one ends up with a energy-momentum tensor that is
initially not compatible with a perfect fluid. Mannheim proceeds to use a plane-wave formalism
and then by incoherently adding a set of such plane waves he recovers the desired perfect fluid
form. Thus we are at liberty to use this mechanism to produce matter and treat as a perfect fluid
source.

2.5.2 Perfect Fluids - a classical treatment

As we would like to explore astrophysical and cosmological setups it is imperative to have a
working pressure and density. A straightforward approach would be to introduce matter via a
perfect fluid that acts as a source. Several authors have focused on such a spherically-symmetric
perfect fluid solutions and we will introduce the work presented in [63], [71].

Going back to the gravitational Lagrangian, LG = −
1
2CκλµνCκλµν, we recall that the key

relation we had was that the Bach tensor is sourced by the energy-momentum tensor via
Wµν =

α
2 Tµν. One can easily show, from the definition of the Bach tensor, that

W 0
0 −W r

r = −
B(rB)′′′′

3r
. (2.77)

For a fluid source described by Tµν =diag(ρ,−Pr,−P⊥,−P⊥) that has Tµµ = 0 to be con-
formal, this condition translates to a single simple field equation,

(rB)′′′′

r
= −

3α
2B

(ρ + Pr ). (2.78)

Another equation can be found by requiring the standard conservation equation, which in
our setup reads as

P′r +
1
r

(3Pr − ρ) +
B′

2B
(ρ + Pr ) = 0. (2.79)
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This system does not produce a fully constrained setup, so the authors in [63], [71]introduce
additional equations of state which relate ρ, Pr and P⊥ such as polytropes to model stars.

Now, returning to the extended Lagrangian that contains a scalar field, the authors in [71]
find that the modification is just an additional energy-momentum tensor Sµν, i.e.

Wµν =
α

2
Tµν + Tµν (S), where (2.80)

Tµν (S) =
2
3

S;µ
;ν −

1
3

SS;µ
;ν −

1
6

S2Rµν − δ
µ
ν

(1
6

S;α
;α −

1
3

SS;α
;α −

1
12

RS2 + λS4
)

(2.81)

The authors now argue that as the scalar field should be considered as a gravitational degree
of freedom (stressed by the absence of α in equation 2.81), when constructing the evolution
equations one should consider it as an part of the gravitational sector.

Thus the equivalent of equation 2.78 becomes,

(rB)′′′′

r
+

1
B

(
BS′2 − 2λS4 +

1
4
(
B′ +

2B
r

)
(S2)′ −

R
12

S2
)
= −

3α
2B

(ρ + Pr ). (2.82)

The full system of equations is given by the above equation together with the equation

(r2BS′)′

r2 −
R
6

S − 4λS3 = 0, (2.83)

the conservation equation 2.79 and imposed equations of state.
Focusing on just equations 2.82 and 2.83 we can make the following substitutions,

V (r) ≡
B(r)
r2 , u ≡

1
r
, Σ (u) ≡

S(1/u))
u

, (2.84)

to find a more manageable version,

V ′′′′ + (Σ ′)2 −
1
2
Σ Σ ′′ = −

3αu2

2V
(ρ + Pr ),

(V Σ )′ +
V ′′ − 2

6
Σ − νΣ 3 = 0. (2.85)

The authors proceed to show that for vacuum the system possessses a three-parameter family
of explicit solutions given by

B(r) = (1 + r/a)2 −
rh
r

(1 + r/a)3

(1 + rh/a)
+
νS2

0r2
h

2

(
r2

r2
h

−
rh
r

(1 + r/a)3

(1 + rh/a)3

)
,

S(r) =
S0

1 + r/a
, where rh, a, S0 are free parameters. (2.86)

The system can be further extended to the full Lagrangian as presented in [63]. When we
introduce the fermion field, the energy-momentum tensor separates further, and we can write

Wµ
ν =

α

2
Tµν (ψ) + Tµν (S), (2.87)
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where the fermion contribution can be represented as a perfect fluid with
Tµν = diag(−ρ f , pr f , p⊥ f , p⊥ f ), whose components are constrained by the Dirac equation

2.73 such that,

pr f + 2p⊥ f − ρ f = ψuγµ∂µψ = hSψψ. (2.88)

The authors in [63] follow the same approach as [71] and transfer the contributions from the
scalar field to the gravitational sector. Unlike [71] who introduce the perfect fluid externally,
in [63] the perfect fluid is represented with the aid of the fermion field at the level of the
Lagrangian. The setups presented become analogous at the level of the pressure and density.

2.5.3 A different approach

Although the setup presented is interesting, solutions to the system are very complicated and
the authors in [71] discuss at length numerical solutions for polytropes. As we have shown in
the vacuum case, we can recover the standard result presented in [48]. To explore Mannheim’s
argument further, we have continued our work by adding matter to the system via a perfect
fluid. Unlike [71] and [63] we will introduce a ‘true’ perfect fluid that has Pr = P⊥ and our
system will be significantly more constrained.

Working in the context of a gauge theory has proven fruitful as we have discovered a possible
way to reach full differential equations for the pressure and density that describe the perfect
fluid. We have also found that by rewriting the setup in terms of invariant quantities one can
significantly simplify the system of equations.

By returning to the gauge transformations presented in the previous sections and recalling
the definition of the dilation vector field, one can find in the new notation that the gauge
transformation takes the form

V (r ′) = φ
(
V ′(r ′) + g′1(r ′)

d ln φ
dr ′

)
. (2.89)

In the original coordinates we can write

V (r) =
1

1 + r d lnφ
r

(
φV ′(r) +

d ln φ
dr

(
g′1(r) + rφV ′(r)

))
. (2.90)

Finally, by combining the above equations it becomes transparent that we have found an
invariant quantity, namely g1 + rV as

g1(r) + rV (r) = g′1(r ′) + r ′V ′(r ′). (2.91)

We have reached a point where we have enough invariant variables to redefine the setup in a
convenient form. We will call the new invariant X and together with g (as previously defined in
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equation 2.30) we will proceed to find solutions for the physical pressure and density (namely
ρP ≡ ρ/φ3 and PP ≡ P/φ3). We consider them physical because they possess the appropriate
scaling.

We need to redefine our system in terms of a new variable, such that the intrinsic derivative
in the r direction is scale-gauge and position-gauge change covariant. The obvious choice is to
define s = ln r , such that

Ls = rLr = rg1
d
dr
. (2.92)

The A-equations become two constraints, namely

L2
sg + Lsg(X + 2g) + X (g2 − 1) = 0

Lsφ = φrV1. (2.93)

By examining the second order equation for g we can find that the following ansatz provides
a solution for Lsg:

Lsg = 1 − g2 − f , given that f (r) satisfies Ls f = −X f . (2.94)

Looking at the first equation we can easily see that we can re-write it as Ls (rφ) = rφX , and
thus we have found a perfect candidate for f .

Hence our system of equations becomes

Lsg = 1 − g2 −
C
rφ
, with C a constant. (2.95)

We now proceed to look at the h-equation. After some manipulations we can reach a
constraint equation,

4βC(C − 2rφXg − 2rφ) + 24π(rφ)6Pp − 3(rφ)4
(
(rφ)2λ + 3κX2 − κ + 2κXg

)
= 0. (2.96)

Considering we are using gauge invariant variables, we can go in the frame where X → g1

and φ → 1 (we are free to transform to the Einstein gauge). The A-equations give us all the
information we need to constrain the system. We find a relation for g1,

dg1
dr
=
−24πr6ρ − 3g2

1 κr
4 − 3λr6 + 8Cg2

1 βr + 3κr4 + 4C2 β − 8C βr

2g1r2(3r3κ + 4C β)
, (2.97)

and a further constraint
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−72ρπκr9 − 72πPκr9 + 18g1gκ
2r7 + 48Cρπ βr6 − 96CπPβr6 + 54Cg2

1 βκr
4

+12Cg1g βκr4 + 18C βλr6 − 9Cκ2r6 + 18κ2r7 − 16C2g1g β
2r

+12C2 βκr3 − 42C βκr4 + 8C3 β2 − 16C2 β2r = 0. (2.98)

Introducing these constraints in the h-equations, we find explicit solutions for P and ρ:

P = −
−9g2

1 κr
4 − 6r4gκg1 − 3λr6 − 8Cg1g βr + 3κr4 + 4C2 β − 8C βr

24πr6 , (2.99)

ρ = −
1

8πr6(2C β − 3r3κ)

(
− 9g2

1 κ
2r7 − 3κλr9 + 6Cg2

1 βκr
4 − 12Cg1g βκr4+

2C βλr6 − 3Cκ2r6 + 9κ2r7 − 16C2g1g β
2r+

8C2 βκr3 − 18C βκr4 + 8C3 β2 − 16C2 β2r
)
.

(2.100)

Thus in our formalism we are not at liberty to write down a density profile - we are required
to integrate g and g1. In GR either we can specify a ρ and P then has to follow, or we can
specify an equation of state and then both ρ and P follow from this. Here we don’t seem to be
able to pursue either route. The system we are looking at is given by

dg
dr

= −
g2r − r + C

g1r2

dg1
dr

=
−6g2

1 κr
4 + 4Cg2

1 βr − 12Cg1g βr − 3Cκr3 + 6κr4 + 8C2 β − 16C βr

2r2g1(2C β − 3r3κ)
(2.101)

We would like to switch to the conventional metric variables A and B . One can recall from
the definition of g that we can express it directly as,

g ≡

√
B

2A
(r A′ − 2A), (2.102)

and thus our system becomes

3A
dB
dr
κr5 − 6Bκr4 A − 6CB

dA
dr

βr2 − 2C A
dB
dr

βr2 − 3Cκr3 A

+6κr4 A + 16CB βr A + 8C2 βA − 16C βr A = 0, (2.103)

−

( dA
dr

)2
Br3 + 2AB

d2 A
dr2 r3 − 2

dA
dr

ABr2 +
dA
dr

A
dB
dr

r3

−2A2 dB
dr

r2 + 4BA2r + 4C A2 − 4r A2 = 0. (2.104)
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Now can find A′ from the first equation and then use the second equation to find an relation
for B′′ only in terms of B.

We are finally equiped to find P and ρ as functions of B only and they read as:

P =
1

144C βπr6

(
9

dB
dr
κ2r8 − 18Bκ2r7 + 6C

dB
dr

βκr5 + 18C βλr6

−9Cκ2r6 + 18κ2r7 + 42CB βκr4 − 8C2 dB
dr

β2r2

+C2 βκr3 − 42C βκr4 + 16C2B β2r + 8C3 β2 − 16C2 β2r
)
(2.105)

ρ =
−3 dB

dr κr
5 − 3λr6 − 3Bκr4 − 4C dB

dr βr2 + 3κr4 + 8CB βr + 4C2 β − 8C βr

24r6π
(2.106)

It would be nice to gain some insight into this solution. If we expand B as a series,

B(r) = Σ n
i=0air i +

a−
r
, (2.107)

and substitute in the second order equation for B, we find that a minimum representation is
given by

B(r) = −
C
3r
+ a2r2 + a7r7 +

5a7
C

r8 +
135a7

7C2 r9 +
15a7(8C2a2 β + 5C2κ + 144β)

32C3 β
r10. (2.108)

We call it a minimum representation since when we introduce more terms we do not find a
change in the limit we are interested in. By looking at the expansion for pressure and density,
we find that there is a preferred a2 that cancels undesirable contributions, namely a2 = −

λ
3κ .

We are mostly interested in the equation of state and thus we look at w ≡ P
ρ . We find that

w =
1
3
−

11
10

κ

C β
r3 +O(r4). (2.109)

We have shown that the general setup produces the equation of state for radiation at the
origin. We will now proceed to explore the solution in the “standard” case where A = B.

From A′ equation we get a simplified constraint,

(8C β + κ3r3)(− dB
dr r2 + 2rB + C − 2r)

6C βr2 = 0, (2.110)

which produces the solutions

B = −
C
3r
+ 1 + r2C1,

P =
3C1κ + λ

8π
= −ρ. (2.111)
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Unfortunately we have found that in this regime the solution is not physical. As we have
previously shown, the case where A = B describes a Schwarzschild de Sitter cosmology and
thus we would like to have a viable solution in this setup. Mannheim’s assumption that we can
always use conformal rescaling to make A=B clearly cannot apply in this case since it leads
to a non-physical form of fluid. Although discouraging, our work is not over as we have not
explored all of our options. As we have previously emphasized, in our approach torsion plays a
vital part and thus we are hopeful that we will find a viable solution once we introduce torsion.

We will focus on the full analysis in the next sections, but in the meantime we would like
to comment on the link with the work that we have previously mentioned.

Let us start by looking at the form for g1 in terms of X and φ, i.e.

g1 =
X

1 + r d lnφ
dr

. (2.112)

If we have a solution to our system in terms of invariant functions X (rφ) and g(rφ), the
non-invariant g1 is generated from the physical X and the gauge choice φ. Using the equation
for g,

g = rg′1 − g1, we can write that (2.113)

g(rφ) = r
d
dr

(
X (rφ)

1 + r d lnφ
dr

)
−

X (rφ)

1 + r d lnφ
dr

. (2.114)

As we know g and X we now have a second order differential equation we can solve for φ.
If we define z = 1/φ, we can write

g(rφ) = rφX ′(rφ) − X (rφ)
(
1 − r2 z d2z

dr2

(z − r dz
dr )2

)
, where differentiation is with respect to r .

(2.115)
This equation shows that we have the same relationship between g and X as that between g

and g1, if and only if z is of the form z = ar + b, or

φ =
1

ar + b
. (2.116)

One can notice that this is the result presented in [63] and [71]. By imposing a perfect
fluid we have a fully constrained system and we are not at liberty to write down a spare relation
between P and ρ, unlike [71] and [63]. We show that when we keep the metric general we find
a solution that behaves as radiation in the B → 0 limit. Thus the theory cannot accommodate
the sort of matter we deal with in astrophysical problems.
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2.6 Introducing Torsion

Until now we have focused on using our gravitational representation to place ourselves in line
with current research. Although the general approach is to introduce a ‘partial’ perfect fluid
that allows extra freedom to reach viable solutions, we hope that we could be successful by
instead generalising the setup.

At the core of any GTG is the presence of torsion. In particular, as we have shown in the
Introduction, from the construction of eWGT we are in a particularly favourable position to
explore various torsion profiles and their implications for the cosmology. Thus it is no surprise
that we will dedicate the reminder of this chapter to extending our theory beyond the standard
approach and focus on a more complete model that incorporates torsion.

We will start by presenting the basic definitions that allow us to construct our model for
torsion. We will build upon the foundation that we have set out in the Introduction and employ
the notation presented in [21]and [22].

Fundamentally a connection specifies how a vector field is transported along a curve. In a
local coordinate chart with basis vectors eµ = ∂µ, the connection coefficients Γλνµ are defined
by ∇eν eµ = eλΓλνµ. A connection is said to be metric compatible if

∇λgµν ≡ ∂λgµν − Γ
ρ
λµgρν − Γ

ρ
λνgρµ = 0. (2.117)

On the other hand we define the spin connection Aµ for the Lorentz group as Aµ = 1
2 Aab

µ Sab
with Sab a representation of the Lorentz generators. The general connection can be related to
the spin connection with the aid of tetrads as

Γ
ρ
µν = hρa∂µha

ν + hρaAa
bµhb

ν . (2.118)

A considerate approach is to separate the space and connections as curvature and torsion
are in fact properties of the connection. In General Relativity the Levi-Civita connection can
be interpreted as part of the spacetime definition as all particles and fields feel this connection
the same. However, we can accommodate several connections with different curvature and
torsion and thus it is more convenient to take spacetime simply as a manifold and connections
as additional structures. This formalism is embedded in the Palatini-style framework we work
with. When torsion was not present the structure was more subtle (comparatively to a standard
metric-based formalism), but in the full case it becomes the foundation block.

Bearing this in mind we can define the torsion tensors of the connection Aa
bµ

as

Ta
νµ = ∂νha

µ − ∂µha
ν + Aa

eνhe
µ − Aa

eµhe
ν, (2.119)

and Tρµν ≡ Γ
ρ
µν − Γ

ρ
νµ . (2.120)
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We have made a slight abuse of notation by incorporating the 1
2 in the definition of T

(compared to equation 1.8). A vital property of torsion is that it can be decomposed with
respect to the Lorentz group into three irreducible tensors, that we will represent as

T ≡ T (1) + T (2) + T (3) = tentor + trator + axitor. (2.121)

The torsion tensor has 24 components, of which T (1) has 16, T (2) has 4 and T (3) the
remaining 4.

These quantities are defined as

Tα(2) =
1

n − 1
ϑα ∧ (eβcTβ)

Tα(3) = (−1)s
1
3
{ϑα ∧ (Tβ ∧ ϑβ)}

Tα(1) = Tα − Tα(2) − Tα(3), (2.122)

where ϑα ≡ eβj dx j is the coframe, eβcTβ is the trace torsion one-form and n the number of
dimensions (here 4). This makesTα(2) the totally anti-symmetric torsion andTα(1) the traceless
non totally anti-symmetric part of torsion.

Themost general form for torsion for spherically symmetric systems can bewritten elegantly
in Geometric Algebra as introduced in [18]. For a representation given in terms of e =

[et, er, eθ, eφ], we write the torsion as T = [T0,T1,T2,T3]. The components can be defined as,

T0(t, r) = G(t, r)eret + IG̃(t, r)eret,

T1(t, r) = F (t, r)eter + I F̃ (t, r)eret,

T2(t, r) = −
1
2

F (t, r)eθet −
1
2

G(t, r)ereθ + I (S̃(t, r)eθet + T̃ (t, r)ereθ ),

T3(t, r) = −
1
2

F (t, r)eφet −
1
2

G(t, r)ereφ + I (S̃(t, r)eφet + T̃ (t, r)ereφ) (2.123)

Wewill work with two simplifications of this form - the ‘cosmological’ torsion and the‘real’
torsion. We have written some components in this form to clearly separate the two types of
torsion. For cosmological torsion we have only G̃, F̃, S̃, T̃ non-zero and in particular if G̃ = T̃

and F̃ = S̃ we recover Tα(3). For ‘real’ torsion we have only G and F and this case corresponds
to Tα(2). In our work we do not use Tα(1). Thus our most general torsion is given by

Tα ≡ Tα(2) + Tα(3) and we will treat the components independently. (2.124)
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New variables need to be introduced in our formalism. χ and ζ are the coefficients for the
torsion Lagrangian entries. Specifically the Lagrangian contains new terms,

LT = χQ′(∂a)Q′(a) +
1
2
ζT2, (2.125)

where Q′(a) is the full eWGT torsion (with the contraction part automatically subtracted) and T
is the trivector bit. Both of these are multiplied by φ2 to give the right weight in the Lagrangian.

2.7 Cosmological Torsion

Our first attempt at understanding how the cosmology changes with the presence of torsion is
to introduce the simplest form - cosmological-style torsion.

G̃ = T̃ = Q1, F̃ = S̃ = −Q0 (2.126)

The system of governing equations simplifies significantly and we start by looking at two
equations in particular, the generators for the torsion components,

2β
r

(
− rQ1g1

d
dr

Q0 + rg1
d
dr

Q1Q0 + 2Q0Q1g1 + 2rQ0VQ1
)
= 0, (2.127)

β

r

(
3Q0Q1g + 7Q0Q1g1 + rQ1g1

d
dr

Q0 + 2rg1
d
dr

Q1Q0 + 4rQ0VQ1
)
= 0. (2.128)

By direct manipulation we find the equations reduce to

dQ0
dr

= −
Q0(g + g1)

rg1
,

dQ1
dr

= −
Q1(g + 3g1 + 2Vr)

rg1
. (2.129)

These equations have two desirable properties. Firstly we notice that the evolution equations
are independent (i.e. the equation for Q0 does not depend on Q1 and viceversa) which lets us
shut down either component without damaging the setup. Secondly neither equation depends
explicitly on the scalar field. In our research we have noticed that cosmological torsion setups
are either free-propagating or non-interacting with the other fields that introduce matter. In our
analysis that field would be the scalar field and thus our results are consistent with our previous
understanding.

Introducing the torsion constraints in the remaining set of equations we can find a relation
for

dg
dr

:

dg
dr
=

1
4

4β + 3r2φ2κ + 18ζφ2r2 + 12χφ2r2 − 4βg2

βg1r
(2.130)
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At this point we introduce new notation, x ≡ η + 6κ. With these simplifications the
A-equations become

φ

3r

(
12rκg1

d
dr
φ + rg1

d
dr
φx + 6φrκV − rφV x + 72rg1ζ

d
dr
φ + 48rg1 χ

d
dr
φ

+18g1φκ + 108g1ζφ + 72g1 χφ + 36Vrζφ + 24Vr χφ
)
= 0 (2.131)

φ

3r

(
6rκg1d

d
dr
φ − rg1d

d
dr
φx + 3φrκV + rφV x + 36rg1ζ

d
dr
φ + 24rg1 χd

d
dr
φ

+9g1φκ + 54g1ζφ + 36g1 χφ + 18Vrζφ + 12Vr χφ
)
= 0 (2.132)

Q1φ
2(6ζ + 4χ + κ) = 0 (2.133)

From the first two equations we find

r x(g1
d
dr
φ − φV ) = 0. (2.134)

From the third we find a constraint for the constants, namely ζ = −1
6 (4χ + κ). This leads

to an interesting form for g (using equation 2.30),

dg
dr
=

1 − g2

rg1
. (2.135)

This is the exact form we find in the case where we do not have torsion if we require the
constant C per equation 2.93, from the previous section, to vanish. Thus although one would
expect that adding torsion would introduce more freedom, it actually further constrains the
setup.

Equipped with the above evolution equations we can proceed to look at the h-equations.
Depending on the choice wemake in equation 2.134, i.e whether x is zero, we find very different
behaviour. We proceed to split our analysis in two cases and we start by looking at the most
general case.

2.7.1 x non-zero

From equation 2.134 we find directly an equation for d
dr φ, namely

dφ
dr
=
φV
g1
. (2.136)

This constraint is the familiar setup we also had in the torsion-less case. By employing this
constraint we can return to the h and A equations and solve to find evolution equations for P,
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ρ and g1. Instead in order to compare directly with the non-torsion case we will move to the
conformal variable X , which we defined as

X ≡ rV + g1. (2.137)

Our solution reads

P =
φ
(
φ2λr2 + 3X2κ + 2κgX − κ

)
8πr2 (2.138)

ρ = −
φ
(
φ2λr2 + 3X2κ − 3κ

)
8πr2 (2.139)

dX
dr
=

X2 − 1
rg1

(2.140)

These equations are the same as the ones that we have found in the non-torsion case.
Although the solution might not seem appealing, this is an important result as far as torsion
construction is concerned. We have shown that we are at liberty to introduce a form of
cosmological torsion, that does not have an explicit source, and does not interact directly with
the matter. The only role of this type of torsion is to restrict the evolution equation for g, which
creates a stronger tie between the metric generators.

