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Abstract

The advancements in additive manufacturing techniques enable novel designs using
lattice structures in mechanical parts, lightweight materials, biomaterials and so forth.
Lattice-skin structures are a class of structures that couple thin-shells with lattices,
which potentially combine the advantages of the thin-shell and the lattice structure.
A new and systematic isogeometric analysis approach that integrates the geometric
design, structural analysis and optimisation of lattice-skin structures is proposed in
the dissertation.

In the geometric design of lattice-skin structures, a novel shape interrogation
scheme for splines, specifically subdivision surfaces, is proposed, which is able to
compute the line/surface intersection efficiently and robustly without resorting to
successive refinements or iterations as in Newton-Raphson method. The line/surface
intersection algorithm involves two steps: intersection detection and intersection
computation. In the intersection detection process, a bounding volume tree of k-dops
(discrete oriented polytopes) for the subdivision surface is first created in order to
accelerate the intersection detection between the line and the surface. The spline
patches which are detected to be possibly intersected by the line are converted to
Bézier representations. For the intersection computation, a matrix-based algorithm is
applied, which converts the nonlinear intersection computation into solving a sequence
of linear algebra problems using the singular value decomposition (SVD). Finally, the
lattice-skin geometry is generated by projecting selected lattice nodes to the nearest
intersection points intersected by the lattice edges. The Stanford bunny example
demonstrates the efficiency and accuracy of the developed algorithm.

The structural analysis of lattice-skin structures follows the isogeometric approach,
in which the thin-shell is discretised with spline basis functions and the lattice structure
is modelled with pin-jointed truss elements. In order to consider the lattice-skin
coupling, a Lagrange multiplier approach is implemented to enforce the displacement
compatibility between the coupled lattice nodes and the thin-shell. More importantly,
the parametric coordinates of the coupled lattice nodes on the thin-shell surface are
obtained directly from the lattice-skin geometry generation, which integrates the design
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and analysis process of lattice-skin structures. A sandwich plate example is analysed to
verify the implementation and the accuracy of the lattice-skin coupling computation.

In addition, a SIMP-like lattice topology optimisation method is proposed. The
topology optimisation results of lattice structures are analysed and compared with
several examples adapted from the benchmark examples commonly used in continuum
topology optimisation. The SIMP-like lattice topology optimisation proposed is further
applied to optimise the lattice in lattice-skin structures. The lattice-skin topology
optimisation is fully integrated with the lattice-skin geometry design since the sensitivity
analysis in the proposed method is based on lattice unit cells which are inherited from
the geometry design stage.

Finally, shape optimisation of lattice-skin structures using the free-form deformation
(FFD) technique is studied. The corresponding shape sensitivity of lattice-skin struc-
tures is derived. The geometry update of the lattice-skin structure is determined by the
deformation of the FFD control volume, and in this process the coupling between lattice
nodes and the thin-shell is guaranteed by keeping the parametric coordinates of coupled
lattice nodes which are obtained in the lattice-skin geometry design stage. A pentagon
roof example is used to explore the combination of lattice topology optimisation and
shape optimisation of lattice-skin structures.
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Chapter 1

Introduction

1.1 Motivation and objectives

Lattice structures and additive manufacturing Lattice structures are widely
used in various engineering fields, from common structural forms in architecture to
microstructured lightweight materials. An advantage of lattice structures is that they
can be assembled to create a structural hierarchy. For example, the Eiffel Tower is
a pioneer project using a hierarchical lattice structure of three orders as shown in
Figure 1.1, making its relative density (ratio of mass density to material density) only
1.2 × 10−3 times that of cast iron [1]. Also, it is flexible to adapt the configuration and
pattern of lattice structures in order to conform to free-form surfaces, since surfaces can
be approximated with triangles, quadrilaterals and other polygonal shapes. For these
reasons lattice structures are commonly used in architecture with free-form surfaces.

Fig. 1.1 Hierarchical lattice structure of the Eiffel Tower.



2 Introduction

Figure 1.2 shows the skeleton of the Euplectella sponge comprised of a hierarchical
lattice structure, which is one of the many examples of lattice structures in nature.
The surface of the sponge is a square-grid lattice comprised of vertical and horizontal
struts reinforced with diagonal elements, and each strut consists of a bundle of sponge
spicules [2]. Inspired by nature, lightweight cellular materials with lattice structures
are designed for various purposes, for example, thermal insulation, acoustic absorption
and energy damping etc. [3]. More applications of cellular materials can be found in,
for example, biomaterials and tissue engineering [4].

(a) Sponge

(b) Square-grid lattice
comprised of vertical and

horizontal struts with diagonal
elements

(c) Close-up view of
a strut comprised

of bundles of
sponge spicules

Fig. 1.2 The hierarchical lattice skeleton of the Euplectella sponge. 1

The development of additive manufacturing techniques makes it possible to fabricate
lattice structures with element sizes varying from metres to nanometres, which expands
the application of lattice structures extensively. Several different additive manufacturing
techniques have been developed for fabricating lattice structures in micro and nano
scales, for example inkjet printing, fused deposition modelling, selective laser sintering,
stereolithography, etc. [5, 6]. At present materials like polymers, metals and ceramics [7–
9] have been successfully applied in the additive manufacturing. Figure 1.3 shows
an example of a lightweight microlattice structure fabricated with polymer using
stereolithography. The microlattice is assembled with periodic lattice unit cells, and
the smallest resolution of the lattice materials can be 100 nm. It was reported by
Schaedler et al. [7] that the volumetric mass density of this microlattice material can
be 0.9 mg/cm3 (not including the air weight in the pores), which is even smaller than
the density of air which is approximately 1.225 mg/cm3.

1Figure 1.2 is adapted from Aizenberg et al. [2].
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(a) Lightweight
microlattice

(b) Microlattice structure

Fig. 1.3 A lightweight microlattice material comprised of lattice unit cells. 2

In contrast to conventional subtractive manufacturing, additive manufacturing
can handle complex geometries without significant extra effort. Several additive
manufacturing techniques can deal with metals, for example, techniques in categories
of powder bed fusion, binder jetting and direct energy deposition [10]. New creative
structural forms in mechanical engineering can then be designed by combining with
lattice structures. A benefit of adding lattice structures to replace a solid region in
a mechanical part is that the reduced weight of the mechanical part can potentially
improve its other capabilities and can significantly reduce the time needed in the
additive manufacturing. Figure 1.4 shows two examples of mechanical parts with
lattice structures manufactured by additive manufacturing. The bracket shown in
Figure 1.4a is fabricated with titanium, and it combines lattice structures with topology
optimisation of the solid aiming to minimise the component weight. The connecting
part shown in Figure 1.4b replaces its solid part with lattice structures such that the
weight of the component is reduced while still satisfying the mechanical requirement.

It can be concluded that the lattice structure is a promising option in the engineering
design with the development of additive manufacturing. Using lattice structures can
achieve equivalent or comparable mechanical properties with much less material, which
is quite appealing in industrial design, especially when the weight of structures has a
significant influence on the overall performance of the design, for example, in automobile
and aerospace industries. In addition, lattice structures are flexible to design and have
advantages in conforming to free-form surfaces. If the lattice structure contains unit
cells, it can be periodically assembled, and this is often used in material fabrication.

2Figure 1.3 is adapted from HRL Laboratories and Schaedler et al. [7].
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(a) (b)

Fig. 1.4 Infilled lattice structures in mechanical parts. 3

When lattice structures are used as lattice materials, different configurations of the
lattice structure can result in significantly different material properties, for example the
stretching-dominated lattice structure in lightweight stiff materials and the bending-
dominated lattice structure in foam materials. This feature provides great flexibility to
fabricate lattice materials with unique features by manipulating the configuration of
lattice structures.

Integrated isogeometric design, analysis and optimisation The term isogeo-
metric analysis was coined by Hughes et al. [11], which is a computational method
that combines the finite element method with geometric representations used in the
computer-aided design. There are a number of earlier works on using unified repre-
sentations for geometries and finite element analysis, for example, uniform B-spline
representations in [12] and subdivision surfaces in [13, 14]. Much research work on iso-
geometric analysis has been reported since then, including its applications in structural
analysis [11, 15–17], shape optimisation [18–20], fluid-structure interaction [21–23], and
so forth.

In contrast to the conventional finite element analysis which treats the CAD
geometry and the finite element model in separate modules, the isogeometric analysis
bridges the gap between the CAD geometry model and the finite element model. This
property is highly favourable as the mesh generation would account for a large portion
of the total computational time in conventional finite analysis. It was reported that the
ratio of time needed by modelling and analysis is 80/20 in general [24], and it becomes
worse if the mesh generated cannot be guaranteed to be analysis-suitable for models
with complex geometries.

3Figure 1.4 is downloaded from http://resources.renishaw.com and https://www.autodesk.com
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Several geometric representations that are commonly used in isogeometric analysis
include the non-uniform rational B-splines (NURBS) [11], T-splines [25–27] and sub-
division surfaces [13, 15, 28]. NURBS has gained great attention in the isogeometric
analysis since it is the predominant geometry representation in most commercial CAD
packages. However, the problem with NURBS is that gaps can exist between NURBS
patches especially when trimmed NURBS patches are presented in the geometry model,
which is unadvoidable in most engineering designs as multiple NURBS surfaces are
usually needed to model a freeform shape. T-splines and subdivision surfaces are widely
used to generate watertight smooth surfaces. T-splines can be seen as a generalisation
of NURBS but having local refinement property. The control polygon of a surface can
be locally refined with T-splines by adding T-junctions [29]. Compared with a NURBS
model, a T-spline model of the same geometry can have much fewer control points since
the T-spline does not have the strict topological constraint as the NURBS, which is
another advantage for the geometric design. Analysis-suitable T-splines was proposed
in [30, 31] in order to deal with the issue of T-splines that the basis functions cannot
be guaranteed to be linearly independent [32]. Subdivision surfaces can be seen as a
generalisation of spline surfaces [33] and it has been widely adopted in the animation
industry. The underlying basis functions of subdivision surfaces have the mathematical
properties of partition unity and linear independence, which ensures that they can be
used directly for the finite element analysis. In fact, the NURBS-compatible subdivision
surfaces have been studied [34, 35], and subdivision surfaces are becoming a promising
option in some CAD packages.

Using isogeometric analysis has a natural advantage in structural optimisation
because of its integration of geometry and analysis models. In structural optimisation
problems design variables are updated after each optimisation iteration. The design
variables can be sizes of structural members, nodal coordinates and connectivity in the
structure. All these changes in geometry require a mesh update for the conventional
finite element analysis, which can be time-consuming and error-prone. Since the
geometry model is integrated with the finite element model in the isogeometric analysis,
the updated geometry model after each optimisation process can be used directly as
the finite element model without remeshing.

Objectives The aim of the research is to explore a new and systematic approach
to integrate the geometric design, structural analysis and optimisation of lattice-skin
structures in which the lattice structure and the thin-shell are coupled. Figure 1.5 is
an example of the lattice-skin structure. As described in preceding sections, lattice
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structures are ideal for multi-functional design, for example, for lightweight, stiffness,
heat transfer and so forth. With the advances of the additive manufacturing, it
is becoming increasingly possible to design with lattice structures and create novel
and functional products. In addition, thin-shell structures exhibit low weight and
superior load carrying capacity and they are widely used in large-span designs. It is
promising that lattice-skin structures can combine the advantages of lattice structures
and thin-shells.

(a) A lattice-skin structure

(b) Sketch of the lattice-skin structure

Fig. 1.5 Illustration of the lattice-skin structure.

However, it is in general not feasible to model the entire lattice-skin structure
in a CAD (Computer-Aided Design) system due to the large number of geometry
entities required and the poor scalability of CAD systems [36, 37], although the size of
lattices that can be represented in the CAD system is increasing continuously. If the
lattice is modelled as a solid in the CAD system, the Boolean operations required for
the solid modelling of a large number of lattice struts are prohibitively expensive to
compute [38, 39]. In practice, this limitation is overcome by designing only the skin in
the CAD system, and the skin surface is triangulated before adding the lattice outside
the CAD system. Nonetheless, this approach leads to accuracy issues, especially when
the lattice-skin structure generated is analysed with the finite element method.

In order to cope with these issues in the design and analysis of lattice-skin structures,
the objectives of the presented research on lattice-skin structures are as follows.

- First of all, a robust and efficient approach is needed for the shape interrogation
of spline surfaces in order to combine the lattice with the spline surface used in CAD
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systems directly to generate lattice-skin structures. This process involves computing
the intersection of the lattice and the spline surface, and algebraic geometry techniques
are developed to compute the intersection points.

- Secondly, the coupling between the lattice structure and the thin-shell needs to
be considered in the structural analysis of the lattice-skin structure. A numerical
computation scheme is implemented to consider the lattice-skin coupling.

- In addition, lattice topology optimisation is applied to the lattice-skin structure.
Though lattice structures are usually used for the lightweight purpose, the optimisation
of lattice structures is still needed to make use of the material more efficiently. To
this end, a lattice topology optimisation method is developed specifically for lattice
structures comprised of unit lattice cells and then applied to lattice-skin structures.

- Finally, shape optimisation of the lattice-skin structure is studied. Although the
shape optimisation methods of lattice structures and thin-shells have been studied
extensively, they cannot be applied directly to the lattice-skin structure, as the lattice
and the thin-shell skin have different geometry parameterisations and the lattice-skin
coupling should also be considered in shape optimisation.

1.2 Methodology

Shape interrogation of spline surfaces The process of extracting information
from geometries is commonly referred to as shape interrogation in the computer-
aided design literature. In order to generate and analyse lattice-skin structures, the
intersection between lattice struts and the thin-shell needs to be computed. The
physical coordinates of intersection points are needed for the geometry generation, and
the corresponding parametric coordinates on the thin-shell surface are required for the
lattice-skin coupling analysis. The line/surface intersection computation involves the
shape interrogation of spline surfaces. Some approaches commonly used for the shape
interrogation of spline surfaces, including the triangulation, the marching approach,
the subdivision approach and the algebraic approach, are summarised as follows.

The most straightforward approach is the triangulation of spline surfaces [40,
41], that is, the spline surface is approximated by piecewise linear triangles. The
triangulation is a standard geometric representation in additive manufacturing which
in general accepts STL geometry models for generating printable files. After the spline
surface is triangulated, the line/surface intersection is reduced to find the intersection
between a line and a collection of triangles which becomes straightforward to solve.
Though this approach is easy to implement and the robustness can be guaranteed, the
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accuracy of intersection computation depends on how densely the surface is triangulated.
It is probable to have a huge number of triangles in the geometry model in order to
obtain the intersection points within a small tolerance. Furthermore, the parametric
coordinates of intersection points on the surface are not straightforward to be inferred
from the intersection computation.

The marching approach takes advantage of the geometric information of the spline
surface [42, 43], for example, the surface derivatives evaluated at points on the spline
surface. Starting points on the line and the spline surface are required to initialise the
marching process. The marching process involves a major step and several minor steps.
At each step, the difference between the point on the line and the point on the surface
is approximated linearly which involves the first derivatives evaluated at those points.
The increments of parameters are obtained by solving a linear approximation equation
system. The iteration process terminates when the difference between the point on
the line and the point on the surface is within a tolerance. This process is essentially
the Newton-Raphson method and has a quadratic convergence, though the robustness
of finding a solution cannot be guaranteed which depends on the selection of starting
points.

The divide-and-conquer approach, also known as the subdivision approach, involves
two steps in each iteration, intersection detection and surface refinement. In general, the
spline surface has the convex hull property since the basis functions are non-negative,
that is, the surface lies entirely within the convex hull of its control points. Hence, the
intersection between the line and the surface can be detected (there is a possibility
that the line intersects with the spline surface) if the line intersects with the convex
hull of the surface. In other words, if there is no intersection between the line and the
convex hull of the surface, the line cannot intersect with the surface. However, the
convex hull of the spline surface is not cheap to compute. Alternatively, the bounding
box and the k-dop (discrete orientation polytope) of the spline surface can be used
for the intersection detection, which are easy to compute though not as tight as the
convex hull. After a possible intersection between the line and the spline surface is
detected, the spline surface is refined into smaller pieces, and the intersection detection
is performed again to the line and the refined surface pieces. This process continues
until the pieces can be approximated by planes, and the intersection computation is
reduced to the simple line/plane intersection problem.

The algebraic geometry approach is a class of methods that aim to obtain the im-
plicitisation of the spline surface [44]. As a matter of fact, every parametric polynomial
surface can be represented in implicit form. The classical algebraic geometry approach
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is mainly about the elimination of variables in polynomial equations that represent the
spline surface [45]. The resultant of polynomials is the key tool in these elimination
methods, which determines if there is any common root in two polynomials. Two
polynomials have common roots if and only if the resultant is zero. The resultant forms
commonly used include the Sylvester’s resultant and the Bézout’s resultant [44, 46].
For planar curves the elimination methods have been well understood. The moving
line method proposed by Sederberg et al. [47, 48] gives a geometric interpretation of
the implicitisation for planar curves. The basic idea of the moving line method is based
on the fact that any conic curve can be generated by the intersection of two pencils of
lines [49]. For example, a quadratic planar curve can be generated by the intersection
of two linear pencils, and a cubic planar curve can be generated by the intersection of
a linear pencil and a quadratic pencil. The moving line method gives a matrix which
is equivalent to the Bézout matrix in a more compact way.

However, the traditional elimination methods cannot be extended straightforwardly
to spline surfaces, as the surface involves more geometric information and the base
points 4 are not as easy to cope with as for planar curves [46]. In addition, the matrix
obtained cannot always be non-singular, which is the requirement if the determinant
of the matrix is used to obtain the implicit equation of the surface. In order to avoid
the requirement of the non-singular matrix, Busé et al. [50, 51] proposed the implicit
matrix representations of rational surfaces, in which the surface is implicitised with
matrix form instead of a polynomial equation as in traditional algebraic geometry
approach. Once the implicit matrix representation of the spline surface is obtained,
whether or not a point in space is on the surface can be determined by evaluating
the rank of the implicit matrix after substituting the coordinates of the point into
the matrix. The point is on the surface if and only if the rank of the corresponding
implicit matrix drops. The line/surface intersection can then be computed by solving
a generalised eigenvalue problem and a few small singular value decompositions.

Topology optimisation The topology optimisation of continuum structures has
been studied extensively [52, 53] with approaches dealing with the material distribution
in the design domain. The homogenisation method proposed by Bendsøe et al. [54, 55]
uses intermediate material densities in the problem formulation such that it contains
microscopic structures with the optimised material densities in the final result. The
macroscopic material property of the microstructure is required, which can be obtained

4For a surface parametrised by x = (x1(θ, x2(θ), x3(θ))T = ( f1(θ)
f4(θ) , f2(θ)

f4(θ) , f3(θ)
f4(θ) )T, the base points

are the points θ where f1, f2, f3 and f4 all vanish simultaneously [46].
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Fig. 1.6 Penalisation of Young’s modulus in the SIMP method.

with the homogenisation theory [56]. The main drawback of this method is that it is
not straightforward to get the optimal microstructure corresponding to an intermediate
material density. This issue can be alleviated by considering only a subclass of
microstructures.

The solid isotropic material with penalisation (SIMP) method considers interme-
diate material densities between solid and void with a penalisation [55, 57]. For the
optimisation problem of structural compliance, the Young’s modulus of the material
can be penalised as follows,

Ei = ρκ
i E0 , (1.1)

where κ is the penalty parameter; ρ denotes the density of the material, which is
between 0 (void) and 1 (solid); E0 is the Young’s modulus of the solid material. The
lower bound of the density ρ takes a small value, e.g. 10−4, in order to avoid the
singularity of the stiffness matrix. The Young’s modulus penalised with (1.1) instead
of the original solid Young’s modulus is used in the finite element analysis as well as in
the sensitivity analysis for the gradient-based optimisation.

The penalisation of Young’s modulus using (1.1) is illustrated in Figure 1.6. When
the penalty parameter κ > 1, the Young’s modulus is penalised such that it is
disproportionally low between the void state (ρ = 0) and the solid state (ρ = 1).
Therefore, the material density ρ will either approach to 0 or 1 in the optimal solution;
in other words, intermediate density values will be avoided in the optimisation as the



1.2 Methodology 11

material is not used efficiently. In addition, as the penalty parameter becomes larger,
the percentage of intermediate densities will become smaller in the optimised structure.
Nonetheless, a large penalty parameter can lead to numerical instability.

A modified SIMP method is formulated as [58]

Ei = Emin + ρκ
i (E0 − Emin) , (1.2)

where Emin is the Young’s modulus of the void material, which is set as a small value,
e.g. 10−4. The advantage of using this modified formulation is that the density ρ can
be zero and the minimum Young’s modulus is independent of the penalty parameter.

In order to deal with numerical instabilities, for example chequerboard patterns,
mesh dependencies and local minima, in topology optimisation using the SIMP method,
filtering techniques have been employed which include density filtering [59, 60] and
sensitivity filtering [61, 58]. In the density filtering approach, the element density is
filtered with

ρ̃e =
∑

i∈Ne
w(xi)ρiVi∑

i∈Ne
w(xi)Vi

, (1.3)

where xi denotes the position of the i-th element which is usually represented by its
centroid; Vi is the volume of the i-th element; the weight w(xi) can be determined by
a linear decaying function

w(xi) = max (Rf − ||xi − xe||, 0) (1.4)

with Rf a prescribed filtering range and xe the position of an element in the set Ne.
Ne denotes the neighbouring elements of the i-th element which are located within the
range Rf , and || · || denotes the Euclidean distance between two points.

The idea of sensitivity filtering is that the filtered sensitivity instead of the real
sensitivity is used in the gradient-based optimisation. This can be easily implemented
with, according to [62],

∂̃J

∂ρe

=
∑

i∈Ne
w(xi)ρi

∂J
∂ρi∑

i∈Ne
w(xi)ρi

(1.5)

with the same symbols as used in the density filtering (1.3). Recently, some attempts
have been made to interpret the sensitivity filtering from the continuum mechanics
perspective. The sensitivity filtering concept used for the compliance optimisation
problem can be derived from the strain energy minimisation using a nonlocal elasticity
formulation [63].
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In lattice topology optimisation of lattice-skin structures, a SIMP-like method is
proposed in order to obtain a topology optimised lattice structure in the lattice-skin
structure. Since the lattice structure is discrete and the concept of material density
in topology optimisation of the continuum structure cannot be applied directly to
the lattice structure, the SIMP method used in the continuum structure is adapted
as follows. The element stiffness of a lattice strut can be written in the following
equivalent way,

ki = Ai

Amin
i

kmin
i = ρikmin

i , (1.6)

where Ai and Amin
i are the cross-sectional area and the prescribed minimum cross-

sectional area of the i-th strut respectively, and kmin
i is the element stiffness correspond-

ing to Amin
i . The ratio ρi is modified if Ai is less than Amin

i . The detailed modification
is described in Chapter 5. It becomes lattice topology optimisation when Amin

i takes
the original cross-sectional area of the strut A0

i .

Shape optimisation with free-form deformation An intuitive way for shape
optimisation is to take nodal coordinates of the geometry as design variables. Neverthe-
less, the final optimal shape obtained in this way may be deformed severely so that the
shape cannot be used in practice. The problem of using nodal coordinates as design
variables directly was also stated in [64]. For geometries represented with subdivision
surfaces, a multiresolution shape optimisation scheme was proposed by Bandara et
al. [19, 20] to deal with this problem when nodal coordinates are considered as design
variables, in which the structural analysis and the geometry update are performed on
different subdivision levels. The structural analysis is performed on a fine level, and
the gradient obtained on this fine level is projected back to the coarse level in order
to update the coarse mesh of the subdivision surface. Since the geometry is updated
on the coarse level with a few control points, the geometry can be updated in a more
stable manner.

For shape optimisation of lattice-skin structures, the shapes of the lattice and the
thin-shell are updated at the same time, which makes the free-form deformation (FFD)
method [65] an alternative for this problem. The FFD method has been applied in
computational fluid dynamics for shape optimisation, for example the aerodynamic wing
design [66, 67] and surface optimisation in flows [68, 69]. In the free-form deformation
method, different types of geometries are embedded in the same control volume so
that the updates of these geometries are entirely dependent on the deformation of the
control volume. Figure 1.7 gives an example of a torus and its FFD control volume.
The parametric coordinates of the torus in the control volume are computed so that
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(a) A torus with control volume (b) The deformed torus with control volume

Fig. 1.7 The free-form deformation of a torus.

the torus geometry is connected with the control volume through the parametric
coordinates. The control volume is deformed by updating its control points, and the
deformed torus can be obtained by mapping from the parametric space to the global
space based on the updated control volume as shown in Figure 1.7b.

1.3 Structure of the dissertation

Without loss of generality, a subdivision surface is used to represent the mid-surface
of the thin-shell in the lattice-skin structure. Chapter 2 gives a brief review on
subdivision surfaces, including subdivision schemes that are commonly used in geometry
representations and the conversion to Bézier representations that will be used in the
intersection computation.

Chapter 3 describes the generation of lattice-skin structures. The methods for
shape interrogation of spline surfaces are first summarised and compared. Among
them, the algebraic geometry approach based on implicit matrix representations will
be presented in detail. A line/subdivision surface intersection algorithm is proposed
afterwards, including the hierarchical bounding volume trees of k-dops for intersection
detection and implicit matrix based intersection computation which solves a generalised
eigenvalue problem with a few singular value decompositions.

The isogeometric analysis of lattice-skin structures is demonstrated in Chapter 4,
including the analysis of subdivision thin-shells and the lattice-skin coupling method
using Lagrange multipliers. Chapter 5 discusses the optimisation of lattice structures
with structural compliance as the objective. The sensitivity analysis for the size and
shape optimisation of lattice structures is derived in detail. In addition, a SIMP-
like lattice topology optimisation is proposed for optimising the topology of lattice
structures.
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Chapter 6 presents lattice topology and shape optimisation of lattice-skin structures
with structural compliance as the objective. The SIMP-like method proposed in
Chapter 5 is applied to the lattice-skin topology optimisation. In addition, the free-
form deformation technique is applied in shape optimisation of the lattice-skin structure,
where the shape sensitivity analysis is given in detail with the consideration of lattice-
skin coupling. Finally, Chapter 7 summarises the research work presented in this
dissertation and discusses some possible future work.



Chapter 2

Review of subdivision surfaces

Subdivision surfaces are widely used in the computer graphics and animation community
as a generalisation of B-splines and NURBS for modelling smooth free-form surfaces.
One advantage of using subdivision surfaces compared with B-splines or NURBS
which are strictly defined with structured control meshes is that a watertight smooth
surface can be guaranteed with subdivision surfaces even with unstructured meshes.
In constrast, B-spline and NURBS surfaces need to be trimmed and pieced together to
describe a geometry with arbitrary topology and the smoothness cannot be guaranteed
in the trimming and piecing together processes.

The basic idea of subdivision is that a smooth curve or surface can be generated
as the limit of a sequence of successive refinements [70]. This refinement process
includes two steps in general: inserting new vertices based on existing vertices and
then updating the existing vertices. Different subdivision schemes are mostly derived
based on spline theories, for example B-splines and box splines. In this chapter, the
connection between splines and the subdivision is first demonstrated with B-splines
in the univariate case. Afterwards, two different subdivision surface schemes, the
Catmull-Clark subdivision scheme for quadrilateral meshes and the Loop subdivision
scheme for triangular meshes, are introduced. The conversion of the subdivision to
Bézier representations is given in the end, which are required in the line/subdivision
surface intersection algorithm developed later.
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2.1 Univariate subdivision

2.1.1 B-splines from subdivision

A B-spline basis function is a piecewise polynomial with each segment consisting of a
polynomial of the same degree as the basis function. The continuity at the boundary
of two adjacent segments has a higher order for B-spline basis functions of higher
degrees. Therefore, for the finite element discretisation which requires a higher order
of continuity in basis functions, it is straightforward to use B-spline basis functions
that satisfy the continuity requirement. In addition, the B-spline basis function has a
local support property, that is, the B-spline basis function associated with a control
point only influences the region near the control point at some distance, which is an
appealing feature for geometry modelling.

B-spline basis functions can be generated with repeated convolution starting from
a box function b0(t) defined as

b0(t) =


1, 0 ≤ t ≤ 1 ;

0, otherwise .
(2.1)

A B-spline basis function bµ(t) of degree µ can then be obtained by calculating the
convolution of the basis function bµ−1(t) of degree µ − 1 with the box function b0(t),
that is,

bµ(t) =
(
bµ−1 ⊗ b0

)
(t) =

∫
bµ−1(s)b0(t − s) ds . (2.2)

The connection between B-splines and the univariate subdivision is reflected from
the refinability property of B-spline basis functions [70] as follows,

bµ(t) = 1
2µ

µ+1∑
k=0

(
µ + 1

k

)
bµ(2t − k) . (2.3)

It can be seen from (2.3) that a B-spline basis function can be generated by a linear
combination of translated and dilated copies of itself, which is illustrated in Figure 2.1
with a cubic B-spline basis function.

The refinement equation (2.3) of B-spline basis function can be written in matrix
form

bµ(t) = bµ(2t)S , (2.4)

where bµ(t) is a row vector of B-spline basis and bµ(2t) is a row vector of dilated
B-spline basis, S is the refinement matrix.
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(a) Translated and dilated cubic B-splines (b) Linear combination of cubic B-splines

Fig. 2.1 The refinement of a cubic B-spline basis function.

