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Abstract

Alternative splicing is an important step in gene expression regulation in eukaryotes, through
which a single gene can express different transcript isoforms. We can now use RNA se-
quencing (RNA-seq) data to identify which isoforms of each gene are being expressed in a
specific condition, by quantifying the expression level of each isoform of a gene, even though
quantification of isoforms remains a difficult task. In this way, we can better understand
how prevalent this process is and how often a gene expresses different isoforms. It can
also be evaluated if all isoforms of a gene are about equally expressed or if there is one
dominant isoform that is significantly more expressed than the others. Moreover, by applying
this analysis to different tissues, it can be assessed if there are changes in splicing between
different conditions and if such a change has a biological role.

A dataset of 32 normal human tissues was used in this study. The results show that,
although alternative splicing can lead to the expression of different transcripts of a gene,
many genes have an n-fold dominant transcript – a transcript that is expressed at n times
higher level than the second most expressed one [1]. On average, 68% of protein-coding
genes expressed in a given tissue have a 2-fold dominant transcript and 47% have a 5-fold
dominant transcript.

It was observed that the dominant transcript of a gene tends to be the same across tissues,
but there are cases where the dominant isoform switches between tissues, these cases are
designated switch events. For a given pair of tissues, there are on average around thirty
2-fold switch events and just below four 5-fold switch events. The switching exons often
significantly overlap and the most common types of alternative splicing are alternative 3’
selection (24% of the cases) and alternative 5’ selection (21%).

To evaluate the conservation of the transcripts, the dominant transcripts were compared
to APPRIS principal isoforms. These isoforms are annotated based on their function, protein
structure, and cross-species conservation [2]. 69.2% of the 2-fold dominant transcripts and
81.1% of the 5-fold dominant transcripts are APPRIS principal isoforms. It was also observed
that in 80% of the switches there are no protein domain changes.

Similar results were obtained when the same analysis was done using the GTEx dataset
[3], which has a much higher number of samples, containing data from 54 conditions. In
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this case, on average 59% of expressed genes in a given condition had a 2-fold dominant
transcript and 31% had a 5-fold dominant transcript. The number of switch events was again
low, given the number of dominant transcripts, indicating that dominant transcripts tend to
be conserved across normal tissues.

A comparative analysis of matching tissues common to the two mentioned datasets was
also performed and, although the datasets are different, there were switch events in common
between both of them. 5 examples of 5-fold switches involving domain swaps were analysed
in detail and it was revealed that the type of genes affected by switches can be quite distinct
and the protein domains that change between isoforms can vary both in number and function.
The tissues found to be particularly more represented on these switch events were skeletal
muscle, testis and cerebral cortex.

These results show that in most cases, changes in alternative splicing do not change
transcripts significantly, and respectively, the changes at the protein level are minor. This
and similar observations [4, 5] indicate that alternative splicing may not be the main process
responsible for generating protein diversity.

In the last study presented in this thesis, it is analysed how RNA-seq data can be inte-
grated with a data-independent acquisition (DIA) mass spectrometry method, SWATH-MS
(sequential window acquisition of all theoretical spectra-mass spectrometry), to study the
impact of depleting PRPF8, a core spliceosomal component, on the proteome. The results
show that intron retention events lead to decreased protein abundance. It is also shown that
differential transcript usage and gene expression have effects on protein abundance, altering
it proportionally to transcript levels. Overall, some links between transcript and protein
level are revealed and it is demonstrated how perturbed systems can be used in the study of
alternative splicing [6].
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Chapter 1

Biology of gene expression

At the center of molecular biology is deoxyribonucleic acid (DNA). DNA was first discovered
in 1869 by Friedrich Miescher, who called it “nuclein” and, far from knowing what he had
actually discovered, he simply described it as a phosphorus-containing substance. Many
studies followed its discovery but ones of significant importance were done by Erwin Chargaff
in 1950, where he found that DNA nucleotide composition varies among species and that
the amount of adenine (A) was similar to the amount of thymine (T) and the amount of
cytosine (C) was similar to the one of guanine (G). These discoveries were essential for the
later construction of the model structure of DNA (Figure 1.1) proposed in 1953 by James
Watson and Francis Crick and presented as the molecule that carries the genetic information
from one generation to the other [28]. Previously in 1866, Gregor Mendel had published his
work on how certain traits, like shape and color, were passed on peas from one generation
to the next. He also recognized that certain traits had different characteristics that could be
dominant or recessive. Without knowing, he was studying genes, DNA regions that code for
functional RNA molecules, the functional unities of genomes, which contain the complete
set of genetic information in an organism [28].

The understanding of molecular biology has evolved much since these discoveries but
one of the most remarkable landmarks was sequencing the first complete human genome,
a joint effort of a group of publicly funded researchers, the International Human Genome
Sequencing Consortium. First, the draft genome was published in 2001 [29, 30] and two
years later the final version was made available [31].

It was understood that there was potential in the discovery of the source code for human
life and that it could help to find the answers to many biological problems, although the
complexity of this discovery was greatly underestimated. It was soon evident that extracting
useful information from a sequence of DNA was a far harder task than it was anticipated.
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Figure 1.1 Structure of the double helix of DNA.

Since the human genome was first sequenced, studies such as the ENCODE project
analysed sequencing data in a large scale manner to extract biologically relevant information.
In this study, regions of transcription were identified and mapped, as well as, regions of
transcription factor association, regions involved in establishing chromatin structure and
histone modification. In the ENCODE project, biochemical functions were assigned to 80%
of the genome and relationships between regulatory elements and gene expression were
discovered, helping to understand mechanisms of gene regulation [32].

With the advances in sequencing technologies, more genomes are being sequenced at
cheaper prices. Nevertheless, it is still not a straightforward process to extract comprehensive
information to answer complex biological questions. Also, many genomes are sequenced to
study very specific topics but there are more questions that could be potentially addressed
with that same data. Therefore, there is a big potential in the data to explore and there is a
need to implement automatic methods that can extract information from all the data that is
being continuously generated and many times made publicly available.
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1.1 Central dogma of molecular biology - RNA

The central dogma of molecular biology was first stated by Francis Crick in 1958 [33] as a
hypothesis for how pathways of information can be transferred between biological molecules.
It stated that the information can be transferred from nucleic acid to nucleic acid or from
nucleic acid to protein but not between protein to protein or protein to nucleic acid. By
information, was meant the precise determination of sequence, either nucleic acid bases or
amino acid residues. As a general statement this is right and not only allows the transfer of
information from DNA to ribonucleic acid (RNA) but also from RNA to DNA, DNA to DNA
and RNA to RNA. This is a more complete version of the dogma than the perhaps more
popular one which was proposed by James Watson in 1965 which only allows information to
flow from DNA to RNA and from RNA to protein [34].

The dogma describes the common flow of information in a biological system. It describes
the most obvious processes of DNA replication, RNA transcription, protein translation, as
well as, RNA replication and reverse transcription, that are common in viruses. The way it is
stated is in fact so generic that it includes all major biological processes. However, it would
also allow processes that are not encountered in nature, like proteins being translated directly
from DNA, without using messenger RNA (mRNA). Despite this and other exceptions, as a
generalization the central dogma is true and its main message is that information cannot flow
from protein to nucleic acid [35].

The DNA sequence is however only one of the components in the system, and to fully
understand gene expression, one must look at transcription and translation, and analyse the
expression levels of the gene products (Figure 1.2).

1.1.1 Transcription

Transcription is the process of transferring information from a sequence of DNA to a molecule
of RNA. In eukaryotes, it occurs in the nucleus where DNA is located and is mediated by
a complex of multiple enzymes. The main enzyme involved is RNA polymerase, which
matches the RNA bases to the DNA sequence, assembling the new RNA molecule. The
activity of RNA polymerase is mediated by transcription factors, proteins that bind to specific
DNA sequences, promoters or enhancers, to initiate transcription. The complex of RNA
polymerase and transcription factors is called the transcription initiation complex and is
responsible for initiation, elongation, and termination of transcription (Figure 1.3).

Initiation is the first step of transcription and, in the case of mRNA, starts with RNA
polymerase II (RNAPII) binding to the 5′ end of the gene to a sequence called promoter,
which affects the transcription rate depending on its affinity for RNA polymerase, and
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Figure 1.2 Basic steps of gene expression in eukaryotes. The information stored in DNA is
transcribed to RNA in the nucleus. The RNA is processed and it can undergo alternative splicing,
originating one or multiple mRNA molecules. The mRNA is then exported to the cytoplasm where it
is translated into a protein (adapted from [7]).

determines the localization of the transcription start site (TSS). The promoter also determines
the direction of transcription and the DNA strand that is transcribed. It is an important region
in the regulation of gene expression and it is composed of a core promoter and regulatory
domains [36].

Other regulatory elements, such as enhancer sequences, can be thousands of bases far
from the transcription site but are brought close by the looping of DNA, which is a result of
the interaction of proteins bound to the enhancer and others bound to the promoter. These
proteins are either activators or repressors, depending on the effect they have on transcription.
DNA changes its 3-D structure to facilitate the activity of RNA polymerase. A number of
specialized proteins is needed to stabilize DNA which is tightly packaged as chromatin [37].

After initiation, the elongation process begins and the new RNA sequence is extended
from the start site to the termination site. After transcription initiation, the RNA polymerase
unwinds the DNA double helix, reads the DNA template and adds nucleotides to the 3′ end
of the growing RNA sequence [37].

The final phase of transcription is termination. The termination process in eukaryotes
occurs differently depending on the polymerase that is transcribing. In the case of RNAPII,
terminator sequences are at the end of noncoding sequences and are recognised by protein
factors. In the case of RNA polymerase I and III, a termination factor stops transcription
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Figure 1.3 The three basic steps of DNA transcription. (A) Transcription is initiated when the
enzyme RNA polymerase binds to a promoter sequence on the template DNA strand. (B) The
elongation process starts with the unwinding of the DNA double helix. The enzyme RNA polymerase
continues reading the template DNA strand and adding nucleotides to the 3′ end of a growing RNA
molecule. (C) The transcription is terminated when the RNA polymerase reaches a termination
sequence. At this point both the mRNA transcript and RNA polymerase are released from the
complex.
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only after transcribing a polyuracil stretch. The transcription can continue for hundreds
or thousands of nucleotides after the end of a noncoding sequence until a cleavage and
polyadenylation specific factor, and a cleavage stimulation factor, finally cleave the mRNA.
Cleavage occurs at a consensus sequence and it is coupled with termination. Then the mature
mRNA is polyadenylated at the 3′ end, resulting in a poly(A) tail. This process is also
coordinated with termination, but how these processes relate to each other still remains
unclear [37, 38].

1.1.2 Translation

In eukaryotes, translation and transcription occur in different compartments of the cell.
Transcription occurs in the nucleus and translation in the cytoplasm. The mRNA is transported
through the nuclear pore complex channel, bound to ribonucleoproteins, and the shuttling
mRNA binding proteins are removed in the cytosol before translation [39].

Translation starts with the small subunit of the ribosome and an initiator transfer RNA
(tRNA) molecule binding the mRNA transcript. tRNAs are adaptor molecules that carry
amino acids for the emerging peptide chain and can read the triplet code in the mRNA
through complementary base-pairing. In eukaryotes, the complex of initiator tRNA and the
small ribosomal subunit is firstly formed, and it then binds the mRNA transcript, which
means there is a simultaneous binding of the tRNA and the small ribosomal subunit to the
mRNA (Figure 1.4).

Ribosomes sequentially read groups of three bases of mRNA (codons), that correspond
to a particular amino acid, and translation starts at the AUG codon, which is translated to
methionine. A complex of initiation and elongation factors brings aminoacylated tRNAs to
the ribosome-mRNA complex and matches the mRNA codon to the tRNA anticodon, which
is complementary to the mRNA triplet. Each tRNA has the appropriate amino acid coupled
to it, so as the process repeats itself the elongation of the amino acid chain occurs, and the
chain simultaneously folds into conformation. The end of translation occurs with a stop
codon that can be one of three options: UAA, UGA or UAG. The polypeptide chain may
require further processing to become fully formed or active, so it might undergo processing
by chaperones to get into the right conformation. Some sections of the peptide chain might
also be cleaved from the protein and then discarded, those are called inteins. Other proteins
might also be split into different sections, undergo cross-linking or cofactors binding and
other post-translational modifications [40].
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Figure 1.4 The process of RNA translation. There are three binding sites in the small subunit of the
ribosome: an amino acid site (A), a polypeptide site (P), and an exit site (E). The process starts with
the initiator tRNA molecule, which carries the amino acid methionine, binding to the AUG start
codon of the mRNA at the P site of the ribosome where it will become the first amino acid of the
polypeptide chain (adapted from [8]).
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1.2 Alternative splicing

Before the human genome project was concluded in 2001, the predictions of the number of
protein-coding genes were between 30,000 and ~140,000 [30]. However, it was then realised
that the number of protein-coding genes was much lower, around 20,000, which was quite
surprising considering the complexity of human cells when compared to simpler organisms,
like Arabidopsis thaliana with ~25,000 or Caenorhabditis elegans, a nematode 1 mm in
length and ~20,000 protein-coding genes. So it was concluded that the number of genes
might not be a good indicator of organism complexity, especially in eukaryotic genomes [41].
Besides correcting the number of genes over time, the definition of gene has also changed due
to the realization that the most abundant products of transcription are not mRNA molecules
but rather tRNA, rRNA and many others involved in gene expression regulation [42].

Alternative splicing is a mechanism by which a pre-mRNA can be processed into different
mRNA molecules. As a direct consequence, a single gene can code for multiple proteins or
other gene products, depending on how exons are spliced together. However, the downstream
effects of splicing vary both among genes and species [41].

The complexity of an organism does not correlate well with the size of the genome
and the number of protein-coding genes. With that said, alternative splicing is only one of
the processes that enable the creation of complexity without increasing genome size. This
process combined with the action of regulatory elements, such as promoters and enhancers,
will lead to an end result that is, not only difficult to predict but also to understand without
knowing all the components that intervene in gene expression and regulation [41].

There are other mechanisms that contribute to eukaryotic genome capacity for complexity.
These include RNA editing, trans-splicing, and tandem chimerism [43–45]. RNA editing is
the process by which RNA can be modified after transcription. For example, a modification of
an RNA base in a mRNA, which can affect the protein that is translated [43]. Trans-splicing,
in opposition to alternative splicing, is the splicing together of separate pre-mRNAs to form a
new mRNA [44]. Tandem chimerism is the transcription of two adjacent transcription genes
into a single “chimeric” mRNA, which can then be translated into a fused protein, having
parts of both original proteins [45].

1.2.1 Discovery of alternative splicing

RNA splicing was discovered in 1977 by Richard J. Roberts and Phillip A. Sharp [46, 47].
Before that time, a gene was thought to be a long uninterrupted sequence of DNA, however,
they discovered that was not always the case. They found that genes could be discontinuous,
meaning that multiple segments of DNA could be separated but end up together at the RNA
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level. Both Roberts and Sharp were studying the localization of genes on the genome of
adenovirus and found out that the mRNA did not behave as expected. Shortly after, it was
shown that split genes could be found in higher organisms and that exons could be differently
spliced in different transcripts through a process named alternative splicing. These findings
drastically changed the view, not only on gene expression but also on gene evolution [48].

They used electron microscopy to determine where the segments of DNA were located
in the genome. They discovered that the mRNA was derived from four different segments
of DNA located separately in the genome, concluding that certain genes could have genetic
information discontinuously organized in the genome [46]. After this initial discovery, it
was shown that this split gene structure was common and also the most frequently found in
higher organisms. In terms of evolution, this discovery implied that genes not only evolve by
accumulating minor mutations, resulting in a gradual change but could also suffer meaningful
rearrangements that result in larger nucleotide and functional changes. An exon could actually
correspond to an entire protein domain, adding or removing an entire functional unit to the
protein, which had considerable effects during evolution [48].

1.2.2 The process of alternative splicing

In the process of alternative splicing, once the pre-mRNA is processed into different mRNA
molecules, information is lost and it is no longer possible to reconstruct the original DNA
sequence from the final mRNA. When pre-mRNA is transcribed, it is composed of introns
and exons but only exons are typically part of the mature mRNA, which may include protein-
coding sequences and untranslated regions at either end of the transcript. Introns are portions
of the pre-mRNA that are removed during splicing. Splicing controls which exons end up in
the mature RNA and these may vary according to the tissue, cell type or condition, which
creates a possibility of a gene expressing different transcripts in different conditions through
alternative splicing [49].

The process of alternative splicing has some variations depending on how the exons are
split. There are four main types of alternative splicing, exon skipping (Figure 4.16 - a) is the
most common in higher eukaryotes, accounting for about 40% of splicing events, but is quite
rare in lower eukaryotes. The second and third most common types in higher eukaryotes are
alternative 3′ and 5′ splice site selection (Figure 4.16 - b and c), accounting for 18.4% and
7.9% of the events, respectively [9]. These events occur when two or more splice sites are
recognized at one of the ends of an exon. The fourth most common type is intron retention
(Figure 4.16 - d) and it occurs when the intron is kept in the mature mRNA transcript. It
is the rarer type of event in vertebrates and invertebrates, only 5% of the cases, but is the
most common type in plants, fungi, and protozoa. There are also other types: mutually
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Figure 1.5 Different types of alternative splicing (adapted from [9]).

exclusive exons (Figure 4.16 - e), alternative promoter usage (Figure 4.16 - f) and alternative
polyadenylation (Figure 4.16 - g) [9].

The splicing process uses specific sequences at the splice junctions of the pre-mRNA that
identify where exons and introns are located. Therefore, mutations in these regions can lead
to the production of unstable or out of frame mRNAs. As a consequence, protein expression
can also be affected [50]. The percentage of genetic diseases involving splicing mutations
that could be direct mutations of splice sites or disruption of other splicing components can
be as high as 60% [51]. This is one of the reasons why understanding alternative splicing is
important.

Functional alternative splicing has been acquired throughout vertebrate evolution and it
is a key mechanism of gene evolution alongside amino acid change [52]. This is one of the
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processes through which ~20,000 human genes are able to express approximately ~160,000
transcripts, according to Ensembl annotation [53]. RNA-seq has allowed the identification of
a large number of transcripts [54], resulting in an increased number of annotated transcripts
in the databases as the technology advances.

Studying alternative splicing at the RNA level has certain limitations because RNA
expression level does not always correlate with the protein expression level [55]. On the other
hand, some splicing events are difficult to detect with mass spectrometry (MS) experiments
because an isoform might only be identified by one peptide only, which may not be detected
[56]. Therefore, it is possible to detect more splicing events using RNA-seq data.

It has been suggested that 92-94% of human genes undergo alternative splicing and that
it varies 2- to 3-fold less between individuals than between tissues. Interestingly, switch-like
regulation has been associated with sequence conservation in regulatory regions and with the
generation of full-length open reading frames. There is also a correlation between patterns of
alternative splicing, alternative cleavage, and polyadenylation, suggesting that these have
coordinated regulation and that there is high sequence conservation of regulatory motifs in
alternative introns and 3′ UTRs [57].

Although gene expression has strong tissue dependence both across individuals [58] and
different species [59], the same is not observed for alternative splicing patterns. Most of the
variance found between human tissues is due to differential gene expression, with alternative
splicing playing a small role in it. However, there is more variance of alternative splicing
between individuals, which might be seen as an indication that this process is more stochastic
[60]. There is also more variance between species than between tissues [61]. Given these
general observations, it has to be noticed that there are exceptions and in fact, some exons
are, not only tissue specific but also conserved across species [62].

1.2.3 Function of alternative splicing

Alternative splicing can generate RNA diversity from the genome [63] but the idea that
alternative splicing is also the primary source of protein diversity has been questioned based
on the results of some large-scale proteomics. Although most genes have the potential to
express multiple isoforms, most genes express a single protein isoform. It has also been
shown that most alternative exons are under neutral selection, which imposes the question of
what is the role of alternative splicing and how prevalent it really is [4]. There are well-known
examples of alternative splicing functions such as regulating transcription factors, localization
of proteins, enzymatic activity and protein interactions, but in many cases, it is difficult to
detect the changes brought about by it [63]. So despite some of its functions being known,
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there are still mechanisms that are not yet fully understood. Especially in large-scale analysis,
it is difficult to make an assessment for each specific case.

One of the evolutionary advantages of alternative splicing is that new genes can be
created through nondisruptive recombination at introns, by a process called exon shuffling
[64]. Another advantage is to expand the coding capacity of the genome, without the need
to create totally new genes. Both vertebrates and invertebrates have a similar number of
genes, around 20,000, however, the number of genes that can undergo alternative splicing is
much higher in vertebrates [65], suggesting that this process is closely related to increased
transcriptome complexity. In fact, alternative splicing is approximately twice as frequent in
organs from primates, as in the equivalent organs from mouse and other species [66]. The
difference is even higher between unicellular and multicellular organisms, the latter having
longer and more numerous introns [67]. It has also been proposed that alternative splicing
could be the main driver of evolution of phenotypic complexity in mammals, especially in
primates which have the highest alternative splicing complexity [66].

Alternative exons predominantly encode regions located on the outside of the protein.
As a result, the general structure of the protein does not change, there is only an effect on
the protein surface [68]. In this way, alternative exons can introduce new domains without
disrupting the overall protein structure [69]. This suggests that alternative splicing can
introduce protein changes without radically altering the function of a protein.

1.2.4 Alternative splicing regulation

Alternative splicing increases the coding capacity of genomes and its regulation is essential
for determining cell- and tissue-specific features. Its regulation is mediated by chromatin
structure, DNA methylation, histone marks, and nucleosome positioning, which provide a
dynamic scaffold for interactions between the spliceosome and transcription complex [70].

Splicing is performed by the spliceosome, a ribonucleoprotein (RNP) mega particle
that binds splice sites in each intron. These splice sites consist of consensus sequences
that are recognized by the spliceosome and have different binding affinities according to
their similarity to each consensus sequence. Splice sites compete for splicing and their
comparative binding affinity determines how they are spliced [71]. It should be noticed that,
although transcription and splicing are often depicted as a two-step independent process,
splicing has actually a cotranscriptional nature, so a full-length primary transcript might
not exist, meaning that in very long genes, some sites might be spliced before the end of
transcription [72].

The regulation of tissue-specific alternative splicing is usually done by a combination of
tissue-specific and ubiquitously expressed RNA-binding factors that interact with cis-acting
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RNA elements, controlling spliceosome assembly near splice sites [73]. Some factors can
activate or repress splicing depending on the context, that is largely influenced by the location
of binding relative to specific core spliceosomal components [74].

Splicing is regulated by some cis-regulatory sequences such as exonic splicing enhancers,
exonic splicing silencers, intronic splicing enhancers, and intronic splicing silencers, that
affect how the splice site is used according to their location. There are also Trans-acting
factors that bind splicing enhancers and silencers, which include serine–arginine (SR)-rich
and heterogeneous nuclear ribonucleoprotein (hnRNP) families of proteins, as well as tissue-
specific factors, such as polypyrimidine tract–binding protein (PTB) [75], NOVA [76], and
FOX [77]. Regulation is also dependent on the position of the binding on the pre-mRNA [78].
The interaction between RNA-binding factors can coordinate regulation of polyadenylation
and splicing, making sure that both UTR regulatory sequences and coding regions are
expressed in conjunction to obtain the appropriate tissue-specific isoforms.

One of the models of alternative splicing suggests that there is an interaction between
splicing, transcription, and chromatin organization, that controls the process temporally and
spatially [71].

Alternative splicing is regulated by splicing factors, both by their abundance and their
post-translational modifications. It is also dependent on the functional and physical coupling
that is established between the transcription and splicing machinery. Coupling is an RNAPII-
dedicated mechanism and it can occur by two mechanisms: recruitment coupling and kinetic
coupling. Recruitment coupling requires splicing factor recruitment to transcription sites by
the transcription machinery. On the other hand, in kinetic coupling, it is the speed of RNAPII
elongation that controls alternative splicing by affecting the rate at which splice sites and
regulatory sequences emerge in the pre-mRNA that is being formed during transcription [71].

1.2.5 The spliceosome

The spliceosome machinery is very accurate and flexible, due to the fact that its conformation
and composition is extremely dynamic. In most eukaryotes, there are two unique spliceo-
somes: the U2-dependent spliceosome, which removes U2-type introns, and the U12-type
spliceosome, which is less abundant and not present in all eukaryotes [10].

On the pre-mRNA, the information that defines an intron is limited to conserved sequences
at the branch site, 3′ splice site, and 5′ splice site. The branch site is located 18-40 nucleotides
(nt) upstream of the 3′ splice site and is followed by a polypyrimidine tract in higher
eukaryotes (Figure 1.7), a region rich in pyrimidine nucleotides, especially uracil, that is
usually 15-20 nt long. U2- and U12-type introns have different branch sites. There are
several cis-acting elements that can be splicing enhancers or silencers, both intronic and
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Figure 1.6 The U2-dependent spliceosome pathway. All the snRNPs are represented by circles and
non-snRNP proteins are just represented by their names. In the transcripts, exons are represented by
blue boxes and introns are represented by lines (adapted from [10]).
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Figure 1.7 The splicing mechanism. Exons are represented in boxes (E1 and E2) and introns in solid
lines. The letter ’A’ represents the branch site adenosine and p represents the phosphate groups at the
5′ and 3′ splice sites (adapted from [10]).

exonic. They have short and diverse sequences to which regulatory proteins bind, modulating
in this way both constitutive and alternative splicing, stimulating or repressing the assembly
of spliceosome complexes [10].

The information contained in the splicing substrate is limited, therefore the regulation of
alternative splicing is also controlled by a large number of trans-acting factors that together
with the pre-mRNA form the spliceosome. The components of the U2-dependent spliceosome
are U1, U2, U5, and U4/U6 small nuclear ribonucleoproteins (snRNPs), as well as numerous
non-snRNP proteins. It has to be noticed that the U12-dependent spliceosome contains
different snRNP components. During splicing, snRNAs undergo structural rearrangements
and none of them possess an active site, unlike ribosomal subunits [10].