2.7.2 Vanishing x

The A-equations we work with are given by

−1
r2

(
2r2φg2

1∂rrφκ + 4rφg2
1

d
dr
φκ + 8πφr2ρ − r2g2

1
d
dr
φ2κ + φ2κg2

1 + λφ
4r2

−κφ2 + 2r2φg1
d
dr

g1
d
dr
φκ + 2rφ2κg1

d
dr

g1
)
= 0, (2.141)

−
1
r2

(
6rφg2

1
d
dr
φκ − 8πφPr2 + 3r2g2

1
d
dr
φ2κ + 3φ2κg2

12rφg1
d
dr
φκg

+λφ4r2 − κφ2 + 2g1φ
2κg

)
= 0, (2.142)

−1
r2

(
2r2φg2

1∂rrφκ + 4rφg2
1

d
dr
φκ − 8πφPr2 − r2g2

1
d
dr
φ2κ + φ2κg2

1 + 2rφg1
d
dr
φκg

+λφ4r2 + κφ2 + 2r2φg1
d
dr

g1
d
dr
φκ + 2rφ2κg1

d
dr

g1 + 2g1φ
2κg

)
. (2.143)

We can find an expression for d
dr φ, by direct substitution,
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dφ
dr
=
−4πr2ρ + φκ − 4πPr2 + g1φκg

rg1κg
. (2.144)

The h-equations reduce to two main equations,

r2φ4λg2κ + 8πφr2ρg2κ + 48P2π2r4 + 96Pρπ2r4

+48ρ2π2r4 − 3φ2κ2g2 − 24φPπκr2 − 24φρπκr2 + 3φ2κ2 = 0, (2.145)

r2φ4λg2κ + 8φ
dP
dr

g1πgκr3 + 8φ
dρ
dr

g1πgκr3 + 24φg1Pπgκr2

+24φg1ρπgκr2 + 8φπg2κr2 + 16πφr2ρ + g2κ − 16P2π2r4 − 32Pρπ2r4

−16ρ2π2r4 − 3φ2κ2g2 − 8φPπκr2 − 8φρπκr2 + 3φ2κ2 = 0. (2.146)

Using this system of equations we can write the evolution equations for the pressure and
density as

dP
dr

= −
4πρ2r2 − 4πρPr2 − 8πP2r2 + ρg2φκ + g2Pφκ + 3gPφg1κ − ρφκ + 2Pφκ

9φκrg1

dρ
dr

=
3ρ(4r2πρ + 4r2πP − φgκg1 − φκ)

gφκrg1
(2.147)

We can now define new variables, which we can think of as “physical” variables, ρ̃ = ρ

φ3

and P̃ = P
φ3 . Using these quantities we can easily notice that ρ̃ is a constant and thus ρ ∝ φ3

which makes the density to be fully driven by the scalar field. If we write ρ̃ ≡ ρ0, a constant
we can re-write the other evolution equations as

dP̃
dr
= −

(P̃ + ρ0)(4πP̃φ2r2 + 4πρ0φ
2r2 + κg2 − κ)

gκrg1
, (2.148)

dφ
dr
=
φ(4πP̃φ2r2 + 4πρ0φ

2r2 − gg1κ − κ)
gg1κr

. (2.149)

When we constrained x we freed g and without any further information we have an incom-
plete system of equations. One option would be to impose the usual relation between V and φ,
dφ
dr =

φV
g1

. As in the non-torsion case, we can show that the following relation satisfies the field
equations,

dg
dr
=

1 − g2

g1r
−

C
r2φg1

. (2.150)

Thus we have forced g to behave in the “standard” way at the expense of enslaving the
dilaton to the scalar field.
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A scenario that is worth exploring is the one where we just have a constant density profile,
and thus a constant φ ≡ φ0. Although an oversimplification, it is important to understand the
effect of introducing a small constant scalar field to the system as it could act as a fine-tuning
parameter. In this case, the physical pressure reduces to

P̃ = −
4πρ0φ

2
0r2 − gg1κ − κ

4πφ2
0r2

, (2.151)

and acts as a constraint for g1,

κg
(
g1

dg1
dr

r − g2
1 + 1

)
= 0. (2.152)

This restricts the metric to g1 =
√

Cr2 + 1. Since we know g1 we can easily find a form for
g by solving equation 2.150,

g = tanh
(
C1 − arctan

( 1
√

1 + Cr2

))
=

sinh(C1)
√

1 + Cr2 − cosh(C1)

cosh(C1)
√

1 + Cr2 − sinh(C1)
. (2.153)

We can show the solution is well behaved by verifying the expansion around the origin,

g = −1 +
C
2

(
2 cosh(C1)2 + 2 sinh(C1) cosh(C1) − 1

)
r2 +O(r4). (2.154)

Finally from to the constraint equation we can show that C must satisfy

C = −
φ2

0(8πρ0 + λ)
3κ

. (2.155)

For C negative, we are working in the domain where

1 + Cr2 > 0⇒ r2 <
3κ

φ2
0(8πρ0 + λ)

, (2.156)

otherwise if λ is chosen such that C is positive we do not have a restriction on r . This would
require λ < −8πρ0 which is not a desirable feature.

Returning to the pressure equation, we find that

P̃ =
−4π cosh(C1)φ2

0ρ0
√

1 + Cr2 + 4π sinh(C1)φ2
0ρ0 + Cκ sinh(C1)

4πφ2
0(cosh(C1)

√
1 + Cr2 − sinh(C1)

(2.157)

The limit as r gets large is given by

lim
r→∞

P̃ = −ρ0, (2.158)

and the pressure remains bounded as exemplified in Figure 2.1.
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Figure 2.1: Physical pressure profile for κ=φ0=1, ρ0 = 10−8, λ = −10−4.

Thus by introducing a small constant density leads to a remnant pressure profile of similar
order of magnitude. This result is encouraging as it suggests that such a setup could be
incorporated in more advanced cosmological setups that require fine-tuning, such as [72].

Although promising, this simplistic form is not physically viable. We can check the orbital
velocities generated by this setup, as v = g1+g

g1
lead to

v =
C cosh(C1)r2

√
1 + Cr2

(
cosh(C1)

√
1 + Cr2 − sinh(C1)

) . (2.159)

For small r we have

v = C(sinh(C1) + cosh(C1)) cosh(C1)r2 +O(r4), (2.160)

and thus we require C to be positive and λ negative. Although we might accommodate a
negative λ, we find that the orbital velocity behaves as an escape velocity as shown in Figure
2.2.

Despite our apparent setback, not finding viable orbital velocities is not unexpected. As we
are working with an overly simplified scenario we are missing the relevant physics that would
dictate the velocity profile. Our study just shows that the effect of introducing a small constant
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Figure 2.2: Orbital velocity for κ=φ0=1, ρ0 = 10−8, λ = −10−4.

density is to add a constant velocity contribution at high r . This result further reinforces the
premise that this setup is not self-supporting.

As a final point we should return to the Weyl tensor. Structurally we find interesting
relations between the dilaton and torsion contributions. The main components are given in
terms of

dV
dr

g1r + g1V + gV,

dQ1
dr

g1r +Q1g1 + gQ1,

−
dQ0
dr

g1r +Q0g1 +Q0g. (2.161)

This depicts the duality between V and Q-torsion. We can show that if we cancel these
contributions the Weyl vanishes, as expected. More surprisingly we find that by tying the
dilaton to the scalar field, the Weyl tensor reduces to the form that we have for vacuum around
a mass of C

6φ .
In conclusion, whenwe introduce cosmological type torsionwe find that if we keep a general

setup (with x non-zero) we recover the standard setup with a more constrained metric. Instead
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if we work with a particular model (where x vanishes), we discover a significantly different
cosmology. Either case is important in its own right. On one hand we have proved that we can
introduce a torsion that is decoupled from the matter sector and thus although present would be
impossible to measure. On the other hand we have shown that we can have a very simple model
(that can be included in advanced theories) that introduces highly desirable features for theories
that require a fine-tuning mechanism. Such a theory is the one presented in [72] where it is
postulated that by introducing torsion we could have a more manageable fine-tuning problem
when we deal with inflation. In our work we have found a potential mechanism that could
create a remnant pressure from cosmological torsion.

2.8 Real Torsion

Motivated by the interesting features we have found when we worked with cosmological torsion
we will proceed to investigate the effects of introducing “real” torsion. Considering its more
convoluted structure, the elegance we became accustomed to in the previous section will not be
attained and thus throughout this section we will investigate the x = 0 regime.

2.8.1 Conventional setup

We will start our analysis by exploring a different sector - a conventional setup where we turn
off our torsion contribution.

The A-equations become our usual constraint equation for V

2φ
(
Vφ −

dφ
dr

g1
)
= 0 ⇒ V =

dφ
dr g1

φ
. (2.162)

Using this constraint in the h-equation, we find forms for the pressure P,

P =
1

8πφr2

(
φ4λr2 + 3

dφ
dr

2
g2

1 κr
2 + 2gφ

dφ
dr

g1κr + 6φ
dφ
dr

g2
1 κr

+2gφ2g1κ + 3φ2g2
1 κ − κφ

2
)
, (2.163)

and for the density ρ,

ρ =
1

8πφr2

(
2

dg
dr
φ

dφ
dr

g1κr2 + φ4λr2 + 2φ
dφ
dr

g2
1 κr

2 −
dφ
dr

2
g2

1 κr
2

+2
dg1
dr

φ2g1κr + 4φ
dφ
dr

g2
1 κr + φ

2g2
1 κ − κφ

2
)

(2.164)

The reason we started with this setup will become obvious shortly as we will show that
disregarding of the type of torsion that we use we will always recover these pressure and density
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profiles. The significant difference is that the presence of torsion frees the scalar field φ from
the vector field V . Thus we have found a first setup where we can have a better understanding
of the role of torsion in Weyl-type cosmologies.

2.8.2 Governing equations

2.8.2.1 Full torsion

We start by analysing the most general form. We make an early simplification by imposing
χ = 2κ, i.e. we remove the torsion component at the level of the Lagrangian. We introduce
this simplification as in the cases where the form of torsion is constrained it turns out to be a
requirement (as we will show in the following sections). In the full torsion case, the equations
are significantly more complicated if we keep them general and it turns out that we cannot find
a physical set of evolution equations.

We start by looking at one of the A-equations where we can read directly the derivative of
G:

dG
dr
= −

1
6Fg1r2

(
3F3r2 − 36FV 2r2 − 24FVGr2 − 3FG2r2 − 12g1V

dF
dr

r2

−6g1
dF
dr

Gr2 − 84Fg1Vr − 24Fg1Gr − 4Fg1
dg
dr

r − 12FVgr

−12g2
1

dF
dr

r − 48Fg2
1 − 12Fg1g − 4Fg2 + 4F

)
(2.165)

By substituting this expression in the full A-equations we find a full constraint,

(3rV F + rg1
dF
dr
+ 4Fg1 + Fg)(F2r + 2VGr + rG2 + 2g1G) = 0. (2.166)

This leads to two options. Firstly, if

3rV F + rg1
dF
dr
+ 4Fg1 + Fg = 0, (2.167)

we recover two simple forms for the torsion derivatives:

dF
dr

= −
F (3Vr + g + 4g1)

rg1

dG
dr

=
3G2r2 + 6GVr2 − 3F2r2 − 6Ggr + 4 d

dr gg1r − 4g2 − 4
6r2g1

(2.168)

By just imposing these evolutions for torsion in the h-equations we recovered the conven-
tional setup. It is worth noting that the evolution equation for F remains unchanged when G
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is introduced, whereas the same cannot be said about G. This asymmetry leads to interesting
results as we will show in the following sections.

Otherwise we can establish a relation between the torsion components,

F2r + 2VGr + rG2 + 2g1G = 0, (2.169)

that fixes V to

V = −
F2r + rG2 + 2g1G

2Gr
. (2.170)

Using this constraint we can re-write the derivative of G as

dG
dr
=

1
6r2g1G2

(
9r2F4 + 3F2G2r2 − 6Fg1

dF
dr

Gr2 − 6F2g1rG − 6F2Ggr

−6g1G3r + 4g1
dg
dr

rG2 − 6G3gr + 4g2G2 − 4G2
)
. (2.171)

These new relations can be substituted in the A-equations to find a new constraint,

(3F3r + 3FG2r − 2g1
dF
dr

Gr − 2Fg1G − 2FgG)(9F5r2 − 3r2F3G2 − 6F2g1
dF
dr

Gr2

+6r2G4F − 6r2g1
dF
dr

G3 − 6F3g1Gr − 6F3Ggr − 6rG3Fg1 + 4Fg1
dg
dr

rG2

−6FG3gr + 4Fg2G2 − 4FG2) = 0.(2.172)

We are left with a further two cases.
If we use the constraint,

3F3r + 3FG2r − 2g1
dF
dr

Gr − 2Fg1G − 2FgG = 0, (2.173)

we find a new derivative for F,

dF
dr
=

F (3F2r + 3rG2 − 2g1G − 2Gg)
2rGg1

, (2.174)

and thus a new derivative for G,

dG
dr
=

3r2F2 + 3rGg1 − 2rg1
dg
dr + 3rGg − 2g2 + 2

3r2g1
. (2.175)

One could notice that these are the exact forms we have found in case 1 with an additional
constraint on V . As we have shown that the setup remains conventional in the general case, the
constraint on V should not provide any new insight.
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Otherwise using the remainder constraint equation,

9F5r2 − 3r2F3G2 − 6F2g1
dF
dr

Gr2 + 6r2G4F − 6r2g1
dF
dr

G3 − 6F3g1Gr

−6F3Ggr − 6rG3Fg1 + 4Fg1
dg
dr

rG2 − 6FG3gr + 4Fg2G2 − 4FG2 = 0, (2.176)

we can find different relations for the derivatives of F and G,

dF
dr
=

F
6r2g1G(F2 + G2)

(
9r2F4 − 3F2G2r2 + 6r2G4 −

6F2g1rG − 6F2Ggr − 6g1G3r + 4g1
dg
dr

rG2 − 6G3gr + 4g2G2 − 4G2
)

(2.177)

dG
dr
=

1
(6(F2 + G2))r2g1

(
15r2F4 − 3F2G2r2 − 6F2g1rG −

6F2Ggr − 6g1G3r + 4g1
dg
dr

rG2 − 6G3gr + 4g2G2 − 4G2
)

(2.178)

The new evolution equations are notably different from what we have previously en-
countered. When making the substitutions in the h equations, the setup becomes significantly
more convoluted. Considering that we have found that all sensible roads lead to a solution
identical to the conventional setup we decided not to pursue the most general form for torsion.
In the following sections we will show that the simplified torsion cases lead to the same pressure
and density profile. As our aim is to understand how torsion influences our system we will
focus on simplified cases where the significance becomes transparent.

2.8.2.2 F torsion only

From the A equations, we can find directly a relation for the derivative of F,

dF
dr
=
−F (3rV + g + 4g1)

rg1
. (2.179)

By substituting the evolution equation in the A equations we reach an equation for the
derivative of g,

dg
dr
= −
−3r2 βF2 + 6r2φ2 χ − 3φ2κr2 + 4βg2 − 4β

4g1 βr
. (2.180)

Finally the A equations simplify to a simple constraint,

2χ − κ = 0, (2.181)
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that imposes the torsion contribution at the level of the Lagrangian to be removed. One
should note that unlike the case where we have only G present, here we have a direct link
between the torsion and g. As we will show in the next section this constrains the form of
torsion significantly exemplifying the non-trivial changes that occur when one works only with
a simplified type of torsion.

With these considerations in mind, the h-equations lead to a simple form for the derivative
of φ,

dφ
dr
=
−3κφr2F2 + 32πρr2 + 32r2πP − 8κφgg1 − 8κφ

8gg1κr
, (2.182)

alongside the conventional pressure and density profiles.

2.8.2.3 G torsion only

From the A equations we find a form for the derivative of G,

dG
dr
=

6VGr2 + 3G2r2 + 4g1
dg
dr r − 6Grg + 4g2 − 4

6r2g1
, (2.183)

which reduces the equations to a simple condition

Gφ2(2ξ − κ) = 0. (2.184)

As in the case where we had F-only torsion, this setup forces 2ξ − κ = 0. By substituting
this constraint in the h-equations we recover the conventional pressure and density.

2.8.3 Metric dependent interpretations

From previous attempts we believed that the ‘Weyl’ squared term in the Lagrangian would not
permit physical solutions for the pressure and density. Horne [63], Mannheim [73] have also
worked on recovering viable matter solutions and to our knowledge have been unsuccessful.
In our work we have shown that in the case where torsion is turned off we are in agreement
with Horne’s results. In this section we have introduced torsion at an intrinsic level (although
we have been forced to remove the torsion contribution at the level of the Lagrangian). We
have shown that most sensible roads lead to a conventional setup despite our choice of torsion.
Considering the unexpected effect of torsion i.e that it frees the scalar field from the dilaton, we
have decided to further analyse this solution.

We will consider four regimes - Minkowski space, Schwarzschild space, de Sitter space
and Schwarzschild de Sitter space. We will start by exploring the pressure and density profiles
in these regimes by finding solutions for the scalar field φ. We will then proceed to analyse
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the different forms torsion takes depending on metric. We will show how various solutions
constrain the dilaton field and how some metric choices are favoured.

Before we start, we would like to summarise what setups we will employ:
Minkowski

g1 = 1, g = −1, ρ = 0, λ = 0. (2.185)

Schwarzschild

g1 =

√
1 −

2M
r
, g = −

1 − 3M
r√

1 − 2M
r

, ρ = 0, λ = 0. (2.186)

de Sitter

g1 =

√
1 −

λ

3
r2, g = −

1√
1 − λ

3 r2
, ρ = 0. (2.187)

Schwarzschild de Sitter with λ

g1 =

√
1 −

2M
r
−
λ

3
r2, g = −

1 − 3M
r√

1 − 2M
r −

λ
3 r2

, ρ = 0. (2.188)

2.8.3.1 The scalar field

We start by rearranging the h-equations in order to write evolution equations for g and g1.

dg
dr
=

3g2
1
dφ
dr

2
κr2 + φ4λr2 + 6g2

1r dφ
dr φκ + 3g2

1 κφ
2 + 8πφρr2 − φ2g2κ − 2κφ2

g1φ2κr
, (2.189)

dg1
dr
= −

4g2
1r dφ

dr φκ − κφ
2 − g2

1
dφ
dr

2
κr2 + 8πφρr2 + g2

1 κφ
2 + 2g2

1
dφ
dr φκr

2 + φ4λr2

2κg1φr dφ
dr r + φ

. (2.190)

In aMinkowski setup the equations simplify to

3 dφ
dr

2
κr2 + 6r dφ

dr φκ

φ2κr
= 0, (2.191)

−
4r dφ

dr φκ −
dφ
dr

2
κr2 + 2 d2φ

dr2 φκr2

2κφr ( dφdr r + φ)
= 0. (2.192)

We start by solving the ODE from the g constraint and we find that φ admits the following
solutions:
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φ ∈
{C1

r2 ,C2
}
, where C1 and C2 are constants. (2.193)

Both of these solutions solve the remaining equation. Now we turn to the equation for
pressure, which in this setup takes the form

P =
κ
dφ
dr (3 dφ

dr r + 4φ)
8πrφ

. (2.194)

The above solutions for φ force P ∈ { C1κ
2πr4 , 0}. From this solutions we can note that in the

case when φ is not trivial, we have a residual pressure from the perfect fluid. This has been
previously discussed in literature in the context of inflation [74]. Since we have C1 present we
could in principle fine tune the pressure to match observational discrepancies as presented in
[72].

For the Schwarzschild case we can easily find an equation for φ from the equation for g,√
r − 2M

r
dφ
dr

( dφ
dr

r + 2φ
)
= 0. (2.195)

This has the same solution as in the Minkowski case, but unlike the previous case only the
trivial solution verifies the constraint from the g1 equation. The pressure remains zero.

In the de Sitter setup we can find a constraint from the equation for g,

3rκ(λ3 r2 − 1) dφdr
2
+ 6φκ(λ3 r2 − 1) dφdr − φ

4λr + λφ2κr

φ2κ
√
−λ3 r2 + 1

= 0. (2.196)

This has the general solutions φ = ±
√

3κλ
λr . We can also notice that φ = C2 (a constant)

satisfies the equation given that λ = C2
2λ

κ .
The constraint from g1 reads as

rκ(λ3 r2 − 1) dφdr
2
− 6(λ3 r2 − 2/3)κφ dφ

dr − 2φ(−φ3λ/2 + 3λ3 κφ/2 + (λ3 r2 − 1) dφ
2

d2r
κ)r

2
√
−λ3 r2 + 1κφ( dφdr r + φ)

= 0.

(2.197)
We can notice straight away that the general φ solution sets the denominator to 0. The

constant solution reduces the equation to the previous λ-constraint. The pressure remains zero.
Finally, we reach the most general setup, Schwarzschild de Sitter , and the constraints

become

3(λ3 r3 + 2M − r)rκ dφdr
2
+ 6κ(λ3 r3 + 2M − r) dφdr φ − λφ

4r2 + λκφ2r2√
− λ3 r

3−2M+r
r rκφ2

= 0, (2.198)
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−2(λ3 r3 + 2M − r)r dφ2

d2r
φκ + (λ3 r3 + 2M − r)r dφ

dr

2
κ − 6κ(λ3 r3 + M − 2r/3)φ dφ

dr

2
√
− λ3 r

3−2M+r
r rκφ( dφdr r + φ)

+
+φ4λr2 − λφ2κr2

2
√
− λ3 r

3−2M+r
r rκφ( dφdr r + φ)

= 0. (2.199)

This system does not have a natural differential solution outside the constant solution which
provides the usual constraint for λ.

To summarise, we have found that in most cases φ is forced to a constant. In the case where
the dilaton was linked to the scalar field, we would be forced to remove the dilaton field. We
will discuss such solutions when we investigate the forms for torsion. The Minkowski setup
recovers another solution which has been discussed in previous work [72].

2.8.3.2 Exploring torsion solutions

We have previously shown that disregarding of the type of torsion we recover a conventional
setup with the unexpected benefit that the scalar and the dilaton fields are not directly linked.
We have also explored metric-dependent solutions for the scalar field and have found that if we
decided instead to enslave the dilaton to the scalar field we would be forced to remove it. In this
section we will explore the metric based solutions for torsion in the hope that we could shed
some light on two main questions: Are the certain metrics that are ruled out by inappropriate
forms for torsion? Can we find constraints for the dilaton from the form of the metric?

In this work we will consider the torsion “well behaved” if it has the correct behaviour at
large r , i.e. if it has a finite limit. We would prefer a solution that has an adaptable non-zero
limit at large r as there would be the possibility for fine-tunning.

2.8.3.3 G only torsion

We will start by looking at constrained types of torsion, specifically G-only torsion. We can
recall that the evolution equation for torsion was given by

dG
dr
=

6VGr2 + 3G2r2 + 4g1
dg
dr r − 6Grg + 4g2 − 4

6r2g1
. (2.200)

In Minkowski space the equation simplifies to

dG
dr
=

G(2Vr + Gr + 2)
2r

. (2.201)

The ODE solution reads as
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G = −
2e

∫
Vr+1

r dr∫
e
∫

Vr+1
r drdr + C

, where C is a constant. (2.202)

We can rewrite the above expression to localize the V dependent part as

G =
−2rS∫

rSdr + C
, where S is defined as S = e

∫
Vdr . (2.203)

In order to have a well behaved form for torsion we end up requiring

lim
r→∞

G = lim
r→∞

−2rS∫
rSdr + C

= −2F, where F is a constant that we can impose. (2.204)

We can rewrite this limit as,

lim
r→∞

(rS)′

rS
= lim

r→∞

d ln S
dr
= F ⇒ lim

r→∞
V = F . (2.205)

Thus if we want to have the possibility to fine tune at large r we would need to have a
non-zero dilaton field. For V = constant the solution reduces to

G =




−
4r

r2 + 2C
if V = 0

−
2V 2r

Vr − 1 + C
eVr

otherwise

Looking at this solution we notice that we could have also finite torsion as r → 0 if we
impose C = 0 at the cost of having a pole at r = 1/V . Otherwise we can see that the solution
behaves as shown in Figure 2.3.

