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Abstract

Sensitivity analysis and optimization in low order
thermoacoustic models

José Guillermo Aguilar Pérez

Lean combustion technologies in gas turbines reduce the generation of NOx but
increase the susceptibility to thermoacoustic oscillations. These oscillations can produce
structural damage and need to be eliminated. The stability of a given configuration can
be examined with a thermoacoustic model. In this thesis a wave-based network model
is used. Using adjoint methods the gradients of the eigenvalue with respect to system
parameters can be obtained at a low computational cost. This information is used as an
input to an optimization routine to find stable thermoacoustic configurations.

In this thesis thermocaoustic oscillations are analysed using a linear low order network
model. This modelling approach is used to predict the unstable modes of five different
configurations: a Rijke tube, a choked combustor, a longitudinal combustor, a generic lean
premix prevaporized annular combustor and the laboratory scale annular combustor built
in Cambridge University Engineering Department. The continuous and discrete adjoint
equations for the low order network model are derived. Using the adjoint equations the
sensitivities of the eigenvalues to changes in base state parameters such as time delays,
areas, lengths and mean radii are computed. Similarly, the sensitivity of the eigenvalues
to the introduction of a feedback device such as a drag mesh or a secondary heat source
is investigated. By fitting experimental data to a low Mach number model of the Rijke
tube, the predictions of the growth rate and frequency shifts due to the presence of
these mechanisms are improved. Finally, using the sensitivity information, two different
optimization algorithms are developed to stabilize the thermoacoustic systems. Different
stabilization scenarios are presented, showing the changes required in each section of the
configurations to eliminate thermoacoustic oscillations.



vi

The techniques presented as part of this thesis are readily scalable to more complex
models and geometries and the inclusion of further constraints. This demonstrates that
adjoint-based sensitivity analysis and optimization could become an indispensable tool
for the design of thermoacoustically-stable combustors.
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Chapter 1

Introduction

Standing waves of fire is how Muller (2014) describes the fascinating patterns generated
by a two dimensional flame table, also known as a (2D) Ruben’s tube. The device was
originally designed by Rubens and Krigar-Menzel (1905) using a duct with regularly
spaced holes through which flammable gas is burned (see Fig. 1.1). When the duct is
forced with an organ pipe or a tuning fork at one of its natural frequencies, it enables
the visualization of the standing wave patterns, which aided in the understanding of
acoustics.

Fig. 1.1 Ruben’s tube as detailed in Rubens and Krigar-Menzel (1905).

Perhaps more interesting than the visual aid, is the fact that the flames respond to
the acoustic field. This phenomenon is critical in combustion dynamics because, when it
is properly excited inside a cavity, a feedback loop can be created causing thermoacoustic
instabilities.

1.1 Thermoacoustic instabilities

Thermoacoustic instabilities are a form of unstable combustion. They arise in devices that
continuously burn fuel in order to generate thrust or some form of mechanical energy. In



2 Introduction
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Fig. 1.2 Thermoacoustic oscillations are caused by unsteady heat release interacting with
acoustics in a cavity, closing a feedback loop.

general, the steady state of combustion will be accompanied by small unsteady heat release
fluctuations that, when coupled with pressure fluctuations, can cause thermoacoustic
instabilities (Fig. 1.2). This is because the flame, being a source of volume, acts as
a distribution of monopoles producing acoustic waves that propagate and then reflect
at the boundaries to interact again with the flame. If the unsteadiness of the flame is
sufficiently in phase with the acoustic field, small amplitude pressure oscillations will
begin to grow in time and, after many cycles, gain a considerable amplification which
could be enough to cause flame blow off or structural damage (Lieuwen and Yang, 2005).

The first account of thermoacoustic oscillations was in the 18th century due to Higgins
who described the generation of sweet sounds coming out from a tube burning hydrogen
(Higgins, 1802). At this point the phenomenon was not yet completely understood. It
took nearly a century until Lord Rayleigh developed the theory behind the thermoacoustic
effect (Rayleigh, 1878). Five decades after this publication, thermoacoustic instabilities
became relevant for the aerospace industry. They were first observed in the late 1930s
during the development of liquid and solid state rockets. Then, in the 1950s, they
appeared in the afterburners and ramjets used in turbojet engines (Culick, 2006).

More recently, stringent emission regulations are motivating the development of
aero-engine and gas turbine combustors that operate in lean regimes. These run at
lower temperatures to prevent the dissociation of air molecules and therefore reduce the
formation of NOx gases. However, these operating conditions encourage the development
of combustion instabilities (Lieuwen et al., 2001).
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1.1.1 The Rayleigh criterion

The first qualitative explanation for the thermoacoustic mechanism was proposed by
Rayleigh (1878):

If heat be given to the air at the moment of greatest condensation, or taken
from it at the moment of greatest rarefaction, the vibration is encouraged.
On the other hand, if heat be given at the moment of greatest rarefaction, or
abstracted at the moment of greatest condensation, the vibration is discouraged.

The first mathematical formulation of the Rayleigh criterion was given in terms of acoustic
energy (Eac) by Putnam and Dennis (1954) and Chu (1956), which by assuming a zero
mean flow and neglecting heat diffusivity and viscosity reads:

∂

∂t

(
1
2 ρ̄u

′2 + 1
2
p′2

γp̄

)
︸ ︷︷ ︸

Eac

+∇ · (p′u′) = γ − 1
γp̄

p′Q′, (1.1)

where p is the pressure, u the velocity, ρ the density, γ the ratio of specific heat capacities,
Q the heat release, the over bar (¯) represents a mean quantity and the prime (′) denotes
a fluctuating quantity. After integration in time and space, we observe that for the
acoustic energy to grow, the heat release term must be larger than the energy dissipated
at the boundaries. This is formally known as the extended the Rayleigh criterion:

∫
T

∫
V

γ − 1
γp̄

p′Q′ dV dt >
∫

T

∫
S
p′u′ · n dS dt, (1.2)

where T is a period of oscillation, V is the volume and n is the unit vector normal to
the boundaries which are represented by S. (The classic Rayleigh criterion does not
take into account the energy dissipation at the boundaries.) When the magnitude of the
phase difference between the pressure fluctuations p′ and the heat release fluctuations Q′

is less than ninenty degrees, the constructive interference converts heat release (thermal
energy) into acoustic energy (mechanical energy).

The previous formulation is for the case of zero mean flow. When there is a non-zero
mean flow, acoustic and entropy fluctuations (which occur naturally when there is a
source of heat input) become coupled. For this case Chu (1965) extended the energy norm
to include entropy fluctuations. The reader is referred to Myers (1991) for a detailed
derivation of the energy norm which includes a mean flow and to Nicoud and Poinsot
(2005) for its corresponding criteria for combustion instability.
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1.2 Thermoacoustic modelling

Thermoacoustic oscillations are usually undesirable. They have been the focus of research
in the last 70 years in order to develop strategies to prevent them. Most modelling
approaches begin by applying conservation equations of mass, momentum and energy in
a given domain. By assuming a steady and uniform mean flow the inhomogeneous (con-
vected) wave equation together with the equations for entropy and vorticity perturbations
are derived:

1
c̄2

D̄2p′

Dt2 − ∇2p′ = γ − 1
c̄2

D̄Q′

Dt , (1.3)

ρ̄T̄
D̄s′

Dt = Q′, (1.4)

D̄ξ′

Dt = 0, (1.5)

where c is the speed of sound, D̄/Dt ≡ ∂/∂t+ ū ·∇, T is the temperature, s is the entropy,
ξ the vorticity and it is assumed that ξ̄ = 0. Whenever the domain considered has no
unsteady heat release Chu and Kovásznay (1958) showed that to first order any wave
can be considered as a linear superposition of acoustic, entropy or vorticity fluctuations.
In this framework the acoustic fluctuations, which travel at the corrected speed of sound
(c̄± ū), are treated as isentropic and irrotational. Entropy fluctuations, which travel at
the mean flow speed (ū), are treated as incompressible and irrotational. Vorticity waves,
which propagate at the mean flow speed, are treated as incompressible and isentropic.
At second order there are interactions between these fluctuations and they can no longer
be considered independent. When compositional inhomogeneities are present in the
flow, Ihme (2017) extended the previous analysis and introduced a compositional wave
proportional to the mixture fraction of the flow, which is also convected at the mean
flow speed.

The acceleration of waves that convect at the mean flow speed is of particular
importance since they produce so-called indirect noise. If acceleration occurs in a
combustion chamber due to a choked end at the outlet, these waves generate another
mechanism of combustion instabilities. Marble and Candel (1977) showed that, for a
compact nozzle, an accelerating entropy wave produces indirect noise. Magri et al. (2016c)
extended that analysis to show a similar behaviour with compositional waves. Dowling
and Mahmoudi (2015) demonstrated that the same occurs for vorticity waves but that
their contribution to the total indirect noise is almost negligible.
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To predict the onset of combustion instabilities, a variety of modelling techniques is
available. Nicoud and Wieczorek (2009) classify them into 3 main groups:

• Large Eddy Simulation (LES). This describes the spatio-temporal evolution of
all flow quantities. It can model turbulent, reacting and compressible flows in great
detail (see for example Selle et al. (2004)). Its major drawback is the computational
power required.

• Helmholtz solvers. They describe the spatio-temporal evolution of fluctuating
quantities in a given domain by solving the Helmholtz equation, which is given by
Eq. (1.3) in the low Mach number limit (ū → 0) (Nicoud et al., 2007). It has the
advantage of being able to describe multiple modes and boundary conditions, but
it is constrained to the low Mach number approximation.

• Low order network models. These contain lumped elements that describe the
wave amplitudes in each module at a given frequency (See for example Lieuwen and
Zinn (2000)). They have the advantage of being able to handle complex boundary
conditions and of being computationally cheap, but the drawback of only working
with frequencies low enough such that the radial or transverse modes are cut off in
the ducts and with area changes which span over a distance short enough such that
they can be considered acoustically compact. Furthermore, the complex geometrical
details of a real combustor cannot be accounted for.

Due to their speed and versatility, network models have found use in industry
in academia, and therefore, are the core focus of this thesis. In these models, the
inhomogeneous wave equation (1.3) is solved either in the time domain, or in the
frequency domain. In the time domain, it is solved using state space models (Bellucci
et al., 2005). In the frequency space, it is common to use Galerkin methods (Culick,
1988) or wave-based methods (Dowling, 1995). The second is more flexible when dealing
with complicated geometries and is also less prone to numerical errors, such as those
arising due to numerical discretization (Gibbs phenonemon), when attempting to capture
velocity discontinuities across a heat source with continuous spatial modes.

Following this framework, in a low order network model the main elements are the
ducts in which the waves propagate. To reproduce a full geometry, each of the ducts is
connected with transfer matrices representing area changes, heat sources and boundary
conditions (Fig. 1.3). These modules operate under the acoustically compact assumption.
In order to guarantee that, for example, a flame can be treated as a compact element, the
acoustic wave length (λa) must be much larger than the flame length (Lf): Lf/λa ≪ 1
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Fig. 1.3 The main elements of a network models are the ducts. These are connected with
different modules that ensure conservation of different fluxes.

(Dowling, 1995; Poinsot and Veynante, 2005). A similar conclusion can be drawn for
other jump conditions such as area changes. The presence of disturbances that convect
with the mean flow, such as equivalence ratio fluctuations or hot spots (entropy waves),
impose a stricter condition. This requires the wave length of the convected disturbance λc

to be much smaller than the length of the flame (Lf/λc ≪ 1). These type of disturbances
convect away with the mean flow. Therefore, for open ended boundary conditions at the
exit, the latter condition can be relaxed. This is, as discussed above, not the case for
compact nozzles or choked ends of a combustor and can introduce numerical errors in
the computations (Nicoud and Wieczorek, 2009).

The key element of a network model in the analysis of thermoacoustic oscillations
is the heat source, which is also the main nonlinear element in the system. The most
general modelling approach is by means of a flame describing function (FDF) (Dowling,
1997, 1999), where the flame response is characterized at different levels of forcing. This
can be done using a single forcing frequency (single input) as in Noiray et al. (2008)
or with two forcing frequencies (double input) as in Orchini and Juniper (2016a). The
FDF is proportional to one of the system’s perturbation variables (Lieuwen, 2003). For
longitudinal combustors, velocity or mass flow rate perturbations are commonly used,
e.g., Keller (1995). For annular configurations, pressure perturbations have also been
used, e.g., Ghirardo and Juniper (2013); Noiray and Schuermans (2013). In the limit in
which the forcing amplitude of the FDF becomes infinitesimal, we obtain the linear model
better known as the flame transfer function (FTF). From the linear models, Crocco’s
time lag model (Crocco and Cheng, 1956) is perhaps one of the most used in linear
stability analysis of combustion systems.
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1.3 Linear stability analysis

Low order network models often consider the base flow to be homogeneous and only
varying in one spatial direction with superposed small amplitude perturbations. For
these type of problems, the stability of the flow is assessed with linear stability tools
(Juniper et al., 2014; Schmid and Brandt, 2014), such as Lyapunov stability. This concept
assumes the existence of an equilibrium state (base flow), which is then subject to a
perturbation. The system is deemed to be stable if, after applying a perturbation, the
system returns back to the equilibrium state. It is deemed unstable if it diverges from
the equilibrium state. Lyapunov stability allows an infinite time horizon for the system
to return to equilibrium.

Throughout this thesis we are going to assume the existence of small amplitude
perturbations. Once the linearly unstable resonant modes have been identified, the next
stage is to eliminate them.

1.4 Mitigating thermoacoustic instabilities

Thermoacoustic oscillations are usually eliminated by a combination of modelling, trial
and error experimental testing, and addition of passive control devices such as Helmholtz
resonators (Fig. 1.4). Configurations that are thought to be stable after engine component
tests often turn out to be unstable during full engine tests (Mongia et al., 2003). At this
stage, it is possible to perform several full engine tests on slightly different configurations
until one is found that is stable across the entire operating regime (Oefelein and Yang,
1993). Usually, however, this is prohibitively expensive. It is more common to add
passive control methods, such as acoustic liners, Helmholtz resonators, quarter and half
wave tubes, baffles etc. (Richards et al., 2003; Zhao and Li, 2015). These exploit vortex
shedding and viscous losses to add acoustic damping at selected frequencies. For example
Zahn et al. (2016) showed that a quarter wave tube positioned at the azimuthal mode
antinode maximises the damping ratio of the system. Their major drawback is that the
damped frequency range can be quite narrow and they are usually unable to adjust to
different operating conditions.

Another option is feedback control. This has been shown to be effective in laboratory
combustors, and several full-scale rigs (Dowling and Morgans, 2005; Huang and Yang,
2009; Zhao et al., 2018). It has the advantage that, in many scenarios, it can readily
adapt to changes in the operation conditions but the disadvantage that it relies on the
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Fig. 1.4 Control strategies to eliminate themoacoustic oscillations. Passive control
includes Helmholtz resonators (a). Active control uses actuators or speakers to control
the instabilities (b). Trial and error techniques (c), test different configurations until one
of them is found to be stable. Oefelein and Yang (1993) show the different injector baffle
patterns tested in the F-1 engine during the Apollo program.

effectiveness of the sensors and actuators, which must operate without fault for several
million cycles. A few large scale implementation examples include:

• The first full scale implementation, which was performed in 1988 in an afterburner
of a Rolls-Royce RB199 military turbofan engine, where a gain and time delay
controller was used to reduce 12 dB of the preferred mode (Dowling and Morgans,
2005).

• Hermann and Hoffman (Lieuwen and Yang, 2005) managed to suppress combustion
oscillations in a Siemens V94.3A heavy-duty gas turbine (267 MW) using active
control by modulating the pilot gas mass flow out of phase of the heat release
fluctuations.

• Johnson et al. (2001) used active control to modulate the fuel on a Siemens-
Westinghouse Dry Low NOx combustor. They managed to attenuate the dominant
mode by 15 dB and reduce the broadband noise by 30-40%, as well as reducing
NOx emissions by 10%.

• Umeh et al. (2007) used pulsed modulations of the fuel to mitigate instabilities on
a liquid-fuelled partially premixed high-pressure combustion test rig at GE.

• Richards et al. (2007) implemented active control via equivalence ratio modulation
on a gas turbine engine. They managed to reduce the amplitudes of the oscillations
by one third with the drawback of increasing CO emissions but the advantage of
decreasing NOx emissions.

Another approach is to tune passive control devices so that their effective frequency range
can be adapted to the operating conditions. For example, Zhao and Morgans (2009)
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and Zhao et al. (2011) tuned Helmholtz resonators and acoustic liners by varying their
geometry, neck area or pipe length respectively. Bothien et al. (2013) increased the range
of operability of a Helmholtz resonator by including multiple resonant cavities, where the
neck geometries, bias flow and volume ratios were tuned in order to optimize damping
performance. Both of these methods introduce new failure modes into the systems. This
is undesirable and these methods are usually avoided if possible.

1.5 Adjoint methods in fluid problems

The elimination of thermoacoustic oscillations via any of the previous methods requires
knowledge of the behaviour of the flow, particularly when positioning passive control
devices or sensors and actuators. On complex fluid problems, where there is a wide
variety of parameters that can affect the stability of the flow, obtaining this information
via traditional methods (trial and error) is inefficient. In contrast, adjoint methods have
proven to be very effective (Luchini and Bottaro, 2014), especially when the number
of inputs (flow parameters) into the system is large when compared to the number of
outputs (growth or decay rates of the flow). With a single computation of the adjoint
equations we can quickly assess how the growth rate of a resonant mode is affected by
every flow parameter. In a system with a handful of unstable eigenvalues but a multitude
of parameters, this greatly reduces the number of calculations required to design a stable
system. Given these features of adjoint methods they are perfectly suited for optimization
and sensitivity problems in thermoacoustics.

