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We describe the long-term dynamics of sustained stratified shear flows in the lab-
oratory. The stratified inclined duct (SID) experiment sets up a two-layer exchange
flow in an inclined duct connecting two reservoirs containing salt solutions of different
densities. This flow is primarily characterised by two non-dimensional parameters: the
tilt angle of the duct with respect to the horizontal, θ (a few degrees at most), and
the Reynolds number Re, an input parameter based on the density difference driving
the flow. The flow can be sustained with constant forcing over arbitrarily long times
and exhibits a wealth of dynamical behaviours representative of geophysically-relevant
sustained stratified shear flows. Varying θ and Re leads to four qualitatively different
regimes: laminar flow; mostly laminar flow with finite-amplitude, travelling Holmboe
waves; spatio-temporally intermittent turbulence with substantial interfacial mixing; and
sustained, vigorous interfacial turbulence (Meyer & Linden, J. Fluid Mech., vol. 753, 2014,
pp. 242–253). We seek to explain the scaling of the transitions between flow regimes in
the two-dimensional plane of input parameters (θ,Re). We improve upon previous studies
of this problem by providing a firm physical basis and non-dimensional scaling laws that
are mutually consistent and in good agreement with the empirical transition curves we
inferred from 360 experiments spanning θ ∈ [−1◦, 6◦] and Re ∈ [300, 5000]. To do so, we
employ state-of-the-art simultaneous volumetric measurements of the density field and
the three-component velocity field, and analyse these experimental data using time- and
volume-averaged potential and kinetic energy budgets. We show that regime transitions
are caused by an increase in the non-dimensional time- and volume-averaged kinetic
energy dissipation within the duct, which scales with θRe at high enough angles. As
the power input scaling with θRe is increased above zero, the two-dimensional, parallel-
flow dissipation (power output) increases to close the budget through an increase in the
magnitude of the exchange flow, incidentally triggering Holmboe waves above a certain
threshold in interfacial shear. However, once the hydraulic limit of two-layer exchange
flows is reached, two-dimensional dissipation plateaus and three-dimensional dissipation
at small scales (turbulence) takes over, at first intermittently, and then steadily, in order
to close the budget and follow the θRe scaling. This general understanding of regime
transitions and energetics in the SID experiment may serve as a basis for the study of
more complex sustained stratified shear flows found in the natural environment.
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1. Introduction

Turbulence is still an ‘unsolved problem’, and the stabilising buoyancy forces that
characterise stratified turbulence add further complexity. The range of spatio-temporal
scales involved in the physics of (stratified) turbulent flows make them difficult to simulate
with our current computational capabilities. Stably stratified shear flows are a class of
flows particularly relevant to the environment. Many of these flows are sustained over
long periods of time through quasi-steady forcing: for example exchange flows in straits
(Armi & Farmer 1988), estuaries (Geyer et al. 2010), coastal inlets (Farmer & Armi 1999),
deep ocean overflows (van Haren et al. 2014), wind-driven equatorial undercurrent (Gregg
et al. 1985), and atmospheric boundary layer (Mahrt 2014). In this paper, we address
these general and geophysically-relevant sustained stratified shear flows using a simple
laboratory experiment.

The stratified inclined duct experiment (hereafter abbreviated SID), sketched in fig-
ure 1, consists of two reservoirs initially filled with aqueous salt solutions of different
densities ρ0 ±∆ρ/2, connected by a long rectangular duct that can be tilted at a small
angle θ from the horizontal. At the start of the experiment, the duct is opened, initiating
a brief transient gravity current followed by a two-layer exchange flow in the duct that
is sustained for long periods of time. This sustained stratified shear flow is the focus of
this paper.

Previous studies of this experiment highlighted the fact that the flow exhibits quali-
tatively different regimes depending on the input parameters θ and ∆ρ. In this paper,
we adopt the nomenclature of Meyer & Linden (2014) who described the four following
regimes based on simple shadowgraph observations (see their figure 3):

L : laminar steady flow, with a thin, flat density interface between the two counter-
flowing layers;

H : mostly laminar flow, with finite-amplitude Holmboe waves propagating on the
interface;

I : spatio-temporally intermittent turbulence with small-scale structures and mixing;
T : steadily sustained turbulence with significant small-scale structures and a thick

interfacial mixing layer.

Stratified turbulence research has traditionally focused on the modelling of the ‘small-
scale’ (inaccessible) physics of mixing using the ‘large-scale’ (accessible) properties of the
flows. A much-pursued goal is the ability to predict the regime of any given flow (e.g.
laminar, intermittently turbulent, fully turbulent), its rate of energy dissipation and its
mixing efficiency (so-called ‘output’ variables) using only a small number of ‘input’ non-
dimensional parameters characterising the flow (for four decades of reviews on mixing
efficiency, see e.g. Linden (1979); Fernando (1991); Ivey et al. (2008); Gregg et al. (2018)).
To achieve this goal, scaling laws obtained from a physical model (based on the Navier-
Stokes equations) are usually required to extrapolate empirical relationships obtained
under controlled laboratory conditions to the geophysical scales of ultimate interest.

This paper follows this tradition of research and elaborates on ideas developed in
previous studies – in particular Meyer & Linden (2014) – to tackle the non-dimensional
scaling laws describing transitions between flow regimes. In this paper, we revisit these
ideas with the aim to provide a more physical and quantitative explanation of regime
transitions in the SID experiment. To achieve this aim, we use (i) newly-available
volumetric measurements of the three-dimensional density field and three-component
velocity field, and (ii) a volume-averaged energetics model suited to the analysis of these
measurements.

The rest of the paper is organised as follows. In § 2 we provide the background for the
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Measurement volume

Figure 1: Schematics of the Stratified Inclined Duct (SID) experiment. The measurement
volume inset shows the coordinate system and the notation used in this paper (in
dimensional units). Note that the x axis is aligned along the duct, resulting in gravity
pointing at an angle θ from the −z direction. Here, by definition, the duct is inclined
at a positive angle θ > 0◦, resulting in a positive forcing of the flow by the streamwise
projection of gravity g sin θ > 0.

non-dimensional study of the SID experiment and discuss previous studies together with
new data on regime transitions in order to motivate the need to revisit this problem. In
§ 3 we introduce our new volumetric measurements and use them to visualise and further
characterise all four flow regimes. In § 4 we derive from first principles a framework of
energy budgets suited to our volumetric measurements. In § 5, we validate the framework
and its predictions for regime transitions with experimental data. In § 6, we further
develop this framework and the analysis of experimental data to study the relation
between flow regimes and three-dimensionality. Finally, we summarise our findings and
discuss open questions in § 7.

2. Background

In this section, we introduce our notation in § 2.1, and discuss in § 2.2 the scaling of
streamwise velocities important for the non-dimensionalisation of the problem in § 2.3.
We then discuss the scaling laws for the regime transitions proposed by previous studies
in § 2.4, before presenting new data to motivate the paper in § 2.5.

2.1. Notation

Our notation is shown in the measurement volume inset in figure 1 and largely follows
that of Lefauve et al. (2018) (hereafter LPZCDL18). The duct considered in this paper
has length L = 1350 mm and a square cross-section of H = 45 mm (the same dimensions
as LPZCDL18 but smaller than ML14). The streamwise x axis is aligned along the
duct and the spanwise y axis across the duct, making the z axis tilted at an angle θ
from the vertical (resulting in a non-zero streamwise projection of gravity g sin θ). All
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coordinates are centred in the middle of the duct, such that −L/2 6 x 6 L/2 and
−H/2 6 y, z 6 H/2. The velocity vector field has components u(x, y, z, t) = (u, v, w)
along x, y, z, and we denote the density field by ρ(x, y, z, t).

The parameters believed to play important roles are the geometrical parameters: L, H,
θ, and the dynamical parameters: the reduced gravity g′ ≡ g∆ρ/ρ0 (under the Boussinesq
approximation of small density differences 0 < ∆ρ/ρ0 � 1), the kinematic viscosity of
water ν = 1.05×10−6 m2 s−1 and the molecular diffusivity of salt κs = 1.50×10−9 m2 s−1.
The last important parameter is the scale of the streamwise velocity ∆U , but it is not
independent from the previous six parameters as we discuss in § 2.2. From these seven
parameters having two dimensions (of length and time), we construct five independent
non-dimensional parameters in § 2.3.

2.2. Scaling of the velocity

Meyer & Linden (2014) recognised that the two-layer exchange flow in the SID is
maximal because it is hydraulically controlled at both ends of the duct where it meets
the reservoirs through a sharp change in geometry (an idea already present in Wilkinson
(1986)). In other words, the flow is subcritical with respect to long interfacial waves inside
the duct (information propagates in both directions), and critical at either end, preventing
the propagation of information (in particular of the exchange flow rate) from the exterior
into the interior of the duct. The resulting flow is therefore said to be controlled by the
interior and maximal in the sense that it has the largest exchange flow rate of any
realisable flow (for more details, see ML14, Lefauve et al. 2018, § 3, and Lefauve 2018,
§ 1.3.2). This maximal exchange flow is sustained in a quasi-steady state until the controls
are ‘flooded’ by the accumulation of fluid of a different density coming from the other
reservoir. With each reservoirs holding approximately 100 litres of fluid in our current
setup, a typical experiment can last several minutes, which represents many duct transit
times (streamwise advection time along the length of the duct).

As a consequence, the velocity scale ∆U is not an independent parameter; it is set
by the phase speed of long interfacial gravity waves. To understand this, we follow the
literature (see e.g. Armi (1986); Lawrence (1990)) and consider the composite Froude
number of this two-layer flow as

G2(x) ≡ F 2
1 (x) + F 2

2 (x), where F 2
i (x) ≡ 〈u

2
i (x)〉y,zi
g′hi(x)

(2.1)

is the Froude number of layer i, 〈·〉y,zi denotes spanwise and vertical averaging over the
depth hi of each layer, and the symbol ≡ denotes a definition. In the idealised case
of frictionless, horizontal ducts (θ = 0◦), the flow is streamwise invariant and G takes
everywhere the value at the centre of the duct

G(x) = G(0) = 2
〈|u|〉y,z√
g′H

, (2.2)

where 〈·〉y,z denotes averaging over the whole duct cross section. The second equality
results from (2.1) and the symmetry of the flow at x = 0 guaranteed by the Boussinesq
approximation (〈|u1|〉y,z = 〈|u2|〉y,z and h1 = h2 = H/2). Note that here and in the
remainder of the paper, we assume that the exchange flow has zero net (or ‘barotropic’)
flow rate 〈u〉y,z = 0, which is a good approximation in the present setup. Hydraulic control
requires that G2 = 1 (Armi 1986), which gives the following layer-averaged velocity

〈|u|〉y,z =

√
g′H

2
, (2.3)
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as previously recognised by ML14. With the addition of viscous friction and/or of a
non-zero tilt angle, the flow is no longer streamwise invariant: G(x) is maximal at the
ends (x = ±L/2) and minimal in the centre (x = 0). Since the criticality condition
G2 = 1 is imposed at the ends where the controls occur G(±L/2) = 1 > G(0), the
velocity scale 〈|u|〉y,z = (

√
g′H/2)G(0) is lower than the inviscid upper bound (2.3) that

we call ‘hydraulic limit’ (see Gu & Lawrence (2005) for more details). As first observed
in ML14 (see their figure 7) and as we shall substantiate in § 4.3.1, this hydraulic limit is
however generally achieved when a positive tilt angle θ > 0◦ is added to counterbalance
the dissipative effects of viscosity.

Due to the moderate Reynolds numbers and the long duct investigated in the present
setup, the velocity profiles are usually significantly affected by viscosity in the sense
that viscous boundary layers at the walls and interface are partially or fully developed.
Generally, we find that the peak velocities in each layer are at most around twice the layer-
averaged values corresponding to the hydraulic limit (2.3), i.e. maxy,z |u| ≈ 2〈|u|〉y,z ≈√
g′H. We therefore choose to non-dimensionalise velocities by this characteristic ‘peak’

value, i.e. half the total (peak-to-peak) velocity jump (shown in the inset in figure 1):

∆U

2
≡
√
g′H. (2.4)

2.3. Non-dimensionalisation

Based on the above, we define the non-dimensional velocity vector as ũ ≡ u/(∆U/2)
such that in general −1 . ũ . 1 (noting that the streamwise velocity is dominant in
this flow, i.e. |ũ| � |ṽ|, |w̃|). For consistency, we choose H/2 as the length scale, defining
the non-dimensional position vector as x̃ ≡ x/(H/2) such that −1 6 ỹ, z̃ 6 1, and
−A 6 x̃ 6 A, where the aspect ratio of the duct is

A ≡ L

H
. (2.5)

Consequently, we non-dimensionalise time by the advective time unit H/∆U =
1/(2

√
g′/H): t̃ ≡ 2

√
g′/Ht (hereafter abbreviated ATU). The dimensionless density

field is defined as ρ̃ ≡ (ρ− ρ0)/(∆ρ/2), such that −1 6 ρ̃ 6 1.
Using the previously defined velocity and length scales, we construct the Reynolds

number

Re ≡
∆U
2

H
2

ν
=

√
g′HH

2ν
= 1.42× 104

√
∆ρ

ρ0
, (2.6)

where the last equality shows that Re is a function of the driving density difference ∆ρ/ρ0

alone (the prefactor only holds for aqueous salt solutions in the geometry investigated
here). In this paper, we present experiments in the range ∆ρ/ρ0 ∈ [5× 10−4, 1.3× 10−1],
i.e. Re ∈ [300, 5000].