A B-spline curve C(t) of degree µ is defined with a set of control points xi and
associated B-spline basis functions bµ

i (t),

C(t) =
µ+1∑
i=1

bµ
i (t)xi = bµ(t)x (2.5)

with x a column vector of control points, x = (x1 x2 · · · xµ+1)T.
By using the refinement equation (2.4), the same B-spline curve with control points

x(0) can be represented with a set of refined control points x(1),

C(t) = bµ(t)x(0) = bµ(2t)Sx(0) = bµ(2t)x(1) (2.6)

with
x(1) = Sx(0) (2.7)

defining the first-level refined control points for the B-spline curve C(t), and the
matrix S is called the subdivision matrix in this context. The refined control points
on subsequent levels can be obtained by applying (2.4) successively, and the refined
control points on the subdivision level k can be computed with

x(k) = Sx(k−1) = Skx(0) , (2.8)

where Sk denotes the multiplication of the subdivision matrix S for k times. Hence,
the same B-spline C(t) defined with the refined control points on the k-th subdivision
level is given as

C(t) = bµ(2kt)x(k) . (2.9)
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2.1.2 Analysis of subdivision

In order to study the local properties of a subdivision curve in the neighbourhood of a
point of interest, a local subdivision matrix instead of the whole subdivision matrix is
needed. For example, the local subdivision matrix of a cubic B-spline is as follows,

x
(k+1)
−3

x
(k+1)
−2

x
(k+1)
1

x
(k+1)
2

x
(k+1)
3


= 1

8



1 6 1 0 0

0 4 4 0 0

0 1 6 1 0

0 0 4 4 0

0 0 1 6 1





x
(k)
−3

x
(k)
−2

x
(k)
1

x
(k)
2

x
(k)
3


. (2.10)

The refined control points can be computed immediately from the existing control
points with the local subdivision matrix. Figure 2.2 illustrates the subdivision process
of generating a cubic B-spline from the initial five control points. The blue square
points are those inherited from the previous subdivision level, and the red triangle
points are the new ones generated at the current subdivision level. The limit curve
turns out to be a cubic B-spline. In addition, the local properties of the cubic B-spline
curve are always influenced only by the five control points in the neighbourhood of the
position of interest.

(a) Initial control points (b) 1st subdivision

(c) 2nd subdivision (d) Limit curve

Fig. 2.2 Subdivision process to generate a cubic B-spline.

Some local properties of subdivision curves, for example limit positions, tangents, the
convergence, etc., can be revealed from the eigendecomposition of the local asymmetric
subdivision matrix S = SRλSL. In the following context, without being clarified, the
subdivision matrix S refers to the local subdivision matrix for the sake of simplicity.
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For a subdivision matrix of size n × n, let its right eigenvectors SR
i constitute the

columns of the matrix SR and the left eigenvectors SL
j constitute the rows of the

matrix SL, we have
SLSR = I and SL

j · SR
i = δij . (2.11)

The vector of initial control points x(0) = (x(0)
1 x

(0)
2 · · · x(0)

n )T can be expressed as

x(0) =
n∑

j=1
(SL

j · x(0))SR
j =

n∑
j=1

ajS
R
j , (2.12)

where
aj = SL

j · x(0) = SL
j,1x

(0)
1 + SL

j,2x
(0)
2 + · · · + SL

j,nx(0)
n (2.13)

has the same dimension as a control point.
The refined control points obtained with (2.8) can be written as

x(k) =
n∑

j=1
ajS

kSR
j =

n∑
j=1

aj (λj)k SR
j , (2.14)

where λj are eigenvalues of the subdivision matrix S. It is indicated from (2.14) that
in order to obtain the convergence of the subdivision, the largest eigenvalue λ1 must
not be greater than 1; otherwise, the refined points would have no bounds. In addition,
it can be proven that the largest eigenvalue should be 1 in order to guarantee the
invariance under affine transformation such as translation and rotation.

Consider a translation vector d applied to the control points x(j) at the j-th
subdivision level, the subdivision of the translated control points yields

x(j+1) = S(x(j) + 1 ⊗ d) = Sx(j) + S(1 ⊗ d) , (2.15)

where 1 is a vector of size n with all ones, and 1 ⊗ d representing translating all
the control points by d. In order to guarantee the invariance under translation, the
subdivision of the translated control points should be translated by the same translation
vector d, leading to

S(1 ⊗ d) = 1 ⊗ d , (2.16)

indicating that the sum of entries in each row of the subdivision matrix S equals 1.
Therefore, λ1 = 1 should be an eigenvalue of S and the corresponding eigenvector is 1.
It can also be proven that there is only one eigenvalue with magnitude 1 [70]. In other
words, λ1 = 1 and λi < 1(i ≥ 2).
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The limit position defined by the set of control points x(0) can be obtained readily
from (2.14) with eigenvalues λ1 = 1 > λ2 ≥ · · · ≥ λn, that is,

x(∞) = a1S
R
1 = 1 ⊗ a1 = 1 ⊗ (SL

1 · x(0)) (2.17)

with 1 a vector of size n with all ones. As can be seen, all the control points converge
to the same point in the limit

a1 = SL
1 · x(0) = SL

1,1x
(0)
1 + SL

1,2x
(0)
2 + · · · + SL

1,nx(0)
n . (2.18)

Assume that the limit position defined by the control points x(0) is at the origin of
the coordinate system, i.e. a1 = 0, we have

x(k)

(λ2)k
= a2S

R
2 +

n∑
j=3

aj

(
λj

λ2

)k

SR
j . (2.19)

The limit of this expression gives the tangent direction at the point. If λ3 = λ2, the
tangent at the point would be spanned by two vectors a2 and a3, which in general are
not in the same direction. Therefore, the existence of a tangent implies that λ3 < λ2,
and furthermore, all the other eigenvalues except λ1 are smaller than λ2. In other
words, for a subdivision curve,

λ1 = 1 > λ2 > λ3 ≥ · · · ≥ λn . (2.20)

leading to

lim
k→∞

x(k)

(λ2)k
= a2S

R
2 , (2.21)

which indicates that all the control points converge to a direction defined by a2, that
is, the limit tangent defined by the control points x(0) is

t = a2 = SL
2 · x(0) . (2.22)

2.2 Bivariate subdivision

For surface meshes with arbitrary topology, several different subdivision schemes have
been designed to generalise the spline theories, such as the Catmull-Clark subdivi-
sion [71], the Doo-Sabin subdivision [72] and the Loop subdivision [73]. Both the
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Catmull-Clark subdivision and the Doo-Sabin subdivision were designed for quadrilat-
eral meshes, and the Loop subdivision was derived for triangular meshes.

For each vertex in the mesh, a valence value representing the number of edges
intersecting at the vertex is defined. For a quadrilateral mesh, if the valence of a vertex
is not four, it is an extraordinary vertex (EV); for a triangular mesh, a vertex is an EV
if its valence is not six. In general, all the extraordinary vertices can be isolated from
each other after one subdivision step, which is useful when the subdivision surface is
evaluated. The 1-ring structures are also defined for the mesh. The 1-ring of a vertex
contains its neighbouring vertices connected by edges. The 1-ring of a facet contains
its neighbouring facets which share at least one common vertex. The 1-ring structures
of a facet in quadrilateral meshes and triangular meshes are shown in Figure 2.3.

(a) A quadrilateral facet
with no EVs

(b) A quadrilateral facet with
an EV

(c) A triangular facet with
no EVs

(d) A triangular facet with
an EV

Fig. 2.3 One ring structures of quadrilateral and triangular facets.

Since subdivision rules are derived from splines, they inherit the local support
property of splines, that is, a point on the surface is only influenced by the control
points within a local support distance instead of all the control points that define
the whole surface. Due to this local property, a mesh can be seen as a collection of
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patches defined with individual facets and their 1-rings. The patch of a facet is the
only information that is required for subdividing the facet.

2.2.1 Catmull-Clark subdivision

The Catmull-Clark subdivision scheme was designed to generalise the tensor-product
cubic B-spline surfaces to quadrilateral meshes with arbitrary topology [71]. For the
region away from an extraordinary vertex, the Catmull-Clark subdivision is equivalent
to uniform cubic B-spline knot insertion. Therefore, a regular patch in the mesh
containing 16 vertices, of which the vertices belonging to the centred facet are not
extraordinary as shown in Figure 2.3a, defines a bi-cubic B-spline surface, and this
bi-cubic B-spline surface is actually the limit surface of the patch.

(a) A Catmull-Clark patch (b) Four subpatches after one
subdivision

Fig. 2.4 Subdivision of a Catmull-Clark patch.

A patch in the Catmull-Clark subdivision is subdivided into four subpatches after
inserting new vertices and updating existing vertices. For the patch with an EV depicted
in Figure 2.4a, one of the subpatches inherits the EV with updated coordinates and
other subpatches are all regular (see Figure 2.4b). The vertices in the subpatches
are generated with the Catmull-Clark subdivision scheme given in Figure 2.5 and
Figure 2.6, which is paraphrased based on the subdivision rules given in [71]. The
new vertices within the facet and on the edges are created according to the stencils
shown in Figure 2.5a and 2.5b. The existing vertices are updated in terms of their
one-ring vertices and themselves with the stencils given in Figure 2.6a and 2.6b. Note
that the stencil shown in Figure 2.6b becomes the stencil for a regular vertex when the
valence v = 4. As a matter of fact, the stencils given by [71] cannot guarantee a good
surface property around the extraordinary vertices. The coefficients in the stencils for
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(a) Facet vertex (b) Edge vertex

Fig. 2.5 Stencils of new vertices.

(a) Regular vertex (b) Extraordinary vertex
(β = 3

2v , γ = 1
4v with v the

valence)

Fig. 2.6 Stencils of existing vertices.

the region around EVs can be modified in order to improve the quality of the surface,
for example, a significantly small Gaussian curvature variation around EVs can be
obtained with the modified coefficients proposed in [17, 74].

2.2.2 Loop subdivision

The Loop subdivision scheme was designed for triangular meshes which generalises the
three-direction quartic box splines [73] for the region away from extraordinary vertices.
The definition of box spline and some of its properties are given in Appendix A. More
details about box splines are referred to [75]. For a Loop patch with an EV as shown
in Figure 2.7a, one of its subpatches after one subdivision also contains an EV, and all
the other three subpatches are regular (see Figure 2.7b). The Loop patch is subdivided
by inserting new vertices on edges and updating existing vertices with stencils shown
in Figure 2.8. Note that the stencil for updating existing vertices given by Figure 2.8b
is also applicable for regular vertices when the valence v = 6.

2.2.3 Extended subdivision

The traditional subdivision schemes described above for quadrilateral and triangular
meshes lead to smooth surfaces. However, in the real world sharp corners and creases
are common in surfaces, and the extended subdivision schemes are necessary to handle
these boundaries. The extended subdivision schemes for creases and corners was
proposed by Biermann et al. [76]. The crease edges, crease vertices and corners
are tagged in the mesh so that the extended subdivision schemes for these different
boundaries can be applied accordingly.
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(a) A Loop patch (b) Four subpatches after one subdivision

Fig. 2.7 Subdivision of a Loop patch.

(a) Edge vertex (b) Existing vertex
(v is the valence of the vertex)

Fig. 2.8 Loop subdivision stencils.

In the extended subdivision scheme, corner vertices are interpolated, that is, the
weights in the stencil of a corner vertex are zeros for its one-ring vertices and one
for itself. Therefore, the position of a corner vertex is fixed after the subdivision.
For existing vertices on crease edges, the updating scheme follows the cubic B-spline
interpolation. The vertex is updated with the average of its current position with the
weight 3

4 and the positions of its two adjacent vertices on the crease edge with weights
1
8 . The advantage of using the cubic B-spline interpolation is that the refinement only
depends on the vertices belonging to the crease edge and is not affected by interior
vertices, and it is possible to connect the surface with another subdivision surface which
also supports the cubic B-spline boundary. In addition, the cubic B-spline interpolation
is considered for the crease edges as it is essentially a cubic B-spline along the edge of
a Catmull-Clark subdivision surface and a Loop subdivision surface.

The regular Catmull-Clark subdivision scheme in Figure 2.5a is used for new facet
vertices regardless of the existence of tagged vertices and edges in the patch. For the
new vertex on the crease edge, the average of the two adjacent existing crease vertices is
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taken as its position, which is also coincident with the cubic B-spline interpolation. The
weights in the stencil of the new vertex on an untagged edge involve some treatments
depending on the adjacent tagged vertices, as shown in Figure 2.9. The value of ζ

is given by ζ = 3/8 − 1/4 cos θ for quadrilateral facets and ζ = 1/2 − 1/4 cos θ for
triangular facets with θ = 2π/v or θ = π/v if the tagged vertex is on the crease, and v

is the valence of the vertex [76].

(a) (b)

Fig. 2.9 New edge vertex in extended subdivision schemes (tagged vertices are marked
with circles).

Figure 2.10 shows the difference in the limit surface of a fandisk mesh (Figure 2.10a)
when using traditional Catmull-Clark subdivision scheme and the extended subdivi-
sion scheme. The traditional Catmull-Clark subdivision generates a smooth surface
(Figure 2.10b), while the extended subdivision scheme results in a surface with sharp
edges and corners (Figure 2.10c) as expected.

(a) Control mesh (b) Smooth surface with the
Catmull-Clark subdivision

(c) Sharp features with the
extended subdivision

Fig. 2.10 Subdivision of a fandisk control mesh.
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2.3 Conversion to Bézier representations

As described in preceding sections, the subdivision schemes commonly used are derived
from spline theories. Evidently, all splines have corresponding Bézier representations.
For example, a B-spline curve can be converted to a Bézier curve of the same degree,
and a tensor-product B-spline surface and a three-direction quartic box spline surface
can be converted to a collection of Bézier surface patches. In this section the conversions
to Bézier representations from a B-spline curve, a tensor-product B-spline surface and
a three-direction quartic box spline surface are introduced.

2.3.1 Bézier curves

A Bézier curve C(t) of degree µ is defined as

CB(t) =
µ+1∑
i=1

Bµ
i (t)xi = Bµ(t)xB , (2.23)

where xB is a column vector containing control points xi, Bµ(t) is a row vector of
Bernstein polynomials Bµ

i (t) given by

Bµ
i (t) =

(
µ

i − 1

)
ti−1(1 − t)µ−i+1 . (2.24)

Since a B-spline curve (2.5) is a polynomial of t, the same curve can be represented
with a Bézier curve of the same degree in terms of Bernstein basis functions in the
form (2.23). Consider the cubic B-spline basis function as an example. It is a piecewise
polynomial curve, and each polynomial segment can be represented with a cubic Bézier
curve. With the end conditions of the cubic B-spline basis function as well as the C2

requirement at the junctions of Bézier curve segments, the Bézier coefficients, as shown
in Figure 2.11, can be derived for the cubic B-spline basis function.

Fig. 2.11 Bézier representations of a cubic B-spline with Bézier coefficients given
(the Bézier coefficients shown should be normalised by a factor of 1/6).
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The four Bézier segments of the cubic B-spline basis function shown in Figure 2.11
are written explicitly as follows,

C1(t) = 1
6 (1 − t)3 , (2.25a)

C2(t) = 4
6 (1 − t)3 + 4

6 · 3t(1 − t)2 + 2
6 · 3t2(1 − t) + 1

6 t3 , (2.25b)

C3(t) = 1
6 (1 − t)3 + 2

6 · 3t(1 − t)2 + 4
6 · 3t2(1 − t) + 4

6 t3 , (2.25c)

C4(t) = 1
6 t3 . (2.25d)

These polynomials are exactly the four basis functions associated with the four control
points influencing the point of interest. Therefore, the cubic B-spline basis function
can be written in terms of Bernstein polynomials as

b3(t) = B3(t)Q , (2.26)

where the transformation matrix Q consists of the Bézier coefficients,

Q = 1
6



1 4 1 0

0 4 2 0

0 2 4 0

0 1 4 1

 . (2.27)

Hence, the conversion of a cubic B-spline curve to the equivalent Bézier representa-
tion is given by

C(t) = b3(t)xb = B3(t)Qxb . (2.28)

Evidently, the control points xB for the Bézier curve are

xB = Qxb . (2.29)

2.3.2 Tensor-product Bézier surfaces

A tensor-product Bézier surface of bi-degree (µ1, µ2) is defined as

SB(u, v) =
∑

i

Bµ
i xi =

µ1+1∑
i1=1

µ2+1∑
i2=1

Bµ1
i1 (u)Bµ2

i2 (v)xi1i2 , (2.30)
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where i = {i1, i2} and µ = {µ1, µ2} are multi-indices, xi are control points, Bµ1
i1 (u)

and Bµ2
i2 (v) are Bernstein polynomials as defined in (2.24).

A tensor-product B-spline basis {bµ1
j1 (u)bµ2

j2 (v)} can be expressed in terms of a tensor-
product Bézier basis {Bµ1

i1 (u)Bµ2
i2 (v)} by considering the following transformation

bµ1
j1 (u)bµ2

j2 (v) =
µ1+1∑

i1=1
Bµ1

i1 (u)Qi1j1

 ·

µ2+1∑
i2=1

Bµ2
i2 (v)Qi2j2


=

µ1+1∑
i1=1

µ2+1∑
i2=1

Qi1j1Qi2j2Bµ1
i1 (u)Bµ2

i2 (v) ,

(2.31)

which can also be written in the following form

bµ = BµR (2.32)

with the fourth-order tensor R given by

Ri1i2j1j2 = Qi1j1Qi2j2 . (2.33)

Therefore, the conversion of a tensor-product B-spline surface into the corresponding
tensor-product Bézier surface is achieved with

SB(u, v) = bµ(u, v)xb = Bµ(u, v)Rxb , (2.34)

and the control points for the tensor-product Bézier surface are given by

xB = Rxb . (2.35)

(a) Control points (b) Corner vertex (c) Edge vertex (d) Facet vertex

Fig. 2.12 Stencils to convert a bi-cubic B-spline surface to Bézier representation.
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Specifically, for a bi-cubic B-spline surface to which the Catmull-Clark subdivision
scheme generalises, the conversion to the corresponding bi-cubic Bézier surface can
be achieved with transformation stencils, as shown in Figure 2.12 where the red dots
denote B-spline surface control points and the blue squares denote Bézier surface
control points. The Bézier control points can be obtained directly by the convolution
of the B-spline control points with the stencils.

2.3.3 Triangular Bézier surfaces

A triangular Bézier surface of degree µ is defined as

SB(u, v, w) =
∑

i

Bµ
i xi =

∑
i1+i2+i3=µ+3

Bµ
i1i2i3(u, v, w)xi1i2i3 , (2.36)

where (u, v, w) are the barycentric coordinates of a point in the triangle, i = {i1, i2, i3}
is a multi-index, and the basis function Bµ

i1i2i3 is given by

Bµ
i1i2i3 = µ!

(i1 − 1)!(i2 − 1)!(i3 − 1)!u
i1−1vi2−1wi3−1 (2.37)

with i1, i2, i3 = 1, 2, · · · , µ + 1 and u + v + w = 1.
In the Loop subdivision scheme, the surface represented by a regular Loop patch is

equivalent to a three-direction quartic box spline surface. The corresponding quartic
box spline basis functions can be derived after transforming the box spline patch into a
triangular Bézier patch. For a three-direction quartic box spline, the evaluation of the
spline itself at the local support boundary is zero, and its first and second derivatives
also vanish at the local support boundary. In addition, the first and second derivatives
across the triangle edges should be continuous, i.e. the box spline is C2 across the
triangle edges. Based on these conditions, the Bézier coefficients for a box spline can
be obtained as in [77].

For the quartic triangular Bézier basis arranged as in Figure 2.13, the transformation
matrix R is listed in Appendix A.3. With the transformation matrix, the quartic box
spline basis functions can be expressed in terms of the corresponding 15 triangular
Bézier basis functions, that is,

b4(u, v, w) = B4(u, v, w)R (2.38)

with B4(u, v, w) denoting a row vector of 15 Bézier basis functions.
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(a) Bézier basis (b) Indices of Bézier basis

Fig. 2.13 Quartic triangular Bézier basis functions and their indices.

Therefore, the conversion of a quartic box spline surface into a triangular Bézier
surface is given by

SB(u, v, w) = b4(u, v, w)xb = B4(u, v, w)Rxb , (2.39)

and the Bézier control points are computed with

xB = Rxb . (2.40)



Chapter 3

Lattice-skin geometry generation

The lattice-skin structure contains the thin-shell and the lattice, in which the thin-
shell is represented with a subdivision surface and the lattice is represented with a
set of line segments. In order to generate the geometry of the lattice-skin structure,
a line/subdivision surface intersection algorithm is needed. In this chapter, a new
line/subdivision surface intersection algorithm is developed.

The information of the surface is required in order to compute the intersection
between a line and a surface. In the context of the surface intersection, the ap-
proaches for spline surface interrogation are first reviewed in Section 3.1, including the
divide-and-conquer approach, the marching approach and the implicitisation approach.
The implicit matrix representation (implicit M-Rep) belonging to the implicitisation
approach is adopted in the intersection algorithm.

A detailed description of the new line/subdivision surface intersection algorithm is
in Section 3.2, including the intersection detection using bounding volume trees and
the intersection computation with implicit M-Reps. The internal lattice generation
process is described in Section 3.3, and the Stanford bunny model is demonstrated as
an example in the end.

3.1 Review of surface interrogation approaches

Surface interrogation is a process to extract information about a surface, and the
information obtained can be used to solve the surface-related problems [78], for example,
surface intersection, offset surface, geodesics, etc., which are important applications
in computer-aided engineering design. We consider only intersection problems of
parametric surfaces and curves with Bézier representations. The prevalent techniques
for the surface interrogation include the triangulation, the marching method, the



32 Lattice-skin geometry generation

subdivision method, the implicitisation and a combination of them. Since in the
triangulation method the parametric surface is approximated with linear triangles
and the information of the original surface is not remained for the intersection, it will
not be discussed in this chapter. The techniques described in the following are also
available to subdivision surfaces since a subdivision surface can be seen as a piecewise
spline surface.

3.1.1 Divide-and-conquer

The idea of the divide-and-conquer method (also known as the subdivision method) is
that the intersection problem is repeatedly divided into smaller and simpler subproblems,
and the intersection is detected and computed for the subproblems. The process of the
divide-and-conquer approach involves a sequence of intersection detections and surface
refinements until some termination criterion is satisfied, and the intersection curve is
finally approximated by connecting the intersection points in an oriented order. A
detailed description of the divide-and-conquer method is as follows.

Intersection detection

For Bézier and B-spline representations, the surface lies entirely within the convex
hull of the control points due to their non-negative basis functions and the partition
of unity property. The potential intersection can be detected with the convex hull of
the surface. If the convex hulls of two objects (surfaces or curves) do not intersect,
there is no intersection between the two objects; otherwise, there is a possibility that
the two objects intersect. However, it is in general not cheap to compute the convex
hull of a free-form parametric surface. Instead, the bounding box and the k-dop (a
discrete orientation polytope [79] or also known as a quantised hull [80]) can be used
to detect the intersection. Though the bounding box and the k-dop are not as tight as
the convex hull, they are easier to construct and also effective in detecting possible
intersections.

K-dops can be understood as a generalisation of axis-aligned bounding boxes so
that the bounding volume is determined by a fixed k (k ≥ 6 in 3D) directions. The
axis-aligned bounding box can be seen as a 6-dop which is determined by the three
coordinate axes. Compared with the bounding box, a k-dop with k > 6 can provide a
tighter bound for the object studied and it is straightforward to compute. Figure 3.1
shows a convex hull, a bounding box and an 8-dop for a planar quadratic Bézier surface.
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(a) Quadratic Bézier patch (b) Convex hull of vertices.

(c) Bounding box of vertices (d) An 8-dop of vertices

Fig. 3.1 Bézier patches lie entirely within the convex hull, the bounding box and the
k-dop formed by their vertices.

To determine whether the k-dops of a patch and a line intersect it is not necessary
to explicitly construct their k-dops. It is sufficient to consider their control points and
their projections along the k prescribed directions dj, see Figure 3.2. As an example,
the intersection of two k-dops belonging to a cubic Bézier curve and a line segment
is illustrated in Figure 3.2. The support heights hc

j,max and hc
j,min of the cubic Bézier

curve are defined as follows

hc
j,max = max

i
(xi · dj) and hc

j,min = min
i

(xi · dj) , (3.1)

where xi are control points of the subdivision patch. The support heights hl
j,max and

hl
j,min of the line are computed in a similar way. The two k-dops intersect, that is,

potential intersection exists, only when

∀ j , hc
j,max ≥ hl

j,min and hl
j,max ≥ hc

j,min . (3.2)

Alternatively, there is no intersection between the two k-dops if

∃ j, such that hc
j,max < hl

j,min or hl
j,max < hc

j,min . (3.3)
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(a) Support heights in d1 (b) Support heights in d2

Fig. 3.2 Intersection detection between a line segment and a cubic Bézier curve. There
is no intersection in d2 direction.

Surface refinement

If a potential intersection is detected between two surfaces or curves, they are split
into subpieces. The intersection detection is performed again to these subpieces. This
process is repeated until the final small subpieces are simple (i.e. flat) enough to
compute the intersection. The refinement process to split the surface or curve is
straightforward for Bézier and B-spline representations [81]. De Casteljau’s algorithm
is available for Bézier representations, and knot refinement techniques can be applied
for B-spline representations [81]. Figure 3.3 shows the refinement process in the
divide-and-conquer method to obtain the intersection curve between a quadratic Bézier
surface and a plane.

Simplicity criteria of surfaces

Eventually, a bounding volume tree of potentially intersecting subpieces of each surface
or curve is generated. Each node in the tree contains the intersection information.
When the subpieces are simple enough to be approximated by planar facets or line
segments, the intersection is computed between pairs of planar facets or line segments,
which becomes simple and straightforward. For the intersection between pairs of planar
facets, each of the intersecting quadrilateral facets is triangulated into two triangles
so that the intersections between triangles are computed. The simplicity criteria that
are used to terminate the refinement process include the surface flatness and the edge
linearity [82]. For a quadrilateral surface subpiece, the average normal of the control
polygon of the surface subpiece is computed as the average of the normals of all the
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(a) Intersection between a quadratic Bézier sur-
face and a plane

(b) Initial control polygon (c) 1st refinement

(d) 2nd refinement (e) 3rd refinement

(f) 5th refinement (g) Final intersection curve

Fig. 3.3 The intersection of a quadratic Bézier surface and a plane using the divide-
and-conquer method.
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quadrilateral polygons, and the support heights hj,max and hj,min of the surface subpiece
along the average normal are computed. The difference between these two support
heights is considered as the measurement of flatness. A sufficiently small tolerance is
set to the flatness measurement such that the accuracy of the intersection computation
can be controlled by this tolerance. However, a flat surface subpiece may need further
refinement if the edges of the surface subpiece are not approximately linear, for example
planar Bézier surfaces shown in Figure 3.1. The edge linearity is controlled by the
measurement of maximum angle variation along each edge of the surface subpiece. The
example given in Figure 3.3 uses a tolerance of 10−4 and the tolerance is satisfied after
nine refinement steps. In practice, if a surface subpiece is detected as intersected and
the simplicity criteria are satisfied, the refinement of the surface subpiece terminates
and the intersection is computed for this subpiece. As a result, the refinement depths of
the final intersecting surface subpieces may not be the same as some subpieces become
simple at earlier stages.

Concatenation of intersection points

In surface/surface intersection problems, an intersection curve is approximated with a
sequence of line segments, and all the line segments are connected in an end-to-end
manner, that is, the finishing point of a line segment is the beginning point of the next
segment. However, the intersection points obtained in the divide-and-conquer are not
automatically sorted as expected. A bottom-top joining scheme was implemented in
order to obtain an oriented intersection curve. At the bottom level of the divide-and-
conquer process, the line segments in each patch are connected in a way such that
the curve segment in that patch consisting of these line segments is oriented. The set
of curve segments at the bottom level are then further joined together at the next
one level up to generate a set of fewer but longer curve segments. This process is
repeated until the top level is reached when all the intersection points are concatenated
in an oriented order. Figure 3.4 illustrates the joining process described above. The
refinement depths of the leaves in the tree shown in Figure 3.4 are considered to be
different deliberately in order to demonstrate that the refinement process for some
facets can stop earlier when they satisfy the simplicity criteria. The dashed lines in
Figure 3.4a denote the triangulation of the intersecting planar quadrilateral facets for
the plane/plane intersection computation.
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(a) Oriented curve segments on the bottom level

(b) Joining curve segments from the lower level

(c) Final curve segments joined to form the intersection curve

Fig. 3.4 Joining line segments to form the final intersection curve in an end-to-end
manner.

3.1.2 Marching

For the surface/surface intersection problem, the marching method is to trace an
intersection curve branch by generating a sequence of intersection points from some
starting points. The intersection points on an intersection curve are generated by
stepping from a given starting intersection point until it reaches a finishing point or a
boundary edge. In general, the marching method includes two major stages: determine
a starting point on the intersection curve in the first place, followed by several marching
steps with each consisting of a major step and minor steps to find the next intersection
point. The stepping process is performed in the parametric spaces of the two surfaces
and requires the local differential geometry information of the surfaces.

Differential geometry

Consider two parametric surfaces SA and SB defined in parameter spaces (r, s) and
(u, v) respectively, points on the two surfaces are represented as PA(r, s) on SA and
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PB(u, v) on SB. The tangents at PA(r, s) and PB(u, v) are given by

PA,r = ∂PA

∂r
, PA,s = ∂PA

∂s
, (3.4a)

PB,u = ∂PB

∂u
, PB,v = ∂PB

∂v
. (3.4b)

The normals at PA(r, s) and PB(u, v) are defined as

nA = PA,r × PA,s , (3.5a)
nB = PB,u × PB,v . (3.5b)

Let C(t) be the intersection curve of the two surfaces, a point P (t0) on the curve
can also be evaluated with either PA(r0, s0) or PB(u0, v0). The unit tangent of the
intersection curve C(t) at the point P is used to determine the marching direction and
indicate the starting point and the finishing point. The unit tangent is computed with

t = nA × nB

|nA × nB|
. (3.6)

Determination of starting points

A starting point P0 to invoke the marching process can be found by searching along the
edges of the two surfaces. The intersection point of an edge of a surface with the other
surface can be taken as the starting point, and a curve/surface intersection problem
needs to be solved to find this starting point.