In the de Sitter setup, we find that the solution takes the form

G =
E∫ E

√
1− λ3 r2

2( λ3 r
2−1)

dr + C3

, where E = e

∫
−

Vr
√

1− λ3 r2+1

r ( λ3 r2−1)
dr
. (2.206)

We could rewrite E as

E = Se

∫ 1
r (1− λ3 r2 )

dr
=

Sr√
λ
3 r2 − 1

, where S = e

∫
V√

1− λ3 r2
dr

(2.207)

When we take the limit at large r we find
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Figure 2.3: V behaviour in Minkowski space

lim
r→∞

G = −2 lim
r→∞

rS√
λ
3 r

2−1∫
r

1− λ3 r2 Sdr + C3
= −2 lim

r→∞

r (λ3 r2 − 1) dSdr − S

rS
√
λ
3 r2 − 1

= −2 lim
r→∞

√
λ

3
r2 − 1

d ln S
dr
= −2 lim

r→∞
V, (2.208)

which is the same result as in the case where we had no cosmological constant.
The solution is fairly involved even in the case where V is a constant as

∫
1√

1− λ3 r2
dr is an

arctan function. For V = 0 we find that this simplifies to a more manageable form,

G =
4λ3 r

4λ3 C4

√
λ
3 r2 − 1 + ln(λ3 r2 − 1)

√
λ
3 r2 − 1

, where C4 is a constant. (2.209)

The solution can be seen in Fig 2.4.
In the case where we are looking at Schwarzschild, the governing equation is significantly

more involved,

dG
dr
=

(8M − r3G2)
√

r−2M
r + 6rG(M − r

3 )

4Mr2 − 2r3 (2.210)

The solution is a hypergeometric function. When we explore the solution numerically we
can impose that it is well behaved at large r . As expected, we find similar difficulties when we
introduce the cosmological constant. In conclusion, employing this type of torsion has limited
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Figure 2.4: G’s behaviour in de Sitter space

applicability in Minkowski type cosmologies. As even simple generalisations seem to cause
problems one should consider a different type of torsion.

2.8.3.4 F only torsion

As a reminder, the evolution equations were given by,

dF
dr
= −

F (3rV + g + 4g1))
rg1

, (2.211)

dg
dr
=

3r2F2 − 4g2 + 4
4rg1

. (2.212)

Since we are inputing g and g1 we can just read the torsion profile from the second equation.
Furthermore by combining the two we can also easily compute the corresponding dilaton field
as the equations reduce to

V = −
d log F2

dr + 2g + 8g1

6r
. (2.213)

In theMinkowski case we find that these equations remove the torsion and do not constrain
V . The Schwarzschild setup does produce a unique solution, under the caveat that M is
negative. Disregarding the presence of the cosmological constant, we find that the torsion takes
the form

F = 2
√
−

2M
r3 , and thus we require M < 0 as previously mentioned.. (2.214)
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Using the above relation we can find separate solutions for the dilaton:

V =




−3r + 4M

6r2
√

1 − 2M
r

if λ = 0

−11λ3 r3 − 16M + 9r

6r2
√

1 − 2M
r −

λ
3 r2

otherwise

Although the profiles for the dilaton appear similar, the contribution of the cosmological
constant becomes apparent at high radius. It moves the limit limr→∞ V = 0 to limr→∞ V =

−
11 λ3

6
√
− λ3

and thus we would also require a negative λ. Interestingly, the torsion is fully decoupled

from the cosmological constant and absorbs the scale of M . Although it is pathological as it
requires both M and λ to be negative, this could be thought of as the complementary result to
what we had in the “cosmological torsion” setup.

Considering the reduced torsion setups seems to be successful in different regimes we can
hope that a more general solution will give us better options. We have shown in the previous
sections that when we look at the general setup we “free” F from the strong relation with the
metric at the expense of tying G and F.

2.8.3.5 F+G torsion

We can proceed to the most general case where we are using the full form of torsion. We have
previously shown how by restricting the torsion profile we limit our solution space significantly.
Thus it is important to prove there exist manageable forms for torsion that do not restrict the
cosmological setup.

We recall the evolution equations for the torsion components are

dF
dr

= −
F (3Vr + g + 4g1)

rg1

dG
dr

=
3G2r2 + 6GVr2 − 3F2r2 − 6Ggr + 4 d

dr gg1r − 4g2 − 4
6r2g1

(2.215)

We can solve for F in isolation and then substitute in the G equation. Although this might
seem the obvious approach, we should consider the equation for G first. This equation inherits
the complexity of the isolated G equation and thus we know that we will stuggle to find a
solution for non trivial g and g1. Instead of thinking of the F2 term as an extra complication
we could consider it as a helping hand. We know that the term that produces hypergeometric
solutions is G2 and we could impose that F2 balances it.

Thus for F = G we find a more manageable system, namely
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dF
dr

= −
F (3Vr + g + 4g1)

rg1

dF
dr

=
6FVr2 − 6Fgr + 4 d

dr gg1r − 4g2 − 4
6r2g1

(2.216)

We find that

V = −
24g1rF + 4 d

dr gg1r − 4g2 − 4
24Fr2

dF
dr

=

d
dr gg1r − 2r (g + g1)F − g2 − 1

2r2g1
(2.217)

The solutions to the above system are listed below, and can be compared in Fig 2.5 and Fig
2.6.

Minkowski
F =

1
r
+ C1 V = −

3C1r + 2
3r (1 + C1r)

(2.218)

de Sitter

F =
C2√

1 − λ
3 r2
−

√
λ
3 rarctanh(

√
λ
3 r) − 1

r
√

1 − λ
3 r2

, (2.219)

V =
r (1 − λ

3 r2)(C2 − r
√
λ
3 arctanh(r

√
λ
3 )) + 2

3 −
λ
3 r2

r
√

1 − λ
3 r2(r

√
λ
3 arctanh(r

√
λ
3 ) + C2 − 1)

(2.220)

Schwarzschild

F =
C3√

1 − 2M
r

−
r2 ln( 2M

r − 1) + 6M2 − 6r M

8Mr2
√

1 − 2M
r

, (2.221)

V =
r2(2M − r)/8 ln( r

2M−r ) − M2/2 − 5M2r/4 − 5Mr2/12 + MC3r2(r − 2M)

r2
√

1 − 2M
r (r2/8 ln( r

2M−r ) − 3M (M − r)/4 + MC3r2)
(2.222)

Schwarzschild de Sitter

F =

∫
−λMr3+r2−3rM+3M2

r4 (1− 2M
r −

λ
3 r

2)
dr + C4√

1 − 2M
r −

λ
3 r2

(2.223)

Solving the integral in isolation gives a standard pole-solution:

F = −
3
4r
−

ln r
8M
+

3M
4r2 + ΣR

(12λM2 − 2λM R + λ
3 R2 − 1) ln(r − R)

8MλR2 − 1
, (2.224)
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Figure 2.5: F and V profile in Minkowski space

Figure 2.6: F and V profile in de Sitter space
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where R solves the equation λ
3 R3 + 2M − R = 0.

In conclusion, although the solution is pathological, interesting properties of torsion emerge
that can hopefully be generalised for more successful models.

The main function of the “real”-torsion is to decouple the scalar and dilaton fields so its
role is to act as a support field. Interesting torsion setups arise since although the scalar field
can be set to a constant we have the freedom to have a self-evolving dilaton field.

In this study we have shown that the form of torsion is not directly important to the
observables and thus we just had to show that physical, convenient forms can be reached. We
found it instrumental to look at reduced cases as they helped us understandwhat key components
we needed for the general case.

2.9 Conclusion

In this Chapter we have presented a first application of eWGT. We chose to use our theory
to simulate the Weyl2 formalism that has been thoroughly researched by Mannheim et al in
various publications, such as [48], [58], [55], [59], [61], [69], [73].

We started by recovering their predictions in the vacuum case. We proceeded to discuss
the validity of using the Mannheim-Kazanas metric and agreed with the arguments presented
in [63].

When we tried to introduce matter we found that the setup does not accommodate a matter
profile that is compatible with astrophysical problems as it recovers radiation when B → 0.
We also restricted our metric to Mannheim-Kazanas and in that case the fluid profile was non-
physical. We argue that the previous attempts to solve these problems are somewhat misleading.
The authors in [71] use a ‘perfect’ fluid that has different perpendicular and radial pressures to
give them extra freedom. In our approach we believe that any viable theory of gravity should
be able introduce a perfect fluid as a matter source.

Finally, we wanted to prove that the problem cannot be solved even in our extended setup
with torsion. We investigated all the types of torsion our theory allows and could not find
physical pressure and density profiles. Instead we reinforced our belief that a ‘cosmological’
torsion should not interact with the matter sector. In this case we found that it redefined the
relation between various support fields, an aspect wewere not aware of prior to this research. For
‘real’ torsion (the component we expect to effect the matter sector), we found that disregarding
of its form, it forces the matter sector into a new regime which in this case was not physical.
We explored how different forms can be chosen and found a new way of building torsion
components that will hopefully help us when using a general setup.
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Riemann-squared Gravity

3.1 Introduction

In 1915 Hilbert presented a novel method for finding Einstein field equations through the
principle of least action applied to an action that contained the Ricci scalar. Looking to
generalise the Lagrangian for gravity, Weyl introduced the quadratic term of a modified Ricci
scalar (that is covariant under scale changes) which led to the formulation of Gauge Theories.
Unfortunately Weyl’s theory was not successful since it portrayed electromagnetism as the
gauge theory that corresponds to changes of scale length, not to local changes of quantum
mechanical phase.

We believe that an interesting scenario can be reached by replacing the quadratic Ricci
scalar term proposed by Weyl with a modified quadratic Riemann tensor. As Riemann-square
alone cannot handle ordinary matter, this work acts as a test ground for radiation-only ‘matter’
and provides a first insight into the potential of exploring a full theory.

In 1958 Stephenson [75] started looking at quadratic invariants of the Riemann-Christoffel
curvature tensor and its contractions in a four-dimensional Riemann space. He found that the
derived field equations have a class of solutions that satisfy the source-free Einstein’s equations
with an arbitrary cosmological term (see [75]). Intrigued by his results Higgs investigated
Lagrangians formed by either R2, RγβRγβ or RµγβαRγβαµ and found that for the first two he could
find consistent equations of motions, but not for the third(see [76]).

With the belief that we know the missing ingredient in Higgs’ analysis, we will be working
with a Lagrangian given only by a Riemann-squared term. We will be considering only

67
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cosmological solutions where the matter is described by radiation. To take into account
coupling to matter, future work should investigate adding terms such as φ2R (proposed by
Dirac in 1973 [77]) and φ4, where φ is a real scalar field. A starting point for such applications
can be found in [13].

We will build on the first attempt, made in the paper [78], where the authors have found the
background solutions for the equations of motion. Considering most of our work is constructed
in Geometric Algebra, we will introduce this new language as a parallel to the ‘standard’
approach in Chapter 1.

3.1.1 Notation guide for Gauge Theory of Gravity (GTG) in STA

Space Time Algebra (STA) is the geometric (or Clifford) algebra of Minkowski spacetime. A
comprehensive treatment of geometric algebra can be found in [79] and we will offer an outline
of the standard notation employed in this Chapter.

Geometric algebra is based on the concept of ‘geometric product’ from which we define all
multivector calculus. For example, for vectors a and b we write the geometric product as ab
and we define:

• inner product: a · b ≡ 1
2 (ab + ba)

• outer product (which gives a bivector): a ∧ b ≡ 1
2 (ab − ba)

General elements of the algebra are called multivectors and these decompose into sums of
elements of different grades (scalars have grade 0, vectors have grade 1, etc).

For multivectors A and B we define:
• scalar product: A ∗ B ≡ 〈AB〉0, where 〈M〉r denotes projection onto grade r of M .
• commutator product: A × B ≡ 1

2 (AB − BA)

We can extend the definition of inner/outer product to multivectors that contain only ele-
ments of the same grade (we use an index to label the grade of the elements) and employ the
notation:

Ar · Bs ≡ 〈AB〉 |r−s |

Ar ∧ Bs ≡ 〈AB〉r+s

An overdot notation is useful in expressions when several multivectors are used. Since
in general multivectors do not commute, the overdot shows between which multivectors the
operation applies. As an example: ∂X (AB) = ∂̇X ȦB + ∂̇X AḂ.

The STA is generated by 4 orthonormal vectors {γν } such that γµ ·γν = ηµν = diag(+ − −−).
The associated algebra is composed of 1(1 scalar), {γµ}(4 vectors), {γµ ∧ γν }(6 bivectors),
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I ≡ γ0γ1γ2γ3(1 pseudoscalar), {Iγµ}(4 trivectors). Under the STA setup, a novel approach
to GTG is introduced in [18]. In this work we will rely on their results and notation and we
proceed by just mentioning the relevant definitions and basic concepts without much detail -
the reader is encouraged to refer to [18] for a full account.

The central idea of the STA approach is that the physical content of a field equation (in
STA) must be invariant under arbitrary local displacements and rotations of the fields. This is
referred to as position (respectively rotation)-gauge invariance. In order to preserve the local
symmetries one needs to modify only the derivative-operator since all non-derivative relations
already satisfy the correct requirements.

The position-gauge field

Let f be an arbitrary map between spacetime vectors and φ a scalar field such that:

φ′(x) ≡ φ(x ′) = φ( f (x)) (3.1)

Any quantity that has this transformation under arbitrary displacements is referred to as
covariant.

If f (a) ≡ a · ∇ f (x) and the adjoint is defined as f (a)(i.e. a · f (b) = f (a) · b) one can find
that

∇x = f (∇x′) ⇒ ∇φ′(x) = f [∇x′φ(x ′)] (3.2)

In order to form derivatives of covariant objects which are also covariant, define the
position-gauge field h(a, x):

h
′
(a, x) ≡ h( f

−1
(a), f (x)) (3.3)

(i.e. require hx (∇x ) → hx′ (∇x′)).

The rotation-gauge field

In geometric algebra one can prove that under a rotation (marked by a rotor R defined to
satisfy RR̃ = 1) a multivector transforms like:

M 7→ RM R̃ (3.4)

By looking at the effect of rotations on equations such as Maxwell’s equation one finds that
in order to have a covariant derivative an extra ‘connection’ term is needed:
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Da ≡ a · ∇ + Ω(a)× (3.5)

Here Ω(a) is a bivector-valued linear function and represents the second gauge field.
It is useful to define the full covariant directional derivative a · D:

a · D ≡ a · h(∇)M + ω(a) × M, where we define ω(a) = Ω(h(a)). (3.6)

Thus one can convert between Da and a · D by using h−1: h−1(a) · D = Da.
For the a · D operator can further define the covariant vector derivative:

DM ≡ ∂aa · DM = h(∂a)DaM (3.7)

The field strength

The field strength is defined as the commutator of the covariant derivatives:

R(a ∧ b) × M = [Da,Db]M

⇒ R(a ∧ b) = a · ∇Ω(b) − b · ∇Ω(a) + Ω(a) × Ω(b) (3.8)

A covariant quantity can be constructed by defining:

R (b ∧ c) ≡ R(h(b) ∧ h(c)) (3.9)

This new quantity is the gauge theory analogue of the Riemann tensor. The equivalent for
the Ricci tensor, Ricci scalar and Einstein tensor can be found from contractions:

R (b) = ∂a · R (a ∧ b) (3.10)

R = ∂a · R (a) (3.11)

G(a) = R (a) −
1
2

aR (3.12)

It is worth noting that all the above quantities are covariant since they inherit the transform-
ation properties of the Riemann tensor.
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Results in multivector calculus

Considering our work relies heavily on the action principle, it is important to note some
preliminary results for directional derivatives of a field and for derivatives with respect to linear
and bivector functions (for h and Ω).

For a fixed frame e j (with e j · ek = δ
j
k
), the partial derivative of field ψ with respect to the

coordinate x j = e j · x is given by:

ψ, j ≡ e j · ∇ψ (3.13)

The equivalent frame-free multivector derivative (the derivative of ψ with respect to a) can
be defined as:

∂ψ,a ≡ a · e j∂ψ, j (3.14)

and has the important property:

∂ψ,a〈b · ∇ψM〉 = a · bPψ (M), where P is the projection. (3.15)

As a side motivation, in Geometric Algebra most of the properties of the multivector derivative
follow from ∂X〈X A〉 = PX (A), where PX (A) is the projection of A onto the grades contained
in X .

By directly applying to a Lagrangian density L = L(ψ, a · ∇ψ), the Euler-Lagrange
equations become:

∂ψL = ∂a · ∇(∂ψ,aL) (3.16)

The scalar coefficients for a linear function h are given by hi j ≡ ei · h(e j ) which implies
that equation 3.14 extends to:

∂h(a) ≡ a · eie j∂hi j (3.17)

and has the important property:

∂h(a) h(b) · c = a · e jei∂hij (hlkbkcl) = a · e jeicibj = a · bc (3.18)

It can be shown that:

∂h(a)〈h(Ar )Br 〉 = 〈h(a · Ar )Br 〉1, (3.19)

which is particularly important for the field equations of the perturbed case when one needs to
express ∂h(a)det(h).

By recalling the definition of the inverse function: f −1(A) = det( f )−1 f (AI)I−1 and
applying the result from above:
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∂h(a)det(h) = ∂h(a)〈h(I)I−1〉 = h(a · I)I−1 = det(h)h
−1

(a) (3.20)

It is worth noting that the derivatives of h and h give different results in general (∂h(a) h(b) =

ba) which makes the stress-energy tensors for certain fields lose symmetry. Such examples can
be seen for Dirac-fields in [18].

Finally, the derivative can be extended for bivector-valued linear functions in a similar
fashion:

∂Ω (a)〈Ω(b)M〉 = a · b〈M〉2

∂Ω (b),a〈c · Ω(d)M〉 = a · cb · d〈M〉2 (3.21)

3.1.2 Current work in Riemann-squared gravity

In [78] the authors find analytic background solutions in the conformal gauge for Riemann-
squared gravity. The equations have been translated from STA to tensor algebra to illustrate the
correspondence between the two languages. Considering we will have a similar approach we
give a brief account of their setup and results.

As we have previously mentioned we start from the action integral given by:

S =
∫

d4x
√
−g

( 1
12

RαβµνRβµνα + κLm

)
(3.22)

In this representation the gravitational degrees of freedom are the tetrad ha
µ and the connec-

tion ωab
µ . Although in STA h(a) has the purpose to ensure covariance under displacements, it

can be used to construct a vierbein (essentially an orthonormal tetrad).
In the coordinate frame eµ one constructs the vector gµ ≡ h−1(eµ) which gives the metric:

gµν ≡ gµ · gν (3.23)

This leads to a vierbein eiµ given by:

eiµ = gµ · γ
i (3.24)

The equivalent of ωab
µ is ω(a) ≡ Ωh(a).

In [18] the authors find the most general form for w(a) that is consistent with isotropy
and homogeneity. To obtain the equivalent in standard notation one needs to introduce three
gravitational degrees of freedom: the scale factor a(t), the potential φ(t) (which is ȧ in the
cosmological gauge) and the torsion contribution ψ(t). The only non-zero components are:
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ω101 = −ω110 =
φ

√
1 − kr2

ω132 = −ω123 =
ψ

√
1 − kr2

ω202 = −ω220 = rφ ω212 = −ω221 =
√

1 − kr2

ω213 = −ω231 = rψ ω303 = −ω330 = rφ sin θ

ω321 = −ω312 = rψ sin θ ω313 = −ω331 = sin θ
√

1 − kr2

ω323 = −ω332 = cos θ

Using the same approach as in STA (equation 3.8) one can define the Riemann tensor from
the ω’s by direct calculation. By assuming the matter content is pure radiation and substituting
the form of the Riemann tensor, the reduced action becomes:

S =
∫

dt
(
a(φ̇2 − ψ̇2) +

1
a

(φ4 − 6φ2ψ2 + ψ4 + 2kφ2 − 2kψ2 + k2) +
κ

3
a3ρ

)
(3.25)

Under rescaling and reparametrisation a transforms as the inverse of an einbein and thus is
an arbitrary function that can be chosen for convenience. To simplify the equations of motion
it will be considered unity, i.e. choose to work in the ‘conformal’ gauge. In this gauge the
analytic solutions for the general Euler-Lagrange equations are given in terms of Weierstrass
functions. In order to simplify the equations torsion can be turned off (set ψ = 0) which leads
to:

κ

2c0
ρ = H2 +

c0
2
+

k
a2 , (3.26)

where c0 was introduced as a constant of integration. By redefining ρ the above equation
becomes the standard FRW equation with a cosmological constant c0

2 . This suggests that the
cosmological constant occurs naturally.

When further simplifying by setting k = ρ = 0 one obtains two solutions for H: H =

constant (de Sitter space) and H = 1/(2t) (a simple big bang model). Prompted by this result
the authors investigate how to recover the simple big bang solution from the general solution.
An interesting effect is found when the solution includes some initial torsion: the initial big
bang singularity is removed and the evolution is made entirely finite.

By looking at the perturbed regime we hope to improve our understanding of the results
presented in [78]. The perturbed cosmological parameters will be affected by the free-
propagating torsion, so by looking at how they change we could gain a significant insight in the
behaviour of the torsion field.
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3.2 Perturbation theory in Flat-Λ cosmology

In order to find the unique features of the pure radiation Riemann-squared model, we use the
standard pure-radiation model as reference. For clarity we will write this section in standard
GR and then link to the work conducted in GA in the following section. We start by giving a
full account on how to obtain the perturbed field equations in the general form (by following
the standard prescription presented in [80], Chapter 8) and then specialise to the pure radiation
flat- Λ universe.

As advertised in [81] we choose to conduct our analysis in the conformal-NewtonianGauge.
In this gauge the linearised equations take a simpler form since there are no residual gauge
modes. We impose the notation:

ds2 = a2 ((1 + 2Ψ )dτ2 − (1 − 2Φ)δi jdxidx j ), (3.27)

where Ψ and Φ are the amplitudes of the metric perturbations in the conformal-Newtonian
coordinate system.

