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We develop an analytic circuit model for coupled plasmonic dimers separated by small 

gaps that provides a complete account of the optical resonance wavelength. Using a 

suitable equivalent circuit, it shows how partially conducting links can be treated and 

provides quantitative agreement with both experiment and full electromagnetic 

simulations. The model highlights how, in the conducting regime, the kinetic inductance 

of the linkers set the spectral blue-shifts of the coupled plasmon. 
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Plasmonic nanostructures are at the heart of many research fields ranging from biological 

applications1,2 to quantum information processing3,4. In recent years significant progress has been 

made in both the chemical preparation of noble-metal nanostructures5 and in simulation tools to 

model them6–10. However few attempts have been made to develop a comprehensive analytical 

model 11,12 that could facilitate direct validation of experimental results and yield parameters that 

can guide the implementation of full electromagnetic simulations. Most analytical approaches 

approximate Maxwell’s equations and are limited to specific geometries. A promising alternative is 

to treat any nanoplasmonic system as a high frequency circuit composed of capacitors, inductors, 

and resistors 13–15. Such a circuit model is extremely versatile as generalized equations for the 

resonance condition can be obtained, and their dependence on the geometry of the nanostructure 

understood explicitly. Here we use this circuit approach to develop a simple analytical expression 

for two coupled plasmonic systems in close proximity. Surprisingly this has been absent until now, 

despite its extreme utility, because a number of subtle effects need to be considered. Our model is 
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capable of describing both insulating and conductive gaps and applicable to arbitrary coupled 

plasmonic systems. 

We start from the description of a single spherical nanoparticle, which is well characterized by an 

LC circuit. Engetha et al. [6] have determined the impedance contributions of the fringing field 

𝑍fringe
−1 = −𝑖𝜔𝐶𝑠 = −𝑖2𝜋𝜔𝑅𝜀0 and the sphere 𝑍sphere

−1 = −𝑖𝜋𝜔𝑅𝜀𝜀0 with nanoparticle radius 𝑅, 

frequency ω, nanoparticle dielectric function, with gold permittivity ε, vacuum permittivity ε0, and the 

capacitance due to the fringing field 𝐶𝑠 . For a metallic nanoparticle ε is negative and therefore the 

impedance contribution of the sphere is inductive. The resonance wavelength can be determined by 

ℑm(1/𝑍𝑡𝑜𝑡) = 0, which yields the well-known resonance condition in the electrostatic case for a 

plasmonic nanoparticle 𝜀 = −2. Here, throughout we use a Drude model for the dielectric function of 

gold: 

 
𝜀 = 𝜀∞ − (

𝜔𝑝

𝜔
)

2
= 𝜀∞ − (

𝜆

𝜆𝑝
)

2

 (1) 

This yields the single particle resonance frequency, 𝜆𝑠
2 = 𝜆𝑝

2  (𝜀∞ + 2). The plasma frequency and 

wavelength (𝜔𝑝 and 𝜆𝑝 respectively), and the background high frequency permittivity (𝜀∞) are material 

parameters which should not depend on nanoparticle size. However, electrodynamical effects, beyond 

the electrostatic approximation, lead to a weak particle size dependence of the resonance wavelength. 

There are several ways of correcting the resonance condition due to retardation 16,17, however, a 

relatively simple phenomenological way to account for this is to assume that 𝜀∞ depends slightly on the 

nanoparticle size. The resonance wavelength of different gold nanoparticle sizes in water (permittivity 

𝜀𝑚=1.33) from extinction spectroscopy (Fig.1) provides estimated values for 𝜀∞(𝑅) using 𝜀 = −2𝜀𝑚 

together with Eq.(1). 

 

Figure 1. Resonance wavelength for different nanoparticle sizes and resulting values for 𝜀∞. Inset: Single 



nanoparticle equivalent LC-circuit. 

 

To describe purely capacitive-coupled resonances a capacitor (with capacitance 𝐶𝑔) can be placed 

between two equivalent single particle circuits mimicking the capacitive coupling, which reproduces the 

strongly red-shifted resonance18,19. However, for either a conductive spacer20 or for very small gaps21,22 

effects due to the increasing conductivity between the two systems have to be considered, with two 

results: First, the coupled bonding dimer plasmon mode (BDP) blue-shifts due to screening of the local 

field in the gap, forming the screened coupled mode (SBDP). In this conductivity region the screening 

field reduces the voltage between the two elements. Second, for higher conductivities a charge transfer 

mode, characterized by a net current between the two nanoparticles is formed23. Since both modes 

have different physical origins they have to be described by different equivalent circuits. Here we 

restrict ourselves to the screening of the coupled mode as this is directly accessible in our optical 

experiments. 