Stability analysis using adjoint methods has, as primary objective, the study of
the sensitivity of the eigenvalues. In flow instability, eigenvalue sensitivity is used to
calculate the response of the flow to external forcing or the sensitivity of the eigenvalues
to perturbations in the system. Pioneering this field was Hill (1992) who presented,
for the first time, adjoint based sensitivity of a global mode in flow instability. It is
well known that in open flow, the wake behind a cylinder becomes unstable when the
Reynolds number exceeds around 47. This drives the flow to a two dimensional periodic
oscillation better known as the von Kármán vortex street. The onset of instability was
studied experimentally by Strykowski and Sreenivasan (1990) when a second smaller
cylinder was inserted downstream. The novelty of Hill’s work was using adjoint methods
to map the sensitivity of the unstable mode to unsteady feedback caused by the second
cylinder, and finding the point at which the system is most sensitive to this feedback.
The same problem was studied later by Giannetti and Luchini (2007) while performing
global analysis on the flow around the cylinder. They introduced concept of structural
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sensitivity1. These two approaches were different from the experimental results due to
the fact that the sensitivity analysis did not account for the change in the mean flow
induced by the cylinder in the experiments. The final resolution that combined the
effect of the perturbation on the base flow and the time varying disturbance was done by
Marquet et al. (2008) and Luchini et al. (2009), which produced sensitivity maps that
match well with the experimental results of Strykowski and Sreenivasan (1990). One of
the key findings was that the sensitivity of the eigenvalue to a steady force was around
5 times stronger than the sensitivity to unsteady feedback. Thorough reviews of this
problem, along with other instabilities in fluids such as the Tollmien-Schlichting waves
and the Görtler instability, are given by Luchini and Bottaro (2014); Sipp et al. (2010).

Some applications of adjoint methods in the field of hydrodynamics include the
work of Marino and Luchini (2009) who explored the stability of a forward facing step
using incompressible flow equations, or Pralits et al. (2010) studying the flow around
a rotating cylinder. In low Mach number flows Qadri et al. (2013) studied the spiral
vortex breakdown of swirling flows. Using compressible flows, Spagnoli and Airiau (2008)
proposed noise mitigation strategies by using adjoint fields to identify the sources of
noise in compressible mixing layers, and Fosas de Pando et al. (2017) investigated the
tonal noise produced by an airfoil and identified the preferred zone to control it.

In the field of optimal design, specifically in aerodynamics we find the work of Jameson
(1995). Using control theory aided by adjoint methods he computed the optimal design
for a wing, reducing the drag by almost 50%. Similarly Nielsen et al. (2010) used adjoint
methods for large scale optimization of a jet fighter and a tilted rotor to optimize the lift
to drag ratio and the thrust coefficient respectively. Freund (2011) used adjoint-based
optimization to produce an iterative algorithm that reduces jet noise.

1.5.1 Adjoint methods in thermoacoustics

In thermoacoustics, one of the first application of adjoint methods is presented in Juniper
(2011), where the lowest initial energy required to trigger thermoacoustic oscillations in
a Rijke tube is found by using nonlinear adjoint looping of the governing equations in an
optimization routine. Using the same model, Magri and Juniper (2013b) perform linear
eigenvalue sensitivity analysis using adjoint methods. They assess how the dominant
eigenvalue changes when the base state parameters are modified and when a generic
passive control element is added into the system (structural sensitivity). They find that a

1The structural sensitivity is used to analyse the effect of forcing the mass, momentum or energy
equations, with a feedback device proportional to a steady or unsteady variable of the flow. It is
proportional to some product of the direct and adjoint eigenfunctions.
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drag force applied to the momentum equation is the most stabilizing feedback mechanism
and that a second hot wire positioned in the first half of the tube is also a stabilizing
mechanism. From these key findings, the growth and decay rates are experimentally
validated in Jamieson and Juniper (2017a,b); Jamieson et al. (2017); Rigas et al. (2016).
The frequency shifts predicted by the experimental validation are different from the ones
predicted with the adjoint theory, because the real model of the Rijke tube is inherently
different to the simplified model used in the adjoint computations. Magri and Juniper
(2014a) improves the model of the electrically heated Rijke tube, by considering a jump in
temperature. Magri and Juniper (2013a) and Magri and Juniper (2014b) perform adjoint
sensitivity analysis in a Rijke tube with a compact diffusion flame. They find that the
tip of the flame is the most receptive region to external forcing and that perturbations in
(i) the stoichiometric mixture fraction, (ii) the width of the fuel injection slots and (iii)
the heat release parameters have the strongest influence on the eigenvalue.

Orchini and Juniper (2016b) analyse the linear response of a conical flame and use
adjoint methods to measure the sensitivity to the convection speed. They observe that,
as expected, the stability of the system is strongly influenced by the time scale given by
the flow convection from the base until it reaches the flame front. Magri et al. (2016a)
perform sensitivity analysis on degenerate modes which appear in annular configurations.
Magri et al. (2016b); Mensah et al. (2017); Silva et al. (2016) perform adjoint-based
uncertainty quantification to reduce the number of nonlinear eigenvalue problems solved
in the Monte Carlo method or to avoid the Monte Carlo method at all. A recent review
of sensitivity analysis in thermoacoustics can be read in Juniper and Sujith (2018).

Most of the previous analyses are performed with a first order, and in some cases a
second order adjoint method. Mensah and Moeck (2016) propose a higher order adjoint
perturbation analysis on a Rijke tube. Mensah et al. (2018) use a similar analysis to study
the effect of symmetry breaking in annular combustors. They study how the eigenvalue
drifts when a degenerate mode becomes non degenerate due to the perturbation in the
system.

1.5.2 Optimization in Thermoacoustics

An application of adjoint based shape optimization in aero-acoustics can be seen in
Caeiro et al. (2017). In such study the geometry of the neck of a Helmholtz resonator is
optimized to obtain a desired impedance. On a similar line, Mensah and Moeck (2017)
use adjoint methods to tune and position multiple acoustic dampers to stabilize a 2D
periodic configuration that resembles an annular configuration. Giauque et al. (2013)
perform shape optimization on a subsonic nozzle to find the most silent (and most noisy)



12 Introduction

configuration. However, this study is performed without the use of adjoint methods, so
the sensitivities are computed by comparing different individual configurations, similar
to a finite difference scheme.

1.6 Thesis scope and structure

Low order network models are the preferred method to analyse thermoacoustic instabilities
in early design stages. They provide an excellent platform with which to analyse the
influence of base state parameters and feedback devices on the eigenvalue. This sensitivity
information can be used as an input to iterative algorithms for optimization purposes.
Given that adjoint-based methods have proven to be very effective at extracting gradient
information from a system, the aim of this thesis is to develop an analytical framework of a
thermoacoustic network model and to incorporate adjoint-based sensitivity analysis. This
includes the derivation of the adjoint equations and subsequent use in the computation of
gradient information of base state parameters and feedback mechanisms. The first goal is
to use this information to perform sensitivity analysis on several configurations and devise
passive control strategies to mitigate thermoacoustic instabilities. The second goal is to
use the gradient information as an input to an optimization routine, which, by making
small changes in the geometry, stabilizes all of the unstable modes of a configuration on
a given frequency range. The development of these strategies are available in PILOT, a
Matlab code for the computation of thermoacoustic instabilities for which adjoint based
sensitivity analysis and optimization is available.

Structure of the thesis

The thesis is divided into 7 chapters, including this introduction. It begins in chapter 2
where the low order network model of Stow and Dowling (2001, 2003, 2004) is presented.
This model, which has been used in numerous studies, sets the baseline from which the
thermoacoustic instabilities are calculated. In this chapter the governing equations to
model a straight duct are presented first. Then all of the modules that join ducts are
developed as a set of jump conditions. These include area changes, heat sources and
different boundary conditions.

Chapter 3 contains all the configurations which will be examined. The first configura-
tions are the Rijke tube and a simple choked combustor. Given the low dimensionality of
these models, their nonlinear eigenvalue problems are fully detailed. Then, a longitudinal
combustor (Rama Balachandran’s burner (Balachandran, 2005)), is examined. This
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is followed by two annular configurations: first a generic lean premixed prevaporized
combustor (Morgans and Stow, 2007) and then the annular test rig built in Cambridge
University Engineering Department (Worth and Dawson, 2013b).

Chapter 4 contains the adjoint derivation of the network model presented in chapter
2. The continuous and discrete adjoint formulations are presented. Then the continuous
adjoint equations for the unsteady and steady equations of all the modules in chapter 2
are derived.

Chapter 5 makes use of the adjoint equations in chapter 4 to perform sensitivity
analysis of the thermoacoustic configurations. First, adjoint based sensitivity analysis is
presented using the continuous and the discrete adjoint. Then, for each configuration,
the base state sensitivities are computed and, where relevant, the feedback sensitivities
are also presented.

Chapter 6 uses the sensitivity information of chapter 5 to perform optimization
routines to stabilize three of the presented systems. Two different algorithms for the
stabilization of thermoacoustic instabilities via small geometry changes are presented.
They are then applied to a test case to examine the differences between the algorithms.
Finally, optimization is performed on three of the configurations in which we found
geometries that are stable within the examined frequency range.

The thesis finishes in chapter 7 with some concluding remarks and suggestions of
future work.





Chapter 2

Low order network models

2.1 Low order modelling

The prediction and control of thermoacoustic oscillations is still one of the biggest
challenges faced by the gas turbine industry. In the last few decades a variety of methods
have been developed to predict the onset of combustion instabilities which can be
categorized into two main groups: numerical simulations (CFD), and low order models.

In the first group are highly resolved numerical simulations such as LES. These are
able to predict flame acoustic interaction (Schmitt et al., 2007) and hence thermoacoustic
oscillations. In such simulations, the complex combustor geometries are modelled and
they may include the inlet and outlet nozzles or the first or last blade rows of the
compressor or the turbine in order to accurately capture the boundary conditions. This
enables modelling of the full flow field and the corresponding unstable modes with great
accuracy. For example, Staffelbach et al. (2009) model the full annular combustor of a
helicopter engine and capture a self excited spinning mode in the chamber. However,
these methods have the major drawback of being computationally expensive, and hence
not very attractive for industrial purposes.

In the other group we have the low order models, also known as network models.
In thermoacoustics, network models exploit the fact that inside a duct, acoustic wave
behaviour is linear. This allows us to represent an entire combustion system as a series
of lumped elements which are geometrically simple and are interconnected by transfer
matrices. As stated in Krüger et al. (1999) the advantage of the network concept is
that it has the possibility of incorporating experimental and numerical results into the
network, such as those that define the boundary conditions or the complex behaviour of
the flame. The drawbacks of these models is that they are only able to capture the first
longitudinal or circumferential modes of the system (low frequency behaviour), because
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the ducts are modelled considering frequencies low enough such that the radial modes are
cut off and most of the modules for area changes and heat sources span over a distance
short enough to be considered to be acoustically compact.

Low order models have been used to predict the onset of thermoacoustic oscillations
(Dowling and Stow, 2003; Schuermans et al., 2003), as well as limit cycles (Han et al.,
2015; Stow and Dowling, 2004). In similar fields they have been used to study the
generation and propagation of combustion noise (Dowling and Mahmoudi, 2015), and
in more specific cases they have been used to study the effects of accelerating entropy
waves in nozzles (Rolland et al., 2017) and even in the development of passive control
approaches to prevent the onset of combustion instabilities with tuned damping devices
(Bothien et al., 2013).

Due to their versatility and speed, they are widely used both in industry and academia.
Bothien (2008) provides a good reference of several thermoacoustic network models
currently in use. A few of them include LOTAN (Stow and Dowling, 2009), OSCILOS
(Li et al., 2017), TA3 (Bellucci et al., 2005), among others.

Our thermoacoustic network model is based upon LOTAN’s approach, originally
developed in Stow and Dowling (2001, 2003, 2004). Therefore, in this chapter we are going
to limit the description of the model to the governing equations and the assumptions
underlying the model. This will enable us to have an insight into the physics of each of
the modules and will serve as the baseline for the development of the adjoint equations
in chapter 4, the sensitivity analysis of chapter 5 and optimization routines of chapter 6.

2.2 The governing equations

The network model is developed considering cylindrical polar coordinates, and is governed
by the mass, momentum and energy equations, assuming no viscosity or heat conduction
and the equation of state:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1a)

ρ
∂u

∂t
+ ρ(u · ∇)u + ∇p = 0, (2.1b)

∂p

∂t
+ u · ∇p+ γp∇ · u = (γ − 1)Q, (2.1c)

p = ρRgT, (2.1d)
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where u = [u, v, w]T represents the velocities in the x, r and θ directions, ρ is the density,
p is the pressure, Q is the heat addition, γ is the ratio of specific heat capacities, Rg is
the ideal gas constant and T is the temperature.

Many industrial applications include annular combustors where the radial spacing
is shorter than the axial length and much shorter than the circumference. Under these
conditions it is common to assume a narrow gap approximation (Dowling and Stow,
2003). In such situations, we can neglect all dependencies in the radial (r) direction and
consider v = 0, yielding a 2D configuration (x, θ).

Following the formalism developed in Stow and Dowling (2001) we linearise the
governing equations around a steady and uniform base flow, which varies only in the
axial direction, and we assume that there is no mean swirl (hence, w̄ = 0). The flow
variables take the form p = p̄(x) + p′(x, θ, t). We then consider flow perturbations with
complex frequency ω and circumferential wave number n. The disturbances become
p′(x, θ, t) = p̂(x)eiωt+inθ.

2.3 Network modules

A combustor can be separated into a network of modules. The key modules are the
straight ducts (§ 2.3.1) which propagate travelling waves. The ducts are connected
through compact area changes (§ 2.3.2 and § 2.3.3), a compact heat source (§ 2.3.5), or a
ring of premix ducts (§ 2.3.4). The full configuration is initiated with an inlet boundary
condition (§ 2.3.6) and terminated with an outlet boundary condition (§ 2.3.6).

2.3.1 Straight ducts

Every duct has an associated cross sectional area A, length L and and mean radius
R = (r2 + r1)/2, where r2 and r1 are the outer and inner radii, respectively, that
characterize the annular gap. Given the assumptions in § 2.2, the base flow equations for
the ducts are simplified to:

ρ̄
dū
dx + ū

dρ̄
dx = 0, (2.2a)

ρ̄ū
dū
dx + dp̄

dx = 0, (2.2b)
dw̄
dx = 0, (2.2c)

ū
dp̄
dx + γp̄

dū
dx = 0. (2.2d)
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From these, it can be deduced that every duct has a constant and homogeneous base
flow. The unsteady perturbation equations become:

iωρ̂+ in

R
ρ̄ŵ + ρ̄

dû
dx + ū

dρ̂
dx = 0, (2.3a)

iωρ̄û+ ρ̄ū
dû
dx + dp̂

dx = 0, (2.3b)

iωρ̄ŵ + in

R
p̂+ ρ̄ū

dŵ
dx = 0, (2.3c)

iωp̂+ in

R
γp̄ŵ + ū

dp̂
dx + γp̄

dû
dx = 0. (2.3d)

Wave decomposition

Considering ŷ = [ρ̂, û, ŵ, p̂]T , we can rewrite the system of equations (2.3) as:

dŷ

dx = iKŷ. (2.4)

Where the matrix K depends on the frequency ω and the base flow properties, which
are constant in a given duct. Hence, the solution to Eq. (2.4) is given by the linear
combination of pure solutions:

ŷ(x) =
4∑

n=1
Aneiknxzn,

where An represents the wave amplitude, kn the eigenvalue, and zn the corresponding
eigenvector. The eigenvalues of matrix K are the streamwise wavenumbers

k1 and k2 are given by: k0 = − ω

ū
, (2.5a)

k3 and k4 are given by: k± =
M̄ω ∓

√
ω2 − n2c̄2

R2 (1 − M̄2)
c̄(1 − M̄2)

, (2.5b)

where M̄ = ū/c̄ is the Mach number and c̄ =
√
γRgT̄ is the mean speed of sound. The

first eigenvalue (k0) has multiplicity of 2, and is associated with waves convecting at the
base flow speed: one corresponding to an entropy wave with amplitude AE and the other
corresponding to a vorticity wave with amplitude AV . The second eigenvalue (k+) is
associated with acoustic waves travelling downstream in the duct with amplitude A+.
The last eigenvalue (k−) corresponds to acoustic waves travelling upstream in the duct
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with amplitude A−. The mode shapes are given by:

p̂(x) = A+eik+x + A−eik−x, (2.6a)

ρ̂(x) = 1
c̄2

(
A+eik+x + A−eik−x − AEeik0x

)
, (2.6b)

û(x) = 1
ρ̄

(
− k+

α+
A+eik+x − k−

α−
A−eik−x + n

c̄
AV eik0x

)
, (2.6c)

ŵ(x) = 1
ρ̄

(
− n

Rα+
A+eik+x − n

Rα−
A−eik−x − k0R

c̄
AV eik0x

)
, (2.6d)

where α± = ω + ūk±.
An interesting case is when only plane waves propagate, i.e., n = 0. This allows us to

use the same equations to model one dimensional longitudinal combustors, where the
length of the device is much larger than its diameter.

Fluxes for conservation equations

Joining ducts requires the conservation of quantities, such as mass flux m = Aρu,
axial momentum flux fx = Ap + mu, angular momentum flux fθ = Rmw, energy flux
e = m(h+ 1

2(u2 +w2)), and in some cases entropy s = so −Rg ln(p). Here h =
∫
cp(T ) dT

is the enthalpy and so =
∫
cp(T )/T dT is the entropy function that varies only with

temperature, cp(T ) is the specific heat capacity at constant pressure, and we introduce
cv(T ) = cp(T ) −Rg as the specific heat capacity at constant volume. The previous flux
formulation is valid for perfect gases, in which the specific heat capacities are constant,
and semi-perfect gases, in which the specific heat capacities are functions of temperature
(see Li and Morgans (2016) for details). The mean and fluctuating quantities of the
fluxes are given in table 2.1.

Further details on conversion between wave amplitudes, flow perturbations and flux
perturbations as well as wave propagation inside the ducts can be found in Stow and
Dowling (2001). For simplicity we will consider the fluxes in vector form such that
fi = [mi, fxi

, fθi
, ei]T and si = [mi, si, fθi

, ei]T where the subindex i represents a side of
the control volume.