Perturbed Energy-Momentum Tensor

For a homogeneous and isotropic universe we know that the Energy-Momentum Tensor
(EMT) takes the form:

T
µ

ν = (ρ + P)U
µ
Uν − Pδµν , (3.28)

where we use the overline notation to denote the unperturbed quantity. By writing Π µ
ν as the

anisotropic stress, the perturbed part of the EMT becomes:

δTµν = (δρ + δP)U
µ
Uν + (ρ + P)(δUµUν +U

µ
δUν) − δPδµν − Π

µ
ν (3.29)

By looking at this expression we can note that δU is the generator of energy flux (T0
j ) and

momentum density (T i
0). In order to compute δU we recall the standard result:

gµνUµUν = gµνU
µ
U
ν
= 1 (3.30)

⇒ δgµνU
µ
U
ν
+ 2UµδUµ = 0 (to first order) (3.31)

For a comoving observer U
µ
= 1

a δ
µ
0 . Thus we find that U takes the form:

Uµ =
1
a
(
1 −Ψ, vi

)
, (3.32)

where vi ≡ dxi

dτ is the coordinate velocity.
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Using this result we can find from equation 3.29 the components of the EMT:

δT0
0 = δρ

δT i
0 = (ρ + P)vi

δT0
j = −(ρ + P)vj

δT i
j = −δPδij − Π

i
j

EMT conservation

Before we proceed to find the linearised evolution equations we should note the restrictions
on ρ and P under the pure-radiation and Λ scenario:

ρ = ρr + Λ, P = Pr − Λ =
1
3
ρr − Λ

δρ = δρr, δP = δPr =
1
3
δρr

From the conservation of the EMT we can find the continuity and Euler equations. The
conserved quantity takes the form:

∇µTµν = ∂µTµν + Γ
µ
µαTαν − Γ

α
µνT

µ
α = 0 (3.33)

The Christoffel symbols can be found directly from the definition in terms of the metric:

Γ
µ
νρ =

1
2
gµλ

(
∂νgλρ + ∂ρgλν − ∂λgνρ

)
(3.34)

From ∇µTµ0 we can find the continuity equation. By looking at the zeroth order components
we recover the background continuity equation:

ρ′ = −3H (ρ + P), (3.35)

where the differentiation is made with respect to conformal time andH ≡ a′

a .
The first order component reads as:

δ′ +
4
3

ρr
ρr + Λ

(
∇ · v − 3Φ′

)
+ 4H

Λ

ρr + Λ
= 0 (3.36)

As a possible physical interpretation the term containing ∇ · v accounts for the local fluid
flow due to peculiar velocity, the term containingΦ′ provides the change in density caused by
the perturbation to the local expansion rate, and the final term adds an extra dilution from the
background expansion.
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From ∇µTµi we can find the Euler equation:

v′ = −
1
4
∇δρr
ρr
− ∇Ψ (3.37)

Thus the rate of change of the velocity is given by the pressure gradient (the first term) and
the gravitational infall (∇Ψ ).

Einstein’s equations

We derive the final evolution equations from Einstein’s equations, which have the same
structure as in the unperturbed case:

δGµν = 8πGδTµν (3.38)

We start by looking at the equation corresponding to the i j-component, which provides
a constraint for the gauge potentials in our setup. In a pure-radiation universe there is no
anisotropic stress and thus the equation can be written as:

∂<i∂j> (Φ −Ψ ) = 0 ⇒Φ =Ψ . (3.39)

After rewriting the equations in terms of only one potential, we find that the zeroth order
part of the 00-component recovers Friedman’s first equation and the first order part gives:

∇2Φ = 4πGa2ρδ + 3H (Φ′ +HΦ) (3.40)

Furthermore, by assuming the perturbations decrease at infinity the expression from the
0i-component can be integrated to obtain:

Φ′ +HΦ = −4πGa2(ρ + P)v, (3.41)

We derive the new form for Poisson’s equation by combining the above equation with
equation 3.40:

∇2Φ = 4πGa2(ρδ − 4H ρrv) (3.42)

In order to find the final equation we look at the trace-component. As expected, at zeroth
order we recover Friedman’s second equation and at first order we obtain a new equation,
namely:

Φ′′ + 3HΦ′ + (2H ′ +H 2)Φ =
4πG

3
a2δρr (3.43)
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We can now find a "master”-equation forΦ from equations 3.40 and 3.43 that can be solved
in Fourier Space:

Φ′′ + 4HΦ′ + (2H ′ + 2H 2)Φ −
1
3
∇2Φ = 0 (3.44)

The evolution of the scale parameter

Before we proceed to solve the equation forΦ we need to understand the behaviour of a for
a pure radiation model. For t defined as coordinate time it can be easily shown that

( da
dt

)2
= H2

0

(Ωr,0

a2 + ΩΛ,0a2
)
, where Ωr,0 + ΩΛ,0 = 1, (3.45)

leads to an expression for t as an integral of a:

t =
∫ a

0

a

H0

√
1 − ΩΛ,0 + ΩΛ,0a4

da. (3.46)

This integral can easily be solved by using the substitution y2 ≡
ΩΛ,0

1−ΩΛ,0 a4 and assuming
that ΩΛ,0 is positive:

t = sinh−1
(
a2

√
ΩΛ,0

1 − ΩΛ,0

)
(3.47)

Moving back to conformal time we can find:

τ(a) = 2
∫ a

0

(
b4 +

1 − ΩΛ,0
ΩΛ,0

)− 1
2
db, (3.48)

From equation 3.47 it is transparent that the epoch of equality can be reached when:

aeq =
(1 − ΩΛ,0

ΩΛ,0

) 1
4

(3.49)

It follows that under the transformation a 7→ a2
eq/a:

τ(aeq) = 2
∫ ∞

aeq

(
b4 +

1 − ΩΛ,0
ΩΛ,0

)− 1
2
db = τtotal − τ(aeq), (3.50)

which implies that the energy densities are equal at the midpoint in the conformal time evol-
ution. It is convenient to fix the scaling of a by requiring aeq = 1. Under this scaling a

becomes symmetric about the midpoint and antisymmetric under the transformations a 7→ 1/a
and τ 7→ τtotal − τ.
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Solution for the Newtonian potential

Under the new scaling it becomes convenient to write equation 3.44 in terms of a. By
moving to Fourier space and writing k = K

√
Λ we find the equivalent equation:

a(1 + a4)Φ′′ + 2(3a4 + 2)Φ′ + a(4a2 + K2)Φ = 0, (3.51)

whereΦ′ now denotes the derivative with respect to a.
In order to find the initial conditions we requireΦ to be analytic as a 7→ 0 (which must be

true consideringΦ is the Newtonian Potential) and thus can be written as a series of a for small
a:

Φ = aα
∞∑
i=0

ciai (3.52)

By using this form in equation 3.51 we find that α can be 0 or negative. We cannot accept
Φ 7→ ∞ since it would violate the conditions for linearisation so we have only one possible
linear mode:

Φ(a) = c0

(
1 −

K2

10
a2 + ...

)
(3.53)

Thus we need to solve equation 3.51 under the initial conditions that Φ(a 7→ 0) = 1 and
Φ′(a 7→ 0) = 0 - we can just set c0 = 1 without loss of generality.

The most general solution can be identified as a multiple of a Heun-function:

Φ(a) = (1 + a4)
1
4 exp

(1
2

tan−1(a2)
)
HeunG

(
− 1,

1
4

(5 − iK2), 1,
5
2
,

5
2
,

1
2
, a2i

)
(3.54)

Currently there is significant research ongoing for a better understanding of Heun-functions,
a class of functions that despite being very popular in modern physics are not very well doc-
umented. Although several programming languages can identify Heun-functions as solutions
to differential equations, there are considerable issues when using them - such as the inability
to accurately compute (higher) derivatives or the incapability to describe the solution on the
full domain. At an analytic level significant work has been made to find integral forms to
Heun-functions and several representations have been discovered for special cases. For our
form there is an available representation which can be found by following the work in [82]:

Φ(a) =
3
√

1 + a2K2 + a4

a3K
√

K4 − 4
sin

(
K
√

K2 − 4ψ(a)
)
, where

ψ(a) =
∫ a

0

b2
√

1 + b4(1 + b2K2 + b4)
db
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The computational solution for Φ can be seen in Figure 3.1, where we have chosen the
normalised wavenumber to take the value K = 10. This is a representative plot for the
behaviour of Φ for any value of K : a solution that after a short period of slight oscillation
decays away.

Figure 3.1: Newtonian potential as a function of scale factor for normalised wavenum-
ber K = 10

Other cosmological parameters

After finding the value for Φ it is straightforward to find the evolution for the velocity
perturbation and the density perturbation. By rewriting equation 3.42 in terms of a we find the
equation for v:

v =

√
3

2
aK

√
1 + a4(Φ + aΦ′) (3.55)

Similarly from equation 3.43 we obtain the equation for δ:

δ = −2(1 + a2K2 + a4)Φ − 2a(1 + a4)Φ′ (3.56)

When solved with respect to cosmic time, both solutions oscillate initially and then “freeze-
out”. By looking at high values for t one can notice that the solutions do not depart visibly from
the values already reached at about t = 10.
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Figure 3.2: Perturbations with respect to cosmic time

A different behaviour can be observed in the evolution with respect to conformal time (τ),
where the perturbations are regular-looking sine waves that do not decay. It can easily be seen
that the velocity perturbation is phase-orthogonal to the density perturbation as expected from
3.37. We can show from 3.50 that for Λ=1 the total elapsed conformal time is

τtotal =
Γ
( 1

4
)
Γ
( 5

4
)

Γ
( 1

2
) ≈ 3.52135, (3.57)

and thus our representation in Figure 3.3 is confined in this range.

3.3 Perturbation Theory in Riemann-squared Gravity

In order to find the perturbed linear equations in Riemann-squared gravity we employ the
theoretical approach presented in [81]. To maintain consistency with our previous work we
choose to work in the conformal Newtonian gauge which has the attractive feature of not having
residual gauge modes. Unlike in Section 2 where we have shown that the lack of anisotropic
stress implies the potentials are indistinguishable, in this case we will keep both potentials and
write:

ds2 = a(τ)2 ((1 + 2Ψ (τ, x))dτ2 − (1 − 2Φ(τ, x))δi jdxidx j ) (3.58)
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Figure 3.3: Perturbations with respect to conformal time

Setup for the field equations:

We start by stating the recipe that leads to field equations. As in the unperturbed case, we
encode the information from the metric in the vectors gµ ≡ h−1(eµ) that satisfy gµν ≡ gµ · gν :

g0 = a(τ)
√

1 + 2Ψ (τ, x)γ0

gi = −a(τ)
√

1 − 2Φ(τ, x)γi

In order to compute the Ω’s (and respectively the ω’s) one uses the ‘dual’ definition of the
connection as prescribed in [18] Appendix C. From a "geometric” point of view, the connection
can be written as a function of the covariant derivative as

Γλµν ≡ gλ · (Dµgν),where Dµ ≡ gµ · D = ∂µ + ω(gµ) × . (3.59)

The connection also ‘stores’ the structure of the spacetime and thus needs to account for
the metric (the Christoffel symbol) and torsion (the contorsion tensor Kν

λµ) contributions:

Γνλµ =
{}ν
λµ − Kν

λµ (3.60)
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The contorsion tensor is defined from the torsion tensor (Sνλµ) as :

Kν
λµ = −Sνλµ + Sλνµ − Sνλµ (3.61)

We proceed by defining the torsion bivector S by using the following ansatz - although this
might not be the most general form it produces consistent field equations which suffices for our
current purposes:

Si = T1(γi + 3γ0γiγ0) + T2(γi − 3γ0γiγ0) + FF (τ, x)γ0γi, (3.62)

where Ti are two general first order vectors :

T1 =

3∑
i=1

GGi (τ, x)γi , T2 =

3∑
i=1

Ui (τ, x)γi (3.63)

and FF is a general function.
It is interesting to note that there is no protraction (∂a ∧ (S · a) = 0), but there is a non-zero

contraction (∂a · (S · a)) that needs to be accounted for - the contraction will appear in the ω’s.
Using this form of torsion one can find theω’s by direct substitution in the above equations.

The field equations

In Riemann-squared gravity the scale-invariant gravitational Lagrangian takes the form:

LG =
1
4

deth−1R (∂b ∧ ∂c) · R (c ∧ b) (3.64)

Before we proceed it is worth showing the invariance of the Lagrangian. Local changes of
scale are determined by:

ha 7→ e−α(x) ha, Ωa 7→ Ωa, (3.65)

where α is a function of position.
By using its definition, it is easy to see that the field strength transforms as:

Rab 7→ e−2αRab (3.66)

So all quadratic terms in Rab pick up a factor of e−4α under scale changes (said to have
weight 4). Similarly it can be shown that deth−1 has weight (-4) so the Lagrangian has weight
0.

In any gauge field theory, in order to find the field equations one needs to vary the Lag-
rangian with respect to the gauge fields, in this case h and Ω. This approach enables us to find
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the form of the stress-energy tensor (SET) and the Ω-equation. We then proceed to determine
the density perturbations and the potentials as we have done in Section 2 .

Finding the stress-energy tensor equations

The covariant gravitational SET is given in terms of the variation of the gravitational
Lagrangian with respect to the position gauge:

det(h)∂
h(a)

(
LGdet(h)−1) = T h−1(a) (3.67)

Since the ∂ operator satisfies Leibniz’s rule, we need to find expressions for ∂
h(a)deth−1

and for ∂
h(a)R (∂b ∧ ∂c) · R (c ∧ b).

The first component can be obtained in a straightforward manner by modifying equation
3.20:

∂
h(a)deth−1 = −deth−1h−1(a) (3.68)

By using the definition of the covariant Riemann tensor 3.9 and the definition of the covariant
vector derivative for b 3.7 one can write:

R (b ∧ c) = R(h(b) ∧ h(c)) = b · h(∂d)R(d ∧ h(c)) (3.69)

From equation 3.17:

∂
h(a)b · h(∂d) = a · ∂d (b) (3.70)

Similar results can be obtained if we do the same calculations for c. By using standard
algebra manipulations we can write:

∂
h(a)R (b ∧ c) · R (∂c ∧ ∂b) = 2[bR (h−1(a) ∧ c) + cR (b ∧ h−1(a))] · R (∂c ∧ ∂b)

= 4∂bR (h−1(a) ∧ ∂c) · R (c ∧ b)

From equation 3.67:

TG (a) = ∂bR (a ∧ ∂c) · R (c ∧ b) −
1
4

aR (∂b ∧ ∂c) · R (c ∧ b) (3.71)

It is worth noting that the SET is traceless (∂a · TG (a) = 0), as expected from the scale
invariance of LG .

For the background solution one obtains:



84 Chapter 3. Riemann-squared Gravity

TG (γ0) =
6ä(τ)
a(τ)7

(
a(τ)ä(τ) − 2ȧ(τ)2)

TG (γi) = −
TG (γ0)

3

The relationship between TG (γ0) and TG (γi) is not surprising considering the pressure
aligns with the density in the radiation dominated case (ρ = P/3). In the case where a ∝ τ, the
solution for the above equation corresponds to empty matter. This implies that for a solution
to exist it is essential that the cosmological constant is introduced. In the unperturbed case the
authors show that the cosmological constant occurs naturally in equation 3.26 and we further-
more believe it is a crucial trait of Riemann-squared gravity.

The Ω-equation

The general Ω-equation is given by:

∂Ω (a)L = ∂b · ∇[∂Ω (a),bLG] (3.72)

We start by looking at the LHS of the equation. From the form of R in terms of Ω:

R(c ∧ d) = c · ∇Ω(d) − d · ∇Ω(c). (3.73)

We notice that ∂Ω (a)
(
(Ω(c) × Ω(d)) · B

)
(where B will be replaced by the Riemann tensor

in future computations) is the component we need to look at.
By definition,

∂̇Ω (a)
(
(Ω̇(c) × Ω(d)) · B

)
=

1
2
∂Ω (a)〈Ω̇(c)Ω(d)B − Ω(d)Ω̇(c)B〉 (3.74)

From equation 3.21:

∂̇Ω (a)
(
(Ω̇(c) × Ω(d)) · B

)
= a · cΩ(d) × B (3.75)

⇒ ∂Ω (a)
(
(Ω(c) × Ω(d)) · B

)
= Ω(a · (c ∧ d)) × B (3.76)

It is convenient to change c 7→ h(∂c) and d 7→ h(∂d) so we actually use R (∂c ∧ ∂d) and set
B = R (c ∧ d):

⇒ deth ∂Ω (a)LG =
1
2
Ω(a · h(∂b ∧ ∂c)) × R (c ∧ b) (3.77)

By using the identity:

a · h(∂b ∧ ∂c) = ∂d ((d ∧ a) · h(∂b ∧ ∂c)) (3.78)
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⇒ deth ∂Ω (a)LG = Ω(∂d) × R (h(d ∧ a)) (3.79)

For the RHS part start by noting that for a general bivector B:

∂Ω (a),b
(
R(c ∧ d) · B

)
= ∂Ω (a),b〈c · ∇Ω(d)B − d · ∇Ω(c)B〉 (3.80)

From equation 3.21:

⇒ ∂Ω (a),b
(
R(c ∧ d) · B

)
= (a ∧ b) · (c ∧ d)B (3.81)

As previously, for c 7→ h(∂c) and d 7→ h(∂d), set B = R (c ∧ d) to get:

deth ∂Ω (a),bLG =
1
2

(a ∧ b) · h(∂c ∧ ∂d)R (d ∧ c) = R (h(a ∧ b)) (3.82)

To introduce these results in the general Ω-equation 3.72 we write it as:

deth ∂Ω (a)LG = ∂b · ∇
(
deth ∂Ω (a),bLG

)
− ∂Ω (a),bLG∂b · ∇deth (3.83)

By defining a vector (which can be shown to be equal to the torsion contraction) U ≡
deth ∂b

(
h(∂b)deth−1) and employing our previous results, the above equation can be written

in the elegant form:

ḊbṘ (h(∂b) ∧ h(a)) + R
(
(D +U ) ∧ h(a)

)
= 0 (3.84)

General solutions from the field equations

The SET-equations and Ω-equation form the full linearised evolution equations. In order
to obtain the constraints for the general functions that were used to define torsion one works in
Fourier space. The previously defined variables take the form:

Φ(τ, x) = Φ(τ)eik·x

Ψ (τ, x) = Ψ (τ)eik·x

FF (τ, x) = FF (τ)eik·x

GGi (τ, x) = −i
ki
k

GG(τ)eik·x

Ui (τ, x) = −i
ki
k

U (τ)eik·x

vi (τ, x) = −i
ki
k

V (τ)eik·x
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The relevant physical quantities can be expressed in STA as:

non-relativistic velocity: vnon ≡ v1(τ)γ1 + v2(τ)γ2 + v3(τ)γ3

SET: T0 ≡
(
δρ(τ)γ0 + (ρ(τ) + P(τ))vnon

)
eik·x

Ti ≡
(
− δP(τ)γi + (ρ(τ) + P(τ))(γivnon)γ0

)
eik·x

In a radiation-dominated universe the following relations hold:

δρ(τ) ≡ δ(τ)ρ(τ) (the definition of the density contrast)

P(τ) =
1
3
ρ(τ) (the equation of state)

⇒ δP(τ) =
1
3
ρ(τ)δ(τ)

For the background solution one finds from the SET:

ρ0 = ρ(τ) =
3β

4πa7 ä(aä − 2ȧ2) (3.85)

and from the Ω-equation:

Ḧ = −3HaḢ (3.86)

Confident we have the right general equations in order to obtain the cosmological quantities
we are left to play a game of finding the right substitutions. We will give an account of all the
steps, but we will not write partial forms unless they are essential in later applications.

We start by finding a relation forΨ from the SET-equations:

Ψ (τ) =
a

k (aH2 + Ḣ)
(
2ḢU + kΦH2 − 4ḢGG − 2aUH2 − 2aGGH2) (3.87)

We substitute the new form in the remaining SET and Ω-equations. From the new Ω-
equation we can find coupled differential equations for GG (first order) andΦ (second order).
Using these relations we modify the Ω-equation and find a form for GG.

A different way to find GG is to use a relation for Ψ̇ from the Ω-equation:

Ψ̇ = −
1
k
(
4aĠG − 2a2HU + kaHΨ − kaFF + kΦ̇ + kaHΦ + 4a2HGG − 2aU̇

)
(3.88)

We can use this substitution to change the Ω-equation and find two coupled second order
differential equations for GG and Φ. These can be used to further change the Ω-equation. In
order to modify the SET equations we need to use the form we have previously found for Ψ
(equation 3.87) and the equations for Φ̈ and G̈G.
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From the new SET-equations we can find an equation for Φ̇ and:

δ(τ) = −
4

k (2aH2 + Ḣ)
(
2V aH3 − 4aGGH2 + 2aUH2 − 2HĠG + V HḢ

+4HU̇ − kHFF + 2ḢGG − 4aUḢ
)

(3.89)

When we require consistency between the two methods we find a simpler form for GG from
comparing the derivatives ofΨ found from the different approaches:

GG =
1

6aH
(
aV H2 + 12aUH − 3kHΦ + V Ḣ

)
(3.90)

We can proceed to find a form for V from the SET-equations by substituting the previously
found identities for Φ̈, G̈G,Ψ , Φ̇, δ. By constructing a first order differential equation for GG

(by comparing the form we have found for GG in the first method and the new form) we can
find a simpler form for V :

V̇ = −
1

H (4aH2 + Ḣ)
(
3a2H4V + 3akH3Φ − 3akH2FF + 12aH2U̇ − Ḣ2V

)
(3.91)

Similarly, we can find that U solves:

U̇ =
1

24aH2
(
6H4a2V + 72H3a2U − 42kaH3Φ + 19aH2V Ḣ + 6kaH2FF

+18aHUḢ − 9kHΦḢ + 6V Ḣ2) (3.92)

Substituting this form for U̇ we can find more appealing forms for δ, Φ̇ and V̇ :

δ(τ) = −
2

3kH
(
7aH2V + 18aHU − 15kHΦ + 8ḢV

)
(3.93)

Φ̇ =
a

2k
(
aH2V + 18aHU − 9kHΦ + 2kFF + 2ḢV

)
(3.94)

V̇ = −
1

2H
(
3aH2V + 18aHU − 9kHΦ + 4V Ḣ

)
(3.95)

Using the above equations and the further derivatives of GG from equation 3.90 we can
finally reach a constraint for FF:

FF = −
1

18kaH2
(
14a2H4V + 288a2H3U − 162kaH3Φ + 151aH2V Ḣ + 8k2H2V

+234aHUḢ − 117kHḢΦ + 78Ḣ2V
)

In order to obtain first order differential equations for Φ and V we eliminate U by using
equation 3.95. By first solving Φ̇ for V and then substituting the result into the V̇ equation one
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finds a second order differential equation forΦ. Since the equation expressesΦ only in terms
of H (τ), a(τ), k and the constant GG, it becomes the equivalent of the “master”-equation we
have found in Section 2.

We have finally reached a form that can be used to find Φ by imposing constraints on the
background cosmology. We start by looking at the simplest case, which corresponds to a de
Sitter universe.

de Sitter cosmology

In a de Sitter cosmology the dynamics of the universe are dominated by the cosmological
constant (Λ) that sets the expansion rate:

H0 = H, a(τ) = −
1

H0τ
(3.96)

We start by assuming GG = 0. The “master”-equation takes the simple form:

Φ̈(τ) = −
99k2Φ(τ)

τ2 − 16Φ(τ)k4 − 32k2 Φ̇
τ + 44Φ(τ)

t3

(11τ2 − 16k2)
(3.97)

The independence from H0 is an interesting feature of the equation - at a first glance it might
seem to be in contradiction with our previous claim (we have stated we required Λ in order to
have consistent field equations). This is not the case since the evolution of τ is dependent on Λ
and thusΦ will inherit this dependence. The equation has the solution:

Φ =
C1

k3τ3
(
4k2τ2 cos kτ−11 cos kτ−11kτ sin kτ

)
+

C2

k3τ3
(
11kτ cos kτ+4k2τ2 sin kτ−11 sin kτ

)
(3.98)

To find the unknown constants we can apply a series expansion at τ = 0:

Φ(τ) = −C1

( 11
k3τ3 +

3
2kτ
+

5kτ
8

)
+ C2

(1
3
−

3k2τ2

10

)
+O(τ3) (3.99)

It is straightforward to see that in order to have a finite potential we need to set C1 = 0. The
solution oscillates and then decreases at large τ as exhibited in Figure 3.4.