Consider the four edges of the surface SA, e1
A(t) = PA(u, 0), e2

A(t) = PA(1, v),
e3

A(t) = PA(u, 1) and e4
A(t) = PA(0, v), the four edges ei

A(t) are examined one by one
to find their intersection points with the surface SB. This intersection problem can be
described as finding parameters t, u and v such that for an edge ei

A,

ei
A(t) − PB(u, v) = 0 . (3.7)

Given initial parameters t(0), u(0) and v(0), the Newton-Raphson iterative approach can
be used to get a converged solution. The linear approximation of the above equation
gives

ei
A(t(0))+∂ei

A
∂t

(t(0))δt−PB(u(0), v(0))−∂PB

∂u
(u(0), v(0))δu−∂PB

∂v
(u(0), v(0))δv = 0 , (3.8)
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which can be written in matrix form as

(
e

i(0)
A,t −P

(0)
B,u −P

(0)
B,v

)
δt

δu

δv

 =
(
−e

i(0)
A,t + P

(0)
B

)
. (3.9)

The parameters are updated with

t(1) = t(0) + δt, u(1) = u(0) + δu, v(1) = v(0) + δv , (3.10)

in the next iteration. The iteration proceeds until some termination condition is satisfied,
and the starting intersection point P0 is selected from one of those curve/surface
intersection points.

Marching steps of tracing a curve

After the starting intersection point P0 is obtained, the marching steps are performed
in the parametric spaces of the two surfaces to get other points on the intersection
curve. The starting point on the two surfaces are represented with P

(0)
A (r0, s0) and

P
(0)
B (u0, v0) respectively, and P

(0)
A (r0, s0) ≈ P

(0)
B (u0, v0).

Let {δr, δs} and {δu, δv} be the marching step in the neighbourhood of P
(0)
A and

P
(0)
B in the parametric spaces, the linear approximations of the next iterative points

P
(1)
A and P

(1)
B are

P
(1)
A (r1, s1) = PA(r0 + δr, s0 + δs) ≈ PA(r0, s0) + PA,r(r0, s0)δr + PA,s(r0, s0)δs ,

(3.11a)

P
(1)
B (u1, v1) = PB(u0 + δu, v0 + δv) ≈ PB(u0, v0) + PB,u(u0, v0)δu + PB,v(u0, v0)δv .

(3.11b)

The new point P
(1)
A needs to lie on the tangent plane at P

(0)
B , and the projection of

(P (1)
A − P0) on the unit tangent t0 evaluated at P0 should be the step length δL. These

two conditions yield the following equations,

(P (1)
A − P

(0)
B ) · nB(u0, v0) = 0 , (3.12a)
(P (1)

A − P0) · t0 = δL . (3.12b)
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Substituting the linear approximation of P
(1)
A , the above two equations can be

written in matrix form
P

(0)
A,r · n

(0)
B P

(0)
A,s · n

(0)
B

P
(0)
A,r · t0 P

(0)
A,s · t0




δr

δs

 =


(P (0)

B − P
(0)
A ) · n

(0)
B

(P0 − P
(0)
A ) · t0 + δL

 =


0

δL

 . (3.13)

Similarly, the equations for the new point P
(1)
B can be obtained as follows,


P

(0)
B,u · n

(0)
A P

(0)
B,v · n

(0)
A

P
(0)
B,u · t0 P

(0)
B,v · t0




δu

δv

 =


(P (0)

A − P
(0)
B ) · n

(0)
A

(P0 − P
(0)
B ) · t0 + δL

 =


0

δL

 . (3.14)

The parameters in the parametric spaces of the two surfaces are then updated with

r1 = r0 + δr, s1 = s0 + δs , (3.15a)
u1 = u0 + δu, v1 = v0 + δv . (3.15b)

After the first marching step, the points on the two surfaces SA and SB are updated
to P

(1)
A (r1, s1) and P

(1)
B (u1, v1), which are not the same point in general. Therefore,

subsequent minor steps are performed to correct the new points obtained after the first
marching step. The new points P

(k)
A and P

(k)
B in the minor steps can be obtained with

a similar process as in the first step. Assume that the step length δL keeps the same,
we have

(P (k)
A − P

(k−1)
B ) · nB(uk−1, vk−1) = 0 , (3.16a)

(P (k)
A − P0) · t0 = δL , (3.16b)

(P (k)
B − P

(k−1)
A ) · nA(rk−1, sk−1) = 0 , (3.16c)

(P (k)
B − P0) · t0 = δL . (3.16d)

The matrix forms of the above equations are given by


P
(k−1)
A,r · n

(k−1)
B P

(k−1)
A,s · n

(k−1)
B

P
(k−1)
A,r · t0 P

(k−1)
A,s · t0




δr

δs

 =


(P (k−1)

B − P
(k−1)
A ) · n

(k−1)
B

(P0 − P
(k−1)
A ) · t0 + δL

 , (3.17)
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and
P

(k−1)
B,u · n

(k−1)
A P

(k−1)
B,v · n

(k−1)
A

P
(k−1)
B,u · t0 P

(k−1)
B,v · t0




δu

δv

 =


(P (k−1)

A − P
(k−1)
B ) · n

(k−1)
A

(P0 − P
(k−1)
B ) · t0 + L

 . (3.18)

The parameters of the new points P
(k)
A and P

(k)
B are

rk = rk−1 + δr, sk = sk−1 + δs , (3.19a)
uk = uk−1 + δu, vk = vk−1 + δv . (3.19b)

The marching steps associated with the starting point P0 stop when P
(k)
A and P

(k)
B

are sufficiently close to each other, i.e. ∥P
(k)
A − P

(k)
B ∥ < ϵ, and the next point P1 found

on the intersection curve is
P1 = 1

2(P (k)
A + P

(k)
B ) . (3.20)

The marching steps described above are repeated to find other points on the
intersection curve until it reaches the finishing point on the intersection curve or a
boundary edge.

Figure 3.5 gives an example of the intersection between the plane and the same
quadratic Bézier surface as in the divide-and-conquer method. Figure 3.5c illustrates
the marching step to obtain the intersection point P1 from the starting point P0.
P

(0)
A and P

(0)
B are points on the Bézier surface and the plane, respectively, after the

major step, which are not coincident. A few subsequent minor steps are required
to converge to the same point P1 which is approximately on the intersection curve
within a tolerance. This marching process is repeated to obtain other points on the
intersection curve as shown in Figure 3.5d. As a result, the marching method is more
efficient in terms of computational time to obtain the intersection curve compared
with the divide-and-conquer method. In addition, the intersection points between a
starting point and a finishing point are automatically oriented. More examples of using
the marching method to obtain intersection curves with different surfaces are shown
in Figure 3.6, including the intersection of the same quadratic Bézier surface with a
bi-linear Bézier surface, a bi-quadratic Bézier surface and a bi-cubic Bézier surface,
respectively.
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(a) The quadratic Bézier surface and the plane (b) Intersection curve

(c) A major step and minor steps (d) Marching steps tracing the inter-
section curve

Fig. 3.5 Intersection of a quadratic Bézier surface with a plane using marching method.

3.1.3 Implicitisation

All parametric polynomial curves or surfaces have corresponding implicit representa-
tions. Using the implicitisation allows the reduction of the number of variables in the
nonlinear equation which is usually required to be solved for the intersection problem.
For simple geometries such as circles, spheres, etc., their implicit representations are
straightforward to compute. However, it is in general difficult to compute the implici-
tisation of a free-form curve or surface. Algebraic geometry provides tools to obtain
the implicit form of parametric curves or surfaces. The elimination methods which
eliminate variables in the parametric form and obtain the implicit form based on the
resultants of polynomials have been studied for decades [83–85]. Plane curves are well
understood to obtain their implicitisation with the moving line method [48]. Nonethe-
less, it involves more effort to obtain the implicitisation of surfaces. In particular,
only some special cases of surface parameterisation are possible to get a non-singular
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(a) Bézier surfaces (blue) of degree 1 × 1, 2 × 2 and 3 × 3

(b) Intersection curves

Fig. 3.6 Intersection of a bi-quadratic Bézier surface with a bi-linear Bézier surface, a
bi-quadratic Bézier surface and a bi-cubic Bézier surface.

matrix with its determinant as the implicit equation of the surface. The approximate
implicitisation method [86] was proposed to avoid the difficulty of implicitisation of
higher-order parametric surfaces by approximating the surface with some lower-order
implicit polynomial surfaces. Recently, a method of implicit matrix representations of
parametric curves and surfaces has been proposed [50] to compute the exact impliciti-
sation with matrix forms and the requirement of non-singular matrices is eliminated,
which extends the implicitisation method to a broader class of parametric curves and
surfaces. Both the elimination methods and the implicit matrix representations are
exact implicitisation, which will be described in the following sections.

Elimination methods

The idea of elimination methods is to eliminate parametric variables in order to convert
a parametric representation to an implicit form. For example, consider a parametric
curve C(t) given by

C(t) = (x(t), y(t)) =
(
t + 1, t2 − 3t + 1

)
, (3.21)
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it is evident that t can be expressed in terms of x with t = x − 1, and substituting the
expression of t into y yields

y = (x − 1)2 − 3(x − 1) + 1 = x2 − 5x + 5 , (3.22)

which is the implicit equation of the curve. In general, for curves with degree one or two
it is straightforward to eliminate the variable in this way. However, for higher-degree
curves and surfaces, it becomes difficult or even impossible using this direct elimination
method. Hence, the concept of resultants used in algebraic geometry to find common
roots is adopted to find the implicit form of higher-degree parameterisations.

Consider two polynomials f(t) of degree m and g(t) of degree n,

f(t) = f0 + f1t + · · · + fmtm and g(t) = g0 + g1t + · · · + gntn , (3.23)

the resultants of the two polynomials f(t) and g(t) indicate if they have common roots,
that is, f(t) = 0 and g(t) = 0 intersect at some common values t0. A set of auxiliary
polynomials hj(t) in terms of f(t) and g(t) are constructed such that hj(t) = 0 implies
that f(t) = 0 and g(t) = 0. It is evident that hj(t) = 0 leads to a homogeneous
equation system, and the determinant of the coefficient matrix of this homogeneous
equation system is computed as the resultant of the two polynomials f(t) and g(t),
denoted with R(f, g). Therefore, whether or not the two polynomials f(t) and g(t)
have common roots can be determined by examining their resultant R(f, g). The two
polynomials have common roots only when R(f, g) = 0.

One way to construct the auxiliary polynomials hj(t) is to apply the Sylvester
matrix of size (m + n) × (m + n) which is given by

Syl(f, g) =



fm fm−1 · · · f0

fm fm−1 · · · f0
. . . . . . . . .

. . . . . . . . .
fm fm−1 · · · f0

gn gn−1 · · · · · · g0

gn gn−1 · · · · · · g0
. . . . . . . . .

gn gn−1 · · · · · · g0




n


m

. (3.24)
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The Sylvester matrix is constructed by elevating the powers of the polynomials with
multiplying by t in turn until a square coefficient matrix is obtained. The resultant
of the two polynomials is computed with R(f, g) = det (Syl(f, g)). Therefore, the two
polynomials f(t) and g(t) have common roots if and only if the determinant of the
Sylvester matrix (3.24) is zero. For example, the curve (3.21) can be denoted with the
following two polynomials,

f(t) = t + 1 − x = 0 and g(t) = t2 − 3t + 1 − y = 0 , (3.25)

and the Sylvester’s resultant of these two polynomials is

R(f, g) = det(Syl(f, g)) =

∣∣∣∣∣∣∣∣
1 1 − x 0
0 1 1 − x

1 −3 1 − y

∣∣∣∣∣∣∣∣ . (3.26)

The zero determinant gives the implicit equation of the curve, y = x2 − 5x + 5, which
is the same as (3.22).

Another approach to constructing the auxiliary polynomials hj(t) results in the
Bézout matrix whose determinant can also be used as the resultant of the two polyno-
mials. The auxiliary polynomials hj(t) are constructed as follows with p = max{m, n},

hp(t) = gpf(t) − fpg(t) , (3.27a)
hp−1(t) = (gpt + gp−1) f(t) − (fpt + fp−1) g(t) , (3.27b)
...
h1(t) = (gptp−1 + gp−1t

p−2 + · · · + g1)f(t)
− (hptp−1 + hp−1t

p−2 + · · · + h1)g(t) . (3.27c)

The coefficient matrix of the resulting homogeneous equation system hj(t) = 0 yields
the Bézout matrix Bez(f, g) of size p × p with entries bij given by

bij =
q∑

k=1
fj+k−1 gi−k − fi−k gj+k−1 (3.28)

with q = min{i, p + 1 − j}.
The resultant of the two polynomials f(t) and g(t) is computed with R(f, g) =

det (Bez(f, g)). Hence, the two polynomials have common roots if and only if the
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determinant of the Bézout matrix is zero. As can be seen, even though the construction
of the Sylvester matrix is more straightforward than the Bézout matrix, the size of the
Bézout matrix is much smaller than the Sylvester matrix if the polynomial degree is
high, which is advantageous since the determinant of the matrix needs to be computed.
For the curve (3.21) the auxiliary polynomials hj(t) are

h2(t) = t + 1 − x and h1(t) = (1 − x)t + 3x + y − 4 , (3.29)

which leads to the following Bézout resultant,

R(f, g) = det(Bez(f, g)) =
∣∣∣∣∣∣ 1 1 − x

1 − x 3x + y − 4

∣∣∣∣∣∣ , (3.30)

and its zero determinant leads to the same implicit equation y = x2 − 5x + 5.
The resultant of two polynomials can be used to obtain the implicit form of a

parameterisation. For example, consider a planar parametric curve C(t) with homoge-
neous coordinates (X(t), Y (t), W (t)) where X(t), Y (t) and W (t) are polynomials, two
polynomials can be constructed as

f(t) = xW (t) − X(t) and g(t) = yW (t) − Y (t) . (3.31)

For any point t0 on the curve, it must have f(t0) = 0 and g(t0) = 0. In other words,
t0 is a common root of the two polynomials f(t) and g(t). Therefore, the implicit
equation of the curve C(t) is given by the zero resultant of the two polynomials f(t)
and g(t), i.e. C(x, y) = R(f(t), g(t)) = 0.

The moving line method proposed by Sederberg et al. [47, 48] gives a geometric
interpretation for the implicitisation of planar curves, which employs the fact that any
conic section can be generated by the intersection of two pencils of lines [49]. Figure 3.7
gives an example of tracing a planar quadratic Bézier curve with two pencils of lines.
The basic idea of the moving line method is summarised as follows for planar curves.

Let L(t) = (a(t), b(t), c(t)) denotes a pencil of lines

a(t)x + b(t)y + c(t) = 0 , (3.32)

where a(t), b(t) and c(t) are linear functions of t. A moving point P (t) with the
homogeneous coordinates (X(t), Y (t), W (t)) is said to follow the moving line L(t) if

P (t) · L(t) = 0 . (3.33)



3.1 Review of surface interrogation approaches 47

(a) A planar quadratic Bézier
curve

(b) Two linear moving lines of the curve

Fig. 3.7 Linear moving lines of a planar quadratic curve.

Hence, two moving lines L1(t) and L2(t) intersect at a moving point P (t) if

P (t) = L1(t) × L2(t) , (3.34)

and a moving line L(t) follows two moving points P1(t) and P2(t) if

L(t) = P1(t) × P2(t) , (3.35)

where × denotes the cross product of two vectors.
As a result, if the two moving points are on the curve C(t), (3.35) leads to a matrix

which is equivalent to Bézout matrix, as (3.33) gives a homogeneous equation system.
In addition, it can be seen from the moving line method that the intersection points of
two moving lines of degrees m and n respectively generate a curve of degree m + n

in general when base points do not occur. For example, a quadratic curve can be
generated by the intersection of two linear pencils of lines, as illustrated in Figure 3.7.

The implicitisation using resultants of polynomials can be extended to obtain the
implicit equations for space curves and surfaces. For a curve the degree of its implicit
equation is the same as its parameterisation. For a triangular surface patch of degree n,
the degree of its implicit equation is in general n2; for a tensor-product surface patch
of bi-degree (m, n), the degree of its implicit equation is generally 2mn, indicating that
the size of the Sylvester matrix or the Bézout matrix can be very large for surfaces.
Furthermore, the implicit expression requires the computation of the determinant of
the matrix, which is not cheap to compute for a matrix with a large size. Hence, the
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high computation cost for high-degree parameterisations is one of the problems when
using elimination methods.

Another difficulty with elimination methods is the occurrence of base points where
all the components of the parameterisation are zero, for example, X(t) = 0, Y (t) = 0
and W (t) = 0 for a planar curve, when the traditional resultant approach does not
apply. However, base points are quite common, especially in free-form surfaces. As a
matter of fact, it is only possible for some particular classes of parameterisation to get
non-singular matrices with the zero determinant as the implicit equation [87–89].

Implicit matrix representations

The elimination methods aim to obtain the implicit equations from computing the
determinant of non-singular matrices. However, a non-singular matrix cannot be always
derived for free-form surfaces. In order to eliminate the requirement of non-singular
matrices, one can keep the implicitisation in matrix form, which results in the implicit
matrix representations (M-Reps) of parameterisations. In this method the matrix
is not required to be non-singular, and the rank of the implicit M-Rep drops if the
point evaluated is exactly on the curve or surface, which can be determined from the
singular value decomposition (SVD) of the implicit M-Rep, avoiding the determinant
computation of a matrix.

As described in Section 2.3, subdivision surfaces can be converted to a collection of
Bézier surfaces. It is general to consider the implicit matrix representations of Bézier
curves and surfaces, and the subdivision surface becomes a collection of these implicit
representations of Bézier surfaces.

Consider a rational Bézier representation in homogeneous coordinates

f(θ) =
wx

w

 =
∑

i

Bµ
i (θ)

wixi

wi

 , (3.36)

where xi are the control coordinates in R3 and wi the associated weights. The indices
i and µ are again multi-indices for surfaces. The Bernstein polynomials Bµ

i (θ) have
the same expressions as in Section 2.3 for curves and surfaces.

We consider an auxiliary vector of polynomials

g(θ) =
∑

j

B̃ν
j (θ)γj (3.37)
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with Bézier basis functions B̃ν
j , coefficients γj which are yet to be determined, and

the index j a multi-index for surfaces. Each of the coefficients γj =
(
γ1

j , γ2
j , γ3

j , γ4
j

)T

is in R4. The degree ν of the Bézier basis B̃ν
j is chosen according to [51], and

the number of basis functions nj is determined accordingly. For a Bézier curve
of degree µ, ν = µ − 1, nj = ν + 1 = µ; for a tensor-product Bézier surface of
bi-degree, ν = (ν1, ν2) = (2µ1 − 1, µ2 − 1) or (µ1 − 1, 2µ2 − 1); for a triangular
Bézier surface of degree µ, ν = 2(µ − 1). Therefore, for a bi-cubic Bézier surface
(corresponding to the regular Catmull-Clark subdivision patch), ν = (ν1, ν2) = (5, 2) or
(2, 5), nj = (ν1 + 1)(ν2 + 1) = 18; for a quartic triangular Bézier surface (corresponding
to the regular Loop subdivision patch), ν = 6, nj = (ν + 2)(ν + 1)/2 = 28. In the
following context, we consider a single Bézier patch f(θ) of bi-degree µ = (p, p) as in
applications the same degree is usually used for tensor-product spline surfaces. It is
worth noting that the degree ν can be chosen to be higher than the values suggested
above, which will result in a larger matrix as will be introduced later and hence is not
advantageneous for the intersection computation.

The two vectors f(θ) and g(θ) each with four components are required to be
orthogonal

f(θ) · g(θ) = 0 , (3.38)

that is, ∑
i

Bµ
i (θ)

wixi

wi

 ·

∑
j

B̃ν
j (θ)γj

 = 0 . (3.39)

Evidently, the product of two Bézier basis functions can be again expressed with
a Bézier basis function. Hence, (3.39) can be written with a new Bézier basis B̂k of
bi-degree (3p − 1, 2p − 1) as

∑
j

∑
k

B̂kCkjγj = 0 , (3.40)

where Ckj are the coefficients of a matrix C ∈ R6p2×8p2 . Note that there are 6p2

basis functions in the basis with bi-degree (3p − 1, 2p − 1), 2p2 basis functions in the
basis with bi-degree (2p − 1, p − 1) and each γj has four coefficients. The matrix C

contains the control point coordinates, associated weights and the basis transformation
coefficients resulting from the Bézier basis multiplication.

The orthogonality constraint (3.38) implies 6p2 equations for determining 8p2

unknown components of γj ’s so that the matrix C must be rank deficient. The non-
trivial γj ’s satisfying (3.40) must lie in the null space of C, which is straightforward to
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compute with a singular value decomposition (SVD). The singular value decomposition
of C reads

C = UcΣcV
T

c (3.41)

where Uc is a matrix of left singular vectors, Σc is a diagonal matrix of singular values
and Vc is a matrix of right singular vectors. The singular values in Σc are usually
sorted in descending order starting from the top diagonal. The right null vectors are
the columns of Vc which correspond to zero diagonal entries in Σc. For a specific Bézier
surface f(θ), the number of right null vectors ni of C, dim (Null(C)),depends on the
coordinates of its control points and the associate weights.

Denoting the right null vectors of C with γ
(i)
j and introducing them into the

auxiliary vector of polynomials (3.37) yields

g(i)(θ) =
∑

j

B̃ν
j (θ)γ(i)

j (3.42)

For a fixed parametric coordinate θ∗, a set of planes are defined by the vectors g(i)(θ∗)
with the implicit equations

l(i)(θ∗, x) = g(i)(θ∗) ·

wx

w

 = 0 , that is, l(i)(θ∗, x) = g(i)(θ∗) ·

x

1

 = 0 . (3.43)

Due to the orthogonality condition (3.38) the surface point with the homogeneous
coordinate f(θ∗) and the surface coordinate

x∗ =
(

f1(θ∗)
f4(θ∗) ,

f2(θ∗)
f4(θ∗) ,

f3(θ∗)
f4(θ∗)

)T

satisfies all plane equations and, hence, is present on all planes, i.e. x∗ ∈ l(i)(θ∗, x∗) =
0 ∀ i. For a point x∗ to be present on two or more planes it must lie on their intersection.
Note that the intersection of two planes defines a line and the intersection of a plane with
a line defines a point. These observations motivate the definition of the surface f(θ)
as the intersection of a set of planes. Evidently, the planes must move, or change their
inclination, while the parametric coordinate θ is varied. Hence, each l(i)(θ, x) = 0 for
a fixed i represents a family of planes and is traditionally referred to as a moving plane
or a pencil of planes [47].

Although three planes are sufficient to define a point, according to [51] more than
three planes must be used, in general, to describe an entire patch. As an example,
Figure 3.8 gives an example of a Bézier surface traced by four planes. The four planes
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(a) Intersection lines of four planes l(i)(θ∗, x) (b) Three of the four planes with their inter-
section lines

Fig. 3.8 Intersection of planes l(i)(θ∗, x) tracing the surface.

intersect at a point which is exactly on the surface (Figure 3.8a). For the sake of
clarity, in Figure 3.8b only three of the planes are depicted. Similarly, the planes are
degenerated to lines for curves, and in the space at least two lines are required to define
a point on a curve. As illustrated in Figure 3.9, for a cubic Bézier curve evaluated at
different parameters θ∗, the three lines move accordingly but always intersect exactly
on the curve as shown in Figure 3.9b; in other words, the curve is traced by the
intersection points of the three moving lines.

Substituting (3.42) into the plane equation (3.43) yields

l(i)(θ∗, x) = g(i)(θ∗) ·

x

1

 =
∑

j

B̃ν
j (θ∗)

γ
(i)
j ·

x

1

 =
∑

j

B̃ν
j (θ∗)M (i)

j (x) = 0 ,

(3.44)
where M

(i)
j (x) constitutes the i-th column of a matrix M (x), that is,

M (x, y, z) =



M
(1)
1 M

(2)
1 · · · M

(ni)
1

M
(1)
2 M

(2)
2 · · · M

(ni)
2

... ... ...

M (1)
nj

M (2)
nj

· · · M (ni)
nj


(3.45)

with the index j of M
(i)
j a multi-index for surfaces. The number of columns ni of M (x)

is equal to the number of planes or null vectors γ
(i)
j , and its number of rows is nj = 2p2.

Again, due to the orthogonality condition (3.38), for a point with the homogeneous
coordinate f(θ∗) and the surface coordinate x∗, the set of equations (3.44) are satisfied
for all i. This implies that there has to be a change in the rank of M (x) when evaluated
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(a) A cubic curve in the space (b) The intersection of l(i)(θ, x) tracing the curve

Fig. 3.9 l(i)(θ, x) of a cubic curve in the Cartesian coordinate system.

at x∗. Furthermore, the minimum degree ν = (2p − 1, p − 1) suggested for the basis B̃ν
j

ensures that M(x) is full rank except on the surface [51]. This motivates the use of
the change of rank of M (x) to define the surface f(θ), which gives rise to the notion
of matrix representation (M-Rep) of a spline surface.

Alternatively, γ
(i)
j can be further rearranged such that it is of the form

(
γ

1(i)
1 · · · γ1(i)

nj
γ

2(i)
1 · · · γ2(i)

nj
γ

3(i)
1 · · · γ3(i)

nj
γ

4(i)
1 · · · γ4(i)

nj

)T
. (3.46)

The null space of the matrix C is then denoted as

Null(C) =
(
γ

(1)
j γ

(2)
j · · · γ

(ni)
j

)
=


M 1

M 2

M 3

M 4

 . (3.47)

Hence, the implicit matrix representation M can also be obtained with

M = xM 1 + yM 2 + zM 3 + M 4 . (3.48)

Properties of implicit matrix representations

With the implicit matrix representation (3.45), the equation (3.44) can be expressed
in matrix form as(

l(1) l(2) · · · l(ni)
)

=
(
B̃ν

1 (θ∗) B̃ν
2 (θ∗) · · · B̃ν

nj
(θ∗)

)
M (x, y, z)

=
(
0 0 · · · 0

)
,

(3.49)
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and this expression holds only when it is evaluated at the point on the parameterisation
f(θ). It can be observed from (3.49) that the matrix M (x, y, z) must be rank deficient
in order to have non-trivial solutions, since the basis {B̃ν

j (θ∗)}(j = 1, · · · , nj) cannot
be a zero vector. In other words, the rank of the matrix M drops only at points on
the curve or surface studied. If the point is not on the curve or surface, the matrix M

has a full rank.
The drop-of-rank property of the matrix M indicates that it can be used as an

implicit representation of the parameterisation f(θ) [51]. The implicitisation property
of the matrix M can be further examined by defining an evaluation function

δM (x, y, z) =
nj∏

i=1
σi (M (x, y, z)) , (3.50)

where σi are singular values of the matrix M evaluated at a point (x, y, z). If the
matrix M is not with a full rank, δM (x, y, z) = 0; otherwise, it has a positive value.
In other words, a point (x∗, y∗, z∗) belongs to f(θ) only if δM (x∗, y∗, z∗) = 0, which
resembles a distance function of the curve or surface evaluated.

In addition, the parameter(s) θ∗ corresponding to the point (x∗, y∗, z∗) on the
parameterisation f(θ) can be inferred from the equation (3.49). Since the basis
{B̃ν

j (θ∗)} forms the left null space of the matrix M , the parameter(s) θ∗ can be obtained
by computing the ratio of pairs of the basis functions, which yields linear equations that
can be trivially solved. This inversion property of the implicit matrix representation is
useful in the intersection computation to compute the surface parametric coordinates
of intersection points.

Examples

A cubic Bézier curve Consider a cubic Bézier curve with control points x1 =
(0, 0, 0), x2 = (1, 2, 0), x3 = (2, −1, 0) and x4 = (4, 0, 0), and the weights of the control
points are all equal to 1. The plot of the cubic Bézier curve is shown in Figure 3.10a.

The degree of the auxiliary polynomials g(θ) is chosen as 2 and expressed with
quadratic Bézier basis functions, that is,

g(θ) = (1 − θ)2γ1 + 2θ(1 − θ)γ2 + θ2γ3 (3.51)

with each γi in R4.
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After substituting the auxiliary vector g(θ) into the orthogonality condition (3.38),
the coefficient matrix C ∈ R6×12 is then given by, according to (3.40),

C =



0 0 0 0 0 0 0 0 0 1 0 0
0.6 0 0 1.2 0 0 0 0 0 0.6 0.4 0
0.6 0.6 0 −0.3 1.2 0 0 0 0 0.3 0.6 0.1
0.4 1.2 0.3 0 −0.6 0.6 0 0 0 0.1 0.6 0.3
0 1.6 1.2 0 0 −0.6 0 0 0 0 0.4 0.6
0 0 4 0 0 0 0 0 0 0 0 1


. (3.52)

The null space of the matrix C gives six independent vectors of the unknown
coefficients of the auxiliary polynomials as follows,

γ =
(
γ(1) γ(2) γ(3) γ(4) γ(5) γ(6)

)

=



0 0 0 −0.745895 −0.231156 −0.0326366
0 0 0 0.1405 −0.313385 −0.146533
0 0 0 0.0112503 −0.00442619 −0.238746
0 0 0 0.331369 −0.166017 0.033496
0 0 0 0.326922 −0.193102 0.0441434
0 0 0 0.435324 −0.263651 0.0523816
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0.124736 0.844785 −0.0515331
0 0 0 −0.0450013 0.0177047 0.954983



(3.53)

with γ
(i)
j arranged in the form as (3.46), that is,

γ
(i)
j =

(
γ

(i)
1,1 γ

(i)
2,1 γ

(i)
3,1 γ

(i)
1,2 γ

(i)
2,2 γ

(i)
3,2 γ

(i)
1,3 γ

(i)
2,3 γ

(i)
3,3 γ

(i)
1,4 γ

(i)
2,4 γ

(i)
3,4

)T
. (3.54)

Hence, the resulting six auxiliary vectors of polynomials can be identified with six lines.
Three of the lines are plotted in Figure 3.10b since the other three lines correspond to
the trivial z = 0.

Therefore, the implicit matrix representation of the cubic Bézier curve is obtained
as follows with six significant digits,
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MT(x, y, z) =
z 0 0
0 z 0
0 0 z

−0.745895x + 0.331369y 0.124736 + 0.1405x + 0.326922y −0.0450013 + 0.0112503x + 0.435324y

−0.231156x − 0.166017y 0.844785 − 0.313385x − 0.193102y 0.0177047 − 0.00442619x − 0.263651y

−0.0326366x + 0.033496y −0.0515331 − 0.146533x + 0.0441434y 0.954983 − 0.238746x + 0.0523816y


.