The velocity scale ∆U leads to the definition of an overall bulk Richardson number
RiB , expressed as the non-dimensional product of the density, length and inverse square
velocity scales, and which here takes a constant value

RiB ≡
g
ρ0

∆ρ
2
H
2(

∆U
2

)2 =
1

4
, (2.7)

by criticality of the exchange flow and our definition of ∆U in (2.4).
Our last non-dimensional parameter is the Schmidt number, the ratio of the momentum
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to salt diffusivity

Sc ≡ ν

κs
. (2.8)

In summary, we have a total of four free independent non-dimensional input param-
eters: θ, A, Re, Sc, and one imposed parameter RiB . For the apparatus considered, we
have A = 30, Sc = 700, RiB = 1/4, and we have the freedom to vary θ and Re (by
varying ∆ρ/ρ0), allowing us access all flow regimes.

Henceforth, we drop the tildes and, unless explicitly stated otherwise, use non-
dimensional variables throughout.

2.4. Previous studies

Meyer & Linden (2014) (ML14) mapped the distribution of the four regimes described
in § 1 in the θ −∆ρ/(2ρ0) plane for 93 experiments (see their figure 5). They sought an
equation for the transition curves by arguing that, because of the presence of hydraulic
controls (§ 2.2), the kinetic energy in the flow was bounded by the scaling (∆U)2 ∼ g′H
(see (2.3) and (2.4)) and thus it could not increase even in the presence of gravitational
forcing when θ > 0◦. The dimensional ‘excess kinetic energy’ g′L sin θ, gained by
conversion from potential energy by the fluid travelling a distance L along the duct
in the streawise field of gravity g′ sin θ > 0, thus has to be dissipated by increased wave
activity or turbulence. They non-dimensionalised this excess kinetic energy by (ν/H)2,
thus forming the following Grashof number

Gr ≡ g′L sin θ

(ν/H)2
= 4A sin θRe2, (2.9)

where the first equality is their definition and the second equality uses our notation. They
found reasonable agreement between this scaling in sin θRe2 (using two different aspect
ratios A = 15, 30) and suggested the empirical equation Gr = 4 × 107 for the I → T
transition curve (see their figure 8). The limitations of this proposed Gr scaling will be
discussed in § 2.5.

Macagno & Rouse (1961) (MR61) is the first study of the SID we are aware of. They
mapped the same four regimes independently rediscovered by ML14 in a two-dimensional
space (see their figure 8), but instead of using the two natural input parameters θ and
Re emerging from the above dimensional analysis, they used a Froude number and a
Reynolds number based on measured values of the actual (output) ∆U and of the vertical
distance between the two maxima of |u| (depth of the shear layer). They varied θ in non-
trivial ways, sometimes during an experiment, in order to obtain target values of ∆U
and therefore better control their Reynolds number, and did not appear to realise the
presence and importance of hydraulic controls (in fact, they may have disturbed them
by their use of splitter plates at the ends of the duct). The main limitation of MR61 is
that they did not recognise the importance of θ in the regime transitions, and were thus
unable to propose a convincing physical model to substantiate them.

Kiel (1991) (K91) proposed a heuristic scaling based on a ‘geometric Richardson
number’ RiG, whose inverse (using our notation)

Ri−1
G ≡ 4A tan θ +

16

9
(2.10)

can be interpreted as the non-dimensionalisation of the ‘excess kinetic energy’ g′L sin θ
of ML14 by the actual kinetic energy of the hydraulically-controlled flow (∆U)2 = g′H,
i.e. Ri−1

G ∼ g′L sin θ/(g′H) = A sin θ (disregarding constants). He argued that transition
to turbulence occurs when the excess energy to be dissipated becomes large compared to
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Figure 2: Regime diagram in the (θ, Re) plane of non-dimensional input parameters
totalling 360 data points (most were determined from shadowgraph observations). In
dashed, the I→ T transition curve inferred by ML14 from their experiments in a larger
duct.

the maximum kinetic energy of the flow (high Ri−1
G ). The main limitation of K91 is that

he ignored Re, which he assumed large enough for viscous effects to be ignored. Although
K91 did use large Re (of order 104) using ducts of dimensions similar to that of ML14,
the observations of ML14 at similar Re highlight the importance of Re in the scaling,
which we substantiate in this paper. Consequently, this RiG criterion is not sufficient to
explain regime transitions.

2.5. Observed regime transitions and motivation

To further motivate the need to revisit the problem of regime transitions, we repro-
duced the regime diagram of ML14 in a slightly different duct geometry in figure 2. The
duct used in this paper has a smaller cross-section than that used by ML14 (H = 45 mm
vs 100 mm), but of the same aspect ratio A = 30 as that used by ML14 to obtain
most of their data. We visually identified the four regimes L, H, I, T for a total of 360
experiments corresponding to different (θ,Re) couples. Out of these, 312 data points come
from shadowgraph observations (as in ML14), 35 come from the volumetric measurements
of density and velocity described in § 3 and 13 come from simpler planar measurements
that were carried out before the volumetric system was operational (these measurements
are not discussed in this paper).

We observe that the regimes largely occupy distinct regions of the θ − Re plane with
clear boundaries that are simple open curves, which we refer to as the L → H, H → I,
and I→ T transitions. To fix ideas, we may formally define a ‘regime function’ reg taking
arbitrary but increasing values such as

reg ≡ 1 for L, 2 for H, 3 for I, 4 for T. (2.11)

Finding the scaling of regime transitions is equivalent to finding the functional depen-
dence of reg(θ,Re), with ‘transition curves’ being described, for example, by the equations
reg = 1.5, 2.5, 3.5. Although sufficiently far from the transitions curves, the flow regime
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is repeatable for a given (θ, Re), we observe a slight overlap between regimes near the
transitions which can be explained by two potential reasons:

(i) the flow regime may not be a reproducible characteristic of the experiment (and
of the underlying dynamical system) near the transitions due to its sensitivity to flow
parameters, and/or to initial conditions (the initial transients resulting from the way the
experiment is started, which cannot be controlled accurately);

(ii) the qualitative (visual) identification of flow regimes, i.e. the very definition of
‘flow regime’ is not appropriate near the transitions (i.e. not fine or consistent enough)
to classify the flow into the four discrete categories of ML14.
Note that throughout this paper, we use the term transition to refer to the change in
the qualitative long-term (asymptotic) dynamics of the flow caused by changes in the
input parameters. Although mathematically such behaviour is typically referred to as a
bifurcation, we chose to avoid this term in this paper since we do not prove nor imply
that the underlying dynamical system indeed exhibits strict bifurcations. This question
is interesting but outside the scope of this paper.

The I→ T transition curve proposed by ML14 (see § 2.4) is reproduced in dashed black
in figure 2 to highlight the fact that the agreement in our geometry (smaller duct) is less
convincing. The ML14 curve lies entirely in the T region (i.e. it is ‘too high’) and the
discrepancy is particularly apparent at higher angles θ & 4◦ (which were not considered
by ML14), suggesting that their proposed Gr ∼ sin θRe2 scaling may not be universal.

To summarise, we have seen that regime transitions in the SID depend on at least
two input parameters: θ and Re. The first two attempts to understand the transitions
(MR61 and K91) each ignored one of them, proposing heuristic scalings based on
(respectively) either Re or θ. More recently, ML14 correctly identified the θ − Re
dependence, understood the role of hydraulic controls, and proposed a transition scaling
following Gr ∼ sin θRe2 = const. (see (2.9)). This scaling was based on physical
arguments of excess kinetic energy, which, as we will show in this paper, are essentially
correct but will be made more specific. However, the first limitation of this Gr criterion
is that the non-dimensionalisation of the excess kinetic energy by the square velocity
scale (ν/H)2 leading to the Grashof number Gr is not justifiable by physical principles,
and subsequently nor is the value Gr = 4 × 107 for the I → T transition. The second
limitation of the Gr criterion is that it does not appear to agree with our more recent
and comprehensive data obtained in a smaller duct (figure 2).

We believe that these limitations motivate the need for a revised scaling of regime
transitions of the form reg(θ,Re) = const. verified by quantitative experimental data
and based on sound physical principles.

In the next two sections we introduce the experimental measurements (§ 3) and physical
model (§ 4) employed to achieve this aim.

3. Measurements and visualisations

In this section, we describe our volumetric measurements of the three-dimensional
density field and three-component velocity field in § 3.1. We then use these measurements
for quantitative flow visualisations in each of the four regimes in § 3.2 to highlight their
key features and build intuition.

3.1. Three-dimensional, three-component (3D-3C) measurements

To provide a quantitative basis to the qualitative shadowgraph observations and
subsequent categorisation into flow regimes, we investigate in this paper the detailed
energetics underpinning each regime. To do so, we employed simultaneous measurements
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of the density field and three-dimensional, three-component (3D-3C) velocity field in a
volume, as sketched in the inset of figure 1.

These measuremements relied on a novel technique introduced by Partridge et al.
(2019) in which a thin, pulsed vertical laser sheet (in the x − z plane) is scanned
rapidly back and forth in the spanwise direction (along y) to span a duct subvolume
of non-dimensional cross-section 2 × 2 and non-dimensional length ` (typically a small
fraction of full duct length ` � 2A). Simultaneous stereo Particle Image Velocimetry
(sPIV) and Planar Laser Induced Fluorescence (PLIF) are employed to obtain the
three-dimensional, three-component velocity and density fields (u, v, w, ρ)(x, yi, z, ti) in
successive x − z planes at spanwise locations y = yi and respective times t = ti. Three-
dimensional volumes containing ny planes (i.e. i = 1, 2, · · · , ny) are then reconstructed
from these plane measurements. These volumetric 3D-3C measurements are only near-
instantaneous in the sense that each plane (x, yi, z, ti) is separated from the previous one
by a small time increment δt ≡ ti− ti−1, resulting in each volume being constructed over
a non-dimensional time ∆t ≡ nyδt. The experimental protocol and details to obtain the
measurements used in this paper are identical to those discussed in LPZCDL18 § 3.3-3.4,
who first used this novel technique to investigate the structure of Holmboe waves found
in the H regime.

This technique provides high-resolution measurements of (u, v, w, ρ)(x, y, z, t) with a
typical number of data points in each coordinate (nx, ny, nz, nt) ≈ (500, 30, 100, 300)
per experiment (after processing 150 GB of raw data). The details of the volume
location x̄, length `, duration of an experiment τ , and resolution (∆x,∆y,∆z,∆t) ≡
(`/nx, 2/ny, 2/nz, τ/nt) for all 3D-3C experiments discussed in this paper will be given
in § 5 (table 2). We discuss the physical constraints setting bounds on all of the above
resolutions in appendix A.

Finally, we enforced incompressibility in all 3D-3C velocity fields by imposing ∇·u = 0
for each of the nt volumes. We employed the recent weighted divergence correction scheme
of Wang et al. (2017), which constitutes an improved and much faster variant of the
general algorithm of de Silva et al. (2013). Encouragingly, we found that the level of
correction needed (the volume-averaged relative L2 distance between the original and
corrected fields) was typically small (at most a few %).

3.2. Visualisations

Using the measurements described above, we show visualisations of a flow represen-
tative of each of the four regimes in figure 3 (L and H regimes) and figure 4 (I and T
regimes). We compare side-by-side the same three types of data:

(i) an instantaneous snapshot of the density field ρ and streamwise velocity field u in
the vertical mid-plane y = 0 of the measurement volume (‘top left’ two panels a,c,g,i),
and in the arbitrary cross-sectional plane x = −14 (‘top right’ two panels b,d,h,j );

(ii) the averaged vertical density profile 〈ρ〉x,y,t(z), velocity profile 〈u〉x,y,t(z), and
corresponding gradient Richardson number (‘bottom right’ panels f,l) defined as:

Rig(z) ≡ −RiB
∂z〈ρ〉x,y,t

(∂z〈u〉x,y,t)2
; (3.1)

(iii) the time series of the volume flux Q(t) and mass flux Qm(t) (‘bottom left’
panels e,k) defined respectively as the exchange volume flow rate

Q(t) ≡ 〈|u|〉x,y,z, (3.2)
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and the exchange mass flow rate

Qm(t) ≡ 〈ρu〉x,y,z. (3.3)

Note that Qm = Q in the absence of mixing (since in this case ρ = sgn(u)), but in
general 0 < Qm < Q in the presence of mixing. The non-dimensional hydraulic limit for
the volume flux set by the maximal exchange flow condition is Q = 0.5, such that in
general 0 < Qm 6 Q 6 0.5 (the first two inequalities always hold by definition whereas
the last inequality is the hydraulic limit that does not precisely hold in the experiments).