When we keep GG a non-zero constant and solve the “master”-equation we obtain:

ΦGG (τ) =Φ(τ) −
2GG
kH0τ

(3.100)

In order to have a finite potential at τ = 0 we need to restrict GG = 0. Considering that
a non-zero GG does not add physical content to the equations (just acts like a translation) this
restriction is not of consequence.
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Figure 3.4: Φ Potential for de Sitter for GG=0

It is worth noting that in a de Sitter setup the Future Conformal Boundary occurs at τ = 0
(from equation 3.96 we can easily see that a → ∞ as τ → 0). In our model we have been able
to use a series expansion around the origin which implies that the boundary might not be as
essential as we might have previously thought. This feature will be important if we proceed to
investigate gravitational waves under the de Sitter setup.

"Flat-Λ cosmology

We now look at the setup we have discussed in Section 2: a pure radiation flat - Λ universe
that starts with a big bang and ends with an asymptotic de Sitter phase.

Under this setup we can show that the background equation for H in terms of a is given by:

aH (a)∂aH (a) −
2Λ
3
+ 2H (a)2 = 0, (3.101)

and has the solution:

H (a) =
1

3a2

√
3a4Λ + 3Λ. (3.102)

Now we can obtain the “master”-equation in terms of a. From the chain rule:
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∂τΦ = a2H (a)∂aΦ

a2H (a)∂a
(
a2H (a)∂aΦ

)
− ∂ττΦ(a) = 0

The desired equation can be found by plugging in ∂aH (a) from equation 3.102 and H (a)

from equation 3.103 into the “master”-equation for ∂ττΦ(a) and then substituting this result
into the above equation. Starting withΦ we can now obtain the cosmological parameters.

FindingΦ

From the “master”-equation we can proceed to find an analytic solution for Φ similar in
form to the solution in the standard model (equation 3.55). In order to find the constants of
integration we find the series expansion as a → 0 and demand it to have a regular solution at
the origin. By substituting k = K

√
Λ we obtain:

Φ(a) =
1
a3

(√
P1(a, K ) sin

(√
P2(K )I(a, K )

))
, (3.103)

where

P1(a, K ) = 144K4a8 + 99K2a10 + 121a12 − 209a8 − 105a4 + 144K4a4

−558K2a6 + 315K2a2 + 225

P2(K ) = 3K2(3K2 − 2)(3K2 + 2)

I(a, K ) =
∫ a

0

b2(−48K2b6 + 11b8 − 48K2b2 + 434b4 − 45)
√

b4 + 1P1(a, K )
db (3.104)

We have seen in the standard model that the Newtonian potential vanishes as a → ∞. Is
this the case forΦ?

Ideally we would like to find a discrete set of values for K for which Φ does not blow up
as a → ∞. Solving such an equation is very challenging analytically, but a high-precision
computational solution is possible for finite, large a. By looking at large values of a we notice
that the behaviour ofΦ in terms of K is dictated by the oscillating component and thus we are
interested in solving:

sin
(√

P2(K )I(a, K )
)
= 0 as a → ∞ (3.105)

When we plot Φ at this boundary we observe that as we keep increasing a the amplitude
grows significantly whereas the roots change position very slightly. This indicates that the roots
are stable as a → ∞ under the right error-tolerance.

From Figure 3.5 we can see that there are a number of interesting properties. We start by
noticing there is a single solution between any two integers and the evolution is regular. This
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Figure 3.5: Φ for a = 106. As it can be seen on the boundary given by large a the
potential evolves in a regular sinusoidal that intersects the horizontal axis exactly once
between any two integers.

is particularly good for the accuracy of root finders that are based on n-point interpolation as is
the case for Maple.

Since the sinusoid is very steep we expect that if we choose a value for K slightly different
than the root we will have a divergent potential. This behaviour is illustrated in Figure 3.6
where we have plotted the solution for K = 3.8 and K = 3.9.

Considering the roots change in position when a changes value can we actually state that
there exists a K for which the potential converges? For a finite a we can keep increasing the
precision until satisfactory results are obtained (we are mostly interested in having a stable
solution). For instance by using K = 3.834972496003648953353689292052069075643 while
keeping 40 decimal places we can find a solution that does not diverge up to a = 1025. By
keeping more decimal places the solution improves (for 55 decimal places can improve to
a = 1081), but the computational cost is too high for our purposes. More importantly, using the
ODE interpolator package in Pytorch (via Autograd [83]) we can construct better convergence
checks and this solution is deemed stable. Thus we will need to keep in mind when looking at
the behaviour of the cosmological quantities that we are missing a very small fraction of the
time-span.

Possible solutions of Φ in terms of conformal time are shown in Figure 3.7 for values of
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a)

b)

Figure 3.6: Example of the evolution of theNewtonian Potential near a root a)Potential
in conformal time for K = 3.8b)Potential in conformal time for K = 3.9

K < 20. As it can be seen all the solutions oscillate and it seems that they cross the Future
Conformal Boundary without "noticing”. As we increase K an increase in frequency and
amplitude can be seen (as expected from Figure 3.5). SinceΦ is dimensionless we can always
normalise to start fromΦ unity so we are not worried aboutΦ’s initial value.
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a)

b)

Figure 3.7: Example of the evolution of theNewtonian Potentials in cosmic/conformal
time a) Potentials in conformal time for K ≈ {3.8, 5.2, 8.3, 10.4, 14.1, 16.2, 19.4}
b)Potential for K = 3.834972496003648953353689292052069075643

Wehave found an infinitely countable set of discrete values for K that produce non-divergent
values forΦ as a → ∞. If this feature persists in a more general setup (one that includes matter),
we expect some interesting changes from the predictions of the standard cosmological model.
For instance, when looking at the CMBwe know that for low k the power spectrum departs from
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a power-law and several authors have discussed the merits of a cutoff point. In our toy-model
the smallest admissible value for k is k ≈ 1.89 which produces an interesting limit. Although
we have not focused on this line of work (we are currently interested in the radiation-only case),
we acknowledge the importance of the possible results and leave it for consideration at a later
date.

Going back to our model, we proceed to find the other cosmological quantities. Since the
other quantities inherit Φ’s behaviour at the boundary we expect to find sensible solutions for
Ψ , δ and V .

Finding the other cosmological parameters

By setting GG = 0, from equation 3.90, U can be expressed in terms of V as:

U =
1

12aH
(
3kHΦ − ḢV − aH2V

)
(3.106)

With respect to conformal time equations 3.102-3.103 become:

H2 =
Λ

3

(
1 +

1
a4

)
Ḣ = −

2Λ
3a3

and can be used to write U independently of H .
Now the constraint equation for FF can be written in terms of V and Φ. By rewriting

equation 3.95 in terms of a and substituting FF, V can be expressed in terms ofΦ and ∂aΦ:

V (a) =
108K (a4 + 1)a4 ( 1+a−4

3
) 1

2

48a6K2 − 11a8 + 48K2a2 − 434a4 + 45

(
Φ(a)

(11
4

a3

a4 + 1
−

15
4

1
a(a4 + 1)

)
− ∂aΦ

)
(3.107)

One can find an equation forΨ and δ in terms of V andΦ from equations 3.88 and 3.94.
We start by looking at the Newtonian Potentials. Dissimilar from the standard model where

in the absence of anisotropic stress the two potentials are indistinguishable, in this theory the
difference can be seen in Figure 3.8. Ψ dominates on all scales and the fact that it vanishes
for large t and behaves as a regular sinusoidal wave in conformal time is encouraging. The fact
thatΦ does not tend to 0, but freezes out in cosmic time is an interesting feature.

As far as the perturbations are concerned, the behaviour is somehow different from the
standard model as it can be seen in Figure 3.9. The density perturbation freezes-out in cosmic
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a)

b)

Figure 3.8: Example of the evolution of theNewtonian Potentials in cosmic/conformal
time

time, but unlike in the case of the standard model it does not oscillate regularly in conformal
time. The velocity perturbation does oscillate regularly in conformal time, but does not freeze
out (it just vanishes) in cosmic time.

As it can be seen from the evolution of the cosmological quantities, in the Riemann-squared
theory we obtain results that are physically different from the standard model. This outcome
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a)

b)

Figure 3.9: Example of the evolution of the perturbations in cosmic/conformal time

is encouraging for future work especially since we have found that even in an overly simplified
setup torsion is required and can lead to new physics. In this work we have not used the most
general form for torsion and this could pose a problem for the validity of our results. In this
case the terms that include GG are significantly smaller, so we are hopeful that a non-zero time-
evolving GG would not change the interesting features that we have come across. Furthermore
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later on in the chapter we will introduce a significantly different torsion profile that supports
our current results.

Effective anisotropic stress

From our results an immediate feature is that free-propagating torsion contributes to an-
isotropic stress. The effective scalar anisotropic stress defined as the difference between the
potentials and the anisotropy equation is given by:

Φ −Ψ ≡ Π (eff) (3.108)

In a source-free setup, under a regime dictated by General Relativity, this quantity vanishes
and therefore the inequality of the Newtonian potentials is a “signature” of the departure from
Einstein’s theory. Several authors have investigated whether this property is inherited by all
higher order gravity models and recent work led to the conjecture that suppressing the effective
anisotropic stress is impossible to achieve in realistic scenarios. The authors in [84] have
shown that in models with a single extra degree of freedom it is not possible to have no effective
anisotropic stress except in the GR limit. In more complicated cases they have found that it is
possible to cancel the contributions at the price of developing fatal singularities.

Thus by being able to measure accurately the anisotropic stress a clear direction will be
found as far as gravitational theories are concerned - a strong anisotropic stress would indicate a
modification of GR, whereas the absence of anisotropic stress would require strong fine-tuning.

Until such results are available several theoretical aspects can be considered and an inter-
esting result has been found in [85]. The authors claim that when anisotropic stress is sourced
by perfect-fluid matter perturbations at linear level, the propagation of gravitational waves is
modified.

3.4 Gravitational Waves

Inspired by their findings, the natural next step in our work is to consider gravitational waves
in the case of the simplified Riemann-squared gravity.

Several authors have discussed gravitational waves in the context of Gauge Theories and we
believe the following research is relevant to our future study: forms for torsion compatible with
PP-waves [86], exact vacuum solutions in three-dimensional gravity with propagating torsion
[87] and waves corresponding to AdS spacetime [88].
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3.4.1 An unfortunate choice of torsion

When exploring the current literature we have noticed that several authors have come to
the conclusion that modified gravity theories carry a certain signature, in particular that the
Newtonian Potentials are not equal. We have found that our study on Riemann2 radiation - Λ
cosmology respects this conjecture.

When we started looking at gravitational waves we quickly realised that the solutions we
were finding were unphysical. We start this study by tracing down the route of the problem in
order to better understand the impact of the choice of torsion that we employ. We will build the
motivation in standard notation so we can use several classical results and then revert back to
our setup, adjusted by the new findings. For simplicity we account only for pp waves. We start
from the ansatz that for an arbitrary polarization in Rosen representation the metric takes the
following form:

ds2 = −2dudv + S2(u)
(

cosh(B(u))
(
eA(u)dx2 + e−A(u)dy2) + 2 sinh(B(u))dxdy

)
. (3.109)

S represents the background factor and for this work we can just set it to 1 to recover
Minkowski space-time, otherwise S is zeroth order. B and A are both high order parameters
and to first order we find that the above metric reduces to a TT-gauge metric.

The full metric we will be working with takes the form:

ds2 = a2(τ)
(
(1+2εΨ )dτ2−(1−2ε (Φ−A))dx2−(1−2ε (Φ+A))dy2−(1−2εΦ)dz2−2εBdxdy

))
,

(3.110)
where we have changed from Rosen coordinates (x, y, u = t − z, v = t + z) to conformal
coordinates (τ, x, y, z).

Before we begin a few aspects should be noted. By ”switching off” Awe have only a ”cross”
polarization, by ”switching off” B we have only a ”plus” polarization and by ”switching off”
both we just recover the standard perturbed metric.

Since the gravitational wave does not carry any energy momentum (at first order at least),
the energy-momentum tensor (Gµν) will be given in its classical form. Considering we can
"switch off” the gravitational wave, the EMT should not inherit any new anisotropic stress.

We start by looking at specific Einstein coefficients:

G12 = −
ε

4a2

(
− 4a2∂x∂yΦ + 4a2∂x∂yΨ + 2a2∂zzB − 4ȧa∂τB + 8äaB − 4ȧ2B − 2a2∂ττB

)
(3.111)

G13 = ε∂x∂z (Φ −Ψ ) (3.112)

G23 = ε∂y∂z (Φ −Ψ ) (3.113)
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In the absence of anisotropic stress we find that we should keep the potentials equal and
obtain a constraint on B. This is consistent with the idea that we can switch off the ”cross”
polarization.

∂zzB − ∂ττB − 2H ∂τB − 2H 2B + 4
ä
a

B = 0 (3.114)

Under the equal potential setup one can find that the remaining non-zero Einstein coefficients
are:

G00 = 3H 2 + 2ε
(
∇2Φ − 3H ∂τΦ

)
(3.115)

G11 = H
2−2

ä
a
+ε

(
(∂ττ − ∂zz ) A + 2H 2 A + 2H ∂τA − 4

ä
a

A+8
ä
a
Φ+6H ∂τΦ+2∂ττΦ−4H 2Φ

)
(3.116)

G22 = H
2−2

ä
a
+ε

(
−(∂ττ − ∂zz ) A − 2H 2 A − 2H ∂τA + 4

ä
a

A+8
ä
a
Φ+6H ∂τΦ+2∂ττΦ−4H 2Φ

)
(3.117)

G33 = H
2 − 2

ä
a
+ ε

(
8

ä
a
Φ + 6H ∂τΦ + 2∂ττΦ − 4H 2Φ

)
(3.118)

Gi0 = 2ε
(
∂iτΦ +H ∂iΦ

)
(3.119)

From the Einstein equations we know that the Gii’s store the same information and thus we
now have a constraint on A. It is easy to notice that actually both A and B need to satisfy the
same equation, namely equation 3.114.

We have found a constraint equation that, if satisfied, lets the radiation evolve without
noticing the presence of gravitational waves. Any solution to equation 3.31 will describe a
viable representation for the gravitational wave.

We start by looking at Einstein’s coefficients. For the form of torsion we currently have
we find that Einstein’s coefficients are separable as in Section 3. We find that A (and B) must
satisfy the constraint:

∂ττA − ∂zz A + 2H ∂τA = 0 (3.120)

We can notice that the terms depending on Awhich generate the structure of equation 3.114
vanish. Looking at the ω’s we can easily see that the torsion terms cancel these contributions
at linear order (makes them second order).

For now assume that equation 3.120 is a viable constraint. When looking at the SET’s it is
easily noticeable that they are separable and thus a new constraint can be found. For A (and B)
one finds:

∂ττAaä − ∂ττAȦ2 + äȧ∂τA − ȧ2∂zz A = 0 (3.121)

By combining equation 3.114 and 3.120 one can find a solution for A.
By substituting the form of ∂zz A from 3.120 into 3.121, equation 3.121 becomes:
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(
Ḣ − H 2) (a2∂ττA + ȧa∂τA

)
= 0, (3.122)

which is equivalent to

∂τ (a∂τA) = 0 (3.123)

It can easily be seen that the only solution to 3.123 and 3.121 is A = C1z + C2, a function
independent of τ. Unfortunately this form for A is not complex enough to cater for viable
gravitational waves. Thus we need to change our torsion profile to be able to accommodate
gravitational waves and we will explore viable profiles in the following section.

3.4.2 A new form for torsion

As we are studying gravitational waves we will work directly with linearised versions for the
vierbein as presented in [18]. In this case, for a setup only in terms of t and z we can employ
the following notation,

gt (t, z) =
(

1
a(t)
+

C(t, z)ε
a(t)

)
et,

gx (t, z) =
(
−

1
a
+ ε

cos(2Θ0)T (t, z) − S(t, z)
a(t)

)
ex −

T (t, z) sin(2Θ0)ε
a(t)

ey,

gy (t, z) = −
T (t, z) sin(2Θ0)ε

a(t)
ex −

(
1

a(t)
+ ε

cos(2Θ0)T (t, z) + S(t, z)
a(t)

)
ey,

gz (t, z) = −

(
1
a
+
εU (t, z)

a(t)

)
ez . (3.124)

We start by setting up a more general form for torsion, S = [S0, S1, S2, S3] where

S0 = εG0(τ, z)σ3

S1 = ε
(
G1(τ, z)σ1 + F1(τ, z)Iσ2

)
S2 = ε

(
G2(τ, z)σ2 + F2(τ, z)Iσ1

)
S3 = εG3(τ, z)σ3. (3.125)

By using the same steps that we have previously described we find that despite the setup’s
cumbersome nature an ansatz solution can be found. We can immediately set G0 = G3 = 0 as
these are ‘longitudinal’ and form a separate sector that we can just discard. This simplification
leads to
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dF1
dτ

= −
I
(
3IF1 βH ′2 + 3H ′HG1 βk + aπδk

)
3H βH ′

, (3.126)

dG1
dτ

= −
1

3(H ′ + 4aH2)(2aH2 + H ′)H ′aβ

(
9βk2SH ′3 − 15H ′3HG1a2 β

−42H ′2G1H3a3 β + 6H ′2SH2ak2 β + 18IH ′3GF1ak β + 60IH ′2F1H2a2k β

−24H ′G1H5a4 β + 48IH ′F1H4a3k β

+2H ′πδa2k2 − 24H ′a2H4Sk2 β + 8H2a3k2πδ
)
, (3.127)

dS
dτ

= −G1a, (3.128)

dU
dτ

= −
aH ′G1 + 3IF1Hak + 3SHk2 + a2H2G1

H ′ + 4aH2 , (3.129)

dδ
dτ

= −
1

πa2(H ′ + 4aH2)

(
3H ′3G1aβ + 15H ′2G1H2a2 β

+3H ′2HS βk2 + 3I βHH ′2aF1k + 18H ′G1H4a3 β + 4πδa3H ′H

+6aH ′H3S βk2 + 6Ia2H3H ′βkF1 + 16πδa4H3
)
, (3.130)

C =
πδa2

3βH ′(2aH2 + H ′)
. (3.131)

By returning to the Ω-equations and we find an additional constraint,

− 6Ia2H2G1 + 6Ia2H2G2 + 10aF2Hk + 10aHF1k + 3Ik2G1 − 3Ik2G2 = 0. (3.132)

By introducing this constraint in the SET-equations we notice that there is a particular
solution that simplifies the setup considerably, namely G1 = G2 and F2 = −F1.

Before we proceed to investigate the full solution we briefly explore the case without torsion,
i.e.

a = −
1

H0τ
, H = H0,

F1 = G1 = F2 = G2 = G0 = G3 = 0. (3.133)
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From the SET-equations we find that the system reduces to

C = −S′t,

U ′′ =
S′k2t2 − k2St + S′′t + 2U ′ − 2S′

t
,

δ′ =
3H4

0 βt(k2St −U ′ + S′)
2π

. (3.134)

Interestingly, as we introduce this form for δ in the Ω-equations we find that it must vanish
and thus we do not have a viable setup. This is in fact unsurprising as it is consistent with our
belief from Chapter 2: any non-zero Weyl due to matter needs torsion.

Returning to our main equations, by working in terms of C and not δ we can simplify our
equations significantly. By direct manipulation it can be showed that the setup reduces to,

C ′ = −
3a2H2G1 + IaHF1k + SHk2 + aH ′G1

H ′ + 4aH2 , (3.135)

F ′1 = −
2IaH2Ck − F1H ′a + IHG1ka + IH ′Ck

aH
, (3.136)

G′1 =
1

a(H ′ + 4aH2)

(
4a3H3G1 − 8Ia2H2F1k + 4aH2Sk2 − 8H2ak2C

+5a2HG1H ′ − 6IaH ′F1k − 3SH ′k2 − 2H ′Ck2
)
, (3.137)

S′ = −G1a, (3.138)

U ′ = −
a2H2G1 + 3IF1Hak + 3SHk2 + aH ′G1

H ′ + 4aH2 . (3.139)

Now this system is fully defined and can even be taken in the de Sitter limit H = constant.
Thus we have reached a solution that accommodates gravitational waves.

Unsurprisingly when we returned to the initial setup we found that the new form of tor-
sion does not affect our profiles for pressure and density. In this setup we have employed
‘cosmological’-type torsion and we recover the same conclusions we drew in Chapter 2. As it
is self-propagating, it acts as a support field that does not interact with the matter sector. In this
work we chose to present both forms of torsion to account for the way our work progressed and
exemplify how we manipulate the torsion field.

3.5 Conclusion

In this Chapter we have looked at a pure Riemann2 Lagrangian that can only accommodate
radiation. As we have shown in Chapter 1, we can represent a Weyl2 Lagrangian starting from
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the Riemann in the hope that we can introduce matter. Although the attempt did not succeed
we found interesting forms for torsion and we decided to explore a ‘pure’ setup further.

Considering we do not have matter we used only ‘cosmological’-type torsion profiles. We
found an interesting density profile that does not oscillate regularly in conformal time and could
change our understanding of perturbations. One direct implication is that the power spectrum
is discrete in this setup. Proving convergence for numerical ODE solutions is not a simple task
even for well behaved functions, and in this case it was an obstacle. We hope that as the steep
ODE numerical solvers improve we will have a better handling of our solution and can look for
features in the discrete sample.

Finally, we wanted to prove that this theory accepts gravitational waves. In order to do so
we had to construct a new torsion profile. An important step was to isolate the effect of torsion
and figure out what components caused our solution to diverge. In our future work we will
further investigate this solution and add possible extensions.
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A new Lagrangian formalism for a
perfect fluid with spin

4.1 Introduction

“The ideal Weyssenhoff fluid is a continuous medium, the elements of which are characterised
(along with the energy and momentum) by the intrinsic angular momentum (spin) proportional
to the volume.” (Obukhov and Korotky [89])

In Einstein-Cartan-Kibble-Sciama theory (ECKS), torsion is fully generated by spin sources
that are established at the level of the Lagrangian [90]. In the 1970s there was the ‘second wave’
revival for torsion theories and several authors [41], [91], [92] have thoroughly investigated
cosmologies based on aWeyssenhoffmodel, as first introduced in [93], in the context of ECKS.

After extensive research it seemed that using this theory had mixed levels of success. It
offers an attractive alternative to inflation ( [43], [94], [40], [36]) as it predicts a big bounce
instead of a big bang and a significantly different mechanism for the early universe that seems
to solve various cosmological problems (such as the flatness and horizon problems as shown in
[43]). Furthermore as it has been shown that a static sphere of a Weyssenhoff fluid sources the
Kerr metric (to first order) in [95] it could naturally accommodate black holes. More exotic
claims such as “every black hole contains a new Universe” have recently been argued for by
Poplawski [96]. Several authors (such as [97] and [98]) have also investigated the effect on
rotation of the universe and found that the sense of rotation is flipped. In [99] the authors
looked at supernova Ia data to compare the predictions from a dust Weyssenhoff fluid with

105
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observations. They found that although the model could provide the correct rate of accelerated
expansion, it falls short on providing an alternative to Dark Energy.