The assembly of the spliceosome happens in a predefined order of interactions between
snRNPs and the other splicing factors. First, U1 is recruited to the 5′ splice site and a set of
non snRNP factors interact with the branch site and the polypyrimidine tract. Then, U2 binds
the branch site forming the A complex (the prespliceosome). A pre-assembled complex of
U5 and U4/U6 snRNPs is recruited by the A complex, forming the B complex. As the RNA
and protein interactions go through rearrangements, U1 and U4 are destabilized and leave the
spliceosome complex, forming the B activated complex, which suffers catalytic activation,
subsequently catalyzing the two first steps of splicing. This reaction gives rise to the C
complex, which catalyzes the next step of splicing, causing the spliceosome to dissociate,
and the snRNPs can then take part in additional rounds of splicing (Figure 1.6).

Exons in mammalian pre-mRNAs have a rather constrained length of ~120 nt on average.
On the other hand, introns have varying sizes that can go from hundreds to more than
1000000 nt, being on average ~5000 nt. When intron lengths exceed 200-250 nt, splicing
is undergone through another pathway, called exon definition [79]. This process is quite
prominent in mammals and it starts with U1 binding the 5′ splice site of an exon, facilitating
the association of U2AF with the polypyrimidine tract upstream of it. As a consequence, U2
is recruited to the branch site upstream of the exon, splicing enhancers recruit SR family
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proteins and a network of protein-protein interactions is established across the exon around
which the exon-defined complex has been formed. After exon definition, the 3′ splice site
pairs with an upstream 5′ splice site across the adjacent intron, and there is a switch from
exon-defined to intron-defined splicing complex, where the cross-exon complex is disrupted
and converted into a cross-intron A complex, forming a molecular bridge between U2 and
U1 bound to a 5′ split site. It is through this process that it is determined which exons
are ultimately spliced together. Exon-defined complexes contain other snRNPs and can be
converted directly into cross-intron B complexes. There are also multiple pathways for an
exon-defined complex to be converted into an intron-defined spliceosome, but the pairing of
splice sites usually occurs during the A complex formation, with very few exceptions when
it might actually occur in later stages [10].



Chapter 2

Uncovering the human transcriptome
with RNA-seq

The transcriptome is the set of all transcripts in a cell or condition. By studying the transcrip-
tome, one can better understand which regions of the genome are being expressed, as well
as estimate the relative expression values of genes and individual transcripts. Comparative
transcriptome analysis can help to understand the differences between conditions, being cell
types, tissues, development stages, or between normal and disease states. Transcriptomics
studies might include transcripts other than mRNAs, such as non-coding RNAs, helping to
uncover the role of different components of the transcriptome and the genome. In this way,
the structure of genes can also be better understood, the start and stop sites of exons can be
mapped, and alternative splicing patterns can be analysed [54].

2.1 Functions of RNA

RNA has diverse functions that go beyond the ones of mRNA and tRNA. Of these two,
mRNA is a copy of a DNA sequence, the protein blueprint, and tRNA carries amino acids to
assemble each new polypeptide chain. Besides tRNA, another RNA type that participates in
translation is ribosomal RNA (rRNA), which is functionally the most important component
of the ribosome. These are the three types of RNAs that have a role in protein synthesis but
there are others that have different functions [80].

The diversity of RNAs and their functions gave rise to the hypothesis that RNA preceded
the evolution of DNA and proteins. The RNAs that do not encode proteins are generally called
non-coding and its most common types are the above-mentioned rRNA and tRNA. However,
there are also long non-coding RNAs (lncRNAs) and others that are generally described as



18 Uncovering the human transcriptome with RNA-seq

small regulatory RNAs (sRNAs), which can exert their activity through a combination of
complementary base pairing, through complexing with proteins or even by having their own
enzymatic activities [80].

One of the subcategories of sRNAs is small nuclear RNA (snRNA), which play an impor-
tant role on alternative splicing. There are also microRNAs (miRNAs), which regulate gene
expression by binding to mRNAs and repressing their translation, generally by imperfectly
pairing, although there are exceptions. A number of these miRNAs appear to be linked to
cancer and other diseases [80, 81]. Small interfering RNAs (siRNAs) are another type of
sRNA that also inhibits gene expression. They can be single or double-stranded and can be
incorporated in a complex called RISC (RNA-induced silencing complex), which can bind to
a sequence of mRNA with the complementary sequence, inhibiting transcription. siRNAs
might have evolved as a defense mechanism against double-stranded viruses. They are
generated in a similar process to miRNAs, but they are derived from a longer RNA molecule
and processed by the Dicer enzyme. Their mechanisms of inhibition of gene expression are
different in most cases but there are cases in which both act in similar ways [82]. Another
type of RNA is small nucleolar RNA (snoRNA), which is located inside the nucleus in a
structure called nucleolus, where rRNA processing and ribosomal assembly occurs. snoRNAs
take part in the processing of rRNA, namely with methylation and pseudouridylation of
specific nucleosides [83].

There are also less common RNAs, such as riboswitches which modulate gene expression
by detecting environmental and metabolic cues and affecting expression in accordance with
those. Ribozymes are another example, in this case, they have catalytic functions similar to
enzymes, intervening in replication, mRNA processing, and splicing.

Finally, there are lncRNA that interact with DNA, RNA and transcription factors, par-
ticipating in processes such as DNA methylation, histone modification, and chromatin
remodeling. They operate as signals, decoys, guides, or scaffolds to regulate gene expression
[84].

There is a big variety of noncoding RNAs, and maybe some will still be discovered.
Understanding the biology of RNA is essential to have a full picture of the molecular biology
of the cell [80, 81].

2.2 Methods to study RNA

Although the variety of RNA types is vast, alternative splicing is commonly studied by
analysing mRNA expression data. All products of gene expression from the same locus are
called isoforms and they might vary in transcription start sites (TSSs), untranslated regions
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(UTRs) and protein-coding DNA sequences (CDSs). It has to be taken into account that
assessing the extent of the differences in mRNA isoform expression between conditions has
presented substantial technical challenges in the past and still presents some nowadays [85].

High-throughput techniques to study RNA started being used more than 20 years ago.
These studies were first done using expressed sequence tags (ESTs), which yielded relatively
low estimates of tissue specificity. The difficulty of this method on detecting differences
in isoform expression levels is related to its limited statistical power [86]. EST methods
enable the analysis of gene expression by partially sequencing complementary DNA (cDNA),
obtaining in this way the sequence, as well as the abundance of RNAs. Although this
method has been of importance in the past, the high sequencing costs and the relatively low
throughput limited its application in expression analysis. Additionally, the data obtained is
semi-quantitative [87].

Tag-based methods tried to overcome some of the mentioned limitations. Serial Analysis
of Gene Expression (SAGE) [88] significantly reduced the cost of expression analysis
per gene, because it only relied on sequencing a short tag region per cDNA, 15 to 21
base pairs. Other methods such as Cap Analysis of Gene Expression (CAGE) [89], and
Massively Parallel Signature Sequencing (MPSS) [90] have higher throughput and provide
gene expression levels. However, they all have serious limitations related to their dependency
on Sanger sequencing technology and to the fact that many of the short tags used cannot be
uniquely mapped to the reference genome. It has also to be noticed that only a portion of the
transcripts is analysed and isoforms might not be distinguishable from each other [54].

These methods were largely replaced by DNA microarrays when they appeared, mostly
because of the lower costs for large-scale studies and the consistently higher coverage
achieved across tissues [91]. DNA microarrays are based on hybridization of transcript
derived targets fluorescently labeled to probes attached to a solid surface. The method
requires the sequence information to be previously known or the reference genome to be
available. This technology has low specificity and low sensitivity for some genes, due to the
background signals and the occurrence of cross-hybridization. Because of these issues, this
technique also has a limited dynamic range [54, 87].

High-throughput Next Generation Sequencing (NGS) overcame some of the mentioned
pitfalls. RNA-seq has less background noise and greater dynamic range than microarrays. It
also generates high coverage of mRNAs and by sequencing the transcripts, reveals sequence
identity directly, instead of relying on hybridization techniques to distinguish and quantify
them [87, 92]. It allows not only the identification of transcripts in a given condition but also
the quantification of these same transcripts at a low cost, that keeps getting lower with the
technology advances [93].
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2.3 Experimental workflow of RNA-seq

Although direct sequencing of RNA is possible, most RNA-seq experiments are done through
sequencing complementary DNA (cDNA), which is DNA synthesized from mRNA by the
enzyme reverse transcriptase. This means that a cDNA library has to be prepared. There is
a wide variety of library preparation protocols but in all of them, DNA or RNA fragments
are fused with adapters that contain the necessary elements for immobilization on a solid
surface. During this step, it has to be considered how the RNAs of interest are going to be
captured, how the RNA is going to be reverse transcribed into double-stranded DNA and
how the adapters are going to be placed on the cDNA ends for amplification and sequencing.

There are some size selection steps that are also performed, as well as PCR amplification.
The library preparation should ensure a good molecular recovery of the original fragments
so that the genomic coverage is high even with little sequencing. Some library preparation
protocols might introduce biases in sample composition, which poses technical challenges
and may lead to biased data.

In general, RNA-seq protocols are more challenging than DNA-seq protocols and can
also produce more bias. Low complexity is one of the types of bias and is the result of the
production of many reads with the same starting point. Another bias is the uneven coverage
across transcripts which can produce antisense artifacts when using standard libraries [87].

2.3.1 Library preparation

RNA-seq procedures start with rRNA depletion or mRNA enrichment. In the case of
eukaryotic transcriptomes, after the RNA is extracted, polyadenylated mRNAs are extracted
with oligo-dT beads. Alternatively, rRNAs can be selectively depleted using ribonucleases,
which has the advantage of not restricting the analysis to polyadenylated RNAs. These latter
protocols are usually referred to as total RNA protocols, in contrast with polyA-selected
protocols. Oligo-dT beads protocols are cheaper and are the most popular also because
the most commonly sequenced RNAs are polyadenylated RNAs, either mRNA or lncRNA.
Selection can also be done with oligo-dT priming for reverse transcription but priming based
methods can exhibit 3′ bias, resulting in reads enriched in the 3′ portion of the transcripts.
Therefore, poly(A) purification is the preferred method for selecting RNAs [94].

This technology has some constraints regarding the size of reads that can be sequenced,
therefore the extracted transcripts need to be fragmented in reads with the adequate size.
Additionally, the reads also need to cover the whole length of each transcript. This step is also
necessary because of size limitations of most current sequencing platforms. There are many
techniques for RNA fragmentation, RNase III digestion and chemical zinc-induced hydrolysis
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being two of them. RNase III cleaves RNA in a sequence and structure-specific manner,
unlike zinc-mediated cleavage which has no such specificity but still is not completely
random [94]. In this process, uneven fragmentation can be a source of bias, because it can
lead to differential representation of specific RNA regions [87].

After fragmentation, random hexamer primers hybridize to the RNAs and retrotranscrip-
tion is initiated, generating double-stranded cDNA. The following step is ligation of adapter
sequences to both ends of each cDNA before amplification and sequencing (Figure 2.1). The
adapters have the purpose of enabling hybridisation of the cDNA fragments into the flow
cell and also work as primers for the sequencing reaction. The resulting cDNA fragments
are then size-selected using gel electrophoresis to fit the adequate size for the sequencing
machine and then the cDNA library is amplified by PCR [94].

2.3.2 Sequencing

After library preparation, the samples are loaded into a flow cell for sequencing. The adapters
in the flow cell are complementary to the ones ligated to both ends of the cDNA fragments
to allow hybridisation. A second amplification step follows and bridge amplification is
used in order to increase the signal for sequencing. This consists of the synthesis of cDNA
complementary fragments, which then hybridise with adjacent adapters, allowing subsequent
rounds of synthesis. The result is clusters of identical sequences that are then sequenced and
read by synthesis. This procedure uses modified versions of the four bases, that incorporate a
reversible terminator and a fluorescent dye. During each sequencing cycle, the new reagents
are added, the new bases are incorporated and then elongation is blocked. The incorporated
bases are identified by measuring the fluorescent signal. This process is repeated for the
whole sequence and at the end, a set of images enables the identification of each base by
using base calling software, which converts the images to sequences or reads. These reads
are a copy of the expressed RNA in the initial samples and their length is the same as the
number of cycles performed during sequencing. At the end of the process, both the sequence
and the probability of a base being wrong are often saved in a FASTQ file [94].

There are some biases that are introduced during library preparation. One of them is that
random hexamer priming is not totally random; there are preferences for certain sequences
and as a consequence, there are fragments that undergo preferred conversion to cDNA [95].
PCR amplification also has the same type of bias, leading to differential amplification of
fragments dependent on their GC content [96]. Additionally, there can be wrong base calls if
the elongation reaction is not blocked or the fluorescent dye is not removed at the right time
[97]. Technology advances have reduced the biases over time by introducing new protocols
and algorithms to take them into account. Cufflinks [14] algorithm is an example of such a
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Figure 2.1 Library preparation and sequencing of an Illumina platform. This is the paired-end
workflow, which includes the ligation of adaptors at each end of the cDNA molecule. Both ends of
the cDNA fragment are independently sequenced. Letter ’A’ designate adapters and ’P’ designate
primers (adapted from [11]).
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case. Regarding the PCR protocols, the use of molecular identifiers, such as random barcodes
also reduced the mentioned bias [98].

2.4 Read mapping and transcript quantification

One of the challenges of RNA-seq is to reconstruct the full set of transcripts that were present
in the original samples. In addition to identifying the transcripts, estimating the expression
levels also presents its own challenges.

There are two main strategies to map sequencing reads. One consists of aligning the
reads to a reference genome or transcriptome, and the other is de novo assembly of the reads
into contigs, without using a reference sequence. The first method is used in most situations,
and the second one is used in particular cases, such as identifying new transcripts. Read
mapping is a time consuming and computationally expensive task due to its complexity. It
is also a task that may introduce some errors because of the decreasing quality of the reads
at the 3′ end, specifically in Illumina platforms [99]. Therefore, quality control checks are
usually performed on the reads prior to mapping and trimming of the 3′ end of reads is a
common practice to avoid low-quality nucleotides that might lead to less accurate mapping.
Reads with overall low quality are also removed for the same reason and also to decrease the
complexity of the time-consuming mapping procedure.

When a reference genome is available, reads can be aligned directly to that sequence, and
if transcriptome annotation is available, reads can be aligned to the transcriptome. On the
one hand, aligning directly to the transcriptome, simplifies the alignment process, drastically
reducing the complexity of the task. On the other hand, this approach does not allow the
discovery of new transcripts or any other analysis that requires detecting expression in
intronic or unannotated regions [98].

Mapping of RNA-seq reads is more complex than DNA-seq reads because the mRNA
does not contain introns, so if the aligner is using a genome reference, it must handle gapped
reads and these gaps might be 10 to 100,000 bases long. Another issue that the aligner needs
to deal with is processed pseudogenes, which may cause the incorrect mapping of many
exon-spanning reads [98].

2.4.1 TopHat2 aligner

The alignment tool TopHat2 [98] implements a compromise strategy, combining the ability
to identify novel splice sites with mapping of known transcripts. TopHat2 aligns reads of
various lengths to the reference, allowing indels of multiple dimensions. It also has the option
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Figure 2.2 TopHat pipeline. First, all reads are mapped against the reference genome and the ones
that are not able to be mapped, are set aside. The first consensus of mapped reads is computed,
followed by the determination of potential splice junctions, using sequences potentially surrounding
splice sites. Then the initially unmapped reads are indexed and TopHat tries to align them to
previously determined splice junctions (adapted from [12]).

of allowing read mapping across fusion breaks, corresponding to genomic translocations. It
combines the identification of novel splice sites with mapping to known annotated transcripts,
producing accurate alignments even in highly repetitive genome regions and pseudogenes.

TopHat2 implements a two-step approach: first potential splice sites for introns are
detected; then the candidate splice sites are aligned to multiexon-spanning reads (Figure 2.2).

TopHat2 starts by finding exact matches between k-mers of reads and the transcriptome.
Those that are unable to be mapped, can then be mapped to the genome. Optionally, reads
can be directly mapped to the genome in the first place. After this step, the mapper tries
to identify splicing junctions to correctly align multiexon-spanning reads. These splice
junctions and their flanking sequences are concatenated to form the full transcripts. Reads
that are not aligned in the initial phase, as well as low-quality ones, are then split into smaller
fragments and realigned. Paired-end reads are mapped separately and only in the final phase
is the additional information, such as fragment length and read orientation, taken into account.
The output of mapping is recorded on SAM/BAM files [100].

In the first step of the alignment, TopHat2 can use full-length transcripts defined by the
annotation, improving sensitivity and accuracy. With that said, some of the transcripts from
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the target genome might differ from the reference genome due to insertions, deletions or
bigger structural variations, which can cause problems in the alignment of reads to these
regions. To overcome these problems, TopHat2 implements some procedures to ensure the
correct mapping is done. To do so, it uses Bowtie2 [101], that runs under TopHat2 and is quite
efficient at detecting short indels. Optionally it may also use the TopHat-Fusion algorithm to
detect large indels, inversions, and translocations involving different chromosomes [98].

One of the problems in the alignment of RNA-seq data is the presence of processed
pseudogenes in the reference genome. Reads that span across multiple exons can also map to a
pseudogene version of a functional gene, which can lead to inaccurate mapping. Pseudogenes
often have no introns but some can be very similar to functional intron-containing genes,
making it hard for the aligner to determine from which region the reads are actually from.
Some reads might even align perfectly to both gene and pseudogene. To avoid this problem,
TopHat2 uses these reads in the splice alignment phase, so even if these reads align perfectly
to a potential pseudogene region, they are still tested to see if can be split and aligned to a
functional gene [98].

2.4.2 De novo assembly

There are some specific cases when de novo assembly has to be used. Situations where a
quality reference genome annotation is not available or in cases where a given sample is
expected to be considerably different from the reference, like in the case of cancer samples.
The assembly of contigs from short reads is, however, a complex task, even with paired-
end reads many regions are still difficult to assemble. Since these methods largely rely on
matching overlapping reads, the read size greatly affects the efficiency of the task. With
technology advances, read lengths are increasing, which facilitates this procedure, so it is
expected for this methods to be more frequently used.

2.4.3 Transcript quantification

After aligning the sequencing reads, the transcripts can be quantified. Typically the expression
values are estimated for genes and transcripts. This process can make use of an annotation or
not, if de novo transcript identification is being performed. One of its main difficulties is that
transcript isoforms from the same gene can be highly similar in sequence and share most of
the same exons, difficulting the assignment of reads to the transcript of origin.

The simplest approach for estimating expression levels relies on counting the number of
reads that align to a certain locus. HTSeq [102] is a program commonly used to count reads.
In the process of counting reads, there must be taken into special consideration reads that
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map to multiple locations and reads mapping to highly repetitive regions, because both can
lead to overestimation of counts. HTSeq opts for excluding these reads from the analysis in
order to avoid this problem. Another strategy is to distribute uniformly the reads across all
mapping regions, such as TopHat2 does [98]. In the case of overlapping reads, HTSeq offers
different options to deal with them, as well as several execution modes for using information
provided by the annotation (Figure 2.3) [102].

Besides this more simplistic and straightforward quantification strategy, there are several
quantification packages that estimate normalised quantification scores. One of these is RSEM
[103], which implements iterations of EM (Expectation-Maximization) algorithms to assign
reads to isoforms. A more recent tool that uses a similar approach is eXpress [104]. There
are different strategies like the Bayesian inference method used by TIGAR2 [105], which
is optimized to work better with longer reads, and Cufflinks [14], which can be used for de
novo transcript discovery and quantification.

All methods have to deal with common challenges. Some reads overlap with exons that
are shared across multiple isoforms of the same gene, which hinders the assignment of reads
to specific transcripts. In these cases, inference approaches, such as the ones implemented in
Cufflinks [14], RSEM [100] or Salmon [106] can be used. Due to this challenge, one of the
strategies often used to estimate expression values relies on the use of reads that uniquely
map to a specific annotated transcript of a gene. Another important source of information are
split reads, which are particularly informative to detect splice junctions. Paired-end reads
are also extremely useful in these cases. By sequencing two ends of the initial cDNA, a
bigger genomic region is covered, facilitating the mapping and consequently the estimation
of transcript abundance. Another useful complementary information is the distribution of
fragments length, which can be used to deconvolute ambiguous mapping, allowing to assign
lower likelihoods to specific mappings that would involve very long distances between paired
reads.

2.4.4 Cufflinks - transcriptome assembly and quantification

The alignments produced by TopHat2 can be used by Cufflinks to identify an expressed locus
in a given sample. In the case of paired-end reads, Cufflinks aligns each pair of reads as a
unit. Fragment assembly (Figure 2.4 - b) starts with the identification of pairs of incompatible
fragments which belong to distinct mRNA isoforms. The fragments are connected in an
overlap graph if they are compatible and the alignments overlap in the genome. There are
one node and one edge in the graph for each fragment, and each of these is placed between
a pair of other compatible fragments (three examples are represented in yellow, blue and
red in Figure 2.4 - c) that have been originated from distinct isoforms. However the other
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Figure 2.3 The three different modes of running htseq-count. The different modes provide flexibility
to choose how reads that do not totally overlap with transcripts are treated (adapted from [13]).
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Figure 2.4 Cufflinks pipeline. The input of Cufflinks is reads (cDNA fragment sequences) that have
been aligned by TopHat (a) or a compatible program. In the case of paired-end reads, each pair of
fragment reads is treated as a single alignment. The overlapping fragment alignments are assembled
separately (b-c), reducing CPU and memory usage. Then the abundances of the assembled transcripts
are estimated (d-e) (adapted from [14]).
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fragments can belong to any of the transcripts that the three colored ones belong to. The
isoforms are assembled from the overlap graph. The graph paths represent sets of mutually
compatible fragments which can be assembled into the full isoforms. In (Figure 2.4 - c)
there are three different minimal paths, each representing a different isoform. According to
Dilworth’s Theorem, the number of mutually incompatible reads equals the minimum number
of isoforms that are required to explain all the fragments. The implementation of a proof
of Dilworth’s Theorem in Cufflinks finds the largest set of reads assuring that no two could
have been originated from the same transcript. It does so by producing a minimal set of paths
which cover all fragments. The estimation of transcript abundance (Figure 2.4 - d) is done by
assigning fragments to the isoforms they could have been originated from. In Figure 2.4 - d,
both the blue and red isoforms could have been originated from the violet fragment. In the
Cufflinks statistical model, the probability of observing each fragment is a linear function of
the abundance of transcripts from which it could have been originated. The program can also
use the distribution of fragment lengths to assist the assignment of fragments to isoforms.
Finally, Cufflinks numerically maximizes the function which calculates a likelihood for all
possible sets of relative abundances of all isoforms (γ1, γ2, γ3 in Figure 2.4 - e), generating
the abundance distribution that best describe the observed fragments, as can be seen in the
pie charts.

One of the reasons why cufflinks is still often used is the fact that it can be used for
de novo transcript identification. Cufflinks can identify reads that do not belong to already
annotated transcripts. De novo assembly is still a complex task and read length is certainly
an important limiting factor. Regions with very low expression also complicate this process,
making it hard for the algorithm to find the best solution for the constructed graph. Due to
the way the algorithm works, trying to extend to the maximum the graph paths, alternative
start and end sites become also difficult to identify.

2.4.5 MMSEQ

MMSEQ [107] is another assembly and quantification tool that uses a strategy similar to
Cufflinks. The main difference between these two tools is the implementation of the inference
method and the type of input they use. Cufflinks uses reads mapped to a reference genome,
relying on a frequentist inference approach to determine the expression levels that best
explain the data. As a consequence, it does not quantify the uncertainty of the determined
expression values. MMSEQ, on the other hand, uses a Bayesian model and takes reads
mapped to a previously known transcriptome as input, which limits the type of analyses that
can be performed downstream. Both methods try to correct sequence biases in their models
and have strategies to use reads that map to multiple sites. To correct sequence-dependent
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bias, these tools attribute a weight to each position in the expressed loci by taking into
account the sequence context. These weights are used during the abundance inference step to
model the non-uniform location of reads across the isoforms [108, 109].

2.4.6 Kallisto - pseudoaligments and quantification

More recently, transcript quantification methods that do not rely on a full alignment to a
reference genome or transcriptome have been developed. These methods are generally faster
and rely on alignment-free or pseudoalignment strategies. Sailfish [110] was one of the first
programs and it used a k-mer approach. Later it was changed to incorporate the same mapper
used in Salmon [106], which uses a "quasi-mapping" approach. It implements a two-phase
procedure with both online and offline iterations of EM, as well as, two different modes of
quantification. Salmon can use its own mapper, RapMap [111], or take BAM files as input.

One other program that is now becoming popular is Kallisto [15], which makes use of
a de Brujin graph to achieve efficient pseudoalignments. Its pseudoalignment algorithm
produces a list of compatible transcripts for each read, avoiding individual bases alignment
(Figure 2.5). It uses de Brujin graphs built from k-mers of the transcripts in the annotation,
instead of k-mers from reads, and the paths in the graph correspond to the transcripts. The
quantification made from pseudoalignments is calculated using a likelihood function that
takes into account the set of mapped fragments and the set of transcripts [15].

2.4.7 Transcript expression levels

Estimating transcript expression levels is a more complex task than gene expression levels
because transcripts of the same gene can be very similar to each other and share multiple
exons, which makes it hard for the computational method to determine to which transcript
each read belongs to. To some extent, transcript identification can rely on an annotation and
paired-end reads. Reads that map uniquely to one of the annotated transcripts are valuable
for this task and split reads that extend across multiple exons are also informative. Paired-end
reads also facilitate the assignment to the correct transcript, not only because this type of
sequencing covers larger genomic regions, but also because it restricts the possible locus that
the reads can map to, due to restrictions on the distance between the pair of reads.