We observe that the L and H flows have a sharp density interface with a tanh-
like vertical profile (figure 3(a,b,f,g,h,l)), while the I and T flows have a mixing layer
(figure 4(a,b,f,g,h,l)), i.e. a central layer in which the vertical density gradient is smaller
than the values immediately above and below it as a result of turbulent mixing across
the interface. As a result, in L and H flows, the gradient Richardson number (figure 3(l))
exhibits a local maximum at the density interface and two minima on either side of order
Rig ≈ 0.25 (L flow) and Rig ≈ 0.15− 0.20 (H flow). In the I flow, the local maximum at
the interface largely disappears (figure 4(l)), where Rig is relatively constant across the
shear layer and Rig ≈ 0.05− 0.30. In the T flow, Rig is very nearly constant throughout
the shear layer at Rig ≈ 0.15, in good agreement with the self-adjusting arguments of
an ‘equilibrium Richardson number’ Turner 1973, § 10.2 and of ‘marginal instability’
(Thorpe & Liu 2009; Smyth & Moum 2013).

In the L and H regimes, the streamwise velocity profile has a sine-like vertical structure
(figure 3(f,l)) indicative of fully-developed velocity boundary layers (expected when Re .
50A = 1500, the criterion for overlapping of the interfacial, top and bottom wall 99%
boundary layers at x = 0). By contrast, in the I and T regimes, interfacial turbulence
creates a region of approximately constant velocity gradient across the mixing layer and
‘pointier’ maxima that are pushed closer to the top and bottom walls (figure 4(f,l))
especially when turbulence is more intense and sustained in the T flow. In all regimes,
these velocity maxima ∂z〈u〉x,y,t = 0 at |z| ≈ 0.5− 0.7 caused by the no-slip condition at
z = ±1 and the influence of viscosity account for the two symmetric peaks of Rig.

We also note that the L flow is largely (i) parallel, i.e. independent of the streamwise
direction x, except for a very slight downward slope of the interface typical of such flows
(discussed later in § 4.3.1); (ii) steady in time; (iii) symmetric about the y = 0 and z = 0
planes. By contrast, the H flow breaks the x- and t-invariance with a set of travelling,
symmetric Holmboe waves distorting the density and velocity interfaces in a characteristic
‘cusp’-like pattern and in a quasi-periodic fashion (these ‘confined Holmboe waves’ were
the focus of LPZCDL18). In addition, complex three-dimensional wave motions in the
velocity field start breaking the y = 0 and z = 0 symmetries (figure 3(i,j)).

In the I and T flows, the departure from both the x, t invariances and the y, z = 0
symmetries at any instant in time is even greater, owing to large, three-dimensional
turbulent fluctuations (figure 4). Based on the amplitude and spatial scales of the
fluctuations in the position of the density and velocity interfaces, and the amplitude
of the temporal fluctuations in the Q(t) and Qm(t) time-series, it is tempting to classify
the L and H flows in one group based on their similarity, and the I and T regimes in a
different group. The L−H flows have lower volume and mass flux, which are equal in the
absence of mixing (Qm ≈ Q ≈ 0.2 − 0.3), while the I − T flows have higher fluxes and
significant mixing (Qm ≈ 0.4− 0.5 < Q ≈ 0.5− 0.6, close to the hydraulic limit).

Large temporal fluctuations in both Q and Qm are observed in the I and T regimes, but
I flows tend to exhibit a component with longer pseudo-period associated with oscillations
between laminar and turbulent events (sometimes in a quasi-periodic fashion with period
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Figure 3: Comparative visualisations of a typical (a-f) L flow (θ = 2◦, Re = 398) and (g-l)
H flow (θ = 1◦, Re = 1455). The I and T regimes are shown in figure 4. The L and H data
correspond respectively to experiments L1 and H1 listed in table 2 (discussed later). For
each experiment, we plot the density field ρ and streamwise velocity field u in (a,c,g,i)
the vertical mid-plane of the volume y = 0, and in (b,d,h,j) the arbitrary cross-sectional
plane x = −14, all for a single arbitrary temporal snapshot: t = 150 in (a-d), and t = 261
in (g-j). Colour bars are identical for all plots showing density or velocity and are thus
not repeated. Dotted vertical lines in the y = 0 plane (a,c,g,i) indicate the location of
the x = −14 plane in (b,d,h,j) and conversely. White arrows indicate the direction of the
flow in each layer (in agreement with the notation of § 2.1 and figure 1). In addition, we
plot for each experiment: (e,k) the temporal evolution of the volume flux Q(t) and mass
flux Qm(t) (the dashed line is the hydraulic limit Q = 0.5); and (f,l) the mean vertical
density, streamwise velocity and gradient Richardson number profiles (the dot symbols
indicate the vertical resolution of the data).
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Figure 4: Comparative visualisations of a typical (a-f) I flow (θ = 6◦, Re = 777) and
(g-l) T flow (θ = 6◦, Re = 1256), corresponding respectively to experiments I4 and T2
of table 2 (discussed later). The legend is identical to that of figure 3, except for the
temporal snapshots used here: t = 55 in (a-d) and t = 168 in (g-j).

O(100 ATU)). This is visible in the I flow here (figure 4(e)): the start of a turbulent
event (shown here in the snapshots figure 4(a-d) at t = 55) follows the instability of
an accelerating, largely laminar, three-layer flow. A peak in the volume flux at t ≈ 10
triggered large-amplitude waves at both density interfaces which started overturning at
t ≈ 40 and initiated a turbulent event slowing down the flow (decreasing Q and Qm).
Relaminarisation followed at t ≈ 130 (increasing Q and Qm), and another cycle started
(note that only one cycle was recorded here).

The basic characteristics of flow regimes described above are summarised in table 1.
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L H I T

Invariance in x, t X ∼ × ×
Symmetry about y, z = 0 X ∼ × ×
Large Q,Qm ≈ 0.5 × × X X

Interfacial mixing × × X X

Small spatial scales × ∼ X X

Constant interfacial Rig × × ∼ X

Laminar-turbulent
periodicity

× × X ×

Table 1: Basic characteristics of flow regimes inferred from figures 3-4. Symbol ∼
indicates a relatively small effect.

In the next section, we introduce the mathematical framework suited to analyse the
above 3D-3C measurements and understand the energetics of SID flows.

4. Energetics model

In this section, we start by deriving the time evolution equations for the kinetic energy
and potential energy, first as local quantities in § 4.1, and then averaged in a control
volume in § 4.2. To jump to the result of this section, see equations (4.10) and (4.13)
and figure 5. We then estimate the transfer terms between kinetic and potential energies
and simplify the budgets in § 4.3. Finally, we focus on one particular simplified budget
in order to formulate an hypothesis regarding the regime transitions in § 4.4.

4.1. Local energy budgets

The governing equations on which all subsequent analyses are based are the incom-
pressible Navier-Stokes equation under the Boussinesq approximation coupled to the
advection-diffusion of density. Under the notation and conventions adopted in § 2.1-2.3,
they take the following non-dimensional form

∇ · u = 0, (4.1a)

∂tu + u ·∇u = −∇p+RiB (− cos θ ẑ + sin θ x̂)ρ+
1

Re
∇2u, (4.1b)

∂tρ+ u ·∇ρ =
1

ReSc
∇2ρ. (4.1c)

where we recall that RiB = 1/4 and Sc = 700.

4.1.1. Kinetic energy

We first consider the kinetic energy field K, defined as

K(x, t) ≡ 1

2
uiui, (4.2)

where, here and in the following, we adopt the summation convention over repeated
indices. The evolution of K is obtained by the dot product of the momentum equation
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(4.1b) with u. Using incompressibility (4.1a) and standard manipulations, we obtain

∂K
∂t

= φadv
K + φpre

K + φvis
K + Bx − Bz − ε, (4.3)

where the boundary fluxes due to advection φadv
K , pressure work φpre

K , viscous work φvis
K

are

φadv
K ≡ ∂

∂xi
(−uiK), φpre

K ≡
∂

∂xi
(−uip), φvis

K ≡
2

Re

∂

∂xj
(uisij), (4.4)

and where the volumetric horizontal buoyancy fluxes Bx, vertical buoyancy flux Bz and
viscous dissipation ε are

Bx ≡ RiB sin θ ρu, Bz ≡ RiB cos θ ρw, ε ≡ 2

Re
sijsij . (4.5)

The symmetric strain rate tensor is sij ≡ (∂xi
uj + ∂xj

ui)/2, and the dissipation rate is
positive definite ε > 0 .

4.1.2. Potential energy

Next, we consider the potential energy field P, defined as

P(x, t) ≡ RiB (z cos θ − x sin θ)ρ, (4.6)

since the duct (x, y, z) coordinate system is tilted at angle θ with respect to the direction
of gravity. The evolution of P is obtained by standard manipulations of the density
conservation equation (4.1c) as

∂P
∂t

= φadv
P + φdif

P + φint
P − Bx + Bz, (4.7)

where we recover the buoyancy fluxes Bx, Bz defined in (4.5), and where the boundary
fluxes of P due to advection φadv

P , diffusion φdif
P , and conversion of internal energy (heat)

φint
P are

φadv
P ≡ ∂

∂xi
(−uiP),

φdif
P ≡

RiB
ReSc

∂

∂xi

{
(z cos θ − x sin θ)

∂ρ

∂xi

}
, (4.8)

φint
P ≡

RiB
ReSc

{
cos θ

∂ρ

∂z
− sin θ

∂ρ

∂x

}
.

4.2. Volume-averaged energy budgets

We now consider the control volume V , a rectangular parallelepiped bounded by the
four duct cross-sectional walls at y, z = ±1 of arbitrary non-dimensional length ` ∈ [0, 2A]
centred around x̄, i.e. V = (x, y, z) ∈ [x̄− `/2, x̄+ `/2]× [−1, 1]× [−1, 1] (V has a volume
equal to `× 2× 2 = 4`). When applied to our 3D-3C data, the control volume V will be
the measurement volume shown in figure 1.

4.2.1. Kinetic energy

We define the volume-averaged kinetic energy K as

K(t) ≡ 〈K〉x,y,z ≡
1

4`

∫
V

K dV =
1

4`

∫ 1

−1

∫ 1

−1

∫ x̄+`/2

x̄−`/2
K dxdy dz, (4.9)

where, here and henceforth, 〈·〉x,y,z denotes averaging over the control volume V .
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We obtain the evolution equation of K by volume-averaging (4.3). The volume-
averaged boundary fluxes 〈Φadv

K 〉x,y,z, 〈Φ
pre
K 〉x,y,z, 〈Φvis

K 〉x,y,z are simplified by the diver-
gence theorem and the use of the no-slip boundary conditions ui = 0 on the four solid
duct boundaries y, z = ±1. All mean gradients along y and z therefore cancel, and the
mean gradients along x take the general form (1/`)〈·〉y,z|L−R, where ·|L−R denotes the
difference between the value of · on the left boundary of the volume (‘L’, x = x̄ − `/2)
and its value on right boundary of the volume (‘R’, x = x̄+ `/2). We are left with

dK

dt
= Φadv

K + Φpre
K + Φvis

K +Bx −Bz −D, (4.10)

where the boundary fluxes of K, the volume-averaged buoyancy fluxes and dissipation
are respectively

Φadv
K ≡ 1

`
〈uK〉y,z|L−R, Φpre

K ≡ 1

`
〈up〉y,z|L−R, Φvis

K ≡ −
1

`

2

Re
〈uisi1〉y,z|L−R,

Bx ≡ 〈Bx〉x,y,z, Bz ≡ 〈Bz〉x,y,z, D ≡ 〈ε〉x,y,z.
(4.11)

4.2.2. Potential energy

We define the volume-averaged potential energy P by analogy with K as

P (t) ≡ 〈P〉x,y,z ≡
1

4`

∫
V

P dV =
1

4`

∫ 1

−1

∫ 1

−1

∫ x̄+`/2

x̄−`/2
P dxdy dz, (4.12)

By volume averaging (4.7) and using the no-slip boundary condition for velocity and
no-flux boundary condition for density, we write the evolution of P as

dP

dt
= Φadv

P + Φdif
P + Φint

P −Bx +Bz, (4.13)

where the boundary fluxes of P are

Φadv
P ≡ RiB

1

`

(
cos θ 〈zρu〉y,z|L−R − sin θ 〈xρu〉y,z|L−R

)
, (4.14a)

Φdif
P ≡

RiB
ReSc

1

`

(
sin θ 〈x∂ρ

∂x
〉y,z
∣∣
L−R − cos θ 〈z ∂ρ

∂x
〉y,z
∣∣
L−R

)
, (4.14b)

Φint
P ≡

RiB
ReSc

(
− 1

`
sin θ〈ρ〉y,z|L−R +

1

2
cos θ〈ρ〉x,y|B−T

)
, (4.14c)

where by analogy with ·|L−R, we denote by ·|B−T the difference between the value of ·
at the bottom (‘B’, z = −1) and at the top (‘T’, z = 1).

4.2.3. Summary and schematics

The evolution equations – or ‘budgets’ – for the volume-averaged kinetic energy K
(see (4.10) and (4.11)) and potential energy P (see (4.13) and (4.14)) are summarised
schematically in figure 5.

In addition to the kinetic energy K and potential energy P reservoirs, the fluid
contained in the volume V has an internal energy (heat) reservoir I that we have hitherto
not explicitly considered. As we shall see in § 4.3.2, we do not need to do so since the
evolution of I is (to a very good approximation) slaved to that of K and does not feed
back on either K or P .