 

Figure 2. Illustration of the used circuit model and the nanoparticle on mirror geometry. a Equivalent circuit for a 
coupled plasmon mode with both purely capacitive coupling and conductive coupling. b Illustration of the 
nanoparticle on mirror (NPoM) geometry. 

 

Previously we considered the ratio of the screened charge to the charge stored on a capacitor without 

any conductive link20. This simplified picture can be described by a resistor in series with the coupling 

capacitor effectively reducing the voltage at the capacitor. While this approach works well for describing 

relative changes of the charge stored on the capacitor per optical cycle it is not capable of predicting the 

absolute value of the resonance wavelength. Therefore we use here an equivalent parallel circuit, which 



is composed of a capacitor shunted with a resistor and an inductor, which reproduces the behaviour of 

conductive paths through the gap, in series (see Fig.2a). For a sufficiently low resistance the inductor 

produces a screening voltage, while for high resistance the inductor plays no role and the coupling is 

purely dominated by the capacitor. If the gap inductance is large, then little screening is obtained 

because charge cannot short across the gap within an optical cycle. Hence the fully screened mode at 

large conductance is blue-shifted furthest if the gap inductance approaches the inductance given by the 

individual sphere. 

The resonance frequency of this circuit found when ℑm(1/𝑍tot) = 0 is 

 𝑍tot =
2

−2𝑖𝜋𝜔𝑅𝜀𝑚𝜀0−𝑖𝜋𝜔𝑅𝜀𝜀0
+

1

−𝑖𝜔𝐶𝑔+[𝑅−𝑖𝜔𝐿𝑔]
−1 (2) 

Simplifying this equation (see supplementary material) yields the resonance condition: 

 𝜔̃4 + 𝜔̃2 [𝜔𝑑
2 (

4𝜀𝑚

𝛤
− 1) + 𝛿] − 𝜔𝑑

2𝛿 = 0 (3) 

where 𝜔̃ = 𝜔/𝜔𝑝 is the normalised resonance frequency, the dimer mode 𝜔𝑑 = 1 √2𝜀𝑚 + 𝜀∞ + 4𝜀𝑚𝜂⁄ , 

normalised gap capacitance 𝜂 = 𝐶𝑔 𝐶𝑠⁄ , normalised inductive coupling rate 𝛤 = −𝐿𝑔𝐶𝑠𝜔𝑝
2, and 

normalised loss rate 𝛿 = (
𝑅𝑔

𝐿𝑔𝜔𝑝
)

2

. For the case of very low conductivity (𝑅𝑔 → 0) which gives the typical 

coupled mode of the bonding dimer plasmon (BDP) this can be simplified to 𝜔̃ = 𝜔𝑑 giving resonant 

wavelength 

 𝜆𝑑 = 𝜆𝑝√2𝜀𝑚 + 𝜀∞ + 4𝜀𝑚𝜂 (4) 

for coupled plasmonic particles. In the extreme case of high conductivity (𝑅𝑔 → ∞ so 𝛿−1 → 0), eq.(3) 

yields the screened coupled plasmon mode (SBDP) 

 
𝜆SBDP = 𝜆𝑑 √1 −

4𝜀𝑚

𝛤
⁄  (5) 

which is a central result of our paper.  

We now use the nanoparticle on mirror geometry to test this model. In this geometry a gold 

nanoparticle is placed on a thin spacer layer above a gold film (Fig.2b). Dipoles induced in the 

nanoparticle can couple to their image charges forming a tightly confined coupled plasmon mode24. The 

gap capacitance for this geometry can be obtained following Hudlet et al.25 (see Supplementary 

Material): 

 𝐶𝑔 = 2𝜋𝜀0 (𝑛𝑔)
𝜒

  𝑅 .  ln [1 +
𝑅

2𝑑
𝜃max

2] (6) 

with refractive index of the material in the gap 𝑛𝑔, separation between nanoparticle and gold film 𝑑, 

and parameters 𝜃max (which arises from the laterally localised electric field) and 𝜒=1.14 (which arises 



from the specific NPoM geometry, Suppl. Info. S2). To check the validity of the model simulations were 

performed using the full electrodynamic boundary-element method (BEM)6,26.  

 

Figure 3. Comparison of the presented circuit model to experimental and simulated data. a,b Coupled plasmon 
mode with 𝑅=40nm NPoM for different gap separations and refractive indices. c Nanoparticle size and geometry 
dependence of the lateral field localisation (solid circles, expressed in terms of the angle 𝜃max, see supp. info.) and 
refractive index exponent, χ (empty squares). d Blue-shift of the coupled plasmon mode as gap conductance 
increases, for 𝑅=30nm, simulated and experimental data from

20
. The dashed line is shifted by 170G0- (see main 

text). 