In order to further explore the effects on the early Universe it is important to be able to define
theWeyssenhofffluid fromfirst principles, namely to construct a variational (Lagrangian) theory
for a spinning fluid inU4. The first serious attempts did not quite recover a perfect Weyssenhoff
fluid as discussed in, for example, [100], [101], [102]. Obukhov and Korotky [89] were the
first to construct a viable Lagrangian by refining the work of Smalley et al [103]. In short the
authors start from the ECKS action,

S =
∫

d4xh
(

1
2α

R̃ + Lm

)
, (4.1)

where α = 8πGc−4 is the Einstein gravitational coupling constant, h ≡ µ =
√
−g, R̃ = hµahν

b
R̃ab
µν

is the Riemann-Cartan curvature scalar and Lm = Lm(ha
µ, Γ̃

a
bµ
, φ) the matter Lagrangian for φ.

By variation with respect to ha
µ and Γ̃a

bµ
they find the equations of motion

R̃µa −
1
2

hµa R̃ = αTµa ,

Qµ
ab
+ 2hµ[aQb] = αSµ

ab
, where Qa is the torsion trace,

Tµa ≡
1
h
δ(hLm)
δha

µ
, the energy-momentum tensor and

Sµba =
1
h
δ(hLm)
δΓ̃a

bµ

, the tensor of spin. (4.2)

This equations lead to the generalisation of the special relativistic conservation law of total
angular momentum,

(∇̃α − 2Qα)Sαµν = T[µν], (4.3)

and the generalisation of the conservation law of the energy-momentum tensor,

(∇̃ − 2Qν)G̃ν
µ + 2Qα

µβTβα + Sναβ R̃αβµν = 0. (4.4)

Using the last two relations the authors generalise the initial formalism presented in [93].
The spin density is defined as a second-rank skew-symmetric tensor, Sµν = −Sνµ, such that the
spin pseudovector is spacelike in the fluid rest frame. This constraint is known as the Frenkel
condition Sµνuν = 0 (for uµ the 4-velocity).

‘Dust’ in the context of a Weyssenhoff fluid can be described by

Sµαβ = uµSαβ Tµα = uµPα, (4.5)
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where Pα is the 4-vector density of the energy-momentum. For neutral spinning matter, the
fluid if fully characterised in term of ε , the internal energy density, ρ, the particle density and
µi j , the spin density per particle. Obukhov and Korotky postulate that a viable Lagrangian can
take the form

Lm = ε (ρ, s, µi j ) −
1
2
ρµi jbµi (∇̃αbνj )u

αgµν + λ1∇µ (ρuµ) + λ2uµ∂µX + λ3uµ∂µs

+λab (gµνbµabνb − ηab), (4.6)

where the λi are the Lagrange multipliers, X the Lagrangian coordinate, bi the tetrad, gµν the
metric coefficients, ηµν the Minkowski metric coefficients.

The main difference to the previous attempts is that in this formalism (compared to [103])
the spin density vector is not linked to the third axis of the tetrad. This means that the ha

µ ,
Γ̃a
bµ
, λ’s, s, X , ρ, uµ, bi’s and µi j’s are independent dynamical variables. Thus they can be

constrained only after the Euler-Lagrange equations are obtained. By employing this formalism
the description of the Weyssenhoff fluid was recovered.

The authors show that the field equations from this Lagrangian can be portrayed in a more
convenient manner. The symmetric part can be expressed as the effective GR field equations
with extra spin terms and the antisymmetric part as GR spin field equations. Thus the system
becomes

Rµν −
1
2
gµνR = κT s

µν,

∇λ(uλSµν) = 2uρu[µ∇ |λ(uλSρ |ν]), (4.7)

where the effective stress-energy-momentum tensor of the fluid is defined as

T s
µν ≡ (ρs + ps)uµuν − psgµν − 2(gρλ + uρuλ)∇ρ[u(µSν)λ], (4.8)

for effective energy density and pressure given by

ρs ≡ ρ − κS2 + κ−1Λ, ps ≡ p − κS2 − κ−1Λ. (4.9)

Brechet et al [36] point out that the spin-density-squared terms contained in the effective
stress-energy-momentum tensor explain the behaviour at the early and late times of the universe.
As the spin contributions dominate at early times, but are insignificant later on, it should not be
surprising to see a significant impact on inflation and no effect on dark matter.

An important result for the understanding of the Weyssenhoff fluid, that was not proved
before [89], is regarding the conservation of spin. It can be shown that spin is conserved if
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and only if the fluid elements have no acceleration (i.e. aµ = uν∇̃νuµ = 0). This is particularly
relevant as it provides a filtering for cosmological models with a conserved Weyssenhoff fluid.

The formalism can be directly generalised for a charged spinning fluid. The proposed
Lagrangian takes the form,

Lm = L̃m +
1
4

FµνFµν + eρuµAµ −
1
2
χρbµi bνj µ

i jFµν, (4.10)

where L̃m is the Lagrangian for a neutral fluid, Aµ is the electromagnetic field with Fµν ≡

∂µAν − ∂νAµ, e is the charge of a fluid element of electrical current characterised by spin
density Sµν = − 1

2 ρbµi bνj µ
i j and χ is a constant (not necessarily e/2m).

The Euler-Lagrange equations remain unchanged for the λ’s, s and X and it turns out
that the rest of the equations are naturally extended. The conjugate of µi j , defined as ωi j

becomes the sum of angular velocity and of the magnetic field which leads to a new generalised
internal energy density ε = ε − 1

2 ρχµ
i jFi j . Another consequence is that the electric current

conservation ∇µ (eρuµ) = 0 is directly satisfied due to the particle conservation law.
In this Chapter we will develop a new Lagrangian based on a Weyssenhoff fluid that is

extended to include Dirac matter. One of the most attractive features of Geometric Algebra is
the way spin is represented (as emphasized in [18]). We will present our formalism in this
language as the setup will be considerably less complicated. We will start by presenting the
basic model introduced in [79] for a non-spinning relativistic fluid in order to exemplify how
Geometric Algebra works on a simpler representation. We will continue by directly extending
the model to a spinning fluid. We will discuss our model’s constraints and compare with the
literature (more precisely with [36] and [89]) at each opportunity. We will also try extend
the model to curved spacetime and link to [104]. Finally we present a possible problem that
becomes apparent when comparing to [105] .

4.2 Non-spinning relativistic fluids

We start our study by describing non-spinning relativistic fluids as presented in [79]. The
authors start from the ansatz that the action is given by:

S =
∫

dx4(−ε + J · (∇λ) − µJ · ∇η), (4.11)

where λ and µ are Lagrange multipliers, J is a spacetime current, ε the total energy density and
η the entropy. Although by no means a unique representation, as we will generalise it directly
we will keep close to their formalism.

The study starts by expressing the main characteristics of the fluid, J, ε and η. By definition,
J can be written is terms of ρ and v, for v2 = 1, as J = ρv. The main assumption of this work
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is concerning ε , namely that the energy density is a function of density and entropy alone. A
convenient form for this statement is to write,

ε = ρ(1 + e(ρ, η)). (4.12)

This equation is not fundamentally new as it just represents a form of the equation of state
from textbook relativistic thermodynamics, that can be found in classical literature such as
[106].

4.2.1 Equations of motion

Armed with a fluid characterisation we can employ the standard formalism to find equations of
state. In order to familiarise the reader with the approach in Geometric Algebra we will present
the equations step by step.

Constraints from Lagrangian multipliers

We start by looking at ∇ · (Jλ). Since this is a total divergence and

∇ · (Jλ) = λ∇ · J + J · ∇λ, (4.13)

it follows that the λ multiplier enforces ∇ · J = 0. Thus the current is conserved and the total
number of particles in the system is constant. The µmultiplier enforces J · ∇η = 0, which tells
us the entropy is constant along the field lines of J.

Constraint from η variation

From the Euler-Lagrange equation, ∂L∂η =
∂
∂xν

∂L
∂(∂νη) , we can find directly that

∂ε

∂η
=
∂(Jνµ)
∂xν

= J · ∇µ since ∇ · J vanishes. (4.14)

This leads to the third equation of motion,

∂e
∂η
= v · ∇µ. (4.15)

Constraint from J variation

From the Euler-Lagrange equation,∂L∂J =
∂
∂xν

∂L
∂(∂νJ ) , we find directly that
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∂J ε = v
dε
dρ
= v(1 + e + ρ

∂e
∂ρ

) since J = ρv, (4.16)

Thus the final equation of motion is given by,

v(1 + e + ρ
∂e
∂ρ

) = ∇λ − µ∇η. (4.17)

It is convenient to define the pressure as

p = ρ2 ∂e
∂ρ
, (4.18)

in order to have the above equation pressure dependent, i.e. of the form

1
ρ
v(ε + P) = ∇λ − µ∇η. (4.19)

Finally we should remove the Lagrange multipliers. If we take v· of the above we find

ε + P = ρv · ∇λ = J · ∇λ. (4.20)

Next we can take J · ∇ of equation 4.19 and look at both sides separately. The right-hand
side becomes

J · ∇
( 1
ρ

)
v(ε + P) + v · ∇(v(ε + P)) = v · ∇(v(ε + P)) + v(ε + P)∇ · v, (4.21)

since

∇ · v = ∇ ·
( 1
ρ

J
)
= J · ∇

( 1
ρ

)
. (4.22)

To explore the left-hand side we start by presenting some intermediate steps. We note that,

∇(J · ∇λ) = J · ∇∇λ + ∇̇( J̇ · ∇λ), and (4.23)

∇(µJ · ∇η) = ∇µJ · ∇η + µ∇( J̇ · ∇η) + µJ · ∇∇η. (4.24)

The above equation simplifies to

µJ · ∇∇η = −µ∇̇( J̇ · ∇η), since J · ∇η = 0. (4.25)

and since
J · ∇(µ∇η) = (J · ∇µ)∇η − µ∇̇( J̇ · ∇η), (4.26)
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we can finally write the left-hand side as

J · ∇(∇λ − µ∇η) = ∇(J · ∇λ) − ∇̇( J̇ · ∇λ) − (J · ∇µ)∇η + µ∇̇( J̇ · ∇η)

= ∇(εP) − ρ
∂e
∂η
∇η − ∂J · (∇λ − µ∇η)

= ∇(ε + P) − ρ
∂e
∂η
∇η − ∇J · v

ε + P
ρ

. (4.27)

The remainder of the work will focus on showing that the above expression is ∇P, which is
equivalent to proving that

∇ε = ρ
∂e
∂η
∇η + ∇J · v

ε + P
ρ

. (4.28)

By definition,

∇ε = ∇ρ(1 + ε ) + ρ
∂e
∂ρ
∇ρ + ρ

∂e
∂η
∇η = (1 + e +

∂e
∂ρ

)∇ρ + ρ
∂e
∂η
∇η

= (1 + e +
P
ρ

)∇ρ + ρ
∂e
∂η
∇η, (4.29)

so we still have to show that

ε + P
ρ
∇ρ = ∇̇ J̇ · v

ε + P
ρ
⇔ ∇ρ = ∇̇ J̇ · J . (4.30)

Since
∇̇( ˙(ρv) · v) = ∇ρ + ρ∇̇v̇ · v = ∇ρ, as ∇(v · v) = 2∇̇(v̇ · v) = 0, (4.31)

we recover the desired form

v · ∇(v(ε + P)) + v(ε + P)∇ · v = ∇P, (4.32)

which is the equation for a perfect fluid. We can understand the equation more clearly if we
introduce the relativistic stress-energy tensor.

4.2.2 Stress Energy Tensor

The covariant generalisation of flat space action is given by,

S =
∫

dx4det(h)−1(−ε + J · (Dλ) − µJ · Dη) (4.33)

This is indeed the same action - it follows directly from using

J = det(h)h−1(J) = ρv and D (scalar) = h(∇)(scalar). (4.34)
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Now in the covariant setup the dynamical terms will be h, ε, J, λ, µ+ η and therefore energy
density depends on the h-field via ρ.

The h-equation

In order to find the h-equation we start from the identity,

ρ2 = J 2 = det2(h)h−1(J) · h−1(J), (4.35)

which lets us write

∂h(a) ρ
2 = 2det(h)h−1(J) · h−1(J)det(h)h−1(a) + 2det2h∂̇h(a)〈ḣ

−1(J)h−1(J)〉. (4.36)

In general, for b and c we have that h−1(b) · h(c) = b · c, so

∂̇h(a)〈ḣ
−1(b)h(c)〉 = −∂h(a)〈ḣ(c)h−1(b)〉 = −a · ch−1(b). (4.37)

We can substitute b = J and h−1(J) = h(c) to write

∂̇h(a)〈ḣ
−1(J)h−1(J)〉 = −a · h

−1
h−1(J)h−1(J), (4.38)

∂h(a) ρ
2 = 2ρ2(h−1(a) − h−1(a) · vv). (4.39)

The full equation becomes,

∂h(a)L = det(h−1)h−1(a)ε − det(h−1)
∂ε

∂ρ
ρ(h−1(a) − h−1(a) · vv), (4.40)

and thus we recover the SET

⇒ T (a) = aε − ρ(a − a · vv)
∂ε

∂ρ
= (ε + P)a · vv − Pa. (4.41)

This form makes the physical interpretation transparent and fully compliant with the way
we define a relativistic SET for an ideal fluid:
• we have a fluid that has the rest frame defined locally by v,
• as T (v) = εv, ε can be understood as the local energy density,
• as T (n) = −Pn, the local stress is controlled by isotropic pressure,
• the field equations become a single conservation equation Ṫ (∇̇) = 0.
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4.3 Spinning relativistic fluids

Having recovered a perfect fluid successfully we proceed to construct a Lagrangian description
for a spinning fluid. We would like to generalise the previous action by introducing a Dirac
field. Ultimately we hope to build a bridge between the point mass Dirac Lagrangian and the
fluid Lagrangian formulated in [89]. In order to proceed we will briefly describe the STA
equivalent of Dirac theory as introduced in [79] and [18].

The Dirac matrix operators are defined as

γ̂0 =
*.
,

1 0
0 −1

+/
-
, γ̂k =

*.
,

0 −σ̂k

σ̂k 0
+/
-
, γ̂5 =

*.
,

0 1
1 0

+/
-
,

in order to represent Dirac spinors (i.e. they cover 4 complex components and a total of 8 real
degrees of freedom). In [79] there is significant emphasis on how one can map normalised
spinors to the rotor. We will present their representation by example,

|ψ〉 =
*.
,

a0 + ia3

−a2 + ia1
+/
-
↔ ψ = a0 + ak Iσk .

This can be extended, in the style of Pauli algebra, such that each spinor is mapped as

|ψ〉 =
*.
,

|φ〉

|η〉

+/
-
↔ ψ = φ + ησ3.

Using this representation Dirac matrix operators become significantly simpler, as now they
take the form

γ̂µ |ψ〉 ↔ γµψγ0, i |ψ〉 ↔ ψIσ3, γ̂5 |ψ〉 ↔ ψσ3. (4.42)

In Geometric Algebra we can replace the standard Hermitian adjoint 〈ψ | with

〈ψ | ↔ ψ† = γ0ψ̃γ0, where ψ̃ is the reverse of ψ. (4.43)

The representation is particularly interesting when looking at observables. For the current
Jµ ≡ 〈ψ |γ̂µ |ψ〉 we can show that it ends up mapping to γµ · (ψγ0ψ̃) and thus we obtain a simple
form for J,

J = ψγ0ψ̃. (4.44)

In order to better understand J we will use a useful result that holds for any multivector. If
we look at ψψ̃ we can easily notice, from the definition of a reverse, that

ψψ̃ = I(ψψ̃), (4.45)
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and thus ψψ̃ is even-grade and equal to its reverse. This implies that it can only be constructed
from a scalar and a pseudoscalar,

ψψ̃ = a + Ib = ρeIβ, where ρ , 0. (4.46)

So now we can directly define a spacetime rotor R, that generates a rotation (a′ ↔ RaR̃),
as

R = ψρ−1/2e−Iβ/2 with RR̃ = 1. (4.47)

This leads to a decomposition of the spinor ψ that separates the density and the rotor,

ψ = ρ1/2eIβ/2R. (4.48)

Returning to the current we can now write J = ρRγ0 R̃ and thus we have by construction
γ0 rotated in the direction of the current.

Using similar arguments we can show that the spin bivector S is given by S = ψIσ3ψ̃.

4.3.1 A toy Lagrangian

A direct generalisation to the previous action to include spin could be given by

S =
∫

dx4(−ε + J · (∇λ) − µJ · ∇η + σ〈v · ∇ψiσ3ψ̃〉 + 〈k (J − ψγ0ψ̃)〉), (4.49)

where the new variables are ψ a Dirac spinor, σ a scalar constant, and k a vector Lagrange
multiplier. We introduce the σ-term such that there is no extra rotation and the spin is constant
along the stream lines. The k-term guarantees that the spinor is aligned with the current. In
this setup we have made a significant assumption, that σ is a constant. We aim to treat this
setup as a toy model for the final version of the Lagrangian.

We will start by assuming that there is no pseudoscalar part in equation 4.46, i.e. ψψ̃ = ρ.
We are still going to assume that the energy density is a function of density and entropy only,
4.12. As we are including ψ this constraint requires the spin magnitude to be fixed (by σ) as a
function of density. We also keep the same definition for pressure, 4.18.

Considering the new variables are localized we only have to redo the constraint that arises
from the variation with respect to the current.

Constraint from J variation

From the action we can easily see there are two extra contributions to the constraint from
the J variation,
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∂J〈v · ∇ψiσ3ψ̃〉 = ∂J
1
ρ
〈J · ∇ψiσ3ψ̃〉 = −

1
ρ2 v〈J · ∇ψiσ3ψ̃〉 +

1
ρ
∇̇〈ψ̇iσ3ψ̃〉 (4.50)

By using our new assumptions, the equation reads:

−
σ

ρ
v〈v · ∇ψiσ3ψ̃〉 +

σ

ρ
∇̇〈ψ̇iσ3ψ̃〉 + k −

v

ρ
(ε + P) + ∇λ − µ∇η = 0 (4.51)

Constraint from ψ variation

For the new constraint we will start by looking at

∂ψL = K(σv · ∇ψiσ3) − 2γ0ψ̃k . (4.52)

The first term seems to give us the right contribution for equation 4.51 so our aim is to find
a usable form. We start by constructing further derivatives,

∂ψ,aL = ∂ψ,aσ〈v · ∇ψiσ3ψ̃〉 = σa · viσ3ψ̃

∂a · ∇(∂ψ,aL) = σ∇ · viσ3ψ̃ + σiσ3 K(v · ∇ψ). (4.53)

If we reverse ψ → ψ̃ in the above equations we find

σv · ∇ψiσ3 − 2kψγ0 = −ψiσ3∇ · vσ − σv · ∇ψiσ3, (4.54)

⇒ σ(2v · ∇ψ + ∇ · vψ) = −2kψiγ3, (4.55)

⇒ σv · ∇ψiσ3 = kψγ0 −
1
2
σ(∇ · v)ψiσ3. (4.56)

Now if we right-multiply by ψ̃ and take the scalar part the equation reduces to

σ〈v · ∇ψiσ3ψ̃〉 = k · J, and thus (4.57)

k =
σ

ρ
∂J〈J · ∇ψiσ3ψ̃〉,

k =
σ

ρ
∇̇〈ψ̇iσ3ψ̃〉 (4.58)

We can substitute the relevant terms to rewrite equation 4.51 as,

−
v

ρ
k · J + 2k −

v

ρ
(ε + P) + ∇λ − µ∇η = 0 (4.59)

and we can further contract with v to find the final form,
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k · v −
ε + P
ρ
+ v · ∇λ = 0. (4.60)

If we would have right-multiplied equation 4.56 instead by −iσ3ψ̃, we would have found

σv · ∇ψψ̃ = kψiγ3ψ̃ −
1
2
σ∇ · vψψ̃ (4.61)

The scalar part is given by 1
2σ〈2v · ∇ψψ̃ + ∇ · vψψ̃〉. Our initial assumption ψψ̃ = ρ leads

to ∇ · (ρv) = 0 which is one of the Euler-Lagrange equations, as desired.

4.3.2 Finding the SET

Similarly to the perfect fluid case, in order to find the SET we need to move to a covariant form.
The main change that we need to make is to replace k by k → h(k). The covariant action then
takes the form:

S =
∫

dx4det(h)−1(−ε+J ·h(∇)λ−µJ ·h(∇)η+σ〈v ·Dψiσ3ψ̃〉+h(k) ·(J−ψγ0ψ̃)). (4.62)

The dynamical variables are now J, k, λ, η, µ and ψ, so we need to re-evaluate the constraint
equations. It turns out that in this form the k constraint is pretty involved. Instead we can try
to find a more manageable form for the Lagrangian. By using equation 4.60 and the derivative
definition we can write

v · Dψ = v · h(∇)ψ +
1
2
ω(v)ψ =

1
ρ

(J · h(∇)ψ +
1
2
ω(J )ψ)

=
det(h)
ρ

(J · ∇ψ +
1
2
Ω(J)ψ). (4.63)

Now the action can be expressed only in terms of the dynamical variables as

S =
∫

dx4(−εdet(h)−1+J ·∇λ−µJ ·∇η+
σ

ρ
〈(J ·∇ψ+

1
2
Ω(J)ψ)iσ3ψ̃〉+k ·(J−det(h)−1h(ψγ0ψ̃))).

(4.64)
By direct manipulation it can be shown that the new ψ-constraint takes the form

σ

ρ
(J · ∇ψ +

1
2
Ω(J)ψ)iσ3 = det(h)−1h(k)ψγ0 −

1
2
σ∇ ·

( J
ρ

)
ψiσ3. (4.65)

As usual we right-multiply by ψ̃ and look at the scalar part. By defining S ≡ 1
2ψiσ3ψ̃, as

advertised in the previous section, we find a simple equation

σ

ρ
〈J · ∇ψiσ3ψ̃〉 +

σ

ρ
Ω(J) · S = k · J, (4.66)
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and a new form for k,

k =
σ

ρ
∂J〈J · ∇ψiσ3ψ̃ +

1
2
Ω(J)ψiσ3ψ̃〉. (4.67)

In order to find the new contributions to the SET we need to look at the h-equation. We
have a modification from the perfect fluid case due to ψ’s presence such that we now have to
look at

∂
h(a)L = −∂h(a)

1
ρ

(k · J)ρ − ∂h(a) (det(h)−1k · h(ψγ0ψ̃)). (4.68)

For the first term the identity remains unchanged from the perfect fluid case,

∂h(a)
1
ρ
= −

1
ρ2 ∂h(a) ρ =

1
ρ

(h−1(a) − h−1(a) · vv), (4.69)

and the second term can be written as

∂h(a) (det(h)−1k · h(ψγ0ψ̃)) = −det(h)−1h−1(a)k · h(ψγ0ψ̃) + det(h)−1a · kψγ0ψ̃,

= −det(h)−1h−1(a)h(k) · J + det(h)−1h−1(a) · h(k)J .(4.70)

We can identify directly the extra component of T (a) from the above equations to be
ρv(a · vh(k) · v − a · k), and we can define

Textra (a) ≡ ρv(h(k) ∧ v) · (a ∧ v). (4.71)

Next we will focus on the symmetries of the new components of T , but firstly we would
like to note that k has a σ/ρ prefactor, so in fact Textra ∝ σ, not ρ.

The extra contribution to the SET is trivially trace-free and we can identify symmetric and
antisymmetric components. Since

∂aTextra (a) = ρv · (h(k) ∧ v)v = ρ(v · h(k)v − h(k))v = −ρh(k) ∧ v, (4.72)

we can clearly identify the antisymmetric component. Thus we can write

Textra (a) = T
symm

extra (a) + T antisymm
extra (a), where

T
symm

extra (a) = ρv(a · vh(k) · v −
1
2

a · h(k)) −
1
2
ρa · vh(k),

T
antisymm

extra (a) = −
1
2
ρa · (h(k) ∧ v). (4.73)
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4.3.3 Making the spin contribution variable independently of the density

As previously discussed, we should consider a Lagrangian where the spin contribution varies
independently of the density. We will start by exploring the changes arising at the level of the
constraints.