These three reservoirs exchange energy via internal fluxes: K and P exchange energy
with one another via a priori reversible (i.e. sign-indefinite) buoyancy fluxes Bx, Bz;
K is irreversibly dissipated at a positive-definite rate D > 0 to I; and I is irreversibly
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Figure 5: Schematics of the a priori complete energy budgets in a control volume V .
The V -averaged kinetic K(t), potential P (t) and internal I(t) energy reservoirs exchange
energy with one another via internal fluxes and with the exterior E via boundary fluxes.
Solid arrows indicate irreversible (i.e. sign-definite) transfer, and dashed arrows indicate
a priori reversible (i.e. sign-indefinite) transfer, until proven otherwise later. The a priori
reversible transfer between E and I is acknowledged but was not explicitly derived in
the text since it is not central to the discussion.

converted by molecular diffusion at a positive-definite rate Φint
P > 0 to P (this conversion

does not necessitate macroscopic fluid motions). In addition, K, P and I also exchange
energy via a number of boundary fluxes with the exterior (denoted by E). These boundary
fluxes are all a priori reversible (i.e. sign-indefinite). (Note that the boundary flux of I
was not explicitly considered in the above discussion but we deduce its existence by the
necessity to close the I budget.)

The steady character of the sustained forcing in the SID experiment ensures that, when
averaged over a sufficiently long time period, each energy reservoir must be in steady state.
In other words, the time-averaged budgets are ‘closed’, in the sense that they all cancel:〈dK

dt

〉
t
≈
〈dP
dt

〉
t
≈
〈dI
dt

〉
t
≈ 0, (4.15)

where 〈·〉t ≡ (1/τ)
∫ τ

0
·dt denotes averaging over the recorded data (or ‘duration of an

experiment’) τ . We expect this steady state (4.15) to be a very good approximation,
certainly over periods of O(102− 103 ATU) (the typical duration of an experiment), and
presumably even over smaller periods of O(10 ATU) in the relatively steady L and H
regimes.

These budgets are related to other energetic analyses applied to numerical simulations
in the literature (see e.g. Winters et al. 1995, § 4), but have a number of features that
make them unique to SID experiments: (i) the presence of a tilt angle θ > 0◦ introducing
the crucial horizontal buoyancy flux Bx; (ii) the presence of solid boundaries at y, z = ±1
cancelling the boundary fluxes along y and z; (iii) the absence of a periodic boundary
condition in the x direction introducing non-zero boundary fluxes along x (contrary to
most numerical simulations); and (iv) the asymptotic steadiness of all reservoirs due to
the sustained forcing discussed above.

In the remainder of the paper, we make the approximation that

cos θ ≈ 1 and sin θ ≈ θ, (4.16)

which is accurate to better than 0.5 % for the angles considered in this paper (θ 6 6◦).
Unless explicitly specified otherwise, θ will now be expressed in radians.
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Figure 6: Schematics and notation used for the evaluation of boundary fluxes under
hydraulic assumptions. The control volume V , centred on x̄ and of length `, is shaded
in grey, and as before, 1 (resp. 2) denotes the lower (resp. upper) layer, and L (resp.
R) denotes the left (resp. right) boundary of V . The interface has position η(x) (solid
curve) with respect to the neutral level z = 0 (dashed). Note the hydrostatic pressure
distributions pL(z) and pR(z) at the L and R boundaries (thin solid lines), with p = 0
along the interface.

4.3. Estimations and simplified budgets

In this section we give physical interpretation of each of the fluxes relevant to SID flows
in order to determine their sign, relative magnitude, and eventually build a simplified
picture of the time- and volume-averaged energetics of SID flows.

4.3.1. The two-layer hydraulic model

Consider the two-layer hydraulic model sketched in figure 6. The left (‘L’) boundary of
the volume V (shaded in grey) has a lower layer velocity u1L > 0, an upper layer velocity
u2L < 0, and the right (‘R’) boundary of V has a lower layer velocity u1R > 0, and an
upper layer velocity u2R < 0. The position of the interface η(x) (black solid curve) defined
positive above the midplane z = 0 (black dashed line) takes the respective values of ηL
and ηR at each boundary. In agreement with hydraulic theory, and to make the following
calculations easier, we further assume a steady streamwise velocity profile uniform in
each layer (i.e. depending only on x), and a hydrostatic pressure distribution where the
reference pressure is 0 all along the interface p(x, z = η(x)) = 0 (after subtracting the
hydrostatic streamwise pressure gradient due to θ 6= 0). The local hydrostatic gradient is
thus ∂zp = RiB ρ = (1/4)ρ (where in the lower layer ρ1 = 1, in the upper layer ρ2 = −1),
giving a pressure distribution p(x, z) = (1/4){η(x)− z} (shown as thin black solid lines).

This flow has two distinct forcing mechanisms: (i) a horizontal hydrostatic pressure
gradient of opposite sign in each layer, resulting from each end of the duct sitting in
reservoirs containing fluids of different densities, which is present even when the duct is
horizontal (i.e when θ = 0◦); (ii) the gravitational acceleration of the buoyant layer to
the left and the dense layer to the right at positive tilt angles θ > 0◦. To understand the
relative importance of these forcing mechanisms, consider the corresponding streamwise
momentum equation (including viscous effects):

4u ·∇u = −η′(x)︸ ︷︷ ︸
hydrostatic

forcing

+ θ ρ︸︷︷︸
gravitational

forcing

+
4

Re
∇2u, (4.17)

where ρ(x, z) = sgn(η(x) − z) = ±1 by definition of η(x). Since each layer convectively
accelerates (and thus becomes thinner) in the direction in which is it flowing, the interface
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position η must be a monotonically decreasing function of x: η′(x) < 0 for all x. Since
in addition η ∈ [−1, 1], the average slope on the scale of the whole duct (taking ` = 2A)
must be smaller than 2/2A = α, where we define the inverse aspect ratio of the duct as

α ≡ A−1 (4.18)

We therefore have 〈|η′(x)|〉x < α, i.e. an upper bound on the magnitude of the average
slope and, therefore, on the magnitude of the horizontal pressure gradient in (4.17). This
bound holds for any sufficiently large volume V not centred in the immediate vicinity
of the ends of the duct (where |η′| may be large and the hydrostatic assumption may
break down). Consequently, in such a control volume, a sufficient condition ensuring
that the contribution of the gravitational forcing in (4.17) is always greater than the
contribution of the hydrostatic forcing is that the tilt angle θ is ‘large’, which, in this
paper, is understood relative to the ‘geometrical’ angle of the duct α, i.e.

θ > α, (4.19)

For the duct discussed in this paper α = 1/30 ≈ 2◦. (Note that because of the length of
the duct considered in this paper, a large tilt angle θ > 2◦ is still compatible with our
approximation (4.16).)

A more accurate way to analyse the relative importance of the various terms in (4.17),
including the viscous friction in ∇2u, is through the framework of frictional two-layer
hydraulic theory. Originally proposed by Schijf & Schönfled (1953), and later formalised
by Gu (2001); Gu & Lawrence (2005), this theory combines the hydraulic description
of two-layer flows (see e.g. Armi (1986)) with frictional stresses at solid boundaries
and at the interface created by the inevitable (y, z) dependence of the underlying
velocity profiles. By parameterising the local loss of streamwise momentum due to these
stresses by the local uniform model velocities u1(x), u2(x) using a small number of non-
dimensional friction parameters, an expression for the local slope of the interface η(x)
can be derived. An adaptation of this theory for non-zero tilt angles θ 6= 0 can be found
in L18, Chapter 5 but falls outside the scope of this paper. Here we limit ourselves to
discussing the simple result that at the middle point (x = 0) of a tilted duct the interfacial
slope is proportional to

η′(0) ∝ θ − F, (4.20)

where F is the so-called ‘friction slope’, a complicated expression combining wall and
interfacial stress parameters. The above equation can be interpreted as follows: the
viscous frictional stresses acting at the walls and at the interface parameterised in F
tend to make the interface slope downwards (momentum sink), whereas the positive
gravitational forcing θ > 0 tends to make the interface slope upwards (momentum
source). It follows that:
• When 0 < θ � F , viscous friction in the duct makes the interface slope downwards,

but as discussed above, with a magnitude that cannot exceed the duct geometrical slope:
F < α. The friction F is largely independent of θ, which does not play a significant
dynamical role. We call such flows lazy flows (figure 7(a)).
• As θ is increased, the gravitational forcing makes the interface become increasingly

horizontal (i.e. parallel to x) until it becomes nearly horizontal (η′(0) . 0) as θ approaches
F from below. As θ is further increased above this initial value of F , the friction F must
increase to follow θ very closely to enforce the necessary condition that the interface
slopes downwards. This qualitative change in the behaviour of the friction F , now directly
dependent on θ, must occur when θ > α (since initially F < α), yet it generally occurs
for smaller θ (depending on the initial, unknown, value of F ). In this situation, F & θ
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(a)    Lazy flows:   0 < θ      ά  (b)    Forced flows:   θ > ά   
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Figure 7: Qualitative distinction based on frictional hydraulic theory between (a) ‘lazy’
flows (at small tilt angles θ), in which viscous effects in F dominate over the gravitational
forcing by θ; and (b) ‘forced’ flows (at large tilt angles θ) in which both effects are in
balance, leading to a relatively flat interface throughout the duct and Q ≈ 0.5.

and the interface is relatively flat throughout the duct (η′(x) . 0 for all x). We call such
flows forced flows (figure 7(b)).

We believe that our distinction between lazy and forced flows is an important modelling
result for the study of two-layer exchange flows forced by a positive angle θ > 0. In the
next section, we build on this distinction to derive a much-simplified budget.

4.3.2. Simplified budgets

Based on the simplified two-layer hydraulic model introduced above, we derived esti-
mations of each term of the full energy budget ((4.11), (4.14)) in appendix B.

A first level of simplification of the full budget presented in figure 5 consists in
neglecting the boundary fluxes Φpre

K , Φvis
K , Φdif

P , and Φint
P for the Re and Sc considered

in this paper (as argued in appendix B). The resulting simplified budget for lazy flows,
is sketched in figure 8(a). In lazy flows (figure 8(a)), all the energy in V is supplied by
the positive advective flux of P (Φadv

P > 0) composed of hydrostatic and gravitational
contributions (represented by a double arrow). This energy is transferred to K by the
horizontal buoyancy flux (Bx > 0), equal to the gravitational contribution of Φadv

P . We
previously argued that the vertical buoyancy flux Bz was, in general, sign-indefinite,
depending on the level of vertical motions in the flow. However it now becomes clear
that, in order to close the budgets of lazy flows over sufficiently long times, Bz must be
a sink to P and a source to K (Bz < 0), and it must equal the hydrostatic contribution
of Φadv

P in magnitude. To balance these two distinct sources, K has two distinct sinks:
the advective flux Φadv

K < 0, and the viscous dissipation −D < 0. (The internal energy
reservoir I has an energy source D > 0, which in steady state, is balanced by a negative
advective boundary flux to E.)

A second level of simplification is possible in the special case of forced flows, as sketched
in figure 8(b). We show in appendix B that in a ‘periodic’ volume V (expected when
θ > α) the hydrostatic contribution of the source term Φadv

P and the advective flux Φadv
K

both cancel. The budget becomes very simple: to a good approximation, the main source
of P is Φadv

P = (Qm/4)θ, which corresponds exactly to its main sink (and therefore the
main source of K) Bx = Φadv

P = (Qm/4)θ. Therefore, although Bz is truly sign-indefinite
in this case and may be responsible for unsteady reversible energy transfers on short
time scales, its temporal average must cancel and become irrelevant in steady state over
the duration of an experiment (hence we represent it by a grey dashed arrow). We thus
conclude that for forced flows in steady state P , K (and I) all have only a single source
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Figure 8: Schematics of two simplified energy budgets. The energy fluxes in the general
budget of figure 5 were estimated in appendix B using the two-layer hydraulic model of
figure 6, and led to two levels of simplifications for (a) lazy flows and (b) forced flows.

and a single sink, which must all be equal in magnitude:

〈Φadv
P 〉t = 〈Bx〉t = 〈D〉t =

1

4
〈Qm〉tθ. (4.21)

This is one of the main modelling results of this paper. It states that the time- and
volume-averaged energetics of forced flows in any control volume of the SID is reducible
to a single flux which depends only on the magnitude of the mass flux exchanged between
the two reservoirs 〈Qm〉t, and the tilt angle of the duct θ.

Another very attractive feature of forced flows is that the energy budgets we derived
are valid in any control volume V in the duct regardless of its location x̄ and length
`. This is true as long as V is not located in the immediate vicinity of the ends of the
duct (x = ±A) where the hydrostatic approximation is questionable and the control
volume is sufficiently long (say `� 1) for the volume-averaging to make sense. Thus, by
virtue of the x-periodicity of forced flows, the volume-averaged energetics of the whole
duct are equal to that of any of its sub-volume and, in particular, of any sensible 3D-3C
measurement volume.