 

Additional experimental data are obtained by assembling spacers of self-assembled monolayers (SAMs) 

of aliphatic monothiols CH3-(CH2)x-SH with x from 3 to 17. The thickness of each SAM is measured using 

a spectroscopic ellipsometry. Subsequently, 80 nm gold nanoparticles are assembled on top of these 

SAMs. The resonance wavelengths in air (𝜀𝑚=1) of more than 1,000 particles per sample were recorded 

using a fully automated darkfield microscope and cooled spectrometer. The average resonance 

wavelengths and standard errors were determined by fitting Gaussian distributions to the histograms 

(see supplementary material).  



 

Comparing our analytical circuit model, BEM simulations, and experimental data shows excellent 

agreement. The characteristic continuous blueshift of the coupled plasmon resonance for increasing gap 

spacing and different refractive indices is clearly shown in Fig.3(a). Similarly the expected linear redshift 

with increasing refractive index is completely reproduced (Fig.3b). 

 

The gap capacitance parameters are found to be weakly dependent on the nanoparticle size and 

geometry (Fig.3c). This is because the field localisation (described here by 𝜃max) is slightly different 

between NPoM and two nanoparticles in a dimer, in particular in the effects of increasing the spacer 

refractive index (see Supp. Info. S2). Most crucially, the model predicts for the first time analytically the 

blue shift of the coupled plasmon when the gap starts conducting (Fig.3d). While such effects from 

mixed conducting SAM layers have only previously been computed in full simulations23, our analytic 

solution indeed captures three important properties of such a conductive system: (i) the need to exceed 

a critical conductance 𝐺𝑐, (ii) continuous blue shifts with increasing conductance, and (iii) the saturation 

of the screening for large conductances. The exact critical conductance is overestimated in our model 

(Fig.3d solid line), and fits much better when shifted by -170𝐺0 (dashed Fig.3d), however the order of 

magnitude is acceptable. Using eqn.(3), we obtain an analytical estimate for the critical conductance, 

𝐺𝑐

𝐺0
≃

4𝜋2

𝐺0𝑍0
 

𝑅

𝜆𝑝
 
𝜆𝑑

 Γ 
 where 𝑍0=377Ω is the impedance of free space (see Supp.Info.). 

 



 

Figure 4. Interpretation of the introduced gap inductance. a Gap inductance vs neck radius, extracted by using 
Eqn.(5) on simulation results, and compared to kinetic inductance model (solid line). Filaments are either gold, or 

near-perfect conductor. b Schematic of sheath currents confined to penetration depth 𝛬 down conducting 
filament, which gives kinetic inductance. 

 

The maximum blue shift when the gap becomes conducting (saturating the screening) is set by the 

inductance of this filament, which screens charges in the gap expelling the electric field. To understand 

what sets the value of this inductance we perform BEM simulations for both insulating and completely 

conducting gaps. The conductive region was modelled as a cylinder connecting the gold spheres. Varying 

the neck radius 𝑎 reveals that 𝐿𝑔 ∝ 𝑎−1 for gold while for an ideal conductor (with extremely low 

damping) we find 𝐿𝑔 ∝ 𝑎−0.5 (Fig.4a). This dependence arises because 𝐿𝑔 is dominated by the kinetic 

inductance 𝐿𝑘 produced by the magnetic field in the gap encircling the current acting to drag back the 

electrons. To get 𝐿𝑘 we equate the kinetic energy of 𝑁 moving electrons with the energy of an inductor 

𝑁1

2
𝑚𝑣2=

1

2
𝐿𝑘𝐼2 with velocity 𝑣, current 𝐼 = 𝑛𝑒𝑣𝐴, area 𝐴, and 𝑁 = 𝑛𝐴𝑑, giving 𝐿𝑘 =

𝑑

𝐴

𝑚

𝑛𝑒2 =
𝑑

𝐴𝜀0𝜔𝑝
2 with 

density of mobile carriers in the conducting link 𝑛 and electron mass 𝑚27. The electric field however can 



only penetrate a certain distance 𝛬 into the connecting filament so that current flows only in an outer 

sheath (Fig.4b) giving 

 𝐿𝑘 =
1

𝜀0𝜔𝑝
2

𝑑+2𝛬

2𝜋𝛬𝑎
=

1

𝜀0𝜔𝑝
2

𝑓

𝑎
 (7) 

with the geometry factor 𝑓 =
1

𝜋
[1 + 𝑑/2𝛬]. We find screening depths of 𝛬 ∼ 3nm (Supp.Info.) so for 

very narrow gold gaps, 𝑓 → 1/𝜋  which then accounts extremely well for the 𝑎−1 dependence in the full 

simulations of 𝐿𝑔 and even produces quantitative agreement with the magnitude of the gap inductance 

(Fig.4a). For an imperfect metal the screening depth cannot be ignored, giving a modified form which 

depends also on 𝑛𝑔 (Supp.Info.). The blue-shift of the coupled plasmon seen when conducting links are 

inserted between plasmonic elements can thus be understood as arising from their kinetic inductance. 