The quantification method produces read counts for features of interest. These counts are
proportional to the expression levels of this feature but other factors will affect them. The
length of the feature, the sequencing depth of the experiment, as well as other experiment
biases, can influence read counts. Therefore, a normalisation is required to try to minimize
these effects and make read counts comparable both between features and samples. FPKMs
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Figure 2.5 Kallisto pseudoalignment strategy. The input of Kallisto is a reference transcriptome and
RNA-seq reads. (a) There is a read represented in black and three overlapping transcripts with
different colors are shown with two exonic regions each. (b) As the de Brujin graph of the
transcriptome (T-DBG) is created, an index is constructed. In the graph, the nodes (v1, v2, v3, ...) are
k-mers and each transcript is a colored path. The path cover creates a k-mer compatibility class for
each k-mer. (c) The black dots are the k-mers of a read that are hashed to identify the k-compatibility
class of the read. (d) The black dashed lines represent a skipping method that uses the T-DBG
information to skip redundant k-mers and accelerate the process. (e) The k-compatibility class can be
determined by intersecting the k-compatibility classes of the k-mers that constitute them (adapted
from [15]).
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- Fragments per Kilobase per Million mapped reads - is a commonly used normalised
expression measure, which is used by Cufflinks [112] but there are others that are similar,
such as RPKMs and TPMs, used by other programs. This measure accounts for the length
of the feature and for the total number of mapped reads in the dataset. It assumes that the
expression levels across samples are identical and each condition has the same amount of
mRNA [113]. Due to this assumption, this type of normalisation is not ideal for cases where
libraries have significantly different expression levels [114]. Even cases where samples have
identical expression levels for most genes but there are some differential expressed genes can
be a challenge to interpret using these methods and comparison between libraries in such
situations can be misleading.

2.4.8 Differential gene expression

Identifying differentially expressed genes is useful in studies comparing different condi-
tions. In such studies, RNA-seq data is commonly used and several algorithms, such as the
one implemented in DESeq2 R package [115], can be used to determine which genes are
significantly differentially expressed.

In comparative transcriptomics analysis, it is common to test the null hypothesis that the
logarithmic fold change (LFC) of the expression of a gene is zero between two different
conditions. The goal of a differential analysis is often to produce a list of genes ranked by
p-value. This approach has some limitations because small changes in expression might
not be biologically important even if they are statistically significant. Additionally, LFC
estimates for genes with low counts can be noisy and the number of differentially expressed
genes depends, not only on biological factors but also on the sample size and experimental
design. DESeq2 implements a statistical framework that produces a stable estimation of
effect sizes, facilitating gene ranking and visualization. It also tests differential expression
taking into account biological relevant thresholds defined by the user [115].

DESeq2 is based on DESeq [116], the previous version of the program, which detects very
low expression estimates and corrects them using a model of the dependence of dispersion
on the average expression levels of all samples. DESeq2 implements additional features that
improve gene ranking, hypothesis tests above and below a threshold logarithm transformation
for quality assessment and clustering of overdispersed count data. This methodology has
high precision and sensitivity while controlling the false positive rate [115].

The DESeq2 method takes a count matrix as input and the reads are modeled using
a negative binomial model. The matrix entries indicate the number of reads that mapped
unambiguously to a specific gene in a sample and a generalized linear model is fitted to
each gene. First the counts of reads are normalised across libraries, then the variability of
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each gene is estimated based on all biological replicates data, and finally, each gene is tested
to see if it is significantly differentially expressed. It uses Negative Binomial Generalised
Linear Models to evaluate the significance of the detected changes. The null hypothesis
is that the observed counts across the two conditions being compared are similar enough
to be derived from the same distribution. The alternative hypothesis is that two separated
distributions would explain those better. The negative binomial distribution is used to avoid
over-dispersion produced by previous models [117].

One important step in the workflow of the method is the estimation of the amount of
variation across biological replicates because the evaluation of significance depends on it.
The low number of replicates in RNA-seq experiments does not allow for the calculation
of variance, therefore it has to be estimated based on the data. DESeq2 assumes that genes
with similar expression level also have similar variance, so it estimates the variance using the
observed dispersion for a given gene and also of all other genes. It fits a regression curve to
the data and uses it to modify the observed dispersion values, and decompose the mean into
a function of independent variables, taking all sources of variation into account [115].

There are other tools to assess differential expression in genes, such as edgeR [118] and
baySeq [119]. There are also tools integrated into the framework of transcript abundance
estimation of other programs, with the advantage that these tools might take into account the
uncertainty in the process of assigning reads to isoforms. Cuffdiff2 [120] is one of these tools,
which is integrated within Cufflinks framework and can be used following the estimation of
transcript expression levels. Another example is MMDIFF [121], which is integrated into
MMSEQ.

2.4.9 Studying alternative splicing

The detection of differences in alternative splicing can be done by studying differential exon
usage (DEU) or differential transcript usage (DTU). The advantage of the first approach
is that it does not require transcript reconstruction, which means it does not have all the
limitations associated with transcript quantification. Another advantage is that, even if it relies
on existing annotation, it makes it possible to indirectly detect new isoforms. However, this
comes with the cost of the results being difficult to interpret sometimes, while transcript-based
analyses are more straightforward.

The Bioconductor R package DEXSeq [122] uses an exon-based approach and it accounts
for biological variation, just like DESeq2 does for differential transcript expression. DEXSeq
identifies significant differences in the proportion of reads that overlap each exon, relative to
the total number of reads that overlap the full gene. In contrast to DEXSeq, MMDIFF [121]
implements a DTU method that uses Bayesian mixed models, integrating the uncertainty in
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transcript expression estimates in the regression model that it uses for testing, improving in
this way the power to detect alternative splicing events.



Chapter 3

Uncovering the proteome with mass
spectrometry

The proteome is the entire set of proteins that is expressed by an organism, tissue or particular
cell type. Proteomics is the integrative study of the proteome and its goal is to obtain a
complete and quantitative analysis of the expressed proteins. Proteomics includes not only
the identification and quantification of proteins but also protein interaction networks, protein
complexes, cellular localization and post-translational modifications [123].

Mass spectrometry (MS) is the method of choice to identify and quantify proteins. This
technique has advanced considerably over the years with the development of new instru-
mentation, alternative fragmentation technologies, and advanced data acquisition strategies.
As a consequence, there have been improvements in the throughput and the depth of the
proteomics analysis. The range of applications has increased as well and it is now possible to
do a global analysis of post-translational modifications, reconstruction of protein interaction
networks on a large scale, and quantitative proteome profiling of organisms. MS can also
be used in systems biology in parallel with other technologies, such as transcriptomics
and metabolomics, and both the repositories and proteomics related resources have been
increasing as well [124].

Proteomics datasets may contain a significant number of false positives. Specifically,
datasets that describe novel genomics events, such as the ones of the human proteome draft
paper [125, 126], should use restrictive quality criteria [127], otherwise, false-positive identi-
fications accumulate due to underestimations of the false-discovery rate (FDR). This issue
can be avoided by applying robust statistical and computational methods [128] and this well-
known pitfall has been addressed more effectively over time. There are several commercial
and open source pipelines that allow efficient and transparent analysis of proteomics data.
However, the complexity, size, and diversity of proteomics datasets has increased. Therefore



36 Uncovering the proteome with mass spectrometry

there is always a need for the development of new methods to process high-throughput
proteomics data [123].

3.1 Discovery proteomics: shotgun mass spectrometry

Shotgun MS is a data-dependent acquisition (DDA) proteomics method for identifying
proteins in a high-throughput context. Its main advantage is the ability to identify and
quantify a large number of proteins in a single analysis. However, shotgun proteomics has
relatively low reproducibility due to random sampling and low sensitivity when compared to
other methods.

Typically in this procedure, the proteins in the sample are firstly digested to obtain
peptides. The resulting mixture of peptides can be processed to capture specific classes of
peptides, and then the peptides are size selected using liquid chromatography (LC) coupled
online to the MS instrument. In a second phase, the ionized peptides are subjected to tandem
mass spectrometry (MS/MS), being further fragmented, and the MS/MS spectra are acquired.
Finally, the MS/MS spectra are assigned to the peptides.

3.1.1 Protein digestion and separation

The digestion of proteins into peptides is a key step in shotgun proteomics and trypsin is a
commonly used enzyme, although alternatively multiple enzymes can also be used. In the
case of trypsin, the cleavage occurs after arginine and lysine residues, except if followed by
proline, so most peptides are expected to match these cleavage rules and there should be few
or no missed cleavages cases.

Protein digestion methods have advantages over intact protein MS/MS sequencing pro-
tocols but also have drawbacks. The peptide mixture can be quite complex because each
protein produces on average around 50 peptides. That is why protein separation, such as 1-D
SDS-PAGE or organellar based separation, should be done prior to digestion. This allows for
the total protein content to be separated into sub-fractions, reducing the complexity of the
sample and facilitating the identification of proteins. Protein digestion can be followed by
peptide enrichment (or depletion) in order to capture peptides with specific properties, such
as phosphorylated peptides. Reverse phase chromatography is then used to further separate
the resulting peptide fractions, and this procedure is coupled online to the mass spectrometer
[123].
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3.1.2 Tandem mass spectrometry

The time that the peptides take to elute from the reverse phase column is called the retention
time. As they elute, they are ionized, transferred into the gas phase, and then subjected to
MS/MS fragmentation for the fragment ion spectra to be obtained. To acquire the data to
produce the spectra, the instrument first scans all peptide ions at each time point, recording
the MS1 spectrum, which consists of mass-to-charge ratios (m/z values) and intensities for
all peptides. Then selected peptide ions (‘precursor’ or ‘parent’ ions), are broken down
into fragment ions in the collision cell, predominantly producing b- or y-type ions (N- or
C-terminal charged fragments, respectively), and MS/MS, or MS2, spectra are acquired.
They consist of a list of m/z values and intensities for each fragment ion. The amino acid
sequence of the peptide is determined using the fragmentation pattern encoded in the MS/MS
spectrum [123]. The quantification of each peptide is typically done at the MS1 spectrum
level, although there are exceptions, and identification is performed at the MS2 level. It is also
possible to identify post-translational modifications by including amino acid modifications in
the database search (Figure 3.1).

Collision-induced dissociation (CID) is the type of fragmentation most often used but
there are others used in particular cases, these include electron transfer dissociation (ETD)
and Higher energy Collision dissociation (HCD). Additionally, some instruments are also
able to operate in a multi-stage mode that includes automated data-dependent triggering of
MS3 acquisition or Multistage Activation (MSA) [123].

The spectrum information content largely depends on the mass accuracy and resolution of
the MS analyzer, so these will affect the subsequent peptide identification. It also should be
noted that protein abundances vary drastically between the cells and tissues, and the dynamic
range of an MS instrument varies from several parts per million (ppm), in high accuracy
instruments, to more than 500 ppm. Even with high accuracy instruments, it is required to
fine tune the instrument, control the room temperature, and use both internal or external
(computational) calibration. The mass resolution of the instrument affects the accuracy to
determine the charge state of the peptide ion [123].

3.1.3 Assignment of peptide sequences to spectra

Following the acquisition of experimental data is the computational analysis to identify the
peptides that compose the obtained spectra. Database searching is the main method for
assigning a peptide sequence to MS/MS spectra. The computational tools that do this task
take MS/MS spectra as input and compare them against theoretical fragmentation spectra
which are generated from the proteins in the database. Not all peptides in the database are
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Figure 3.1 An overview of the workflow for shotgun proteomics (adapted from [16]).
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used; a much smaller list of candidates is selected using in silico database digestion. There
are several criteria that have to be met during the selection phase, such as parent ion mass
tolerance, enzyme digestion constraints, and post-translational or chemical modifications. A
scoring function is used to evaluate the peptide to spectra assignment and this process also
requires some search parameters to be adjusted. These might include the expected type of
ions in the spectrum, and the fragment ion mass tolerance. The final output of the program
includes a list of peptides for each spectrum, that are ranked according to the search score.
Most frequently, only the top best scoring peptide is used as the potential peptide which is
then statistically validated [123].

3.2 Targeted proteomics: selected reaction monitoring

Selected reaction monitoring (SRM) is an MS technique applicable in cases where there
are specific, predetermined analytes with known fragmentation properties in complex back-
grounds. It is useful in such situations because it has higher sensitivity and specificity than
traditional shotgun workflows. SRM is commonly used in liquid chromatography-coupled
mass spectrometry (LC-MS), which has a capillary chromatography column connected inline
to the ionization source of the instrument. SRM makes use of the advantages of triple
quadrupole (QQQ) mass spectrometers, that act as mass filters and can selectively monitor
a specific analyte molecular ion, as well as, one or more analyte fragment ion generated
by collisional dissociation. The number of fragment ions reaching the detector is counted
over time and the chromatographic trace registers the retention time and signal intensity.
The precursor-fragment ion pairs are called SRM transitions and are measured sequentially
and repeatedly. Since the periodicity of the measurement is fast compared to the analyte
chromatographic elution, the chromatographic peaks allow for the concurrent quantification
of multiple analytes [17, 129].

In a proteomics context, molecular ions with a mass in the range of the target peptide
are selected during Q1, the first mass analyzer. In Q2, the molecular ions are fragmented
by collision-activated dissociation and in Q3, which is the second analyzer, the fragment
ions derived from the targeted peptide are measured (Figure 3.2). The quantification of
peptides is supported by the integration of chromatographic peaks for each transition and the
quantification might be relative or absolute if heavy isotope-labeled reference standards are
used. The identification and quantification of a protein are therefore done by inference using
a set of chosen SRM transitions of specific target peptides [17].

The application of SRM to proteomics has certain challenges due to the big dimensions
of proteins. It is also difficult to determine the ideal number of peptides and which of them
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Figure 3.2 Overview of the SRM workflow. The procedure starts with electrospray ionization (ESI).
In Q1 molecular ions of an analyte are selected and in Q2 they are fragmented. A specific fragment
ion of the target analyte is then selected in Q3 and directed to the detector. Over time the number of
target fragment ions is measured, generating the SRM trace. In this figure are shown three srm traces
of three transitions that correspond to three different analytes (adapted from [17]).

should be used as input in SRM assays. Even when the peptides are correctly selected, they
still yield fragment-ion patterns that are more complex than the ones of metabolites or drugs,
which makes it difficult to choose the appropriate SRM transitions. The complexity and
dynamic range of the proteome also create challenges that compromise the specificity of
the SRM assay and the detection of low-abundance species. All challenges aside, SRM is
extremely valuable in the field of proteomics and its range of applications has increased over
time [124].

3.3 SWATH-MS

The most widely used methods for the identification and quantification of proteins are the
two already mentioned: the main one is shotgun or discovery proteomics; and the second
one is targeted proteomics. In both, proteins are first converted into peptides by proteolysis,
and then the peptides are separated using liquid chromatography.

There have been developed some alternative strategies to overcome limitations of these
methods, not having to rely on the detection or knowledge of the precursor ions to acquire the
fragment ion spectra and having increased the reproducibility when compared to traditional
DDA workflows. Such methods are designated data-independent acquisition (DIA) methods
and they rely on cycle recording throughout the LC time range, executing multiple survey
scans and spectra for all precursors present in a predefined isolation window. DIA methods
can use isolation windows of various widths and during the scans can lose the link between
the fragment ions and the precursors, which hinders the analysis of the acquired datasets.
Additionally, when large width windows are used, the number of concurrently fragmented
precursors increases, increasing the complexity of the composite fragment ion spectra [130].
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As an alternative approach for proteome quantification, SWATH-MS is a technique that
combines high specificity of DIA with targeted data analysis building on the high-throughput
SRM scoring. SWATH-MS uses a sequential isolation window acquisition principle used
in some DIA studies with high-resolution MS instruments. So this is a time- and mass-
segmented method which generates fragment ion spectra of all precursor ions in a single
injection and records the ensemble of these spectra as complex fragment ion maps. The
resulting maps have a very high fragment ion specificity when compared to other techniques.
This strategy is designated SWATH-MS in reference to the series of isolation windows
acquired for a mass range of a given precursor. The combination of fragment ion maps of
high specificity and targeted data analysis allowed by the use of information from spectral
libraries confers useful advantages for the qualitative and quantitative analysis of proteomes
[131].





Chapter 4

Studying alternative splicing at the RNA
level

In this chapter I:

(i) analyse how many of the annotated genes and transcripts are actually expressed at
significant levels in normal human tissues;

(ii) analyse the relative expression level of transcripts, in particular investigating dominant
transcripts of genes;

(iii) explore the role of alternative splicing via a comparative analysis of dominant tran-
scripts across tissues to identify switch events – changes in the dominant transcript of
the same gene – and report the transcript changes controlled by alternative splicing;

(iv) infer what are the potential consequences of switch events at protein level.

The computational analyses herein described were performed by myself under the super-
vision of Dr. Alvis Brazma. This study is a continuation of the previous work started by Mar
Gonzàlez-Porta.

4.1 Introduction

The role of alternative splicing has been extensively debated because of the evidence that has
accumulated from RNA-seq transcriptomics and MS proteomics studies [4, 132]. Closely
related to the function of alternative splicing is the question of how protein diversity is
created.
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There are around 22,000 protein-coding genes annotated by Ensembl version 79, and
over 160,000 transcripts, of which 86,430 have protein-coding potential [53]. RNA-seq, in
particular, has enabled the identification of a large number of transcripts and has shown
that over 95% of multi-exon genes have multiple alternative splice isoforms [133]. Almost
19,000 of protein-coding genes have multiple annotated transcript isoforms [134]. However,
it has been suggested in transcriptomics studies that the majority of genes have a dominant
transcript, a transcript that is significantly more expressed than the others [1]. These results
suggest that the role of alternative splicing should be further explored and that this process,
along with differential gene expression, might only be part of the explanation for cell
complexity and diversity.

It has been shown that although many multi-exon protein-coding genes express multiple
transcripts, 79% of the protein-coding genes have a 2-fold dominant transcript, a transcript
that is expressed at least twice as much as the second most expressed transcript [1]. This
result was in accordance with the prediction made in a study based on EST data [135], in
which the authors concluded that 80% of the genes have a dominant isoform. It was also
shown that the dominant transcript tends to be recurrent across tissues. This suggests that
protein-coding genes have a main transcript, and therefore a single main function. On the
proteomics side, it has been shown that most genes have unequivocal peptide evidence for
only one of the protein products [4]. This suggests that, although there is the potential for a
gene to express different isoforms, for many genes there is one transcript and one protein.
However, there are exceptions. Not only do some genes express multiple isoforms, having no
dominant transcript, but also some express different dominant transcripts in different tissues.
The latter cases are called switch events and are relatively rare but not less important. When
a gene expresses different dominant transcripts in different conditions, it is meaningful to
understand how significant are the changes and what is the impact on the function of the
transcript and protein.

Alternative splicing is an important biological process, however, the prevalence of this
process, as well as its biological impact must be studied in more detail, and the understanding
of its function must be readdressed. Here I expand the previous study done in the group
[136], using a larger dataset with more biological replicates, allowing to get better estimates
of dominant transcripts. Also, I further explore the differences of alternative splicing at
the RNA level across tissues, characterizing the changes controlled by it and inferring the
possible consequences of the switch events at the protein level.
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Figure 4.1 Distribution of the number of technical replicates per biological sample in the dataset.
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Figure 4.2 Distribution of the number of biological samples per tissue in the dataset.
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4.2 Results

The dataset used in this study [137] contains a total of 200 samples of RNA-seq data of
coding RNA from tissue samples of 122 human individuals representing 32 different tissues
(ArrayExpress accession id: E-MTAB-2836). It is an extended version of the dataset used
previously [138]. The number of technical replicates per biological sample varies between 0
and 2 (Figure 4.1) and the number of biological samples per tissue varies between 2 and 7
(Figure 4.2).

The goal of this study was to make comparisons between tissues, therefore the expression
levels from individual samples had to be integrated to obtain an expression level for each
transcript at the tissue level. To do so, the expression levels of each transcript was averaged
across technical replicates, generating an expression level value for each transcript of each
biological sample. Then the expression levels were averaged in the same manner across
biological samples of the same tissue, generating the expression value per transcript per
tissue. The dominant transcripts were then calculated for each gene of each tissue to allow
the comparison between tissues and determination of switch events.

4.2.1 Transcript dominance analysis

For genes with more than one transcript, the dominant transcript was determined by calculat-
ing the ratio between the most expressed transcript and the second most expressed transcript
of the gene (dominance ratio). The transcripts were classified in 2- and 5-fold dominant
transcripts, if the ratio was higher than 2 or 5, respectively. Two additional conditions had to
be met for a transcript to be considered dominant: it had to be expressed in all samples of the
tissue; and it had to be the most expressed isoform in all biological replicates. In the case
of genes with only one transcript, this transcript was considered dominant. The dominant
transcript analysis was made using quantification scores calculated with both Cufflinks [14]
and Kallisto [15].

It was observed that the average number of protein-coding genes expressed in a tissue was
10,138, of which 6942 have a 2-fold dominant transcript and 4721 have a 5-fold dominant
transcript (Table 4.1).

The tissue with the highest number of 2-fold dominant transcripts was bladder with 8172
and the lowest was skeletal muscle with 4447 (Table 4.1). In the case of 5-fold dominant
transcripts, the maximum was gallbladder with 5404 and the minimum was bone marrow
with 3009. This means that on average around 68% (60.3% to 73.6%, SD = 2.71) of protein-
coding genes have a 2-fold dominant transcript and 47% (37.8% to 49.3%, SD = 2.18)
have a 5-fold dominant transcript. It should be noticed that the number of 2-fold dominant
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transcripts is lower than the ones determined in the previous study done in the group [1],
where it was found that 79% of protein-coding genes have a 2-fold dominant transcript. This
is a consequence of more stringent criteria, requiring that all replicates behave consistently.
The change in methodology was aimed at later selecting switch events with extra confidence
that are real and not artifacts produced by either the method or the data.

A similar analysis was also done across all tissues. It was observed that 16,811 genes were
expressed across all tissues, of which only 1484 had only one annotated isoform (Table 4.2 -
exp genes). Therefore the vast majority of expressed genes have multiple isoforms. Of the
genes being expressed 1587 and 890 had a 2- and 5-fold dominant transcript, respectively,
across all tissues in the dataset (Table 4.2 - 2fold-intersect, 5fold-intersect). So there are a
relatively small number of genes that express a dominant transcript in all tissues. However, it
was found that 13,726 and 11,768 genes have a 2- and 5-fold dominant transcript, respectively,
in at least one of the tissues (Table 4.2 - 2fold-union, 5fold-union), which corresponds to 81%
of the expressed genes having a dominant transcript in at least one tissue.

The dominant transcripts determined using Cufflinks were also compared with the ones
determined using Kallisto transcript expression scores (Table 4.3). Not only was the number
of dominant transcripts similar using both quantification methods but also, the intersection
between the sets of dominant transcripts was high: on average 89% (83.4% to 90.7%, SD =
1.36) and 82% (74.5% to 86.1%, SD = 2.48), for 2- and 5-fold dominant respectively. This
high overlap provides extra confidence in the relative expression of transcripts and on the
determination of transcript dominance.

Only Cufflinks quantification values were used in the determination of switch events, due
to the high similarity between the results obtained with both methods.

4.2.2 Effect of varying number of biological samples

The dataset used contains a varying number of samples for each tissue. This can affect the
number of dominant transcripts obtained, especially because of the criteria used to select
them. In order for a transcript be considered dominant, it has to be expressed in all samples
of a tissue and it has to be the most expressed transcript in all samples. There are tissues with
2 up to 7 biological samples (Figure 4.2), so it was predictable that the larger the number of
samples, the more difficult would be to meet the previously mentioned criteria.

To evaluate the effect of the number of samples on the determination of dominant
transcripts, the samples of a tissue were grouped in all possible combinations of sets with
varying number of elements, from 1 to the maximum number of samples. The dominant
transcripts were determined for each set of samples and the obtained number was plotted.
The results for colon can be seen in Figure 4.4. Colon is one of the tissues with the most
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n exp n 2-fold ratio 2-fold n 5-fold ratio 5-fold
adipose_tissue 9106 5729 0.63 4123 0.45
adrenal_gland 10833 7495 0.69 5054 0.47
animal_ovary 10403 7156 0.69 4779 0.46
appendix 11040 7458 0.68 4819 0.44
bladder 11453 8172 0.71 5353 0.47
bone_marrow 7954 4793 0.60 3009 0.38
cerebral_cortex 10673 7281 0.68 4892 0.46
colon 9474 6195 0.65 4529 0.48
duodenum 11265 7857 0.70 5085 0.45
endometrium 9883 6523 0.66 4514 0.46
esophagus 10845 7783 0.72 5344 0.49
fallopian_tube 10974 7612 0.69 5279 0.48
gall_bladder 11429 8027 0.70 5404 0.47
heart 9225 6561 0.71 4494 0.49
kidney 10330 6900 0.67 4852 0.47
liver 8371 5870 0.70 4064 0.49
lung 10550 6977 0.66 4883 0.46
lymph_node 9872 6610 0.67 4503 0.46
pancreas 7568 5569 0.74 3633 0.48
placenta 10439 7258 0.70 4938 0.47
prostate 10685 7383 0.69 5063 0.47
rectum 10849 7581 0.70 5184 0.48
salivary_gland 9479 6742 0.71 4567 0.48
skeletal_muscle 6661 4447 0.67 3206 0.48
skin 10384 7203 0.69 5044 0.49
small_intestine 10720 7447 0.69 4993 0.47
smooth_muscle 10318 7192 0.70 4866 0.47
spleen 10817 7258 0.67 4857 0.45
stomach 10242 6867 0.67 4599 0.45
testis 11433 7383 0.65 4947 0.43
thyroid 10249 7167 0.70 4904 0.48
tonsil 10886 7634 0.70 5278 0.48
Average 10137.8 6941.6 0.68 4720.6 0.47

Table 4.1 Analysis of gene expression and transcript dominance per tissue (Cufflinks quantification
scores). The columns designate the following categories:
n exp - number of genes expressed per tissue;
n 2-fold and n 5-fold - number of genes with 2- and 5-fold dominant transcripts;
ratio 2-fold and ratio 5-fold - ratio between the number of genes with dominant transcripts and the
number of genes expressed.
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exp genes 2fold-intersect 5fold-intersect 2fold-union 5fold-union
all 16811 1587 890 13726 11768
one iso 1484 171 171 1484 1484

Table 4.2 Analysis of gene expression and transcript dominance across tissues. The rows contain the
number of genes of the following categories:
all - set of all protein-coding genes in the annotation;
one isoform - set of protein-coding genes with only one annotated transcript.
The columns designate the number of genes of the following categories:
exp genes - expressed genes;
2fold-intersect - genes with a 2-fold dominant transcript across all tissues;
5fold-intersect - genes with a 5-fold dominant transcript across all tissues;
2fold-union - genes with a 2-fold dominant transcript in at least one of the tissues;
5fold-union - genes with a 5-fold dominant transcript in at least one of the tissues.

samples, containing a total of 7. As predicted, the number of samples affects the number
of dominant transcripts obtained and, the highest the number of samples, the lowest the
number of dominant transcripts. The biggest drop on the average number of dominant
transcripts (represented by the red line in Figure 4.4) occurred between single samples
(~6600 transcripts) and sets of 2 samples (~5700 transcripts), which is the minimum number
of samples per tissue.