2.3.2 Area increase

A region of area increase is often regarded as a sudden expansion which is non-isentropic.
We assume that the region of area increase is compact; i.e., the length of the section is
much shorter than the axial wavelength of the fluctuations. A control volume analysis
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Quantity Steady base flow Fluctuating flow
Mass (m) m̄ = Aρ̄ū m̂ = A(ρ̄û+ ρ̂ū)

Axial m. (fx) f̄x = A(p̄+ ρ̄ū2) f̂x = A(p̂+ ρ̂ū2 + 2ρ̄ūû)

Angular m. (fθ) f̄θ = 0 f̂θ = ARρ̄ūŵ

Energy (e) ē = m̄
(
h̄+ 1

2 ū
2
)

ê = A
(

γū
γ−1 p̂+ ρ̄

(
h̄+ 3

2 ū
2
)
û+ · · ·

ū
(
h̄− γp̄

(γ−1)ρ̄ + 1
2 ū

2
)
ρ̂
)

Entropy (s) s̄ = s̄o −Rg ln(p̄) ŝ = cv

(
p̂
p̄

− γ ρ̂
ρ̄

)
Table 2.1 Mean and fluctuating quantities for fluxes and entropy.

indicates conservation of mass, angular momentum and energy fluxes. The momentum
flux is increased by the force on the sides of the control surface:

fx2 = fx1 +
∫ A2

A1
p dA,

where the subscripts 1 and 2 have been used to indicate the positions upstream and
downstream of the area increase. The integral term is often approximated using the
product between the pressure upstream p1, a loss coefficient that allows some pressure
recovery and the difference in areas. Here, we assume that the loss coefficient is 1. The
jump conditions for an area increase are given by:

f2 = f1 + [0 , p1(A2 − A1) , 0 , 0]T (2.7)

2.3.3 Area decrease

A region of area decrease is assumed to be compact and isentropic. Control volume
analysis indicates that mass, angular momentum and energy fluxes are conserved:

s2 = s1. (2.8)

2.3.4 Ring of premix ducts

A ring of premix ducts is a common feature of annular combustors. To model them, Stow
and Dowling (2004) considered a ring with D premix ducts. At the start of the premix
ducts an area decrease is observed. The premix ducts are modelled as one dimensional
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elements. Therefore angular velocity fluctuations are zero. Thus, angular momentum is
not conserved. Control volume analysis in a sector of the annulus that discharges into a
single premix duct ensures conservation of mass and energy fluxes. The entropy in the
premix duct is considered to be the average of the value in the annular sector. The jump
conditions for the steady base flow are the same as in § 2.3.3. For the fluctuating flow,
they are given by:

ŝ2 = κn [m̂1 , ŝ1 , 0 , ê1]T . (2.9)

where κn = D sin(πn/D)/(πn), is a factor that appears due to the integration of quantities
in the annular sector.

At the end of the premix ducts, the combustion chamber is again modelled as a thin
annulus. An area increase section is observed. Control volume analysis indicates that
mass, angular momentum and energy fluxes are conserved. The axial momentum is
increased by the pressure from the walls. The jump conditions for the steady flow are
the same as in § 2.3.2. The jump conditions for the fluctuating flow are given by:

f̂2 = 1
κn

[
m̂1 , f̂x1 + p̂1(A2κn − A1) , 0 , ê1

]T
. (2.10)

This modelling approach sets a restriction on the maximum azimuthal wave number
used, which has to be less than half of the number of premix ducts in the configuration
(Evesque and Polifke, 2002; Stow and Dowling, 2004).

2.3.5 Heat Sources

Heat sources model the effect of heat addition into the system. Two kinds of compact
heat sources are examined. The first is a heat source at rest, such as heating grids where
heat addition occurs at a constant location. In this model we will assume that the rate
of steady heat addition Q̄ is given. The second is a kinematic heat source, such as a
flame where the flame front is constantly moving. In this model we will assume that the
rate of heat addition is given by:

Q = ηρSu(φ)hr(φ)Af . (2.11)

Where η is the combustion efficiency, ρ is the density of the unburned mixture, Su(φ)
represents the flame propagation speed, hr(φ) is the enthalpy of reaction and Af is the
flame area. The flame propagation speed and the enthalpy of reaction depend on φ,
which is the equivalence ratio of the mixture.
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Heat sources at rest

For a heat source at rest, control volume analysis indicates that mass and momentum
fluxes are conserved. The energy flux is increased by heat addition:

f2 = f1 + [0 , 0 , 0 , Q]T . (2.12)

Kinematic heat sources

As pointed out by Strobio-Chen et al. (2016) (originally from Chu (1956)), heat sources
such as flames have, acoustically speaking, a dynamical behaviour, and are able to move
from their mean position. Hence, they are regarded as kinematic heat sources. As stated
in Strobio-Chen et al. (2016), control volume analysis across a thin discontinuity, such
as a shock or a planar flame1, that is moving with speed us, requires the use of the
Rankine-Hugoniot conditions, which yield:

f2 = f1 + us



A2ρ2 − A1ρ1

m2 −m1

R2A2ρ2w2 −R1A1ρ1w1

A2ρ2

(
h2 − p2

ρ2
+ 1

2 (u2
2 + w2

2)
)

− A1ρ1

(
h1 − p1

ρ1
+ 1

2 (u2
1 + w2

1)
)

+


0
0
0
Q

 .

(2.13)
In our model the heat source is taken to be anchored. Therefore, ūs = 0. Following
Bloxsidge et al. (1988), mass conservation across the flame front relates the unsteady
flame speed to the incoming mass perturbations and the unsteady heat release:

ûs = ū1

(
m̂1

m̄1
− Q̂

Q̄

)
. (2.14)

Unsteady heat release models

To fully define the system of equations (2.12) and (2.13), we need to relate the unsteady
heat release to the perturbation variables. For linear regimes, the most common approach
is the use of a flame transfer function (FTF), Ft, proportional to a linear combination of

1This control volume approach is only valid for planar flames. If the flame has a different shape
such as conical, wedge, V shaped, etc. this formalism is no longer appropriate. In such cases it is more
convenient to use a transfer matrix approach derived from experimental or high fidelity simulations.
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the velocity, density and/or pressure perturbations:

Q̂

Q̄
= Ft

(
µr
ρ̂i

ρ̄i

+ µu
ûi

ūi

+ µp
p̂i

p̄i

)
, (2.15)

where the subindex i denotes the measurement or reading point position in the network
which is modelled as in § 2.3.2 using A2 = A1 and the variables µu, µr, µp ∈ {0, 1} are
used to denote the active perturbation variables. For example, a velocity driven unsteady
heat release model has µu = 1 and µr = µp = 0, a mass driven unsteady heat release
model has µu = µr = 1 and µp = 0. The FTF can be estimated via analytical models,
numerical tools (such as LES), or via experimental data. For the present study we will
use analytical models which are appropriate for compact heat sources. The most simple
one is the time lag model from Crocco (1969), which consists of a constant gain k and a
constant time delay τ :

Ft = ke−iωτ . (2.16)

Two analytical FTFs derived using a level set method which are incorporated into our
model can be found in appendix A. In this thesis we assume that if the FTF depends on
the mean flow variables, these correspond to those at the measurpent point, that is:

Ft → Ft(ρ̄i, ūi, p̄i). (2.17)

2.3.6 Boundary conditions

The final part of the model is the specification of the boundary conditions.

Inlet boundary conditions

For this model we assume that the inlet is located at x = 0 and consider the following
boundary conditions at the inlet:

• Open inlet: An open inlet is modelled such that there are no pressure perturbations
at the inlet, p̂ = 0. Hence we set A+ = 1 and A− = −1. We further assume that
there are no entropy or vorticity fluctuations, AE = AV = 0.

• Closed inlet: For a closed inlet we assume no axial velocity at the wall, û = 0.
Therefore, we use A+ = 1 and A− = −k+α−/(k−α+), and again consider AE =
AV = 0.

• Choked inlet: A choked inlet Stow et al. (2002) assumes that the mass, angular
momentum and energy fluxes are zero at the inlet, m̂ = 0, f̂θ = 0 and ê = 0. To
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fully characterize the system we set the pressure perturbations to 1 and solve for
the rest of the variables: p̂ = 1, ρ̂ = γ/(c̄2 + (γ− 1)ū2), û = −γū/(ρ̄(c̄2 + (γ− 1)ū2))
and ŵ = 0.

• Acoustic reflection coefficient: An acoustic reflection coefficient Rc assumes no
entropy or vorticity generation at the inlet and is given as the ratio between reflected
and incident acoustic waves:

A+ −RcA− = 0. (2.18a)

In perturbation variables it can be expressed as:

p̂

(
k−

α−
+Rc

k+

α+

)
+ ρ̄û (1 +Rc) = 0. (2.18b)

The reflection coefficient is, in general, a function of the frequency. However over a
limited band of frequencies it can be approximated by a constant. For this reason
the model can receive as an input a reflection coefficient which is a constant complex
number (Rc = Rr + iRi) or a function of the frequency Rc = Rc(ω). In this thesis
we treat the inlet Rc as a constant and give it a small imaginary part to represent
the energy lost on reflection.

Outlet boundary conditions

The outlet boundary conditions considered for this model are:

• Open outlet: For an open outlet we consider that there are no pressure perturbations,
p̂ = 0.

• Closed outlet: A closed end considers that there is no axial velocity due to the
presence of a wall, û = 0.

• Choked outlet: The choked outlet gives the following condition (Marble and Candel,
1977):

2û
ū

+
(

1 − dcp(T̄ )
dT̄

(γ − 1)2

γ

T̄

Rg

)(
ρ̂

ρ̄
− p̂

p̄

)
= 0. (2.19)

• Acoustic reflection coefficient: The outlet reflection coefficient is defined in a similar
way to the inlet reflection coefficient:

A−eik−Lt −RcA+eik+Lt = 0. (2.20a)
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where Lt represents the position of the outlet boundary. In fluctuating variables
this is equivalent to:

p̂

(
1
ρ̄α+

(
k+ + n2

R2k0

)
+ Rc

ρ̄α−

(
k− + n2

R2k0

))
+ · · ·

û (1 +Rc) + ŵ
(
n

Rk0
(1 +Rc)

)
= 0. (2.20b)

As mentioned above for the inlet reflection coefficient, Rc is, in general, a function
of the frequency, but on certain frequency ranges it is well approximated by a
constant. In this thesis, we set as an input to the outlet reflection coefficient one
of the two options: a constant complex value or a function that depends on the
frequency. For the latter we will consider the reflection coefficient of a circular duct
radiating sound, originally proposed by Levine and Schwinger (1948). This model
was extended to consider a mean flow in Cargill (1982). We will use the simplified
version proposed by Peters et al. (1993). Taking r as the duct radius the reflection
coefficient gives:

Rc = −
(
1 + M̄A(St)

)(
1 − 1

2

(
ωr

c̄

)2
)

ei(k+−k−)δ(St), (2.21)

where St = Re{ω}r/(2πū) is the Strouhal number, A(St) is a mean flow correction
and δ(St) is the end correction. The last two are functions that depend on the
Strouhal number only. In the cases that we will be exploring, the Mach number is
small and the frequencies big enough to consider the limiting behaviour of these
quantities which are A(St) = 0.90 for St → ∞ and δ(St) = 0.6133r for M̄ → 0 and
St → ∞.

2.4 Equations in the zero Mach number limit

Many industrial applications, such as land based gas turbine combustors operate at a
low Mach number. Under these conditions the governing equations and jump conditions
can be further simplified.

2.4.1 Ducts

Assuming a zero Mach number limit, i.e., ū = 0, for a straight duct, the steady base flow
equations are reduced to dp̄/dx = 0. The unsteady momentum and energy perturbation
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equations become:

iωρ̄û+ dp̂
dx = 0, (2.22a)

iωp̂+ γp̄
dû
dx = 0, (2.22b)

Note that, in the zero Mach number limit, the continuity equation and the energy
equation (in terms of pressure) represent the same dynamics (Dowling and Stow, 2003).
This follows by recasting the energy equation using the isentropic relations (AE = 0):
p̂ = ρ̂c̄2 and γp̄ = ρ̄c̄2. Using Eqs (2.22) we can build the simple wave equation, which
has the following shapes:

p̂(x) = A+e−iωx/c̄ + A−eiωx/c̄, (2.23a)

û(x) = 1
ρ̄c̄

(
A+e−iωx/c̄ − A−eiωx/c̄

)
. (2.23b)

2.4.2 Area changes

For an area change the steady base flow equations reduce to [p̄]21 = 0. The momentum
and energy jump conditions for the fluctuating flow are given by:

p̂2 = p̂1, (2.24a)
A2û2 = A1û1. (2.24b)

2.4.3 Heat sources

For a heat source, the steady base flow equations are again [p̄]21 = 0. This implies that
mean pressure is continuous everywhere in the network. Under the zero Mach number
assumption, the steady energy equation can only be satisfied if Q̄ = 0, because any heat
added is not convected away. Therefore to model a jump in temperature we need to
specify ∆T̄ instead of Q̄. The fluctuation equations reduce to:

p̂2 = p̂1, (2.25a)

A2
γ2p̄2

γ2 − 1 û2 = A1
γ1p̄1

γ1 − 1 û1 + Q̂. (2.25b)

The reader is warned that taking the limit of Eqs (2.12) when ū → 0 to recover the jump
conditions for a heat source in the zero Mach number limit, is not straightforward. As
indicated by Bauerheim et al. (2015a); Dowling (1995), the strength of the entropy wave
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AE tends to infinity whenever ū tends to zero. Hence, a careful manipulation of the
equations is required.

2.5 Nonlinear eigenvalue problem

Using the different modules described above we can build a network model that resembles
a combustor. To obtain the eigenvalues of the system we build a nonlinear eigenvalue
problem of the form:

L(ω,p)q = 0 (2.26)

where p are the parameters of the system such as base flow quantities, reflection coeffi-
cients, time delays, etc. and q is a vector that contains the wave amplitudes of the ducts.
To obtain the eigenvalues (ωj = σj − iλj , where σj is the angular frequency and λj is the
growth rate) we solve the dispersion relation obtained by setting the determinant of L to
0.

Alternatively, we can obtain the eigenvalues by using a shooting method. This is
essentially another method to construct the same dispersion relation. First, we give
an initial guess for ω and starting from the inlet boundary condition we propagate the
solution through each module until we reach the outlet boundary condition. In general,
this condition will not be satisfied. Hence, we create an iterative method to update the
value of ω until the outlet boundary condition is satisfied. The value of ω is then an
eigenvalue of the system.





Chapter 3

Stability analysis of thermoacoustic
configurations

3.1 Stability analysis

Unstable combustion is driven by a complex interaction of linear and nonlinear processes.
As shown in Fig. 3.1 the amplitude of acoustic oscillations, A, increases when the
magnitude of the driving forces H(A) (such as background noise) is bigger than the
magnitude of the damping mechanisms D(A). Small perturbations in this region are
asymptotically unstable and will grow with exponential envelope until the magnitude of
the damping mechanisms surpasses that of the driving forces, at point Ac, which sets a
limit cycle (Lieuwen, 2005).

Acoustic amplitide (A)
Ac

D(A)

H(A)

D
ri
v
in
g
(H

)
/
D
am

p
in
g
(D

)
A
m
p
li
tu
d
e

H(A) > D(A) H(A) < D(A)

Linear growth

Saturation

Time

A
m
p
li
tu
d
e
(A

)

(limit cycle)

Fig. 3.1 Dependence of acoustic driving H(A) and damping D(A) on amplitude A, from
Lieuwen (2005).
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As stated in § 1.3, for this thesis, stability analysis is focused in the linear region1

before saturation occurs. In this neighbourhood eigenvalue analysis allows us to assess
the linear behaviour of the perturbations.

To compute the spectrum of the system we follow the approaches presented in §
2.5. One challenge of using these methods is that an initial guess is required for every
computed eigenvalue. Hence, to compute all of the eigenvalues in a certain region we
need to provide an initial grid fine enough so that each of them is captured.

The logarithmic boundary condition error map and the pseudo-spectrum of the
operator are methods to verify that all of the eigenvalues in the region of interest are
being captured. For the first one, given a grid of different values of ω we can propagate
the wave amplitudes from the inlet boundary condition through the entire system until
we reach the outlet boundary condition. This process is equivalent to evaluating the
determinant of matrix L(ω). In general the outlet boundary condition will not be satisfied,
and the amplitude that corresponds to this deviation is called the boundary condition
error (BCE):

BCE = log10 ||BCactual −BCrequired||. (3.1)

The points where the error is minimal (strictly speaking zero) are eigenvalues of the
system.

The logarithmic boundary condition error map is closely linked to the pseudo-spectrum
of the system. The resolvent of the nonlinear eigenvalue problem is given by: R(ω) =
L(ω)−1. An extension of the definition of ϵ-pseudo-spectrum (Λϵ) (Trefethen and Embree,
2005) to nonlinear eigenvalue problems is given by:

Λϵ =
{
ω ∈ C : ||R(ω)|| ≥ ϵ−1

}
(3.2)

where, we considered || · || to be the 2-norm of the resolvent matrix. Given these
definitions we observe that near an eigenvalue the logarithmic boundary error gives
small values, whereas the pseudo-spectrum will produce large values. The visualization
obtained by superimposing the spectrum over the logarithmic boundary condition map
or the ϵ-pseudo-spectrum allows us to validate that the initial grid used to compute the
eigenvalues is indeed capturing all of the resonant modes of the system on the specified
regime. Due to the ease in the implementation the boundary condition error plot is
preferred.