4.4. Implications: hypothesis for regime transitions

We now propose that the volume-averaged square norm of the (non-dimensional) strain
rate tensor S, defined as

S ≡ 〈sijsij〉x,y,z =
Re

2
D, (4.22)

is a good candidate for a quantitative proxy of the flow regimes (as opposed to the viscous
dissipation D because of its Re/2 factor). In the remainder of the paper, we primarily
focus on S and refer to it as ‘viscous dissipation’ for simplicity (which is the correct
standard terminology with respect to the rescaled time coordinate t∗ ≡ t/(Re/2)). Since
the hydraulic controls at both ends of the duct limit the mean value of streamwise motions
to |u|x,y,z = Q . 0.5 and vertical motion must realistically be even smaller, we expect
the range of spatial scales over which the strain rates act in V to be the main variable
of adjustment between flow regimes. We thus expect laminar flows with gradients over
lengths of O(1) to have S = O(1) and increasingly turbulent flows with increasingly
small-scale motions to have much larger gradients and S � 1.

It therefore appears natural to propose that the L, H, I, T regimes correspond to
increasingly large values of the time-averaged dissipation 〈S〉t. This intuitive idea can be
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formalised using the regime function (see (2.11)) as the following simple hypothesis:

reg = reg(〈S〉t), (4.23)

where reg is a monotonically increasing function of 〈S〉t only. This hypothesis is general
and does not assume that the flow is lazy or forced.

Our main modelling result (4.21) that the time- and volume-averaged dissipation 〈S〉t
in forced flows can be predicted from the knowledge of θ, Re (input parameters) and
Qm (output parameter) can be rewritten as

〈S〉t =
Re

2
〈D〉t =

1

8
〈Qm〉t θRe, (4.24)

Despite Qm being an output parameter, frictional hydraulic theory and extensive empir-
ical evidence (see ML14, L18 § 3.6 and figure 9 below) suggest that the hydraulic limit
of Qm ≈ 0.5 is usually a good approximation in forced flows, so long as they are not
excessively turbulent, since excessive turbulence and mixing acts to reduce Qm for very
high values of θ and Re (as will be shown in figure 9 below).

Therefore, the corollary of hypothesis (4.23) in the special case of forced flows is that
regime transitions follow the simple scaling

〈S〉t ≈
1

16
θRe, (4.25)

and (4.23) can be recast in terms of input parameters only

reg = reg(θRe), (4.26)

where reg is a monotonically increasing function of θRe only.
In the next section, we discuss experimental data to examine the hypothesis (4.23) and

its corollary (4.26).

5. Experimental validation

In this section, we examine whether or not regime transitions:
• indeed scale with the non-dimensional group of parameters θRe (the forced flow

corollary of our physical hypothesis) using our regime data in § 5.1;
• are indeed caused by increasing values of the time- and volume-averaged dissipation
〈S〉t (our underlying physical hypothesis) using our 3D-3C data in § 5.2-5.3.

5.1. Observed regime transitions scaling

To compare the scaling of the transitions in our experimental data with the model and
predictions of the previous sections, we plot in figure 9 four distinct types of data in the
θ −Re plane:
• The flow regime data of figure 2 using the same symbols (note that θ is expressed

in radians here using a log scale, restricting us to θ > 0 data),
• Two families of thick lines indicating two distinct scaling: the dotted lines have slope
−1/2 and indicate a power law scaling of the form θRe2 = const. while the dashed lines
have slope −1 and indicate a power law scaling of the form θRe = const. These were set
manually in order to best fit the data.
• A vertical grey shading at θ = α representing the upper bound for the expected

boundary between lazy flows and forced flows (see § 4.3.1).
• Thin black contours showing a fit of 〈Qm〉t based on averaged mass flux measure-

ments that were carried out for a subset of experiments (161 in total) using salt mass
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Figure 9: Experimental data on the scaling of regime transitions. The colour symbols are
identical to figure 2, and are plotted in the same θ−Re plane, but with θ in radians (also
note the log-log scale, restricting us to θ > 0). The families of thick dotted and dashed
lines represent approximate regime transition lines with respective scalings θ Re2 = const.
and θRe = const. The vertical grey shading at θ = α is the boundary between lazy
and forced flows. The thin solid black contours: quadratic form fitting of 161 mass flux
measurements of 〈Qm〉t. Six contours are shown in the range 0− 0.5 and they have been
continued beyond the range covered by the data points used (note that no 0.6 contour
exists here).

balances as in ML14 (note the equivalence between our definition and their ‘Froude
number’ F ≡

√
2〈Qm〉t). For more details on the salt mass balance method see Lefauve

2018, § 2.2. These data were then fitted by least-squares assuming a quadratic form in
the (log θ, logRe) plane.

We make the following observations:
(i) The mass flux data 〈Qm〉t are best fitted by a quadratic form describing hyperbolas

having a major axis of slope −0.67, i.e. an equation θRe3/2 = const. This empirical
scaling, and more generally, the function 〈Qm〉t(θ,Re), are not presently understood and
fall outside the scope of the present study (see L18, § 3.6 for more details). Here, we limit
ourselves to the empirical observations that: (i) for the ‘lazy’ data (θ < α), as θ and Re
increases, 〈Qm〉t increases from � 0.5 (L regime) to ≈ 0.5 (I and T regimes); (ii) for the
‘forced’ data (θ > α), 〈Qm〉t ≈ 0.5. These two observations, given the fact that Qm ≈ Q
(except for the most turbulent data), are consistent with the theoretical predictions of
§ 4.3.1.

(ii) In lazy flows, the regime data follow a reg ∼ θ Re2 scaling (dotted lines). The L→
H, H→ I, and I→ T transitions curves are respectively θ Re2 = 6× 103, 6× 104, 2× 105.
This empirical ‘lazy flow scaling’ is not consistent with the theoretical ‘forced flow scaling’
predicted by the corollary (4.26), which is not surprising given the different energetics of
lazy flows. This θRe2 scaling is however consistent with the scaling proposed by ML14
(see § 2.4 and (2.9)), but this may be a coincidence that is not presently understood.
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Name θ (◦) Re θRe Volume properties Resolution of data
x̄ ` τ ∆x, ∆z ∆y ∆t

L1 2 398 14 −12.2 10.4 936 0.026 0.061 3.75

H1 1 1455 25 −12.2 10.4 459 0.025 0.053 2.29
H2 5 402 35 −11.9 10.8 302 0.025 0.074 1.03
H3 2 1059 37 −12.4 11.2 351 0.025 0.036 2.64
H4 5 438 38 −12.0 11.0 335 0.027 0.069 1.08

I1 2 1466 51 −12.4 11.2 508 0.026 0.036 3.65
I2 2 1796 63 −12.4 11.1 456 0.025 0.061 2.90
I3 2 2024 71 −12.5 11.1 722 0.025 0.063 3.28
I4 6 777 81 −12.6 7.73 248 0.019 0.057 1.65
I5 5 956 83 −11.0 10.0 332 0.025 0.067 1.27
I6 6 798 83 −12.6 7.67 116 0.019 0.059 0.85
I7 3 1580 83 −14.0 7.49 223 0.018 0.056 1.68
I8 5 970 84 −11.9 11.8 250 0.026 0.054 1.69

T1 3 2331 122 −14.0 7.50 407 0.019 0.057 2.70
T2 6 1256 131 −12.5 7.66 203 0.019 0.057 1.34
T3 5 1516 132 −11.9 11.1 554 0.025 0.053 2.39

Table 2: List of the 16 3D-3C experiments used, showing the input parameters θ and
Re, volume properties and resolution of data. In the second column only, θ is expressed
in ◦. Experiments are sorted by increasing θRe.

(iii) In forced flows, the regime data follow a reg ∼ θ Re scaling (dashed lines). The
L→ H, H→ I, and I→ T transitions are respectively θ Re ≈ 20, 50, 100. This empirical
‘forced flow scaling’ is consistent with the corollary (4.26) (and inconsistent with ML14).

We have thus confirmed one of the features underlying the distinction between lazy
and forced flows (Q ≈ Qm < 0.5 vs ≈ 0.5 respectively), as well as the regime transitions
scaling in forced flows reg = reg(θRe) (corollary (4.26)), but showed that lazy flows
followed a different (and still unexplained) scaling.

In order to confirm the hypothesis (4.23) underlying the corollary, and thus to provide
a physical basis for our understanding of regime transitions, we need to validate the
energetics framework of § 4, and in particular, we need direct evidence that the energy
budget of forced flows indeed follows the simplified model in figure 8(b). This is the
subject of the next section.

5.2. Experimental energy budgets

We turn our attention to the energy budgets of 16 3D-3C experiments, whose input
parameters, volume properties and resolution are detailed in table 2. They include one
experiment in the L regime (θ Re < 20, named ‘L1’), four in the H regime (20 < θRe < 50,
‘H1’ to ‘H4’), eight in the I regime (50 < θRe < 100, ‘I1’ to ‘I8’), and three in the T
regime (θ Re > 100, ‘T1’to ‘T3’).

In figure 10, we plot the five main time-averaged energy fluxes of interest to validate
the energetics model of § 4 and figure 8: 〈Φadv

P 〉t (magenta triangles), 〈Φadv
K 〉t (orange

triangles), 〈Bx〉t (black line and squares), 〈Bz〉t (green lozenges) and 〈D〉t (blue stars).
In this plot, the vertical coordinate of each symbol represents the value of its respective
flux, and its horizontal coordinate represents the value of the horizontal buoyancy flux
〈Bx〉t for this particular experiment. All fluxes are therefore effectively plotted against
〈Bx〉t, whose definition 〈Bx〉t = (1/4)〈Qm〉tθ ≈ θ/8 (assuming Qm ≈ 0.5) makes it closest
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Figure 10: Experimental validation of the simple ‘forced flow’ energetics model sketched
in figure 8(b). Time-averaged energetics of the 16 3D-3C experiments in table 2. Each
flux retained in the general ‘lazy flow’ model of figure 8(a) is plotted against 〈Bx〉t (close
to being the input parameter θ), showing that, as expected for forced flows, 〈Φadv

P 〉t ≈
〈D〉t ≈ 〈Bx〉t and 〈Bz〉t ≈ 〈Φadv

P 〉t ≈ 0.

to being an input parameter. Note that this choice of horizontal coordinate automatically
groups the data by increasing values of θ (i.e. importantly not by increasing θ Re, thus
not by regime). Note that the θ = 2◦ group of data includes a mix of L, H and I flows,
the θ = 5◦ group includes H, I and T flows and the θ = 3◦ and θ = 6◦ groups include I
and T flows.

We observe that 〈Φadv
P 〉t (main source of P ) and 〈D〉t (main sink of K) closely follow

the buoyancy flux 〈Bx〉t (P → K exchange) at all angles. The dissipation data show
the greatest discrepancy (i.e. the blue stars lie further away from the black line and
squares than the magenta triangles do) as we will explain in § 5.3. We also verify that
the advective flux of kinetic energy and the vertical buoyancy fluxes, which are only
expected to be relevant in lazy flows, are indeed close to zero: 〈Φadv

K 〉t, 〈Bz〉t ≈ 0 (see
dashed line).

In other words, the simplified budgets of figure 8(b) for forced flows and our main
prediction (4.21) that the energetics of SID flows are reducible to a single energy flux
(that we may refer to as ‘power throughput’) appear to be good approximations for
θ ∈ [1◦, 6◦], that is, even when the necessary condition for forced flows θ > α ≈ 2◦ does
not hold.

Although we do not show these results, we verified that the experimental time-averaged
kinetic and potential energy budgets do indeed cancel to an excellent approximation:
〈dP/dt〉t ≈ 〈dK/dt〉t ≈ 0 as hypothesised in (4.15) (the flow has steady P and K
reservoirs). However, it is clear from figure 10 that, for some experiments, these bud-
gets do not cancel to such a good approximation when indirectly computed from the
sum of experimentally-determined fluxes (i.e. 〈dP/dt〉t = 〈Φadv

P 〉t − 〈Bx〉t + 〈Bz〉t and
similarly 〈dK/dt〉t = 〈Φadv

K 〉t + 〈Bx〉t − 〈Bz〉t − 〈D〉t as per figure 8). This is due to the
greater experimental errors in determining boundary fluxes and dissipation rates than in
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Figure 11: Dissipation and buoyancy flux data of figure 10 (same symbols) rescaled by
Re/2 and plotted against the input parameter θRe to test the corollary (4.25) (black
line).

determining dK/dt and dP/dt directly, as expected from the nature of the experimental
data.

In figure 11, we re-plot the buoyancy flux and dissipation data of figure 10 (black
squares and blue stars) rescaled by Re/2. The dissipation 〈S〉t = (Re/2)〈D〉t is our
hypothetical proxy for the flow regimes and we test its dependence on the transition
parameter θRe expected from the corollary (4.26). Plotted against this horizontal axis,
the data are no longer grouped by angles (as was the case in figure 10); rather they are
grouped by increasing flow regimes (as shown by the coloured boxes at the top of the
figure).