The effect of the number of samples was noticed and the method to determine dominant
transcripts was maintained because it is a more conservative approach than trying to correct
this effect. It was also considered that any attempts to correct this effect could artificially
introduce dominant transcripts, possibly creating bias in the switch event determination step.

4.2.3 APPRIS analysis

The APPRIS database was developed within the GENCODE consortium [139] with the aim
of annotating alternative protein isoforms with functional information. APPRIS has a series
of modules that evaluate each isoform making use of functionally important protein residues,
3D structure information, signal peptides, Pfam domains [140], and attributes a score for
each isoform model according to its cross-species conservation.

APPRIS uses reliable annotations for function, protein structure, and cross-species
conservation. With this information, a reference CDS is selected as the ‘principal’ isoform.
This specific isoform is the one containing the most conserved features. Some of the other
isoforms might be designated ‘alternative’, in case they contain unusual, missing or non-
conserved features [2]. Besides the isoforms being classified in principal or alternative, they
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2-fold_c 2-fold_k 2-fold_i_r 5-fold_c 5-fold_k 5-fold_i_r
adipose_tissue 5729 6492 0.91 4123 4383 0.85
adrenal_gland 7495 8266 0.89 5054 5168 0.82
animal_ovary 7156 8046 0.89 4779 4993 0.82
appendix 7458 8182 0.89 4819 4688 0.80
bladder 8172 9180 0.88 5353 6086 0.85
bone_marrow 4793 5437 0.83 3009 2921 0.74
cerebral_cortex 7281 8088 0.90 4892 4981 0.82
colon 6195 7019 0.91 4529 4795 0.85
duodenum 7857 8663 0.89 5085 5151 0.79
endometrium 6523 7353 0.89 4514 4669 0.82
esophagus 7783 8715 0.88 5344 5914 0.85
fallopian_tube 7612 8748 0.89 5279 5764 0.84
gall_bladder 8027 8991 0.88 5404 5807 0.82
heart 6561 7337 0.89 4494 5005 0.86
kidney 6900 7743 0.91 4852 4940 0.83
liver 5870 6516 0.89 4064 4395 0.86
lung 6977 7815 0.90 4883 5062 0.84
lymph_node 6610 7293 0.88 4503 4687 0.82
pancreas 5569 6062 0.89 3633 3952 0.84
placenta 7258 8084 0.90 4938 5172 0.84
prostate 7383 8100 0.89 5063 5096 0.82
rectum 7581 8454 0.88 5184 5323 0.80
salivary_gland 6742 7484 0.90 4567 4793 0.83
skeletal_muscle 4447 5029 0.90 3206 3214 0.81
skin 7203 7978 0.87 5044 4981 0.79
small_intestine 7447 8240 0.90 4993 4968 0.81
smooth_muscle 7192 8064 0.88 4866 5284 0.84
spleen 7258 7987 0.88 4857 4732 0.81
stomach 6867 7657 0.90 4599 4586 0.81
testis 7383 8392 0.88 4947 5006 0.78
thyroid 7167 8127 0.88 4904 5349 0.83
tonsil 7634 8646 0.89 5278 5633 0.83
Average 6941.6 7755.9 0.89 4720.6 4921.8 0.82

Table 4.3 Comparison between the set of dominant transcripts found using quantification scores from
Tophat2+Cufflinks and Kallisto. The column names with the suffix ‘_k’ correspond to Kallisto and
the ‘_c’ to Cufflinks. The columns with the suffix ‘_i_r’ contain the ratios calculated by dividing the
intersection by the union of the two sets.
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Figure 4.3 Number of genes with 5-fold dominant transcripts for all possible sets of biological
samples for colon tissue. On the x-axis is the number of samples per set and each dot represents a set
of samples. The red line unites the average number of dominant transcripts for each specific set size.
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Figure 4.4 Overlap between 2-fold switch events and APPRIS principal isoforms. Transcript
quantification values determined with Cufflinks.

are also given numbers from 1-5 or 1-2, respectively, according to the confidence in the
classification and the criteria they met.

APPRIS was developed by Michael Tress’ group, which has been publishing studies
[141, 142] supporting the idea that in most cases genes have a single dominant protein
isoform and that the others might be alternative isoforms expressed less frequently in specific
tissues, development stages, or they might simply have a short half-life.

There are commonly used strategies to determine dominant isoforms, such as selecting
the longest. This is a simple criterion that often fails and between 20-25% of the isoforms
selected in this way are likely not to be the main protein product of the gene [141]. On the
other hand, APPRIS principal isoforms are often the main isoforms detected in proteomics
studies, this is true for around 98% of comparable genes. APPRIS effectiveness relies on
its ability to identify regions of conserved structure or function, which are often lost in
alternative isoforms, as well as non-conserved exons that can also be found inserted in
conserved regions [2].

The list of dominant transcripts was further compared with the principal isoforms for
the same gene in the APPRIS database. The aim was to determine if the main transcript
and protein isoforms were the same, and infer if there is a relationship between transcript
dominance and protein conservation.
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Figure 4.5 Overlap between 5-fold switch events and APPRIS principal isoforms. Transcript
quantification values determined with Cufflinks.

Figure 4.6 Overlap between 2-fold switch events and APPRIS principal isoforms. Transcript
quantification values determined with Kallisto.



4.2 Results 55

Figure 4.7 Overlap between 5-fold switch events and APPRIS principal isoforms. Transcript
quantification values determined with Kallisto.

It was observed that 68% of the 2-fold dominant transcripts and 81% of the 5-fold
dominant transcripts are also APPRIS principal transcripts (Figure 4.4, Figure 4.5). This
corresponds to 12,820 and 10,186 genes for 2- and 5-fold dominant transcripts, respectively.
The same analysis was done with the lists of dominant transcripts determined with Kallisto
expression values and a similar result was obtained: 71% of the 2-fold dominant transcripts
are APPRIS principal isoforms (Figure 4.6); 83% of the 5-fold dominant transcripts are
principal isoforms (Figure 4.7). This corresponds to 13,631 and 10,400 genes for 2- and
5-fold dominant transcripts, respectively. Both Cufflinks and Kallisto expression values
yielded similar results, which is related to the fact that dominant transcripts calculated with
both strategies also tend to be the same.

The overlap of the 5-fold dominant transcripts with APPRIS principal isoforms was
higher than the 2-fold dominant transcripts. This suggests that there is a relationship between
the relative expression level of a transcript and its likelihood to be functional.

4.2.4 Switch events

The previous results suggest that most genes express a single dominant transcript in a specific
condition. Nevertheless, it is relevant to know if the dominant transcript of a gene is the
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same across conditions or if it changes. The cases where a gene expresses different dominant
isoforms in different tissues are designated switch events. These events can help to understand
the function of alternative splicing, how it operates and how conserved it is across normal
human tissues.

Formally a switch event can be defined in the following way (definition adapted from
the one used in Switch Seq [136]). Given a gene G, a pair of transcripts Ik and Il , and two
tissues Ti and Tj, we say that gene G undergoes an x-fold switch between transcripts Ik and
Il in tissues Ti and Tj, if G is expressed in both Ti and Tj and the ratio of the expression
of Ik to Il is at least x in Ti and no more than 1/x in Tj. As an example, gene SEMA4D
(ENSG00000187764) has ENST00000356444 as 2-fold dominant transcript in pancreas and
ENST00000455551 as 2-fold dominant transcript in heart: this is a 2-fold switch event.

The software used to determine switch events was developed using Python programming
language and all the switch events with differentially expressed genes were filtered out from
this analysis to assure that the differences in expression were caused by isoform switches
and not gene differential expression. The differentially expressed genes were identified using
DESeq2 (p-value < 0.01) [115].

To determine switch events, the 32 tissues in the dataset were compared in a pairwise
manner. For each gene, the 2- and 5-fold dominant transcripts were compared across
conditions. A change of a 2-fold dominant transcript to another in a different condition is
designated 2-fold switch event (Figure 4.8) and a 5-fold dominant transcript changing to
another is a 5-fold switch event (Figure 4.10). The heatmaps show the number of switch
events that occur between a given pair of tissues. As can be seen, the number of switch events
is relatively low, considering that the number of genes expressed in a given tissue is around
10,000 and 68% of them have at least a 2-fold dominant transcript (Table 4.1). On average,
for a given pair of tissues, there are 30.3 2-fold switch events (Figure 4.13) and there are
1968 genes involved across all tissues. There are also 3.7 5-fold switch events (Figure 4.14)
involving 367 genes across all tissues. So even if there are some cases of dominant transcripts
switching, most are conserved across tissues.

In the case of 2-fold switch events, the maximum number of switches was 93 and it was
found between bladder and cerebral cortex. The tissue with the highest median value of
switches was bone marrow with 52. The minimum number of switches was found between
endometrium and adipose tissue, prostate, and lung, as well as endometrium and lung. The
tissue with the lowest median of switches was lung with 10.

In the case of 5-fold switch events, the maximum number of switches was 15 and it was
found between kidney and smooth muscle. The tissue with the highest median value of
switches was skeletal muscle with 7. The minimum number of switches found between a pair
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of tissues was 0 and it was found in a large number of cases. Thus supporting the hypothesis
that most genes have a single dominant transcript.

To determine the level of similarity between tissues, the matrixes of the heatmaps were
used to do multidimensional scaling (MDS) analyses using the MDS function in python’s
scikit-learn library with the default parameters [143]. MDS was used instead of principal
component analysis (PCA) because the matrix contains the number of differences in dominant
transcripts which can be interpreted as a measure of distance between tissues. In both 2-
and 5-fold switch events, it is not clear if there is a biological reason for the way the tissues
cluster but there are definitely some tissues that are isolated and more distant from the main
cluster of tissues in the MDS plots, implying that these cases are less similar to any of the
others. In the case of the 2-fold switch events, it can be observed that bone marrow, testis,
liver, cerebral cortex, skeletal muscle, and kidney are tissues that seem to be more distinct
from the others (Figure 4.9). In the case of 5-fold switch events, the tissues that stand out are
duodenum, kidney, testis, and skeletal muscle (Figure 4.11).

During the study, it was hypothesized that genes involved in switch events could tend to
have a higher number of isoforms because can potentially undergo more alternative splicing
events. This was however proven not to be the case. Four different sets of transcripts were
compared (Figure 4.12). All four sets of genes compared seem to have a similar distribution
of the number of transcripts, which indicates that the number of isoforms does not have a
strong effect on the determination of dominant isoforms.

Although the number of switch events in normal tissues is low, it does not mean that
these cases are not meaningful. The following steps of the study examine these events in
more detail.

4.2.5 Effects of the dominant transcript definition on switch events

As mentioned before, the number of switch events detected was relatively low. To evaluate
what is the impact of the method of selecting dominant transcripts in the number of switch
events, the selection criteria were changed. One of the conditions to consider a transcript
as dominant was that the transcript had to be the most expressed in all biological samples
of the tissue. This last condition will be designated support, as in all samples supporting
the specific transcript as major transcript. This condition was removed to test the effect that
it has on switch events and to have an indication of the variability of dominant transcripts
between biological samples. It can be seen in the heatmaps of 2- and 5-fold switch events
(Figure 4.13, Figure 4.14) that removing this criterion considerably increases the number of
switch events. In the case of 2-fold switch events, it might increase the number of events
more than 4-fold and in some 5-fold switches there was an increase of more than double in
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Figure 4.8 Number of 2-fold switch events for all pairs of tissues in the dataset. The color scale is
proportional to the number of switch events: the higher the number, the darker the blue tone.
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Figure 4.9 Multidimensional scaling applied to 2-fold switch events. To facilitate the visualization,
only the prefix of the tissue names are shown.
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Figure 4.10 Number of 5-fold switch events for all pairs of tissues in the dataset. The color scale is
proportional to the number of switch events: the higher the number, the darker the blue tone.



4.2 Results 61

Figure 4.11 Multidimensional scaling applied to 5-fold switch events. To facilitate the visualization,
only the prefix of the tissue names are shown.
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Figure 4.12 Distribution of the number of isoforms (n_isoforms) per gene for four categories of
genes: all annotated protein-coding genes; genes with dominant transcripts; genes with expressed
transcripts; and genes whose transcripts switch.
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some cases. This means that for some genes, there is variability between biological samples
of a tissue and some transcripts might be dominant in only some of the samples.

The previously defined criteria were maintained because the aim was to find alternative
splicing events conserved across samples with a strong signal, which could also confer extra
confidence to the analysis. With that said, given these results, it is clear that stringent criteria
come with the cost of considerably reducing the number of switch events. It also does not
mean these additional switch events are not real because alternative splicing can be variable
across individuals.

4.2.6 Comparison of exons in switch transcripts

To evaluate the impact of switch events on the transcriptome, the pairs of transcripts that
switch were compared. First, a comparison was made between the exons that constitute
both isoforms by comparing the annotated exon identifiers for each transcript. It can be
seen that most switch transcripts differ in a relatively small number of exons, being 4 the
most common number of different exons between two switching transcripts (Figure 4.15). It
should be noticed that there are transcripts differing by a very high number of exons.

Although the number of exon changes seems to be small, even a change in a single exon
can add or remove a protein domain, which might add or remove a specific function to a
protein. Therefore further investigation is needed to understand the changes induced by
switch events.

4.2.7 Alternative splicing types

To further explore the changes driven by alternative splicing, the types of alternative splicing
that occur between pairs of transcripts in switch transcripts were analysed. The two most
common types of alternative splicing found were alternative 3′ and alternative 5′ splice site
selection, corresponding to 23.8% and 21.3% respectively. These were followed by alternative
polyadenylation and alternative promoter, 17.6% and 16.3% respectively (Figure 4.16). The
first two cases account for 45% of the cases and both represent relatively small changes in
the transcripts because both events are changes in a splice site of an exon (changes of less
than one exon between the two transcripts). Some of these cases were checked individually
and it was observed that some exons differed in only a few bases even though they were
annotated as different exons. So although the previous analysis showed that the number of
exons that differ between isoforms was between 1 and 78 with 4 being the most common
number (Figure 4.15), it does not mean that all exon changes have a big impact or cause a
large number of bases to differ, in fact, the opposite seems to be more frequent.
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Figure 4.13 Number of 2-fold switch events for all pairs of tissues in the dataset. Results obtained
with relaxed criteria for determining transcript dominance.
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Figure 4.14 Number of 5-fold switch events for all pairs of tissues in the dataset. Results obtained
with relaxed criteria for determining transcript dominance.
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Figure 4.15 Distribution of the number of exons that differ between pairs of transcripts in a 5-fold
switch event. On the x-axis is represented the number of exons that are different and on the y-axis is
the number of pairs of transcripts (number of switches).
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Figure 4.16 Percentage of alternative splicing types occurring between transcripts in switch events.
The types of alternative splicing are alternative 3′ splice site selection; alternative 5′ splice site
selection; alternative polyadenylation; alternative promoter, mutually exclusive exons; exon skipping;
overlapping exons; and exclusive exon. Besides the most common types of alternative splicing, two
other categories were added: "overlap", for cases of overlapping exons that do not fit any of the other
splicing categories; and "exclusive", for cases of exons that are exclusive to one of the transcript and
do not fit any other splicing category.
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4.2.8 Sequence identity

In order to understand the impact of the exon changes in the sequence of the transcripts, the
nucleotide sequence identity of switch event isoforms was calculated using BLASTN [18],
a commonly used local sequence aligner, and using an implementation of the Needleman-
Wunsch algorithm [144, 145], a global alignment algorithm.

Sequence identity can be used as an indicator of how similar the protein structure and
function are, although it has limitations and some indels and non-homologous substitutions
produce proteins with completely different folds. Therefore, not only some proteins have
relatively high sequence identity and have different functions, but also there are cases of
proteins with as little as 10% identity which conserve the same overall structure [56].

When the sequence identity of pairs of switch transcript sequences was determined,
it was observed that there is a tendency for the transcripts to have high sequence identity
(Figure 4.17, Figure 4.18). Although there are definitely cases of pairs of transcripts with low
sequence identity, this suggests that transcripts often switch to another similar one. Therefore,
it is important to investigate if the function of the potentially translated proteins is affected or
not.

4.2.9 Exon overlapping analysis

As mentioned before, there is a considerable number of exons that change between switch
transcripts. On the other hand, these same transcripts have a high sequence identity. To
understand why exon differences do not translate into more significant changes in sequence
identity, the exons were compared. In particular, it was checked if the exons that differ
between switch transcripts overlapped with other exons in the annotation. This was done
by comparing the annotated exon coordinates between overlapping exons. First, it was
determined how many differently annotated transcripts overlap in a switch event (Figure 4.19)
and in most switches, the number of exons that overlap is less than 5. Then, the percentage
of overlap between the exons was calculated and it was observed that there is a considerable
number of exons that overlap more than 90% (Figure 4.20). This explains in part why the
sequence identity between switch transcripts tends to be high, even if there are exon changes.

4.2.10 Transcript biotypes

To better understand how alternative splicing operates through switch events, the biotypes
of the transcripts were analysed (Figure 4.21, Figure 4.22). Biotypes are indicators of
biological significance and in this case, the transcripts were classified into four categories:
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Figure 4.17 Distribution of the DNA sequence identity between pairs of switch transcripts calculated
with BLASTN [18] for 5-fold switch events.
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Figure 4.18 Distribution of the DNA sequence identity between pairs of switch transcripts calculated
with a global aligner (needle) for 5-fold switch events.
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Figure 4.19 Distribution of the number of exons that overlap per switch event. These data refers to
5-fold switch events only.

Figure 4.20 Distribution of the overlap percentage between exons in the annotation.
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Figure 4.21 Percentage of transcript biotypes in 2-fold switch events. List of biotypes:
protein-coding; processed transcripts; retained intron; and nonsense-mediated decay.

protein-coding; processed transcripts; retained intron; and nonsense-mediated decay. Both
2- and 5-fold switches have almost identical percentages of the transcript biotypes. Around
84% of the transcripts in the switch events are protein-coding transcripts and the others are
distributed among 3 categories of non-coding transcripts, processed transcripts being the
most common ones, followed by retained intron transcripts and finally nonsense-mediated
decay transcripts. This indicates that the majority of switches has at least the potential to have
an effect at the protein level. It has also to be noticed that 70% of the 5-fold switches occur
between two protein-coding transcripts, so in these cases, alternative splicing can potentially
change the protein being expressed, independently of changing the function or not. In 27%
of the cases, there is a change between coding and non-coding transcripts, indicating that
alternative splicing might be used to turn off genes or regulate gene expression. The last 3%
of the switches occurs between two non-coding transcripts, these cases might be related to
the regulation of other genes, but these must be judged on a case by case basis and further
investigation is needed to know what is exactly happening.

4.2.11 Protein domain analysis

The exon changes mostly result in small changes in the transcript sequence but that does not
give information about affecting the function of the isoform or not. In the case of protein-
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Figure 4.22 Percentage of transcript biotypes in 5-fold switch events. List of biotypes:
protein-coding; processed transcripts; retained intron; and nonsense-mediated decay.

Figure 4.23 Percentage of 2-fold switch events with domain changes. Each color represents a
different number of domain changes.
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Figure 4.24 Percentage of 5-fold switch events with domain changes. Each color represents a
different number of domain changes

coding transcripts, it is relevant to know if there are changes in the function of the expressed
protein. To determine how switch events affect protein function, the Pfam domains [140]
annotated for each transcript in a switch event were compared. Pfam is a database with a
large collection of protein families and each is represented by multiple sequence alignments
and a profile Hidden Markov model (HMM). Protein domains are functional regions that can
be combined in a protein to confer its specific activity.

It was observed that in 80% of both the 2- and 5-fold switches, there were no protein
domain changes (Figure 4.24, Figure 4.21), indicating that in these cases the proteins are not
likely to change their function. Still, there are domain changes in 20% of the cases, indicating
potential changes in protein function. These results are similar to what was observed in this
proteomics study [56] where the authors concluded that 84.4% of splice events leave Pfam
domains untouched.

These results do not imply that these switches have no biological function. It has been
previously reported that some splicing events influence DNA or protein binding in the
transcription factors complex and this regulation is typically cell-type or tissue-specific
[146]. There are also cases where splicing events control protein localization in the cell by
modifying localization signals, sequences for post-translational modification or interaction
sites with other proteins, enabling tissue-specific protein interaction networks [147, 148].
Alternative splicing also controls mechanisms that regulate enzyme activity, protein secretion,
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and control of substrate binding. Finally, some splicing events might occur in non-coding
regions of mRNA, affecting miRNA binding sites and therefore the regulation of mRNA
[63].

4.3 Case studies

Addressing the role of alternative splicing can be challenging, therefore it is important to
find switch events where there is confidence they are real and not artifacts produced by the
methodology or dependency on the annotation. Finding evidence for particular cases of these
switch events from other methods provides extra support to the obtained results.

As mentioned before, Michael Tress’ group works on alternative splicing, specifically
trying to address and identify dominant protein isoforms. Here, five genes selected by
Michael as potentially having multiple principal protein isoforms are analysed. Additionally,
the isoforms of each gene were identified as having domain swaps, which indicates that not
only the isoforms change but also there is a change in their function.

I looked in detail to see if there was a change in the relative isoform expression levels
between different conditions and checked if there were any switch event cases among these
specific genes. An analysis of the information generated for these genes through the switch
events protocol is presented here.

The following analysis was done using the quantification scores generated by both
Cufflinks and Kallisto.

4.3.1 MOCS2 - ENSG00000164172

This is the molybdopterin synthase catalytic subunit gene (molybdenum cofactor synthesis
2). It has a total of 10 annotated transcript isoforms, 8 of which are protein-coding (Fig-
ure 4.25). The expression analysis revealed that this gene is expressed in all 32 tissues of
the dataset and both Cufflinks and Kallisto showed identical results. There are two isoforms
(ENST00000396954 and ENST00000450852) in the list of protein domain swaps (Table 4.4)
but only one of the isoforms (ENST00000450852) is expressed in all tissues of the dataset.
This isoform is also the dominant isoform in all tissues and in most of them is also the only
isoform of this gene that is expressed, with all the other annotated transcripts being either not
expressed or expressed at a very low level. Therefore, there were no switch events between
transcripts of this gene. An example of the expression profile can be seen in Figure 4.31a, all
other tissues displayed similar transcript expression profiles.
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Gene name Gene id Transcripts id

CUX1 ENSG00000257923 ENST00000292535
ENST00000360264
ENST00000292538

NEBL ENSG00000078114 ENST00000377122
ENST00000417816

DST ENSG00000151914 ENST00000361203
ENST00000244364
ENST00000370765

MOCS2 ENSG00000164172 ENST00000396954
ENST00000450852

ZNF451 ENSG00000112200 ENST00000370706
ENST00000370708

Table 4.4 List of genes and respective transcripts found to have evidence of domain swaps at the
protein level.

Figure 4.25 View of the transcript isoforms of MOCS2 gene in Ensembl genome browser [19]. The
isoforms with domain swaps are identified with their ensembl IDs (ENST00000396954 and
ENST00000450852).
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Figure 4.26 Expression profiles for the NEBL gene: testis (left) and tonsil (right). The expression
values were determined with Cufflinks. The columns in red correspond to the transcripts in the list of
interest, and the others are displayed in blue.
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Figure 4.27 View of the transcript isoforms of NEBL gene in Ensembl genome browser [19]. The
isoforms with domain swaps are identified with their ensembl IDs (ENST00000377122 and
ENST00000417816).

4.3.2 NEBL - ENSG00000078114

This is the nebulette gene, a cardiac-specific protein belonging to the nebulin family of
proteins. It has a total of 13 annotated transcript isoforms, 4 of which are protein-coding
transcripts (Figure 4.27). Both Cufflinks and Kallisto results show that this gene is not
expressed in 11 of the 32 tissues in the dataset: endometrium, fallopian tube, skeletal muscle,
spleen, liver, lymph node, adipose tissue, small intestine, appendix, duodenum, and bone
marrow. On all the other tissues, with the exception of testis, both isoforms on the list
(ENST00000377122 and ENST00000417816; Table 4.4) are expressed approximately at the
same level. This means there are no dominant transcripts and consequently no switch events.