(3.55)

(a) The cubic Bézier curve (b) The three moving lines of the curve

Fig. 3.10 The cubic Bézier curve and its corresponding auxiliary polynomials.

0

0.5

1.0

1.5

Fig. 3.11 Distance contour of the cubic Bézier curve.

Figure 3.11 gives the distance contour of the cubic Bézier curve evaluated with the
distance function (3.50). It can be seen from the contour plot that the zero contour
reveals the cubic Bézier curve. Any point that is not on the curve has a non-zero
distance value, and all the points with zero distance value form the curve.
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A bi-cubic Bézier surface Consider a bi-cubic Bézier surface defined with control
points x11 = (2, −2, 0), x12 = (2, −1, 0), x13 = (2, 1, 0), x14 = (2, 2, 0), x21 = (1, −2, 0),
x22 = (1, −1, 2), x23 = (1, 1, 2), x24 = (1, 2, 0), x31 = (−1, −2, 0), x32 = (−1, −1, 2),
x33 = (−1, 1, 2), x34 = (−1, 2, 0), x41 = (−2, −2, 0), x42 = (−2, −1, 0), x43 = (−2, 1, 0)
and x44 = (−2, 2, 0). The weights of control points are all equal to 1.

Figure 3.12a is the plot of the bi-cubic Bézier surface in the parametric domain
[0, 1] × [0, 1]. As the implicit equation of the Bézier surface is for the whole space,
the Bézier surface in the parametric domain [−0.5, 1.5] × [−0.5, 1.5] is also given in
Figure 3.12c as a reference.

(a) The Bézier surface in the paramet-
ric domain [0, 1] × [0, 1]

(b) The distance contour on plane y = 1

(c) The surface in the parametric
domain [−0.5, 1.5] × [−0.5, 1.5]

(d) The distance contour on plane z = 1

Fig. 3.12 The bi-cubic Bézier surface and its distance contours.

In order to construct the implicit matrix representation of the bi-cubic Bézier
surface, the auxiliary polynomials are chosen in terms of Bézier basis functions of
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degrees 5 × 2. Expanding equation (3.39) gives

4∑
k=1

6∑
j1=1

3∑
j2=1

γk
j1,j2

4∑
i1=1

4∑
i2=1

P k
i1,i2

(
3

i1−1

)(
3

i2−1

)(
5

j1−1

)(
2

j2−1

)
(

8
i1+j1−2

)(
5

i2+j2−2

) B8
i1+j1−1(u)B5

i2+j2−1(v) = 0 ,

(3.56)
where Pi1,i2 are the homogeneous coordinates of control points and k denotes the k-th
component of the coordinate. The above equation can be rewritten in matrix form as

[
B8

1(u)B5
1(v) · · · B8

9(u)B5
6(v)

]
C
[
γ1

1,1 · · · γ4
6,3

]T
= 0 (3.57)

with the coefficient matrix C of size 54 × 72.
The resulting implicit matrix M is of size 18 × 23. Figure 3.12b and 3.12d show

the distance contours of the bi-cubic Bézier surface on the plane y = 1 and z = 1,
respectively, which reflect the surface cut by the two planes.

3.2 Line/subdivision surface intersection

3.2.1 Hierarchical bounding volume trees

As mentioned a subdivision surface can be seen as a collection of patches, each of
which is equivalent to a parametric surface piece. In other words, the subdivision
surface is a piecewise parametric surface. For each patch of the subdivision surface,
it has a convex hull property, that is, the limit surface represented by the patch is
contained entirely within a convex hull which is defined by the patch. Therefore, the
k-dops of the subdivision surface can be used to check the possibility of intersections
as introduced in Section 3.1.1 for the divide-and-conquer method.

For the line/subdivision surface intersection, it is possible to check the intersection
of a line with each patch in the subdivision surface. However, this approach is time-
consuming and becomes inefficient for a large number of lines and patches. Therefore, a
hierarchical bounding volume tree data structure is constructed to identify the potential
intersection between the line and the patches.

First of all, the tree is created in an octree manner by recursively splitting the
facets of the subdivision surface into eight subsets starting from the entire surface.
In each step the splitting is based on the coordinates of the patch centroids which
are computed as the average of vertex coordinates. A schematic octree is sketched in
Figure 3.13. The root of the tree contains all the facets of the subdivision surface. Each
node in the tree is a collection of facets containing their bounding volume information.
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(a) The control mesh (b) An octree of the surface

Fig. 3.13 A schematic space division of a subdivision surface.

(a) Root (b) Level 1 (c) Level 2

Fig. 3.14 A schematic bounding volume tree of k-dops.

The bounding volume of each node is represented with the k-dop of the set of patches
belonging to the node. By constructing in this way, each leaf at the bottom of the
octree contains only one facet in the subdivision surface, and the k-dops of these leaf
nodes can be computed readily with (3.1).

For the computation of k-dops of nodes in the tree, it is again not necessary to
explicitly construct them. It is sufficient to consider all the vertices belonging to the
node, which is similar to the single patch case discussed in preceding Section 3.1.1.
Alternatively, the support heights for each node can be efficiently computed by starting
from the tree leaves and computing the support heights of parent nodes from child
nodes,

hparent
j,max = max

child
hchild

j,max and hparent
j,min = min

child
hchild

j,min . (3.58)

In the implemented k-dop bounding volume tree, each node represents the k-dop of
either one single or a set of patches, see Figure 3.14.
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(a) Facets F on level 0 (b) F̃ after 1st subdivision

(c) F̃ after 2nd subdivision (d) F̃ after 3rd subdivision

Fig. 3.15 Subdivision steps for refined detection and intersected refined facets.

Once the k-dop bounding volume tree of the subdivision surface has been con-
structed, the intersection detection is performed by traversing the tree in a breadth-first
manner to check if the line intersects with any node in the tree. If a node is intersected
with the line, the children of the node are further checked subsequently by means of
k-dops. This process proceeds until the leaf level of the tree is reached. Finally, all the
potential intersected facets in the control mesh are found for further refined detection.
These facets detected with the k-dop bounding volume tree are denoted with F .

3.2.2 Detection refinement

The subdivision surface patch is not tight enough when used for the intersection
detection, resulting in redundancy in F as shown in Figure 3.15a. In other words,
there are some facets found in the hierarchical tree whose limit surfaces actually do
not intersect with the line, though their defining patches do intersect with the line.

In order to reduce the redundancy in F , a few subdivision steps are performed for the
patches represented with facets in F and their 1-rings, as shown in Figure 3.15. After
each subdivision step, the refined facets are checked again for possible intersections.
The intersecting refined facets are denoted with F̃ . Any facet in F which does not
have an intersecting child facet is removed from F (Figure 3.16). The subdivision
process terminates when the number of facets in F stops reducing.
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(a) Facets F on level 0 (b) F after 1st subdivision

(c) F after 2nd subdivision (d) F after 3rd subdivision

Fig. 3.16 Reduction of facets F on the subdivision level 0.

The remaining facets in F are used for computing the line/subdivision surface
intersection. All the facets with regular patches can be converted to equivalent Bézier
surfaces as described in Section 2.3. For facets containing EVs, approximated Bézier
surfaces can be obtained by using the least-square fitting method [90]. Therefore, the
intersection computation can be performed between the line and Bézier surfaces, as
shown in Figure 3.17. The intersection computation between a line and a Bézier surface
will be introduced in the next Section 3.2.3. Alternatively, the divide-and-conquer
method described in Section 3.1.1 is applied separately for those facets with EVs.

(a) Bézier surface conversion (b) Intersection points

Fig. 3.17 Conversion to Bézier surfaces and intersection of a line with Bézier surfaces.
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3.2.3 Matrix-based intersection computation

Intersection algorithm

Consider the intersection of a line

r(ξ) = aξ + b (3.59)

with the surface f(θ). The line is parametrised with the scalar parameter ξ. Assuming
that the line intersects the surface f(θ) at a parameter value ξ∗, equation (3.43) has
to be satisfied,

l(i)(θ, x) = g(i)(θ) ·

aξ∗ + b

1

 =
∑

j

B̃ν
j (θ)γ(i)

j ·

aξ∗ + b

1

 = 0 , (3.60)

or expressed more compactly with a matrix M (ξ∗)

∑
j

B̃ν
j (θ)M (i)

j (ξ∗) = 0 , (3.61)

where M
(i)
j constitutes the i-th column of the implicit M-Rep M as described in (3.45).

This corresponds to the drop of the rank of the matrix M(ξ) when the surface is
intersected at the line parameter ξ∗. In other words, the rank of the matrix M(ξ)
drops only at the parameter values corresponding to intersection points.

The implicit M-Rep M (ξ) contains entries which are either constant or linear in ξ,
i.e.,

M (ξ) = Ac − ξBc . (3.62)

where Ac and Bc are constant matrices. Considering that at the intersection points
(3.61) is satisfied, the generalised eigenvalue problem

(Ac − ξBc)ϕ = 0 (3.63)

gives all the intersection points of the line with the surface, where only the non-complex
eigenvalues are relevant. The eigenvectors ϕ are of no significance for the intersection
computations. The matrix M (ξ), and hence the matrices Ac and Bc, are usually not
square. To compute the generalised eigenvalues of (3.63), it is first transformed into
a block column-echelon form so that the eigenvalues are only related to the diagonal
blocks. By choosing orthogonal transformations which lead to square diagonal blocks,
it becomes straightforward to compute the eigenvalues.
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Following the Algorithm 4.1 given in [91], first of all, the SVD of the matrix Bc is
computed

Bc = UbΣbV
T

b . (3.64)

The right singular vectors are used to partition the matrices Ac and Bc such that

BcVb =
(
Bc ′

11 0
)

and AcVb =
(
Ac ′

11 Ac ′
12

)
, (3.65)

where the number of columns of Bc ′
11 corresponds to the rank of Bc, and 0 denotes

a zero matrix. Ac ′
11 is chosen to have the same number of columns as Bc ′

11. Next, the
SVD of the matrix Ac ′

12 is computed

Ac ′
12 = Ua12Σa12V T

a12 , (3.66)

and the corresponding left singular vectors are used to further partition the matri-
ces (3.65) such that

UT
a12BcVb =

Bc ′′
11 0

Bc ′′
21 0

 and UT
a12AcVb =

Ac ′′
11 Ac ′′

12

Ac ′′
21 0

 . (3.67)

With these partitioned matrices the generalised eigenvalue problem (3.63) can be
rewritten as

UT
a12(Ac − ξBc)Vbϕ =

Ac ′′
11 − ξBc ′′

11 Ac ′′
12

Ac ′′
21 − ξBc ′′

21 0

ϕ = 0 . (3.68)

Permuting the rows yields the desired column echelon formAc ′′
21 − ξBc ′′

21 0
Ac ′′

11 − ξBc ′′
11 Ac ′′

12

ϕ = 0 . (3.69)

The eigenvalues ξ for the generalised eigenvalue problem (3.69) of the block matrix
Ac ′′

21 − ξBc ′′
21 in the top diagonal are the same as the ones for (3.63) because only

orthogonal transformations have been applied. The top diagonal may not yet be a
square matrix in which case the above sketched transformations need to be repeated.

The eigenvalues ξ give the intersection parameter values denoted earlier with ξ∗

which give the intersection points r(ξ∗) by inserting them into the line equation (3.59).
The corresponding parameter values θ∗ for the Bézier patch are obtained from (3.60).
According (3.60) the vector of the basis function values B̃ν

j (θ∗) at the intersection
point must be in the null space of M (ξ∗). To determine θ∗ by simply considering the
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ratio of pairs of Bézier basis function values it is possible to obtain linear equations
that can be trivially solved, which is the inverse property described in Section 3.1.3.

Examples

A linear Bézier curve Consider a linear Bézier curve f(θ) defined with control
points x1 = (0, −1, 0) and x2 = (1, 1, 0). The weights w1 and w2 associated with the
control points are assumed to be equal to one. The homogeneous coordinates of the
linear Bézier curve are

f(θ) = (1 − θ)


0

−1
0
1

+ θ


1
1
0
1

 =


θ

2θ − 1
0
1

 . (3.70)

For a linear Bézier curve f(θ) the smallest possible polynomial degree for the
auxiliary vector g(θ) is zero. Hence, the intersection is first computed with a constant
auxiliary vector g(θ). As discussed in Section 3.1.3 about implicit matrix representa-
tions, choosing a high-order polynomial g(θ) is possible. Increasing the polynomial
degree leads, however, to larger matrices and make the intersection computations
inefficient. With the sole aim of demonstrating the process of the generalised eigenvalue
computation, the intersection is then computed with a linear auxiliary vector g(θ).

Constant auxiliary vector
The constant auxiliary vector to compute the implicit matrix representation of the

linear Bézier curve (3.70) is given by

g(θ) = γ1 =
(

γ1
1 γ2

1 γ3
1 γ4

1

)T
. (3.71)

According to the orthogonality requirement (3.38), i.e. f(θ)·g(θ) = 0, the two functions
have to satisfy

(1 − θ)(−γ2
1 + γ4

1) + θ(γ1
1 + γ2

1 + γ4
1) = 0 , (3.72)

or expressed in matrix form

(
1 − θ θ

)0 −1 0 1
1 1 0 1




γ1
1

γ2
1

γ3
1

γ4
1


= 0 . (3.73)
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By inspection, the left null space of the 2 × 4 matrix, denoted with C in Section 3.1.3,
is spanned by the two vectors

γ
(1)
1 =

(
−2 1 0 1

)T
and γ

(2)
1 =

(
0 0 1 0

)T
. (3.74)

These two left null vectors can also be readily obtained with a singular value decomposi-
tion or by bringing the matrix in a reduced row echelon form, see e.g. [92]. Introducing
the null vectors into (3.71) yields the two auxiliary vectors

g(1)(θ) =
(
−2 1 0 1

)T
and g(2)(θ) =

(
0 0 1 0

)T
, (3.75)

which yields, according to (3.49), the following implicitisation matrix representation

M(x) =
(
−2x1 + x2 + 1 x3

)
. (3.76)

As an example, consider the intersection of f(θ) with a second line

r(ξ) = (1 − ξ)


0
1
0

+ ξ


1
0
0

 =


ξ

1 − ξ

0

 . (3.77)

Substituting this line equation into the implicit matrix representation (3.76) gives

M (ξ) =
(
−3ξ + 2 0

)
=
(
2 0

)
+ ξ

(
−3 0

)
(3.78)

At the intersection point ξ∗ the matrix M (ξ) must be rank deficient, which is trivially
the case when ξ∗ = 2/3. Inserting ξ∗ in (3.77) gives the intersection point r(ξ∗) =
(2/3, 1/3, 0).

Linear auxiliary vector
Next, the implicit matrix representation of the linear Bézier curve (3.70) is deter-

mined with the linear auxiliary vector

g(θ) = (1 − θ)γ1 + θγ2 , (3.79)

where γi = (γ1
i , γ2

i , γ3
i , γ4

i )T with i ∈ {1, 2}. The orthogonality requirement (3.38), i.e.
f(θ) · g(θ) = 0, yields

(1 − θ)2(−γ2
1 + γ4

1) + θ(1 − θ)(γ1
1 + γ2

1 − γ2
2 + γ4

1 + γ4
2) + θ2(γ1

2 + γ2
2 + γ4

2) = 0 , (3.80)
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or in matrix form (
(1 − θ)2 2θ(1 − θ) θ2

)
Cγ = 0 (3.81)

with

C =


0 −1 0 1 0 0 0 0
1
2

1
2 0 1

2 0 −1
2 0 1

2
0 0 0 0 1 1 0 1

 and γ =
γ1

γ2

 .

It is worth pointing out that the single orthogonality requirement (3.38), as can be
inferred from (3.80), yields three equations for determining the eight components of the
coefficients γ1 and γ2, which implies dim(ker C) = 5. The null space of C, obtained
by bringing in row echelon form, is spanned by the five vectors

γ(1) =
(
−1 0 0 0 −1 0 0 1

)T
, γ(2) =

(
0 0 0 0 0 0 1 0

)T
,

γ(3) =
(

1 0 0 0 −1 1 0 0
)T

, γ(4) =
(
−2 1 0 1 0 0 0 0

)T
,

γ(5) =
(

0 0 1 0 0 0 0 0
)T

.

(3.82)
The corresponding five auxiliary vectors follow from (3.79) with

g(1)(θ) = (−1, 0, 0, θ) , g(2)(θ) = (0, 0, θ, 0) ,

g(3)(θ) = (1 − 2θ, θ, 0, 0) , g(4)(θ) = (2θ − 2, 1 − θ, 0, 1 − θ) ,

g(5)(θ) = (0, 0, 1 − θ, 0) .

(3.83)

As illustrated in Figure 3.18, the five vectors g(i)(θ) can be associated for a given θ∗

value with five implicitly defined planes

l(i)(θ∗, x) = g(i)(θ∗) ·

x

1

 = 0 with i ∈ {1, . . . , 5} . (3.84)

Only at their intersection point x∗ all the plane equations l(i)(θ∗, x∗) = 0 are simultane-
ously satisfied. Due to the orthogonality condition f(θ∗) · g(i)(θ∗) = 0 the intersection
point x∗ must also be the surface point

f(θ∗) =
x(θ∗)

1

 . (3.85)



66 Lattice-skin geometry generation
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Fig. 3.18 The linear Bézier curve f(θ) and the moving planes l(i)(θ) = 0 for θ ∈
{0.2, 0.5, 0.8}.

The implicit matrix representation of f(θ) is obtained according to (3.49) as follows
g(1)(θ) ·

x

1

 g(2)(θ) ·

x

1

 . . . g(5)(θ) ·

x

1

 =
(
1 − θ θ

)
M (3.86)

with the implicitisation matrix

M =
 −x1 0 x1 −2x1 + x2 + 1 x3

−x1 + 1 x3 −x1 + x2 0 0

 . (3.87)

For a given θ∗ and corresponding g(θ∗) and f(θ∗) the orthogonality condition
f(θ∗) · g(i)(θ∗) = 0 gives

(
1 − θ∗ θ∗

)
M(θ∗) =

(
0 0 0 0 0

)
. (3.88)

Hence, M(θ∗) is rank deficient and the vector
(
1 − θ∗ θ∗

)
lies in its left null space.

Indeed, at the point f(θ∗) the matrix has rank(M) = 1 and everywhere else it has
rank(M) = 2.

As an example, consider now the intersection of f(θ) with the line r(ξ) given
in (3.77). Substituting r(ξ) into the implicitisation matrix gives

M(ξ) =
 −ξ 0 ξ 2 − 3ξ 0

−ξ + 1 0 1 − 2ξ 0 0

 = A − ξB (3.89)
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with

A =
0 0 0 2 0

1 0 1 0 0

 and B =
1 0 −1 3 0

1 0 2 0 0

 .

The generalised eigenvalue problem (3.63), i.e. (A − ξB)ϕ = 0, for computing the
intersection point ξ∗ is solved by applying a sequence of orthogonal transformations
as discussed in Section 3.1.3. The first orthogonal transformation according to (3.65)
gives the following matrices

A′ =
−1.772680524 0.4369634904 0 0.8164965809 0

0.1438332239 1.346345178 0 −0.4082482905 0

 , (3.90)

B′ =
−3.297858703 0.3523180065 0 0 0

0.5351687938 2.171081381 0 0 0

 . (3.91)

After applying two subsequent steps of orthogonal transformations A and B are
reduced to,

A′′′ =
(
1.549193338

)
and B′′′ =

(
2.323790008

)
. (3.92)

The generalised eigenvalue of matrices A′′′ and B′′′ is trivially ξ∗ = 0.666666666 and
the coordinate of the intersection point is r(ξ∗) =

(
2
3

1
3 0

)T
.

At the intersection point, the implicitisation matrix becomes

M (ξ∗) =

−2
3 0 2

3 0 0
1
3 0 −1

3 0 0

 (3.93)

with its left null space spanned by the vector
(

1
2 1

)
. The parameter θ∗ of the intersec-

tion point can be readily computed according to (3.86) since the vector
(
1 − θ∗ θ∗

)
has to be collinear to

(
1
2 1

)
. Hence, θ∗ = 2

3 .

A cubic Bézier curve The same cubic Bézier curve as shown in Figure 3.10a is
considered. The implicit matrix representation of the curve is obtained as (3.55). The
intersections with three lines were computed. The three lines considered are plotted
in Figure 3.19. Line r1(ξ) is the x-axis, line r2(ξ) is horizontal and tangential to the
curve, and line r3(ξ) is a vertical line with x = 2.

The same procedure with the previous linear Bézier curve example yields the
intersection points with line r1 = (4ξ, 0) as follows,

ξ1 = 0, ξ2 = 0.574074, ξ3 = 1 . (3.94)
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Fig. 3.19 Intersection of the cubic Bézier curve with the three lines.

It can be inferred from the first derivative of the cubic Bézier curve that a horizontal
line intersects the curve tangentially at two points with the curve parameter θ =
(5 +

√
7)/9 or θ = (5 −

√
7)/9. The line r2 is considered as intersecting tangentially

with the curve at θ = (5 +
√

7)/9. The computation with line r2 yields the following
line parameters of the intersection points,

ξ1 = 0.7904215, ξ2 = 0.7904215, ξ3 = −0.0243004 (3.95)

with two of them the same value corresponding to the tangential intersection point
and the other one intersecting at the point outside the domain [0, 1].

The computation with line r3 = (2, 2ξ − 1) yields the following eigenvalues,

ξ1 = 0.576487, ξ2 = 36.461756 + 10.897286i, ξ3 = 36.461756 − 10.897286i , (3.96)

where only ξ1 is valid which corresponds to the only intersection point intersected by
the line.

3.3 Surface-fitted lattice generation

In our implementation of creating lattice-skin structures, lattices with periodic cubic
cells are considered, for example, octet, pyramidal and BCC (body-centred cell). The
cell size and the cell type can be prescribed by the user. Each cubic cell contains
an arrangement of a small number of struts with the same size. The assumption of
cubic cells is here not overly restrictive, considering that amongst polyhedra with a
small number of faces only the cube and the dodecahedron are able to uniformly fill
the space [93]. Lattices containing several different types of polyhedral cells or with
gradually changing cell size are possible but will be not considered for the sake of
simplicity.

In order to generate the periodic lattice structure, the subdivision surface is first
immersed in a lattice grid as shown in Figure 3.20. The cells in the lattice grid can be
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Fig. 3.20 Surface and the lattice and the projection of cell corners on to the surface
(two-dimensional illustration).

(a) Geometry fitted lattice (b) Truss lattice structure

Fig. 3.21 Truss lattice generation from a geometry fitted lattice.

categorised into three types, i.e. inside cells, outside cells and cut cells. Cut cells are
those with edges intersecting with the surface. Inside cells will remain, and the shapes
of cut cells are modified by projecting their vertices to the surface. Outside cells will
be removed before adding struts into the lattice grid to form a lattice structure. The
three types of cells can be distinguished according to the intersection points of the
lattice grid with the surface.

The lattice grid can be seen as a set of line segments. The intersection points of
the lattice grid with the surface is therefore obtained by looping over all line segments
of the lattice grid and computing the line/subdivision surface intersection repeatedly
with the algorithm described in Section 3.2.3. When all the intersection points are
computed, each lattice grid node can be distinguished if it is inside or outside the
surface by examining their positions on the lattice line relative to the intersection
points. For a closed surface, the lattice nodes between the first and second, third
and fourth, and so on intersection points have to be inside the surface. If a node is
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coincident with an intersection point, it is regarded as an inside node. Distinguishing
cell types becomes straightforward after specifying the positions of lattice grid nodes.

Before adding struts into the lattice grid, the nodes of cut cells are moved to fit
the surface. For an edge intersecting with the surface, the end node closest to the
intersection point is moved to the intersection point. A surface-fitted lattice grid is
generated as shown in Figure 3.21a. After a lattice grid fitting the surface is created,
it becomes straightforward to add struts in cells to form the cell type prescribed
(Figure 3.21b).

3.4 Example of the Stanford bunny

In this example the timings for generating a lattice within a given surface by using
the aforementioned algorithms are investigated. Figure 3.22 shows the steps involved
in generating an internal lattice for the Stanford bunny. The bunny surface is a
Catmull-Clark subdivision surface and consists of 2071 facets. The lattice size is chosen
with 45 × 45 × 37 (the number of lattice joints in each direction). This leads to 5704
intersection points between the lattice and the surface. Each lattice cell is tessellated
with struts to give a body-centred cubic unit cell connectivity as shown in Figure 3.22d.

All the intersection points between the surface and lattice are computed using the
intersection algorithm developed in Section 3.2.3. The SVD computations involved are
computed with the open source library Eigen [94]. For intersection detection we use
14-dops, consisting of six directions orthogonal to the coordinate planes, two directions
parallel to the average normal of all the Bézier patches (evaluated by sampling), and
six directions orthogonal to the lattice. In Figure 3.23 the 14-dop and the axis-aligned
bounding box (with k = 6) are compared in terms of efficiency of the intersection
detection with a lattice grid of the size 19 × 17 × 17. Different lattice grid orientations
{0◦, 15◦, 30◦, 45◦} have been considered with respect to the bunny axis. As to be
expected, using the 14-dop is far more efficient than the axis-aligned bounding box
when the lattice grid is not aligned with the coordinate axis, since the bounding box
size of a lattice edge depends on the lattice orientation.

For evaluating the accuracy and efficiency of the implicitisation, we compare it with
the widely used subdivision method as described in Section 3.1.1. In the subdivision
method the Bézier patches are successively refined until they are sufficiently flat so that
the intersection computation reduces to the trivial intersection between a triangle and
a line segment. The flatness criterion employed in the subdivision method is to consider
the difference between the maximum support height hpatch

j,max and the minimum support
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(a) Control mesh (b) Immersed lattice (c) Intersection points

(d) Lattice structure with BCC unit cells

Fig. 3.22 Generation of a lattice-skin structure for the Stanford bunny and its deforma-
tion under a loading.

(a) Grid orientation 0◦

(b) Grid orientation 45◦

0.0 15.0 30.0 45.0

Lattice orientation (◦)

0

200

400

600

800

1000

1200

C
om

p
u

ta
ti

on
ti

m
e

(s
)

14-dop

Bounding box

(c) Computation time using k-dops and bounding box

Fig. 3.23 Comparison of efficiency using k-dops and bounding box.
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Table 3.1 Accuracy of intersection computation with implicitisation.

Tolerance toldc 10−4 10−6 10−8 10−10 10−12

Avg[log(||ximplicit − xdc||)] -4.84 -6.81 -8.78 -10.81 -12.53

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4
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Fig. 3.24 Performance of intersection computations with the implicitisation and the
divide-and-conquer method.

height hpatch
j,min along the direction of the average normal of the Bézier patch (see (3.1)),

and this difference has to be less than a given tolerance. The tolerance controls the
accuracy of the intersection computation. Note that this tolerance becomes ineffective
when the line is (nearly) tangential to the surface, which is not a trivial problem for
the subdivision method [95].

The average difference between all the intersection points obtained by the impliciti-
sation and the divide-and-conquer listed in Table 3.1 shows that the overall accuracy
using implicitisation to calculate intersection points can reach at least 10−12. The
performance comparison between the implicitisation and the subdivision methods is
shown in Figure 3.24. Both the computation time and memory consumed increase
linearly with the decreasing tolerance for the subdivision method. This reflects the
linear relationship between the depth of the bounding volume tree and the required
accuracy. In contrast, the implicitisation exhibits a high accuracy (more than 10−12)
but takes less time and memory compared with the subdivision method. The compu-
tation was performed on a computer equipped with an Intel Xeon(R) CPU E5-2623 v3
@ 3.00GHz processor and 32GB memory.



Chapter 4

Analysis of lattice-skin structures

In this chapter the finite element analysis of the lattice-skin structure is demonstrated
considering the lattice-skin coupling. In the isogeometric framework, the finite element
model and the geometry model use the same basis functions. Since the thin-shell in
the lattice-skin structure is represented with the subdivision surface, the subdivision
basis functions are used in the finite element analysis of the thin-shell. A brief review
of the finite element analysis of the thin-shell using subdivision basis functions is given
in Section 4.1. The lattice-coupling is considered with Lagrange multipliers and the
finite element discretisation of equilibrium equations of the lattice-skin structure is
derived in Section 4.2. Examples including a verification example of a sandwich plate
are given in Section 4.3.

4.1 Review of subdivision thin-shell finite elements

4.1.1 Energy functional of deformed thin-shells

The thin-shell is characterised with its mid-surface, and the Kirchhoff-Love theory is
adopted for the thin-shell analysis. In the Kirchhoff-Love theory, the normal to the
mid-surface remains normal after deformation, and there is no through-the-thickness
deformation.

The mid-surface of the thin shell is parameterised with curvilinear coordinates
(θ1, θ2) ∈ R2. An illustration of the mid-surface in the reference and deformed configu-
rations is given in Figure 4.1. In the following the superscript s is introduced in order
to distinguish between the variables for the thin-shell and the lattice in the lattice-skin
structure.
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Fig. 4.1 Geometry of the thin-shell in the reference and deformed configurations.

The covariant basis vectors of the mid-surface are computed with

Aα = ∂Xs

∂θα
, aα = ∂xs

∂θα
, α = 1, 2 , (4.1)

where Xs(θ1, θ2) and xs(θ1, θ2) are position vectors of material points on the mid-
surface in the reference and deformed configurations respectively, which are related by
the displacement field us(θ1, θ2) as

xs(θ1, θ2) = Xs(θ1, θ2) + us(θ1, θ2) . (4.2)

The unit normals of the mid-surface in reference and deformed configurations are

N = A1 × A2

|A1 × A2|
, n = a1 × a2

|a1 × a2|
. (4.3)

Considering the linearisation of the Green-Lagrange strain tensor in terms of the
shell thickness, the membrane strain tensor α and the bending strain tensor β are

α = ααβ Aα ⊗ Aβ = 1
2(aα · aβ − Aα · Aβ) Aα ⊗ Aβ , (4.4)

β = βαβ Aα ⊗ Aβ = (aα · n,β − Aα · N,β) Aα ⊗ Aβ (4.5)

with the comma denoting partial differentiation.
The internal potential energy of the deformed thin-shell can be computed with

Πshell(us) =
∫

Ωs
(W m(α) + W b(β)) dΩs , (4.6)
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where the membrane strain energy density W m and the bending strain energy density
W b are defined as

W m(α) = 1
2

Et

1 − ν2 α : H : α , (4.7)

W b(β) = 1
2

Et3

12(1 − ν2)β : H : β , (4.8)

with E, ν and t denoting the Young’s modulus, the Poisson’s ratio and the thickness
of the thin-shell respectively; H denoting the fourth-order elasticity tensor defined as

H =
[
νAαβAγδ + 1

2(1 − ν)(AαγAβδ + AαδAβγ)
]

Aα ⊗ Aβ ⊗ Aγ ⊗ Aδ (4.9)

with the contravariant metric in the reference domain Aαβ = Aα · Aβ.