1In the linear region we consider the two possible scenarios: when the flow is unstable (H(A) > D(A)),
and when the flow is stable (H(A) < D(A)).
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3.2 Thermoacoustic models

The thermoacoustic configurations detailed in this chapter have been chosen to contain
most of the thermoacoustic features of combustion chambers. We begin with the Rijke
tube, the simplest thermoacoustic system. It consists of a duct with a heating gauze and
can be prone to self excited oscillations. The next is a choked combustor, which contains
a kinematic flame and a choked end capable of producing indirect noise. The third model
is a longitudinal combustor, known in the literature as Rama Balachandran’s burner
(Balachandran, 2005; Balachandran et al., 2005, 2008). This is a 10kW rig used to study
the nonlinear response of turbulent premixed flames. The fourth model is a lean premix
pre-vaporized (LPP) annular combustor consisting of a plenum, a ring of premix ducts
and a combustion chamber, which has been used in Morgans and Stow (2007) to develop
active control strategies to stabilize circumferential modes. The final is an annular model
gas turbine combustor built in Cambridge University Engineering Department (CUED)
to examine heat release dynamics in self-excited oscillations (Worth and Dawson, 2013b).

The first two models have been considered in Aguilar et al. (2017) in collaboration
with Dr. Luca Magri. The longitudinal combustor has been considered in Aguilar and
Juniper (2018b) and the annular combustor has been considered in Aguilar and Juniper
(2018a).

3.3 The Rijke tube

Due to its simplicity, the Rijke tube is one of the preferred configurations to study
thermoacoustic instabilities. First devised by Rijke (1859), and extensively studied ever
since (see for example, Matveev (2003)), the configuration in its simplest form consists
of an open ended tube with a heating gauze located somewhere in the tube. In a vertical
pipe, the heat release causes a natural convection driven flow. Depending on the position
and the power input of the heating gauze, thermoacoustic oscillations can be unstable.
For a heat release model with small time delays, the most unstable position is when the
gauze lies at 1/4 of the total length of the tube.

Network model

To model the Rijke tube, we consider a perfect gas in a one dimensional network model
composed of a duct of length b, a compact heat source at rest located at x = b followed
by another duct of length Ln − b as shown in Fig. 3.2.
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Fig. 3.2 Network model of the Rijke tube. The heat source located at x = b divides the
duct into two segments. The arrows represent the travelling waves moving at the local
speed of sound, which are labelled A+1 and A−1 upstream of the heat source and A+2

and A−2 downstream. The waves’ reflection coefficients at each end are Ru and Rd.

Due to the low speed in the mean flow, we choose the formulation in the zero Mach
number limit (§ 2.4). The unsteady heat release model is given by a velocity driven n− τ

model, which in the zero Mach number limit is given by:

Q̂ = û1βe−iωτ , (3.3)

where β is the interaction index, which in the zero mean flow case represents the energy
added per unit volume and has dimensions [kgm−1s−2], τ is the time delay and the
subindex 1 represents the value of the velocity fluctuations just before the heating gauze.

Due to the low dimensionality of the system, we can write down the nonlinear
eigenvalue problem as in Eq. (2.26). After centering the network at x = b, the boundary
conditions are set by means of the upstream, Ru(ω), and downstream, Rd(ω), reflection
coefficients. Matching the values of A+1 with A−1 , and A+2 with A−2 at x = b, after
reflection off the boundaries gives:

A+1(ω) = Ru(ω)A−1(ω)e−iωτu τu = 2b/c̄1, (3.4)
A−2(ω) = Rd(ω)A+2(ω)e−iωτd τd = 2(Ln − b)/c̄2. (3.5)

We can therefore express the linearised jump conditions Eqs. (2.25) in matrix form:
 −1 −Rue−iωτu 1 +Rde−iωτd

(1 −Rue−iωτu)
(
1 + γ−1

γp̄1
βe−iωτ

)
c̄2
c̄1

(1 −Rde−iωτd)

 A−1

A+2

 =
0
0

 . (3.6)
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Model inputs

For the Rijke tube, the variables are non-dimensionalized using the following reference
scales for length, time, speed and pressure, respectively: Ln, Ln/c̄1, c̄1 and γp̄1. The non-
dimensional variables are written with a tilde, i.e., ω̃ = ω×Ln/c̄1. Pressure eigenfunctions
for the direct variables are normalized as

∫ Ln
0 p̂(x)p̂(x)∗ dx = 1. We consider a Rijke tube

of length Ln = 1 m; the working fluid is assumed to behave as a perfect gas with dry air
properties, γ = 1.40 and R = 287.1 Jkg−1K−1; inlet pressure of p̄1 = 101.3 kPa and inlet
temperature of T̄1 = 300.0 K; open ends at the inlet and outlet, Ru = −1, Rd = −1; jump
in temperature of ∆T̄ = 300.0 K caused by the heating gauze located at b = 0.250 m
with interaction index β = 360.0 × 103 kgm−1s−2 and time delay τ = 1.00 × 10−3 s.

Stability analysis

Following the procedure in § 2.5 Fig. 3.3 shows the logarithmic boundary error plot
and the spectrum for the Rijke tube. We observe that in the studied regime there
are 2 unstable eigenvalues at 222 and 670 Hz. The dominant eigenvalue is ω1 =
(2π × 222.2 − 134.1i) rad s−1, or in non-dimensional units: ω̃1 = 4.021 − 0.3862i.

Fig. 3.3 Logarithmic boundary error plot for the Rijke tube. The red markers denote
unstable eigenvalues and the black markers denote stable eigenvalues.

For the Rijke tube, the pressure and velocity mode shapes of the dominant eigenvalue
in Fig. 3.4 display several important characteristics of thermoacoustic systems. The
pressure is continuous at the heating gauze, with a slight change of gradient, while the
velocity has a jump at the heat source, as expected from the jump conditions (2.24). For
the duct equations in the zero mean flow case, Eq. (2.22), it is easy to show that when a
Dirichlet boundary condition is imposed on p̂, a Neumann boundary condition is instantly
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(a) X (b)

Fig. 3.4 Normalised relative amplitudes between pressure (a) and velocity (b) fluctuations,
i.e., p̂(x) = |p̂(x)|eiθ.

imposed on û, and vice versa. The former statement is depicted in the amplitudes of the
direct mode shapes.

3.4 Choked combustor

Combustors often operate with mean flows at low Mach numbers. This allows the
generation of entropy waves at the heat source, which when accelerated, for example at
a nozzle, reflect back as acoustic waves (Marble and Candel, 1977). This is a mechanism
for the generation of indirect noise (Goh and Morgans, 2013; Morgans and Duran, 2016).
For a combustor the heat source is a flame, which has a dynamical behaviour. That is, it
responds to the flow perturbations and is allowed to move from its mean position.

Network model

To model the choked combustor of Fig. 3.5, we assume a similar network structure as
with the Rijke tube. However, the flame is considered to be anchored at x = b and is
modelled with the kinematic heat source in Eqs. (2.13). The heat release model is taken
to be proportional to velocity fluctuations and the FTF is another n− τ model.

The boundary condition for the upstream acoustic waves defined through the reflection
coefficient from Eq. (3.4) remains almost unaltered. Only the time delay associated
with the length of the upstream duct changes to τu = 2bc̄1/(c̄2

1 − ū2
1). The downstream

boundary condition is a compact nozzle which is modelled as the choked outlet in Eq.
2.19. This condition allows acoustic fluctuations to be generated from the acceleration of
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Fig. 3.5 Network model of a choked combustor. The setup considers a mean flow ū and
a choked end. Compared to Fig. 3.2, this model includes corrections for the propagation
speeds of the waves, and an entropy wave generated after the flame. The downstream
end is now choked by a compact nozzle. The reflection coefficient Re represents the
strength of the acoustic wave generated by the entropy wave AE2 .

the entropy waves. Thus:

A−2(ω) = RdA+2(ω)e−iωτd +ReAE2(ω)e−iωτe (3.7a)

with reflection coefficients depending on the local Mach number:

Rd =
1 − 1

2(γ − 1)M̄2

1 + 1
2(γ − 1)M̄2

τd = 2(Ln − b)c̄2/(c̄2
2 − ū2

2), (3.7b)

Re = −
1
2M̄2

1 + 1
2(γ − 1)M̄2

τe = (Ln − b)c̄2

ū2(c̄2 − ū2)
. (3.7c)

Entropy fluctuations are often considered as convected hot spots generated by the flame.
Therefore they are set to zero at the inlet, AE1 = 0. Following a similar approach as in §
2.5 we create an eigenvalue problem: L(ω)q̂ = 0. L(ω) is a matrix that includes the effects
of the mean flow, ū, through the Mach number (the components are shown in appendix:
B). The vector q̂ = [A−1 A+2 AE2 ]T now contains the relative amplitudes between the
acoustic and entropy waves. The problem is again nonlinear in the eigenvalue ω.

Model inputs

For this configuration, we use similar nondimensional variables and same properties for
the air and inlet conditions as for the Rijke tube. However, we now assume a mean flow
Mach number of M̄1 = 5.00 × 10−2, which requires an inlet steady flow of ū1 = 17.4 ms−1.
The flame causes a jump in temperature reaching T̄2 = 1500 K in the downstream side,
which corresponds to a mean steady heat release of Q̄/A = 24.7 MWm−2, which is similar
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to the heat release of an intermediate scale rig (Lieuwen and Yang, 2005). The flame
interaction index is chosen to be k = 1.00 and the time delay τ = 1.00 × 10−3 s.

Stability analysis

The logarithmic boundary error plot for the choked combustor is shown in Fig. 3.6.
There are 2 unstable modes at 184 and 551 Hz, with the latter being the most unstable.
Further analyses in this configuration will focus on the first unstable mode: ω1 =
(2π × 184.4 − 145.2i) rad s−1 or ω̃1 = 3.336 − 0.4180i.

Fig. 3.6 Logarithmic boundary error plot for the choked combustor. The red markers
denote unstable eigenvalues and the black markers denote stable eigenvalues.

The mode shapes for this configuration are shown in Fig. 3.7. Pressure (Fig. 3.7a)
displays the open ended inlet condition and a jump caused by the combined effect of
the mean flow and unsteady heat release Eq. (2.13). Velocity (Fig. 3.7b) has a jump
at the flame location and shows the behaviour of a nearly closed end due to the choked
boundary condition. In the region upstream of the flame, density (Fig. 3.7c) shows a
similar behaviour as the pressure (scaled by a 1/c̄2

1 factor). After the flame, density is
the only mode shape that contains the influence of both acoustic and entropy waves.
Small amplitude entropy waves appear in the downstream region because the acoustic
fluctuations change the temperature upstream (and the model assumes that the mean
heat release is kept constant, the flame front is planar rather than conical or V-shaped
and the Mach number is very small.2) (Strobio-Chen et al., 2016). The generated hot
spots are accelerated at the nozzle and converted into indirect acoustic waves. The ratio
between the amplitudes of the indirect acoustic wave and the direct acoustic wave is
0.53%, which directly correlates to the small contribution of indirect noise in perfectly

2For this prediction to hold, strictly speaking, it is required that the mean flow is neglected.
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(a) X (b)

(c)

Fig. 3.7 Mode shapes for the first unstable mode in the choked combustor. The plots
show the normalised relative amplitudes between pressure (a), velocity (b) and density
(c) fluctuations, i.e., p̂(x) = |p̂(x)|eiθ.

premixed flames. For comparison, in the same configuration a heat source at rest (ûs = 0)
with the same heating capacity, such as a gauze heater, gives a ratio of 20.70%.

3.5 Longitudinal combustor

Rama Balachandran’s burner is a 10 kW longitudinal combustor built in Cambridge
University Engineering Department, originally intended for the experimental investigation
of the response of turbulent premixed flames to acoustic oscillations (Balachandran, 2005).
One of the experimental cases focuses on a configuration with no swirl and imperfectly
premixed combustion prone to self-excited oscillations. The geometry consists of an inlet
duct connected to a plenum with a varying cross section at both ends. This is followed
by the neck which contains the fuel injection plane and a centred bluff body used to
stabilize the flame. The outlet is a cylindrical pipe enclosure which contains the flame.
The configuration is shown in Fig. 3.8.
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Fig. 3.8 Schematic of the longitudinal combustor.

Network model

To model the rig we consider a total of 124 straight ducts. The varying cross sections of
the plenum are modelled as a sequence of 50 area increase steps and 50 area decrease
steps in order to model the conical sections very accurately. To model the bluff body we
further consider 20 area decrease steps.

Model inputs

We consider the working fluid to be a semi-perfect gas with air properties as given in
McBride et al. (2002). At the inlet we use a temperature of 300 K. We assume that air
is supplied with a constant mass flow rate of of m̄ = 5.518 × 10−3 kgs−1 to match the
experimental measurement at the bluff body of ū = 9.90 m/s (Balachandran, 2005). We
consider an open outlet at atmospheric pressure and a flame anchored to the bluff body.
To match the experimental results and LES simulations (Han et al., 2015) we model the
steady heat input with a combustion efficiency of η = 95%, fuel properties of ethylene
(See appendix A) and an equivalence ratio of φ = 0.61.

For the boundary conditions we consider an inlet modelled by an acoustic reflection
coefficient with Rc = 0.85 + 0.10i, which resembles the impedance of an end which is
almost closed. The outlet is modelled with the frequency-dependent reflection coefficient
of a circular duct radiating sound of Eq. (2.21).

For the heat source, we will use a velocity driven kinematic flame3 Eq. (2.13), with the
annular cone flame transfer function as given in Eq. (A.13) and shown in Fig. 3.9, which
approximately matches the flame structure and the results reported in Balachandran
(2005).

3For this configuration we will assume the validity of the kinematic heat source for the given FTF.
See footnote in §2.3.5 for details.
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Fig. 3.9 Gain and phase of the flame transfer function used in the longitudinal combustor.
Fu is the component of the flame transfer function due to velocity perturbations, Fφ is
the component due to equivalence ratio fluctuations and Ftot is the addition of the other
two.

Stability Analysis

The boundary error plot in Fig. 3.10 shows 4 unstable eigenvalues at 58, 364, 606 and
781 Hz. The second and most unstable resonant mode has a frequency which is close to
the reported one (348 Hz in Balachandran (2005)) at which the self-excited oscillations
saturate.

Fig. 3.10 Logarithmic boundary error plot for the longitudinal combustor. The red
markers denote unstable eigenvalues and the black markers denote stable eigenvalues.
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3.6 LPP annular combustor

Annular combustor geometries are typical of aero-engines. They are characterized by
a ring of premix ducts where fuel is injected. Then the mixture is convected into the
combustion chamber where reaction occurs. The annular combustor geometry considered
is the same as in Morgans and Stow (2007), used to develop active control strategies
to stabilize the circumferential modes in lean premixed prevaporized combustors. The
geometry is shown in Fig. 3.11. It consists of a thin annular plenum, followed by a ring
of 20 premix ducts, and an annular combustion chamber.

Model inputs

At the inlet the flow is choked and has a pressure of 5 bar, a temperature of 1000 K and
a mass flow rate of 100 kg/s. In order to match closely the results reported in Morgans
and Stow (2007), we consider that (i) the gas is a perfect gas, (ii) the flame is at rest, i.e.,
there is no moving flame front, and (iii) the combustion zone has a steady heat input of
Q̄ = 151.1 MW, with interaction index of k = −4, and time delay of τ = 1.5 × 10−3 s.
At the outlet of the combustion chamber there is another choked end. Given that the
system is linear and that we are not introducing elements that break the symmetry of
the configuration, such as Helmholtz resonators (Stow and Dowling, 2003), the system
will not present circumferential modal coupling.

Fig. 3.11 Network model of the LPP annular combustor and cross sectional cut. The
green and blue lines at the inlet and outlet represent choked ends respectively, the dotted
line in the premix ducts represent the injection point and the red line represents single
flame zone in the combustion chamber.
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Stability analysis

To perform the stability analysis, we need to consider all possible azimuthal wave numbers
n, where n is an integer. However, for high values of |n| the modes rapidly decay and do
not need to be considered any further. Therefore, the highest azimuthal wave number
we consider for this configuration is |n| = 3. This is less than the maximum |n| imposed
by the model, which has the constraint that |n| < D/2 where D = 20 is the number of
premix ducts (Stow and Dowling, 2004).

For frequencies up to 1000 Hz, Fig. 3.12 shows the error of the boundary condition
at the outlet of the annular combustor for azimuthal wave numbers n = 0, and n = ±1.
All of the eigenvalues at higher azimuthal wave numbers are stable (not shown here). For
n = 0 (plane waves) there is an unstable mode at 57 Hz. For n = ±1 (first helical mode)
there is an unstable mode at 547 Hz, which is very close to the one reported in Morgans
and Stow (2007). The difference between the unstable modes reported in Morgans and
Stow (2007) and the present analysis are due to the convective waves. In their model

(a)

(b)

Fig. 3.12 Logarithmic boundary error plot for the LPP annular combustor. Plot (a)
corresponds to azimuthal wave number n = 0 and plot (b) to n = ±1. The red markers
denote unstable eigenvalues and the black markers denote stable eigenvalues.
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they are assumed to dissipate before they reach the outlet boundary condition, which is
not true for ours. For the mode at 547 Hz, the combustion chamber has mean velocity
of ū = 84.63 ms−1. This translates to a convected wavelength of λc = 0.1546 m, which
is about twice the length of the combustion chamber. Therefore, we assume that the
convective waves do not diffuse by the time they reach the outlet boundary condition.

3.7 CUED Annular combustor

The laboratory scale annular combustor built in CUED has been the subject of numerous
experimental studies i.e., Connor et al. (2013); Dawson and Worth (2013); Worth and
Dawson (2013a,b). Most of them are concerned with the flame dynamics in the annular
combustor undergoing self-excited azimuthal instabilities. One of the experimental cases
consited of 18 evenly separated premixed bluff-body flames. The experiment ran on
an ethylene-air mixture and used the equivalence ratio φ as bifurcation parameter to
trigger self-excited azimuthal instabilities. The instabilities appeared at a frequency of
around 1700 to 1800 Hz (Worth and Dawson, 2013b). Using LES and a Helmholtz solver
Bauerheim et al. (2015b) was able to predict the stability of the combustor under the
specified conditions. The geometry (see Fig. 3.13) consists of a plenum followed by a
spherical flow divider, which is connected to the ring of premix ducts with the bluff
bodies. This is followed by an annular enclosure with outer walls larger than the inner
walls.