The new variation constraints

The ψ-equation generalises directly to

σ

ρ
(J · ∇ψ +

1
2
Ω(J)ψ)iσ3 = det(h)−1h(k)ψγ0 −

1
2
σ∇ ·

( J
ρ

)
ψiσ3 −

1
2

1
ρ

(J · ∇σ)ψiσ3. (4.74)

If we pursue the usual routine to right-multiplying by ψ̃ and take the scalar part we will find
the same result for k as before. Instead we could right-multiply by −iσ3ψ̃ to find a scalar part
of:

σ(J · ∇ψ)ψ̃ +
ρ

2
σ∇ ·

( J
ρ

)
+

1
2

(J · ∇σ)ψψ̃ = 0 (4.75)

Now if ψψ̃ = ρ still holds, the above equation becomes

σJ · ∇ρ + ρσ∇ · J − J · ∇ρ + ρJ · ∇σ = 0 (4.76)

As we still want ∇ · J = 0 (which leads to D · J = 0 ) we require J · ∇σ = 0. This forces
σ to be constant along the flow lines. Another way to view this is to notice that equation 4.76
establishes that

σ∇ · J + J · ∇σ = 0⇔ ∇ · (Jσ) = 0, (4.77)

and thus by demanding ∇ · J = 0 we require v · ∇σ = 0

By varying the Lagrangian we introduced in 4.64 with respect to σ we find

∂ε

∂σ
det(h)−1 =

1
ρ
〈(J · ∇ψ +

1
2
Ω(J)ψ)iσ3ψ̃〉. (4.78)

Finally, we can look at the Ω constraint,

∂Lm

∂Ω(a)
=

1
2
σ

ρ
a · Jψiσ3ψ̃det(h) (4.79)

From the definition of the covariant spin tensor, we know that it is sourced directly from
the Ω constraint and thus
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S(a) =
1
2
σ

ρ
h
−1

(a) · Jψiσ3ψ̃det(h). (4.80)

We have reached a point where we have a reasonable set of constraints from the Lagrangian
setup. Before we can start applying the formalism to various astrophysical setups we need to
explore the torsion profile further.

Finding an appropriate ω(a) for S(a)

In applications with spin Doran et al. find viable forms for ω in [107],

ωS (a) = −S(a) +
1
2

a · (∂b ∧ S(b)). (4.81)

For the full Dirac case, where we have S(a) = 1
2 a · ψIγ3ψ̃ = a · S we find

∂b ∧ (b · S) = 3S ⇒ ωS (a) =
1
2

a · S. (4.82)

As we have shown in 4.161, in our setup we can write S(a) = σa · vSB for SB ≡ 1
2ψiσ3ψ̃

the spin bivector. Thus

∂b∧S(b) = ∂b∧ (b·vσSB) = 〈∂bb·vσρ〉3 = σvSB = σv∧SB since we are assuming ψψ̃ ∈ R,
(4.83)

and finally

ωS (a) = −σa · vSB +
1
2
σa · (v ∧ SB) = −

1
2
σ(a · vSB + v ∧ (a · SB)), (4.84)

gives a method to introduce spin at the level of the ω’s in applications.

4.3.4 The spin conservation law

We would like to recover the spin conservation law found by Brechet et al in [104]. We start
from the characterisation produced in [107] for Symmetries and Conservation Laws. If we
introduce G(a) = κT (a), the analogue of Einstein’s equation, we can show that

∂a ∧ R (a) = ∂a ∧ G(a). (4.85)

The authors in [107] prove that the above relation leads to

∂a ∧ G(a) = −κṠ(Ḋ) + κ2 (∂b · S(∂a)
)
∧

(
a · S(b)

)
. (4.86)
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When ∂a · S(a) = 0, the above equation becomes

∂a ∧ G(a) = −κṠ(Ḋ) − κ2I∂b ∧ S(IS(b)). (4.87)

For our current form of S(a),

S(a) = σa · vSB for SB ≡
1
2
ψiσ3ψ̃ ⇒ S(B) = σvB · SB (4.88)

⇒ S(IS(b)) = σv〈Iσb · vS2
B〉. (4.89)

Now for ψψ̃ = 1, S2
B is a scalar and thus the above term vanishes. The conservation equation

takes the form,
∂a ∧ T (a) + Ṡ(Ḋ) = 0. (4.90)

We show in the Appendix that,

Ṡ(Ḋ) = v · D (σSB) + σSBD · v, (4.91)

which simplifies the conservation equation to

∂a ∧ T (a) + v · D (σSB) + σSBD · v = 0. (4.92)

Although the terms might seem simpler, further analysis becomes fairly complicated. Al-
though we could use equation 4.84 and the full Ω-equation the derivation becomes significantly
more complicated and thus we will set σ to be a constant. We show in the Appendix that by
starting from the identity

h(∂a)〈Daψiσ3ψ̃〉 ∧ v = v · DSB + SBD · v (4.93)

we can find an expression for v · D (SB),

v · DSB =
1
2
v · D (ψiσ3ψ̃). (4.94)

For simplicity we will introduce a new linear functionH for which,

H (a) ≡ a − a · vv = a −
1
2

(av + va)v =
1
2

(a − vav),

H (a ∧ b) = (a − a · vv) ∧ (b − b · vv) = (a ∧ b ∧ v) · v, (4.95)

and thusH (A) = (A ∧ v) · v.
For a = v · Dv we find that

ω ≡ D ∧ v + a ∧ v = ∂b ∧ (b · Dv) + a ∧ v. (4.96)
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⇒ ω · v = v · av − ∂bv · (b · Dv). (4.97)

Finally we need to link ω to ωab = D[aub]. We start by looking at

(v ∧ (D ∧ v)) · v = v ∧ Ḋ v̇ · v − v ∧ v̇v · Ḋ +D ∧ v, (4.98)

H (D ∧ v) = ((D ∧ v) ∧ v) · v = D ∧ v + a ∧ v, (4.99)

H (D · v) = D · vv · v = D · v, (4.100)

and define SV ≡ IvSB. We can find that

D · SV = −ID ∧ (v ∧ SB) = −I (w − a ∧ v) ∧ SB − I (D ∧ SB) ∧ v, (4.101)

and

D ∧ SB =
1
2

h(eµ) ∧ Dµ (ψiσ3ψ̃) = h(eµ) ∧ 〈(Dµψ)iσ3ψ̃〉2. (4.102)

Thus the projected streamline derivative of the spin bivector is minus the volume expansion
times the spin bivector, i.e.

hελhµρ Ṡλρ = −ΘSεµ . (4.103)

This expression might seem familiar as it is in fact identical to the one found in [104] for a
Weyssenhoff fluid in flat spacetime.

Finally, the new covariant derivative takes the form

Dv = D · v +D ∧ v = Θ + w − a ∧ v. (4.104)

4.3.5 Revisiting the SET and the Riemann tensor

We will like to rewrite our setup in terms of H . We show in the Appendix that we can find a
useful expression from the covariant form of the J-variation constraint,

ρH (h(∇)λ − µh(∇)η) = −2H (ρh(k)). (4.105)

We will start by first looking at the SET. We have previously shown that in this formalism
the SET takes the form

T (a) = (ε + P)a · vv − Pa + Textra (a), (4.106)

for which ∂a · T (a) = ε + P − 4P = ε − 3P. (4.107)

We can now use a compact expression for the new contribution,
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Textra (a) = −va · H (ρh(k)), (4.108)

By introducing a new quantity,V = ρh(k), the SET in full can be written in its final form
as

T (a) = a · ((ε + P)v −H (V ))v − Pa. (4.109)

We would like to know the form of the matter Riemann tensor, namely Rmatter (a∧ b). We
start by looking at R (a) ∧ b + a ∧ R (b), which involves

(a · A)(v ∧ b) + (a ∧ v)(b · A) = −A · (a ∧ b ∧ v) + A · va ∧ b, for (4.110)

A = (ε + P)v −H (V ), B = a ∧ b. (4.111)

Therefore

Rmatter (B) =
1
2
κ(−A · (B ∧ v) + A · vB) +

1
2
κB(P − ε ) +

1
6
κB(ε − 3P)

=
1
2
κ(−A · (B ∧ v) + A · vB) −

1
3
κεB. (4.112)

Now supposeH (V ) vanishes, so we are left with

Rmatter (B) =
1
2
κ(ε + P)(B − v · (B ∧ v)) −

1
3
κεB. (4.113)

We can rewrite

v · (B ∧ v) = (v · B) ∧ v + B, (4.114)

and thus
1
2
κ(ε + P)(−(v · B) ∧ v) −

1
3
κεB =

1
2
κ

(
(ε + P)B · vv −

2
3
εB

)
. (4.115)

In the general case we have

Rmatter (B) =
1
2
κ

(
A · vB − A · (B ∧ v) −

2
3
εB

)
, (4.116)

which we can further simplify by noting that

A · vB − A · ab ∧ v + A · ba ∧ v − A · vB = −(A · (a ∧ b)) ∧ v = (B · a) ∧ v, (4.117)

⇒ Rmatter (B) =
1
2
κ

(
(B · A) ∧ v −

2
3
εB

)
. (4.118)

A direct application from the Riemann tensor is to find a form for [Dα,Dβ]v which is
important for the understanding of particle motion.
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We can prove, as shown in the Appendix, that for a multivector M ,

[a · D, b · D]M = R (a ∧ b) × M, (4.119)

and thus

[gµ · D, gν · D]M = R(eµ ∧ eν) × M = Rhh−1(eµ ∧ eν) × M = R (gµ ∧ gν) × M . (4.120)

Now using equation 4.118,

Rmatter (B) · v =
1
6
κ
(
(ε + 3P)B · v − 3H (B · H (V )

)
, (4.121)

so if we evaluate for B = gα ∧ gβ we can find [Dα,Dβ]v.

4.3.6 Constructing σ

What we have done in the past sections was to generalise

∇aφ = −φ̇ua + Daφ to Dφ = (u · Dφ)u +H (Dφ). (4.122)

By direct substitution it can be verified that the identity below holds,

∂a =
1
2

(
H (eµ)eµ · Du + eµ · DuH (eµ)

)
−

1
3
∂aH (a)H (eµ) · (eµ · Du). (4.123)

From the definition of σ we can identify that a suitable form is given by

σ(a) =
1
2

(
a · H (eµ)eµ · Du +H (eµ)a · (eµ · Du)

)
−

1
3
H (eµ) · (eµ · Du)H (a), (4.124)

and thus we have a closed form for this representation.

4.3.7 An interesting result

In our setup

a · H (eµ)eµ · Du = a · H (D)u and by symmetry

H (eµ) · (eµ · Du) = H (D) · u so

H (D) · u = (D − u · uD) · u = D · u.

Now if we consider

a · Du = a · H (D)u + a · H (D)u, (4.125)

a · H (D)u = a · (D + ud · D)u = a · Du + a · uu · Du, (4.126)
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and define A ≡ u · Du as the acceleration, we find that

∂a (a · H (D)u −H (eµ)a · (eµ · Du)) = H (D)u − u̇H (Ḋ) = 2H (D) ∧ u. (4.127)

If we look at the relation ofH (D) ∧ u with respect to ω,

(D − uu · D) ∧ u = D ∧ u − u ∧ A, which is the same asH (D ∧ u). (4.128)

We find that
a · Du = a · H (D)u + a · uA, (4.129)

where the symmetric part of a · H (D)u gives σ(a) and the trace, and the anti-symmetric part
gives the vorticity and another term a · (u ∧ A). This allows us to write

Dµu = gµ · H (D)u + gµ · uA, (4.130)

SoDµgν −Dνgµ = 0 for a coordinate frame, but not when we have torsion. As an example
of a non-zero term we can take

[gµ · (Dνu) − gν · (Dµu)]A

= gµ · (gν · H (D)u + gν · uA) − gν · (gµ · H (D)u + gµ · uA)

= (gµ ∧ gν) · (u · A) + gµ · (gν · H (D)u) − gν · (gµ · H (D)u). (4.131)

4.3.8 The Ω-equation

A final sector we have not explored yet is given by the Ω-equation. We start by looking at

Ḋ ∧ Ṙ (B) = −κ∂c ∧ S[c · R (B)], (4.132)

and we want to show that the above is equal to S(a ∧ b) · R (B) ∧ ∂b∂a in order to recover the
standard construction presented in [107]. In GA notation we use the overbar to denote the
adjoint.

We can prove, as shown in the Appendix, that

S[∂c · R (B)] ∧ c = −S(∂c) ∧ (c · R (B)). (4.133)

Now consider a setup for which R (B) = a ∧ b. We can treat each side of the equation
separately,

S[∂c · (a ∧ b)] ∧ c = S[b] ∧ a − S[a] ∧ b,

S(∂c) ∧ (c · (a ∧ b)) = S(∂c) ∧ (c · ab − c · ba) = S(a) ∧ b − S(b) ∧ a. (4.134)
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We would ideally want S(c) ∧ ∂c · R (B) = ∂cS(c) ∧ R (B) and thus

S(c) ∧ ∂c · (a ∧ b) = S(a) ∧ b − S(b) ∧ a, and since

a · (B ∧ C) = (a · B) ∧ C + B ∧ (a · C),

⇒ ∂c (S(c) ∧ a ∧ b) = ∂c · S(c) ∧ a ∧ b + S(c) ∧ ∂c · (a ∧ b). (4.135)

This identity is satisfied if and only if ∂c · S(c) vanishes, as we have previously assumed.
The fact that torsion has no contraction limits the space of solutions considerably and we have
clear candidates in mind, as we will show in applications.

4.3.9 Adding an extra term in the Lagrangian

For future applications we should explore the possibility of adding extra terms. In order to do
so we will carry a dimensional analysis argument.

If we start by writing the energy, mc2, proportional to ∼ L−1 we recover the dimensions of
energy density ∼ L−4. As κ = 8πG ∼ L2 we can thus write that κε ∼ L−2.

By definition, |ψ |2 ∼ ρ ∼ L−4 so we know that σ ∼ L and thus ρσκ ∼ L−1. Finally, the
spin energy density, Iω2

2L3 =
mr2ω2

2L3 ∼ L−1L2L−1L−3 ∼ L−4.
We would like to introduce a terms of the type κaσb ρcψd. One viable option would be to

add 2deth−1κσ2ρψ to the Lagrangian.
We can show directly that the SET gains an extra term Tnew (a) = −κσ2ρ2a since

∂h(a)det(h−1) = −det(h−1)h−1(a). (4.136)

Furthermore, if we include Lextra = −κσ
2(ψψ̃)2 it will just look like a cosmological

constant. The equations become

σ − equation :
∂ε

∂σ
det(h−1) + 2κσρ2det(h−1) =

1
ρ
〈(J · ∇ψ +

1
2
Ω(J)ψ)iσ3ψ̃〉

ψ − equation : just add an extra − 2κσ2ρψ to the standard equation. (4.137)

4.4 Applying the Theory

We have exhausted the analysis that we can perform at the foundational level of the theory.
Equipped with a better understanding of what choices we can make we proceed to exemplify
how we use the theory with a simple setup.
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As presented in Chapter 1, we employ a spherically symmetric setup that can be described
by

h(et ) = f1et + f2er,

h(er ) = g1er + g2et,

h(eθ ) = eθ,

h(eφ) = eφ, (4.138)

where f i and gi are functions of t and r only.
In order to compute the ω’s we start by recalling the way we construct the displacement-

gauge covariant object H (a),

H (a) = −h
(
∇ ∧ h

−1
(a)

)
. (4.139)

By introducing the displacement-gauge-covariant connectionω(a) = Ω(h(a)) we canwrite

∂b ∧ (ω(b) · a) = −H (a) (4.140)

⇒ ω(a) = H (a) −
1
2

a · (∂b ∧ H (b)), (4.141)

enables us to compute ω(a) directly. Using the notation in [18] we can write

ω(et ) = Geret,

ω(er ) = Feret,

ω(eθ ) =
g2(t, r)

r
eθet +

(
−
g1(t, r)

r
+

1
r

)
eθer,

ω(eφ) =
g2(t, r)

r
eφet +

(
−
g1(t, r)

r
+

1
r

)
eφer . (4.142)

In the presence of spin an additional term built from the spin tensor is added to the right-
hand side as we will discuss further. Next we want to find an equation that links the ω’s to D.
We start by defining the operator

La = a · h(∇). (4.143)

The torsion equation,

h(∇̇) ∧ ḣ(ċ) = −∂d ∧ (ω(d) · h(c)), (4.144)

becomes
(L̇aḣ(b) − L̇bḣ(a)) · c = (a · ω(b) − b · ω(a)) · h(c). (4.145)

This leads to a relation for the commutator,
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[La, Lb] = (a · ω(b) − b · ω(a) + Lab − Lba) · h(∇) = Lc, (4.146)

for c ≡ a · ω(b) − b · ω(a) + Lab − Lba = a · Db − b · Da. (4.147)

The bracket structure summarises the intrinsic content of the torsion equation. If spin is
present, the right-hand side of the equation is modified in a straightforward way to include
spin-dependent terms.

Note that in the spherical setup we can find the directional derivatives

lt = f1∂t + g2∂r,

lr = g1∂r . (4.148)

From the definition of the observables we can express the partial derivatives as

∂t =
1

det(h)
(
g1(t, r)Lt − g2(t, r)Lr

)
,

∂r =
1

det(h)
(

f1(t, r)Lr − f2(t, r)Lt
)
, (4.149)

and then rewrite

Lr ( f1(t, r)) = F (t, r) f2(t, r) − G(t, r) f1(t, r) + Lt ( f2(t, r)),

Lt (g1(t, r)) = −F (t, r)g1(t, r) + g2(t, r)G(t, r) + Lr (g2(t, r)). (4.150)

Now we proceed to characterize the spinning fluid Dirac field by employing the following
definitions,

σφ = φ̂γ0,

σr = r̂γ0,

R = cosh( χ) + σ2 sinh( χ),

ψ = S(t, r) + T (t, r)iσ3,

SB =
1
2
ψiσ3ψ̃,

ρ = ψψ̃,

v =
1
ρ
ψγ0ψ̃. (4.151)

We can now add the new components from spin to the ω’s and Ω’s. As in equation 4.84
we have

ω(a) = ωbef ore (a) + κσ(t, r)
(
a · vSB +

1
2

a · (v ∧ SB)
)
,

Ω(a) = ωbef ore (a) + κσ(t, r)
(
h(a) · vSB +

1
2

h(a) · (v ∧ SB)
)
. (4.152)
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We can now construct the new covariant derivative as described in the previous sections.

The Dirac equation setup

We can start exploring the physical setup by employing the equation derived from spin
divergence in Appendix A,

∂a ∧ T (a) + v · D (σSB) + σSBD · v = 0. (4.153)

As it has a similar form to the work presented in [107] we will follow their approach. Analysing
this equation leads to two possible setups.

Case 1: If we ignore all the gravitational components, i.e. set

g1(t, r) = 1, g2(t, r) = G(t, r) = F (t, r) = 0,

Lt (σ(t, r)) = Lr (σ(t, r)) = 0,

Lr (S(t, r)) = S(t, r)
Lr (T (t, r))

T (t, r)
, (4.154)

and put σ = constant and S/T =constant in space, we find a solution. In this case there will be
a non-zero interesting part of the SET from the bivector of Jh(k) if χ is non-zero and S/T is
time dependent. We can see that in order for ∇ · J = 0 we need to set ρ = constant. So this is a
stationary homogeneous configuration.

Case 2: Alternatively for χ = 0 a cosmological setup works as follows:

g1(t, r) = 1, G(t, r) = 0, F (t, r) = H (t), g2(t, r) = H (t)r,

Lt (σ(t, r)) = 0,

Lr (S(t, r)) = S(t, r)
Lr (T (t, r))

T (t, r)
. (4.155)

In this case there is no new contribution to the standard SET and the conservation of J gives
the standard ρ conservation equation.

We proceed by constructing the Riemann tensor when spin terms are present. Then R can
be written in terms of the new ω’s as

R (a ∧ b) = Laω(b) − Lbω(a) +ω(a) ×ω(b) −ω(c), for c = a ·ω(b) − b ·ω(a) + Lab− Lba.

(4.156)
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We set the L’s to the forms they take for a radially-symmetric perfect fluid as introduced in
[18], i.e.

Lt = lt ≡ f1∂ + g2∂r,

Lr = lr ≡ g1∂r,

Lφ = lφ ≡ ∂φ,

Lθ = lθ ≡ ∂θ . (4.157)

In similar fashion we proceed to obtain the Ricci, R and Einstein tensor. Now we construct
the SET equations,

T (a) = (ε + P)a · vv − Pa + ρv(h(k) ∧ v) · (a ∧ v). (4.158)

Using this form we write Einstein’s equations for the second case, i.e. set

χ = 0,

g1(t, r) = 1, G(t, r) = 0, F (t, r) = H (t), g2(t, r) = rH (t),

Lt (σ(t, r)) = 0, Lr (S(t, r)) = S(t, r)
Lr (T (t, r))

T (t, r)
,

Lt (1) = Lr (1) = Lt (0) = Lr (0) = 0,

Lr (H (t)r) = H (t), Lt (H (t)r) = rLt (H (t)) + rH (t)2. (4.159)

By solving the equations we find the following constraints for the L’s

Lr (σ(t, r)) = −2
Lr (T (t, r))σ(t, r)

T (t, r)
,

Lt (H (t, r)) =
1
32
σ(t, r)2T (t, r)4κ2 +

1
16
σ(t, r)2T (t, r)2S(t, r)2κ2

+
1
32
σ(t, r)2S(t, r)4κ2 −

1
2
κP(t, r) −

3
2

H (t)2,

Lt (T (t, r)) = −
3T (t, r)2H (t) + 3S(t, r)2H (t) + 2Lt (S(t, r))S(t, r)

2T (t, r)
. (4.160)

When we substitute the above in the initial equations we are only left with an equation for
the energy density

ε (t, r) =
1

16κ
(
σ(t, r)2T (t, r)4κ2 + 2σ(t, r)2T (t, r)2S(t, r)2κ2 + σ(t, r)2S(t, r)4κ2 + 48H (t)2) .

(4.161)
This is the standard energy density

(
= 3H2

8πG
)
plus a new part

(
= 1

16 κσ
2ρ2) .
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Now we can rewrite some of the above equations. Firstly we can write S(t, r) in terms of ρ
as

S2(t, r) = −T (t, r)2 + ρ(t, r). (4.162)

By direct substitution we find

lt (ρ) = −3H (t)ρ(t, r), as expected. (4.163)

Then substitute in equation 4.161 to find

ε (t, r) =
1
16

(
κσ(t, r)2ρ(t, r)2 +

3H (t)2

κ

)
(4.164)

⇒ H2(t, r) =
κ

48
(16ε (t, r) − κσ(t, r)2ρ(t, r)2). (4.165)

which lets us re-write Lt (H (t, r)) as

Lt (H (t, r)) = −
κ

16
(−κσ(t, r)2ρ(t, r)2 + 8ε (t, r) + 8P(t, r)). (4.166)

By converting equation 4.161 and making the substitution

dH
dt
=

Lt (H (t))
f1(t, r)

we find that (4.167)

Lt (ε (t, r)) = −3H (t)(ε (t, r) + P(t, r)), which is what we were hoping for. (4.168)

We can also show that Lr (ε (t, r)) vanishes by showing directly that Lr (σ(t, r)ρ(t, r))

vanishes.
Now we look at spin divergence equation and find that after imposing g1 = 1 and either

g2 = 0 or sinh( χ) = 0 we recover either case 1 or case 2.
As the contraction of SB (a) vanishes in this setup, the Bianchi equations simplify to

∂a ∧ [a · DR (B) − R (a · DB)] = κ∂aS(a) ∧ R (B). (4.169)

The LrS relation implies that we can write

Lr (ρ(t, r)) =
2ρ(t, r)Lr (T (t, r))

T (t, r)
, and thus reconstruct all the R’s to be independent on L’s.