4.1.2 Finite element discretisation

The total potential energy of the thin-shell is

Πs(us) = Πshell(us) − Πext(us) , (4.10)

where Πext is the work done by external loads,

Πext =
∫

Ωs
q · us dΩs +

∫
Γs

τ · us dΓs (4.11)

with q denoting the distributed loading on the mid-surface and τ the force applied
along the boundary of the thin-shell.

The equilibrium equation can be obtained by computing the stationary point of
the potential energy functional (4.10), where the first variation has to diminish,

∂Πs(u)
∂us δus = ∂Πshell(us)

∂us δus − ∂Πext(us)
∂us δus

=
∫

Ωs

(
∂W m(α)

∂us δus + ∂W b(β)
∂us δus

)
dΩs −

∫
Ωs

q · δus dΩs −
∫

Γs
τ · δus dΓs

= 0 .

(4.12)

Subdivision basis functions [13] are used for the finite element discretisation of
the weak form (4.12) such that the position xs and the displacement field us of the
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mid-surface are approximated as xs
h and us

h respectively,

xs
h(θ1, θ2) =

ns∑
i=1

N s
i (θ1, θ2)xs

i , (4.13)

us
h(θ1, θ2) =

ns∑
i=1

N s
i (θ1, θ2)us

i , (4.14)

where xs
i and us

i are nodal positions and displacements of finite elements, N s
i are

associated subdivision basis functions, and ns denotes the number of support nodes in
an element. In the following context, the discretised fields are denoted without the
subscript h.

In the case of small displacement of the mid-surface, the linearised membrane strain
αlin and the linearised bending strain βlin are given by, according to [13],

αlin = 1
2 (Aα · u,β + u,α · Aβ) Aα ⊗ Aβ , (4.15)

βlin = −u,αβ · N + 1
|J |

[u,1 · (Aα,β × A2) + u,2 · (A1 × Aα,β)]

+ N · Aα,β

|J |
[u,1 · (A2 × N ) + u,2 · (N × A1)] Aα ⊗ Aβ (4.16)

with the Jacobian of the mid-surface |J | = |A1 × A2|. Considering the discretised
displacement field (4.14) of the mid-surface, the linearised membrane strain and the
bending strain can be approximated as

αlin(θ1, θ2) =
ns∑

i=1
Ms

i(θ1, θ2)us
i , (4.17)

βlin(θ1, θ2) =
ns∑

i=1
Bs

i(θ1, θ2)us
i (4.18)

with
[Ms

i]αβ = 1
2
(
Aα · N s

i,β + N s
i,α · Aβ

)
(4.19)

and

[Bs
i]αβ = −N s

i,αβ · N + 1
|J |

[
N s

i,1 · (Aα,β × A2) + N s
i,2 · (A1 × Aα,β)

]
+ N · Aα,β

|J |
[
N s

i,1 · (A2 × N ) + N s
i,2 · (N × A1)

]
.

(4.20)
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Finally, the stiffness matrix of the discretised equilibrium equation is computed with

Ks
ij =

∑
e

∫
Ωs

e

[
Et

1 − ν2 Ms
i
THMs

j + Et3

12(1 − ν2)Bs
i
THBs

j

]
dΩs

e . (4.21)

Under the subdivision scheme the Dirichlet boundary conditions can be applied
considering the fact that it is essentially a cubic B-spline along the edge in the Catmull-
Clark subdivision and the Loop subdivision. Therefore, a cubic B-spline boundary
can be constructed along the boundary by considering ghost vertices outside the
domain [13]. Alternatively, as mentioned in Section 2.2.3 the extended subdivision
schemes are derived based on the cubic B-spline boundary conditions, it becomes
straightforward to apply the Dirichlet boundaries using the extended subdivision
schemes directly [15]. The Dirichlet boundary conditions can also be imposed weakly
with the Nitsche’s method [96, 97], which employs work-conjugate pairs with adjoint
terms in the weak form so that variational consistency and symmetry are guaranteed
in the weak form formulation when compared with penalty methods [98].

4.2 Lattice-skin coupling and discretisation

The lattice in the lattice-skin structure is modelled with truss elements which do
not transfer moments. Each strut deforms only by stretching without bending. This
approximation is sufficient for lattices which are stretch dominated [99, 100]. It is
straightforward to extend the lattice-skin coupling with truss elements to beam elements
or solid elements. It is worth noting that modelling struts with Timoshenko beam
elements or solid elements is better aligned with the lattice structure having struts with
relatively high ratios of diameter to length (for example, greater than 1/10 ∼ 1/8 [101]).
In the following context of analysis and optimisation, as the stretch-dominated lattice
structure is considered, the restriction of strut dimensions is relaxed so that the strut
with a relatively high ratio of diameter to length is still modelled with the truss element,
and it would not affect the overall approaches and the conclusions presented.

The unit directional vector of a truss element is given by

tl
j =

X l
j2 − X l

j1

Lj

, (4.22)

where X l
j1 and X l

j2 denote coordinates of the two joints of the strut indexed with j,
and Lj is the length of the strut.
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In the case of small displacement, the linearised stretch strain ϵj of the j-th strut
after the deformation is

ϵj =
ul

j2 − ul
j1

Lj

· tl
j , (4.23)

where ul
j1 and ul

j2 are joint displacements. The stretch energy density of a strut is
computed with

W a(ϵj) = 1
2Ejϵ

2
j (4.24)

with Ej the Young’s modulus of the j-th strut. The internal potential energy of the
lattice is given by

Πlattice(ul) =
∑

j

W a(ϵj)Vj , (4.25)

where ul is the nodal displacement vector of the lattice, and Vj is the volume of the
strut.

Hence, the total potential energy of the lattice-skin coupled structure is given by

Π(us, ul) = Πshell(us) + Πlattice(ul) − Πext , (4.26)

where us is the displacement field of the thin-shell, ul is the displacement vector of
lattice nodes, Πext is the work done by external forces including the external loading
applied on lattice joints. The internal potential energy of the thin shell Πshell(us) has
been given in Section 4.1.1.

Some of the lattice nodes are located on the mid-surface of the thin-shell, and
they are required to have compatible displacements at the coupled positions. The
set of the coupled lattice nodes is denoted with Dl

c, and the coupled thin-shell nodes
are in the set Ds

c. The coupled positions, including their physical coordinates and
parametric coordinates on the mid-surface of the thin-shell, have been obtained from
the intersection computation introduced in Chapter 3. The displacement compatibility
condition between the thin-shell and the lattice at the positions of coupled lattice
nodes is

us(θl
i) = ul

i , ∀i ∈ Dl
c (4.27)

with ul
i the displacement vector of the i-th lattice node which is coupled with the

thin-shell, and θl
i the parametric coordinates of the coupled lattice node X l

i. This
condition can be imposed with Lagrange multipliers λi by considering the Lagrangian
of the total potential energy functional of the lattice-skin structure

L(us, ul, λ) = Πshell(us) + Πlattice(ul) − Πext(us, ul) +
∑

i

λi

(
us(θl

i) − ul
i

)
. (4.28)



4.3 Examples 79

The equilibrium equations can be obtained by computing the stationary point of
the functional (4.28) as follows,

∂Πshell(us)
∂us δus − ∂Πext

∂us δus +
∑

i

λiδus(θl
i) = 0 i ∈ Dl

c , (4.29)

∂Πlattice(ul
i)

∂ul
i

− ∂Πext

∂ul
i

= 0 i /∈ Dl
c , (4.30)

∂Πlattice(ul
i)

∂ul
i

− ∂Πext

∂ul
i

− λi = 0 i ∈ Dl
c , (4.31)

us(θl
i) − ul

i = 0 i ∈ Dl
c . (4.32)

With the displacement field of the thin-shell discretised with (4.14), the finite element
discretisation of these equations yields the following discretised equilibrium equation
system with subscript c denoting the coupled degrees-of-freedom and subscript d
denoting the non-coupled degrees-of-freedom,



Ks
dd Ks

dc 0 0 0

Ks
cd Ks

cc 0 0 GT
c

0 0 Kl
dd Kl

dc 0

0 0 Kl
cd Kl

cc −HT
c

0 Gc 0 −Hc 0





us
d

us
c

ul
d

ul
c

λ


=



fs
d

fs
c

f l
d

f l
c

0


, (4.33)

where K is the stiffness matrix, u is the displacement vector, f is the external force
vector; Hc is an identity matrix, i.e. Hc = I, and the matrix Gc takes the following
form

[GT
c ]ij = N s

i (θl
j)I3 (4.34)

with i ∈ Ds
c and j ∈ Dl

c the indices of coupled thin-shell nodes and coupled lattice
nodes, respectively.

4.3 Examples

4.3.1 Sandwich plate

A simply-supported sandwich plate with pyramidal lattice core, as shown in Figure 4.2,
is used to verify the accuracy and the convergence of the finite element computation
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(a) Sandwich plate with pyramidal lattice core
(b) Unit cell with pyramidal tessellation

Fig. 4.2 Geometry of the sandwich plate.

proposed in the preceding section. The dimension of the sandwich plate is 1 m × 2 m,
and the distance between the top and bottom thin-shell is 0.05 m. The pyramidal
lattice core consists of cubic unit cells of side length 0.05 m and the struts are inclined
by φ = arctan(

√
2) with respect to the bottom skin, see Figure 4.2b. The both skins

and the struts are made of the same material with a Young’s modulus E = 70 GPa
and a Poisson’s ratio ν = 0.35. The top skin is subjected to a uniform pressure loading
of 7 · 105 N/m2. The bottom skin is at its edges simply supported and each skin is
discretised with 256 Kirchhoff-Love shell elements and cubic b-splines.

The relative density ρ̄ of a pyramidal lattice core is

ρ̄ = π

2 cos2 φ sin φ

(
d

L

)2
, (4.35)

where d is the diameter of a lattice strut, L is the length of a strut.
The homogenised material properties for the pyramidal lattice core can be found

in [102]. The shear modulus of a pyramidal core can be considered as isotropic is given
by

Ḡ = ρ̄

8E sin2 2φ . (4.36)

Analytic expressions for the displacements of an isotropic sandwich plate under
uniform loading can be found in [103]. The contribution of the lattice core to the
flexural rigidity of the sandwich plate is neglected in analytic solutions.

Three different skin thicknesses t = {10 mm, 15 mm, 20 mm} and eight different strut
diameters d = {2.5 mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, 15 mm, 17.5 mm, 20 mm} are
considered. The comparison of the numerical and the analytic maximum displacements
is plotted in Figure 4.3b. It can be seen that the numerical results agree well with
the analytic ones for a range of different strut diameters and skin thicknesses. As
depicted in Figure 4.3c the maximum displacement exhibits a quadratic convergence
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(a) Deformation of the sandwich plate
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(c) Convergence of the maximum dis-
placement

Fig. 4.3 Maximum displacement of the sandwich plate under uniform pressure loading.

rate (for a plate with strut diameter d = 17.5 mm and skin thickness t = 15 mm).
The convergence rates for different strut diameters and skin thicknesses may fluctuate
around the quadratic rate since in the reference solution [103] the lattice core is
approximated with an isotropic bulk material, and the skin-lattice coupling has also an
effect on the convergence rate. A limitation of using truss elements to model the lattice
in this example is that the shear and the moment are neglected in struts with high
ratios of diameter to length greater than a threshold (for example 1/10 ∼ 1/8), but
this can lead to slight difference with the real model as the lattice is stretch dominated.

4.3.2 Doubly curved sandwich panel

A curved sandwich panel with a BCC lattice core is shown in Figure 4.4a and the
lattice edges are aligned with the principal axes of the cap. Each unit cell has a side
length of 0.005 m and all struts have a diameter depending on the prescribed ratio of
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(a) Geometry of the doubly curved sandwich panel

(b) Deformation under the loading

Fig. 4.4 Doubly-curved sandwich panel under the loading.

the lattice volume to the total material volume. The size of the sandwich cap projected
onto the horizontal plane is 0.2 m × 0.2 m. The distance between the top and bottom
skin is 0.015 m. Each skin is discretised with 64 Kirchhoff-Love shell elements and
cubic b-splines. The Young’s modulus and the Poisson’s ratio of the thin-shell and the
lattice material are E = 100 GPa and ν = 0. A uniform loading with the magnitude
106 N/m2 is applied in the region [−0.01 m, 0.01 m] × [−0.01 m, 0.01 m] around the
centre of the upper skin. The four corners of the top and bottom skins are fixed. The
deformation under the loading is shown in Figure 4.4b.

The total volume of the sandwich panel is prescribed and the optimal lattice to
total volume ratio is sought. In Figure 4.5 the structural compliance for different lattice
to total volume ratios from 0.07 to 0.85 are plotted. Three different total volumes
V ∈ {150 cm3, 200 cm3, 250 cm3} are considered, and the ranges of their corresponding
strut diameters are 0.024 cm ∼ 0.084 cm, 0.028 cm ∼ 0.096 cm and 0.03 cm ∼ 0.108 cm,
respectively. For each total volume there exists an optimal lattice to total volume
ratio as can be inferred from Figure 4.5. Structures consisting either only of a lattice
or only one shell skin are non-optimal. If the lattice constitutes a relatively large
volume ratio in the sandwich panel, the compliance becomes larger as the lattice
volume increases and even greater than the corresponding thin-shell structure with the
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Fig. 4.5 Compliances with different ratios of lattice volume to total material volume.

same total material volume. It implies that the lattice structure may not be optimal
compared with the solid structure with respect to the compliance, which has also
been discussed recently in the topology optimisation literature [104]. When the lattice
volume is relatively small, the lattice core becomes soft, which weakens the coupling
effect of the top and the bottom thin-shells and impair the capability of carrying the
shear force, leading to an increase in the compliance as shown in the results. It should
be noted that modelling with truss elements may result in a stiffer response of the
lattice structure having struts with diameter/length ratios greater than a threshold
(for example, 1/8 ∼ 1/10, i.e. 0.05 cm ∼ 0.0625 cm in this example), but the conclusion
of the existence of an optimal ratio of lattice volume to total material volume would
not be affected by the approximation of using truss elements.

4.3.3 Lattice-infilled femur bone

A femur bone surface parameterised with a Catmull-Clark subdivision surface is shown
in Figure 4.6a. A BCC lattice structure is generated to infill the enclosed bone surface
with the approach described in Section 3.3 as shown in Figure 4.6b. Each lattice unit
cell has a side length of 0.005 m. The femur bone is supposed to carry a loading of
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5 × 104 N/m2. The Young’s modulus of the material is 14 GPa. The surface of the
femur bone is discretised with 232 Kirchhoff-Love shell elements and cubic B-splines.

(a) Control mesh (b) Lattice-infilled fe-
mur

(c) Deformation

Fig. 4.6 Lattice infilled femur bone and deformation under the loading.
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Fig. 4.7 Compliances with different ratios of lattice volume to total material volume.

Figure 4.7 shows the compliance of the lattice-infilled femur bone with different
ratios of lattice volume to total material volume from 0.07 to 0.85. Three different
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total volumes V ∈ {400 cm3, 800 cm3, 1600 cm3} are considered, and the ranges of their
corresponding strut diameters are 0.026 cm ∼ 0.092 cm, 0.037 cm ∼ 0.13 cm and
0.052 cm ∼ 0.184 cm, respectively. Different from the results of the sandwich panel in
the previous example, the compliance of the lattice-infilled femur bone is reduced as
the lattice volume ratio increases, indicating that the lattice structure is not optimal
in contrast to the solid with respect to the compliance. Since for the femur bone under
the loading depicted as in Figure 4.6a, the stresses of the struts near the bone axis
are very small, which means that there exists redundancy in struts which could have
been removed in the structure, and this can explain the non-optimality of using infilled
lattice structure for the femur bone model. For struts with ratios of diameter to length
greater than a threshold (for example, 1/8 ∼ 1/10, i.e. 0.05 cm ∼ 0.0625 cm in this
example), the conclusion of the non-optimality of using lattice would not be affected
though the approximation of using truss elements may result in a stiffer structural
response in these cases.





Chapter 5

Optimisation of lattice structures

This chapter discusses the optimisation of lattice structures using gradient-based
optimisation algorithms. Compared with gradient-free optimisation methods, for
example genetic algorithms [105] and evolution strategies [106], the computational cost
of the gradient-based algorithms is much lower, especially for large-scale optimisation
problems with a large number of design variables. The gradient-based optimisation
algorithms are briefly described in Appendix C, including the sequential quadratic
programming (SQP) and the method of moving asymptotes (MMA). The size and
shape optimisation of lattice structures are discussed in detail in Section 5.2 and the
sensitivity analysis of the optimisation problem is derived.

In Section 5.3 a new lattice topology optimisation method based on lattice unit
cells is proposed. The SIMP method in topology optimisation of continuum structures
is adapted to be applicable in lattice topology optimisation, and several examples are
given afterwards to demonstrate the feasibility of the method.

5.1 Gradient-based optimisation formulations

5.1.1 General description of structural optimisation

The general form of a structural optimisation problem can be described as
minimise

J(x) (5.1a)

subject to
Gi(x) = 0, for i = 1, · · · , np (5.1b)

Hj(x) ≤ 0, for j = 1, · · · , nq (5.1c)
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where J(x) is the objective function, which can be structural compliance, material
volume, etc.; Gi(x) are equality constraints, including structural equilibrium equations;
Hj(x) are inequality constraints, including the lower bound and the upper bound of
design variables x; np and nq are the number of inequality and equality constraints,
respectively.

The constraint functions can be considered with the Lagrangian of the optimisation
problem as follows

L(x, λ, µ) = J(x) +
np∑
i=1

λiGi(x) +
nq∑

j=1
ϕjHj(x) , (5.2)

where λi and ϕj are Lagrange multipliers, and ϕj must be nonnegative. By virtue
of Lagrange multipliers, the original constrained optimisation problem is naturally
converted to an unconstrained optimisation problem. At a local minimum of the
constrained optimisation problem, it can be shown that the gradient of the objective
function is a linear combination of gradients of constraint functions [107]. As a matter
of fact, the coefficients of the linear combination are Lagrange multipliers in (5.2) which
correspond to active constraints Gi = 0 and Hj = 0.

The necessary conditions for a feasible point x to be a local minimum of the
constrained optimisation problem are summarised as the following Karush-Kuhn-
Tucker (KKT) conditions [107],

∇xL(x, λ, µ) = 0 (5.3a)
Gi(x) = 0, Hj(x) ≤ 0 (5.3b)

λiGi(x) = 0, ϕjHj(x) = 0 (5.3c)
ϕj ≥ 0 (5.3d)

where i = 1, · · · , np and j = 1, · · · , nq.
Conditions (5.3b) indicate that x must be a feasible point. Conditions (5.3a) and

(5.3c) imply that the gradient of the objective function is a linear combination of active
constraint functions, i.e.

∇xJ(x) +
np∑
i=1

λi∇xGi(x) +
∑
j∈A

ϕj∇xHj(x) = 0 , (5.4)

where A is the set of indices for which the constraints Hj ≤ 0 are active, i.e. Hj = 0.
It can also be seen from (5.4) that Lagrange multipliers reflect how sensitive the
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optimal value of the objective function is with respect to variations of constraints [108].
Specifically, for inequality constraints Hj ≤ 0 which are inactive (i.e. Hj < 0), the
corresponding Lagrange multipliers are zero, which implies that these constraints are
not significant and small perturbations of these inactive constraints may not influence
the optimal value of the objective function.

5.1.2 Sensitivity analysis

When solving the structural optimisation problem (5.1) with gradient-based opti-
misation algorithms, the first derivatives of objective and constraint functions with
respect to design variables need to be computed. This process is usually referred to as
sensitivity analysis in optimisation literature. For the objectives and constraints that
are commonly considered in structural optimisation problems, the expressions of their
derivatives will be given in detail in the following sections.

In structural optimisation problems, the general expression of the first derivatives
with respect to design variables xk can be written as

∂f(x)
∂xk

= ∂f(x, u(x))
∂xk

+ ∂f(x, u(x))
∂u

∂u(x)
∂xk

, (5.5)

where f(x) can be either the objective function J(x) or constraint functions Gi(x) or
Hi(x).

Considering the direct differentiation of the discretised structural equilibrium
equations

K(x)u(x) = F(x) , (5.6)

we have
∂u(x)
∂xk

= K−1(x)
(

∂F(x)
∂xk

− ∂K(x)
∂xk

u(x)
)

, (5.7)

where F is the external force vector; u is the displacement vector; K is the global
stiffness matrix of the structure, and the discretised global stiffness matrix K(x) can
be expressed as

K(x) =
ne∑

j=1
Kj(x) , (5.8)

Kj(x) = ΘT
j kj(x)Θj , (5.9)

where ne is the number of finite elements; Kj is the global version of the element
stiffness matrix kj, with the positions of nonzero entries in Kj corresponding to the
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degrees-of-freedom in the discretised displacement vector u; Θj is a scatter matrix
containing entries 0 and 1, which maps the global discretised displacement vector u to
the element displacement vector uj with

uj = Θju . (5.10)

The structural compliance is considered as the objective in this dissertation, i.e.
J(x) = FTu, and for the sake of simplicity, the external forces F are considered as
independent of design variables, the first derivatives ∂J(x)/∂xk in (5.5) become

∂J(x)
∂xk

= FT ∂u(x)
∂xk

. (5.11)

Substituting (5.7), (5.6), (5.8), (5.9) and (5.10) into (5.11) yields

∂J(x)
∂xk

= −uT(x)∂K(x)
∂xk

u(x) = −
ne∑

j=1
uT

j (x)∂kj(x)
∂xk

uj(x) . (5.12)

The expression (5.12) may vary in details for different optimisation problems, for
example size optimisation, shape optimisation and topology optimisation. The different
expressions are derived in detail in the respective sections followed.

5.1.3 Constraint aggregation

For many practical optimisation problems, a large number of constraints need to be
considered in general, for example, the lengths of lattice struts, the positions of lattice
nodes, the stresses of lattice struts, etc.. As a result, the computational cost will be
increased and the convergence of the optimisation would be affected when considering
a large number of constraints for gradient-based optimisation algorithms. An ad hoc
way to deal with a large number of constraints is to consider the constraint which
is the most violated. This method is simple but has in general a poor convergence
behaviour [109], as only one constraint is considered to determine the search direction
in each iteration, which in general results in the violation of another constraint in the
next iteration and leads to discontinuities in the optimisation problem. Therefore, it is
appealing to aggregate multiple constraints into a single constraint function, especially
when the constraint functions share common features.

One approach for the constraint aggregation is to use the Kreisselmeier-Steinhauser
(KS) function as first proposed in [110]. The KS function used in our implementation
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Fig. 5.1 The KS functions for two constraints considering different parameters κ.

is given by

Hks = Hmax(x) + 1
κ

ln
 nq∑

j

eκ(Hj(x)−Hmax(x))

 , (5.13)

where Hmax(x) is the most violated constraint, and κ is an aggregation parameter
which indicates the extent of constraint aggregation to the most violated constraint. As
the parameter κ increases, the KS function of the constraints approaches to Hmax(x).
Furthermore, the value of the KS function is bounded with

Hmax(x) < Hks < Hmax(x) + ln nq

κ
, (5.14)

which implies that the KS function is a conservative approximation to the constraint.
Figure 5.1 gives an example to illustrate the approximation of constraint functions
using the KS function.

The two constraint functions considered in Figure 5.1 are H1(x) = x2 − 2 and
H2(x) = ex−2, which are plotted in the domain [−2, 2] as shown in Figure 5.1a. The KS
functions with different parameters κ = {1, 5, 10, 50} are also plotted. As can be seen,
as the parameter κ increases, the KS function approaches to the constraint function
which has the maximum value, i.e. the one most violated. The details of these different
KS functions near the intersection region of the two constraints are shown in Figure 5.1b.
In general, κ = 50 is a reasonable value which ensures the approximation of constraint
functions as well as the numerical stability of the optimisation process. An adaptive KS
function was also proposed in [109] which improves the accuracy of the approximation
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by selecting the parameter κ adaptively during the optimisation iterations to deal with
the problem of overestimate using the conventional KS function (5.13).

5.2 Lattice size and shape optimisation

For the size and shape optimisation of lattice structures, we consider the structural
compliance as the objective and the lattice volume as the constraint. The external force
is assumed to be independent of design variables. The size and shape optimisation
problem is described as

minimise
J(x) = FTu (5.15)

subject to
V (x) =

n∑
i=1

AiLi ≤ V0 (5.16)

Ku = F (5.17)

where x are design variables, which are cross-sectional areas of struts in size optimisation
and nodal coordinates in shape optimisation; Ai and Li are the cross-sectional area
and the length of the i-th strut respectively, V0 is a prescribed lattice volume.

Lattice structures can be analysed with either truss elements or beam elements. For
structures containing a large number of lattice struts in which the bending strain energy
constitutes a very small fraction of the total strain energy, truss elements are adopted
as the computational cost is much smaller. As a matter of fact, it is sufficient and
valid to model the lattice structure with pin-jointed struts when the lattice structure
is stretch-dominated [111, 99, 100] as is the case in this dissertation.

5.2.1 Size optimisation

In the context of pin-jointed trusses the compliance is a convex function, which is
an appealing property as the size optimisation becomes a convex problem. That the
compliance is a convex function is demonstrated as follows.

Recall (5.12) that the gradient of compliance reads

∂J(x)
∂xk

= −uT(x)∂K(x)
∂xk

u(x) , (5.18)
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and the global stiffness matrix K of lattice structures with truss elements depends on
cross-sectional areas linearly. The second derivatives of the compliance are

∂2J(x)
∂xk∂xl

= −
(

∂u(x)
∂xl

)T
∂K(x)

∂xk

u(x) − uT(x)∂K(x)
∂xk

∂u(x)
∂xl

= 2uT(x)∂K(x)
∂xk

K−1(x)K(x)
∂xl

u(x) . (5.19)

Hence, for any vector y, we have

yT∇2
xJ(x)y =

∑
l

∑
k

yk
∂2J(x)
∂xk∂xl

yl

= 2uT(x)
[∑

l

∑
k

∂K(x)
∂xk

ykK−1(x)K(x)
∂xl

yl

]
u(x)

= 2uT
[
Y K−1(x)Y

]
u(x)

= 2 (Y u(x))T K−1(x) (Y u(x)) ≥ 0 ,

(5.20)

where the symmetric matrix Y = ∑
k

∂K(x)
∂xk

yk is introduced. As can be seen, the Hessian
of the compliance ∇xJ(x) is always positive semi-definite. Therefore, the compliance
is a convex function.

Sensitivity analysis

The element stiffness matrix of the j-th strut is

kj = ΛT
j kjΛj , (5.21)

where kj is the element stiffness matrix in the local coordinate system which only
depends on the properties of the strut and it is linear with respect to the cross-sectional
area when the truss element is used, Λj is a transformation matrix which maps the
local stiffness matrix kj to kj in the global coordinate system. For instance, the element
stiffness matrix of a 2D truss element is

kj = EjAj

Lj


c2 sc −c2 −sc

sc s2 −sc −s2

−c2 −sc c2 sc

−sc −s2 sc s2

 , (5.22)
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where Ej, Aj and Lj are the Young’s modulus, the cross-sectional area and the length
of the j-th strut; s = sin φ and c = cos φ with φ indicating the orientation of the strut
in the global coordinate system. When beam elements are used, the transformation
matrix Λj is given in Appendix D.

The sensitivity of the compliance (5.12) becomes

∂J(A)
∂Aj

= −uT
j

∂kj

∂Aj

uj , (5.23)

where uj is the displacement vector of the j-th strut, and the first derivative of the
element stiffness matrix with respect to the cross-sectional area is straightforward to
compute with

∂kj

∂Aj

= ΛT
j

∂kj

∂Aj

Λj . (5.24)

In addition, the sensitivity of the volume constraint is readily obtained as

∂(V (A) − V0)
∂Aj

= Lj . (5.25)

Examples

A four-strut statically determinate truss A statically determinate truss struc-
ture with four struts as sketched in Figure 5.2 is considered to verify the size optimisation
algorithm by comparing with the analytical optimisation solution. The structural
compliance of the truss is given by

J(A1, A2, A3, A4) = Fs

E

(
1

A3
+ 2

√
2

A4

)
, (5.26)

where Ai(i = 1, 2, 3, 4) are cross-sectional areas of the four struts with indices given in
Figure 5.2, and E is the Young’s modulus of the material.

The volume constraint is considered in the size optimisation,

V = (A1 + A2 + A3 +
√

2A4) · s ≤ V0 (5.27)

with V0 the prescribed volume of the truss. In addition, the area Ai of each strut is
required to be positive.
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Fig. 5.2 A sketch of the four-strut statically determinate truss.