The transcripts expressed in testis are not protein-coding. In this tissue, the dominant
transcript is ENST00000482754 (NEBL-010 in Figure 4.30) and there are two other isoforms
being expressed, ENST00000493005 and ENST00000460652. Testis and tonsil transcript
expression profiles can be seen in Figure 4.26. All tissues where the gene is expressed have
transcript expression profiles similar to tonsil.

4.3.3 ZNF451 - ENSG00000112200

This is the zinc finger protein 451 gene. It has a total of 18 annotated transcript isoforms,
9 of which are protein-coding. This gene is expressed in all tissues of the dataset and the
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Figure 4.28 View of the transcript isoforms of ZNF451 gene in Ensembl genome browser [19]. The
isoforms with domain swaps are identified with their ensembl IDs (ENST00000370706 and
ENST00000370708).

results obtained with both Cufflinks and Kallisto were similar. In most tissues, the dominant
isoform is one of the transcripts in the list (Table 4.4): ENST00000370706. Bone marrow
and testis are two exceptions. In bone marrow, the dominant transcript is ENST00000370708,
which is also one of the transcripts in the list. This means there are switch events between
these two transcripts, both RNA-seq data and domain swaps information are in agreement
(Figure 4.29a and Figure 4.29c).

As in the previous case, testis has an expression profile different from all other tissues and
its most expressed isoform is ENST00000491832 (ZNF451-008 in Figure 4.28; Figure 4.29b).
This is a protein-coding transcript but is not one of the transcripts in the list of isoforms with
protein domain swaps.

4.3.4 CUX1 - ENSG00000257923

This is the cut like homeobox 1 gene that codes for golgi integral membrane protein 6. It has a
total of 21 annotated transcript isoforms, 12 of which are protein-coding transcripts. Cufflinks
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(a) ZNF451; stomach; Cufflinks.

(b) ZNF451; testis; Cufflinks.

(c) ZNF451; bone marrow; Cufflinks.

Figure 4.29 Expression profiles for the ZNF451 gene. The gene, tissue and software used for
quantification are indicated in each label. The identifiers of protein-coding transcripts are displayed in
green and the identifiers of non-coding transcripts are in black. The columns in red correspond to the
transcripts in the list of interest, and the others are displayed in blue.
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and Kallisto show considerably different expression profiles for this gene, an example can
be seen in Figure 4.31b and Figure 4.31c. Kallisto shows that one of the transcripts in
the list (ENST00000292538) is the major transcript in all tissues, with exception of testis,
being dominant in almost all. Cufflinks shows that, besides the ENST00000292538 isoform,
ENST00000558469 (CUX1-021 in Figure 4.30) is also highly expressed in some tissues
and, not only is this transcript dominant in some tissues, but also the overall expression of
the gene is dispersed among more isoforms. Since there is no agreement between Cufflinks
and Kallisto results, there is not as much confidence to make any observations regarding
transcript dominance and switch events for this gene.

4.3.5 DST - ENSG00000151914

This is the dystonin gene, that codes for bullous pemphigoid antigen 1. It has a total of
35 annotated transcript isoforms, 17 of which are protein-coding. ENST00000370765 is
the only transcript in the list (Table 4.4) that is expressed (>1 fpkm) and it is a dominant
transcript in skin, tonsil, and esophagus (Figure 4.32a). There are two other protein-coding
transcripts that are dominant in other tissues (ENST00000340834 and ENST00000523292,
corresponding to Figure 4.32b and Figure 4.32c, respectively). ENST00000523292 (DST-017
in Figure 4.33) is dominant in adrenal gland, duodenum, lung, prostate, small intestine, and
spleen. ENST00000340834 (DST-018 in Figure 4.33) is dominant in ovary. There are switch
events between the dominant transcripts mentioned, however, there is no switch between the
two isoforms in the list of isoforms with protein domain swaps.

4.4 Discussion

In this study, RNA-seq data from normal human tissues was used to assess the impact
of switch events on the transcriptome and on protein function. It was shown that in a
particular condition, there are around 10,000 genes being expressed and most of them have a
dominant isoform in most tissues. More specifically, on average, around two-thirds of the
genes being expressed have a 2-fold dominant transcript and slightly more than one third
have a 5-fold dominant transcript. These were confirmed using both Cufflinks and Kallisto
quantification scores, even if these programs rely on quite different strategies for transcript
quantification. The fact that the intersection between sets of dominant transcripts determined
using Cufflinks and Kallisto data was on average 89% and 82%, for 2- and 5-fold dominant
transcripts respectively, shows that for the majority of cases there is agreement between
the two methods and a strong signal for transcript dominance. Nevertheless, it should be
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Figure 4.30 View of the transcript isoforms of CUX1 gene in Ensembl genome browser [19]. The
isoforms with domain swaps are identified with their ensembl IDs (ENST00000292538,
ENST00000360264 and ENST00000292535).
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(a) MOCS2; heart; Cufflinks.

(b) CUX1; thyroid; Cufflinks.

(c) CUX1; thyroid; Kallisto.

Figure 4.31 Expression profiles for the CUX1 and DST gene. The gene, tissue and software used for
quantification are indicated in each label. The identifiers of protein-coding transcripts are displayed in
green and the identifiers of non-coding transcripts are in black. The columns in red correspond to the
transcripts in the list of interest, and the others are displayed in blue.
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(a) DST; skin; Cufflinks.

(b) DST; ovary; Cufflinks.

(c) DST; adrenal gland; Cufflinks.

Figure 4.32 Expression profiles for the genes of interest. The gene, tissue and software used for
quantification are indicated in each label. The identifiers of protein-coding transcripts are displayed in
green (if different colors are used) and the identifiers of non-coding transcripts are in black. The
columns in red correspond to the transcripts in the list of interest, and the others are displayed in blue.
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Figure 4.33 View of the transcript isoforms of DST gene in Ensembl genome browser [19]. The
isoforms with domain swaps are identified with their ensembl IDs (ENST00000361203,
ENST00000244364 and ENST00000370765).
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mentioned that transcript quantification from small reads is still not a straightforward task
and the dependence on gene and transcript annotation comes with both advantages and
compromises. Some of the possible problems with the annotation were partially exposed by
the comparison of exons annotation where it was evident that, relying only on exon identifiers
can be misleading, but also it was unclear why some exons with identical genome coordinates
were annotated as distinct exons.

The transcript dominance analysis is in agreement with a previous study done in our
group [1], where it was found that for normal human tissues, 79% of protein-coding genes
have a 2-fold dominant transcript and 56% have a 5-fold dominant transcript. Still, the
current analysis resulted in slightly lower estimations of dominant transcripts due to the use
of more conservative criteria.

Although there is a large number of transcripts annotated, only a modest part of them
(16,811 – exp genes in Table 4.2) was found to be expressed in normal human tissues,
possibly indicating that most isoform variants are unlikely to have a functional role in the
cell, as it has been suggested based on proteomics studies [4]. Nevertheless, it is important to
consider that the isoforms that were not found to be expressed, might only be expressed in
other cell types or under specific conditions. For instance, alternative splicing plays a role in
specific cellular processes such as apoptosis, where it can act as an on/off switch for several
genes that code for pro-apoptotic and anti-apoptotic isoforms [63]. This might be one of the
reasons why certain transcript isoforms are not detected in the dataset used in this study.

APPRIS principal isoforms have been shown to be good predictors of dominant protein
isoforms, overlapping 97.6% of comparable genes [141]. The overlap between the determined
dominant transcripts and APPRIS principal isoforms was relatively high, indicating that there
is a relationship between the relative expression of transcripts of a gene and their cross-species
conservation. The results obtained are similar to the ones observed in proteomics studies
that show there is a tendency for the most functional and structural conserved isoforms to be
expressed [141]. It should also be noticed that the overlap was higher for 5-fold than 2-fold
dominant transcripts (83% vs. 71%), suggesting that the higher the dominance, the more
likely is for the transcript to be conserved.

The analysis of switch events revealed that when a gene has a dominant transcript, this
tends to be the same across tissues. However, there are exceptions and some dominant
isoforms switch across conditions. On average there are 30.2 2-fold switch events between
a pair of tissues and 3.7 5-fold switch events. This relatively low number of switch events
is in accordance with what has been suggested before by the GTEx consortium, that gene
expression levels might be the drivers of tissue specificity, and that 84% of the variance
observed between human tissues is due to gene expression [60]. So this can be part of
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the explanation why the number of switch events is small. Also, across the 32 tissues in
the dataset, there are only 1968 genes involved in switch events, which is less than 9% of
protein-coding genes.

At the protein level, there is also evidence for very few splicing events. Of 64% of
annotated human protein-coding genes, there is evidence of splice events for only 282 of
them, suggesting that at the protein level there is a main isoform for most genes [56]. In
contrast with the dataset used in this chapter’s study, the one used in the mentioned proteomics
study covered a wide range of cell types, tissues, and development stages. However, it should
be mentioned that MS experiments have relatively low coverage of the proteome and low
sensitivity, being difficult to detect very lowly expressed peptides.

Regarding the criteria that define a dominant transcript, when these criteria were relaxed,
the number of switch events considerably increased for certain pairs of tissues, but if we
consider the total of annotated transcripts and genes with dominant isoforms, the number of
switches was still low. On one hand, this reinforces the idea that the dominant transcripts
are conserved across tissues. On the other hand, it shows that there is variability between
samples of a tissue, in this case, between individuals because each sample of this dataset
belongs to a different individual.

The most used methods for protein function annotation typically use sequence or structure
homology strategies, even if there are other strategies that explore different types of data
[149]. Although these are the most commonly used criteria, it has been observed that in
some cases proteins might share high sequence or structural similarity but still evolve distinct
functions or sub-functions. In these cases, similar proteins perform different functions,
while sharing a general functional feature, which is quite common in enzymes that have
a common step between their reaction pathways. These groups of homologous proteins
that share the same function are typically designated functional families, which can be
used to annotate uncharacterized sequences [150]. The higher the sequence divergence, the
higher the likelihood of protein function divergence. However there are exceptions and
proteins can diverge to a related function or, through the process of recruitment, proteins with
similar sequence can perform very distinct functions. It should also be noticed that below
the threshold of 50% sequence similarity, the functional divergence is enhanced [151]. In
the case of switch events, it was observed that, in general, transcripts have high sequence
similarity, which suggests that their function is not affected in a significant way.

To investigate how alternative splicing is operating in the switch event cases, the exons
of the switch transcripts were compared and it was observed that there is a large number of
exons that overlap close to 100% (e.g. 20,391 exons have a percentage of overlap higher than
95%; Figure 4.20). Although it was also observed that some exons have the same coordinates,
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despite being annotated as different exons with different identifiers (e.g. ENSE00003570356
and ENSE00003479361 exons, from ENST00000452550 and ENST00000380631 transcripts,
respectively). This might be related to what is observed on the proteomics side, where more
than 20% of the splicing events identified correspond to a substitution of one exon by a
homologous one. These homologous substitutions are extremely conserved [56].

The annotation of transcript biotypes contains a subset of all categories of non-coding
transcripts and, although intron retention and nonsense-mediated decay are two different
categories, in some situations these processes are linked [152]. Nevertheless, the transcript
biotypes annotation allowed a simple straightforward analysis that revealed that 84% of
both transcripts in switch events are protein-coding. So in these cases, there is the potential
for the changes that occur at the transcript level to be reflected at the protein level. The
other 16% of the cases might actually be more difficult to interpret because the downstream
consequences of some events might differ and intron retention in particular is, in fact, the less
well understood type of alternative splicing. Intron retention might lead to the expression
of alternative protein products but it most often leads to a wide reduction of the expression
level of transcripts that are not physiologically required in a cell or tissue type [153]. It acts
through the mechanism of nonsense-mediated decay, through nuclear sequestration and also
through fast turnover of intron retention transcripts. Intron retention is associated with a
global checkpoint-type mechanism of localized stalling of RNA polymerase II and reduction
of the availability of spliceosomal components, that suppresses inappropriately expressed
transcripts [154].

Similarly to retained intron cases, processed transcripts may also lead to a diverse range
of downstream effects. This category of transcripts includes long non-coding RNA, ncRNA
and unclassified processed transcripts that do not fit into any of the previous categories. This
is a very heterogeneous set of RNA molecules with a broad range of biological functions.
Nevertheless, it can be said that alternative splicing has an impact on the transcriptome which
can affect the proteome downstream but can also regulate gene expression levels upstream.

84% of switch transcripts are protein-coding but in 80% of switch events, there are no
protein domain changes, indicating that the isoforms that switch are similar and possibly
have a similar function. The other 20% of the switch events have domain changes, which
suggests that in some cases evolution might have selected certain isoforms to fulfill specific
functions in different conditions or there might also be cases of co-regulated exons without
any established function [56]. Given these observations, the main role of alternative splicing
does not seem to be generating drastic changes and produce high protein diversity, but rather
regulate small transcript and protein changes.
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The small number of protein domain changes is most likely related to the function of
alternative splicing. Some studies suggest that alternative splicing main role might be to
regulate tissue-specific protein-protein interaction networks. This is supported by the fact
that constitutive exons tend to map to protein domains more than other exons but tissue-
specific exons map to protein regions with no well defined three-dimensional structure [147].
Alternative splicing also plays a significant role in the localization of proteins and it can act
by altering localization signals, post-translational modification motifs or by altering protein
interaction sites [63]. In cases like these, there might not be needed the insertion or exclusion
of new domains.

In some cases, alternative splicing affects untranslated regions of mRNA, thus protein
domains are not affected. However, it does not mean that there are no effects at the protein
level. In these cases, alternative splicing can regulate the stability of mRNA, through affecting
the miRNAs binding sites frequently located in UTRs [63].

Similarly to the study presented in this chapter, most splice events identified at the protein
level correspond to small changes, resulting in a few functional domains disruptions. The
majority of the alternative splicing events identified in proteomics do not have a significant
effect on the structure or function of the protein isoform. Most identified indels are short or
located in unstructured protein regions. As a consequence, these events rarely affect Pfam
functional domains. One of the theories for explaining the non-disruption of domains is
that isoforms with disrupted domains are more likely to affect cellular processes and their
expression must be regulated by cellular quality control pathways [56].

Alternative splicing is also known for regulating enzymatic properties. Certain kinases
are frequently inactivated by deletion or inclusion of protein regions in their active center.
This enzyme region is extremely sensitive to changes so, even if small, they can considerably
affect enzyme activity. In some cases, enzyme activity can even be totally abolished. These
particular isoforms are typically generated by creating a premature stop codon, which is the
third most common type of alternative splicing event observed in switch events, accounting
for 17.6% of the cases. Alternative splicing can also control enzyme secretion and even
promote the formation of heterodimers, having a net negative effect on the active isoform
activity [63].

As mentioned before, alternative exons often correspond to amino acids located on the
protein surface, so they can regulate protein binding. There are cases of exons that regulate
complete interaction domains or part of binding domains, in most cases however binding
is not abolished is simply modulated, implying again small changes. Besides modulating
protein binding, alternative splicing also has a role in binding to DNA or smaller ligands,
such as hormones. One of the well-known examples is the case of the insulin receptor, where
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alternative splicing modulates its affinity to IGF-II (insulin-like growth factor II). It acts
like a fine tuner rather than changing it completely. The effects alternative splicing have on
channel proteins are in most cases also small. It is known to minutely control iron channels
by regulating every aspect of it: gating times, gating voltages, ion sensitivity and inhibition
by other molecules [63].

Alternative splicing can also modulate transcription by affecting protein interaction
affinities between transcription factor components. Transcription factors might even lose
their ability to bind to promoters. In this way, alternative splicing of transcription factors
can control gene expression of downstream genes. Another known mechanism to regulate
gene expression is by regulating transcription factors intracellular or intranuclear localization.
ncRNAs can also be used to indirectly regulate gene expression. Localization of proteins
can be changed by alternative splicing and sometimes these changes can be of the "all or
nothing" type, for instance, an exon can code for a nuclear localization site. Most often the
changes brought upon by alternative splicing just gradually change the relative localization
of protein isoforms across cellular compartments, where they can acquire different functions
[63].

Because alternative splicing has such a wide spectrum of activities, it can make it hard
to pinpoint or detect its effects just by looking at mRNA expression values and isoform
switches.

Although there are parallels between the cases of switch events and proteomics studies, it
must be clarified that at the transcript level one-third of protein-coding genes has no dominant
transcript at the tissue level, meaning that they are expressing more than one isoform. This
is not what is observed at the protein level, where there is generally no evidence for more
than one isoform being expressed [56]. This suggests that, although a third of the genes
express multiple transcripts, they might not all be translated or the proteins might have a
short half-life, preventing its detection by MS. It is also possible that the expressed RNA
might have other functions or the expression levels are too low to be detected using current
MS techniques.

With the analysis made in this chapter, it is difficult to predict what are the real effects
of switch events at the protein level. The comparison of Pfam domains gives an indication
of the possible consequences of an isoform switch but just based on RNA-seq data, it is not
even certain that the protein is expressed. Also, it was observed in the case studies that even
if there is evidence for protein domain swaps between isoforms, these are not necessarily
expressed. In fact, there were switch events between protein domain swaps isoforms in only
one of the five genes analysed (ZNF451). It is also relevant that in the case of the NEBL gene,
two of the isoforms are consistently being expressed in a large number of tissues, which
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shows that alternative splicing enables the simultaneous expression of multiple isoforms with
different functions. Finally, there is a relatively modest correlation between transcript and
protein expression levels, around 56%-64% [155–157], so even if there are protein domain
changes, there is not enough information on RNA-seq data to understand the full impact
of such changes. Ideally, a dataset of paired transcriptomics and proteomics data with high
isoform coverage will give answers to more questions and allow to better understand the role
of alternative splicing in switch event cases.

4.5 Methods

4.5.1 Dataset

The data was generated using Illumina Hiseq2000 and Hiseq2500, using the standard Illumina
RNA-seq protocol with a read length of 2 × 100 bases [138].

4.5.2 Gene and transcript quantification

The raw reads were filtered before mapping by trimming the last five nucleotides. The
pre-processed reads were mapped, using TopHat2 [98], to gene and transcript annotations
from GENCODE genome assembly version GRCh38 and Ensembl release version 79 of
the human reference genome [19]. The GENCODE annotation is the result of merging the
Havana manual gene annotation with Ensembl automated gene annotation.

The study presented in this chapter was based on protein-coding genes only. These are
genes that contain at least one protein-coding transcript. The annotation for these genes and
respective transcripts was selected and retrieved using Biomart web-based tool [158].

The reads pre-aligned with TopHat2 were used as input to Cufflinks. The quantification
scores for all genes and transcripts were calculated using Cufflinks [14] and Kallisto [15].
The expression value threshold to consider a transcript as expressed was 1 FPKM – fragments
per kilobase of exon model per million of mapped reads. This is a commonly used threshold
and it has been suggested that 1 FPKM is the minimum expression necessary for protein
detection [159], which is relevant because of the comparisons made between dominant and
APPRIS principal transcripts.

4.5.3 APPRIS isoform annotation

APPRIS selects ‘PRINCIPAL’ or ‘ALTERNATIVE’ CDS variants for each gene based on
a range of protein features. Principal isoforms are classified from 1 to 5 (1 being the most
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reliable) and alternative isoforms are classified from 1 to 2 [160]. In the analysis presented
in this chapter, only principal isoforms (1 to 5) were compared to the dominant transcript
isoforms.

4.5.4 Differential gene expression

The R package DESeq2 (version 1.8.1) [115] was used to identify differentially expressed
genes across all pairs of tissues in the dataset. The input of DESeq2 is a matrix of gene
counts, therefore the python package HTSeq [102] was used to obtain those counts. The
switch events involving differentially expressed genes were filtered out from the analysis.

4.5.5 Determining differences in exons between transcripts

The exon identifiers were retrieved from the above-mentioned annotation. The exon identifiers
of the transcripts of a switch event were compared and the differences were determined by
comparing the two sets of exons. Each exon that exclusively belonged to one transcript
counted as one difference. Given two sets of exons A and B of two different transcripts, the
number of differences is defined by:

|A∪B|− |A∩B| (4.1)

4.5.6 Determining isoform sequence identity

The DNA sequence identity of switch event isoforms was calculated using BLASTN [18] and
biopython [161] was used to parse the output files and directly obtain the sequence identity
value. The BLASTN parameters used were the default ones: E value = 10; word size = 11;
gap opening penalty = 5; gap extension penalty = 5.

The Needleman-Wunsch algorithm [145], a global alignment algorithm, was also used
with the default parameters: match award = 10; mismatch penalty = -5; gap penalty = -5.

4.5.7 Percentage of overlap between exons

The percentage of overlap between two exons was determined by comparing the exonic
coordinates of each exon of the pair of transcripts in a switch event. The coordinates were
retrieved from the annotation and the percentage of overlap was calculated by dividing
the number of overlapping nucleotides by the length of the largest exon. In this way, the
maximum nucleotides overlap (corresponding to 100%) would be the length of the largest
exon.
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4.5.8 Determining alternative splicing types

The types of alternative splicing were determined by comparing the exon coordinates retrieved
from the annotation. The two transcripts in a switch event were compared exon by exon
and the ones that differed were classified according to the type of alternative splicing found
(Figure 4.16, [9]). Two additional categories were added to describe cases that did not fit any
of the most common alternative splicing types, these were:

Overlap Cases of overlapping exons that do not fit any of the other splicing category.

Exclusive Cases of exons that are exclusive to one of the transcript and do not fit any other
splicing category.

4.5.9 Biotype definitions

The transcript biotypes used in this analysis were obtained from Ensembl using Biomart
web-based tool [158]. There are four categories of transcript biotypes:

Protein-coding Contains an open reading frame (ORF).

Retained intron Has an alternatively spliced transcript believed to contain intronic sequence
relative to other, coding, variants.

Processed transcripts A noncoding transcript that does not contain an open reading frame.

Nonsense-mediated decay A transcript with a coding sequence that finishes >50bp from
a downstream splice site or if the variant does not cover the full reference coding
sequence.

Nonsense-mediated decay is a process that detects nonsense mutations and prevents the
expression of truncated or erroneous proteins.

4.5.10 Pfam domain analysis

The Pfam database contains a large collection of protein families, as well as protein domain
annotation for a large number of protein isoforms. The annotation for these isoforms was
retrieved using Biomart web-based tool [158]. The protein domains corresponding to each
protein-coding transcript isoform in a switch event were compared and the number of different
domains was reported.





Chapter 5

Integrating transcriptomics data from
two datasets

The computational analyses herein described were performed by myself under the supervision
of Dr. Alvis Brazma.

5.1 Introduction

The study presented in Chapter 4 describes a method for studying alternative splicing by
exploring dominant transcripts of genes and investigating dominant transcript switches across
tissues. To confirm the previous findings, I additionally investigated an independent RNA-seq
dataset, the Genotype-Tissue Expression (GTEx) consortium dataset, which contains a much
higher number of samples, as well as more tissues represented [3].

The GTEx project established a public resource database and associated tissue bank for
studying tissue-specific gene expression and regulation in human tissues [3]. It contains
samples from 54 conditions across almost 1000 individuals, for molecular assays such
as whole genome sequencing and RNA-Seq. All GTEx tissue samples were examined
histologically and were only included in the project if the tissue was both non-diseased and in
the normal range considering the age of the donor. The RNA was extracted from postmortem
samples as donors were enrolled in the study [162].

Here the GTEx dataset is used to investigate transcript dominance and switch events
across conditions with the same approach used in Chapter 4. The results obtained with GTEx
were compared with the ones obtained for the matching tissues of the dataset used in Chapter
4, which is called Uhlen dataset in the present chapter. In particular, the study here presented
analyses if the same switch events are observed between pairs of the matching tissues across
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the two datasets and if alternative splicing patterns are shared. This also allows to evaluate if
the conclusions presented in Chapter 4 are robust.

The quantification scores for all genes and transcripts were calculated using Kallisto [15]
for both datasets. The computation of these scores was done by Nuno A. Fonseca using
Kallisto version 0.42.4.

5.2 Results

The dataset used in this study contains 19,972 samples of RNA-seq of coding RNA from
samples representing 50 solid tissues, whole blood and 3 cell lines [162]. The number of
biological replicates per tissue varies between 5 (Cervix - Endocervix) and 564 (Muscle -
Skeletal), being on average 221 samples (Figure 5.1).

Similarly to the study described in the previous chapter, the goal was to compare isoform
expression in the tissues for which I averaged the expression level of each transcript across
the biological samples of each tissue. The exact same procedure was used in the current study
to calculate transcript dominance, followed by the determination of dominant transcripts for
each gene in each tissue. Lastly, a pairwise comparison of the tissues of the dataset allowed
the determination of switch events.

5.2.1 Transcript dominance analysis

As before, for a transcript to be considered dominant, its average expression value has to be at
least 2 times higher than the average expression value of the second most expressed transcript
across the samples of a tissue. As defined in the previous chapter, two additional conditions
had to be met: the gene had to be expressed in all samples (≥ 1fpkm); and the transcript
had to be the most expressed transcript in all samples of the tissue. This last condition was
called support and gave extra confidence in the results, especially because the number of
biological replicates per tissue was relatively low. The dataset used in the present chapter
contains a considerably higher number of biological replicates for most tissues, so the effect
of the support criterion was analysed by comparing the number of dominant transcripts using
and excluding this condition.