These data generally support the physical hypothesis that each flow regime corresponds
to a well defined range of 〈S〉t scaling with θRe. However the agreement with the
simplified scaling (4.25) 〈S〉t ≈ (1/16)θ Re (black solid line) is not particularly impressive
(blue stars lying below the black line in all but two experiments), and gets worse as
the flow gets increasingly more turbulent. This discrepancy has two causes: (i) the
approximation 〈Qm〉t = 0.5 is an upper bound for most experiments (black squares
lying below the black line) as discussed in § 3.2 and § 5.1; (ii) the viscous dissipation is
generally underestimated in experiments (blue stars lying below the black squares). We
discuss the latter next.

5.3. Experimental limitations in measuring the dissipation

The previous section showed that, despite measurements showing that the kinetic
energy reservoir was steady (Re/2)〈dK/dt〉t ≈ 0, its sink 〈S〉t was generally measured to
be smaller in magnitude than its source (Re/2)〈Bx〉t in the I and T regimes. This is due
to at least three experimental limitations specific to measurements of the dissipation:

First, numerically, the dissipation is the only flux that requires computing of flow field
derivatives. Despite our use of a second-order accurate finite-difference scheme to compute
the components of the strain rate tensor, experimental errors are bound to be amplified
by differentiation especially in the I and T regimes where gradients are computed over
small lengthscales;
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Figure 12: Effect of the spatio-temporal resolution of experiments on the accuracy of
dissipation measurements in the I and T experiments of table 2 and figures 10-11.
Measurements converge towards the expected value (〈D〉t = 〈Bx〉t, red line) for increased
(a-b) spatial resolution and (c) temporal resolutions (better ‘freezing’ of volumes), with
respect to the Kolmogorov length- and time-scale respectively. Dashed line represents
the best linear fit. Note the different x-axis limits between the three panels.

Second, dynamically, measurements of turbulent dissipation rates require a fine enough
spatial resolution, i.e. a grid size (∆x,∆y,∆z) small enough to capture the smallest
dynamically active scale. It is generally acknowledged that the spectral content of dissipa-
tion becomes negligible below the Kolmogorov lengthscale, which is defined dimensionally
as Lk ≡ (ν3/〈ε〉x,y,z,t)1/4 (where, here and here only, Lk and ε are dimensional). Because
we know that the kinetic energy budget is closed, we use the estimated time- and volume-
averaged dissipation of our corollary (4.25) to estimate the non-dimensional Kolmogorov
lengthscale as:

Lk ≡
1

(H/2)

[
ν3

2ν g′H
(H/2)2 〈sijsij〉x,y,z,t

]1/4

≈ 23/4(θRe3)−1/4. (5.1)

For each of the 11 experiments in the I and T regimes, we plot in figure 12(a-b) the ratio
〈Bx〉t/〈D〉t against the spatial resolution normalised by the Kolmogorov lengthscale (5.1):
∆x/Lk = ∆z/Lk in panel (a) and ∆y/Lk in panel (b). We observe that the estimates of
dissipation become more accurate (converging to the red horizontal line) as the spatial
resolution approaches the Kolmogorov lengthscale (the dashed line is the best linear fit
to the data and intercepts the red line at ∆x,∆z ≈ Lk). In other words, experiments
featuring the largest discrepancy in figures 11 were the ones in which the spatial resolution
of experimental measurements was not sufficient given the level of turbulence expected
for their value of θRe. We note that this trend was not observed when the data were
plotted against ∆x,∆y,∆z alone (i.e. the Kolmogorov scale is important). This latter
observation suggests that the lack of spatial resolution dominates over the numerical
inaccuracies associated with derivatives discussed in the previous paragraph.

Third, accurate measurements of flow gradients require our 3D-3C measurements to be
as instantaneous as possible. As discussed in § 3.1 and appendix A, our scanning technique
sets a lower bound on the non-dimensional time resolution ∆t over which a volume
is constructed. These non-instantenous measurements inevitably distort turbulent flow
structures. Figure 12(c) quantifies this impact and demonstrates that better temporal res-
olutions with respect to the non-dimensional Kolmogorov timescale Tk ≡ 23/2(θRe)−1/2

(estimated similarly to (5.1)), in other words better ‘freezing’ of the volumes, result in
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better estimates of 〈S〉t (the fit intercepts the red line for perfect freezing at ∆t/Tk ≈ 0,
as expected). The reason why such distortions lead to under-estimations (as opposed to
over-estimations) of velocity gradients is still poorly understood.

6. Regimes and three-dimensionality

In the previous section, we validated experimentally our hypothesis that regime tran-
sitions correlate with an increase in the non-dimensional, volume-averaged strain rate S
(that we refer to as ‘dissipation’) and our corollary that they both scale with θRe.

In this section, we investigate the link between flow energetics and three-dimensionality.
We start by analysing the energy budgets of forced flows in more detail by subdividing
the kinetic energy into a two-dimensional and a three-dimensional part in § 6.1, before
sketching them and discussing their implications for regime transitions in § 6.2. We then
validate this framework using experimental data in § 6.3 and focus on spatial structures
in § 6.4.

6.1. Two-dimensional and three-dimensional kinetic energy budgets

We start by defining, for any flow field φ, a decomposition into a streamwise-averaged
two-dimensional component φ2d and a complementary three-dimensional component φ3d:

φ(x, y, z, t) = φ2d(y, z, t) + φ3d(x, y, z, t), (6.1)

where

φ2d(y, z, t) ≡ 〈φ〉x, (6.2a)

φ3d(x, y, z, t) ≡ φ− 〈φ〉x. (6.2b)

This decomposition is inspired from similar decompositions applied to direct numerical
simulations (DNS) of stratified turbulence initiated by secondary instabilities developing
on Kelvin-Helmholtz (KH) billows (Caulfield & Peltier 2000; Peltier & Caulfield 2003;
Mashayek & Peltier 2012a,b; Mashayek et al. 2013; Salehipour et al. 2015). These studies
typically decomposed the kinetic energy and associated fluxes into a one-dimensional
part, corresponding to an initial base flow varying along z, a two-dimensional (x, z)
part corresponding to coherent structures resulting from a primary KH instability, and
a three-dimensional (x, y, z) part corresponding to inherently turbulent structures. Our
decomposition is slightly different in order to reflect the fact that, due to confinement
by the duct boundaries, the SID ‘base flow’ is an inherent two-dimensional function of y
and z (for more details see LPZCDL18 § 5.3).

Next, we define the volume-averaged 2D and 3D kinetic energies based on the respective
velocity fields:

K2d(t) ≡ 〈K2d〉y,z ≡
1

2
〈u2d
i u

2d
i 〉y,z, (6.3a)

K3d(t) ≡ 〈K3d〉x,y,z ≡
1

2
〈u3d
i u

3d
i 〉x,y,z. (6.3b)

Importantly, we verify that the total kinetic energy is the sum of both components:
K = K2d+K3d, since 〈K〉x = 〈K2d〉x+〈K3d〉x+u2d

i 〈u3d
i 〉x and 〈u3d

i 〉x = 0 by definition. In
order to write the evolution of K2d and K2d, we first x-average the momentum equation,
which involves a number of gradients and divergence terms of the form〈 ∂φ

∂xi

〉
x

=
〈∂φ
∂x

〉
x︸ ︷︷ ︸

mean gradient

+
∂〈φ〉x
∂xi

, (6.4)
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In this integration by parts, φmay represent uiuj (convective term), p (pressure gradient),
or ui (diffusive term). At this point, the assumption of periodic boundaries in x, consistent
with forced flows (see figure 7(b)), becomes essential in order to cancel all mean gradients
along x (the first term on the RHS) and make analytical progress (by avoiding very
lengthy expressions). Thus, under this essential periodic assumption, we derive the
following simple budgets:

dK2d

dt∗
=
Re

2

dK2d

dt
=
Re

2
(B2d

x −B2d
z )− S2d − T, (6.5a)

dK3d

dt∗
=
Re

2

dK3d

dt
=
Re

2
(B3d

x −B3d
z )− S3d + T, (6.5b)

where the rescaled ‘fast’ time t∗ ≡ t/(Re/2), previously introduced in § 4.4, is now used to
facilitate general comparison between all experiments (making the horizontal buoyancy
flux scale with θRe and the rate of viscous dissipation be S instead of D). We define the
above two-dimensional and three-dimensional buoyancy fluxes, dissipation, and the new
transfer term T between K2d and K3d as

B2d
x ≡

θ

4
〈ρ2du2d〉y,z, B2d

z ≡
1

4
〈ρ2dw2d〉y,z, S2d ≡ 〈s22d〉y,z, (6.6a)

B3d
x ≡

θ

4
〈ρ3du3d〉x,y,z, B3d

z ≡
1

4
〈ρ3dw3d〉x,y,z, S3d ≡ 〈s23d〉x,y,z, (6.6b)

T ≡ −Re
2

〈
〈u3d
i u

3d
j 〉x

∂u2d
i

∂xj

〉
y,z
≈ −Re

2

〈
〈u3dw3d〉x

∂u2d

∂z

〉
y,z

(6.6c)

Although the transfer term T is defined as the sum of six terms (product of i = 1, 2, 3
by j = 2, 3), the approximation in (6.6c) reflects our observations that the single term
i = 1, j = 3 represents over 90% of the total in experiments (this is expected from the
fact that turbulence is most active in the vicinity of the interface where the dominant
shear is ∂zu

2d).

6.2. Sketch and implications for regime transitions

A sketch of the time-averaged budgets in (6.3) is shown in figure 13 (using the fast
t∗ time scale), which improves on the sketch of figure 8(b). Note that we ignore the
vertical buoyancy fluxes B2d

z , B3d
z as well as the three-dimensional horizontal buoyancy

flux B3d
x since they have been experimentally verified to be negligible (as expected).

Panels (a) and (b) show fluxes of hypothetically different magnitudes under increasing
‘power throughput’ in the system (Re/2)〈Φadv

P 〉t = (1/8)〈Qm〉tθRe (represented by the
thickness of the E → P arrow). Assuming 〈Qm〉t ≈ 0.5, the time- and volume-averaged
power throughput in the system is θRe/16, and we predict the following:

(i) for the lowest θ Re < 20, the power throughput is < 20/16 = 1.25, and 〈S〉t =
〈S2d〉t alone is sufficient to dissipate this power via the adjustment of the streamwise
velocity profile u(y, z) creating O(1) gradients |∂zu2d| and |∂yu2d|. This situation cor-
responds to the L regime, which, as we have seen in § 3.2, is essentially invariant in
x;

(ii) for 20 < θRe < 50, the power throughput is 1.25 < 〈S〉t < 3.12, and corresponds to
the H regime, featuring the three-dimensional confined Holmboe waves (CHWs) described
in LPZCDL18. To understand the L→ H transition, we formulate two distinct hypotheses
regarding the energetical importance of CHWs:

• either HYP-1: the distortion of the two-dimensional flow u2d to yield higher
∂zu

2d, ∂yu
2d and 〈S2d〉t ‘incidentally’ renders the flow profile u2d, ρ2d susceptible

to the confined Holmboe instability (CHI) and triggers a transition to a weakly
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Figure 13: Energy budgets of forced flows using the K = K2d + K3d decomposition,
refining the budgets of figure 8(b). These budgets in (a) and (b) only differ in the
hypothetical magnitude of the fluxes (with respect to the rescaled time t∗), represented by
the thickness of the arrows: (a) at low θRe, the power throughput is small and dissipation
by 〈S2d〉t is sufficient. (b) At high θRe, the power throughput is high and transfer to
K3d by 〈T 〉t and dissipation by 〈S3d〉t takes over.

three-dimensional flow state, whose dissipation 〈S3d〉t is insignificant (panel a).
In other words additional dissipation is achieved primarily by u2d and not by the
three-dimensional CHWs, which are simply a by-product of the changes in u2d;
• or HYP-2: the distortion of u2d is no longer sufficient to reach the target
dissipation: no two-dimensional solutions exist with the required 〈S2d〉t and the
flow must ‘bifurcate’ to a three-dimensional state with significant transfer 〈T 〉t
and additional dissipation 〈S〉t � 〈S2d〉t (panel b). In other words additional
dissipation is achieved by CHWs rather than by a continuing deformation of
u2d. This hypothesis was expressed in the last sentence of ‘future direction (ii)’
in LPZCDL18 (§ 7.2, p. 540) as a possible mechanism setting the amplitude of
Holmboe waves.

Experimental data in the next section will allow us to decide which hypothesis is true.
(iii) for θRe > 50 (I regime), the power throughput becomes large > 3.12 and we expect

the transfer 〈T 〉t and three-dimensional dissipation 〈S3d〉t to be important to close the
budgets (panel (b)). The H → I transition may be explained by two hypotheses which
are respectively consistent with those above:

• HYP-1: if the CHW is energetically insignificant, its amplitude is presumably
not influenced by θRe. Since it is the two-dimensional flow u2d that responds to
θ Re, we expect the H → I transition to be related to an instability of this base
flow;
• HYP-2: if the CHW is energetically significant in providing three-dimensional
dissipation following θ Re, its amplitude must be set by θ Re and we thus expect
the H → I transition to be related to a ‘secondary’ instability of this wave state,
perhaps due to a critical (nonlinear) amplitude.