The Lagrangian of the size optimisation problem reads

L(A, µ) = J(A) + ϕ0(V − V0) −
4∑

i=1
ϕiAi (5.28)

with ϕi(i = 0, · · · , 5) the Lagrange multipliers. The KKT conditions (5.3) of the size
optimisation problem read

ϕ0 − ϕ1 = 0 , (5.29a)
ϕ0 − ϕ2 = 0 , (5.29b)

−Fs

E

1
A2

3
+ ϕ0s − ϕ3 = 0 , (5.29c)

−Fs

E

2
√

2
A2

4
+

√
2ϕ0s − ϕ4 = 0 , (5.29d)

(A1 + A2 + A3 +
√

2A4) · s − V0 ≤ 0 , (5.29e)
Ai ≥ 0 , i = 1, 2, 3, 4, , (5.29f)

ϕ0
[
(A1 + A2 + A3 +

√
2A4) · s − V0

]
= 0 , (5.29g)

ϕiAi = 0 , i = 1, 2, 3, 4 , (5.29h)
ϕi ≥ 0 , i = 0, 1, 2, 3, 4 . (5.29i)

As a result, the equation system (5.29) has a solution only when ϕ0, ϕ1, ϕ2 ̸= 0 and
ϕ3 = ϕ4 = 0. Substituting ϕ3 = ϕ4 = 0 into the KKT conditions, the solution is readily
obtained as

A1 = 0 , A2 = 0 , A3 = V0

3s
, A4 =

√
2V0

3s
(5.30)
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compliance volume

initial 0.48745 0.0346692

optimised 0.259597 0.0346692
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Fig. 5.3 Convergence of the size optimisation of the four-strut truss.

with the corresponding minimum compliance Jmin = 9Fs2/EV0.
Next, the size optimisation of the truss is performed using a gradient-based opti-

misation algorithm. The lower bound of cross-sectional areas of struts is set to be a
very small value, for example 10−8, in order to avoid a singular stiffness matrix if the
cross-sectional area of a strut becomes 0. The struts of the initial truss are assumed
to have the same cross-sectional area with the diameter 0.1. The Young’s Modulus
E = 1000 and the external force F = 1.

The convergence of the size optimisation process is plotted in Figure 5.3. The
optimisation process terminates after 18 iterations with the criterion that the relative
change of cross-sectional areas is less than 10−6 satisfied. The compliance of the size
optimised truss is 0.259597, reduced by 46.7% compared with that of the initial truss
which is 0.48745.

In the end, the struts with cross-sectional areas less than a small threshold, for
example 10−8 used in this example, are removed from the optimisation result. The final
size optimised truss is shown in Figure 5.4. The comparison between the optimisation
result using the optimisation algorithm developed and the analytical solution (5.30) is
given in Table 5.1. It can be seen that the numerical result agrees very well with the
analytical solution, and the cross-sectional areas of strut 1 and strut 2 converge to the
prescribed lower bound which are removed in the final optimised truss.
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(a) Initial four-strut truss (b) Size optimised truss

Fig. 5.4 Size optimisation of the four-strut truss.

Table 5.1 Size optimisation results of the four-strut truss.

compliance A1 A2 A3 A4

initial 0.48745 0.0025π 0.0025π 0.0025π 0.0025π

analytic 0.259597 0 0 0.0115564 0.0163432
numerical 0.259597 10−8 10−8 0.0115564 0.0163432

A planar cantilever truss The planar truss considered for the size optimisation is
depicted in Figure 5.5a. It is fixed on its left side and a unit external force is applied
at the right bottom corner as is shown. The dimension of the planar truss is 160 × 80.
The Young’s modulus of the material is set as E = 1000, and the struts are assumed
to have the same initial cross-sectional area with the diameter 2.

(a) Initial cantilever truss (b) Size optimised truss

Fig. 5.5 Size optimisation result of the cantilever truss.



98 Optimisation of lattice structures

The volume constraint is that the lattice volume remains the same as the volume of
the initial truss. Figure 5.6 gives the variation of cross-sectional areas of lattice struts
during the optimisation iterations, with colours indicating the relative cross-sectional
area values. The optimisation process converges after around 1600 iterations with the
termination criterion that the cross-sectional areas of lattice struts vary less than 10−4.

After removing lattice struts with very small cross-sectional areas (e.g. 10−3 used
in this example), the optimised truss is shown in Figure 5.5b. The compliance of
the optimised truss is 0.0203072, reduced by 71.2% compared with that of the initial
cantilever truss which is 0.0703943. The optimal cross-sectional areas of the final truss
are 63.045, 44.571, 44.571 and 31.516, respectively, and the corresponding diameters
are 4.48, 3.767, 3.767 and 3.167, respectively.

(a) Initial cross-sectional areas (b) 10 iterations

(c) 50 iterations (d) 200 iterations

(e) 500 iterations (f) Converged cross-sectional areas

Fig. 5.6 Cross-sectional areas of the cantilever truss at different iterations.

A spatial truss A spatial truss with octet truss cores as shown in Figure 5.7a is
considered. The dimension of the initial spatial truss is 4×2×2 comprised of four octet
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truss units. The truss is fixed at the four bottom corners and subjected to point loads
with the magnitude of 1 at the nodes shown in Figure 5.7b. The Young’s modulus of
the material is set as E = 1000, and the initial cross-sectional areas of lattice struts
are set to be equal with diameters 0.1.

(a) Initial spatial truss (b) Size optimised truss

Fig. 5.7 Size optimisation of the spatial truss.

The size optimised truss is shown in Figure 5.7b with the same lattice volume as
the initial truss. The minimum and maximum diameters of the struts in the optimised
truss are 0.0417 and 0.0932, respectively. The compliance of the optimised truss is
1.48842, reduced by 58.2% compared with that of the initial truss which is 3.5617. The
convergence of the size optimisation process is plotted in Figure 5.8.

compliance volume

initial 3.5617 1.42172

optimised 1.48842 1.42172
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Fig. 5.8 Covergence of the size optimisation of the spatial truss.
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5.2.2 Shape optimisation

Sensitivity analysis

The gradient of the compliance function (5.12) in shape optimisation can be written as

∂J(x)
∂xq

p
= −

∑
j

uT
j (x)∂kj(x)

∂xq
p

uj(x) , (5.31)

where p is the node index, q is the local index of the degree-of-freedom ({1, 2} for 2D
and {1, 2, 3} for 3D), j denotes the struts which the node p belongs to, uj and kj are
the displacement vector and the element stiffness matrix of the j-th strut respectively.

For truss structures, the element stiffness matrix can be written as

kj = ΦT
j DjΦj , (5.32)

where Dj = EjAj/Lj contains the material properties of the strut which share the
same symbols as in the size optimisation, Φj is a matrix indicating the orientation of
the strut, i.e.

Φj =
(
−tT

j tT
j

)
(5.33)

with tj a unit vector along the direction of the j-th strut, that is

tj = 1
Lj

(
x1

j,2 − x1
j,1 x2

j,2 − x2
j,1

)T
in 2D (5.34)

and
tj = 1

Lj

(
x1

j,2 − x1
j,1 x2

j,2 − x2
j,1 x3

j,2 − x3
j,1

)T
in 3D. (5.35)

Hence, the first derivatives of the element stiffness matrix (5.32) with respect to
nodal coordinates are computed with

∂kj

∂xq
p

=
∂ΦT

j

∂xq
p

DjΦj + ΦT
j

∂Dj

∂xq
p

Φj + ΦT
j Dj

∂Φj

∂xq
p

(5.36)

with

∂tT
j

∂xq
p

= 1
Lj

eT(I − tjt
T
j ) (5.37)

∂Φj

∂xq
p

=
(

− 1
Lj

eT(I − tjt
T
j ) 1

Lj

eT(I − tjt
T
j )
)

(5.38)
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∂Dj

∂xq
p

= −EjAj

L2
j

eTtj , (5.39)

where

e =



(−1 0)T, for x1
j,1

(0 − 1)T, for x2
j,1

(1 0)T, for x1
j,2

(0 1)T, for x2
j,2

in 2D (5.40)

and

e =



(−1 0 0)T, for x1
j,1

(0 − 1 0)T, for x2
j,1

(0 0 − 1)T, for x3
j,1

(1 0 0)T, for x1
j,2

(0 1 0)T, for x2
j,2

(0 0 1)T, for x3
j,2 .

in 3D . (5.41)

In addition, the sensitivity of the volume constraint is

∂(V (x) − V0)
∂xq

p
=
∑

j

Aj
∂Lj(x)

∂xq
p

=
∑

j

Aje
Ttj . (5.42)

An iterative size/shape optimisation scheme

For shape optimisation of the lattice structure modelled with truss elements as de-
scribed in the preceding section, the lattice structure must not be a mechanism in the
optimisation process, which unfortunately cannot be guaranteed when truss elements
are used. However, the detection of mechanism in the structure is not trivial, especially
for spatial lattice structures. In addition, it is not straightforward to cope with the
possible existence of mechanism in the structure. Alternatively, beam elements can be
used to model the lattice structure such that the requirement of being not a mechanism
can be removed. When the lattice structure is modelled with beam elements, the
lattice nodes can be merged if they are close enough in the space, which can be realised
in a straightforward way by removing elements with very small lengths, so that the
topology of the lattice structure is updated at the same time.

Furthermore, an iterative size and shape optimisation scheme can be performed
to the lattice structure when beam elements are used. The lattice structure is first
optimised for the beam element sizes with the nodal coordinates fixed, and the shape



102 Optimisation of lattice structures

optimisation is then performed on the size optimised structure. The size/shape
iterations continue until the optimised objective function value does not decrease.
During the shape optimisation process, the lattice nodes are merged if the distances
between them become zero, and the shape optimisation process continues with the
new topology of the lattice structure. After each shape optimisation process, the beam
elements with very small lengths are removed from the structure, i.e. coalescing the
end nodes of those elements. The subsequent size optimisation is performed on the
lattice structure with the updated topology.

The sensitivity analysis of the objective is the same as (5.23) and (5.31) with the
beam element stiffness matrix used in these expressions. Recall the element stiffness
matrix (5.21), the first derivatives of the element stiffness matrix with respect to the
nodal coordinates are computed with

∂kj

∂xq
p

=
∂ΛT

j

∂xq
p

kjΛj + ΛT
j

∂kj

∂xq
p
Λj + ΛT

j kj
∂Λj

∂xq
p

, (5.43)

where the first derivatives of the transformation matrix with respect to nodal coordinates
∂λj/∂xq

p are derived in Appendix D. The beam element stiffness matrix is a combination
of stiffness submatrices corresponding to stretch, bending and torsion respectively.
Therefore, the first derivatives of the beam element stiffness are also a combination of
the first derivatives of these three submatrices.

Examples

A two-strut truss The simplest truss with two struts as sketched in Figure 5.9 is
considered to verify the shape optimisation algorithm by comparing with the analytical
optimisation result. The aim of shape optimisation is to optimise the position of node
2 such that the compliance of the truss is minimised. The analytical solution of shape
optimisation of the two-strut truss is derived as follows.

Assume the coordinates of the two support nodes, node 0 and node 1, be (0, 0)
and (2s, 0), respectively, with s the half distance between the two support nodes. The
unknown coordinate (x, y) of node 2 is to be optimised. A unit force is applied at node
2 as shown in Figure 5.9. It is assumed that node 2 can move freely in the space. The
analytical expression of the compliance of the truss under the force is given by

J(x, y) =
(2s − x)2(x2 + y2)

√
x2 + y2 + x2

[
(2s − x)2 + y2

]√
(2s − x)2 + y2

EA
[
y(2s − x) + xy

]2 , (5.44)
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Fig. 5.9 A sketch of the two-strut truss.

where E and A are the Young’s modulus and the cross-sectional area of truss elements.
Figure 5.10a shows the isocontours of the compliance for different positions of node

2 varying in the domain {(x, y)|x ∈ [0, 2], y ∈ [0.5, 4]}, with s = 1, E = 2 and diameters
of the struts 0.1. The compliance along x = 1 is plotted in Figure 5.10b which indicates
that there exists a position along x = 1 corresponding to a local minimum of the
compliance.
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(a) Compliance w.r.t. positions of node 2
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(b) Compliance for node 2 moving along x = 1

Fig. 5.10 Analytical compliance of the truss with different positions of node 2.

If node 2 is restricted to move vertically along x = s, substituting x = s into the
compliance expression (5.44) yields

J(y) = 1
EA

(s2 + y2)
√

s2 + y2

2y2 , (5.45)

which can be easily proved that J(y) has a minimum at y =
√

2s with the corresponding
compliance Jmin = 3

√
3s/4EA.
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Fig. 5.11 Convergence of shape optimisation of the two-strut truss considering different
initial positions.

Table 5.2 Shape optimisation results of the two-strut truss.

compliance (Initial) yopt compliance (Optimised) #iterations
analytical -

√
2 82.6993 -

y0 = 0.5 177.941 1.41421 82.6993 12
y0 = 1 90.0316 1.41421 82.6993 7
y0 = 2 88.9703 1.41421 82.6993 7
y0 = 4 139.445 1.41421 82.6993 13

In order to verify the shape optimisation algorithm, the two-strut truss considered
for shape optimisation takes s = 1. Node 2 is restricted to move vertically along
x = 1. The analytical solution for the optimal position of node 2 is y =

√
2 and the

corresponding compliance is 82.6993 according to (5.45). Different initial positions
(1, y0) of node 2 are considered with y0 ∈ {0.5, 1, 2, 4}. The optimised results are
listed in Table 5.2. It can be seen from the optimisation results that the optimal
position of node 2 obtained with the shape optimisation algorithm is coincident with
the analytical solution, and the optimal position is the same considering different initial
positions, indicating that it is an optimum in its neighbourhood, which is the fact
also shown in Figure 5.10b. The convergence of the optimisation process considering
different initial positions of node 2 is plotted in Figure 5.11. It can be observed that it
takes fewer iterations if the initial position is closer to the optimal position.
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A planar truss A planar truss sketched as in Figure 5.12 is considered for the shape
optimisation. The truss is pinned at the two lower end nodes and subjected to nodal
forces with the magnitude of 0.1 applied at nodes on the top. The Young’s modulus
is set as E = 100, and the cross-sectional areas of struts are assumed to be the same
with diameters 0.1.

Fig. 5.12 A sketch of the planar truss.

The structural compliance of the initial planar truss as shown in Figure 5.13a is
12.6119 with the maximum displacement of 20.45. The lattice volume constraint is
considered such that the lattice volume remains the same as the initial volume, that is,
to minimise the compliance without increasing the material volume. In addition, the
length Lj of each strut is restricted to be 0.5L0

j ≤ Lj ≤ 2L0
j with L0

j the initial length
of the j-th strut. The length constraints are applied with the constraint aggregation
method using the KS approximation described in Section 5.1.3.

(a) Initial planar truss (b) Maximum displacement = 20.45

(c) Optimised planar truss (d) Maximum displacement = 1.79

Fig. 5.13 Shape optimisation result of the planar truss.

The shape optimised planar truss under these constraints is shown in Figure 5.13c
with the maximum displacement of 1.79. The optimised compliance is 1.23712, which
is reduced by 90.2% compared with that of the initial planar truss. The shape
optimisation iterations are plotted in Figure 5.14. The shape optimisation terminates
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after 47 iterations with the termination criterion that the relative change of nodal
coordinates is less than 10−6.

compliance volume

initial 12.6119 0.465618

optimised 1.23712 0.465618
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Fig. 5.14 Convergence of the shape optimisation process.

A cantilever lattice A cantilever lattice with the initial configuration as shown
in Figure 5.15a is in the domain [0 m, 1.5 m] × [0 m, 0.44 m]. The beam structure is
adapted from the topology optimisation result of a continuum structure [112], which
contains short beams and unsymmetrical features. A force with the magnitude of
1000 N is applied at the tip node on the right side. The cross-sectional areas of the
beams in the initial cantilever are assumed to be the same, and initial diameters are
30 mm. The Young’s modulus and the Poisson’s ratio of the material are 210 GPa and
0.3, respectively.

(a) Initial cantilever beam (b) 1st size optimisation (c) Final optimised cantilever

Fig. 5.15 Iterative size/shape optimisation of a cantilever beam.
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compliance volume (cm3)

initial 11.619 3936.34

optimised 6.71143 3936.34
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Fig. 5.16 Convergence of compliance in iterative size/shape optimisation process of the
cantilever beam.

The size optimisation is first applied to the initial cantilever beam with the vol-
ume constraint that the size optimised cantilever has the same volume as the initial
one. The size optimised cantilever is shown in Figure 5.15b with the compliance
8.74 N · cm, reduced by 24.8% compared with that of the initial cantilever beam which
is 11.619 N · cm. The subsequent shape and size optimisation iterations are performed
successively while keeping the same volume as the initial cantilever beam. In the shape
optimisation process, the nodes are confined to move within the original domain of the
continuum structure. The iterative optimisation process terminates when the optimised
compliances of two consecutive size/shape optimisation processes have a difference less
than a small tolerance, for example, 10−4 is used in this example.

The convergence of the iterative optimisation process is plotted in Figure 5.16.
The entire iterative optimisation process involves five size optimisation iterations and
four shape optimisation iterations. The compliance in the last optimisation process is
reduced from 6.71146 N · cm to 6.71143 N · cm, which has a difference less than 10−4,
leading to the termination of the iterative size/shape optimisation process. The final
optimised cantilever is shown in Figure 5.15c with the compliance 6.711 N · cm, reduced
by 42.24% compared with that of the initial cantilever beam. As a result, the short
beams in the original structure are removed automatically in the shape optimisation
iterations, and the overall layout of struts becomes symmetric in the final optimised
structure.
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5.3 Lattice topology optimisation

5.3.1 SIMP-like method

In the lattice size optimisation described in Section 5.2.1, the optimised lattice structure
can have struts with small cross-sectional areas which cannot be manufactured. One
way to deal with this issue is to set a minimum manufacturable size as the lower
bound for cross-sectional areas of struts. This approach is straightforward but with
the sacrifice of keeping redundant struts in the optimised structure which could have
been removed. Alternatively, the SIMP approach used in topology optimisation of
continuum structures is adapted for lattice structures in order to remove redundant
struts which are not critical to the structure. The idea of this proposed SIMP-like
lattice topology optimisation method is described as follows.

To begin with, the lattice element stiffness can be expressed equivalently as

ki = Ai

Amin
i

kmin
i = ρikmin

i , (5.46)

where kmin
i is a reference element stiffness with the prescribed minimum cross-sectional

area Amin
i , and the areal relative density ρi = Ai/Amin

i which is less than 1 when Ai

becomes smaller than Amin
i .

The SIMP-like approach considers the following modified lattice element stiffness,

k∗
i = ρ∗

i kmin
i (5.47)

with the modified ρ∗
i depending on the value of Ai. If Ai ≥ Amin

i , ρ∗
i = ρi; otherwise,

a scaling of ρi is considered. A similar exponential scaling function as used in the
SIMP method can be adopted, see Figure 1.6. The scaling function needs here however
to take into account that ρi > 1 is possible. Hence, the scaling function needs to
satisfy that the gradient ∂ρ∗

i /∂ρi at ρi = 1 is continuous so that in the gradient-based
optimisation algorithm the gradient is continuous throughout. An example of a cubic
Bézier scaling function satisfying gradient continuity at ρi = 1 is plotted in Figure 5.17.

The first derivative of the modified lattice element stiffness (5.47) with respect to
the cross-sectional area is now computed with

∂k∗
i

∂Ai

= ∂ρ∗
i

∂Ai

kmin
i = ∂ρ∗

i

∂ρi

∂ρi

∂Ai

kmin
i = ∂ρ∗

i

∂ρi

kmin
i

Amin
i

. (5.48)
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Fig. 5.17 A cubic Bézier scaling function

The gradient of the compliance objective function with the modified lattice element
stiffness becomes

∂J∗

∂Ai

= −uT
i (A)∂k∗

i (A)
∂Ai

ui(A) = −uT
i (A)∂ρ∗

i

∂ρi

kmin
i

Amin
i

ui(A) . (5.49)

5.3.2 Sensitivity filtering

As is known in topology optimisation of continuum structures, filtering techniques
are used to deal with the chequerboarding problem and other numerical instabilities,
including local minima and mesh dependence [61]. For the lattice topology optimisation
using the SIMP-like approach introduced as above, lattice struts with small cross-
sectional areas can be scattered throughout the optimised structure, which is not
desired for the final structure. In order to remove these scattered small struts, a
lattice-suitable sensitivity filtering based on lattice unit cells is proposed as follows.

After the gradients of all lattice struts have been obtained with (5.49), the average
filtered sensitivity of each lattice unit cell is computed with

∂J∗

∂Ae

=
∑

e we
∂J∗

∂Ae
/Le∑

e we/Le

, (5.50)

where e represent the lattice strut in a lattice unit cell, Le is the length of the lattice
strut, and we is weight given by a linearly decaying distance function which depends
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Fig. 5.18 A sketch of BCC lattice unit cell assembly with the red featuring characteristic
lattice struts and nodes.

on the centroids of the lattice strut and the lattice unit cell, i.e.

we(xc
e, xc

cell) = max (Rf − ||xc
e − xc

cell||, 0) , (5.51)

where xc
e and xc

cell denote the centroid of the lattice strut and the unit cell respectively,
and Rf is a user-defined filtering range which should be greater than the size of the
unit cell. The motivation of dividing by the lengths of lattice struts in the sensitivity
filtering (5.50) is that the term inside the summation can thus be interpreted as the
weighted strain energy density, i.e. the strain energy per unit volume.

Figure 5.18 shows a sketch of BCC lattice unit cells. The gradient of each strut in
a unit cell is replaced with the average sensitivity of the unit cell. For a lattice strut
which is shared by several unit cells, its gradient is computed as the average of the
sensitivities of the unit cells that contain the strut. The sensitivity filtering applied
in this way ensures that the characteristic lattice struts featuring the same unit cell
have the same gradient. A unit cell is removed from the lattice structure if the lattice
struts featuring the cell have small cross-sectional areas. As a result, the topology of
the lattice structure changes with the removal of unit cells.

5.4 Examples of lattice topology optimisation

5.4.1 Planar cantilever lattice

A planar cantilever with the dimension 20 × 10 as shown in Figure 5.19a is considered
for lattice topology optimisation. The cantilever lattice structure is comprised of square
unit cells with diagonals. A unit force is applied at the right bottom corner of the
cantilever. The left side of the cantilever is fixed. The Young’s modulus of the material
is chosen with E = 1000, and the total volume of the lattice structure is 10.

Two different unit cell sizes are considered for the planar cantilever lattice, 0.5 × 0.5
and 0.25×0.25, as shown in Figure 5.19a and Figure 5.20a, with uniform strut diameters
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0.08 and 0.057 respectively. Lattice topology optimisation is performed with the target
of achieving 30% of the original lattice volume. The initial cross-sectional areas of
the lattice structure are considered as uniform such that the total lattice volume is 3.
After removing lattice struts with small cross-sectional areas (e.g. less than 10−4 as
used in this example), the topology optimised cantilever lattice with the two unit cell
sizes are given in Figure 5.19b and Figure 5.20b, respectively, considering the lattice
volume ratio 0.3. The final optimised structure is obtained by recovering every unit
cell configuration featured by the remaining lattice struts, as shown in Figure 5.19c
and Figure 5.20c.

(a) Topology optimisation result
(30% of lattice volume)

(b) Extracting lattice struts (c) Recovering unit cells

Fig. 5.19 Lattice topology optimisation result with unit cell size 0.5 × 0.5.

(a) Topology optimisation result
(30% of lattice volume)

(b) Extracting lattice struts (c) Recovering unit cells

Fig. 5.20 Lattice topology optimisation result with unit cell size 0.25 × 0.25.

It can be observed from the lattice topology optimisation results that the optimised
lattice topologies are similar considering different sizes of unit cells. The compliance of
the topology optimised cantilever lattice with unit cell size 0.5 × 0.5 is 6.64, reduced
by 22.1% compared with the initial compliance 8.52 considering the lattice volume 0.3.
In contrast, the compliance of the topology optimised cantilever lattice with unit cell
size 0.25 × 0.25 is 6.93, reduced by 23.9% compared with the initial compliance 9.11
considering the lattice volume 0.3.
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5.4.2 MBB lattice

An MBB lattice structure comprised of square unit cells containing diagonals, as
depicted in Figure 5.21a, is considered for lattice topology optimisation. The MBB
beam is a benchmark example frequently used in the continuum topology optimisation.
The dimension of the MBB lattice structure is 60 × 10 with the unit cell size 1 × 1. The
lattice structure is simply-supported with a unit point load applied in the upper middle
of the structure. The Young’s modulus of the material is set as E = 1000 and the total
volume of the lattice structure is 50. The volume ratio 0.4 is considered for the lattice
topology optimisation. The cross-sectional areas of lattice struts are assumed to be
uniform in the initial MBB lattice structure. The strut diameters are 0.1465.

Figure 5.21b shows the topology optimisation result of the MBB lattice structure.
After removing lattice struts with small cross-sectional areas (e.g. less than 10−4 as
used in this example) and recovering unit cells based on the lattice struts remained
in the topology optimisation result, the final topology optimised lattice structure is
obtained as shown in Figure 5.21c. The compliance of the initial MBB lattice with
40% of the lattice volume is 5.17, and the compliance of the optimised lattice is 3.83,
which is reduced by 25.9%.

(a) Initial MBB lattice topology with unit cell size 1 × 1

(b) Lattice topology optimisation result
(40% of lattice volume)

(c) Final topology optimised MBB lattice

Fig. 5.21 Topology optimisation of the MBB lattice structure.
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5.4.3 3D cantilever lattice

A 3D cantilever lattice structure is considered for lattice topology optimisation. The
dimension of the cantilever lattice is 10 × 5 × 0.5. Two different unit cell sizes,
0.25 × 0.25 and 0.125 × 0.125 as depicted in Figure 5.22a and Figure 5.23a respectively,
are considered. The cantilever lattice is fixed on its left side, and a loading with the
magnitude of 100 is applied at the centre on the right side. The Young’s modulus
of the material is chosen with E = 107, and the total volume of the lattice is 10.
The lattice volume ratio 0.4 is considered for the lattice topology optimisation. The
cross-sectional areas of lattice struts are assumed to be uniform in the initial cantilever
lattice structure.

The lattice optimisation results are shown in Figure 5.22b and Figure 5.23b for the
two different unit cell sizes, respectively. It can be observed that the optimised lattice
structures have similar topologies with different unit cell sizes. The compliances of the
optimised cantilever lattice are 2.0 for the coarse lattice and 2.1 for the fine lattice.

(a) Initial lattice structure (b) Optimisation result (c) Final optimised lattice

Fig. 5.22 Lattice topology optimisation of the cantilever with unit cell size 0.25×0.25×
0.25 and uniform strut diameter 0.0485.

(a) Initial lattice structure (b) Optimisation result (c) Final optimised lattice

Fig. 5.23 Lattice topology optimisation of the cantilever with unit cell size 0.125 ×
0.125 × 0.125 and uniform strut diameter 0.0245.
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5.4.4 Lattice stool

A lattice stool can be obtained from lattice topology optimisation of a 3D lattice
cube as shown in Figure 5.24b. A similar example has been studied using continuum
topology optimisation in [19]. The dimension of the lattice cube is 10 × 10 × 10 with
the unit cell size 0.5 × 0.5 × 0.5. The cube is fixed at the four bottom corners and is
subjected to a pressure with the magnitude of 100 uniformly distributed on an area
of size 6 × 6 on the top, see Figure 5.24a. The total volume of the lattice is 400 with
uniform strut diameters 0.0986, and the lattice volume ratio of 0.25 is considered. The
Young’s modulus of the material is chosen with E = 107.

The cross-sectional areas of the lattice struts in the initial lattice cube with the
lattice volume ratio of 0.25 are assumed to be the same, as shown in Figure 5.24b.
Figure 5.24c shows the lattice topology optimisation result. The compliance of the
topology optimised lattice cube is 0.0327, reduced by 75.3% compared with that of
the initial lattice cube which is 0.132. The final lattice stool shown in Figure 5.24d is
extracted from the lattice topology result by removing lattice struts with cross-sectional
areas less than 10−4 and recovering unit cells from the remaining lattice struts.

(a) Sketch of the lattice cube

(b) Initial lattice cube (c) Optimisation result (d) Final lattice stool

Fig. 5.24 Lattice topology optimisation of a 3D lattice cube.
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5.4.5 Long-span lattice

Figure 5.25 shows lattice topology optimisation of a long-span lattice structure. The
dimension of the initial lattice structure is 60×10×10 with the unit cell size 0.5×0.5×0.5
as shown in Figure 5.25a. A uniform pressure loading with a total magnitude of 200
is applied on the top surface of the lattice structure. The lattice is fixed at the four
corners on the bottom. The total lattice volume is 400 with uniform strut diameters
0.04, and the lattice volume ratio 0.2 is considered for the lattice topology optimisation.
The cross-sectional areas of the struts in the initial lattice structure are assumed to be
the same. The Young’s modulus of the material is set as E = 107.

The topology optimisation result is shown in Figure 5.25b with the lattice volume
ratio of 0.2. The compliance of the topology optimised long-span lattice structure is
0.251, reduced by 43.5% compared with that of the initial long-span lattice structure
which is 0.444. The final topology optimised long-span lattice structure shown in
Figure 5.25c is extracted from the topology optimisation result by removing lattice
struts with cross-sectional areas less than 10−4 and recovering unit cells from the
remaining lattice strut.

(a) Initial long-span lattice structure

(b) Lattice topology optimisation result

(c) Final optimised long-span lattice structure

Fig. 5.25 Lattice topology optimisation of a 3D long-span lattice structure.





Chapter 6

Optimisation of lattice-skin
structures

In this chapter the optimisation of lattice-skin structures, including lattice topology
optimisation and shape optimisation, is presented. The SIMP-like regularisation and
filtering methods introduced in Section 5.3 are further applied in lattice topology
optimisation of lattice-skin structures (Section 6.1). For shape optimisation of lattice-
skin structures in Section 6.3, the free-form deformation technique is used to enable the
concurrent shape update of the thin-shell and the lattice, and the lattice-skin coupling
is also considered in shape optimisation. The sensitivity analysis is conducted in detail
in Section 6.1.1 and Section 6.3.2 for lattice topology and shape optimisation of the
lattice-skin structure, respectively.