Network Model

The network model consists of 55 straight ducts. The varying cross section of the plenum
is modelled with 20 area increase steps and the spherical flow divider is modelled with
20 area decrease steps. To model the bluff body we use a sequence of 10 area decrease
steps in order to get the same flame holder area as in the experimental case.

There are a few challenges in trying to model this combustor using the network model
approach, as shown in Fig. 3.14. The first is with regards to the validity of the narrow
annular gap approximation. From the inlet of the combustor until around 30% of the
length of the spherical flow divider the geometry is such that it permits radial wave
propagation. To overcome this problem we assume that only plane waves propagate,
i.e., n = 0. This is a reasonable approach given that the combustor has a honeycomb
flow divider which does not allow the propagation of radial waves. The next challenge
is to model the outlet boundary condition. On the one hand the outlet duct cannot be
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Fig. 3.13 Network model of the CUED annular combustor and cross sectional cut. The
green line at the inlet represents a choked end and the blue line at the outlet represents
the open outlet used in the model.

modelled using the narrow annular gap approximation, therefore, we assume that only
plane waves propagate in this region. On the other hand, this duct has two open ended
boundary conditions. In the model we only consider the right end as an open end and
the left end is modelled as a wall. As mentioned in Worth and Dawson (2013b) this
boundary condition may be critical in rendering the system unstable.

Plane waves � = 
 Plane waves � = 
 Plane waves � = 


Open end �experiment)

Open end �model)

Open end �experiment)

Wall �model)

Fig. 3.14 Challenges in modelling the CUED annular combustor using the network model
approach. 1) The narrow annular gap approximation is only valid in some regions of the
rig. 2) The outlet boundary condition is not modelled exactly as in the experiments.
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Model Inputs

The flow is modelled with the properties of air using a semi-perfect gas approximation as
in § 3.5. The inlet of the configuration is considered as choked with a temperature of 300
K and a mass flow rate of 57.20 × 10−3 kgs−1 to match the speed at the bluff body of
ū = 18.0 ms−1 (Worth and Dawson, 2013b). We consider the open outlet at atmospheric
pressure. The steady heat input considers a combustion efficiency of η = 100%, the
fluctuating heat release is modelled with the velocity driven kinematic flame4 in Eqs.
(2.13). The FTF for this model corresponds to a V shaped flame given in Eq. (A.12)
and plotted in Fig. 3.15. This flame model resembles the structure of the flames in
the experiments and LES simulations, but lacks important properties such as swirl, or
flame-flame and flame-boundary interactions which can be fundamental to trigger the
azimuthal instabilities (Bauerheim et al., 2015b; Worth and Dawson, 2013b).

Fig. 3.15 Gain and phase of the flame transfer function used in the CUED annular com-
bustor. Ftot is the component of the flame transfer function due to velocity perturbations.

Stability Analysis

For this configuration we consider azimuthal wave numbers from n = 0 up to the highest
possible azimuthal wave number, i.e., |n| = 8. For frequencies up to 2000 Hz, Fig. 3.16
shows the eigenvalues of the system. The low order model predicts a total of 10 unstable
modes, which are detailed in table 3.1. The unstable eigenvalues can be grouped in 3
categories:

• 1 unstable longitudinal mode.
4For this configuration we will assume the validity of the kinematic heat source for the given FTF.

See footnote in §2.3.5 for details.
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Fig. 3.16 Eigenvalues of the CUED annular combustor with azimuthal wave numbers
|n| = 0, 1, ..., 8. The gray region denotes the unstable half plane.

Azimuthal wave Frequencies of Azimuthal wave Frequencies of
number (|n|) unstable modes (Hz) number (|n|) unstable modes (Hz)

0 1144 5 1117
1 1131, 1625 6 1121
2 1015 7 1124
3 1090 8 1127
4 1109

Table 3.1 Frequencies of the unstable modes of the CUED annular combustor.

• 2 unstable azimuthal modes with |n| = 1 at a frequency of 1131 and 1625 Hz, the
latter is close to the reported frequency at which the system undergoes a limit cycle
oscillation (Bauerheim et al., 2015b; Worth and Dawson, 2013b).

• 7 unstable high order azimuthal modes which share the following characteristics:

– they cluster in groups that share similar frequencies (observe that there is a
similar group in the stable plane at around 400 Hz),

– changing the outlet boundary condition (by gradually reducing the magnitude
of the reflection coefficient from 1 to 0) does not change (within numerical
error) the value of this modes. This is due to their axial cut off behaviour, see
Fig. 3.17.
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(a)

(b)

Fig. 3.17 Pressure mode shapes of the unstable modes around 1100 Hz in the CUED
annular combustor. Plot (a) shows the normalized pressure mode shapes and (b) is a
zoom in to the outlet region. Notice the scale difference in the plots, this indicates the
cut off behaviour of the modes with large n.



Chapter 4

Adjoint methods in wave based
approaches

4.1 Introduction

As reviewed by Luchini and Bottaro (2014) one of the major advantages of adjoint
methods is the ability to obtain the sensitivity of a global quantity to all of the inputs in
a complex problem at the computational cost of a single run of the corresponding adjoint
algorithm. In flow control, adjoints often appear as a mechanism to enforce constraints
of a cost functional, for example, when drag is minimized by enforcing the Navier-Stokes
equations (Jameson, 1995). Hence, as explained by Schmid and Brandt (2014) the adjoint
variables can be interpreted as cost functional gradients. These gradients can be used to
design control techniques or to perform optimization.

The major drawbacks of adjoint methods are i) the need to derive the adjoint problem
and ii) if the direct problem has singularities, such as shockwaves in compressible flows,
a careful perturbation analysis is required such that the adjoint problem is well posed.

In thermoacoustics we are often interested in the response of the eigenvalue to changes
in the system. Consequently, it is appropriate to treat the eigenvalue as the cost function
with respect to which all of the sensitivities need to be computed. In this chapter, we
first show the procedure to obtain the adjoint equations for wave-based approaches § 4.2.
Then, in § 4.3 we derive the full set of adjoint equations in the Rijke tube and discuss
the symmetries between the direct and the adjoint problems, as well as the sources of
non-self adjointness that appear in thermoacoustics. Finally in § 4.4 we present the
continuous adjoint equations for the network modules in chapter 2.
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Part of the content in this chapter has appeared in the following publications: Aguilar
et al. (2017) in collaboration with Dr. Luca Magri and Aguilar and Juniper (2018a,b).

4.2 The adjoint equations

Wave-based methods produce a nonlinear eigenvalue problem (see § 2.5) of the form:

L(ω,p)q = 0, (4.1)

where ω is the eigenvalue and p are the parameters of the system such as reflection
coefficients, time delays and heat source parameters. The calculation of the adjoint
equations depends on the approach taken. In a simple form, the adjoint of a linear
operator L can be defined through a bilinear form [·, ·] such that for arbitrary a and b:

[
a,Lb

]
−
[
L+a, b

]
= constant. (4.2)

where L+ is the adjoint operator. An operator L is said to be normal if its eigenfunctions
q are orthogonal, or equivalently, if LL+ = L+L. An operator is normal if it is self-adjoint,
i.e., L+ = L.

In this section we firstly examine the continuous adjoint derivation and secondly the
discrete adjoint derivation.

4.2.1 Continuous adjoint

To obtain the continuous adjoint equations we create a Lagrangian functional. Considering
[·, ·] as an appropriate inner product, the functional in its most general form is given by:

L ≡ ω −
[
q̂+,P (ω, q̂, G)

]
−
[
G+,B(G)

]
, (4.3)

where ω is the eigenvalue of interest. q̂+ is the vector of Lagrange multipliers associated
with P (ω, q̂, G). P (ω, q̂, G) = 0, is the vector of fluctuating flow equations, jump
conditions, and boundary conditions that equate to zero. These equations depend on the
eigenvalue ω, the fluctuating variables q̂ and the base flow variables G. G+ is another
vector of Lagrange multipliers associated with B(G). B(G) = 0, is the vector of steady
base flow equations, jump conditions and boundary conditions that equate to zero. These
equations depend on the base flow variables G.



4.2 The adjoint equations 49

Ducts are governed by spatially varying functions, for example a(x) and b(x). Thus,
the corresponding inner product is given by:

⟨a(x), b(x)⟩ ≡
∫ x1

x0
a(x)∗b(x) dx, (4.4)

where ∗ represents complex conjugation, and x0 and x1 represent the duct inlet and outlet
positions. Jump conditions and boundary conditions are defined locally at positions x0

or x1 by single valued functions, for example c and d. Hence, the corresponding inner
product is given by

{c, d} ≡ c∗d. (4.5)

To determine the sensitivity functions of the eigenvalue following a Lagrangian
approach (Gunzburger, 1997), any first variation of the Lagrangian with respect to a
variable ξ must be equal to 0, for any arbitrary value of δξ:

∂L
∂ξ
δξ ≡ lim

ϵ→0

(
L(ξ + ϵδξ) − L(ξ)

ϵ

)
= 0. (4.6)

For this problem, there are four sets of variables of interest. Vanishing the derivatives of
L in Eq. (4.3) with respect to the:

1. adjoint variables (components of vectors q̂+ and G+), corresponds to the trivial
case since they return the already known perturbation P (ω, q̂, G) = 0 and base
flow equations B(G) = 0;

2. fluctuating variables q̂, returns the adjoint fluctuating equations, used to com-
pute the sensitivities of the eigenvalue to changes in the unsteady flow;

3. base flow variables G, returns the adjoint base flow equations, used to compute
the sensitivities of the eigenvalue to changes in the steady base flow;

4. eigenvalue ω, returns the normalization condition.

4.2.2 Discrete adjoint

For the nonlinear eigenvalue problem (2.26) there exists an adjoint eigenvector q̂† that
satisfies:

(q̂†)HL(ω,p) = 0, (4.7)

which is the corresponding discrete adjoint eigenvalue problem.
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4.2.3 Continuous vs discrete adjoint equations

At this stage it is easy to see that the discrete adjoint is easier to implement, since we
only need to compute the left eigenvectors of the system’s matrix L. On the contrary,
for the continuous approach we need to derive analytically all of the continuous adjoint
equations and then solve for the corresponding adjoint variables. The main advantage of
the continuous approach is that the adjoint variables are directly expressed in physical
space, i.e., the adjoint eigenfunctions are known. For the reasons stated in § 5.3, given
the modelling approach used, we favour the continuous adjoint.

4.3 Adjoint equations in the Rijke Tube: A worked
example

Due to the simplicity of the Rijke tube, it is practical to derive the corresponding
continuous adjoint equations alongside some observations concerning the self-adjointness
of thermoacoustic systems. Since the Rijke tube is modelled with a zero Mach number
formulation in this section, we will not cover the adjoint base flow formulation.

For the Rijke tube (§ 3.3) the fluctuating governing equations and jump conditions
are given by Eqs. (2.22) and (2.25) respectively. Recalling that the fluid is a perfect
gas (γ2 = γ1 = γ), that the heat source is located at x = b and that the duct’s area is
constant (A1 = A2), gives:

E1 ≡ iωρ̄û+ dp̂
dx = 0, (4.8a)

E2 ≡ iωp̂+ γp̄
dû
dx = 0, (4.8b)

J1 ≡ p̂2 − p̂1 = 0, (4.8c)

J2 ≡ γp̄2

γ − 1 û2 − γp̄1

γ − 1 û1 − βû1e−iωτ = 0, (4.8d)

where the subscript 1 represents the condition before the heating grid (x = b−) and the
subscript 2 represents the conditions just after it (x = b+).

For the set of governing equations defined in x ∈ [0, b−) ∪ (b+, Ln] there exists a
corresponding set of adjoint variables (û+(x), p̂+(x)). Similarly, for the set of jump
conditions defined only at x = b, there exists a corresponding set of adjoint variables
(ĝ+, ĥ+).
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Using the direct equations (4.8) and the adjoint variables, we create a Lagrangian
functional1 (Magri and Juniper, 2014a):

L ≡ ω −
〈
û+, E1

〉
−
〈
p̂+, E2

〉
− {ĝ+, J1} − {ĥ+, J2}. (4.9)

To determine the sensitivity functions of the eigenvalue following a Lagrangian approach,
any first variation of the Lagrangian with respect to a variable ξ must be equal to 0.
For this problem, there are only three sets of variables of interest: the direct variables
(û, p̂), the adjoint variables (û+, p̂+, ĝ+, ĥ+) and the eigenvalue s. The trivial cases are
the derivatives of the Lagrangian with respect to the adjoint variables, for example:

∂L
∂û+ δû

+ =
〈
δû+, E1

〉
= 0 =⇒ E1 = 0 (4.10)

which give the direct Eqs. (4.8). The derivatives with respect to the direct variables
require integration by parts and give the adjoint equations:

iω∗ρ̄û+ + γp̄
dp̂+

dx = 0, (4.11a)

iω∗p̂+ + dû+

dx = 0, (4.11b)

along with boundary terms. Given the unsteady heat release model, the boundary terms
defined just after the heating gauze (x = b+) relate the adjoint variables defined at the
jump to those defined in the rest of the domain. After some manipulation (Aguilar, 2015)
they give:

ĝ+ = û+
2 , (4.12a)

ĥ+ = (γ − 1)p̂+
2 . (4.12b)

Similarly, the terms defined just before the heating gauze (x = b−) provide the adjoint
jump conditions:

γp̄2

γ − 1 p̂
+
2 − γp̄1

γ − 1 p̂
+
1 + βp̂+

2 eiω∗τ = 0, (4.13a)

û+
2 − û+

1 = 0. (4.13b)
1The pairing between adjoint variables and direct equations is arbitrary. However, by using an

adjoint variable with the same character as the perturbation variable that is multiplying the eigenvalue
in a given equation, for instance, using û+ as adjoint variable to the equation that contains iωρ̄û, the
resultant adjoint equations display a similar structure as the direct problem.
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Finally, boundary terms defined either at the inlet or outlet relate the direct boundary
conditions to the adjoint boundary conditions:

û+∗
p̂+ p̂+∗

γp̄û = 0. (4.14)

The last quantity of interest in the Lagrangian is the eigenvalue. The Lagrangian’s
derivative with respect to the eigenvalue yields the normalization condition:

〈
û+, ρ̄û

〉
+
〈
p̂+, p̂

〉
+ {ĥ+, τβû1e−iωτ } = 1. (4.15)

We recall that the first two inner products span the full domain of the ducts x ∈
[0, b−) ∪ (b+, Ln], and thus one integration is required for each duct.

4.3.1 Adjoint eigenvalue problem and sources of
non-self-adjointness

In the zero Mach number limit we can make the variable change ψ̂+ = γp̄p̂+. Recalling
that the product γp̄ is constant through the heat source, after some manipulation the
adjoint system becomes:

iω∗ρ̄û+ + ∂ψ̂+

∂x
= 0, (4.16a)

iω∗ψ̂+ + γp̄
∂û+

∂x
= 0, (4.16b)

γp̄2

γ − 1 ψ̂
+
2 − γp̄1

γ − 1 ψ̂
+
1 = −βψ̂+

2 eiω∗τ , (4.16c)

û+
2 − û+

1 = 0. (4.16d)

After considering that the adjoint eigenvalue is the complex conjugate of the direct one,
the adjoint equations governing the ducts Eqs. (4.16a) and (4.16b) are the same as in
the direct case Eqs. (4.8a) and (4.8b). These equations, without considering boundary
conditions, are those for pure acoustics. Unsurprisingly, this analysis shows that they are
self-adjoint.

On the other hand, it is evident that the heat source makes the system non-self-adjoint
through the jump conditions. The unsteady heat release term has switched from the û+

jump condition to the ψ̂+ jump condition. It has changed sign and now relies on a time
in the future, + τ . (The latter point shows that the adjoint equations naturally evolve
backwards in time.)
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After decoupling the system (as in § 2.3.1), we define the adjoint reflection coefficients,
R+

u and R+
d , as for the direct case Eqs. (3.4) and (3.5). By applying Eq. (4.14), which

links boundary terms at the inlet and outlet, we obtain:

R+
u = 1

R∗
u

, (4.17a)

R+
d = 1

R∗
d

. (4.17b)

The adjoint reflection coefficients are the inverse conjugates of the direct reflection
coefficients. At first sight, this suggests that the system will be non-self-adjoint whenever
|Ru| ≠ 1 or |Rd| ≠ 1 (and hence, non-normal as pointed out, for example, by Mangesius
and Polifke (2011)). However, the direction of the travelling waves in the adjoint case is
opposite to that in the direct case (i.e., A+

+1 corresponds to A−1 and A+
−2 corresponds to

A+2). This results in the following adjoint eigenvalue problem:
−1 −R∗

ueiω∗τu

(
1 +R∗

deiω∗τd

) (
1 + γ−1

γp̄1
βeiω∗τ

)
1 −R∗

ueiω∗τu c̄2
c̄1

(
1 −R∗

deiω∗τd

)   A+
+1

A+
−2

 = 0, (4.18)

which can be written as L+(ω)q̂+ = 0. Comparing it with the direct matrix L from
Eq. (3.6), the unsteady heat release term has switched from the bottom-left element
to the top-right element. The determinant, however, remains the same apart from
the complex conjugation of the frequency-dependent terms, which arises due to the
definition of the inner product in (4.4). Hence, we confirm that the adjoint eigenvalues
are the complex conjugates of the direct eigenvalues (Magri and Juniper, 2013b), but the
adjoint eigenvectors are not the complex conjugate of the direct eigenvectors, due to the
re-positioning of the heat release term. Note that, in the absence of the unsteady heat
release, matrices L and L+∗ are identical, and the system is self-adjoint even when the
magnitudes of the reflection coefficients are not 1.