(iv) for θRe > 100 (power throughput > 6.25) the transition to a sustained T regime
has a straightforwards explanation: a fully turbulent flow that sustains high values of
S3d in time and space will achieve higher time- and volume-averages of 〈S3d〉t than an
intermittently turbulent flow.
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Figure 14: Experimental two-dimensional and three-dimensional kinetic energy budgets
in the 16 3D-3C experiments of table 2 and figures 10, 11. The axes, black squares and
solid blue stars are identical to those in figure 11. The empty blue stars and the blue
asterisks show the two-dimensional and three-dimensional decomposition. Green triangles
represent the rate of transfer of K2d to K3d. Orange circles represent the proxy for 〈S3d〉t
and 〈T 〉t (see (6.7)) and the dashed orange line represents its trend.

6.3. Experimental validation

We plot the time-averaged fluxes of the K2d, K3d budgets in our 16 3D-3C experiments
in figure 14. This figure is very similar to figure 11, but shows the S2d+S3d decomposition
and the transfer term T .

We observe that 〈S2d〉t dominates in the L and H regimes. To mitigate our underesti-
mation of 〈S3d〉t in the I and T regimes (owing to the computation of small-scale velocity
gradients, see § 5.3), we further consider and plot the following proxy:

〈S3d
proxy〉t = 〈Tproxy〉t ≡

Re

2
〈Bx〉t − 〈S2d〉t, (6.7)

This proxy for the three-dimensional energy dissipation and transfer is trustworthy
because it relies on the (verified) steadiness of the kinetic energy reservoirs and does
not involve computation of small-scale gradients.

We observe in figure 14 that this proxy for the three-dimensional dissipation dramat-
ically increases in an approximately linear fashion above a threshold θRe ≈ 40, shortly
before the H→ I transition at θRe = 50 (see trend indicated by the dashed line).

This observation is a key experimental result of this paper and supports the prediction
of § 6.2 and figure 13 that the I and T regime correspond to marked increase in three-
dimensional dissipation that scales linearly with the power throughput θRe due to the
upper bound set on the two-dimensional dissipation by hydraulic controls.

This observation also support HYP-1 in § 6.2 that Holmboe waves are energetically
insignificant and caused by a linear instability triggered by the increased interfacial
shear |∂zu| reaching a threshold value when 〈S2d〉t ≈ 20 at the L → H transition
(compare the mean profiles between panels f and l in figure 3). To further support
HYP-1, we confirmed that the two-dimensional mean flow in experiment L1 (〈u〉x,t(y, z)
and 〈ρ〉x,y,t(z)) was indeed linearly stable to three-dimensional perturbations of the form
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Figure 15: Spatial structure of the kinetic energy fluxes in the H regime, whose
volume-averaged energetics are sketched in figure 13(a). Two-dimensional cross-sectional
structure of the t- and x-averaged (a) horizontal buoyancy flux; (b) two-dimensional
dissipation, (c) K2d → K3d transfer; (d) three-dimensional dissipation. Instantaneous
three-dimensional dissipation in (e) in the vertical mid-plane y = 0 and (f) in the
horizontal mid-plane z = 0. This is the same experiment H1 as in figure 3(a-f)
(instantanenous snapshots are taken at the same time t = 261).

φ′ = φ̂(y, z) exp(ikx + σt) (using the analysis described in LPZCDL18 § 5.1, which was
previously performed on experiment H4).

6.4. Spatial structure of energy dissipation

In this section, we examine the spatial distribution of energy fluxes to reveal informa-
tion hitherto hidden by volume averaging. In figures 15-16, we compare and contrast,
for the H1 and T2 experiments respectively, the cross-sectional distribution of the
buoyancy flux (panel a), two-dimensional dissipation (panel b), transfer (panel c) and
three-dimensional dissipation (panel d). The cross-sectional average of the data in each
panel respectively yields (Re/2)〈Bx〉t, 〈S2d〉t, 〈T 〉t, 〈S3d〉t. We also plot instantaneous
snapshots of three-dimensional dissipation in the vertical mid-plane plane y = 0 (panel e)
and horizontal mid-plane z = 0 (panel f ) at the same times as the snapshots in figure 3(a-
d) and figure 3(g-l). We recall that the volume-averaged transfer and three-dimensional
dissipation are underestimated in the T experiment, as can be seen in figure 14 (next-to-
rightmost data series). The proxy data in the latter figure suggests that the (averaged)
transfer in figure 16(c) should be 25% larger, and the (averaged) dissipation in figure 16(d-
f) should be 50% larger. The time- and volume-averaged power input (Re/2)〈Bx〉t (which
should equal the total 〈S2d〉t + 〈S3d〉t) can be read on figure 14 as ≈ 1 (H1 experiment)
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Figure 16: Spatial structure of the kinetic energy fluxes in the T regime, whose
volume-averaged energetics are sketched in figure 13(b). Same panels and legend as
figure 15 for side-by-side comparison. This is the same experiment T2 as in figure 4(g-l)
(instantanenous snapshots are taken at the same time t = 168).

and ≈ 7 (T2 experiment). Accordingly, the colour bar in figure 15-16 (identical for the
all panels of each figure) have respective limits of 3 and 20, equal to about three times
the average energy input, allowing for side-by-side comparison of the relative importance
of each flux in each regime. Complementary visualisations of slices and averages of the
density, velocity and enstrophy fields of experiments H1 (same as in figure 15) and T3
(similar to figure 16) are available in Partridge et al. (2019).

In both experiments, the power input (panels a) is relatively uniformly distributed
within each counter-flowing layer, and low around the sharp interface (H regime, figure 15)
and mixing layer (T regime, figure 16). In contrast, the two-dimensional dissipation
(panels b)) is highly localised at the four duct walls, as well as at the interface in the H
regime only (in the T regime the interfacial shear is comparatively low). The transfer term
(panels c) is also highly localised but in the ‘active core’ of the flow, i.e. at the interface
(H) or within the mixing layer (T). This localised power input of K3d is then dissipated by
three-dimensional motions preferentially in the interior (panels d) as well as a very close
to the top and bottom walls in the T regime. We also observe that the three-dimensional
dissipation is more uniform than the transfer in the cross-section. This suggests complex
energy transfer pathways and supports the general conclusion that all the kinetic energy
fluxes have very different cross-sectional structures, both in the H regime and in the T
regime. Next, we focus on the instantaneous snapshots of three-dimensional dissipation
in panels (e-f). Beyond the observation that its volume-average S3d is only significant in
the T regime, we see, without surprise, that its spatial structure is highly heterogeneous.
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‘Wispy’ regions with considerable three-dimensional structure feature much enhanced
dissipation, several times larger than their respective volume-average, especially in the
T regime where it locally exceeds the limit of the colour bar.

6.5. Link with the buoyancy Reynolds number

The stratified turbulence literature highlights the importance of the buoyancy Reynolds
number, defined by scaling analysis of the momentum equations as Reb ≡ ReF 2

h ,
where Fh is a horizontal Froude number (Brethouwer et al. 2007). Strongly stratified
turbulence, in which there is a significant range of scales not affected by viscosity, requires
Reb � 1. However, this definition of Reb requires the identification of a horizontal
length scale `h to construct Fh which is not obvious in the SID. ML14 estimated
Reb ≈ Re(`h/`v)

2 ≈ 104(10−1)2 ≈ 100 in their most turbulent SID experiments at
Re = O(104) using an estimation of the horizontal to vertical lengthscale ratio of
`h/`v ≈ 10, meant to characterise the elongated turbulent structures visible in the
shadowgraphs. Following this approach, we estimate Reb = O(10) in our most turbulent
3D-3C experiment at Re = O(103).

A related definition of Reb is

Reb ≡
ε0
νN2

0

, (6.8)

where the quantities on the right-hand side are dimensional: ε0 is a ‘characteristic’ rate
of turbulent dissipation and N2

0 is a ‘characteristic’ value of the buoyancy frequency
N2 ≡ −(g/ρ0)∂zρ. This definition is based on the assumption that ε0 ∼ q3/lh, where
q is a measure of the turbulence intensity. This parameter Reb is also referred to
as the ‘activity parameter’ and quantifies the separation between the Ozmidov and
Kolmogorov lengthscales (Gibson 1980; Smyth & Moum 2000). Consensus has emerged
that Reb & 20 − 30 is required for the flow to have a wide enough range of scales that
are not significantly affected either by stratification or by viscosity and hence exhibit
the key characteristics of stratified turbulence (Bartello & Tobias 2013). In our recent
publication (Lefauve et al. 2018, §§ 2.3.2, 3.2) we quantified Reb in (6.8) using simple
scaling arguments and proposed Reb ≈ θRe, remarking that the H → I and I → T
transitions occurred respectively at Reb ≈ 50 and 100.

However, the latter estimates are based on scaling laws which do not accurately
represent the quantitative relations involved. The results of this paper on the energetics
of SID flows now allow us to provide a more accurate estimate of Reb as

Reb ≈
2〈S3d〉t

〈|∂zρ|〉x,y,z,t
≈ 2〈S3d〉t. (6.9)

The first approximation comes from our non-dimensionalisation of (6.8) and our inter-
pretation of ‘characteristic’ dissipation and buoyancy frequency as ‘time- and volume-
averaged’, and of ‘turbulent’ as ‘three-dimensional’. The second approximation comes
from 〈∂zρ〉x,y,z,t ≈ 1 since 〈|∂zρ|〉z = |ρ(z = 1) − ρ(z = −1)|/2 = 1. As we have seen
in figure 14, S3d

proxy starts increasing shortly before the I → T transition, and grows
approximately linearly in the I and T regime. Assuming two-dimensional dissipation
would plateau in very turbulent flows (far above the I → T transition), our corollary
(4.25) yields

Reb →
1

8
θRe for θRe� 100. (6.10)

The maximum value achieved in our T experiments is however well below this asymp-
totic estimate: Reb ≈ 2S3d

proxy ≈ 6 (figure 14, experiment T3, θRe = 132 6� 100). We
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note that this value depends on the choice of volume over which the three-dimensional
dissipation is averaged, which varies between studies in the literature. If instead of
choosing the whole measurement volume delimited by the four duct walls, as we do
in (6.9), we chose a smaller volume containing the ‘core’ of the mixing layer where s23d
is largest (e.g. |y|, |z| 6 1/2), we would obtain an (perhaps more sensible) estimate
a factor of 2 to 4 higher, i.e. of magnitude Reb = O(10). This is about an order
of magnitude lower than the values claimed by ML14, because the spatio-temporal
resolution constraints of our 3D-3C experiments limit us to flows just above the I → T
transition (at θRe = O(100), giving Reb = O(10)), whereas some of the shadowgraph
observations in ML14 were done much further away from this transition (at θRe =
O(103), giving Reb = O(100)).

7. Conclusions

7.1. Summary

In this paper, we investigated the transition in the long-term qualitative behaviour,
or flow regime, of geophysically-relevant sustained stratified shear flows as two key
forcing parameters are varied. We performed laboratory experiments in the Stratified
Inclined Duct (SID) setup (figure 1) which features four qualitatively different regimes:
laminar (L), Holmboe waves (H), intermittently turbulent (I) and fully turbulent (T),
with increasing three-dimensionality and mixing intensity (figures 3-4 and table 1). These
regimes occupy distinct regions in the two-dimensional space of non-dimensional input
parameters: duct tilt angle θ ∈ [−1◦, 6◦] and Reynolds number Re ∈ [300, 5000] (figure 2).
Although these regimes have been observed since at least Macagno & Rouse (1961), we
argued that previous attempts to explain their transitions were unsuccessful. Although
Meyer & Linden (2014) recognised the importance of both θ or Re, their empirical scaling
of iso-regime curves scaling with the nondimensional group θRe2 does not agree with our
new regime diagram obtained in a smaller duct (figure 2). This motivated our search for
a scaling law backed by quantitative experimental data and sound physical principles.

Therefore, we derived from first principles evolution equations for the volume-averaged
potential and kinetic energy in a control volume of arbitrary length, whose cross-
section is bounded by the four walls of our square duct (equations (4.10), (4.13),
sketched in figure 5). We then introduced a simplified two-layer frictional hydraulics
model (figure 6) to make modelling progress and simplify the energy budgets in SID
flows. We distinguished between, on one hand, ‘lazy flows’ at low |θ| . 2◦, in which
the forcing is primarily hydrostatic and dwarfed by viscous friction; and on the other
hand, ‘forced flows’, at high θ & 2◦, in which the forcing is primarily gravitational
and is closely balanced by viscous friction (figure 7). We showed that these flows have
different energetics (figure 8) and that, in a statistically-steady sense (averaged over
sufficiently long times), any control volume of a forced flow exhibits remarkably simple
energy budgets characterised by a single potential power input from the exterior, a
single potential-to-kinetic conversion power and a single kinetic dissipation power, all
equal in magnitude (equation (4.21) and figure 8(b)). This led us to propose the physical
hypothesis that regime transitions are caused by increasing values of the suitably-rescaled
time- and volume-averaged rate of kinetic energy dissipation, or square norm of the strain
rate tensor 〈sijsij〉x,y,z,t (equations (4.22) and (4.23)), and to deduce the ‘forced flow’
corollary that regime transitions should therefore scale like θRe.