6.1 Lattice-skin topology optimisation

6.1.1 Sensitivity analysis with SIMP-like method

In order to perform the sensitivity analysis of lattice-skin structures, the condensation of
dependent degrees of freedom is required for the discretised equilibrium equation system.
Recall the discretised equilibrium equation system (4.33), which can be expanded as
follows

Ks
ddus

d + Ks
dcus

c = fs
d , (6.1a)

Ks
cdus

d + Ks
ccus

c + GT
c λ = fs

c , (6.1b)
Kl

ddul
d + Kl

dcul
c = f l

d , (6.1c)
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Kl
cdul

d + Kl
ccul

c − HT
c λ = f l

c , (6.1d)
Gcus

c − Hcul
c = 0 . (6.1e)

The variables λ and ul
c can be eliminated from equations (6.1d) and (6.1e) using static

condensation (or computing the Schur complement) [113] with

λ =
(
HT

c

)−1 (
Kl

cdul
d + Kl

ccul
c − f l

c

)
, (6.2)

ul
c = H−1

c Gcus
c . (6.3)

Substituting these two equations to equations (6.1b) and (6.1c) yields

Ks
cdus

d +
(
Ks

cc + MTKl
ccM

)
us

c + MTKl
cdul

d = fs
c + MTf l

c , (6.4)

Kl
dcMus

c + Kl
ddul

d = f l
d , (6.5)

with
M = H−1

c Gc . (6.6)

Hence, the discretised equilibrium equation system (4.33) is condensed to


KS
dd KS

dc 0

KS
cd KS

cc + MTKL
ccM MTKL

cd

0 KL
dcM KL

dd




uS
d

uS
c

uL
d

 =


fS

d

fS
c + MTfL

c

fL
d

 , (6.7)

which can be expressed more compactly as

K̃ũ = f̃ (6.8)

with K̃, ũ and f̃ denoting the condensed stiffness matrix, the condensed displacement
vector and the condensed force vector, respectively.

The compliance of the lattice-skin structure can now be computed as

J = fTu = f̃Tũ , (6.9)

which leads to the gradient of the compliance with respect to cross-sectional areas of
struts, similar to (5.23),

∂J(A)
∂Aj

= −ũT ∂K̃
∂Aj

ũ . (6.10)
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Since only entries related to the lattice stiffness depend on the cross-sectional areas
of struts, (6.10) can be written as follows after substituting (6.3) and (6.7)

∂J(A)
∂Aj

= −
(
ul

c

)T ∂Kl
cc

∂Aj

ul
c −

(
ul

d

)T ∂Kl
dc

∂Aj

ul
c −

(
ul

c

)T ∂Kl
cd

∂Aj

ul
d −

(
ul

d

)T ∂Kl
dd

∂Aj

ul
d , (6.11)

which can be written in matrix form as

∂J(A)
∂Aj

= −
(
ul
)T ∂Kl

∂Aj

ul (6.12)

with

ul =
ul

d

ul
c

 (6.13)

and

Kl =
Kl

dd Kl
dc

Kl
cd Kl

cc

 . (6.14)

Considering (5.9), the gradient of compliance can be further written as

∂J(A)
∂Aj

= −
(
ul
)T ∂Kl

∂Aj

ul = −
(
ul
)T ∂Kl

j

∂Aj

ul = −
(
ul

j

)T ∂kl
j

∂Aj

ul
j (6.15)

with kj, uj and Aj denoting the element stiffness matrix, the displacement and the
cross-sectional area of the j-th strut.

6.2 Examples of lattice-skin topology optimisation

6.2.1 Doubly curved sandwich panel

The doubly curved sandwich panel analysed in Section 4.3.2 is further considered for
lattice topology optimisation. All the parameters of the original sandwich panel are
the same as before. The total volume of the sandwich panel is 150, and the ratio of
the lattice volume to the total material volume is chosen as 0.35 (that is, the lattice
volume in the original sandwich panel is 52.5 with uniform diameters 0.0534). The
initial lattice topology with BCC unit cells is shown in Figure 6.1a.

The lattice topology of the sandwich panel is optimised considering a lattice volume
reduction of 50%. The lattice topology optimisation results are shown in Figure 6.1c
and 6.1d. The compliance of the original sandwich panel is 3.75. If the cross-sectional
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(a) Original lattice structure (b) Compliance = 3.75

(c) Topology optimised lattice structure with
50% of lattice volume

(d) Compliance: initial = 4.92; optimised = 4.2
(50% of lattice volume)

Fig. 6.1 Analysis and topology optimisation of a lattice-skin structure.

areas of struts are reduced uniformly to achieve a 50% volume reduction, that is, the
lattice topology remains, the compliance becomes 4.92. In contrast, the compliance
of the lattice topology optimised sandwich panel is 4.2, which implies that the lattice
volume can be reduced dramatically without compromising the compliance greatly.

6.2.2 Lattice-infilled cantilever

In order to further examine the effect of lattice volume ratio on the topology optimised
lattice-skin structures, a thin-shell cantilever infilled with a BCC lattice is considered,
see Figure 6.2a. The dimension of the cantilever is 10 × 5 × 0.5, and the side length of
each lattice unit cell is 0.25. A load of the magnitude of 100 is applied at the centre of
its right-hand side. The Young’s modulus of thin-shell and lattice is chosen as E = 107.
The total volume of the lattice-skin cantilever is prescribed to be 40, and the lattice
volume is considered to be reduced by 50% for the lattice topology optimisation.

Figure 6.2 shows different lattice topology results considering different initial lattice
volume ratios, i.e. different shell thicknesses {0.001, 0.01, 0.1}. The corresponding
strut diameters are 0.088, 0.087 and 0.074, respectively. As the initial lattice volume
ratio decreases, the compliance of the corresponding optimised lattice-skin cantilever
is reduced as well, indicating again that the lattice structure may not be optimal
compared with the solid counterpart with respect to the compliance, as discussed
recently in the topology optimisation literature [104].
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(a) Initial lattice-skin cantilever with
unit cell size 0.25 × 0.25 × 0.25

(b) Shell thickness 0.001 with
Vlattice/Vshell = 328.87;

Compliance = 113.605

(c) Shell thickness 0.01 with
Vlattice/Vshell = 32;
Compliance = 82.462

(d) Shell thickness 0.1 with
Vlattice/Vshell = 2.3;
Compliance = 25.289

Fig. 6.2 Lattice topology results considering different lattice volume ratios.

In addition, it is observed that the optimised lattice topology changes as the
initial lattice volume ratio is varied. When the initial lattice volume ratio is relatively
large, a grid-like topology is obtained (Figure 6.2b), which is similar to the topology
optimisation result of the lattice structure shown in Figure 5.23b. However, the grid-like
topology disappears as the initial lattice volume ratio is reduced (Figure 6.2c and 6.2d).
This can be explained as follows: when the thickness of the thin-shell is very small,
the grid-like lattice structure provides the shear rigidity in the height direction; as the
thickness of the thin-shell increases, the thin-shell provides the shear rigidity instead,
leading to the lattice structure concentrating at the top and bottom regions of the
cantilever where the bending stresses are large.

6.3 Lattice-skin shape optimisation

The free-form deformation (FFD) technique provides a flexible tool to modify shapes
regardless of the underlying parameterisations, which is a reasonable option for shape
optimisation of lattice-skin structures since the thin-shell and the lattice have different
parameterisations in the lattice-skin structure. The definition of the free-form deforma-
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Fig. 6.3 Free-form deformation map of a torus.

tion is given in Section 6.3.1. The free-form deformation technique is first applied in
shape optimisation of thin-shells in order to verify the feasibility of this approach. The
sensitivity analysis of the lattice-skin structure using the free-form deformation is then
derived in Section 6.3.2, with the consideration of the lattice-skin coupling during the
shape optimisation.

6.3.1 Review of free-form deformation

The free-form deformation technique was first proposed by Sederberg et al. [65] for
geometric modelling. Given a physical domain Ω which contains the shapes to be
deformed, a control volume V is created with a grid of control points X̂ such that the
physical domain is embedded in the control volume. Each material point X in Ω has
corresponding parametric coordinates η in the parametric domain of the control volume.
The parametric coordinates η = (η1, η2, η3) are called the free-form coordinates in
the following context. The deformation of the physical domain is determined by the
control points in the control volume through the free-form coordinates η. Therefore,
the shapes in Ω can be deformed independent of their own parameterisations, which
gives great flexibility if the physical domain contains multiple shapes with different
parameterisations. Figure 6.3 illustrates the concept of the free-form deformation.

Let the control volume V = [v1
min, v1

max] × [v2
min, v2

max] × [v3
min, v3

max] ∈ R3 be defined
in terms of trivariate tensor-product Bernstein basis functions with a grid of (µ1 + 1) ×
(µ2 +1)×(µ3 +1) control points X̂. The control volume V is then of degree (µ1, µ2, µ3),
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and each control point X̂i with the multi-index i = {i1, i2, i3}(i1 = 1, · · · , µ1 + 1; i2 =
1, · · · , µ2 + 1; i3 = 1, · · · , µ3 + 1) is given by

X̂i = X̂1 + i1 − 1
µ1

v1 + i2 − 1
µ2

v2 + i3 − 1
µ3

v3 , (6.16)

where X̂1 is a reference point in the control volume V corresponding to i = {1, 1, 1},
and the basis vectors vi are defined as

vj = (vj
max − vj

min)ej (6.17)

with ej (j = 1, 2, 3) the standard basis for the Euclidean space in the Cartesian
coordinate system.

Any material point X in the reference physical domain Ω embedded in the control
volume V is then given by

X = X̂1 + η1v1 + η2v2 + η3v3 , (6.18)

where the free-form coordinates η1, η2, η3 ∈ [0, 1] are determined with

ηj = (X − X̂1) · vj . (6.19)

The connection between the physical domain Ω and the control volume V is achieved
through the free-form coordinates η with

xffd(x̂, η) =
µ∑
i

Bµ
i (η)x̂i =

µ1+1∑
i1=1

µ2+1∑
i2=1

µ3+1∑
i3=1

Bµ1
i1 (η1)Bµ2

i2 (η2)Bµ3
i3 (η3)x̂i (6.20)

with Bernstein polynomials

Bµ
i (ξ) =

(
µ

i − 1

)
ξi−1(1 − ξ)µ−i+1 . (6.21)

where ξ ∈ [0, 1]. The deformed control points are

x̂i = X̂i + δ̂i (6.22)

considering the deformation δ̂i of the control volume V .
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6.3.2 Sensitivity analysis with free-form deformation

In shape optimisation using the free-form deformation technique, the control points x̂

of the control volume V of the FFD are the design variables, and the embedded shape
is updated accordingly with the optimised control points x̂∗. For the lattice shape in
the lattice-skin structure, the lattice nodes which are not coupled with the thin-shell
are updated with the optimised control points of the FFD, and the coupled lattice
nodes are updated in the way such that they remain coupled with the thin-shell at the
same parameters θ.

Sensitivity analysis of thin-shells

The sensitivity of the compliance with respect to the control points x̂i of the free-form
deformation reads

∂J(xs)
∂x̂i

=
∑

j

∂J(xs)
∂xs

j(η)
∂xs

j(η)
∂x̂i

, (6.23)

where xs
j denote thin-shell nodes that are influenced by the control point x̂i of the FFD

control volume. The partial derivatives of the compliance with respect to the nodal
coordinates of the thin-shell are given by, according to (5.31) derived in Chapter 5,

∂J(xs)
∂xs

j

= −
∑

e

ueT(xs)∂ke(xs)
∂xs

j

ue(xs) (6.24)

with ke the element stiffness matrix of the thin-shell, ue the nodal displacement vector
of the element.

The element stiffness matrix of the thin-shell (4.21) as derived in Chapter 4 is
repeated here for convenience,

ke
IJ =

∫
Ωe

[
Et

1 − ν2 MT
I HMJ + Et3

12(1 − ν2)BT
I HBJ

]
dΩe . (6.25)

The first derivatives of the element stiffness matrix (6.25) with respect to the nodal
coordinates are computed with
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(6.26)
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where the partial derivatives of the mid-surface area with respect to the coordinates of
thin-shell nodes are computed with

∂A(xs)
∂xs

j

=
∑

e

∫
Ωe

∂dΩe

∂xs
j

=
∑

e

∫
Ω̄e

∂|J |
∂xs

j

dΩ̄e (6.27)

with the Jacobian |J | = |A1 × A2| and its partial derivatives given in Appendix B.1.
In addition, the second term of the partial derivative in (6.23) is computed with,

according to (6.20),

∂xs
j(η)

∂x̂i

= Bµ
i (η) = Bµ1

i1 (η1)Bµ2
i2 (η2)Bµ3

i3 (η3) . (6.28)

When the mid-surface area is considered as a constraint, the sensitivity of the
mid-surface area with respect to the control points x̂i of the free-form deformation
in (6.26) is given by
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=
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where the area of the mid-surface A(xs) is computed with

A(xs) =
∑

e

∫
Ω̄e

|J | dΩ̄e (6.30)

with Ω̄e the parametric domain of the thin-shell element and |J | the Jacobian of the
mid-surface parameterisation.

Sensitivity analysis of lattice-skin coupling

From the condensed equilibrium equation of the lattice-skin structure (6.7), the sensi-
tivity of the compliance with respect to the control points x̂i of the FFD is computed
with
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ũ , (6.31)

which yields the following equation after expansion,
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(6.32)
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The matrix form of (6.32) is expressed as
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∂x̂i

us −
(
ul
)T ∂Kl

∂x̂i

ul (6.33)

with

us =
us

d

us
c

 , ul =
ul

d

ul
c

 (6.34)

and

Ks =
Ks

dd Ks
dc

Ks
cd Ks

cc

 , Kl =
Kl

dd Kl
dc

Kl
cd Kl

cc

 . (6.35)

The expression (6.33) can be further written as follows, according to (5.31),

∂J(xs, xl)
∂x̂i

= −
∑
es

(ues)T ∂kes

∂x̂i

ues −
∑
el

(uel)T ∂kel

∂x̂i

uel , (6.36)

where es and el denote the thin-shell element and the lattice element respectively; kes

and kel denote the element stiffness matrix of the thin-shell and the lattice; ues and uel

denote the element displacement vector of the thin-shell and the lattice.
The partial derivatives of the element stiffness matrix of the thin-shell in (6.36) are

given by
∂kes(xs)

∂x̂i

=
∑

j

∂kes(xs)
∂xs

j(η)
∂xs

j(η)
∂x̂i

(6.37)

which has been derived in Section 6.3.2.
For the lattice structure, non-coupled lattice nodes are updated according to the

control points of the FFD control volume, and the coupled lattice nodes are moved
with the updated thin-shell surface to couple at the same parameters. Hence, the
second term on the right-hand side of (6.36) is expressed as

∑
el

(uel)T ∂kel

∂x̂i

uel =
∑
ec

(uec)T ∂kec

∂x̂i

uec +
∑
ed

(ued)T ∂ked

∂x̂i

ued , (6.38)

where ec denotes lattice elements containing coupling lattice nodes, and ed denotes
lattice elements without coupling lattice nodes; the first derivatives of lattice element
stiffness kec and ked are computed with, respectively,

∂kec

∂x̂i

=
∑

j

∑
k

∂kec(xl)
∂xl

j

∂xl
j

∂xs
k

∂xs
k

∂x̂i

(6.39)
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and
∂ked

∂x̂i

=
∑

j

∂ked(xl)
∂xl

j

∂xl
j

∂x̂i

. (6.40)

The derivatives of coordinates of coupled lattice nodes with respect to coordinates
of thin-shell nodes are computed with

∂xl
j(θ1, θ2)
∂xs

k

= Nk(θ1, θ2) , (6.41)

where Nk(θ1, θ2) is the shape function value corresponding to the k-th thin-shell node
evaluated at the parameters (θ1, θ2) where the j-th lattice node is coupled with the
thin-shell.

When the total volume of the lattice-skin structure is considered as a constraint,
the sensitivity of the volume of the lattice-skin structure is computed with

∂V (xs, xl)
∂x̂i

= ∂V s(xs)
∂x̂i

+ ∂V l(xl)
∂x̂i

= ∂As(xs)
∂x̂i

ts +
∑
el

Ael
∂Lel(xl)

∂x̂i

, (6.42)

where ts is the thickness of the thin-shell, Ael is the cross-sectional area of a strut, and
Lel is the length of the strut. The partial derivatives of the thin-shell area are given
by (6.29), and the partial derivatives of the strut length Lel are computed with

∂Lel(xl)
∂x̂i

=



∑
j

∑
k

∂Lel(xl)
∂xl

j

∂xl
j

∂xs
k

∂xs
k

∂x̂i

, if any coupling nodes are contained;

∑
j

∂Lel(xl)
∂xl

j

∂xl
j

∂x̂i

, otherwise.

(6.43)

6.4 Examples of lattice-skin shape optimisation

6.4.1 Square thin-shell

A square thin-shell of the dimension 20 m×20 m under a uniform pressure of 100 kN/m2

is considered, as shown in Figure 6.4a. The Young’s modulus E = 70 GPa and the
Poisson’s ratio ν = 0.35. The thickness of the thin-shell is 0.2 m. The displacement
of the square thin-shell is shown in Figure 6.4b with the maximum displacement
of 72.6 mm at the middle points of the four edges, and the structural compliance
is 1666.24 kN · m. For shape optimisation of the thin-shell, the mid-surface area is
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prescribed, that is, the area of the optimised shape should not be 1.2 times larger than
the initial mid-surface area.

Figure 6.4c shows the optimised shape when the coordinates of shell nodes are
taken directly as design variables in shape optimisation. The optimised structural
compliance is 173.477 kN · m, reduced by 89.6 % compared with the initial square
thin-shell. However, the optimised shape is not reasonable for practical use as the
shape presents many irregular ripples. As a matter of fact, taking nodal coordinates in
a continuum structure as design variables is not a good practice in general since the
shape would be severely distorted and the optimisation process would be stuck in local
optimal [64].

(a) Control mesh (b) Maximum disp. = 72.6 mm (c) Optimised shape

Fig. 6.4 Shell node based shape optimisation of the square thin-shell.

In contrast, the optimised shape obtained with the free-form deformation method
is promising, as shown in Figure 6.5a. The degrees of the free-form deformation control
volume used for the optimisation is 5 × 5 × 2. The optimised structural compliance is
164.015 kN · m, reduced by 90.2% compared with the initial square thin-shell and also
less than the compliance obtained by optimising the nodal coordinates directly. The
limit surface of the optimised shell by the free-form deformation is shown in Figure 6.5b,
which is apparently more reasonable for practical use compared with the shape shown
in Figure 6.4c.

(a) FFD optimised shape (b) Limit optimised surface (c) Maximum disp. = 4.98 mm

Fig. 6.5 Shape optimisation of the square thin-shell with FFD.
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The influence of the number of degrees of the FFD control volume has been
investigated as shown in Figure 6.6. The shape cannot be fully optimised with a small
number of degrees of the FFD control volume (Figure 6.6a) as the real optimised
shape would be highly curved and using fewer number of degrees of the FFD control
volume cannot reveal the information of curvature completely. In addition, as the
degrees of the FFD control volume increase, the optimised shape varies slightly and
the compliance is reduced with a negligible amount (see Figure 6.6b and Figure 6.6c),
while it takes more iterations to converge. Therefore, it is sensible to select a moderate
number of degrees of the FFD control volume to obtain a reasonable optimisation
result. In this example, 5 × 5 × 2 is an appropriate choice for the degrees of the FFD
control volume.

(a) FFD: 3 × 3 × 2
Comp. = 165.59 kN · m

(b) FFD: 5 × 5 × 2
Comp. = 164.015 kN · m

(c) FFD: 10 × 10 × 2
Comp. = 163.914 kN · m

Fig. 6.6 Optimised shapes and compliances using different number of degrees for the
FFD control volume.

6.4.2 Parabolic thin-shell

Next the parabolic thin-shell shown in Figure 6.7a with the rectangular plan form
12 m × 6 m and the height 3 m is considered. The Young’s modulus and the Poisson’s
ratio are chosen with E = 30 GPa and ν = 0.2 respectively. The uniform pressure
loading is 5 kN/m2. The parabolic thin-shell is simply-supported along the two short
edges.

An optimised shape of the parabolic thin-shell considering the same conditions is
given in [114]. In order to obtain that shape, the thin-shell is constrained to be doubly
symmetric to preserve the parabolic shape in the optimisation process. In addition,
the maximum height is restricted not to exceed 6 m. With these geometry constraints,
the final optimised parabolic shape obtained in [114] has the height 6 m at the two
ends and the height 3.12 m at the centre.

In order to compare with the optimisation result given by [114], the control volume
of the free-form deformation of the shell is created such that the parabolic shape can be
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(a) The parabolic shell (b) FFD control volume
Comp. = 2.59 kN · m

(c) Shape optimised shell
Comp. = 0.183 kN · m

Fig. 6.7 Shape optimisation of the parabolic shell using a FFD control volume of
degrees 2 × 1 × 1.

best approximated. Therefore, the degrees of the FFD control volume are considered
as 2 × 1 × 1, that is, linear in directions of the short span and the height and quadratic
in the long span direction, as shown in Figure 6.7b. The structural compliance of
the initial parabolic thin-shell is 2.59 kN · m, and the compliance of the optimised
thin-shell is 0.183 kN · m, which is reduced by 92.9%. The optimised shape is shown in
Figure 6.7c and has the height 6 m at the two ends and 3 m at the centre, which agrees
very well with the optimisation result given by [114]. Figure 6.8 shows the compliance
reduction during the optimisation iterations.

As investigated in [20] where the multiresolution optimisation scheme is applied,
the optimised shape of the parabolic shell depends on the the initial meshes and the
resolutions used. Hence, three different FFD control volumes with varying resolutions
(i.e. the degrees of the control volume) have been chosen in order to investigate their
influence on shape optimisation. The thin-shell is optimised with the constraint that
the mid-surface area is the same for the three different optimised shapes, which is
the area of the optimised parabolic shape obtained previously, see Figure 6.7c. The
optimised shapes and compliances with the three different degrees of the FFD are
shown in Figure 6.9. As can be seen from the results, the parabolic shape obtained
with the FFD degree 2 × 1 × 1 is actually not the optimal due to the constraint of
keeping the approximately parabolic shape. The compliance of the optimised shape
is reduced as the degree of FFD increases, while it takes a longer time to converge
for higher degrees of FFD. In addition, more details of the surface curvature can be
revealed in the optimised shape when higher degrees of the free-form deformation are
used since the shape can deform with more degrees of freedom.
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Fig. 6.8 Convergence of the compliance of the parabolic shell.

(a) FFD: 2 × 1 × 1
Comp. = 0.183 kN · m

(b) FFD: 4 × 2 × 2
Comp. = 0.0782 kN · m

(c) FFD: 8 × 4 × 4
Comp. = 0.0676 kN · m

Fig. 6.9 Optimised shapes and compliances using different degrees of FFD control
volumes.

6.4.3 Doubly curved sandwich panel

The doubly curved sandwich panel with a square plan of size 20 m × 20 m is shown
in Figure 6.10a. The distance between the top and bottom thin-shells is 1.5 m. The
total volume of the sandwich panel is 150 m3 with the lattice volume ratio of 0.35.
Specifically, the shell thickness is about 0.12 m and the strut diameter is about 0.053 m.
Each lattice unit cell has a side length of 0.5 m. The Young’s modulus and the Poisson’s
ratio of the material are E = 70 GPa and ν = 0.35, respectively. The corners of the
sandwich panel are simply-supported, and the upper thin-shell of the panel is subjected
to a uniform pressure loading of 100 kN/m2.
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(a) The sandwich panel (b) Compliance = 931.3 kN · m

(c) Shape optimised sandwich panel (d) Compliance = 183.45 kN · m

Fig. 6.10 Shape optimisation of the sandwich panel with FFD.
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Fig. 6.11 Convergence of the compliance of the doubly curved sandwich panel.

The structural compliance of the initial sandwich panel is 931.3 kN · m (Figure 6.10b).
Shape optimisation was performed with a FFD control volume containing 6×6×3 nodes.
A volume constraint is considered such that the total material volume, proportional to
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(a) Lattice volume ratio 0.15:
initial 830.279 kN · m;
optimised 303.945 kN · m

(b) Lattice volume ratio 0.35:
initial 931.3 kN · m;
optimised 183.45 kN · m

(c) Lattice volume ratio 0.7:
initial 1381.02 kN · m;
optimised 241.15 kN · m

Fig. 6.12 Shape optimisation considering different lattice volume ratios.

the mass, of the shape optimised panel is the same as the original sandwich panel. In
the optimisation process, the shell thickness and the strut diameters remain constant.
The shape optimised sandwich panel is shown in Figure 6.10c. The compliance of
the shape optimised panel is 183.45 kN · m, reduced by 80.3% compared with the
compliance of the original panel while maintaining the same total material volume.
The convergence of the optimisation iterations is shown in Figure 6.11.

The example in Chapter 4 indicates that the lattice volume ratio has an influence
on the structural compliance. In order to investigate the effect of the lattice volume
ratio on the shape optimisation, three different lattice volume ratios, 0.15, 0.35 and 0.7,
are considered with uniform diameters 0.035 m, 0.053 m and 0.075 m, respectively. The
shape optimisation results are shown in Figure 6.12. The total material volume of the
sandwich panel is the same in the three cases. It can be observed that the height of
the sandwich panel becomes higher with a larger lattice volume ratio. This is because
when the lattice volume ratio is large there would be more lattice volume reduced and
compensated with the increase of shell volume. When the lattice volume ratio is small
(for example 0.15 as considered in Figure 6.12a), the compliance of the shape optimised
panel is larger than the other two cases. The reason can be that as the lattice volume
decreases in the optimised shape the coupling effect between the top and the bottom
shells is weakened, leading to a reduced overall stiffness.
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6.4.4 Pentagon roof

A pentagon roof is studied to show the feasibility of combining shape and lattice
topology optimisation to design architectural lattice-skin structures. The radius of the
circumcircle of the regular pentagon is 10 m. The Young’s modulus and the Poisson’s
ratio are E = 70 GPa and ν = 0.35. The magnitude of the uniform pressure loading
is 100 kN/m2. The thickness of the thin-shell is 0.2 m, and the lattice struts have the
same initial cross-sectional areas with diameters 0.1 m. Each lattice unit cell has a side
length of 0.5 m.

The lattice structure was first designed for a plate with a regular pentagon shape
as shown in Figure 6.13a. The displacements of the uniformly loaded plate are used
to generate the initial roof geometry shown in Figure 6.13b. For the roof structure
obtained in this way, the lattice is guaranteed to be conformal to the shell shape since
the deformation obtained with the finite element analysis ensures the coupling of lattice
nodes and the thin-shell. This approach resembles the hanging chain or cloth models
used in form-finding in architectural engineering, which, however, may not yield the
optimal shape. Therefore, shape optimisation and lattice topology optimisation have
been performed to obtain an optimised pentagon lattice shell roof.

(a) Pentagon plate (b) Initial pentagon roof
Comp. = 55.12 kN · m

(c) Shape optimised pentagon roof
Comp. = 35.56 kN · m

(d) Displacement under uniform loading

Fig. 6.13 Shape optimisation of the pentagon roof.
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(a) Initial lattice structure
(65% of lattice volume)

(b) Topology optimised lattice
(65% of lattice volume)

(c) Deformation under uniform loading

Fig. 6.14 Lattice topology optimisation of the pentagon roof.

The structural compliance of the initial pentagon roof shown in Figure 6.13b is
55.12 kN · m under the prescribed pressure loading. Figure 6.13c shows the shape
optimised pentagon roof structure. A volume constraint is considered in the shape
optimisation, that is, the optimised roof has the same total volume as the initial
roof. The compliance of this optimised pentagon roof is 35.56 kN · m, reduced by
35.5% compared with the initial compliance. The displacement of the shape optimised
pentagon roof under the uniform pressure loading is shown in Figure 6.13d.

For the shape optimised lattice shell roof, there are some redundant lattice struts
which do not contribute much to the stiffness of the structure and could have been
removed. Therefore, lattice topology optimisation was performed subsequently on
the shape optimised pentagon roof for the sake of reducing the lattice volume while
not compromising the structural stiffness greatly. Another benefit of lattice topology
optimisation lies in the architectural aspect since the resulting openings in the lattice
structure allow a better lighting condition for the indoor environment.

The aim of lattice topology optimisation considered is to reduce the lattice volume
by 35% compared with the lattice volume in the shape optimised pentagon roof
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Fig. 6.15 Convergence of shape and lattice topology optimisation.

(Figure 6.13c). The initial lattice structure used for lattice topology optimisation
consists of struts with cross-sectional areas reduced uniformly to achieve the 35%
reduction of lattice volume, as shown in Figure 6.14a, while the lattice topology
remains the same as the shape optimised roof. The structural compliance of this
pentagon roof with 65% of lattice material volume is 38.27 kN · m, greater than that of
the shape optimised roof as expected since the lattice volume is reduced.

The lattice topology result is shown in Figure 6.14b. Figure 6.14c shows the
displacement of the optimised lattice structure under the uniform loading. The
compliance of the lattice optimised roof is 36.8 kN · m, which means that the lattice
volume can be reduced greatly by 35% with the compliance increased only by 3.5%
compared with the shape optimised roof. It indicates that it is beneficial to remove
some lattice struts without reducing the stiffness significantly.

The optimisation iterations are plotted in Figure 6.15. The shape optimisation
converges after 48 iterations. The compliance jumps from 35.56 kN · m to 38.27 kN · m
at the beginning of the lattice topology optimisation due to the reduction of lattice
volume. The lattice topology optimisation converges after 20 iterations.



Chapter 7

Summary and future research

7.1 Summary

This dissertation proposes a new and systematic approach for the geometric design,
structural analysis and optimisation of lattice-skin structures in the isogeometric
framework. The performed research and the achievements of this thesis are as follows.

Lattice-skin geometry generation In order to generate lattice-skin structures
in which the lattice is represented with a set of line segments and the thin-shell is
represented with a subdivision surface, a new line/subdivision surface intersection
algorithm is proposed in Chapter 3 to compute intersection points, including their
physical coordinates as well as parametric coordinates.

The intersection algorithm consists of two sub-steps: intersection detection and
intersection computation. A bounding volume tree of k-dops is constructed first for
the subdivision surface in the intersection detection process, which aims to accelerate
the process to detect the potential intersecting patches in the subdivision surface.
The timing experiment with the Stanford bunny in Section 3.4 demonstrates clearly
that k-dops are much more efficient than conventional bounding boxes for detecting
potential intersections between the line and the subdivision surface when the lattice
is not aligned with coordinate axes. After the subdivision patches that are possibly
intersected with the line are detected, the patches are converted to corresponding
Bézier representations.