4.4 Adjoint equations for network modules

In the following section an extensive derivation of the continuous adjoint equations for the
different modules of chapter 2 is presented. Alongside the equations, relevant observations
on how the assumptions made for the direct equations impact the development of the
adjoint equations are discussed. Firstly, the adjoint perturbation equations are presented
followed by the adjoint base flow equations.
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4.4.1 Adjoint perturbation equations

To compute the adjoint perturbation equations we are interested in the first inner product
of the Lagrangian functional as presented in Eq. (4.3).

Straight ducts

For a straight duct, the relevant components of vector P in Eq. (4.3) are given by Eqs.
(2.3). Their corresponding adjoint variables or Lagrange multipliers (components of
vector q̂+) are given by the spatial functions [ρ̂+(x), û+(x), ŵ+(x), p̂+(x)]T respectively.
The resulting adjoint perturbation equations are:

iω∗ρ̂+ + ū
dρ̂+

dx
= 0, (4.19a)

iω∗ρ̄û+ + ρ̄ū
dû+

dx
+ ρ̄

dρ̂+

dx
+ γp̄

dp̂+

dx
= 0, (4.19b)

iω∗ρ̄ŵ+ + in

R
ρ̄ρ̂+ + in

R
γp̄p̂+ + ρ̄ū

dŵ+

dx
= 0, (4.19c)

iω∗p̂+ + ū
dp̂+

dx
+ in

R
ŵ+ + dû+

dx
= 0. (4.19d)

The associated boundary terms are:
[(
ρ̂+∗

ū
)
δρ̂+

(
ρ̂+∗

ρ̄+ û+∗
ρ̄ū+ p̂+∗

γp̄
)
δû+

(
û+∗ + p̂+∗

ū
)
δp̂+

(
ŵ+∗

ρ̄ū
)
δŵ
]x1

x0
= 0,
(4.20)

where the δ symbol preceding the perturbation variables indicate that the boundary
terms should vanish for any value of the perturbation variable. These terms are used to
compute the jump conditions and to set the adjoint boundary conditions of the entire
system.

Decoupling the system

We can decouple the system of adjoint equations (4.19) as in § 2.3.1. The resulting adjoint
eigenvalues are the same as in the direct case, except for the complex conjugation in
the frequency terms (ω). The adjoint system is again composed of four travelling waves:
two adjoint acoustic waves with amplitudes A+

+ and A+
−, which propagate downstream

and upstream respectively, and two convective waves with amplitudes A+
E for an adjoint

entropy wave and A+
V for an adjoint vorticity wave. The adjoint perturbation variables
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can now be decomposed into waves:

ρ̂+(x) = −c̄2A+
Eeik0x (4.21a)

p̂+(x) = A+
+eik+x + A+

−eik−x + A+
Eeik0x (4.21b)

û+(x) = −k+c̄
2

α+
A+

+eik+x − k−c̄
2

α−
A+

−eik−x − n

Rk0
A+

V eik0x (4.21c)

ŵ+(x) = − nc̄2

Rα+
A+

+eik+x − nc̄2

Rα−
A+

−eik−x + A+
V eik0x (4.21d)

For modules that are governed by the mass, axial momentum, angular momentum and
energy fluxes it is convenient to define the following adjoint perturbation fluxes that
depend on the side i of the jump condition:

f̂+
mi

= 1
Ai

(
ρ̂+

i − ūiû
+
i +

(1
2(γi − 1)ū2

i + c̄2
i − (γi − 1)h̄i

)
p̂+

i

)
, (4.22a)

f̂+
xi

= 1
Ai

(
û+

i − (γi − 1)ūip̂
+
i

)
, (4.22b)

f̂+
θi

= 1
Ai

(
ŵ+

i

Ri

)
, (4.22c)

f̂+
ei

= 1
Ai

(γi − 1)p̂+
i , (4.22d)

which in vector form is: f̂+
i = [f̂+

mi
, f̂+

xi
, f̂+

θi
, f̂+

ei
]T . Similarly, for modules governed by

mass, angular momentum and energy fluxes together with entropy conservation the
following adjoint perturbation fluxes are defined:

ŝ+
mi

= 1
Ai

(
ρ̂+

i −
(

1
2 ūi + h̄i

ūi

)
û+

i + c̄2
i p̂

+
i

)
, (4.23a)

ŝ+
si

= 1
Rg

(
p̄iūi(γi − 1)p̂+

i − p̄iû
+
i

)
, (4.23b)

ŝ+
θi

= 1
Ai

(
ŵ+

i

Ri

)
, (4.23c)

ŝ+
ei

= 1
Ai

(
û+

i

ūi

)
, (4.23d)

which in vector form is: ŝ+
i = [ŝ+

mi
, ŝ+

si
, ŝ+

θi
, ŝ+

ei
]T .
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Area increase

For an area increase the components of vector P are given by fluctuating quantities
of Eq. (2.7). Their corresponding Lagrange multipliers are given by the numbers
â+ = [a+

m, a
+
x , a

+
θ , a

+
e ]T respectively. The relationship between adjoint variables at the

area change and those defined in the ducts is given by: â+ = f̂+
2 . The corresponding

adjoint jump conditions for an area increase are given by:

f̂+
1 = f̂+

2 + φ̂+
[(
h̄1 − ū2

1
2

)
(γ1 − 1) − 2c̄2

1 ,
c̄2

1
ū1

+ (γ1 − 1)ū1 , 0 , −(γ1 − 1)
]T

, (4.24)

where
φ̂+ = A2 − A1

A1

(
ū1

c̄2
1 − ū2

1

)
f̂+

x2 .

Area decrease

For an area decrease the components of vector P are given by the fluctuating quantities
of Eq. (2.8). Their corresponding Lagrange multipliers are given by the numbers
b̂+ = [b+

m, b
+
s , b

+
θ , b

+
e ]T respectively. The relationship between adjoint variables at the area

change and those defined in the ducts is given by: b̂+ = ŝ+
2 . The corresponding adjoint

jump conditions for an area decrease are given by:

ŝ+
1 = ŝ+

2 . (4.25)

Ring of premix ducts

At the start of a ring of premix ducts an area decrease is observed, so the components
of vector P are given by Eq. (2.9). The corresponding Lagrange multipliers are given
by the numbers b̂+ = [b+

m, b
+
s , b

+
θ , b

+
e ]T respectively. The relationship between adjoint

variables at the start of the premix ducts and those defined in the ducts is given by:
b̂+ = ŝ+

2 . The corresponding adjoint jump conditions are:

ŝ+
1 = κn

[
ŝ+

m2 , ŝ
+
s2 , 0 , ŝ+

e2

]T
, (4.26)

where κn is the integration factor defined in § 2.3.4. At the end of the premix ducts an
area increase is observed. The components of vector P are given by Eq. (2.10). The
corresponding Lagrange multipliers are given by the numbers â+ = [a+

m, a
+
x , a

+
θ , a

+
e ]T

respectively. The relationship between adjoint variables at the start of the premix ducts
and those defined in the ducts is given by: â+ = f̂+

2 . The corresponding adjoint jump
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conditions are:

f̂+
1 = 1

κn



f̂+
m2

f̂+
x2

0

f̂+
e2


+ φ̂+

κ



(
h̄1 − ū2

1
2

)
(γ1 − 1) − 2c̄2

1

c̄2
1
ū1

+ (γ1 − 1)ū1

0

−(γ1 − 1)


, (4.27)

where
φ̂+

κ = A2 − A1/κn

A1

(
ū1

c̄2
1 − ū2

1

)
f̂+

x2 .

Heat source at rest

The adjoint perturbation equations for a heat source at rest depend on the form of
the unsteady heat release and need to be analysed together with the measurement
point. The components of vector P are given by the fluctuating quantities of Eqs.
(2.7) for the measurement point (assuming constant area) and Eqs. (2.12) for the heat
source at rest. We will denote with subindices 1 and 2 the points before and after
the measurement point and with 3 and 4 the points before and after the heat source.
The corresponding Lagrange multipliers are â+ = [a+

m, a
+
x , a

+
θ , a

+
e ]T for the measurement

point and ĉ+ = [c+
m, c

+
x , c

+
θ , c

+
e ]T for the heat source at rest. The relationship between

adjoint variables at the measurement point and those defined in the ducts are given by:
â+ = f̂+

2 . For the heat source, they are given by ĉ+ = f̂+
4 . The corresponding adjoint

jump conditions for the measurement point for the generic unsteady heat release in Eq.
(2.15) are given by:

f̂+
1 = f̂+

2 + Q̂+


µr


fc1 +



c̄2
1 − ū2

1

0

0

0




− µu (fc1) + µpγ1M̄

2
1


fc1 −



c̄2
1 − ū2

1

c̄2
1 − ū2

1
ū1

0

0






(4.28)
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where

Q̂+ = Q̄

m̄1

F∗
t

(c̄2
1 − ū2

1)
f̂+

e4 , (4.29)

fci
=
[
h̄i(γi − 1) − c̄2

i − 1
2 ū

2
i (γi + 1) , γiūi , 0 , −(γi − 1)

]T

. (4.30)

The unsteady adjoint equations for the measurement point are forced by the unsteady
heat release at the heat source position. The adjoint jump conditions for the heat source
are:

f̂+
3 = f̂+

4 (4.31)

Kinematic heat source

For a kinematic heat source, the only change from the previous formulation is that the
fluctuating equations for a heat source considered are now given by Eqs. (2.13) and
(2.14). The adjoint jump conditions at the measurement point are given by:

f̂+
1 = f̂+

2 · · · (4.32)

+
(
Q̂+ − û+

sq

)

µr


fc1 +



c̄2
1 − ū2

1

0

0

0




− µu (fc1) + µp

γ1ū
2
1

c̄2
1


fc1 −



c̄2
1 − ū2

1

c̄2
1 − ū2

1
ū1

0

0






where

û+
sq = ū3

m̄1

F∗
t

(c̄2
1 − ū2

1)
(
f̂+

m4m̄us + f̂+
e4 ēus

)
, (4.33a)

m̄us = A4ρ̄4 − A3ρ̄3, (4.33b)

ēus = A4ρ̄4

(
h̄4 − p̄4

ρ̄4
+ 1

2 ū
2
4

)
− A3ρ̄3

(
h̄3 − p̄3

ρ̄3
+ 1

2 ū
2
3

)
, (4.33c)

the adjoint unsteady heat release term Q̂+ stays as in Eq. (4.29) and fc1 as in Eq. (4.30).
The jump conditions for the heat source are given by:

f̂+
3 = f̂+

4 +
[
û+

sm , 0 , 0 , 0
]T
, (4.34)
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with
û+

sm = ū3

m̄3

(
f̂+

m4m̄us + f̂+
e4 ēus

)
. (4.35)

For kinematic heat sources, we observe that the adjoint equivalent of the heat source
speed splits in two. The part corresponding to the unsteady heat release (û+

sq) forces the
measurement point, while the part corresponding to the local mass flow rate fluctuations
(û+

sm) forces the heat source.

Inlet boundary conditions

For an inlet boundary condition, the component of vector P is given by the relevant
boundary condition from those discussed in § 2.3.6. The corresponding Lagrange multi-
plier is b+

i . The relationship between the adjoint variables defined in the ducts and those
defined at the boundary is given by:

• Open end: b+
i = û+ + ūp̂+;

• Closed end: b+
i = ρ̄ρ̂+ + ρ̄ūû+ + γp̄p̂+;

• Choked end: for this condition we defined four equations. Therefore, there must
be the same number of adjoint variables, which we define as b+

ip
, b+

iρ
, b+

iu
,b+

iw
. The

corresponding relationships are given by:

b+
ip

= û+ + ūp̂+, b+
iρ

= ūρ̂+, b+
iu

= ρ̄ρ̂+ + ρ̄ūû+ + γp̄p̂+, b+
iw

= ρ̄ūŵ+;

• Acoustic reflection coefficient: b+
i = 1/ (1 +R∗

c) (ρ̂+ + ūû+ + c̄2p̂+).

As discussed before, the adjoint method evolves backwards in time. Therefore, the
shooting method on the adjoint equations is performed from the outlet to the inlet. In
this case, the most general adjoint inlet boundary condition for any direct inlet boundary
condition is given by Eq. (4.20), rewritten here without the deltas, because at the
boundaries the choice of the values of the adjoint variables must be such that the entire
equation is equal to zero:

ρ̂+∗
ūρ̂+ ρ̂+∗

ρ̄û+ û+∗
ρ̄ūû+ p̂+∗

γp̄û+ û+∗
p̂+ p̂+∗

ūp̂+ ŵ+∗
ρ̄ūŵ = 0. (4.36)

By substituting the direct inlet boundary conditions into the above equation we obtain
simplified expressions for the adjoint inlet boundary conditions. For simplicity, they will
be expressed in terms of adjoint wave amplitudes:
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• Open inlet:

A+
+ + α+

α−
A+

− = 0. (4.37)

• Closed inlet:

A+
+ + α+

α−

(
c̄2k− − ūα− + c̄2n2/(R2k0)
c̄2k+ − ūα+ + c̄2n2/(R2k0)

)
A+

− = 0. (4.38)

• Choked inlet:

A+
+ + α+

α−

(
c̄2k− + (γ − 1)ūα−

c̄2k+ + (γ − 1)ūα+

)
A+

− +
(

ū(γ − 1)α+

c̄2k+ + (γ − 1)ūα+

)
A+

E · · · (4.39)

−
(

nūα+

Rω(c̄2k+ + (γ − 1)ūα+)

)
A+

V = 0.

• Acoustic reflection coefficient:

A+
+ + α2

+
α2

−

(
B1

B2

)
A+

− = 0, (4.40)

where

B1 = α2
−ū(1 + R∗

c) +
(

R∗
c

α−
α+

+ 1
)

c̄2n2ū

R2 − c̄2k−

(
α−(1 + R∗

c) + ω

(
1 + R∗

c

α−k+
α+k−

))
,

B2 = α2
+ū(1 + R∗

c) +
(

R∗
c + α+

α−

)
c̄2n2ū

R2 − c̄2k+

(
α+(1 + R∗

c) + ω

(
α+k−
α−k+

+ R∗
c

))
.

Outlet boundary conditions

In this case, the component of vector P is given by the relevant boundary condition from
those discussed in § 2.3.6. The corresponding Lagrange multiplier is b+

o . The relationship
between the adjoint variables defined in the ducts and that defined at the boundary is
given by:

• Open end: b+
o = − (û+ + ūp̂+).

• Closed end: b+
o = − (ρ̄ρ̂+ + ρ̄ūû+ + γp̄p̂+).

• Choked end: b+
o = − (ρ̄ūρ̂+) /

(
1 − dcp(T̄ )

dT̄

(γ−1)2

γ
T̄

Rg

)
.

• Acoustic reflection coefficient: b+
o = −1/ (1 +R∗

c) (ρ̄ρ̂+ + ρ̄ūû+ + γp̄p̂+).
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As explained in the previous section, the outlet becomes the starting point when using
the adjoint equations in a shooting method. For this reason it is necessary to explore
each of the boundary conditions independently. In general, to compute the corresponding
adjoint boundary condition, we first substitute the wave forms of the direct and adjoint
perturbation variables Eqs. (2.6) and (4.21) into the boundary terms Eq. (4.36). Then,
we apply the direct boundary condition, and finally we seek the values of the adjoint
wave amplitudes that will set the boundary terms to zero. In some cases convective waves
reflect back as acoustic waves. Therefore, to get the values of the adjoint wave amplitudes
we need to solve for the acoustic, entropy and vorticity contributions separately. The
same process applied to the direct equations is performed in Stow et al. (2002).

• Open outlet: For an open end outlet, we assume that p̂ = 0 and that entropy
and vorticity waves convect away from the system. Hence there is no interaction
between acoustic and convective waves at the boundary. Therefore, we set A+

E = 0
and A+

V = 0. We assume A+
− = 1 and solve for A+

+ which gives:

A+
+ = −α+

α−
ei(k−−k+)Lt . (4.41)

• Closed outlet: For a closed end we assume û = 0. Entropy waves are assumed
to convect away, so they have no interaction with the boundary. Hence, A+

E = 0.
We set A+

− = 1, and solve for the acoustic contributions to get A+
+. We note that

vorticity waves reflect back as acoustic waves, so we again set A+
− = 1 and use the

vorticity contributions to solve for A+
V :

A+
+ = −α+

α−

(
ūα− − c̄2 (k− + n2/(R2k0))
ūα+ − c̄2 (k+ + n2/(R2k0))

)
ei(k−−k+)Lt , (4.42a)

A+
V = n

Rα−

(
(k− − k+) (ūα− − c̄2 (k− + n2/(R2k0)))

(k−k+) (1 + n2/(R2k2
0))

)
ei(k−−k0)Lt . (4.42b)

• Choked outlet: Assumes that the fluctuations in the Mach number are zero M̂ = 0.
Entropy and vorticity modes generate acoustic fluctuations. We set A+

− = 1 and
solve for the acoustic, entropy, and vorticity contributions for A+

+, A+
E and A+

V :

A+
+ = −α+

α−

(
X−

X+

)
ei(k−−k+)Lt , (4.43a)

A+
E = c̄2ω

α−

(
(k− − k+)(ζ − 1)X−

Y+Y−

)
ei(k−−k0)Lt , (4.43b)
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A+
V = n

Rα−

(
2c̄4X−

(1 + n2/(R2k2
0))Y+Y−

)
ei(k−−k0)Lt , (4.43c)

where

X± = ωū(γ + 1 − (γ − 1)ζ) − 2k±(c̄2 − ū2) − n2

R2k0
(2c̄2 + ū2(γ − 1)(1 − ζ)),

Y± = 2c̄2k± + ūα±(γ − 1)(1 − ζ),

ζ = dcp(T̄ )
dT̄

(γ − 1)2

γ

T̄

Rg

.

These are the adjoint equivalent of those derived for a choked outlet in Stow et al.
(2002).

• Reflection coefficient: Assumes A−eik−Lt − RcA+eik+Lt = 0. Therefore, there are
no entropy or vorticity wave interactions at the boundary. Hence, we set A+

E = 0
and A+

V = 0. Then, we set A+
− = 1 and solve the acoustic contributions for A+

−.