In the GTEx dataset, the average number of genes expressed in a tissue was 9655
(Table 5.1), while in Uhlen dataset was 10,137 (Table 4.1). The values are similar, which
is quite remarkable given that for a gene to be considered expressed, it has to be expressed
in all samples of that tissue and, while some tissues in GTEx have hundreds of biological
replicates (Figure 5.1), in Uhlen dataset the maximum number of samples is only 7. Of the
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Figure 5.1 Number of samples of each tissue represented on GTEx dataset [20].
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Tissue n_exp n_2-f n_5-f n_2-f_s n_5-f_s
Adipose_-_Subcutaneous 10135 6098 0.60 3214 0.32 3148 0.31 2542 0.25
Adipose_-_Visceral_(Omentum) 9763 5915 0.61 3129 0.32 3669 0.38 2778 0.28
Adrenal_Gland 9890 6020 0.61 3172 0.32 3513 0.36 2648 0.27
Artery_-_Aorta 9875 6053 0.61 3224 0.33 3047 0.31 2406 0.24
Artery_-_Coronary 10052 6160 0.61 3267 0.33 3821 0.38 2881 0.29
Artery_-_Tibial 9332 5900 0.63 3230 0.35 3072 0.33 2505 0.27
Bladder 11826 7141 0.60 3767 0.32 6444 0.54 3709 0.31
Brain_-_Amygdala 7463 4544 0.61 2568 0.34 2458 0.33 2013 0.27
Brain_-_Anterior_cingulate_cortex_(BA24) 9880 6128 0.62 3530 0.36 3761 0.38 3040 0.31
Brain_-_Caudate_(basal_ganglia) 8593 5257 0.61 2937 0.34 3275 0.38 2578 0.30
Brain_-_Cerebellar_Hemisphere 10402 6018 0.58 3040 0.29 3576 0.34 2662 0.26
Brain_-_Cerebellum 10812 6051 0.56 2925 0.27 2546 0.24 2021 0.19
Brain_-_Cortex 10140 6094 0.60 3324 0.33 2742 0.27 2329 0.23
Brain_-_Frontal_Cortex_(BA9) 9437 5858 0.62 3321 0.35 3335 0.35 2759 0.29
Brain_-_Hippocampus 9168 5615 0.61 3175 0.35 3325 0.36 2730 0.30
Brain_-_Hypothalamus 9041 5496 0.61 3109 0.34 3342 0.37 2700 0.30
Brain_-_Nucleus_accumbens_(basal_ganglia) 8059 4902 0.61 2723 0.34 2809 0.35 2272 0.28
Brain_-_Putamen_(basal_ganglia) 6776 4210 0.62 2449 0.36 2674 0.39 2145 0.32
Brain_-_Spinal_cord_(cervical_c-1) 8818 5342 0.61 2936 0.33 3407 0.39 2608 0.30
Brain_-_Substantia_nigra 9609 5909 0.61 3280 0.34 3803 0.40 2931 0.31
Breast_-_Mammary_Tissue 10219 6053 0.59 3116 0.30 3816 0.37 2785 0.27
Cells_-_EBV-transformed_lymphocytes 9478 5715 0.60 2948 0.31 3682 0.39 2462 0.26
Cells_-_Leukemia_cell_line_(CML) 10586 6448 0.61 3485 0.33 3883 0.37 2748 0.26
Cells_-_Transformed_fibroblasts 9304 5860 0.63 3229 0.35 2742 0.29 2112 0.23
Cervix_-_Ectocervix 11832 6910 0.58 3522 0.30 6150 0.52 3471 0.29
Cervix_-_Endocervix 12677 7359 0.58 3779 0.30 6837 0.54 3735 0.29
Colon_-_Sigmoid 10084 6060 0.60 3181 0.32 3619 0.36 2813 0.28
Colon_-_Transverse 9645 5771 0.60 2998 0.31 3513 0.36 2613 0.27
Esophagus_-_Gastroesophageal_Junction 9980 6011 0.60 3182 0.32 3720 0.37 2822 0.28
Esophagus_-_Mucosa 9081 5332 0.59 2713 0.30 2770 0.31 2192 0.24
Esophagus_-_Muscularis 9776 5957 0.61 3128 0.32 595 0.06 495 0.05
Fallopian_Tube 12480 7291 0.58 3751 0.30 6629 0.53 3690 0.30
Heart_-_Atrial_Appendage 8815 5290 0.60 2687 0.30 2588 0.29 2074 0.24
Heart_-_Left_Ventricle 5974 3603 0.60 1840 0.31 1591 0.27 1319 0.22
Kidney_-_Cortex 6802 3998 0.59 2091 0.31 2807 0.41 1918 0.28
Liver 8436 4911 0.58 2531 0.30 2713 0.32 2151 0.25
Lung 10077 5733 0.57 2631 0.26 406 0.04 362 0.04
Minor_Salivary_Gland 10462 6091 0.58 3097 0.30 4395 0.42 2887 0.28
Muscle_-_Skeletal 7112 4582 0.64 2545 0.36 1814 0.26 1603 0.23
Nerve_-_Tibial 10859 6281 0.58 3147 0.29 3489 0.32 2627 0.24
Ovary 10679 6050 0.57 2902 0.27 4003 0.37 2655 0.25
Pancreas 8925 5237 0.59 2637 0.30 3178 0.36 2313 0.26
Pituitary 11038 6321 0.57 3113 0.28 4110 0.37 2841 0.26
Prostate 10806 6152 0.57 3068 0.28 4051 0.37 2833 0.26
Skin_-_Not_Sun_Exposed_(Suprapubic) 9804 5754 0.59 2917 0.30 3317 0.34 2517 0.26
Skin_-_Sun_Exposed_(Lower_leg) 9087 5399 0.59 2765 0.30 525 0.06 453 0.05
Small_Intestine_-_Terminal_Ileum 10579 6093 0.58 3048 0.29 3925 0.37 2748 0.26
Spleen 11625 6671 0.57 3403 0.29 4540 0.39 3138 0.27
Stomach 9064 5455 0.60 2851 0.31 3316 0.37 2507 0.28
Testis 11738 6214 0.53 2814 0.24 3736 0.32 2498 0.21
Thyroid 10901 6138 0.56 2949 0.27 3425 0.31 2547 0.23
Uterus 11100 6439 0.58 3273 0.29 4238 0.38 2976 0.27
Vagina 10360 6009 0.58 2909 0.28 3861 0.37 2646 0.26
Whole_Blood 2926 1497 0.51 571 0.20 61 0.02 56 0.02
AVERAGE 9655.2 5729.6 0.59 2984.1 0.31 3366.9 0.35 2441.9 0.25

Table 5.1 Analysis of gene expression and transcript dominance per tissue in GTEx dataset (Kallisto
quantification scores). The columns designate the following categories:
n_exp - number of genes expressed in the tissue;
n_2-f and n_5-f - number of genes with 2- and 5-fold dominant transcripts not using support criterion
(defined on page 57);
n_2-f_s and n_5-f_s - number of genes with 2- and 5-fold dominant transcripts using support criterion.
These last four columns contain two values per row, being the second the ratio between the first value
and the number of expressed genes.
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genes that are expressed, 59% and 31% have a 2- and 5-fold dominant transcript, respectively,
but only if the support criterion is not used. If support is used to select dominant transcripts,
only 35% and 25% of genes have 2- and 5-fold dominant transcript, respectively. Therefore,
the use of support considerably reduces the number of genes with dominant transcripts. This
is a result of requiring that, for a specific gene, all samples of a tissue to have as major
transcript the dominant transcript determined for that gene and tissue. This means that, even
if just a single sample does not match this condition, the transcript no longer is considered
dominant. This condition is, of course, more difficult to meet in larger datasets, leading to the
already mentioned effect. This effect can be observed even just by comparing GTEx sample
tissues. The four tissues with the lowest number of samples (Cervix - Endocervix, Cervix
- Ectocervix, Fallopian Tube and Bladder) show a less pronounced reduction of dominant
transcripts when the support criterion is used, compared to the other tissues. This effect is
particularly noticed between 2-fold dominant transcripts including and excluding the support
condition (Table 5.1).

The number of dominant transcripts found in Uhlen dataset was higher than the ones
found in GTEx, on average 68% versus 59% of expressed genes have 2-fold dominant
transcripts. As mentioned before, the difference in number of samples influences the number
of dominant transcripts but even the GTEx tissues with number of samples similar to Uhlen
("Cervix - Endocervix", "Cervix - Ectocervix" and "Fallopian Tube") have lower percentage
of dominant transcripts (58% with no support and 52-54% with support).

5.2.2 Switch events

To evaluate if the dominant transcript of a gene changes across conditions, the number
of switch events was determined for all tissues of GTEx in a pairwise manner and the
level of similarity between tissues was determined using MDS as described in Chapter 4
(subsection 4.2.4).

It was observed that the number of switch events was low, considering the number of
genes expressed in a given condition and the number of genes with dominant transcripts. The
conditions with the highest number of 2-fold switch events were the 3 cell lines, testis and
two brain regions (cerebellar hemisphere and cerebellum). Of the normal tissues, skeletal
muscle, testis and all the brain regions had a high number of switches when compared to the
others, with the median number of switches being close to 40 or more. With that said, the
leukemia cell line was the condition with the highest median number of switches, a total of
140 (Figure 5.2) and the lowest median number of switches was 9 for stomach.

The MDS analysis revealed a clear separation of the brain regions, as well as a separation
of the multiple cell lines (dark green circles and orange circles, respectively, in Figure 5.3 -



100 Integrating transcriptomics data from two datasets

bottom). Similarly to what was observed in Uhlen dataset in the previous chapter (Figure 4.9),
skeletal muscle, testis, and liver appeared isolated from the rest of the tissues. However,
kidney cortex does not particularly stand out as in the Uhlen dataset, appearing now as part
of the main cluster of tissues. It should also be noticed that, although tissues from the same
regions (all the ones represented in circles) tend to be close to each other, the zoom plot
(Figure 5.3 - top) shows that there are exceptions such as the two esophagus tissues.

In the case of 5-fold switch events, the cerebellar hemisphere (brain) was the condition
with the highest median number of switches, a total of 7, and the lowest median number of
switches was 0 for 22 tissues in the dataset (Figure 5.4). It was again observed that in the
case of normal tissues, skeletal muscle, testis and all the brain regions had a higher number
of switches when compared to the others, although even in these cases the median never
exceeded 7. Regarding normal tissues, 14 was the maximum number of 5-fold switch events
obtained and was observed between 3 pairs of tissues: "Brain - Cerebellar Hemisphere"/Testis;
"Brain - Cerebellar Hemisphere"/"Muscle - Skeletal"; and "Brain - Cerebellum"/Testis.

The MDS analysis showed a clear separation of the brain regions and cell lines (Fig-
ure 5.5). Of the other tissues, skeletal muscle, testis, and liver are also isolated as before and
similarly to what was observed in Uhlen dataset (Figure 4.11). With that said, pancreas is a
tissue that appears more isolated than in the case of the 2-fold switch events and that can be
more evidently seen in the zoom plot (Figure 5.5 - top). Once again, kidney cortex does not
stand out and is part of the main cluster, unlike what was observed for Uhlen dataset. Lastly,
it should be mentioned that, although the results are similar to what was observed for the
2-fold switch events, there is less separation between tissue types, which is quite evident in
the zoom plot (Figure 5.5 - top).

The tissues with minimum and maximum median values differ from the ones determined
for Uhlen dataset switch events but these datasets differ in several aspects that influence these
results. GTEx contains a significantly higher number of tissues and number of biological
replicates per tissue, contains 3 cell lines and 13 brain regions, which, although they are
similar between each other, differ substantially from the other tissues, as can be seen from the
number of switch events. Therefore, it is not straightforward to compare both datasets. On
the one hand, the range of values for 2-fold switch events is similar, which can be observed
in both heatmaps where the support criterion was not used (Figure 4.13, Figure 5.2). On the
other hand, the number of 5-fold switch events in GTEx is consistently lower than the ones
determined for Uhlen dataset (Figure 4.14, Figure 5.4) and the median number of switches
for 24 tissues in GTEx is zero. This particular result might be related with the fact that GTEx
has more samples and the transcript dominance calculation is based on a ratio of averages.
The Uhlen dataset has a low number of samples, which means that a single abnormal value
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in one can significantly shift the mean expression of a transcript, leading to a determination
of a different dominant transcript and, consequently, causing switch events across all tissues
that express another transcript. In datasets with hundreds of samples per tissue, such as
GTEx, this effect is very unlikely to happen. Therefore, the GTEx results, specifically the
more extreme cases of 5-fold dominant transcripts, strongly support the existence of a single
dominant transcript dominance that is conserved across tissues. With all that being said, there
are some tissues that standout as being more involved in switch events, these are skeletal
muscle, testis and the brain regions.

5.2.3 GTEx/Uhlen datasets comparison

Following the determination of switch events for the tissues in GTEx dataset, a comparison
was made between the switches for these and the matching conditions in Uhlen dataset.
The tissues were matched according to their names and when a tissue of a dataset matched
multiple tissues of the other, the first one was matched to all the other tissues, like in this
example: "adipose tissue" in Uhlen dataset was matched to "Adipose - Subcutaneous" and
"Adipose - Visceral (Omentum)" in GTEx. A total of 29 GTEx tissues were matched to
tissues in Uhlen dataset. 2- and 5-fold switches were compared both using and excluding the
criterion of support (page 57).

There were 9969 2-fold switch events found in common between the datasets, with testis
being again the tissue with the highest median number of cases (55 switches) and the pair of
tissues with the highest number of switch events was testis with cerebral cortex (78 switches)
(Figure 5.6). As for the lowest number of switch events, lung was the lowest with 11, and
there were several pairs of tissues with zero events. All the pairs of tissues with no switch
events were tissues from the same regions (e.g. both cerebral cortex regions, both skin
regions, etc.). This makes sense because these are cases of highly similar tissue regions.

The number of 2-fold switch events considerably decreased when the support criterion
was used to define dominant transcripts. To illustrate this effect, it can be highlighted that
testis had only 1 as the median number of 2-fold switches and 18 out of 29 tissues had a
median of zero (Figure 5.7). The maximum number of switches was 11 and was observed
between bladder with spleen and bladder with cerebral cortex. Overall, this again shows
that using the support criterion in datasets with a large number of samples is a very stringent
condition but even using this criterion, there were 450 2-fold switch events in common
between datasets.

The tissue with the highest median number of 5-fold switches was skeletal muscle (2
switches) and the maximum number was 6, which was found for two pairs of tissues: skeletal
muscle with bladder and skeletal muscle with fallopian tube (Figure 5.8). There were a high
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Figure 5.2 Number of 2-fold switch events for all pairs of tissues in GTEx dataset. Support criterion
not used. The color scale is proportional to the number of switch events: the higher the number, the
darker the blue tone.



5.2 Results 103

Figure 5.3 The top plot is a multidimensional scaling (MDS) analysis applied to 2-fold switch events.
The bottom is a zoom plot of the region outlined with a rectangle on the top plot. A combination of
colors and symbols was used to represent the tissues. All tissues of the same region were represented
in the same color/symbol and in these cases only the prefix of the tissues was used in the legend (e.g.
all brain regions were designated "brain" and were represented by green circles).
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Figure 5.4 Number of 5-fold switch events for all pairs of tissues in GTEx dataset. Support criterion
not used. The color scale is proportional to the number of switch events: the higher the number, the
darker the blue tone.
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Figure 5.5 The top plot is a multidimensional scaling (MDS) analysis applied to 5-fold switch events.
The bottom is a zoom plot of the region outlined with a rectangle on the top plot. A combination of
colors and symbols was used to represent the tissues. All tissues of the same region were represented
in the same color/symbol and in these cases only the prefix of the tissues was used in the legend (e.g.
all brain regions were designated "brain" and were represented by green circles).
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Figure 5.6 Number of common 2-fold switch events for all pairs of tissues in GTEx and Uhlen
datasets. Support criterion not used (page 57). The color scale is proportional to the number of switch
events: the higher the number, the darker the blue tone.
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Figure 5.7 Number of common 2-fold switch events for all pairs of tissues in GTEx and Uhlen
datasets. Support criterion used (page 57). The color scale is proportional to the number of switch
events: the higher the number, the darker the blue tone.
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number of pairs of tissues with zero switch events and 19 out of 29 tissues had a median of
zero 5-fold switches.

When support was used to define transcript dominance, only 20 out of 29 tissues being
analysed had 5-fold switch events and even across them the number of switches was ex-
tremely low, being zero for most pairs of tissues (Figure 5.9). Frontal cortex was the tissue
with the largest number of switches, having switch events across 17 tissue pairs, but the
number of switches for a given pair never exceeded 1. In 16 of these cases, the switches in-
volved the ENSG00000171992 gene (ENST00000307662 switching to ENST00000519664)
and in one of the cases involved ENSG00000157368 (ENST00000429149 switching to
ENST00000288098).
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Figure 5.8 Number of common 5-fold switch events for all pairs of tissues in GTEx and Uhlen
datasets. Support criterion not used (page 57). The color scale is proportional to the number of switch
events: the higher the number, the darker the blue tone.
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Figure 5.9 Number of common 5-fold switch events for all pairs of tissues in GTEx and Uhlen
datasets. Support criterion used (page 57). The color scale is proportional to the number of switch
events: the higher the number, the darker the blue tone.
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5.2.4 Comparison of exons in switch transcripts

Like in the previous study, the exons of the pairs of transcripts that switch were compared. In
this case, the transcripts compared were the ones from 2-fold switch events common to GTEx
and Uhlen datasets (support criterion not used). It can be seen that most switch transcripts
differ in a relatively small number of exons and the most common number of different exons
was 4 between two switching transcripts (Figure 5.10), which is in accordance to what was
observed before (Figure 4.15).

Figure 5.10 Distribution of the number of exons that differ between pairs of transcripts in a 2-fold
switch event. On the x-axis is represented the number of exons that are different and on the y-axis is
the number of pairs of transcripts (number of switches).

5.2.5 Alternative splicing types

To explore the changes driven by alternative splicing, the types of alternative splicing that
occur between pairs of transcripts in 2-fold switch events common to GTEx and Uhlen
datasets were analysed. The two most common types of alternative splicing found were
alternative 3′ and alternative 5′ splice site selection, corresponding to 24.5% and 23.5%
respectively. These were followed by alternative polyadenylation and alternative promoter,
15.0% and 11.8% respectively (Figure 5.11, blue columns). The first two cases account for
48% of the cases and both represent relatively small changes in the transcripts because both
events are changes in a splice site of an exon (changes of less than one exon between the two
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transcripts). These results are also similar to the ones obtained for Uhlen dataset (Figure 5.11,
red columns). What is also similar between both is the relationship between splicing types,
in other words, the ranking of their frequency. One of the reasons for these similarities is
that the set of switches in common to GTEx and Uhlen datasets are of course a subset of
Uhlen switches. With that said, some differences were also observed and the percentages
of some splicing types differ between the two sets of switch events. The two splicing types
that differ the most in frequency are alternative polyadenylation (21% for Uhlen and 15% for
Uhlen/GTEx) and mutually exclusive exons (6.9% for Uhlen and 10.4% for Uhlen/GTEx).

Figure 5.11 Comparison of the percentage of alternative splicing types occurring between transcripts
in 2-fold switch events in Uhlen dataset (red) and the ones common to GTEx and Uhlen (blue). The
types of alternative splicing are alternative 3′ splice site selection; alternative 5′ splice site selection;
alternative polyadenylation; alternative promoter; mutually exclusive exons; exon skipping;
overlapping exons; and exclusive exon. Besides the most common types of alternative splicing, two
other categories were added: "overlap", for cases of overlapping exons that do not fit any of the other
splicing categories; and "exclusive", for cases of exons that are exclusive to one of the transcript and
do not fit any other splicing category.

5.2.6 Sequence identity

The impact of the exon changes in the sequence of the transcripts was evaluated by calculating
the sequence identity of switch event isoforms using BLASTN [18] and using an implemen-
tation of the Needleman-Wunsch algorithm [144, 145], a global alignment algorithm, as
described in the previous chapter.

It was observed that the sequence identity of pairs of switch transcripts is higher than
50% in most cases (Figure 5.12, Figure 5.13), although there are exceptions just like it has
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been observed in the study in Chapter 4. With that said, the distribution here observed is
different from the one previously reported (Figure 4.17, Figure 4.18). In particular, there is
a peak around 60%, while in the previous case the peak was around 90%. This indicates
that many of Uhlen’s switch events involving highly similar transcripts are not found in
GTEx, which might be related to the difficulty of the mapping and quantification software
in attributing reads to the right transcript isoform in this situations, leading to the lack of
consistency across datasets.

Again, it should be mentioned that the switch events here analysed are a subset of the
ones previously analysed and this subset contains a significantly fewer number of elements.

Figure 5.12 Distribution of the DNA sequence identity between pairs of switch transcripts calculated
with BLASTN [18] for 5-fold switch events common to GTEx and Uhlen datasets.

5.2.7 Exon overlapping analysis

We noticed that in some cases the exons that differ between the switching transcripts are
in fact overlapping. The overlapping exons were compared to evaluate to what extent they
overlap each other. The percentage of overlap between the exons was calculated and it was
observed that most exons overlap more than 95% (Figure 5.14). In the previous study, this
analysis revealed something similar, with the distribution of overlap also having a peak at
95% overlap. This effect is even more pronounced than what was observed just for Uhlen
dataset (Figure 4.20). In the case of Uhlen dataset, the distribution had a tail that decreased
with decreasing overlap percentage, which is not observed in the current case.
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Figure 5.13 Distribution of the DNA sequence identity between pairs of switch transcripts calculated
with a global aligner (needle) for 5-fold switch events common to GTEx and Uhlen datasets.

Figure 5.14 Distribution of the overlap percentage between exons of 2-fold switch events common to
GTEx and Uhlen datasets.

5.2.8 Protein domain analysis

To determine how changes in exons translate into changes in protein function, the protein
domains of each isoform in a switch event were compared as described in Chapter 4.
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N domain changes N switches 2-fold % 2-fold N switches 5-fold % 5-fold
0 7204 87.2 240 92.0
1 619 7.5 17 6.5
2 276 3.3 2 0.8
3 101 1.2 2 0.8
≥4 57 0.7 0 0

Table 5.2 Number of common switch events in GTEx and Uhlen datasets with domain changes and
respective percentages.

It was observed that in 87.2% of 2-fold switch events there were no protein domain
changes between the isoforms. In the case of 5-fold switch events, the percentage is slightly
higher, 92.0% of switch events have no domain changes (Table 5.2). In both cases, the values
are higher than what was found just for Uhlen dataset, where around 80% of both 2- and
5-fold switches have no domain changes. This confirms that most switch events do not cause
protein domain changes, indicating that is unlikely that the function of the isoforms is altered
in a substantial way.

5.3 Examples

The examples presented in this section are 5-fold switch events common to both Uhlen and
GTEx datasets where domain changes were found between the transcripts that switch. There
were in total 21 switch events involving 5 genes (Table 5.3) that have transcript isoforms
coding for different domains. All of these switches are described in this section. The protein
domain identifiers used here are from Pfam database [140].

5.3.1 KIF1B - ENSG00000054523

The KIF1B gene encodes a motor protein that transports mitochondria and synaptic vesicle
precursors. It is called kinesin family member 1B protein, which belongs to the kinesin
family of proteins. The function of these proteins is intracellular transport and they are
constituted by two elements. One element is a motor domain, that provides the power to
move the protein and its cargo across a track-like system. The other element binds specific
materials and is variable among members of this family [163].

KIF1B has a total of 12 annotated transcript isoforms, 7 of which are protein-coding. Two
of these protein-coding isoforms were found to be dominant in different conditions (Table 5.4,
Figure 5.15): ENST00000377093 (dominant in skeletal muscle) and ENST00000377086
(dominant in pancreas and cerebral cortex). These two isoforms have a 57.6% sequence
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Gene name Gene id Transcripts id

KIF1B ENSG00000054523 ENST00000377093
ENST00000377086

SLC35E4 ENSG00000100036 ENST00000343605
ENST00000451479

MARK4 ENSG00000007047 ENST00000262891
ENST00000300843

PTER ENSG00000165983 ENST00000378000
ENST00000423462

PSD3 ENSG00000156011 ENST00000327040
ENST00000518315

Table 5.3 List of genes with 5-fold switch events common to Uhlen and GTEx datasets and
respective dominant transcripts.

identity (Needleman-Wunsch) and differ in 3 protein domains that are not present in
ENST00000377093 (skeletal muscle): PF12423, PF12473, and PF00169 (Figure 5.16,
Figure 5.17). Of the 3 domains, PF12423 is an anterograde motor for the transport of mito-
chondria [164], PF12473 (DUF domain) is of unknown function and PF00169 (PH domain)
is a pleckstrin homology domain that participates in the recruitment of proteins to different
membranes, directing them to the appropriate cellular compartment [165]. The dominant
isoform in skeletal muscle does not have these 3 domains but it still has 3 others: a kinesin, a
kinesin-associated and a forkhead-associated domain. The kinesin domain enables the protein
to move along microtubules [166] and the forkhead-associated domain is a phosphopeptide
recognition domain that binds phosphothreonine-containing epitopes [167]. This indicates
that this isoform is still functional because it contains the motor protein domain and is able
to bind certain proteins. The fact that it is not able to bind and, consequently, transport
mitochondria in an anterograde manner is most likely related with the role of mitochondria
in skeletal muscle.

Tissue 1 Tissue 2 Transcript ID 1 Transcript ID 2

skeletal muscle pancreas ENST00000377093 ENST00000377086

skeletal muscle cerebral cortex ENST00000377093 ENST00000377086

Table 5.4 List of switch events common to Uhlen and GTEx datasets for KIF1B gene. "Tissue 1" and
"Tissue 2" are the two switch event conditions and "Transcript ID 1" and "Transcript ID 2" are the
correspondent transcript identifiers.
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Figure 5.15 View of the transcript isoforms of KIF1B (ENSG00000054523) gene in Ensembl
genome browser [19]. The two transcripts involved in switch events are outlined with black
rectangles: KIF1B-003 and KIF1B-001 correspond to ENST00000377093 and ENST00000377086,
respectively.

Figure 5.16 Protein domain struture for the two isoforms of KIF1B (ENSG00000054523) involved in
switch events: ENST00000377093 (dominant in skeletal muscle) and ENST00000377086 (dominant
in pancreas and cerebral cortex). The Pfam domain identifiers are displayed below the domains,
which are represented by differently colored rectangles. Adapted from Pfam database [21].