The intersection computation between a line and a Bézier surface is performed with
the implicit matrix representation of the Bézier surface, which has been described in
detail in Section 3.2.3. Unlike the marching method and the divide-and-conquer method,
the intersection computation with the implicit matrix representations is non-iterative.
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In addition, the implicit matrix representations give the exact implicitisation of spline
surfaces by evaluating the rank of the implicit matrix, which means that the accuracy
of intersection points obtained is independent of the tolerance as used in the marching
method or the divide-and-conquer method. The implicit matrix representations are
also more general than traditional algebraic geometry methods for the implicitisation
of spline surfaces. The Stanford bunny example given in Section 3.4 shows that the
intersection computation with the implicit M-Reps achieves high accuracy with a
moderate computational cost compared with the divide-and-conquer method.

Isogeometric analysis of lattice-skin structures Subdivision basis functions are
used in the finite element analysis of the thin-shell such that the geometry model and
the finite element model of the thin-shell are the same. The struts in the lattice-skin
structure are modelled with truss elements. The lattice-skin coupling is considered
with Lagrange multipliers, and the finite element discretisation of the equilibrium
equations of the lattice-skin is also derived in Section 4.2. The parametric coordinates
of coupled lattice nodes are obtained directly from the intersection computation with
the implicit M-Rep. Therefore, the structural analysis of the lattice-skin structure
is fully integrated with its geometry generation. The implementation of the finite
element analysis of the lattice-skin structure is verified with the analysis of a sandwich
plate, which shows that the numerical result agrees well with the analytical result.
Lattice-skin structures with free-form surfaces are also generated and computed in the
same framework as demonstrated in Section 4.3.

Lattice topology optimisation A new lattice topology optimisation method is
proposed in Chapter 5 and it is further applied to the lattice-skin topology optimisation
(see Section 6.1). The usual SIMP method used for continua is generalised to lattice
structure applications. Several common benchmark examples from continuum topology
optimisation are studied with the proposed topology optimisation method and the
optimisation results are highly convincing as demonstrated in Chapter 5. The sensitivity
analysis of the lattice-skin structure is derived in Section 6.1.1 for lattice topology
optimisation which is based on lattice unit cells. The characteristic feature of each unit
cell is a necessary information required in the method proposed, and it is preserved
from the process of generating the lattice-skin geometry.

Shape optimisation with free-form deformation Shape optimisation using the
free-form deformation technique is explored for thin-shells and lattice-skin structures
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in Chapter 6. The examples of shape optimisation of thin-shells demonstrate the
feasibility of applying the free-form deformation method in shape optimisation. The
shape sensitivity analysis of the lattice-skin structure is derived in Section 6.3.2,
which involves the sensitivity analysis of the thin-shell and the lattice as well as the
consideration of lattice-skin coupling. The shape optimisation algorithm of the lattice-
skin structure proposed ensures that the lattice and the thin-shell remain coupled after
updating both geometries during the optimisation process. Several examples of shape
optimisation of lattice-skin structures are given in Section 6.4.

In summary, the specific contributions of this thesis are as follows:

• A novel isogeometric framework for integrated geometric design, analysis and
optimisation is developed. The geometric design of the lattice and the skin are
considered simultaneously so that all necessary information for structural analysis
and optimisation, for example the parametric coordinates of the coupled lattice
nodes on the thin-shell surface, is available throughout the design process. The
integrated geometric design-analysis-optimisation framework ensures that there is
no information loss in the whole design process and this process can be performed
iteratively.

• A novel line/surface intersection algorithm combining a k-dop bounding volume
tree and implicit matrix representations of spline surfaces is proposed [115], which
enables to compute the intersection between a line and a spline surface in an
one-shot manner without applying successive refinements or Newton-Raphson
iterations. The efficiency and accuracy of the intersection computation are also
demonstrated.

• A new lattice topology optimisation with SIMP-like regularisation and sensitivity
filtering is proposed so that the SIMP method for topology optimisation of
continua is generalised to lattice applications, and several benchmark examples
from topology optimisation of continuum structures are used to demonstrate the
feasibility of the proposed optimisation method.

• The free-form deformation technique has been applied in shape optimisation of
lattice-skin structures, which enables the concurrent shape update of the lattice
and the thin-shell while maintaining the structural coupling of the lattice and
the skin.
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7.2 Future research

Some possible improvements and extensions to the current research are listed as follows.

Lattice optimisation with constraints in additive manufacturing Though the
additive manufacturing can fabricate objects with any complex geometries in theory,
the quality of manufacturing can vary significantly depending on the geometry design,
especially when overhanging surfaces exist in the geometry. The issue with overhanging
surfaces has been reported in some research [116]. While topology optimisation of
continuum structures considering constraints in additive manufacturing has been studied
extensively [117–119], there are few reports on topology optimisation of lattice structures
considering additive manufacturing constraints. A possible extension of the current
research on lattice topology optimisation would be to incorporate shape optimisation
of lattice structures to consider overhanging struts in the additive manufacturing.

Analysis of lattice-skin structures considering additive manufacturing pro-
cess The fabrication factors in the additive manufacturing process can influence
the mechanical properties of lattice materials, for example the residual thermal
stress [120, 121]. To this end, the material model for the lattice structure may
need some modifications to consider the influence. Alternatively, the manufacturing
process can be analysed with the thermal effect considered.

Direct implicitisation of subdivision surfaces At present the subdivision patches
are converted to corresponding Bézier patches, and the implicit matrix representations
of Bézier patches are then obtained. However, for the subdivision patch containing
extraordinary vertices, it cannot be represented exactly by a finite number of Bézier
patches. It would be advantageous if an implicit matrix representation can be de-
rived directly for a subdivision patch without converting to its Bézier representation.
It would be interesting to investigate the possibility of deriving the implicit matrix
representations near EVs.

Conformal lattice generation The conformal lattice structure is generated by
moving internal lattice nodes to the nearest intersection points as described in Sec-
tion 3.3. This process can be improved by projecting internal lattice nodes to the
nearest point on the surface which is not necessarily the intersection point with the
lattice line. This can be explored by computing the Euclidean distance between the
point and the surface through the implicit matrix representation.
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Lattice-skin optimisation with nonlinearity The assumption of small displace-
ment is adopted in the present research for both structural analysis and optimisation.
However, optimisation with nonlinearity is worth further exploration as the nonlinearity
is common in practice, considering the large deformation and the nonlinear constitutive
model of material. The issue of nonliearity can arise in the lattice-skin structure in cases
where, for example, the buckling of the thin-shell between coupling lattice joints or the
buckling of lattice struts in compressive stress. In order to consider the geometrical
nonlinearity in the optimisation of lattice-skin structures, an iterative process should
be included in order to obtain the equilibrium, as opposed to the linear case where the
equilibrium corresponds to a linear system of equations. In addition, the sensitivity
analysis is much more involved considering material nonlinearity since in general the
tangent stiffness of the material is used in nonlinear analysis [122, 123].





Appendix A

Basis of box splines

A.1 Definition

Box splines represent a more general class of splines, which includes tensor-product
B-splines as special cases and other splines that are not tensor-product, for example
three-direction quartic box splines.

A box spline basis function can be defined with repeated convolution starting from
a pulse function. For box spline curves, the pulse function defined in the direction
vector v1 = (1, 0) is

Nv1(θ) =


1, if 0 < θ < 1 ,

1
2 , if θ = 0 or θ = 1 ,

0, otherwise .

(A.1)

For box spline surfaces, the pulse function is defined in terms of two direction
vectors v2 = {ξ1, ξ2} given by, according to [75]

Nv2(θ) =



1, if θ = c1ξ1 + c2ξ2 (0 < c1, c2 < 1) ;
1
2 , if θ = c1ξ1 + c2ξ2 (ci = 0 or 1 for exactly one index) ;
1
4 , if θ = c1ξ1 + c2ξ2 (ci = 0 or 1 for both indices) ;
0, otherwise ,

(A.2)

where ξ1 = (1, 0) and ξ2 = (0, 1), c1 and c2 are coefficients in the two directions ξ1 and
ξ2 respectively.
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Box splines with higher orders can be generated by convolution of the pulse function
with several additional direction vectors ξi (i ≥ 3) as follows,

Nvi
(θ) = Nvi−1∪ξi

(θ) =
∫ 1

0
Nvi−1(θ − tξi) dt . (A.3)

A.2 Generation of B-splines

B-splines are essentially special cases of box splines. For example, the linear, quadratic
and cubic B-spline curves can be derived with the convolution in the following directions
respectively,

v2 =
1 1

0 0

 , v3 =
1 1 1

0 0 0

 , v4 =
1 1 1 1

0 0 0 0

 . (A.4)

A three-direction quartic box spline surface can be obtained by convolving along
the directions [33]

v6 =
1 0 1 1 0 1

0 1 1 0 1 1

 , (A.5)

and a bi-cubic B-spline surface can be derived by convolving along the directions

v8 =
1 0 1 1 1 0 0 0

0 1 0 0 0 1 1 1

 . (A.6)

A.3 Conversion to quartic Bézier basis

A regular Loop subdivision patch contains 12 control points, involving 12 corresponding
quartic box spline basis functions [124], the transformation of these basis functions into
the quartic Bézier basis arranged as in Figure 2.13 yields the following transformation
matrix,



A.3 Conversion to quartic Bézier basis 145

R = 1
24



0 0 0 2 2 0 2 12 2 0 2 2
0 0 0 4 3 0 3 12 1 0 1 0
0 0 0 8 4 0 4 8 0 0 0 0
0 1 1 12 3 0 3 4 0 0 0 0
2 2 2 12 2 0 2 2 0 0 0 0
0 0 0 3 1 0 4 12 0 0 3 1
0 0 0 6 1 0 6 10 0 0 1 0
0 0 1 10 1 0 6 6 0 0 0 0
1 0 3 12 1 0 4 3 0 0 0 0
0 0 0 4 0 0 8 8 0 0 4 0
0 0 1 6 0 0 10 6 0 0 1 0
0 0 4 8 0 0 8 4 0 0 0 0
0 0 1 3 0 0 12 4 0 1 3 0
0 0 3 4 0 1 12 3 0 0 1 0
0 0 2 2 0 2 12 2 0 2 2 0



. (A.7)





Appendix B

Thin-shell and sandwich panel
formulations

B.1 Derivatives in thin-shell formulations

The covariant basis vectors (4.1) can be descretised as

aα =
n∑

i=1
Ni,αxi , (B.1)

where xi are control points and Ni,α are first derivatives of associated shape functions.
The first derivatives of the covariant basis with respect to nodal coordinates are

∂aα

∂xi

= Ni,αI , (B.2)

where I is an identity matrix since the first derivatives with respect to each component
of nodal coordinates is required.

The first derivatives of the unit normal vector with respect to nodal coordinates are

∂n

∂xi

= (a1 × a2),xi

|a1 × a2|
− n · [n · (a1 × a2),xi

]
|a1 × a2|

, (B.3)

considering that the following equation holds,

∂|a1 × a2|
∂xi

= (a1 × a2) · (a1 × a2),xi

|a1 × a2|
= n · (a1 × a2),xi

.

(B.4)
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Hence, the first derivatives of n,α with respect to nodal coordinates are

∂n,α

∂xi

= ∂

∂xi

{
(a1 × a2),α

|a1 × a2|
− n · [n · (a1 × a2),α]

|a1 × a2|

}

= ∂

∂xi

(a1 × a2),α

|a1 × a2|
− n,xi

· n · (a1 × a2),α

|a1 × a2|

− n ·
[
n,xi

· (a1 × a2),α

|a1 × a2|

]
− n ·

[
n · ∂

∂xi

(a1 × a2),α

|a1 × a2|

] (B.5)

with

∂

∂xi

(a1 × a2),α

|a1 × a2|
= [(a1 × a2),α],xi

|a1 × a2|
− (a1 × a2),α[(a1 × a2),xi

] · n

|a1 × a2|2
. (B.6)

B.2 Displacement of isotropic sandwich panels

Fig. B.1 Sketch of a sandwich panel.

According to [103], the maximum displacement at the centre of the isotropic sandwich
panel with identical thin-plate faces as shown in Figure B.1 is given by

wmax = 16qb4

π6D

∑
m

∑
n

(−1)m−1
2 (−1)n−1

2

mn
· 1 + τϱ

ϱ2

 (B.7)

with

D = Etd2

2(1 − ν2) , (B.8)

τ = π2Etd

2(1 − ν2)Gb2 , (B.9)

ϱ = m2b2

a2 + n2 , (B.10)
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where m and n are odd numbers (1, 3, 5, · · · ); E, G and ν are the Young’s modulus,
the shear modulus, the Poisson’s ratio of the material of the thin-plates; a and b are
the dimensions of the thin-plates; t is the thickness of the thin-plates; d is the distance
between the two thin-plates; q is the magnitude of the uniform loading. A detailed
derivation of the displacement formula refers to [103].





Appendix C

Gradient-based optimisation
algorithms

C.1 Sequential quadratic programming

The basic idea of sequential quadratic programming (SQP) is to approximate the
nonlinear optimisation problem at each iteration with a quadratic programming sub-
problem and get a better approximation based on the solution to this subproblem. This
process leads to a sequence of quadratic programming subproblems, and the iteration
continues until some termination condition is satisfied.

Consider that {x(k), λ(k), ϕ(k)} is the solution at the k-th iteration, and it is as-
sumed that the solution in the next iteration {x(k+1), λ(k+1), ϕ(k+1)} is closer to the
local minimum {x∗, λ∗, ϕ∗}. The quadratic Taylor series approximation in x for the
Lagrangian at the (k + 1)-th iteration is

L
(
x(k+1), λ(k), ϕ(k)

)
≈ L

(
x(k), λ(k), ϕ(k)

)
+ δT

x ∇xL
(
x(k), λ(k), ϕ(k)

)
+ 1

2δT
x ∇2

xL
(
x(k), λ(k), ϕ(k)

)
δx .

(C.1)

It is reasonable to consider (C.1) as the objective function in the quadratic sub-
problem for the next iteration. Since L

(
x(k), λ(k), ϕ(k)

)
is a constant at the (k + 1)-th

iteration, the second and the third terms in the Taylor approximation (C.1) can then
be considered as the objective function, i.e.

δT
x ∇xL

(
x(k), λ(k), ϕ(k)

)
+ 1

2δT
x ∇2

xL
(
x(k), λ(k), ϕ(k)

)
δx . (C.2)



152 Gradient-based optimisation algorithms

In practice, the Hessian of the Lagrangian ∇2
xL
(
x(k), λ(k), ϕ(k)

)
is approximated

by the Hessian of the original objective function ∇2
xJ
(
x(k)

)
in order to be able to solve

the quadratic subproblem at any x(k) and easier for a global convergence analysis [125].
However, the Hessian is not easy to compute in general as it involves the second
derivatives of the objective and constraint functions. To cope with this issue, the exact
Hessian is usually replaced with a quasi-Newton approximation [108]. In addition,
∇xL

(
x(k), λ(k), ϕ(k)

)
is replaced by ∇xJ

(
x(k)

)
. As a matter of fact, this replacement

leads to an equivalent subproblem when only equality constraints and their linearised
approximations are considered. If inequality constraints exist, the replacement is not
quite equivalent though it leads to an equivalent subproblems when the slack-variable
formulation of the original optimisation problem is considered [125].

The linearised approximations of the constraints are considered with the first term
of the Taylor series in x

Gi

(
x(k+1), λ(k), ϕ(k)

)
≈ Gi

(
x(k), λ(k), ϕ(k)

)
+ δT

x ∇xGi

(
x(k), λ(k), ϕ(k)

)
, (C.3)

Hj

(
x(k+1), λ(k), ϕ(k)

)
≈ Hj

(
x(k), λ(k), ϕ(k)

)
+ δT

x ∇xHj

(
x(k), λ(k), ϕ(k)

)
. (C.4)

Therefore, the quadratic subproblem at the (k + 1)-th iteration is of the form

minimise δT
x ∇xJ

(
x(k)

)
+ 1

2δT
x ∇2

xJ
(
x(k)

)
δx (C.5a)

subject to Gi

(
x(k)

)
+ δT

x ∇xGi

(
x(k)

)
= 0, i = 1, · · · , np (C.5b)

Hj

(
x(k)

)
+ δT

x ∇xHj

(
x(k)

)
≤ 0, j = 1, · · · , nq (C.5c)

The solution δ∗
x of the quadratic subproblem (C.5) can be used to calculate the

next iterate x(k+1) by updating x(k) in the direction of δ∗
x. For the new iterates of

multipliers, one possible set of candidates are the corresponding optimal multipliers of
(C.5). The validity of using the optimal multipliers of the quadratic subproblem can
be seen from the following analysis.

Considering the linear approximation of the KKT condition (5.3a) yields,

∇xL
(
x(k+1), λ(k+1), ϕ(k+1)

)
≈∇xL

(
x(k), λ(k), ϕ(k)

)
+ δT

x ∇2
xL
(
x(k), λ(k), ϕ(k)

)
+ δT

λ∇2
λxL

(
x(k), λ(k), ϕ(k)

)
+ δT

ϕ∇2
ϕxL

(
x(k), λ(k), ϕ(k)

)
(C.6)
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with

∇xL
(
x(k), λ(k), ϕ(k)

)
= ∇xJ

(
x(k)

)
+

np∑
i=1

λ
(k)
i ∇xGi

(
x(k)

)
+

nq∑
j=1

ϕ
(k)
j ∇xHj

(
x(k)

)
,

(C.7)

∇2
xL
(
x(k), λ(k), ϕ(k)

)
= ∇2

xJ
(
x(k)

)
+

np∑
i=1

λ
(k)
i ∇2

xGi

(
x(k)

)
+

nq∑
j=1

ϕ
(k)
j ∇2

xHj

(
x(k)

)
,

(C.8)

∇2
λxL

(
x(k), λ(k), ϕ(k)

)
= ∇xG

(
x(k)

)
=
(
∇xG1(x(k)) ∇xG2(x(k)) · · · ∇xGnp(x(k))

)T
,

(C.9)

∇2
ϕxL

(
x(k), λ(k), ϕ(k)

)
= ∇xH

(
x(k)

)
=
(
∇xH1(x(k)) ∇xH2(x(k)) · · · ∇xHnq(x(k))

)T
.

(C.10)

Substituting (C.7), (C.8), (C.9) and (C.10) into (C.6) yields

∇xJ
(
x(k)

)
+ δT

x ∇2
xL
(
x(k), λ(k), ϕ(k)

)
+ λT

k+1∇xG
(
x(k)

)
+ ϕT

k+1∇xH
(
x(k)

)
= 0 .

(C.11)
Given

(
x(k), λ(k), ϕ(k)

)
, (C.11) is exactly the first derivative condition of the

quadratic subproblem (C.5) at a local minimum δ∗
x when the Hessian of the La-

grangian is approximated with the Hessian of the original objective function. Therefore,
the optimal multipliers {λ∗

k+1, ϕ∗
k+1} obtained from (C.5) is an appropriate choice for

the next iterates of multipliers λ(k+1) and ϕ(k+1). A modification of the next iterates
{x(k+1), λ(k+1), ϕ(k+1)} would be a line search along the directions {δx, δλ, δϕ} where

δx = δ∗
x, δλ = λ∗

k+1 − λ(k), δϕ = ϕ∗
k+1 − ϕ(k) . (C.12)

Therefore, the next iterates at (k + 1)-th iteration are

x(k+1) = x(k) + ε(k)δx, λ(k+1) = λ(k) + ε(k)δλ, ϕ(k+1) = ϕ(k) + ε(k)δϕ , (C.13)

where ε(k) is the step length which can be obtained by a line search.
One advantage of using SQP to solve nonlinear optimisation problems is that

neither the initial point x0 nor the iterates x(k) need to be feasible. In addition,
SQP decomposes the nonlinear problem into a sequence of quadratic programming
subproblems with linear constraints, which are relatively easier to solve as there are
some good algorithms for the quadratic programming problems [108].
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C.2 Method of moving asymptotes

The method of moving asymptotes (MMA) was first proposed by Svanberg [126].
It can be seen as a generalisation of the convex linearisation method developed by
Fleury et al. [127]. In the MMA, each function at every iteration is linearised in terms
of the intervening variables 1/

(
xj − xL

j

)
or 1/

(
xU

j − xj

)
, where xL

j and xU
j are the

moving asymptotes that can be used to control the conservation and stability of the
optimisation process. The linearisation of functions in the MMA is as follows.

Given an iterate x(k) at the k-th iteration, the values of moving asymptotes x
L(k)
j

and x
U(k)
j are chosen such that

x
L(k)
j < x

(k)
j < x

U(k)
j , j = 1, · · · , n . (C.14)

The linear approximation f (k) of a function f at the k-th iteration can be defined as

f (k)(x) = f
(
x(k)

)
−

n∑
j=1

( f
U(k)
j

x
U(k)
j − x

(k)
j

+
f

L(k)
j

x
(k)
j − x

L(k)
j

)
+

n∑
j=1

( f
U(k)
j

x
U(k)
j − xj

+
f

L(k)
j

xj − f
L(k)
j

)

= f
(
x(k)

)
+

n∑
j=1

f
U(k)
j

( 1
x

U(k)
j − xj

− 1
x

U(k)
j − x

(k)
j

)

+
n∑

j=1
f

L(k)
j

( 1
xj − x

L(k)
j

− 1
x

(k)
j − x

L(k)
j

)
, (C.15)

where f can be either the objective function or constraint functions in the optimisation
problem, and

f
U(k)
j =



(
x

U(k)
j − x

(k)
j

)2 ∂f

∂xj

, if ∂f

∂xj

> 0 ;

0, otherwise ;

(C.16)

f
L(k)
j =


−
(
x

(k)
j − x

L(k)
j

)2 ∂f

∂xj

, if ∂f

∂xj

< 0 ;

0, otherwise .

(C.17)

After substituting (C.16) and (C.17) into (C.15), the linear approximation in MMA
becomes
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f (k)(x) =



f
(
x(k)

)
+

n∑
j=1

f
U(k)
j − x

(k)
j

f
U(k)
j − xj

∂f

∂xj

(
xj − x

(k)
j

)
, if ∂f

∂xj

> 0

f
(
x(k)

)
+

n∑
j=1

x
(k)
j − f

L(k)
j

xj − f
L(k)
j

∂f

∂xj

(
xj − x

(k)
j

)
, if ∂f

∂xj

< 0

f
(
x(k)

)
, if ∂f

∂xj

= 0

(C.18)

It can be observed from (C.18) that f (k) is a linear approximation of f at x(k).
Specifically, f (k)

(
x(k)

)
= f

(
x(k)

)
and ∂f (k)/∂xj = ∂f/∂xj at x = x(k). The second

derivatives of the approximation function f (k) are

∂2f (k)

∂x2
j

=
2f

U(k)
j(

x
U(k)
j − xj

)3 +
2f

L(k)
j(

xj − x
L(k)
j

)3 , (C.19)

∂2f (k)

∂xj∂xk

= 0, if j ̸= k . (C.20)

As can be seen, the second derivatives of f (k) are always nonnegative, which indicates
that it is a convex function. Furthermore, the second derivatives at x(k) become larger
when the moving asymptotes x

L(k)
j and x

U(k)
j are closer to x(k), indicating a larger

curvature of the approximating function f (k) in the neighbourhood of x(k). On the
other hand, if x

L(k)
j and x

U(k)
j move far away from x(k), f (k) becomes more linear

around x(k). For example in the extreme case where x
L(k)
j = −∞ and x

U(k)
j = ∞,

the approximating function f (k) becomes a linear function that is identical to the one
adopted in the sequential linear programming.

The effect of the moving asymptotes x
L(k)
j and x

U(k)
j on the optimisation process

is examined as follows. Consider two sets of moving asymptotes {x
L(k)
j , x

U(k)
j } and

{x̃
L(k)
j , x̃

U(k)
j } satisfying

x
L(k)
j ≤ x̃

L(k)
j < x

(k)
j < x̃

U(k)
j ≤ x

U(k)
j , (C.21)

the difference of the approximating functions f (k) and f̃ (k) defined in terms of {x
L(k)
j , x

U(k)
j }

and {x̃
L(k)
j , x̃

U(k)
j } respectively is

∆f (k) = f̃ (k) − f (k) . (C.22)



156 Gradient-based optimisation algorithms

It can be shown that ∆f (k)(x(k)
j ) = 0 and ∂∆f (k)/∂xj = 0 at xj = x

(k)
j . Recall

that ∂f (k)/∂xj = ∂f/∂xj at x = x(k). Hence, ∂f (k)/∂xj = ∂f̃ (k)/∂xj at x = x(k). The
second derivative of ∆f (k) with respect to xj is

∂2∆f (k)

∂x2
j

∣∣∣∣
xj=x

(k)
j

=



2
x̃

U(k)
j − x

(k)
j

∂f

∂xj

− 2
x

U(k)
j − x

(k)
j

∂f

∂xj

, if ∂f

∂xj

≥ 0

− 2
x

(k)
j − x̃

L(k)
j

∂f

∂xj

+ 2
x

(k)
j − x

L(k)
j

∂f

∂xj

, if ∂f

∂xj

< 0
. (C.23)

Since ∂2∆f (k)/∂x2
j is always nonnegative at xj = x

(k)
j , x(k) is a local minimum of

∆f (k). Hence, ∆f (k) ≥ 0, i.e. the function value approximated with f (k) is larger than
the one approximated with f̃ (k). Therefore, using moving asymptotes closer to the
iterate x(k) leads to a more conservative approximation of the original function. This
can be used to control the conservation and stability during the optimisation process
by adjusting the values of moving asymptotes. If the optimisation process appears
some oscillation, some closer moving asymptotes can be chosen; in the case of a slow
convergence of the optimisation process, the asymptotes can be moved away from the
current iterate.

The effect of moving asymptotes is illustrated in Figure C.1 plotting the function
f = x2 and its approximations fM at x = 1 in the MMA considering different moving
asymptote xU = 1.2, 1.5, 2 and 10. It is shown that with a larger value of xU , the
approximation is more linear; on the other hand, the curvature of the approximation
function is larger with a smaller value of xU .

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f = x2

fM with xU = 1.2

fM with xU = 1.5

fM with xU = 2

fM with xU = 10

Fig. C.1 Approximating functions in MMA with different upper moving asymptote values.



Appendix D

Stiffness transformation matrix and
its derivatives

In the case of three dimensional lattice structures modelled with beam elements, the
transformation matrix used to compute the element stiffness matrix takes the following
form

Λj = diag{Λ0
j , Λ0

j , Λ0
j , Λ0

j} (D.1)

with

Λ0
j =


cos αl cos βl sin αl cos βl − sin βl

− sin αl cos αl 0
cos αl sin βl sin αl sin βl cos βl

 , (D.2)

where j is the index of the element, αl is the angle between the projection of the
element on XY plane and X axis, and βl is the angle between the element and Z axis.
In the following context, for the sake of symbol simplicity and without loss of generality,
we drop the symbol j and all variables are derived for one element.

A simple derivation is as follows. Suppose a local coordinate system is attached to
each strut with the local x-axis aligned with the strut direction. The local coordinates
xl can be obtained by mapping coordinates xl in a global coordinate system with a
transformation matrix

Λ =
(
Rl

z(αl)Rl
y(βl)

)T
, (D.3)

that is, xl = λxl, where Rl
z and Rl

y are rotation matrices about z- and y-axes,
respectively; α and β are Euler angles describing the orientation of the strut in the
global coordinate system as in (D.2).
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With the transformation matrix, the lattice element stiffness matrix can be computed
with

ke = ΛTkeΛ (D.4)

where ke is the lattice element stiffness matrix in the local coordinate system which is
straightforward to obtain.

Equation (D.2) can be expressed in terms of nodal coordinates of an element as

Λ0 =


Cx Cy Cz

−Cp
y Cp

x 0
−Cp

xCz −Cp
y Cz Lp/L

 (D.5)

with

Cx = x2 − x1

L
, Cy = y2 − y1

L
, Cz = z2 − z1

L
, (D.6)

Cp
x = x2 − x1

Lp , Cp
y = y2 − y1

Lp , Cp
z = z2 − z1

Lp , (D.7)

where (x1, y1, z1) and (x2, y2, z2) are two end nodes of the element, L is the element
length, Lp the the length projected on XY plane.

Furthermore, equation (D.5) can be written in a form as

Λ0 =


c1

c2

c3

 (D.8)

with

c1 = (Cx Cy Cz) , (D.9)
c2 =

(
−Cp

y Cp
x 0

)
, (D.10)

c3 =
(
−Cp

xCz − Cp
y Cz Lp/L

)
. (D.11)

The first derivatives of c1 and c2 are

∂c1

∂xq
p

= 1
L

eT
1 (I − cT

1 c1) , (D.12)

∂c2

∂xq
p

= 1
Lp eT

2 (I − cT
2 c2) (D.13)
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with

eT
1 =



(−1 0 0) for x1
1

(0 − 1 0) for x2
1

(0 0 − 1) for x3
1

(1 0 0) for x1
2

(0 1 0) for x2
2

(0 0 1) for x3
2

and eT
2 =



(0 − 1 0) for x1
1

(1 0 0) for x2
1

(0 0 0) for x3
1

(0 1 0) for x1
2

(−1 0 0) for x2
2

(0 0 0) for x3
2

. (D.14)

Before giving the expression for the first derivative of c3, c3 is written as

c3 = −
(
Cp

x Cp
y 0

)
Cz + (0 0 Lp/L)

= −c1
3Cz + c2

3 .
(D.15)

Hence,
∂c3

∂xq
p

= −∂c1
3

∂xq
p
Cz − c1

3
∂Cz

∂xq
p

+ ∂c2
3

∂xq
p

(D.16)

with

∂c1
3

∂xq
p

= 1
Lp eT

3 (I − c1T
3 c1

3) , (D.17)

∂c2
3

∂xq
p

= 1
L2 (Lc1

3e3 − Lpc1e1) , (D.18)

where

eT
3 =



(−1 0 0) for x1
1

(0 − 1 0) for x2
1

(0 0 0) for x3
1

(1 0 0) for x1
2

(0 1 0) for x2
2

(0 0 0) for x3
2

, (D.19)

and ∂Cz/∂xq
p can be obtained directly from the third column of ∂c1/∂xq

p.
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