A+
+ = α+

α−
R∗

cei(k−−k+)Lt . (4.44)

The adjoint eigenvalues

As stated above, the adjoint problem is solved by shooting backwards in the network
model. Given the definition of the inner products used to compute the adjoint equations,
the adjoint eigenvalues are the complex conjugate of the direct eigenvalues. In general,
once we know a direct eigenvalue, we will use its complex conjugate to shoot through
the network to compute all of the adjoint variables which will be used for the sensitivity
analysis in § 5.

The normalization condition

Eigenvalue sensitivity analysis in chapter 5 requires the direct and adjoint variables to be
normalized. The normalization condition is constructed with the derivatives with respect
to the eigenvalue of all of the frequency-dependent terms in the Lagrangian functional
Eq. (4.3). In its most general form it is given by:

i
(〈
ρ̂+, ρ̂

〉
+
〈
û+, ρ̄û

〉
+
〈
ŵ+, ρ̄ŵ

〉
+
〈
p̂+, p̂

〉)
+ Fω = 1, (4.45)

where Fω = ∑N
i=1 Fωi

is the sum of the N inner products between the corresponding
adjoint variables and the derivatives of the frequency dependent terms with respect to ω
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that appear in the jump conditions or the boundary conditions of the functional. The
model described so far has frequency-dependent terms in the heat sources and in the
boundary conditions that have an acoustic reflection coefficient. Let ∂ω(f) ≡ ∂f/∂ω,
then the inner products for the model are:

• Heat Source at rest:
Fω1 =

{
ĉ+

e ,−∂ω(Q̂)
}
.

• Heat source in motion:

Fω1 =
{
ĉ+

m,−∂ω(ûs)m̄us

}
,

Fω2 =
{
ĉ+

e ,−∂ω(Q̂) − ∂ω(ûs)ēus

}
.

• Inlet acoustic reflection coefficient:

Fω1 =
{
b̂+

i , p̂

(
1
α−

(
∂ω(k−) − ∂ω(α−) k−

α−

)
+ Rc

α+

(
∂ω(k+) − ∂ω(α+) k+

α+

))}
.

As stated in § 2.3.6, we have assumed that Rc is not frequency-dependent at the
inlet.

• Outlet acoustic reflection coefficient:

Fω1 =
{
b̂+

o , p̂ (Bω1 +Bω2 +Bω3) + û (Bω4) + ŵ (Bω5)
}
,

with

Bω1 = 1
ρ̄α+

(
∂ω(k+) − ∂ω(k0)

n2

R2k2
0

− ∂ω(a+)
α+

(
k+ + n2

R2k0

))
,

Bω2 = Rc

ρ̄α−

(
∂ω(k−) − ∂ω(k0)

n2

R2k2
0

− ∂ω(a−)
α−

(
k− + n2

R2k0

))
,

Bω3 = ∂ω(Rc)
ρ̄α−

(
k− + n2

R2k0

)
,

Bω4 = ∂ω(Rc),

Bω5 = n

ūRk2
0
(1 +Rc) + ∂ω(Rc)

n

Rk0
.

Here we assumed that Rc can be frequency-dependent as in Eq. (2.21). Otherwise,
we set ∂ω(Rc) = 0.
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4.4.2 Adjoint base flow equations

The adjoint base flow equations serve as an aid to quickly assess the effect that the
variations of the steady base flow have on the system. For example, geometric changes
such as changes in the area of a duct induce base flow variations. Hence, when computing
sensitivities to such changes, we need to account for the change generated in the fluctuating
equations and the change made to the base flow. To compute the latter we require the
adjoint base flow equations. These are obtained following a similar procedure to that in
Marquet et al. (2008) and resemble the unsteady adjoint equations to a certain extent.
To derive the adjoint base flow equations we are interested in both inner products of Eq.
(4.3).

Straight ducts

For a straight duct, the relevant components of vector B are given by Eqs. (2.2). The
corresponding Lagrange multipliers (components of vector G+) are given by the spatial
functions [R+(x), U+(x),W+(x), P+(x)]T respectively. The resulting adjoint base flow
equations are given by:

ū
dR+

dx = −iω∗(ŵ∗ŵ+ + û∗û+) − in

R
ŵ∗ρ̂+ + ūŵ+ dŵ∗

dx +
(
ρ̂+ + ūû+

) dû∗

dx · · · (4.46a)

−p̂+p̄
dγ
dρ̄

(
−in

R
ŵ∗ + dû∗

dx

)
,

ρ̄
dR+

dx + ρ̄ū
dU+

dx + γp̄
dP+

dx = ρ̂+ dρ̂∗

dx + ρ̄ŵ+ dŵ∗

dx + ρ̄û+ dû∗

dx + p̂+ dp̂∗

dx , (4.46b)

dU+

dx + ū
dP+

dx =
(
γ + p̄

dγ
dp̄

)
p̂+
(

−in

R
ŵ∗ + dû∗

dx

)
, (4.46c)

dW+

dx = 0, (4.46d)

where

dγ
dρ̄ = − dγ

dT̄
p̄

ρ̄2Rg

,
dγ
dp̄ = dγ

dT̄
1
ρ̄Rg

.

The corresponding boundary terms are:
[(
R+ū

)
δρ̄+

(
R+ρ̄+ U+ρ̄ū+ P+γp̄

)
δū+W+δw̄ +

(
U+ + ūP+

)
δp̄
]x1

x0
= 0. (4.47)

where the δ preceding the base flow terms works in a similar manner to that in the
perturbation equations. As seen in Eqs. (4.46), the adjoint base flow equations require
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knowledge of the adjoint perturbation variables. Hence, once the unsteady adjoint
problem is solved, we can proceed to solve for the adjoint base flow variables. The
solutions are:

R+(x) = R+(x1) −
∫ x1

x

∇M

ū
dx, (4.48a)

P+(x) = P+(x1) −
∫ x1

x

−ρ̄∇M + ū∇F − ρ̄ū2∇E

γp̄ū− ρ̄ū3 dx, (4.48b)

U+(x) = U+(x1) −
∫ x1

x

ρ̄∇M − ū∇F + γp̄∇E

γp̄− ρ̄ū2 dx, (4.48c)

W+(x) = C, (4.48d)

where, in the definition of Marquet et al. (2008), the equivalent of the sensitivity to base
flow modifications inside a duct are:

∇M = − iω∗(ŵ∗ŵ+ + û∗û+) − in

R
ŵ∗ρ̂+ + ūŵ+ dŵ∗

dx +
(
ρ̂+ + ūû+

) dû∗

dx · · ·

− p̂+p̄
dγ
dρ̄

(
−in

R
ŵ∗ + dû∗

dx

)
,

∇F =ρ̂+ dρ̂∗

dx + ρ̄ŵ+ dŵ∗

dx + ρ̄û+ dû∗

dx + p̂+ dp̂∗

dx ,

∇E =
(
γ + p̄

dγ
dp̄

)
p̂+
(

−in

R
ŵ∗ + dû∗

dx

)
.

For modules governed by mass, axial momentum and energy fluxes, it is convenient to
define the following adjoint base flow fluxes, which depend on the side i of the jump
condition:

F+
mi

= 1
Ai

(
R+

i − ūiU
+
i +

(
c̄2

i − h̄i(γi − 1) + 1
2(γi − 1)ū2

i

)
P+

i

)
+ JMi

, (4.49a)

F+
xi

= 1
Ai

(
U+

i − (γi − 1)ūiP
+
i

)
+ JXi

, (4.49b)

F+
θi

= 0, (4.49c)

F+
ei

= 1
Ai

(γi − 1)P+
i + JEi

, (4.49d)

where the sensitivity to base flow modifications in the jump conditions are given by
JMi

, JXi
, and JEi

. These are functions of the unsteady variables (direct and adjoint)
and are detailed in appendix C. In vector form we will express the base flow fluxes as
F +

i =
[
F+

mi
, F+

xi
, F+

θi
, F+

ei

]T
. For modules governed by mass and energy fluxes together
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with entropy conservation we define the following adjoint base flow fluxes:

S+
mi

= 1
Ai

(
R+

i −
(

1
2 ūi + h̄i

ūi

)
U+

i + c̄2
iP

+
i

)
+GMi

, (4.50a)

S+
si

= 1
Rg

(
p̄iūi(γi − 1)P+

i − p̄iU
+
i

)
+GSi

, (4.50b)

S+
θi

= 0, (4.50c)

S+
ei

= 1
Ai

(
U+

i

ūi

)
+GEi

. (4.50d)

As before, the base flow modifications for this jump GMi
, GSi

, and GEi
are detailed in

appendix C. The fluxes in vector form are expressed as: S+
i =

[
S+

mi
, S+

si
, S+

θi
, S+

ei

]T
.

Area increase

For an area increase the relevant components of vector B are given by the steady quantities
of Eq. (2.7), and the corresponding Lagrange multipliers are given by the numbers
A+ = [A+

m, A
+
x , A

+
θ , A

+
e ]T respectively. The relationship between adjoint variables at the

area increase and those defined at the duct is given by: A+ = F +
2 . The adjoint base

flow jump conditions for an area increase are given by:

F +
1 = F +

2 + Φ+
[(
h̄1 − ū2

1
2

)
(γ1 − 1) − 2c̄2

1 ,
c̄2

1
ū1

+ (γ1 − 1)ū1 , 0 , −(γ1 − 1)
]T

,

(4.51)
where

Φ+ = A2 − A1

A1

(
ū1

c̄2
1 − ū2

1

)
F+

x2 .

Area decrease

For an area decrease the relevant components of vector B are given by the steady
quantities of Eq. (2.8), and the corresponding Lagrange multipliers are given by the
numbers B+ =

[
B+

m, B
+
s , B

+
θ , B

+
e

]T
respectively. The relationship between adjoint

variables at the area decrease and those defined at the duct is given by: B+ = S+
2 . The

adjoint base flow jump conditions for an area decrease are given by:

S+
1 = S+

2 . (4.52)
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Ring of premix ducts

At the start of the ring of premix ducts there is an area decrease. The adjoint base flow
jump conditions are the same as those for an area decrease Eq. (4.52) and only the
sensitivities to base flow modifications before the area decrease need to be updated with
the integration factor κn according to:

[GM1 , GS1 , GE1 ] → κn [GM1 , GS1 , GE1 ] . (4.53)

At the end of the ring an area increase is observed. Again, the only difference in the
adjoint base flow jump conditions with respect to those derived for an area increase in
Eq. (4.51) is due to the update required for the sensitivities to base flow modifications
in the adjoint fluxes, which are given by:

[JM1 , JX1 , JE1 ] → 1
κn

[JM1 , JX1 , JE1 ] . (4.54)

Heat source at rest

Heat sources need to be analysed together with the measurement points. The components
of vector B are given by the steady quantities of Eqs. (2.7) for the measurement point
(assuming constant area) and Eqs. (2.12) for the heat source. We will denote with
subindices 1 and 2 the positions before and after the measurement point and with 3 and 4
the positions before and after the heat source. The Lagrange multipliers that correspond
to the measurement point are given by the numbers A+ =

[
A+

m, A
+
x , A

+
θ , A

+
e

]T
, and for

the heat source by: C+ =
[
C+

m, C
+
x , C

+
θ , C

+
e

]T
. Their relationship to the variables defined

in the ducts is given by: A+ = F +
2 and C+ = F +

4 , respectively. The adjoint base flow
jump conditions for the measurement point are given by:

F +
1 = F +

2 · · · (4.55)

+ Q̂+


µu

û∗
1

ū1
fc1 − µr

ρ̂∗
1

ρ̄1


fc1 +



c̄2
1 − ū2

1

0

0

0




−
(
γ1M̄2

1

)
µp

p̂∗
1

p̄1


fc1 +



ū2
1 − c̄2

1

c̄2
1 − ū2

1
ū1

0

0






· · ·
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+ Q̂+

F∗
t

(
µu

û∗
1

ū1
+ µr

ρ̂∗
1

ρ̄1
+ µp

p̂∗
1

p̄1

)


∂F∗
t

∂ū1
(−ū1)fc1 + ∂F∗

t

∂ρ̄1
ρ̄1


fc1 +



c̄2
1 − ū2

1

0

0

0




· · ·

+ ∂F∗
t

∂p̄1
ρ̄1ū2

1


fc1 +



ū2
1 − c̄2

1

c̄2
1 − ū2

1
ū1

0

0






.

where the adjoint unsteady heat release Q̂+ is given by Eq. (4.29) and the vector fc1 is
defined in Eq. (4.30). For the heat source, the corresponding jump conditions depend on
the way the steady heat enters into the model. If Q̄ is given as a quantity, independent
of the base flow variables, such as in the models where the n − τ FTF is used, the
corresponding jump conditions are:

F +
3 = F +

4 . (4.56)

If the steady heat input is given as in Eq. (2.11) (detailed in appendix A), the heat
release, being proportional to the mass flow rate, requires the following jump conditions:

F +
3 = F +

4 +
[
ηhr

(
F∗

t

(
µu
û∗

1
ū1

+ µr
ρ̂∗

1
ρ̄1

+ µp
p̂∗

1
p̄1

)
f̂+

e4 + F+
e4

)
, 0 , 0 , 0

]T

. (4.57)

Kinematic Heat Source

The steady and unsteady equations for a measurment point remain the same as for the
heat source at rest. Therefore, the only updates required in the jump conditions for the
measurment point are due to the unsteady heat source speed ûs. The corresponding
jump contidions are given by:

F +
1 = F +

2 · · · (4.58)
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+
(
Q̂+ − û+

sq

)


µu
û∗

1
ū1

fc1 − µr
ρ̂∗

1
ρ̄1


fc1 +



c̄2
1 − ū2

1

0

0

0




− γ1M̄2

1 µp
p̂∗

1
p̄1


fc1 +



ū2
1 − c̄2

1

c̄2
1 − ū2

1
ū1

0

0






· · ·

+

(
Q̂+ − û+

sq

)
F∗

t

(
µu

û∗
1

ū1
+ µr

ρ̂∗
1

ρ̄1
+ µp

p̂∗
1

p̄1

)


∂F∗
t

∂ū1
(−ū1)fc1 + ∂F∗

t

∂ρ̄1
ρ̄1


fc1 +



c̄2
1 − ū2

1

0

0

0




· · ·

+ ∂F∗
t

∂p̄1
ρ̄1ū2

1


fc1 +



ū2
1 − c̄2

1

c̄2
1 − ū2

1
ū1

0

0






.

where the adjoint unsteady heat release Q̂+ is given by Eq. (4.29) and the adjoint heat
source speed û+

sq is given by Eqs. (4.33).
Given that the heat source is considered to be anchored ūs = 0, the steady base flow

equations remain the same as with the heat source at rest. The unsteady equations,
however, contain heat source speed terms which depend on the base flow quantities at
both sides of the jump condition. This introduces an update into the steady adjoint base
flow fluxes, which is given by:

H+
4 = F +

4 · · · (4.59)

+ û∗
s

ū4(c̄2
4 − ū2

4)


f̂+

m4


fc4 +



c̄2
4 − ū2

4

0

0

0




+ f̂+

e4
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(

h̄4 − ū2
4

2

)
fc4 +

(
c̄2

4 − ū2
4

)


ū2
4

−ū4

0

1






.

This update needs to be considered in the definition of the Lagrange multipliers at the
kinematic heat source, that is, C+ = H+

4 . Again, The jump conditions become:

F +
3 = H+

4 +
[
ηhr

(
F∗

t

(
µu
û∗

1
ū1

+ µr
ρ̂∗

1
ρ̄1

+ µp
p̂∗

1
p̄1

)
f̂+

e4 + F+
e4

)
, 0 , 0 , 0

]T

. (4.60)
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Notice that the forcing term, needs to be set to zero if the steady heat release Q̄ is given
as a quantity as in the n− τ model. Finally, we need to update the adjoint fluxes on the
opposite side according to:

H+
3 = F +

3 · · · (4.61)

− û∗
s

ū3(c̄2
3 − ū2

3)
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m4
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

c̄2
3 − ū2

3

0

0

0




+ f̂+

e4


(
h̄3 − ū2

3
2

)
fc3 +

(
c̄2

3 − ū2
3

)


ū2
3

−ū3

0

1






· · ·

+ û+
sm

c̄2
3 − ū2

3


(
Q̂∗

Q̄
− 2 ρ̂

∗
3
ρ̄3

)
fc3 − ρ̂∗

3
ρ̄3



c̄2
3 − ū2

3

0

0

0




,

with û+
sm defined in Eq. (4.35).

Inlet boundary conditions

At the inlet of the studied configurations, due to the assumptions from the model w̄ = 0,
we also specify the mean pressure p̄, the mean temperature T̄ and either the mean
velocity ū or the mean mass flow rate m̄. These are the components of vector B in Eq.
(4.3). Their corresponding Lagrange multipliers are given by B+

iw
, B+

ip
, B+

iρ
, B+

iu
. The

relationship between the adjoint variables defined in the ducts and those defined at the
boundary depends on whether we have specified the velocity or the mass flow rate. For
the first case (ū is given) they are:

B+
ip

= U+ + ūP+, (4.62a)
B+

iρ
= ūR+, (4.62b)

B+
iu

= ρ̄R+ + ρ̄ūU+ + γp̄P+, (4.62c)
B+

iw
= 0. (4.62d)
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For the second case (m̄ is given) they are:

B+
ip

= U+ + ūP+, (4.63a)
B+

iρ
= −ū2U+ − ūc̄2P+, (4.63b)

B+
iu

= 1
A

(
R+ + ūU+ + c̄2P+

)
, (4.63c)

B+
iw

= 0. (4.63d)

In this situation, x0 from Eq. (4.47) represents the inlet of the configuration. At
this position there are fixed properties (w̄, p̄, T̄ and ū or m̄). This implies that their
corresponding perturbations (δ terms) are zero, given that their values lie outside of the
computational domain (Marquet et al., 2008). Hence, δw̄ = 0 and δp̄ = 0. Fixing the
mean temperature (and the mean pressure) implies fixing the mean density (through
the ideal gas law), so, δρ̄ = 0. Providing ū or m̄ together with the fixed mean density
implies that δū = 0. The previous considerations make the boundary terms at the inlet
vanish. Therefore the adjoint base flow variables can take any value.