Inserting Eqn.(7) into Eqn.(5), we find an analytic form of the blue-shift 

 Δ𝜆

𝜆
= 𝜀𝑚

𝑎

𝑅
 (1 +

𝑑

2𝛬
)

−1
 (8) 

which for small gaps depends linearly on the ratio of neck to nanoparticle radius. These shifts can indeed 

be large (we obtain 70nm spectral shifts experimentally, see Fig.3d). We also note the interesting 

ramification that Δ𝜆 will depend on the morphology of links across a plasmonic gap. This opens great 

opportunities in understanding nanoscale conducting elements purely through optical spectroscopy, 

which can then follow dynamic processes. 

In conclusion, we present a circuit model which can be used to describe coupled plasmon resonances in 

both capacitive and conductive coupling regimes. It provides an exceptionally straightforward way to 

calculate analytically the resonance wavelength for different gap sizes, nanoparticle sizes, refractive 

indices, and linker conductivities. We showed how a test geometry based on a nanoparticle on gold 

mirror gives excellent agreement of the model with both experiment and simulation. This model allows 

us to identify the crucial properties of the system, and resolves the key role of kinetic inductance. 

Further geometries can easily be incorporated by adjusting the capacitances of both the gap region and 

the individual plasmonic systems. 

 

 

Methods 

Sample Preparation  

A 100 nm thick gold film was evaporated on a silicon (100) wafer (Kurt J. Lesker Company, PVD 200) 

using an evaporation rate of 1 Å/s with a base pressure of ≈1 × 10-7 mbar. To obtain atomically smooth 



gold surfaces a standard template stripping method was applied: small silicon (100) pieces were glued to 

the evaporated gold surface using Epo-Tek 377 epoxy glue. After curing the glue the sample can be 

pealed of the silicon wafer revealing a fresh, clean surface with excellent surface roughness28. 1-

butanethiol (C4), 1-pentanethiol (C5), 1-nonanethiol (C9), 1-dodecanethiol (C12), and 1-octadecanethiol 

(C18) (Sigma-Aldrich, ≥98%) self-assembled monolayers were assembled on these freshly prepared 

surfaces by immersing in 1 mM solution for ≈22 h. Subsequently, the samples were thoroughly rinsed 

with ethanol, briefly cleaned in an ultrasonic bath to remove excess unbound thiols, and blown dry. The 

samples were stored under a constant nitrogen flow until they were used. 80 nm gold nanoparticles 

were used as received from BBI Solutions. To deposit the nanoparticles on the SAM the previously 

prepared samples were immersed in the nanoparticle solution. The time was adjusted in order to reach 

a uniform but sparse coverage that allows spectroscopic investigations of individual nanoparticles. 

Excess nanoparticles were rinsed off with distilled water and the samples were dried with nitrogen. 

Experimental 

Darkfield spectra of over 1,000 nanoparticles were recorded using a fully automated Olympus BX51 

microscope in a reflective dark field geometry. The scattered light was collected with a ×100 long 

working distance objective (NA 0.75) and analysed with a TEC-cooled Ocean Optics QE65000 

spectrometer. Further details can be found elsewhere29. 

Ellipsometry 

The thickness of the self-assembled monolayers was measured using a Jobin-Yvon UVISEL spectroscopic 

ellipsometer at angle of incidence 70° and wavelengths from 300-800 nm. The base layer permittivity is 

obtained from a clean gold substrate and the dielectric properties of the SAMs described using a Cauchy 

model with refractive index of 1.45 (as determined by30,31). 

Simulations 

Far-field extinction spectra are calculated by numerical simulations using the full electrodynamic 

boundary-element method (BEM)6,26. The BEM method solves Maxwell’s equations for inhomogeneous 

media characterised by local dielectric functions in terms of surface-integral equations of the induced 

charges and currents, which are obtained through discretisation of the surface integrals and solution of 

the resulting matrix equations. The EM field is then calculated in terms of these induced charges and 

currents. A sufficient number of discretisation points were used to ensure full convergence of all 

results. 
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