Figure 5.17 Structure of the FHA domain from KIF1B (2eh0 on PDBe [22]).
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5.3.2 SLC35E4 - ENSG00000100036

SLC35E4 encodes the carrier family 35 member E4 protein, which is a transmembrane
protein, a nucleotide-sugar transporter [168]. This gene has 3 isoforms, all of them protein-
coding (Figure 5.18), and two of which are dominant in different conditions (Table 5.5):
ENST00000343605 (dominant in skin and cerebral cortex) and ENST00000451479 (domi-
nant in testis). These two isoforms have 52.6% sequence identity and differ in two protein
domains that are not present in ENST00000451479 (testis): PF03151 and PF08449 (Fig-
ure 5.19). The PF03151 (TPT) domain is a transporter with specificity for triose phosphate
and PF08449 (UAA) domain is a transporter with specificity for UDP-N-acetylglucosamine
[169]. Since the ENST00000451479 isoform does not contain any of the annotated domains,
it is possible that in testis, the SLC35E4 gene expresses a non-functional protein.

Figure 5.18 View of the transcript isoforms of SLC35E4 (ENSG00000100036) gene in Ensembl
genome browser [19]. The two transcripts involved in switch events are outlined with black
rectangles: SLC35E4-001 and SLC35E4-003 correspond to ENST00000343605 and
ENST00000451479, respectively.

Tissue 1 Tissue 2 Transcript ID 1 Transcript ID 2

testis skin ENST00000451479 ENST00000343605

testis cerebral cortex ENST00000451479 ENST00000343605

Table 5.5 List of switch events common to Uhlen and GTEx datasets for SLC35E4 gene. "Tissue 1"
and "Tissue 2" are the two switch event conditions and "Transcript ID 1" and "Transcript ID 2" are
the correspondent transcript identifiers.

5.3.3 MARK4 - ENSG00000007047

MARK4 encodes the microtubule affinity-regulating kinase 4. These kinases phosphorylate
microtubule-associated proteins, regulating the transition between stable and dynamic mi-
crotubules. The MARK4 protein is associated with the centrosome throughout mitosis and
might be involved in the control of the cell cycle [170].
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Figure 5.19 Protein domain struture for the two isoforms of SLC35E4 (ENSG00000100036)
involved in switch events: ENST00000343605 (dominant in skin and cerebral cortex) and
ENST00000451479 (dominant in testis). The Pfam domain identifiers are displayed below the
domains, which are represented by differently colored rectangles. Adapted from Pfam database [23]
with PF08449 added in the most likely location based on the exon structure.

MARK4 has 11 transcript isoforms, 6 of which are protein-coding. Two of the isoforms
are dominant in different tissues (Table 5.6, Figure 5.20): ENST00000262891 (dominant in
fallopian tube, skin, esophagus, small intestine, prostate, pancreas, thyroid and salivary gland)
and ENST00000300843 (dominant in skeletal muscle). These two isoforms have 67.5%
sequence identity and differ in only one protein domain (PF02149) which is not present in
ENST00000300843 (Figure 5.21, Figure 5.22). PF02149 is a KA1 domain, whose function
is not yet known [171], therefore it is difficult to predict what is the impact of the isoform
switch in this case. Nevertheless, since both isoforms have a Pkinase domain (PF00069)
and a ubiquitin-associated domain (PF00627), they are probably both functional because
they have the kinase function, as well as the capacity to recognise ubiquitin [172], which is a
signal added to incorrectly folded proteins so they can be degraded.

Tissue 1 Tissue 2 Transcript ID 1 Transcript ID 2

skeletal muscle fallopian tube ENST00000300843 ENST00000262891

skeletal muscle skin ENST00000300843 ENST00000262891

skeletal muscle esophagus ENST00000300843 ENST00000262891

skeletal muscle small intestine ENST00000300843 ENST00000262891

skeletal muscle prostate ENST00000300843 ENST00000262891

skeletal muscle pancreas ENST00000300843 ENST00000262891

skeletal muscle thyroid ENST00000300843 ENST00000262891

skeletal muscle salivary gland ENST00000300843 ENST00000262891

Table 5.6 List of switch events common to Uhlen and GTEx datasets for MARK4 gene. "Tissue 1"
and "Tissue 2" are the two switch event conditions and "Transcript ID 1" and "Transcript ID 2" are
the correspondent transcript identifiers.
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Figure 5.20 View of the transcript isoforms of MARK4 (ENSG00000007047) gene in Ensembl
genome browser [19]. The two transcripts involved in switch events are outlined with black
rectangles: MARK4-001 and MARK4-002 correspond to ENST00000262891 and
ENST00000300843, respectively.

Figure 5.21 Protein domain struture for the two isoforms of MARK4 (ENSG00000007047) involved
in switch events: ENST00000262891 (dominant in fallopian tube, skin, esophagus, small intestine,
prostate, pancreas, thyroid and salivary gland) and ENST00000300843 (dominant in skeletal muscle).
The Pfam domain identifiers are displayed below the domains, which are represented by differently
colored rectangles. Adapted from Pfam database [24].

Figure 5.22 Structure of the Pkinase and UBA (PF00627) domains from MARK4 (5es1 on PDBe
[22]).

5.3.4 PTER - ENSG00000165983

PTER encodes a phosphotriesterase-related protein, which is located in extracellular regions
or secreted. Phosphotriesterase enzymes catalyze the conversion of aryl dialkyl phosphate
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to dialkyl phosphate and aryl alcohol [173]. This gene has 5 annotated transcript isoforms
of which 4 are protein-coding and it has two dominant transcripts (Table 5.7, Figure 5.23):
ENST00000378000 (dominant in testis) and ENST00000423462 (dominant in skin). These
two isoforms have 84.6% sequence identity and differ in one protein domain (PF01026)
which is not present in ENST00000423462 (skin) (Figure 5.24). This particular domain is
called TatD and it functions as a DNase [174], which means that the isoform expressed in
skin does not have the function of DNA cleavage, although it might still be a functional
enzyme because it contains the phosphotriesterase domain (PTE - PF02126).

Figure 5.23 View of the transcript isoforms of PTER (ENSG00000165983) gene in Ensembl genome
browser [19]. The two transcripts involved in switch events are outlined with black rectangles:
PTER-002 and PTER-202 correspond to ENST00000378000 and ENST00000423462, respectively.

Tissue 1 Tissue 2 Transcript ID 1 Transcript ID 2

testis skin ENST00000378000 ENST00000423462

Table 5.7 List of switch events common to Uhlen and GTEx datasets for PTER gene. "Tissue 1" and
"Tissue 2" are the two switch event conditions and "Transcript ID 1" and "Transcript ID 2" are the
correspondent transcript identifiers.

Figure 5.24 Protein domain struture for the two isoforms of PTER (ENSG00000165983) involved in
switch events: ENST00000378000 (dominant in testis) and ENST00000423462 (dominant in skin).
The Pfam domain identifiers are displayed below the domains, which are represented by differently
colored rectangles. Adapted from Pfam database [25] with PF01026 added in the most likely location
based on the exon structure.
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5.3.5 PSD3 - ENSG00000156011

PSD3 encodes the "pleckstrin and Sec7 domain containing 3" protein, which is involved
in intracellular signaling and can be a constituent of the cytoskeleton. This protein binds
Phosphatidylinositol lipids in biological membranes and proteins, such as the protein kinase
C. Pleckstrin homology domains participate in the recruitment of proteins to different
membranes, directing them to particular cellular compartments or allowing the interaction
between them and other components of signal transduction pathways [175].

This gene has 20 isoforms, 11 of which are protein-coding, and it has two dominant
isoforms (Table 5.8, Figure 5.25): ENST00000327040 (dominant in liver, cerebral cortex
and ovary) and ENST00000518315 (dominant in testis). These two isoforms have 15.5%
sequence identity and differ in one protein domain only (PF15410) which is not present in
ENST00000518315 (testis) (Figure 5.26). This domain is a pleckstrin homology domain and,
as mentioned before, it participates in the recruitment of proteins to different membranes,
directing them to the appropriate cellular compartment [165]. In the five switch event
examples given in this section, this is the second case of a switch that controls the ability of a
protein isoform to recruit and transport proteins. Lastly, it should be mentioned that, although
lacking one protein domain, the isoform dominant in testis still has a Sec7 domain (PF01369),
which is a guanine-nucleotide-exchange-factor, a protein that activates monomeric GTPases
[176]. This suggests that this protein isoform is functional.

Tissue 1 Tissue 2 Transcript ID 1 Transcript ID 2

testis liver ENST00000518315 ENST00000327040

testis cerebral cortex ENST00000518315 ENST00000327040

testis ovary ENST00000518315 ENST00000327040

Table 5.8 List of switch events common to Uhlen and GTEx datasets for PSD3 gene. "Tissue 1" and
"Tissue 2" are the two switch event conditions and "Transcript ID 1" and "Transcript ID 2" are the
correspondent transcript identifiers.
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Figure 5.25 View of the transcript isoforms of PSD3 (ENSG00000156011) gene in Ensembl genome
browser [19]. The two transcripts involved in switch events are outlined with black rectangles:
PSD3-001 and PSD3-004 correspond to ENST00000327040 and ENST00000518315, respectively.

Figure 5.26 Protein domain struture for the two isoforms of PSD3 (ENSG00000156011) involved in
switch events: ENST00000327040 (dominant in liver, cerebral cortex and ovary) and
ENST00000518315 (dominant in testis). The Pfam domain identifiers are displayed below the
domains, which are represented by differently colored rectangles. Adapted from Pfam database [26].

5.4 Discussion

The current study expands the work presented in the previous chapter by exploring transcript
dominance and switch events on the GTEx dataset and by comparing the results. In this
chapter, the results confirmed some of the findings from Chapter 4: most genes have a
dominant transcript that is conserved across conditions and there are a few cases where
the dominant transcript switches. With that said, it was noticed that using a dataset with
considerably higher number of samples per tissue requires extra caution on the definition
of transcript dominance, which was illustrated by the effect the criterion of support had on
the number of dominant transcripts and, consequently, on the number of switch events. On
one hand, the percentage of dominant transcripts in GTEx was on average lower than in
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Uhlen dataset, indicating that there are fewer genes with dominant transcripts. On the other
hand, the fewer cases of switch events reveal that when a transcript is dominant, tends to be
dominant across all tissues where the gene is expressed.

The comparison between GTEx and Uhlen datasets showed that both datasets had a
significant number switch events in common for matching tissues (Figure 5.6, Figure 5.8).
However, this number was greatly decreased by the use of support to define dominant
transcripts (Figure 5.7, Figure 5.9), which may be an extremely conservative definition in
this case, requiring hundreds of samples to have the same major transcript in some tissues.
Nevertheless, even in that case, 2-fold switch events were still observed for all comparable
tissues of the 2 datasets. The same was not observed for 5-fold switch events.

The analysis of the transcripts involved in switch events confirmed what was showed in
Chapter 4. The changes controlled by alternative splicing through switch events seem to be
small, not disrupting protein domains in most cases. However, there were exceptions and
some switch events control protein domain changes between switch transcripts. The five
examples given at the end of the chapter were the only cases of 5-fold switch events common
to Uhlen and GTEx datasets that involved protein domain changes. These examples showed
that, although there are only a few of such cases, the genes controlled by alternative splicing
in a switch-like manner can vary. This is evident by comparing the function of these genes,
which is quite diverse: a kinase, a protein intracellular transporter, a transmembrane protein,
a phosphotriesterase-related protein, and a pleckstrin protein. This shows that alternative
splicing can drive changes through switch events in very different types of proteins, which
shows that alternative splicing does not seem to have a single unique function. Also, in these
5 examples, there are cases from a single protein domain change up to 3 domain changes
between the two switch isoforms, indicating that at least in some cases, alternative splicing
can control drastic isoform changes. Therefore, although between 80% to 90% of switch
events do not involve domain changes, there are a few cases where the changes can be
significant.

Of the 5 cases of switches presented, there were 2 that had the same type of domain
switching across conditions: a pleckstrin homology domain, which is involved in the re-
cruitment of proteins to different membranes, relocating them to the appropriate cellular
compartment. These examples show that switch events can potentially affect the localization
of proteins in a cell.

It should also be mentioned that in the 5 examples given, there is an isoform that is
dominant exclusively in one tissue and the other tissues express another isoform that is
common to all of them. This indicates that switch events might appear as a consequence of
the expression of an isoform specific to one tissue, but further analysis is required to shed
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light on this particular question. There were tissues that were particularly more represented
in these examples, these were skeletal muscle, testis and cerebral cortex. These tissues were
also highlighted in the MDS analysis done in this chapter, appearing isolated from the others
and participating in a significant number of switch events.

The reason why these tissues appeared represented in these examples might be related to
function of the tissues and their regulation. Alternative splicing has long been known to be
prevalent in testis, being critically important for several developmental pathways [177]. It
is also known to be particularly widespread in the nervous system, where splicing patterns
are very conserved, providing conserved functions to the tissues [178]. Lastly, in regards to
skeletal muscle, it can be said that this tissue expresses a highly specialized proteome used
for the metabolism of energy sources to mediate myofiber contraction, which is a result, not
only of differential gene expression but also of specific alternative splicing patterns [179].

5.5 Methods

The methods used in this study were the same as the ones described in chapter 4. The cases
where different or additional methods were used were described within the results section of
this chapter (e.g. the comparison between Uhlen and GTEx datasets).





Chapter 6

Integrating transcriptomics and
proteomics data in the study of
alternative splicing

RNA-seq has allowed the investigation of the role of alternative splicing, particularly by
enabling the quantification of different transcript isoforms of the same gene. Although
mRNAs contain the information for the synthesis of proteins, it does not necessarily imply
that functional protein products are produced. In fact, there have been some studies that
explored the correlation of expression values between transcriptomics and proteomics data,
revealing that the correlation is around 60% [155–157]. The work presented in this chapter is
a different approach for combining transcriptomics and proteomics data to better understand
alternative splicing. This integrative approach relies on perturbing the mRNA splicing
patterns and checking if there are alterations on the composition of the proteome. To do so,
RNA-seq data is integrated with SWATH-MS data, a DIA proteomics method, to investigate
the impact of splicing events on the proteome. The strategy presented here relies on the
depletion of PRPF8, a component of the core spliceosome U5 snRNP. After the perturbation,
control, and PRPF8 knock-down samples were compared. Transcriptomic and proteomic
changes for each detected isoform of each protein-coding gene were assessed by determining
the correlation between the fold-change estimates obtained from RNA and protein data. This
work also allowed to evaluate if including information on transcript relative abundances
could improve the mentioned correlation.

The experimental work was done by Vi Wickramasinghe from the Hutchison Research
Institute, and the proteomics data was generated and analysed by Dr. Yansheng Liu from
ETH Zürich. The initial data analysis was done by Mar Gonzàlez-Porta.
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A publication resulted from this work: Liu, Y., Gonzàlez-Porta, M., Santos, S., Brazma,
A., Marioni, J.C., Aebersold, R., Venkitaraman, A.R. and Wickramasinghe, V.O., 2017.
Impact of alternative splicing on the human proteome. Cell reports, 20(5), pp.1229-1241.

6.1 Introduction

The contribution of alternative splicing to the diversity of proteins is not fully understood.
The most common approaches for studying this subject are based on the identification of
different isoforms of the same gene in a steady-state system, using MS [142, 180–182]. There
have been studies that combined expression data from RNA-seq experiments with proteomics
data aiming to reduce mapping noise [183, 184], however, these studies did not quantitatively
analyse the impact of alternative splicing on protein diversity in a systematic manner. This
study aimed at identifying changes in the composition of the proteome when selective
perturbations were made to alternative splicing patterns. In this manner, it was possible to
quantify the changes in a subset of transcripts affected by the induced perturbations.

RNA splicing is a complex process in which over one hundred proteins (splicing factors)
participate, that together with snRNAs form the spliceosome. One of the splicing factors that
participates in this process is PRPF8, a core spliceosomal component of the spliceosome
[185, 186], which is part of the U5 snRNP and the B-complex, and it is one of the largest
nuclear proteins. PRPF8 is highly conserved, occupying a central position in the catalytic
core of the spliceosome, and taking part in crucial molecular rearrangements during splicing
[185]. This protein acts as a scaffold during the assembly of the spliceosome, participating in
the activation of the B-complex by recruiting the U4-U6·U5 tri-snRNP complex [187]. The
method here presented analyses PRPF8 knock-down vs. control samples to understand how
alternative splicing operates and how such perturbation affects the expression of alternative
isoforms.

The modest correlation obtained between transcriptomics and proteomics data implies
that some of the abundance variation observed at the protein level cannot be explained only
by mRNA expression. The main strategies for detecting alternatively spliced isoforms at the
protein level rely primarily on uniquely mapping peptides to support the identification of
annotated isoforms [180, 142] or the identification of novel exon-exon junctions [188, 189].
However, understanding the role of alternative splicing is still a challenge. It is also hard to
predict how differences in alternative splicing across different conditions actually affect the
respective protein isoform expression levels.

The study described in this chapter is a collaborative effort aimed at understanding how
differential splicing events manifest at the protein level. To do so, fold-changes obtained
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using RNA-seq and SWATH-MS data were integrated using methods that rely not only on
peptides that map uniquely to a specific isoform but also on peptides that map to multiple
isoforms of the same gene. This is made possible by the use of RNA-seq expression data,
which is used to guide the peptide assignment, enabling to increase the amount of usable
proteomics data.

6.2 Results

6.2.1 Studying alternative splicing at the proteomic level

The perturbation made to splicing was the depletion of the core spliceosome U5 snRNP
component PRPF8. This system had been previously validated for studying splicing at the
mRNA level [190]. The induced transcriptomic and proteomic changes were subsequently
assessed by RNA-seq and SWATH-MS, a data-independent acquisition (DIA) MS method
which combines the coverage of conventional shotgun proteomics with the high reproducibil-
ity and accuracy of targeted protein profiling based on SRM (Figure 6.1). A total of 14,695
peptides (false discovery rate [FDR] 1%) were identified and quantified across three biologi-
cal replicates for each condition, using SWATH-MS and the OpenSWATH software [191].
These peptides uniquely map to 2805 protein-coding genes and 1542 proteins of these genes
had at least one peptide with altered expression after PRPF8 depletion. The reproducibility of
SWATH-MS experiments was high, averaging a high correlation (R = 0.99, Pearson) between
technical replicates, as well as biological replicates (R = 0.94).

The transcripts with altered splicing patterns, as well as the proteins with altered levels
were found to be enriched in the same functional categories: translation, RNA splicing,
mitotic cell cycle, and ubiquitination (Figure 6.2). On the other hand, the set of proteins with
unchanged levels were enriched in transcription-related and ribosome biogenesis proteins
[6].

6.2.2 Integrating RNA-Seq with SWATH/SRM mass spectrometry

The integration of transcriptomic and proteomic datasets was achieved by first identifying
differential splicing events at the transcript level. To do so, a transcript-centric approach was
used, relying on the quantification of all transcripts of a gene and identifying differences
between conditions. The transcripts expression values were determined using MMSEQ [107],
and cases of differential gene expression (DGE), as well as cases of differential transcript
usage (DTU), were identified with MMDIFF [121]. Genes with DTU are cases with changes
on the transcript relative abundances between conditions (Figure 6.1, left panel). 388 genes
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Figure 6.1 Framework to study the contribution of alternative splicing to proteomic composition and
diversity. The alternative splicing process followed by a perturbation of RNA splicing is represented
on the top. On the left, RNA-seq is used to assess transcriptomic changes. On the right, mass
spectrometry is used to assess the effects at the protein level, first SWATH-MS was used, followed by
SRM to validate the results in a targeted way. At the bottom, the data was integrated and the effects of
splicing on protein levels were assessed (figure from [6]).
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Figure 6.2 An analysis of the functional categories enriched in both transcripts with altered splicing
patterns and proteins with altered levels. This analysis was done with DAVID [27]. On the left, it is
shown that transcripts with altered splicing and proteins with altered levels are enriched in the same
functional categories: translation, RNA splicing, mitotic cell cycle and ubiquitination. On the right, a
similar analysis done with proteins detected by SWATH-MS shows that the proteins with unchanged
levels after PRPF8 depletion are enriched in the categories of transcription and ribosome biogenesis.
p-values are colour-coded (figure from [6]).

with DTU and 2021 genes with DGE were identified (out of 13,216 genes; expression
threshold = 1 fpkm), when comparing controls to PRPF8 depleted conditions.

The first approach used was to consider only peptides that uniquely map to transcripts
involved in DTU events, determined using RNA-seq data. The peptide expression levels were
directly and exclusively associated with these isoforms. To determine the impact of PRPF8
depletion, the fold changes of the expression values were firstly calculated for transcripts and
peptides, between controls and PRPF8 depleted samples. Then the correlation between fold
changes of the two types of data was calculated, resulting in 0.49 and 0.51 for Spearman’s
and Pearson, respectively (65 peptides from 30 genes; p-value = 0.0169, Spearman; p-value
= 0.0102, Pearson) (Figure 6.4 - A).

An alternative strategy to determine peptide fold changes for each isoform relied on
determining fold changes for each peptide individually, obtaining the median fold change
that mapped to each transcript. The results obtained were similar to the previous approach
(Table 6.1).

It must be taken into account that uniquely mapping peptides make up a small proportion
of the peptides detected by SWATH-MS (only 2974 out of a total of 14,665). Which means
there are many peptides which map to multiple isoforms of the same gene.

6.2.3 Integrating the complete SWATH proteomic dataset

The strategy that was implemented to make use of the whole SWATH proteomic dataset
took advantage of RNA-seq information to guide peptide assignments, particularly the most
highly expressed transcript of each gene (major transcript) [1] (Figure 6.4 - B). Since lowly
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DTU all transcripts + uniquely mapping peptides
Correlation coefficient (SWATH) Correlation coefficient (SRM)
ρ 0.301 ρ 0.723
p-value 0.11 p-value 0.005
DTU all transcripts + all peptides
Correlation coefficient (SWATH) Correlation coefficient (SRM)
ρ 0.273 ρ 0.667
p-value 0.003 p-value 0.004
DTU major transcripts + uniquely mapping peptides
Correlation coefficient (SWATH) Correlation coefficient (SRM)
ρ 0.258 ρ 0.665
p-value 0.211 p-value 0.016
DTU major transcripts + all peptides
Correlation coefficient (SWATH) Correlation coefficient (SRM)
ρ 0.425 ρ 0.682
p-value 0.0002 p-value 0.0047

Table 6.1 Summary of the determined correlation coefficients for cases of DTU and peptides detected
in SWATH/SRM MS experiments, using an alternative method to calculate peptide fold-changes for
each transcript (table from [6]).

Transcript set Peptide set I-over A-over Correlation Agree. (%)
DTU All Transcripts and Uniquely Mapping Peptides
transcripts (452) transcript 30 30 ρ 0.487 Y, 21 (70)

pep. (2974) peptides 65 65 p-val 0.017 N, 9 (30)
genes (388) genes (859) genes 30 30
DTU All Transcripts and All Peptides
transcripts (452) transcript 158 118 ρ 0.274 Y, 68 (57.6)

pep. (14695) peptides 700 530 p-val 0.0038 N, 50 (42.4)
genes (388) genes (2805) genes 128 116
DTU Major Transcripts and Uniquely Mapping Peptides
transcripts (291) transcript 27 27 ρ 0.498 Y, 20 (74.1)

pep. (2974) peptides 61 61 p-val 0.017 N, 7 (25.9)
genes (263) genes (859) genes 27 27
DTU Major Transcripts and All Peptides
transcripts (291) transcript 97 77 ρ 0.486 Y, 56 (72.7)

pep. (14695) peptides 481 419 p-val 1.97e−5 N, 21 (27.3)
genes (263) genes (2805) genes 84 75

Table 6.2 Alternative strategies for the integration of differently used transcripts and peptides
detected by SWATCH-MS. Abbreviations: ‘I-over’ - overlap between transcript and peptide datasets
before depletion; ‘A-over’ - overlap between transcript and peptide datasets after depletion; ‘Agree.’ -
percentage of agreement.; ‘pep.’ - peptides; ‘p-val’ - p-value (table from [6]).
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expressed transcripts are less likely to be detected at the protein level due to the dynamic
range of the mass spectrometer, only the major transcript of each gene was considered for
peptide assignment, and cases that did not display DTU were discarded. 263 genes with
major transcripts displaying DTU were identified (Table 6.2) and in some of these cases,
the major transcript switched between conditions. In such cases, regions that allowed to
distinguish these two transcripts were used to uniquely allocate peptides [6]. With this
approach, it was possible to determine peptide fold changes for a total of 419 peptides which
mapped to 75 genes that displayed DTU. The comparison of fold changes between mRNA
and protein expression resulted in a correlation of 0.49 and 0.37 for Spearman’s and Pearson,
respectively (Figure 6.4 - B). It should be mentioned that the values obtained are similar to
the ones obtained with uniquely mapping peptides only, even considering that was used a
significantly larger dataset (419 peptides from 75 genes in contrast to 65 peptides from 30
genes). Alternatively, when both major transcripts and uniquely mapping peptides criteria
were used, only 61 peptides from 27 genes met both criteria (0.50 and 0.52 for Spearman’s
and Pearson, respectively) (Figure 6.3).

Finally, a strategy that assigned peptides to all DTU cases regardless of their expression
levels was used. This increased the dataset size to 530 peptides belonging to 116 genes
but resulted in a decrease in the correlation to 0.27 and 0.21 for Spearman’s and Pearson,
respectively (Figure 6.4 - C).