(4.170)
By comparing the new form with our previous results the only information we find is that

LrP(t, r) = 0.

For a first application we look at a particular case where we set the pressure to zero.
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The system reduces to the pair of basic equations:

dH
dt
−

1
2
κε (t) + 3H (t)2 = 0,

dε (t)
dt
+ 3H (t)ε (t) = 0, (4.171)

which are solved by

H (t) =
2C1t + 2C2

3C1t2 + 6C2t + 6
,

ε (t) =
4C1

3κ(C1t2 + 2C2t + 2)
, for C1 and C2 constants. (4.172)

Unfortunately by looking at ε it is fairly obvious that the scale factor will be proportional
to the 1/3 power of its denominator, so we will not get useful amounts of inflation.

Now we manipulate the above expressions to have the origin of time at the symmetry point
and we also need to make sure that (κρσ)2 > 0.

dε (t)
dt

= 0⇒ t = −
C2
C1

⇒ τ = t +
C2
C1
, or t =

C1τ − C2
C1

. (4.173)

Now we can write

C2 = −
C2

1
3κ

*
,

3α2

C2
1
+ 1+

-
, for α a suitable constant. (4.174)

We can substitute the above in the expression

(σ(t)ρ(t))2 =
48
κ2

(
1
3
κε (t) − H (t)2

)
to find (4.175)

(σ(t)ρ(t))2 = −
192C2

1 (C4
1 + 6C2

1α
2 + 9α4 − 18C1κ

2)(
−9C2

1 κ
2τ2 + C4

1 + 6C2
1α

2 + 9α4 − 18C1κ2
)2 , (4.176)

and thus

H (t) = −
6tC2

1 κ
2

−9C2
1 κ

2t2 + C4
1 + 6C2

1α
2 + 9α4 − 18C1κ2

,

ε (t) = −
12C2

1 κ

−9C2
1 κ

2t2 + C4
1 + 6C2

1α
2 + 9α4 − 18C1κ2

. (4.177)
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We will continue our investigation by looking at the radiation only case as we would like
to compare with [104]’s results.

The system reduces to the pair of basic equations,

dH
dt
−

1
2
κ(ε (t) − P(t)) + 3H (t)2 = 0,

dε (t)
dt
+ 3H (t)(ε (t) + P(t)) = 0. (4.178)

and thus the governing equation

d2ε (t)
dt2 = −

4
3
ε2(t)κ +

7
4ε (t)

(
dε (t)

dt

)2
. (4.179)

This is solved by ε that satisfies,

3
(
32κ5/2

√
3C1ε7/2 + 48κε3

)−1

*
,
ε

√
C1ε1/2 + 16κ *

,
tanh−1 *

,

1
4

√
C1ε1/2 + 16κ

κ
+
-
κC1ε

1/2 − 4κ3/2
√

C1ε1/2 + 16κ+
-
+
-

+t + C2 = 0 (4.180)

We can differentiate to find

dε
dt
= −

1
3

√
3C1ε7/2 + 48κε3, (4.181)

⇒ H (t) =

√
3C1ε7/2 + 48κε3

12ε
. (4.182)

and also C1 = −16 κ√
ε0
.

If we substitute C2 = 0 we recover

t =

√
3

4κε0ε
*.
,
ε1/4

0

√
√
ε0 −

√
ε +
√
ε tanh−1 *.

,

√
1 −

√
ε

ε0

+/
-

+/
-
. (4.183)

Now we rescale by R, i.e. ε = ε0R
4
0

R4 , and find

t =

√
3

2R2
0
√
κε0

*..
,

R2
0 tanh−1 *..

,

√
1 −

R2
0

R2
+//
-
+ R

√
R2 − R2

0
+//
-

(4.184)
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Around the origin as R = R0 + δ for small δ,

t →

√
6

R0ε0κ
δ1/2 +

√
6

R3
0ε0κ

δ3/2 +O(δ5/2), (4.185)

so indeed it goes through the origin. On the other hand, as R→ ∞

t → R2 −
R2

0
2
+ R2

0
*
,
ln(x) −

1
2

ln *
,

R2
0

4
+
-
+
-
+O(R−2). (4.186)

Now we can use this when looking at inflation. The governing equation becomes

d2R
dt2 = −

R4
0ε0κ

(
R2 − 2R2

0

)
3R5 , so the inflationary period does not last very long. (4.187)

This leads to an inflation of just
√

2 which agrees with the expression in [104].

In the case for dust by using the above, it can be shown that

t =
21/3R0

2α2/3

(
3κ2t2 + 4α2

)1/3
. (4.188)

If we differentiate this twice, we find that inflation ends at t = 2α
κ with a total expansion of

22/3.

4.4.1 Corrections for Curved Space Time

As presented in [36], for a cosmological fluid based on ECKS, the Cosmological Principle takes
two different forms. The Strong Cosmological Principle (SCP) states that the Lie derivatives
of the metric and torsion must vanish. The Weak Cosmological Principle (WCP) relaxes this
condition by allowing the Lie derivatives of torsion to be unconstrained.

It has been argued that the Weyssenhoff fluid is incompatible with the SCP [108]. The spin
density tensorial terms violate this principle and thus by removing them (and leaving only the
scalars) we could construct a viable fluid.

The standard assumption that can bemade, as used in [109], [40] and later on in [36], [105],
[110], is that “locally macroscopic spin averaging leads to a vanishing expectation value for the
spin density, i.e. 〈Sab〉 = 0” [36]. The expectation value for the spin density squared scalar term
survives as it is a variance term, i.e. 〈S2〉 , 0. In other words we allow for a spin tensor to have
a particular direction on macroscopic scales, but the particles have a random spin distribution.
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Our previous formalism holds for flat spacetime but if we want to compare with models for
curved space time, such as [105], we need to spin-average before we can construct the ω’s.

Understanding scaling
The ‘classical’ approach is to start from the Friedman equations with torsion and find a

conservation law, such as the one presented in [105],

d
dt

((ε − κs2)a3) + (p − κs2/4)
d
dt

a3 = 0. (4.189)

In order to relate the energy and spin densities some assumptions are made. Firstly, the number
density in a fluid,n, is related to the energy density and pressure by,

dn
n
=

dε
ε + p

. (4.190)

This assumption is reasonable for a homogeneous and isotropic fluid such as the one described
in [105]. For non-homogeneous cases significant work has to be carried in order to find a new
expression that accounts for the new statistical structure explained in [111].

Secondly, from statistical arguments it was first claimed in [109] (and then followed by
[105] and [110]) that for a fermion fluid with no spin polarization

s2 =
1
8

(~cn)2. (4.191)

For a fluid described by a barotropic equation of state p = wε we reach the scaling

s2 ∝ ε2/(1+w) and thus we find a spin contribution to the energy density εS = −
1
4
κs2.

(4.192)
It is shown in [105] and [110] that this term can drive ‘inflation’ and there is a corresponding

fine-tuned parameter ΩS for which the density parameter

Ω(a) ≡ 1 +
(Ω − 1)a4

ΩRa2 + ΩS
, (4.193)

agrees with the estimates from observations.
Using our model we have tried to understand why there is an apparent incompatibility

between Brechet et al ( [36]) and [105], as we have shown that we recover the structure of the
equations in [36].

We returned to the case where we have radiation only, and we required that the energy
density takes the form advertised in [105]. We traced back in order to find the spin density
(from theω’s) in terms of energy density. We reached a complicated set of differential equations
that we solved numerically. It turns out equation 4.192 is not satisfied for our setup as we show
in Plot 4.1. For this plot we have scaled our results when imposing 4.192.
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Figure 4.1: Plot comparison in log-log space for the dependency of spin density on
energy density

Wecan observe there is a discrepancy for low ε after which the solution quickly (log ε > 2.4)
becomes equal within solver tolerance error to the form advertised in [109]. The initial steep
decrease is a relic from steep ODE solvers (and thus not a feature). The convergence of the
solution can be proved using the interpolator package in Pytorch. In order to better understand
this anomaly we will focus in our future research on finding analytic solutions. Although
one possible explanation could be that we employ a different model for a spinning fluid, we
do recover [36]’s results 4.187. Another option could be that we are not allowed to use
equation 4.191 for this setup and we should further investigate the correctness of this method.
Furthermore we might have to reconsider the way we constructed the spin averaging in the
Lagrangian case.
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4.5 Conclusions

In this Chapter we have constructed a new Lagrangian formalism for a spinning fluid. We used
the work presented in [79] for a non-spinning fluid and extended it by introducing a Dirac
matter field. We started working on this project as we wanted to find an alternative way to
introduce matter in more general cosmological setups. We hoped that by employing such a
formalism we could take Conformal Gravity in a new direction. We initially investigated using
a Lagrangian in the style of [89], but we realised that it would be fairly complicated to extend.
Space-Time Algebra proved fruitful in past applications, as exemplified in [18], so we decided
to start from scratch.

As STA is not as widely known as we would like, we have tried to present every derivation
in detail, or link directly to well knownwork that was carried in this language, such as [107] and
[18]. This chapter is thus a dense, complete representation of the theory that we will employ to
introduce matter in our future work. It is fair to say that the simplicity of the method does not
transpire at this point, but we hope that once we provide more applications the formalism will
become more palatable.

We have shown that we can recover the main result and predictions presented in [36] for a
flat space time. As [36] and [43] do not seem to agree on their final predictions regarding the
number of e-folds the theory would produce, we have tried to find an explanation. Imposing
the energy density advertised in [43] and tracing back to find an equation for the spin density
proved to be a complex task and the result not easily interpretable. In our future work we will
thoroughly investigate all possible sources of tension to make sure that the current Lagrangian
setup works correctly for a curved space-time. Considering spin averaging at this level has not
been used (to our knowledge) we might have to rethink how it should be introduced.
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Conclusions and Future Work

“La recherche de la vérité être le but de notre activité; c’est la seule fin qui soit digne
d’elle.”(H.Poincaré, 1885)

On the path to a ‘Unified Theory of Everything’ many steps must be taken. Einstein made
a significant leap and cemented a new path, Weyl made a few steps forward and a couple back
and in their footsteps many others followed. Overall we have made constant progress which has
been aided by experimental results. This changed once LIGO detected the first gravitational
waves and propelled us significantly closer to our goal. At the time of this significant discovery
a new theory was being developed, the extended Weyl Gauge Theory. This thesis is the first
study that explores the potential eWGT. Similarly to the infancy of Poincaré Gauge Theory, in
our first applications we tried to show that we can recover and extend classical results.

We started with a simplified scenario that simulated Weyl2 Gravity and we showed that
the classical results in Conformal Gravity for vacuum can be recovered. Our first goal was to
highlight the importance of understanding gauge transformations in this context as their misuse
can lead to thinking gauge artefacts are physical. We continued our research by trying to show
that the theory is compatible with astrophysical matter introduced as a perfect fluid. Despite
our efforts we could not reach this conclusion, even though we included progressively more
general torsion.

Although a disappointing result, we learned a great deal about the way torsion interacts
with this setup. When we employed a cosmological-type torsion we found two important cases
depending on our initial premise. In the first case we have constructed a form that although
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present, is untraceable at the level of the matter, whereas in the second case we have found a
possible mechanism that could introduce extra pressure (that could be fine-tuned) for inflation.
In our future work we hope that we can explore the second setup further and introduce it in a
more complex theory that could actually be used in physical scenarios.

On the other hand, when we considered ‘real’ torsion (that interacts with matter), we found
that regardless of the torsion components we always reach the same scenario. Unfortunately, in
this case the setup was unphysical. We looked at possible ways to construct this type of torsion
as we are hoping to use it in future models that can incorporate matter. We found a new way to
couple two torsion components that could simplify more complex setups.

Although a Lagrangian given only in terms of Weyl2 is not sufficiently complex to accom-
modate matter, we decided it was worth investigating a pure Riemann2 Lagrangian. The Weyl
action was represented for a certain constraint in terms of the Riemann and Ricci and future
work will investigate relaxing this condition.

We found an interesting density profile that does not oscillate regularly in conformal time
and could change our understanding of perturbations. One direct implication is that the power
spectrum is discrete in this setup. As new libraries for power spectra (e.g. PySpectrum, Pylians)
are being developed we could use certain classes to check if our predictions are physical. In
future work we should focus on exploring this solution space further.

We also proved that this theory predicts gravitational waves in a de Sitter background.
Several authors have discussed gravitational waves in the context of Gauge Theories and we
believe the following research is relevant to our future study: forms for torsion compatible with
PP-waves [86], exact vacuum solutions to three-dimensional gravity with propagating torsion
[87] and waves corresponding to AdS spacetime [88]. In future work we will investigate how
our results compare to theirs and work towards developing a wave profile that can be used with
LIGO data.

In this study we have not explored the full torsion space. As shown in the Weyl2 case, it
is important that we pursue all the possible scenarios. An analysis as the one carried out in
Chapter 2 will be employed for this model in the near future.

In the final chapter we constructed a new Lagrangian formalism for a spinning fluid. Our
work is based on the approach introduced in [79] for a non-spinning fluid. We wanted to build
a setup that could easily be generalised for extra fields. As current models include matter by
introducing a Dirac field, we decided this would be a good first extension.

We have shown that our setup recovers the correct behaviour for a flat space time. We
were hoping that we could use our model to explain the apparent disagreement between [36]
and [43]. Unfortunately our results were inconclusive and future work needs to investigate
the possible sources of tension between the Lagrangian formalism and ‘standard’ approach in
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curved space time.
One of the beautiful aspects of science is that the methods we develop in one field can

usually be used ubiquitously. Recently great progress has been made in the study of blood
flow using Machine Learning techniques. Kihm et al. [112] have managed to classify red
blood cell shapes in the flow. Current research is being carried into predicting the interactions
between different types of cells in ‘real’ time. This is particularly important as it could lead
to an improved dialysis process. Several attempts have been made to model blood flow using
Lagrangians, for example [113], but the predictions are currently not accurate enough. The
formalism could be significantly improved by introducing new terms that control the rotation
and spin of the particles. Having an easily extensible form will be crucial. Constructing
a Lagrangian inspired by the work presented in the final chapter could bring a significant
scientific leap and we aim to pursue this project in our future work.
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Derivations for the Spinning Fluid

Formalism

In this Appendix we present the full derivations for partial results that we have used in Chapter
4.

A.1 Looking at Ṡ(Ḋ)

As we do not have a fair understanding of the latter term in the spin conservation equation we
will start our analysis from first principles. By direct manipulation,

Ṡ(Ḋ) = a · ḊṠ(∂a) = a · DS(∂a) − S(∂a · Da) = a · D (σ∂a · vSB) − S(∂a · Da) (A.1)

In order to simplify this expression we need three intermediate results,

a · D∂a · v = γµ · D (γµ · v) = γµ · h(∇)γµ · v = γµ · gν∂ν (γµ · v) = gν · ∂νv, (A.2)

∂aDa = γµ · Dγµ = γµ · h(∇)γµ, (A.3)

and
w(γµ) · γµ = w(eµ) · eµ = w(gµ) · gµ = Ω(eµ) · gµ . (A.4)

This leads to
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Ṡ(Ḋ) = v · D (σSB) + σSBgν · ∂νv − σSB (Ωµ · gµ) · v

= v · D (σSB) + σSB
(
gν · ∂νv + g

ν ·
(
Ων · v

))
= v · D (σSB) + σSBD · v. (A.5)

A.2 Equations for the Spin bivector

Proposition: The following identity holds v · DSB = 1
2v · D (ψiσ3ψ̃).

We will start our analysis from the identity,

h(∂a)〈Daψiσ3ψ̃〉 ∧ v = v · DSB + SBD · v (A.6)

Now we would like to prove that h(∂a)〈Daψiσ3ψ̃〉 = (v · Dψ)iγ3ψ̃.

h(∂a)〈Daψiσ3ψ̃〉 ∧ v = 〈v · Dψiσ3ψ̃〉2 = v · DSB + SBD · v. (A.7)

h(∂a)〈Daψiσ3ψ̃〉 = 〈v · Dψiσ3ψ̃v〉1 = 〈v · Dψiσ3ψ̃〉2 · v + 〈v · Dψiσ3ψ̃〉v (A.8)

Dot with v to find:

v · h(∂a)〈Daψiσ3ψ̃〉 = 〈v · Dψiσ3ψ̃〉 (A.9)

Wedge with v to find:

h(∂a)〈Daψiσ3ψ̃〉 ∧ v =
(
〈v · Dψiσ3ψ̃〉2 · v

)
∧ v = v · DSB + SBD · v (A.10)

⇒ ((v · DSB) · v) ∧ v = v · DSB + SBD · v. (A.11)

We will try and simplify our maths a bit by writing the above equation as

(B · v) ∧ v = B + C. (A.12)

Now

1
4

((Bv − vB)v − v(Bv − vB)) =
1
2

(B − vBv) = B + C, (A.13)

⇒ C = −
1
2

(B + vBv). (A.14)
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Thus we can rewrite equation (4.113) as:

SBD · v = −
1
2

(v · DSB + v(v · DSB)v) . (A.15)

Now look at

v · D (SBSB) = (v · DSB)SB + SB (v · DSB). (A.16)

S2
BD ·v = −

1
2

((v · DSB)SB + v(v · DSB)SBv) = − f rac12 (SB (v · DSB) + vSB (v · DSB)v) ,

(A.17)

⇒ 2S2
BD · v = −

1
2

(v · DS2
B + vv · DS2

Bv) i.e v · DS2
B = −2S2

BD · v. (A.18)

A.2.1 Revisiting the J-constraint

We would like to derive the J-equation in the dynamical variable form in order to make use of
H .

By definition for f (ρ), ∂J f (ρ) = ∂J f ((J · J )1/2) = 1
2 (J · J )−1/2 f ′∂J (J · J ), which

leads to
∂J (J · J ) = ∂J (det2hh−1(J) · h−1(J)) = 2det2hh

−1
h−1(J), (A.19)

and finally
∂J f (ρ) =

1
ρ

f ′det2hh
−1

h−1(J). (A.20)

Varying equation (4.72), we find that

∂L

∂J
= −deth−1 ∂ε

∂ρ

1
ρ

det2hh
−1

h−1(J)+∇λ − µ∇η + k + k +σ〈(J · ∇ψ +
1
2
Ω(J)ψ)iσ3ψ̃〉∂J

(
1
ρ

)
(A.21)

= −deth−1 ε + P
ρ

1
ρ

det2hh
−1

h−1(J)+∇λ−µ∇η+2k−
1
ρ3 det2hh

−1
h−1(J)σ〈(J ·∇ψ+

1
2
Ω(J)ψ)iσ3ψ̃〉

(A.22)

= −deth
ε + P
ρ2 h

−1
h−1(J) −

1
ρ2 det2hh

−1
h−1(J)k · J + ∇λ − µ∇η + 2k = 0 (A.23)

We can dot this equation with J and since

h
−1

h−1(J) · J = h−1(J) · h−1(J) = det−2hρ2, (A.24)
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we find that the equation reduces to

−deth−1(ε+P)−k · J+ (∇λ−µ∇η) · J+2k · J = 0 i.e. k · J−deth−1(ε+P)+ J ·∇λ = 0. (A.25)

We would like to find the covariant equivalent of equation (4.134) and we can do that by
applying h,

−
ε + P
ρ2 J −

1
ρ2 h(k) · J J +Dλ − µDη + 2h(k) = 0 (A.26)

⇔ −(ε + P)v − ρh(k) · vv + ρ(Dλ − µDη) + 2ρh(k) = 0. (A.27)

We can rewrite the equation as

ρ(h(∇)λ − µh(∇)η) = (ε + P)v + ρh(k) · vv − 2ρh(k), (A.28)

and since ε + P = h(k) · J + J · h(∇)λ,

⇒ ρ(h(∇)λ − µh(∇)η) = J · h(∇)λv − 2ρh(k) + 2h(k) · J v, (A.29)

⇔ ρ(h(∇)λ ∧ v) · v − ρµh(∇)η = −2(ρh(k) ∧ v) · v, (A.30)

⇔ ρH (h(∇)λ − µh(∇)η) = −2H (ρh(k)). (A.31)

A.3 Identity for Riemann construction

Proposition: [a · D, b · D]M = R (a ∧ b) × M .

[a · h(∇) + w(a)×][b · h(∇)M + w(b) × M] − [b · h(∇) + ω(b)×][a · h(∇)M + ω(a) × M]

= (LaLb − LbLa)M + E1 + E2, where (A.32)

E1 = w(a) × (w(b) × M) − w(b) × (w(a) × M),

E2 = La[w(b) × M] − Lb[w(a) × M] − w(b) × LaM + w(a) × LbM . (A.33)

After direct manipullation,
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E1 = [w(a) × w(b)] × M, (A.34)

and

E2 = Law(b) × M + w(b) × L(a)M − Lbw(a) × M − w(a) × LbM − w(b) × LaM + w(a) × LbM

= Law(b) × M − Lbw(a) × M, (A.35)

so the identity holds.

A.4 Identity for the Ω equation

Proposition: S[∂c · R (B)] ∧ c = −S(∂c) ∧ (c · R (B)).

c · [S(a ∧ b) · R(B)] =
1
2
〈cS(a ∧ b)R (B) − cR (B)S(a ∧ b)〉

=
1
2
〈cS(a ∧ b)R (B) + S(a ∧ b)cR (B) − S(a ∧ b)cR (B) − cR (B)S(a ∧ b)〉

= cS(a ∧ b)R (B) − c ∧ [S(a ∧ b) · R (B)]

= cS(a ∧ b)R (B) − cR (B)S(a ∧ b) − S(a ∧ b)R (B)c + R (B)S(a ∧ b)c.(A.36)

Recall the identities

S(a ∧ b) · c = (a ∧ b) · S(c),

S(a ∧ b) = ∂c[S(c) · (a ∧ b)]. (A.37)

⇒ ∂c[S(c) · (a∧b)] ·R (B)∧∂b∧∂a = ∂b∧∂a∧ (∂c[S(c) · (a∧b)] ·R (B)) = 2S(c)∧∂c ·R (B).

(A.38)
Finally we can show that

∂c ∧ ∂b ∧ ∂a〈[c ∧ S(a ∧ b)] · R (B)〉 = ∂c ∧ ∂b ∧ ∂ac · [S(a ∧ b) · R (B)]

= ∂b ∧ ∂a ∧ [S(a ∧ b) · R (B)] = ∂b ∧ ∂a ∧ (∂c[S(c) · (a ∧ b)] · R (B))

= 2S(c) ∧ ∂c · R (B). (A.39)

⇒ S[∂c · R (B)] ∧ c = −S(∂c) ∧ (c · R (B)). (A.40)
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