We validated this theory in two ways. First, our experimental regime diagram (fig-
ure 9) confirmed the θRe scaling predicted by the corollary. Second, we obtained a
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comprehensive data set of unprecedented volumetric measurements of the density and
three-component velocity fields in 16 experiments spanning all four regimes (table 2
and figures 10, 11). Our time- and volume-averaged measurements of all energy fluxes
confidently support our theoretical ‘forced flow’ energy budget model, as well as the
above physical hypothesis, despite the experimental challenges of obtaining accurate
kinetic energy dissipation rates (figure 12).

We delved deeper into the above hypothesis by deriving budgets for the two-
dimensional (streamwise-invariant) and three-dimensional components of kinetic energy
for forced flows (equation (6.5)). We further hypothesised that flows with low power-
throughput and thus low dissipation power (low θRe, figure 13(a)) are able to dissipate
energy exclusively two-dimensionally by increasing the magnitude of the exchange flow
rate (volume flux) and their streamwise-invariant wall and interfacial shear (L and H
regimes). By contrast, flows with high power-throughput (high θRe, figure 13(b)) are
not be able to dissipate enough energy two-dimensionally due to the upper limit on the
exchange flow rate set by hydraulic control, and thus have to transition to intermittently
and fully turbulent regimes with increasingly three-dimensional dissipation scaling with
θRe. We validated this hypothesis with our volumetric experimental data set (figure 14)
despite having to use indirect evidence (equation (6.7)) to mitigate the experimental
under-estimation of three-dimensional dissipation. Based on further observations, we
suggested that (i) the L → H transition was caused by a Holmboe instability triggered
by the increasing interfacial shear resulting from the two-dimensional dissipation scaling
with θRe; (ii) the H → I transition might be triggered by another primary instability
of the base flow rather than by ever-growing Holmboe waves since the latter are
energetically insignificant. We also showed that energy transfers in the three-dimensional
experimental volume were complex and heterogeneous in space, particularly in the more
turbulent regimes (figures 15 and 16). Finally, we provided a quantitative estimate of
the buoyancy Reynolds number (equations (6.9)-(6.10)) in the turbulent regime.

To conclude, we believe that we have achieved our initial aim, since our results provide
the first mutually-consistent physical basis and quantitative experimental data to explain
the observed transitions in the different qualitative long-term dynamics of SID flows.
The generality of these results provides a useful basis for the study of a broader range of
sustained stratified shear flows found in Nature.

7.2. Unanswered questions

Our results raise at least four unanswered questions:
(i) What is the dynamical explanation for the I → T transition? We proposed

that the L → H and H → I transitions were caused by stratified shear instabilities
resulting from modifications in the parallel base flow slaved to the energy throughput
θRe. We explained that, energetically, sustained turbulence in the T regime was able
to achieve higher time-averaged three-dimensional dissipation than intermittently in the
I regime. However, does this transition occur by a gradual lengthening of the period of
turbulent events with respect to laminar events or by a more abrupt bifurcation? In other
words, do ‘intermediate’ solutions exist with a range of turbulent/laminar period ratios
or a range of different dissipative structures? The dynamical details of the transition
between intermittency and sustained turbulence, and the quantitative explanation for
the transition occurring at θRe ≈ 50 remain open questions.

(ii) How to explain flow regime transitions in horizontal ducts or duct inclined at a
slightly negative angle? We indeed observed Holmboe waves and intermittent turbulence
for θ = 0◦ (figure 2), yet our forced flow scaling of transitions with θRe only applies for
θ & α (we recall that α ≡ H/L is the inverse aspect ratio of the duct, see (4.18)). Flows
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at |θ| . α have more complex energetics (figure 8(a)), and we have seen that, in such
flows, transitions appear to scale with θRe2 instead of θRe (figure 9). Further work is
needed to understand lazy flow dynamics and explain this θRe2 scaling.

(iii) Why did ML14 observe a different transition scaling in a different duct geometry?
As evidenced by the dashed line in figure 2 and as discussed in § 2.5, their experiments
in a larger duct (H = 100 mm vs 45 mm in this paper) suggested a θRe2 scaling (both
for lazy and forced flows) in disagreement with our theory. However, we note that the
Reynolds numbers in ML14 are typically larger than ours. At sufficiently large Re, wall
boundary layers are not fully-developed, i.e. they do not span the whole cross-section
of the duct, as was typically the case in the data shown in this paper. Instead, wall
boundary layers become sufficiently thin that the volume-averaged contribution of wall
dissipation is no longer of order 1 but scales with Re1/2. This apparently undermines our
simple hypothesis (4.23) that increasingly turbulent regimes correspond to increasing
values of the volume-averaged dissipation well above ‘laminar’ O(1) values, but more
work is required to investigate this question.

(iv) What is the role of mixing? In this paper, we focused on kinetic energy dissipation
to explain regime transitions and did not explicitly derive or represent irreversible mixing
in the energy budgets. Irreversible mixing is implicitly accounted for in the mass flux
Qm (3.3), to which the energy throughput of forced flows is proportional (see (4.24)).
Although the black contours in figure 9 show that the mass flux has a complicated
Qm(θ,Re) dependence (due primarily to the volume flux Q(θ,Re) and secondarily to
mixing), we made the reasonable assumption that, in forced flows, Q ≈ Qm ≈ 0.5
(leading to (4.25)). We believe that neglecting mixing in this fashion is acceptable for
the work in this paper, but acknowledge that a better understanding of the Q(θ,Re)
and Qm(θ,Re) relations is desirable. More generally, beyond the Qm/Q question and
its (moderate) impact for the energy throughput in forced flow, we believe that the
study of mixing and mixing efficiency in sustained stratified shear flows remains a major
research objective. However we are currently not able to measure mixing accurately in
experiments; the Batchelor lenghtscale is typically Sc1/2 ≈ 25 times smaller that the
Kolmogorov scale, which is already challenging to resolve (§ 5.3). For a more detailed
discussion about mixing in the SID experiment, including an explicit representation of
irreversible mixing in energy budgets, see Lefauve (2018) § 6.7.
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Appendix A. Experimental constraints

The physical constraints currently limiting the resolution and temporal duration of
our experimental measurements are as follows:
• the streamwise and vertical resolutions ∆x ≡ `/nx, ∆z ≡ 2/nz (where nx, nz are
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the number of sPIV vectors in each direction) are generally equal and limited by the
resolution of the cameras, the size of the PIV particles (typically 50 µm) and their
seeding density. Using 8 MPixel cameras, 31 × 31 Pixel interrogation windows, a 75 %
overlap, and volumes of length ` ≈ 11, we typically obtained nx ≈ 500, nz ≈ 100, i.e.
∆x ≈ ∆z ≈ 0.02. Density data were obtained at higher resolution because of the absence
of interrogation windows in PLIF, but since this higher resolution was not needed for
the analysis in this paper, they were smoothed before being interpolated onto the grid
of the velocity data;
• the spanwise resolution ∆y ≡ 2/ny is limited by the finite thickness of our laser

sheet (required for sPIV measurements) estimated to be ≈ 1.5 mm ≈ H/30, dictating
ny ≈ 30 − 40 as a good compromise to avoid excessive redundancy of overlapping laser
sheets, and therefore a typical resolution ∆y ≈ 0.05− 0.07 (coarser than ∆x, ∆z);
• the temporal resolution ∆t ≡ nyδt of our measurements is primarily limited by the

previously set ny and the laser frequency of δt−1 (a maximum of 100 Hz in dimensional
units, i.e. 100 double pulses per second). This results in a typical non-dimensional
lower bound ∆t & 30 × 100−1 × ∆U/H = (1.2ν/H2)Re ≈ Re/1600, making the near-
instantaneous ‘freezing’ of volumes better (i.e. ∆t smaller) in low-Re flows than in high-
Re flows (for a given H and ν). For the flows considered in this paper, ∆t ≈ 1− 4 ATU
(the lower bound ∆t ≈ Re/1600 was only rarely realised since the laser could only be set
at its maximum frequency for the fastest, highest-Re flows).
• the duration of the recorded data, τ ≡ nt∆t, and therefore the number of successive

volumes measured nt, is limited by the available RAM storage memory (50 GB) dedicated
to each camera (two cameras for sPIV and one camera for PLIF). A total of 150 GB
of raw data typically yielded ≈ 18000 frames per camera, i.e. ≈ 9000 sPIV fields or
nt = 9000/ny ≈ 300 volumes spanning a duration τ ≈ 102 − 103 ATU (typically a few
minutes). Although τ is typically shorter than the maximum duration of an experiment
(before the flooding of the controls, determined by the size of the reservoirs), we refer to
it as the ‘duration of an experiment’ in this paper for simplicity.

Appendix B. Estimation of energy fluxes

Based on the two-layer hydraulic model of figure 6, we use the definitions for the energy
fluxes in the K and P budgets (4.4), (4.5), (4.8) to estimate the following (derivations
can be found in L18, § 6.3.1):

• the advective boundary flux K is

Φadv
K = −Q

3

`

{ ηL
(1− η2

L)2
− ηR

(1− η2
R)2

}
6 0 since ηL > ηR, (B 1)

it is thus always negative (it acts as a sink to K) since the interface must slope down. In
other words, the inflow of kinetic energy in V by the velocities u1L, u2R is always smaller
than the outflow by the velocities u2L, u1R. (Note that even more negative Φadv

K would
be obtained by relaxing the assumption of uniform flow in each layer and taking into
account the non-unitary velocity distribution coefficient when evaluating 〈u3〉y,z, which
is typically greater for the thin outflowing layers than for the thick inflowing layers).
Importantly, we note that Φadv

K = 0 if V is approximately periodic in x, i.e. if velocities
and interface position are identical at the left and right boundaries. For any general V ,
this requires that the interface is flat everywhere η(x) = 0, which as explained in § 4.3.1
corresponds to forced flows guaranteed at large tilt angles θ > α.
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• the pressure boundary flux of K is

Φpre
K =

1

4`
〈u(η − z)〉y,z|L−R = 0, (B 2)

under the assumptions of no barotropic flow 〈u〉x,y,z = 0 and of hydrostatic flow (in
particular that u does not depend on z). We will therefore neglect this flux.
• the viscous boundary flux of K is

Φvis
K =

8Q2

`Re

{ ηLη
′
L

(1− η2
L)2
− ηRη

′
R

(1− η2
R)2

}
, (B 3)

We note that, similarly to the advective flux, Φvis
K = 0 in forced flows (i.e. if V is periodic).

However, for the large Re� 1 investigated here, this flux will be neglected compared to
the advective flux |Φvis

K | � |Φadv
K |.

• the advective boundary flux of P is

Φadv
P =

1

4`
Qm

( ηL
1− η2

L

− ηR
1− η2

R

)
︸ ︷︷ ︸

hydrostatic
forcing

>0

+
1

4
Qm θ︸ ︷︷ ︸

gravitational
forcing

>0

> 0. (B 4)

We note that Φadv
P has two distinct positive components: hydrostatic forcing and gravita-

tional forcing, as already identified in (4.17). Consistently with the discussion of § 4.3.1,
we see here that for forced flows the hydrostatic term cancels and only the gravitational
forcing remains.
• the diffusive boundary flux of P :

Φdif
P =

1

4`ReSc

[
θ
{(
x̄+

`

2

)
η′R −

(
x̄− `

2

)
η′L
}

+ (ηLη
′
L − ηRη′R)

]
, (B 5)

where again, Φdif
P = 0 for forced flows. Moreover, just like Φvis

K , we neglect this flux for
the large Re and Sc used here since |Φdif

P | � |Φadv
P |.

• the horizontal buoyancy flux:

Bx =
1

4
〈ρu〉x,y,z θ =

1

4
Qm θ > 0, (B 6)

which is exactly equal to the gravitational component of Φadv
P (see (B 4)).

• the vertical boundary flux:

Bz = −Qm
ηL − ηR

4`
6 0, (B 7)

under the assumption that the center of mass of a slab of dense (ρ = 1) fluid drops by
ηL−ηR over the length ` (i.e. it has a negative vertical velocity), and conversely for a slab
of buoyant (ρ = −1) fluid. In the absence of any other vertical motion other than those
consistent with hydraulic theory, it is thus negative, meaning that it acts as a source
term for K (where it appears as −Bz, see (4.10)) and as a sink for P (where it appears
as +Bz, see (4.13)). We note that this flux also cancels for forced flows. However, if we
relax the hydraulic assumptions (as will be required to investigate the laboratory flows
in this paper), non-trivial vertical motions (turbulence) may render Bz sign-indefinite.
We therefore consider this flux to be irreversible (negative-definite) in flows close to the
hydraulic assumptions (L and H regimes) and potentially reversible (sign-indefinite) in
flows where vertical motions may be large (I and T regimes).
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• the conversion of I to P :

Φint
P =

1

4ReSc

{
− ηL − ηR

`
θ︸ ︷︷ ︸

> 0 and � 1

+1
}
≈ 1

4Re Sc
, (B 8)

since 〈ρ〉y,z = η, by definition of η, assuming collocation of the velocity and density
interfaces, and 〈ρ〉x,y|B−T = 1− (−1) = 2. Given the large Re and Sc investigated here,
we neglect it.
• the viscous dissipation: under the assumptions of hydraulic theory, D = 0. When

relaxing these assumptions, D > 0 but is a priori unknown (though we show in § 4.4
that it can be deduced in the simplified budget of forced flows).
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