6.2.4 Using SRM to validate SWATH-MS results

In this study, SRM was used on both control and PRPF8-depleted samples to validate the
previously described findings. To increase the quantitative precision, a heavy isotope-labeled
standard was used to spike the samples. Although SRM has higher sensitivity, it has the
compromise of much lower analyte throughput when compared to SWATH. Therefore, it was
only possible to determine peptide fold changes for 53 targeted peptides corresponding to 15
genes with major transcripts displaying DTU. The comparison of mRNA fold changes with
protein expression, in this case, yielded correlations of 0.62 and 0.59 for Spearman’s and
Pearson (Figure 6.6 - B). When only peptides that map uniquely to transcripts involved in
DTU were considered (35 peptides from 13 genes), there was a correlation increase to 0.78
and 0.71 (Figure 6.6 - A). Finally, when analysing major transcripts and uniquely mapping
peptides corresponding to 33 peptides from 12 genes, the correlations were 0.73 and 0.70 for
Spearman’s and Pearson, respectively (Figure 6.5). These results indicate that changes in
isoform usage across the human transcriptome are expressed at the proteome level.
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Figure 6.3 Correlation between MS and RNA-seq data fold changes for major transcripts and
uniquely mapping peptides detected using SWATH-MS using the alternative approach for calculating
fold changes (figure from [6]).
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Figure 6.4 How changes in isoform usage manifest at the protein level (SWATH-MS data). A -
comparison of fold changes in expression between differently used transcripts (DTU) and expression
of peptides that uniquely map to them. B - comparison of fold changes in expression between DTU
that are major transcripts and expression of corresponding peptides. C - comparison of fold changes
in expression between all DTU transcripts and expression of corresponding peptides. Spearman’s and
Pearson correlation coefficients are in the top left corner of each plot (figure from [6]).
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Figure 6.5 Correlation between MS and RNA-seq data fold changes for major transcripts and
uniquely mapping peptides detected using SRM after PRPF8 depletion (figure from [6]).
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Figure 6.6 Validation of peptides using SRM-MS. A - comparison of fold changes in expression
between differently used transcripts (DTU) and expression of peptides that uniquely map to them. B -
comparison of fold changes in expression between major transcript that and expression of peptides
that uniquely map to them (figure from [6]).

6.2.5 The effect of intron retention on protein levels

Intron retention is a type of alternative splicing which often plays a role in controlling gene
expression [192, 193]. Therefore, the impact of intron retention on the proteome composition
was assessed. It has been suggested that this type of alternative splicing could potentially
affect transcripts from 75% of multi-exon genes [154]. Intron retention is known to cause
changes in the transcripts that cause them not to be translated, specifically transcripts can be
retained in the nucleus due to not being competent to be exported. They can also contain a
premature stop codon, resulting in their degradation by nonsense-mediated decay (NMD),
which can significantly affect transcript levels [154]. Here, the impact of retained introns on
protein expression using a systematic approach was analysed.

Following PRPF8 depletion, peptide evidence of retained introns for 270 genes was found.
The transcripts corresponding to these peptides were identified with DEXSeq [122] and it
was observed that the expression of their corresponding proteins had decreased in comparison
to the ones with no retained introns (Figure 6.8). The proportion of downregulated proteins
was found to be higher in the genes with retained introns compared to the others, 161 out of
270 versus 231 out of 473, respectively (p-value = 0.0041).
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Protein expression is also affected by the relative abundance of protein-coding transcript
isoforms of a gene. After PRPF8 depletion, most downregulated proteins correspond to
genes that have a higher relative abundance of non protein-coding transcripts (Figure 6.7 -
A). Downregulated genes correspond to a relatively higher abundance of non protein-coding
transcripts in comparison to upregulated proteins. It should be mentioned that after PRPF8
depletion, there were some genes with intron retention which expression levels did not change
and even cases where it increased. This suggests that there might be some compensation
mechanism at play. However, detecting a transcript with a retained intron does not imply
that the protein levels of the same isoform are affected. In the case of upregulated proteins
after PRPF8 depletion, the median of the relative abundance of protein-coding transcripts
is higher than 0.9 (Figure 6.7), which means that less than 10% of the transcripts of this
category of genes display intron retention, possibly explaining why the protein level is not
affected. These results suggest that intron retention can affect both the human proteome and
the transcriptome.

6.2.6 Alterations in transcript levels proportionally affect protein abun-
dance

There were 2021 genes that displayed DGE after PRPF8 depletion and in the case of
proteomics data, fold change information was obtained for 3057 peptides corresponding to
572 of these genes. The correlation between the two sets of data was calculated and 0.63 was
obtained for Spearman’s, increasing to 0.79 if only peptides with a significant fold change
were considered (Figure 6.8 - B). When the same calculations were done for the cases of
uniquely mapping peptides, 0.58 was obtained, and there was an increase to 0.76 when
considering peptides with significant fold change (Figure 6.7 - B). In the case of genes that do
not display DGE, the correlation coefficient was 0.29 (Figure 6.7 - C, D), which suggests that
the changes in protein expression are being driven by changes in gene expression. Overall,
the results suggest that in a alternative splicing disrupted system, a significant proportion of
the variation at the protein level can be attributed to changes in mRNA levels.

6.3 Discussion

Protein abundance plays an important role in cellular function and it is closely related with
transcript abundance, although this relationship is not fully understood. The abundance of
mRNA and proteins are controlled by post-transcriptional and translational regulatory pro-
cesses [159], which can make the understanding of the correlation between the transcriptome
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Figure 6.7 Intron Retention analysis. A - comparison of the relative abundance of protein coding
transcripts between the set of downregulated and upregulated proteins for genes with more than one
transcript displaying retained introns. B - scatter plot comparing expression changes in differentially
expressed genes (x-axis) to expression changes in peptides that map uniquely to them (y-axis). C -
scatter plot comparing expression changes of non-differentially expressed genes after PRPF8
depletion. D - scatter plot for the method using uniquely mapping peptides. In all scatter plots, the
significantly differentially expressed genes are represented in red (adjusted p-value <0.1, t-test) and
Spearman’s correlation coefficient is shown in the top left (figure from [6]).
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Figure 6.8 Effects of intron retention and differential gene expression (DGE) in the proteome. A -
Boxplot of the ratio of protein expression between PRPF8 depletion and control conditions. The
numbers on the bottom represent the number of transcripts with peptide evidence and the p-value is
indicated on top (Wilcoxon test). B - Comparison between the fold changes between DGE cases and
expression of peptides that map to them. In the top left corner is shown the Spearman’s correlation
coefficient and differentially expressed genes whose peptides change significantly in expression are
indicated in red, with the respective coefficient also in red (adjusted p-value < 0.1, t-test, Holm
method) (figure from [6]).
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and the proteome difficult. Studies based on steady-state approaches have shown that there
is a correlation between transcript and protein level. However, a substantial part of protein
abundance cannot be explained solely by the transcript abundance [156, 157, 194, 195].
Other studies, based on perturbed states quantification, have shown that mRNA abundance
plays a dominant role in the constitution of the proteome [196, 197].

The method described here suggests that a significant proportion of variation at the protein
level can be attributed to mRNA levels. An increase in correlation coefficients between
mRNA and protein levels from SWATH to SRM was observed, suggesting that a significant
proportion of the protein isoform variance from the perturbed system can be explained
by differences in RNA isoform usage. It also shows that there is a dependency on both
the sensitivity of the MS method used and the identification of high confidence alternative
splicing events at the transcript level. Integrating RNA-seq and quantitative SWATH and
SRM mass spectrometry data, as well as using peptides that map to more than one transcript,
provides useful information to study alternative splicing.

Transcript abundance is reliable information that can be used to assign peptides to
isoforms. This indicates that the expression level of transcripts plays an important role in reg-
ulating protein abundance, which means that differential splicing events in minor transcripts
will produce subtle changes that may be undetectable at the protein level. The inclusion
of minor lowly expressed transcripts resulted in a sharp correlation drop, suggesting that
these transcripts are increasing the noise levels at both mRNA and protein level, negatively
affecting peptide assignment. This also indicates that the information from multi-mapping
peptides can only be used if transcript abundance information is also taken into consideration.
These results suggest that transcript expression levels have an important role in the regulation
of protein isoform expression, supporting the idea that in the case of minor transcripts,
differential splicing events induce subtle changes that do not drastically impact the proteome
overall.

The results show there is a relationship between RNA expression and proteomic diversity.
It is also shown that alternative splicing events that induce intron retention tend to lead to
decreased protein abundance. On the other hand, alterations on DTU and gene expression
change protein isoform abundances proportionally to transcript levels. Note that in this study
the fraction of the whole proteome mass represented by the number of proteins identified is
very high (>99.5%) [198], so the identified events are likely representative.

Overall, this study suggests that alternative splicing contributes to proteomic composition
and diversity in humans to some degree, which is supported by a study based on ribosome
occupancy as an indicator of translation output [159]. However, the extension of alternative
splicing contribution to proteomic complexity is still unclear [4, 132, 199]. It is important
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to notice that some of the difficulties in understanding this matter might be related to the
technical aspects and limitations of both RNA-seq and MS. The level of confidence in
alternative splicing events can significantly affect the results.

The methods used in this study to integrate RNA-seq and quantitative SWATH and SRM
MS data show that it is possible to extract useful information from peptides that map to more
than one transcript of the same gene if transcript abundance data is taken into account. This
could provide the foundation for future studies on alternative splicing.

6.4 Methods

6.4.1 Analysis of RNA-Seq data

The RNA-seq data from both control siRNA-treated and PRPF8-depleted Cal51 cells was
generated on an Illumina HiSeq2000 platform using 100 bp paired-end reads and the RNA
was isolated from 3 and 4 independent experiments, respectively, as in a previous study from
some of the same authors [190].

6.4.2 Read mapping and transcript quantification

The raw RNA-seq reads were mapped to the Ensembl v66 [134] reference transcriptome
using Bowtie v0.12.7 [200]. The estimation of transcript expression levels was done using
MMSEQ v1.0.7 [107] and MMDIFF [121] was used to determine differentially expressed
genes and differential transcript usage. MMDIFF uses a Bayesian inference approach to
determine the probability that two genes are differentially expressed or two transcripts are
differentially used (posterior probability). In this case, a posterior probability of 0.85 was
used as the significance threshold in the analysis of SWATH data and 0.9 in the case of SRM
data.

The switch events for the set of genes that presented differential transcript usage were
determined using SwitchSeq [136]. The switch events that involved transcripts that corre-
sponded to protein isoforms with similar sequences were removed from the analyses.

6.4.3 Shotgun and SWATH-MS measurement

The peptides were measured on an AB Sciex 5600 TripleTOF mass spectrometer operated in
DDA mode. The SWATH analysis was done in the same LC-MS/MS system.
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6.4.4 Assignment of peptides to transcripts

The initial number of peptides detected using SWATH-MS was 16,779, which were detected
across biological replicates for both control siRNA and PRPF8-depleted samples. These
peptides were mapped against all the protein-coding transcripts from Ensembl v66 annotation.
The peptides that mapped to more than one gene were then removed, leading to a set of
14,695 peptides, which corresponded to 2805 genes. The peptides were assigned to the
transcripts as described in (Figure 6.1). Peptides that uniquely mapped to a specific transcript
were directly assigned to it, which were a minority of cases: 2974 peptides mapping to 859
genes. Peptides mapping ubiquitously to more than one transcript of the same gene were
assigned using information retrieved from the RNA-seq data. Two alternative strategies
were used for peptide assignment. The first strategy relied on the abundance of transcript
isoforms of each gene and only peptides mapping to the major transcript were taken into
account. A major transcript is the most expressed transcript isoform of a gene. The major
isoforms identified in control siRNA-treated or PRPF8-depleted samples were used for
peptide assignment. On the other hand, the second approach did not use transcript expression
levels data. In cases where a peptide mapped to multiple transcripts of the same genes, a
peptide was only assigned to a particular transcript if the expression of this transcript had
changed after PRPF8 depletion, regardless of its relative expression level. Finally, peptides
that mapped to several differentially used transcripts were considered ambiguous and were
discarded.

6.4.5 Integration of transcriptomic and proteomic data

The integration of transcriptomic and proteomic data was achieved by determining fold
changes in transcript and peptide expression after PRPF8 depletion. The fold changes were
obtained from RNA-seq and SWATH or SRM mass spectrometry experiments.

In the case of RNA-seq data, the fold changes were calculated from transcript expression
values obtained with MMSEQ. The fold change for each transcript is the transcript expression
median in PRPF8-depleted versus control siRNA-treated samples.

In the case of the proteomics data, the raw intensities for the peptides were quantile-
normalized to enable comparison between samples. The median of observed intensities of
each peptide was determined for both PRPF8-depleted and control siRNA-treated samples,
and the fold change was calculated by dividing the two values. To calculate the peptide fold
change for each transcript, first the intensities of the peptides that mapped to that transcript
in each biological replicate were added up, then the median value of the summed peptide
intensities of PRPF8 depletion cases was divided by the median value of the controls. This
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resulted in one fold change per transcript. Both SWATH and SRM datasets were treated in
the same manner.

An alternative approach to the one just described to determine peptide fold changes
was also tested. For both PRPF8 depletion and controls, the fold change was determined
individually for each peptide. Then, the median fold change of all peptides that mapped to
each transcript was calculated (this approach yielded similar results).

The fold changes determined using transcriptomics and proteomics data were integrated
as described in (Figure 6.1). The relationship between transcript and peptide fold changes was
evaluated using Spearman correlation, as it has been suggested in [201]. Pearson correlation
was also used for comparison.



Chapter 7

Conclusions

The understanding of alternative splicing has come a long way since was initially discovered
in 1977. The identification of the components of the spliceosome [10] has enabled the
characterization of the molecular mechanisms involved in splicing and many processes
controlled by alternative splicing have also been identified, showing how differential isoform
expression can affect cellular processes [9]. However, only high throughput techniques allow
extensive analyses of the transcriptome and the proteome in a vast range of conditions, and
that is what fully allows us to understand the splicing process. It allows us to determine how
often alternative splicing is observed and assess the changes that occur between different
conditions. The work presented in this thesis demonstrates how NGS technologies can be
used in the understanding of the role of alternative splicing and its contribution to RNA and
protein diversity.

All the studies here presented used RNA-seq data and showed how the quantification of
transcripts and comparison across conditions can be used in different ways to understand
the process of alternative splicing. These studies showed not only the potential of different
approaches in this context but also some of the limitations.

The study described in Chapter 4 relied on comparing the relative expression of the
transcripts of a gene across conditions to assess changes on alternative splicing. It showed
that on average in a given tissue there are around 10,000 genes being expressed above
1 FPKM, which is close to half of the protein-coding genes in Ensembl human genome
annotation [134]. This was observed in Uhlen dataset, as well as in GTEx dataset (Chapter 5),
which is quite interesting considering that this latter dataset has a significantly higher number
of samples and for a gene to be classified as expressed, it had to be expressed above 1 FPKM
in all samples of a given tissue. This shows that there is consistency across samples of each
tissue and that the number of protein-coding genes that are active in a specific condition is
relatively small compared to the total number of genes. This result raises questions regarding
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the function of genes that are not expressed or expressed at a low level, indicating that it is
important to characterize and understand the conditions in which each gene is expressed.

This approach to study alternative splicing by analysing the relative expression levels of
gene isoforms was used to first determine which genes have dominant isoforms and then
to compare those dominant isoforms across tissues. In Chapter 4, it was shown that a large
percentage of the expressed genes, a little more than two-thirds, had a dominant isoform. The
idea that most genes have a single dominant transcript had been proposed before based on
the evidence from transcriptomics studies which showed that a majority of genes express a
main isoform at the RNA level. This is supported by what is found at the protein level, where
only one isoform is usually detected for each gene. In the past, the results observed at the
transcript level were obtained using relatively small datasets, which meant the generalization
of these observations had to be done with extra caution. Therefore stringent criteria were
used to define transcript dominance in Chapter 4 in an attempt to avoid taking incorrect
conclusions regarding the number of dominant transcripts.

The transcript dominance analysis done on the GTEx study (Chapter 5) revealed that
on average 59% of genes have a dominant transcript but in this case, the support criterion
was not used to define transcript dominance. As discussed when the results were presented,
the criterion of support might be too stringent in the case of datasets with a large number
of samples per tissue, so it is acceptable to relax the dominance conditions in this situation.
This shows how important is the definition of dominant transcript and how the methods must
be carefully assessed because they can drastically change the results. Another example is the
previous study done in the group [1], where the reported percentage of genes with dominant
transcripts was 79%, illustrating again how dataset size and transcript dominance definition
are linked and must be carefully evaluated. Moreover, using more stringent criteria with
smaller datasets does not guarantee that the same results will be found in bigger ones, as it
was shown by the differences encountered between Uhlen and GTEx results.

After obtaining the list of dominant transcripts, the switch events were determined. The
number of switch events found between pairs of tissues was low, considering the total
number of dominant transcripts. Not only was the number low, but also the changes observed
between isoforms that switch were mostly small. The exon changes observed between
switch transcripts do not translate into big differences in sequence identity between isoforms
and, as a consequence, 80 to 90% of switch events do not involve protein domain changes.
These results show that in most of these cases, alternative splicing controls subtle changes,
which may not drastically alter protein functions. However, the changes induced by isoform
switches were only inferred by comparing protein domains annotation, more extensive studies
with proteomics data are needed to quantify and evaluate the effects of isoform switches.
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The analysis of the impact of switch events was also done in Chapter 5 using the GTEx
dataset. The number of switch events observed between pairs of tissues was again low,
considering the number of expressed genes and dominant transcripts. On GTEx, the brain
regions and testis were the normal tissues with the highest number of 2-fold switch events and
the maximum number was 134 for testis. Again, a low number considering that 11,738 genes
were found to be expressed in this tissue and 6214 of them had a 2-fold dominant transcript.
This means that only around 2% of 2-fold dominant transcripts are switching in this particular
case. This number really gives a different perspective on how common alternative splicing is
generally thought to be and sheds light on its influence in tissue differentiation and tissue
specificity. In regards to this observation, it is important to point out that alternative splicing
seems to most likely have a modest role in the phenotypic variation observed between human
tissues. Nevertheless, the consequences of this 2% change on dominant transcripts are not
fully characterized or understood, and with the type of data used in the studies here presented,
it is only possible to infer the possible consequences at the protein level and it is very difficult
to extrapolate how specific cellular processes are affected.

Following the determination of switch events on GTEx dataset, the switches of the two
studied datasets were compared. This comparison was made between pairs of matching
tissues and, considering the number of switch events found was small, it was reassuring to
find that for matching tissues, there were switch events in common between Uhlen and GTEx
datasets. These are two distinct datasets with considerably different dimensions, which, as
discussed before, affect transcript dominance, but still shared some of the same changes in
dominant transcripts across tissues. This indicates that some switch-like splicing patterns are
conserved across tissues.

To have a more detailed prespective of the type of genes switch events might affect,
as well as the extent of changes controlled by this process, five examples were given at
the end of Chapter 5. These examples were all the 5-fold switch events common to Uhlen
and GTEx datasets whose isoforms had domain changes. The five selected genes had very
distinct functions, suggesting that switch events are not exclusive to a specific type of gene
or biological function. The number of domain changes encountered also varied, showing
that the extent of the effect of alternative splicing through switch events might be significant,
even if most of them cause subtle changes as was shown in Chapter 4 and 5.

These studies shed light on the role of alternative splicing in the cases where genes have
dominant transcript isoforms, however, it is important to notice that around one-third of
genes expressed in a given tissue does not have a dominant transcript. This means these
genes express multiple isoforms at approximately the same level. Although these particular
cases were not explored, alternative splicing might be enabling the simultaneous expression
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of distinct isoforms with significantly different functions, which would mean that alternative
splicing would have different functions in these situations compared to the switch event
cases. However, this is of course speculation and the analyses presented in this thesis did not
explore genes with no dominant transcript. Further work will be needed to study these cases.

Another question that can be raised is one regarding all the annotated isoforms that are
expressed at low levels. Although these isoforms might have a minor contribution to the
transcriptome, it is important to investigate if these isoforms are in fact artifacts or to identify
the conditions in which they are expressed. This information can improve the annotation
by helping to identify and delete redundant transcript isoforms and by providing additional
knowledge that better characterizes each isoform. However, validating very lowly expressed
isoforms might face technical limitations. Current RNA-seq technology might not have
enough sensitivity to detect lowly expressed isoforms and, although MS proteomics could
be used to identify the correspondent protein isoform, these methods can also have trouble
identifying lowly expressed proteins.

The studies here presented tried to avoid sensitivity issue by focusing on highly expressed
genes (>=1fpkm). However, there were still technical limitations that need to be considered.
In terms of transcriptome characterization, the length of RNA-seq reads is still a limitation
that can affect the identification and quantification of transcript isoforms. It can lead the
mapping and quantification software to have troubles assigning reads to the correct transcripts,
as it was illustrated by the analysis of the gene CUX1 in a case study in Chapter 4. In this
particular case, Cufflinks and Kallisto quantified CUX1 isoforms quite differently, showing
that the reads corresponding to this gene were assigned in a different manner. Although this
limitation currently affects the quantification of isoforms of some genes, it will be overcome
to a great extent over time with the increasing size of reads. Much longer reads are currently
being generated in alternative platforms to Illumina, such as Pacific BioSciences [202] and
Nanopore sequencing [203], and they will have a great impact on the quantification of RNA
isoforms.

As shown in Chapter 6, alternative splicing can also be studied by characterizing the
proteome but this approach also has some challenges. MS techniques are not able to identify
the full set of proteins in a given condition. This can especially limit the ability to characterize
alternative splicing events because isoforms of the same gene can be highly similar, and
be distinguishable by one peptide only, which might not be identified in the experiments.
The inability to identify more proteins is in part a consequence of the limited number of
peptides that can be used to uniquely identify proteins of interest. Therefore, an increase in
the coverage of MS techniques would also enable a better characterization of splicing events.
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Besides the independent advances in RNA-seq and MS technologies, data from these
distinct fields can be integrated in order to improve the identification of splicing events.
In Chapter 6, an approach taking advantage of both technologies was presented. In this
specific case, RNA-seq data was used to increase the number of peptides that could be used
in the identification of proteins. In particular, major transcripts determined using RNA-seq
data were used to assign peptides to the major isoform. This was an effective strategy,
which allowed to infer that changes in splicing at the transcript level can have an equivalent
effect at the protein level. It is possible that expanding this strategy to use abundances of
all the expressed transcripts might allow the investigation of the coding potential of minor
transcripts. This again can only be clarified in future studies. Another important aspect of
the study presented in Chapter 6 was to show that studying perturbed systems can facilitate
the understanding of certain processes that might not be as clear in steady-state systems.

Regarding the identification of isoforms of a gene, one of the most important pieces
of data is the annotation, which, not only significantly affects this process but also has
effects that propagate down the pipeline, affecting the quantification and consequently the
conclusions taken from the study. Therefore, the quality of the annotation is paramount. In
the case of the human genome, the quality of the annotation is high and keeps improving,
being frequently updated. However, there are still cases of incomplete descriptions of gene
or isoform functions, as well as unclear features such as exons with the same coordinates but
different identifiers or exons with very high sequence overlap. It is important to be aware of
these cases, particularly when comparing isoforms for the study of alternative splicing.

It is not clear what is the contribution of each annotated isoform to the transcriptome
diversity in a given condition or in which conditions each isoform is actually expressed. The
studies here presented, showed the genes and isoforms expressed in normal tissues, but there
is still a large number of isoforms that are in the annotation and are not expressed in these
cases. It is important to have a clear understanding of which conditions lead to the expression
of these isoforms and studies must be designed to test if they are actually expressed. This
will facilitate the comprehension of the annotation and make it more complete. Since the
RNA-seq quantification methods rely to a very significant extent on the annotation, improving
its quality will yield more accurate isoform quantifications, facilitating the assignment of
reads to isoforms.

The annotation is of great importance in studies using NGS technologies but other
factors will have a great impact on the potential applications of these types of data. One
very important factor is the cost of RNA-seq, which keeps decreasing. This will allow the
generation of larger datasets, with more replicates, increasing the robustness of this kind of
study and making it applicable to a wider range of scenarios. It will also have an effect on
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the applicability of this technology that will certainly increase in basic and applied research,
but also in a clinical context. Therefore, methods such as the ones developed in these studies
will have increased importance and very direct application in the future.

The tools developed in the studies here presented were applied to the basic understanding
of switch events between normal human tissues. Although they were developed in this
context, they can be used for the comparison of any other conditions (e.g. normal vs. disease)
and help find answers to other problems.

In the future, the methods used in this thesis can be applied to analysing changes in
dominant transcripts across species, which might be of interest because it can reveal how
conserved is transcript dominance. Another possibility is the application of such methods to
single-cell data, which is currently growing at a very fast pace and gives an extra level of
resolution. It can also be interesting to analyse the transcripts of genes with no dominant
isoform, understand which ones are protein-coding and explore which isoforms are expressed
at the protein level. Lastly, MS and RNA-seq coupled datasets will be extremely useful in
the study of alternative splicing and could possibly help to better understand the modest
correlation between RNA and protein data observed in some studies [155–157].

There are currently a variety of tools to process NGS data that can be applied to solve
different biological problems. Many of the tools are implemented in Python and range from
big well established packages, such as biopython, to small individual projects available on
GitHub. There are also a considerable number of libraries available in R, particularly in
Bioconductor [204], such as DESeq that was used in the studies presented in this thesis.
There is always a need for development of new tools and methods and the easy access to
them greatly improves the advances of the field, alloing better software to be developed and
facilitating the integration of existent tools.

Besides the development of new methods, the generation and availability of large datasets
will have a significant impact on the fields of transcriptomics and proteomics. The increase in
the number and size of datasets will also allow a broader application of artificial intelligence
(AI) methods on NGS data. The advances in sequencing technologies combined with great
data availability and AI will have a tremendous impact in the field of bioinformatics in the
future. Although it is difficult to predict all the applications of AI in bioinformatics, as well
as what will be discovered with its applications, it will definitely allow us to investigate a
broad range of problems at multiple resolutions, integrate different types of data and allow
us to better understand the very high level of complexity found in biological systems.
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