Outlet boundary conditions

The outlet sets the initial point for the adjoint base flow calculations. No mean properties
are fixed at the outlet, and there are therefore no steady components in vector B and
related Lagrange multipliers. Hence, the same analysis as with the inlet boundary
conditions cannot be carried out and the delta terms are not zero at this position.
To ensure that the boundary terms vanish, we need to analyse each of the boundary
conditions independently.

• Open outlet: The assumption is that p̂ = 0, so there are no base flow variations. To
make the adjoint base flow boundary terms Eq. (4.47) vanish, the corresponding
values for the adjoint base flow variables are given by:

R+(Lt) = 0, (4.64a)
P+(Lt) = 0, (4.64b)
U+(Lt) = 0, (4.64c)
W+(Lt) = 0. (4.64d)

• Closed outlet: Same as the open outlet.
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• Choked end: This condition has a dependency on base flow terms, so, the full set
of boundary terms becomes:(

R+ū+ b+
o

(
−∂ζ

∂ρ̄

(
ρ̂∗

ρ̄
− p̂∗

p̄

)
+ (1 − ζ)

(
− ρ̂∗

ρ̄2

)))
δρ̄ · · · (4.65)

+
(
R+ρ̄+ U+ρ̄ū+ P+γp̄+ b+

o

(
−2û∗

ū2

))
δū+W+δw̄ · · ·

+
(
U+ + ūP+ + b+

o

(
−∂ζ

∂p̄

(
ρ̂∗

ρ̄
− p̂∗

p̄

)
+ (1 − ζ)

(
p̂∗

p̄2

)))
δp̄ = 0,

where

ζ(T̄ ) = dcp(T̄ )
dT̄

(γ − 1)2

γ

T̄

Rg

,
∂ζ

∂ρ̄
= ∂ζ

∂T̄

(
− p̄

ρ̄2Rg

)
,

∂ζ

∂p̄
= ∂ζ

∂T̄

(
1
ρ̄Rg

)
,

and b̂+
o is given in § 4.4.1. To set the previous equation to zero, the values for the

adjoint variables need to be given by:

R+(Lt) = b+
o

ū

(
∂ζ

∂ρ̄

(
ρ̂∗

ρ̄
− p̂∗

p̄

)
+ (1 − ζ) ρ̂

∗

ρ̄2

)
, (4.66a)

P+(Lt) = 1
γp̄− ρ̄ū2

(
−ρ̄R+(Lt) · · · (4.66b)

+ b+
o

(
ρ̄ū

(
−∂ζ

∂p̄

(
ρ̂∗

ρ̄
− p̂∗

p̄

)
+ (1 − ζ)

(
p̂∗

p̄2

))
+ 2û∗

ū

))
,

U+(Lt) = −ūP+(Lt) − b+
o

(
−∂ζ

∂p̄

(
ρ̂∗

ρ̄
− p̂∗

p̄

)
+ (1 − ζ) p̂

∗

p̄2

)
, (4.66c)

W+(Lt) = 0. (4.66d)

• Acoustic reflection coefficient: As in the previous case, this condition depends on
the base flow terms. To set the full set of boundary terms to zero, the values of the
adjoint variables at the outlet are:

R+(Lt) = −b+
o

BR

ū
, (4.67a)

P+(Lt) = b+
o

ρ̄BR − ūBU + ρ̄ū2BP

ū (γp̄− ρ̄ū2) , (4.67b)

U+(Lt) = −b+
o

ρ̄BR − ūBU + γp̄BP

γp̄− ρ̄ū2 , (4.67c)

W+(Lt) = 0. (4.67d)
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where

BR = p̂∗
(

1
ρ̄α+

(
∂ρ̄(k+) −

(
1
ρ̄

+ ∂ρ̄(α+)
α+

)(
k+ + n2

R2k0

))
+ · · ·

R∗
c

ρ̄α−

(
∂ρ̄(k−) +

(
∂ρ̄(R∗

c)
R∗

c

− 1
ρ̄

− ∂ρ̄(α−)
α−

)(
k− + n2

R2k0

)))
+ · · ·

û∗ (∂ρ̄(R∗
c)) + ŵ∗

(
∂ρ̄(R∗

c)n
Rk0

)
,

BU = p̂∗
(

1
ρ̄α+

(
∂ū(k+) − ∂ū(k0)

n2

R2k2
0

− ∂ū(α+)
α+

(
k+ + n2

R2k0

))
+ · · ·

R∗
c

ρ̄α−

(
∂ū(k−) − ∂ū(k0)

n2

R2k2
0

+
(
∂ū(R∗

c)
R∗

c

− ∂ū(α−)
α−

)(
k− + n2

R2k0

)))
+ · · ·

û∗ (∂ū(R∗
c)) + ŵ∗

(
∂ū(R∗

c) n

Rk0
− ∂ū(k0) (1 +R∗

c) n

Rk2
0

)
,

BP = p̂∗
(

1
ρ̄α+

(
∂p̄(k+) − ∂p̄(α+)

α+

(
k+ + n2

R2k0

))
+ · · ·

R∗
c

ρ̄α−

(
∂p̄(k−) +

(
∂p̄(R∗

c)
R∗

c

− ∂p̄(α−)
α−

)(
k− + n2

R2k0

)))
+ · · ·

û∗ (∂p̄(R∗
c)) + ŵ∗

(
∂p̄(R∗

c)n
Rk0

)
,

and ∂ρ̄(f) ≡ ∂f/∂ρ̄, ∂ū(f) ≡ ∂f/∂ū, ∂p̄(f) ≡ ∂f/∂p̄.





Chapter 5

Sensitivity analysis of
thermoacoustic configurations

Depending on the sensitivity information desired, the governing equations need to be
perturbed. Two different types of perturbation are defined:

• when the parameters, such as areas, lengths, etc., are perturbed, the resulting
sensitivity is named base state sensitivity;

• when the system is perturbed by adding a small feedback mechanism, which is
linearly proportional to one of the perturbation or steady variables, such as p̂ or
m̄, the resulting sensitivity is called feedback sensitivity (also known as structural
sensitivity in Giannetti and Luchini (2007) and Magri and Juniper (2013b)). Feed-
back mechanisms that cause mass addition, momentum addition, and/or energy
addition are considered.

The sensitivity of an eigenvalue to changes in the system can have contributions from:

• the unsteady flow only, if the perturbation acts only in the unsteady flow equations.
For this case only the knowledge of the adjoint unsteady variables is required.

• the steady and unsteady flow, if the perturbation acts on the steady flow, which
influences the unsteady flow or if the perturbation acts on both the steady and
unsteady flow. In this scenario we require the knowledge of both adjoint unsteady
variables and adjoint steady variables.

In this chapter we first show the procedure to compute the sensitivities, as presented
in Aguilar et al. (2017) in collaboration with Dr. Luca Magri. Finally, we perform
sensitivity analysis on the configurations of chapter 3.
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5.1 Computing sensitivities of base state parameters

The process to compute the base state sensitivities depends on the choice of the formula-
tion of the adjoint problem. In this section, the procedure with the continuous adjoint is
presented first, followed by the discrete adjoint. Finally the convenience of using one or
the other is discussed.

5.1.1 Continuous adjoint

The eigenvalue drift associated with base state sensitivities using a continuous approach
is derived through the following steps (Aguilar, 2015):

1. From the eigenvalue problem Eq. (2.26) we compute the eigenvalue of interest, ωj.

2. We obtain the values of the direct perturbation variables p̂, ρ̂, û and ŵ from the
direct eigenvalue problem. Similarly, from the adjoint eigenvalue problem, we
obtain the adjoint perturbation variables: p̂+, ρ̂+, û+ and ŵ+. If the base state
variable also modifies the base flow, we further compute the values of the adjoint
base flow variables P+, R+, U+, W+.

3. We normalize using Eq. (4.45).

4. We obtain the first variation of the Lagrangian with respect to the base state
variable of interest, which provides the eigenvalue drift. For the base state variable
τ in the Lagrangian functional of Eq. (4.9) this is:

∂L
∂τ

δτ = 0 =⇒ δω = −
{
ĥ+, βû1e−iωτ iωδτ

}
. (5.1)

The relevant base state parameters of the network model can be separated into: heat
source parameters and geometric parameters. Heat source parameters are concerned with
the parameters of the FTF, such as time delays and interaction indices in the n−τ model.
Since these elements only appear in the heat source the computation of their sensitivities
is straightforward as given in the above procedure, so they are not discussed any further.
On the other hand, the geometric parameters such as areas, lengths and mean radii enter
in the Lagrangian of a complex network less trivially, so their implementation is further
discussed.
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0 1 2 3 4

Fig. 5.1 A duct (highlighted in gray) with an area increase at the inlet and an area
decrease at the outlet. The dotted lines represent other jumps or a boundary conditions.

Area

A change in area induces variations in the perturbation equations (P ) and in the base
flow equations (B). Therefore, we consider the contributions of each of them separately
and then add them together. An area variation affects the jump conditions at the duct
inlet and at the outlet (See Fig. 5.1). Thus setting the derivative of the Lagrangian with
respect to the area to zero gives:

∂L
∂A

δA = 0 =⇒ δω

δA
=
(
δω

δA

∣∣∣∣∣
P

+ δω

δA

∣∣∣∣∣
B

)
inlet

+
(
δω

δA

∣∣∣∣∣
P

+ δω

δA

∣∣∣∣∣
B

)
outlet

. (5.2)

For the duct highlighted in Fig. 5.1, we consider that the flow variables at the duct
inlet are given by subscript 1 and the variables just before the duct inlet are given by
subscript 0. The area sensitivities at the duct inlet are given by:(

δω

δA

∣∣∣∣∣
P

)
inlet

= −
{
â+

m, ρ̄1û1 + ρ̂1ū1
}

−
{
â+

x , p̂1 + ρ̂1ū
2
1 + 2ρ̄1ū1û1 − p̂0

}
· · ·

−
{
â+

θ , R1ρ̄1ū1ŵ1
}

· · ·

−
{
â+

e ,
γ1ū1

γ1 − 1 p̂1 + ρ̄1

(
h̄1 + 3

2 ū
2
1

)
û1 + ū1

(
h̄1 − c̄2

1
(γ1 − 1) + ū2

1
2

)
ρ̂1

}
,(

δω

δA

∣∣∣∣∣
B

)
inlet

= −
{
A+

m, ρ̄1ū1
}

−
{
A+

x , p̄1 + ρ̄1ū
2
1 − p̄0

}
−
{
A+

e , ρ̄1ū1

(
h̄1 + 1

2 ū
2
1

)}
.

We consider that the flow variables at the duct outlet are given by subscript 2 and the
variables just after the duct outlet are given by subscript 3. The area sensitivities at the
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duct outlet are given by:(
δω

δA

∣∣∣∣∣
P

)
outlet

= −
{
b̂+

m,− (ρ̄2û2 + ρ̂2ū2)
}

−
{
b̂+

θ ,− (R2ρ̄2ū2ŵ2)
}

· · ·

−
{
b̂+

e ,−
(
γ2ū2

γ2 − 1 p̂2 + ρ̄2

(
h̄2 + 3

2 ū
2
2

)
û2 + ū2

(
h̄2 − c̄2

2
(γ2 − 1) + ū2

2
2

)
ρ̂2

)}
,(

δω

δA

∣∣∣∣∣
B

)
outlet

= −
{
B+

m,− (ρ̄2ū2)
}

−
{
B+

e ,−
(
ρ̄2ū2

(
h̄2 + 1

2 ū
2
2

))}
.

Length

In a given network model, the axial position of a jump condition or boundary condition
is determined by the sum of the ducts’ length that appear before that jump or boundary
i.e., x = L1 + L2 + · · · + Ln. To compute the local value of the perturbation variables at
those locations, the axial position is required. Hence, to compute the sensitivity to a
variation in a duct’s length, we need to include all of the perturbation variables that used
that length to compute its local value. Thus, setting the derivative of the Lagrangian
with respect to the length to zero gives:

∂L
∂L

δL = 0 =⇒ δω

δL
=

N∑
i=1

δω

δLi

(5.3)

where N is the number of jump conditions that appear after the desired duct length plus
one that represents the outlet boundary condition, and δω/δLi represents the sensitivity
of the length at a single location.

For example, we consider that position 4 in Fig. 5.1 represents an open end boundary
condition. We let the subscript L represent a derivative of a perturbation variable or a
perturbation flux with respect to L, i.e.,

p̂L = ∂p̂

∂L
= A+ik+eik+x + A−ik−eik−x.

Then the sensitivity of the eigenvalue to variations of the highlighted duct’s length is
given by:

∂L
∂L

= δω

δLj

+ δω

δLb
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where

δω

δLj

= −
{
b̂+

m, m̂L3 − m̂L2

}
−
{
b̂+

s , ŝL3 − ŝL2

}
−
{
b̂+

θ , f̂θL3 − f̂θL2

}
−
{
b̂+

e , êL3 − êL2

}
,

δω

δLb

= −
{
b̂+

o , p̂L4

}
,

and to avoid confusion we have used the subscript j to denote the jump condition and b
to denote the boundary condition.

Mean radius

To compute the sensitivities to changes in the mean radius a similar approach to that
of the areas is taken because the variable appears at the inlet and outlet of the duct.
We also use the subscript R to denote the derivative of a perturbation variable or flux
with respect to the mean radius and note that the mean radius enters the perturbation
variables through the wave numbers k± and α± and the angular momentum flux. Setting
the derivative of the Lagrangian with respect to the mean radius to zero gives:

∂L
∂R

δR = 0 =⇒ δω

δR
=
(
δω

δR

)
inlet

+
(
δω

δR

)
outlet

. (5.4)

For the example in Fig 5.1, these are given by:(
δω

δR

)
inlet

= −
{
â+

m, m̂R1

}
−
{
â+

x , f̂xR1

}
−
{
â+

θ , f̂θR1

}
−
{
â+

e , êR1

}
,(

δω

δR

)
outlet

= −
{
b̂+

m,−m̂R2

}
−
{
b̂+

s ,−ŝR2

}
−
{
b̂+

θ ,−f̂θR2

}
−
{
b̂+

e ,−êR2

}
.

5.1.2 Discrete adjoint

To compute the eigenvalue drift associated with the discrete adjoint problem, first we
need to compute the eigenvalue ωj, then the associated adjoint eigenvector q̂† as given
in Eq. (4.7). For these problems, Jankovic (1988); Magri (2015); Magri et al. (2016a)
derived the following eigenvalue drift formula:

δωj = −(q̂†)HδL(ωj,p)q̂
(q̂†)H ∂L(ωj ,p)

∂ωj
q̂
, (5.5)

where the matrix δL represents the first variation of a variable in matrix L. For example,
for the base state variable τ in the eigenvalue problem of Eq. (3.6), the matrix δL and
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the corresponding sensitivity are given by:

δL = ∂L
∂τ
δτ,

δω

δτ
= −

(q̂†)H ∂L(ωj)
∂τ

q̂

(q̂†)H ∂L(ωj)
∂ωj

q̂
.

In theory, the computation of the first variation of a variable in the nonlinear eigenvalue
operator, L, should be a straightforward analytical task. However, when the variable also
affects the base flow such as the area, computing the first variation could be a cumbersome
task. The base flow varies nonlinearly throughout the network so analytical solutions
might not be available as an input into the nonlinear eigenvalue problem. Furthermore,
a variation of the base flow in a given element changes the base flow in all elements
downstream. The problem reduces to the building of the appropriate chain of base flow
derivatives that depend on the base state variable. This approach is not developed as
part of this thesis.

5.2 Computing sensitivities of feedback mechanisms

Sensitivities of the eigenvalue to feedback mechanisms provide important information
about the response of the resonant modes to changes in the flow. In this section we study
first the unsteady mechanisms that are proportional to a perturbation variable, and then
the steady mechanisms that are proportional to a steady quantity. Both are studied
using the continuous adjoint, and, where relevant, also the discrete adjoint.

5.2.1 Feedback from unsteady mechanisms

The model has four different perturbation variables and four governing equations providing
a total of 16 different unsteady mechanisms. The devices that act on the mass equation,
axial momentum equation, azimuthal momentum equation and energy equation are
labelled M, F , Fθ and Q respectively.

Continuous adjoint

Using a continuous adjoint formulation, we follow the same steps as in § 5.1.1, except
that after normalization (step 3), we introduce the feedback device into the system. The
feedback perturbation is inserted at position x0 and has the form Xyŷδ(x− x0), where
Xy represents the feedback mechanism, and ŷ is a perturbation variable (i.e., p̂, ρ̂, û, ŵ).
The main assumption is that this perturbation does not produce any change to the base
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flow parameters. The general formulation to obtain the eigenvalue drift is given by:

∂L
∂Xy

δXy =⇒ δω

δXy

=
〈
x̂+, ŷδ(x− x0)

〉
= x̂+(x0)∗ŷ(x0), (5.6)

where x̂+ is the adjoint variable that depends on which equation is being forced. For
feedback mechanisms that force:

• the mass equation (X = M): x̂+ = p̂+ + c̄2ρ̂+,

• the axial momentum equation (X = F): x̂+ = û+,

• the azimuthal momentum equation (X = W): x̂+ = ŵ+,

• the energy equation (X = Q): x̂+ = p̂+.

It is important to note that since the continuity equation (2.3a), multiplied by a factor of
c̄2, is used to derive the energy equation in terms of pressure (2.3d), it will appear twice
in the Lagrangian functional Eq. (4.3). Therefore, the receptivity to the mass equation,
used to compute the corresponding feedback mechanisms, is given by ρ̂+(x) + c̄2p̂+(x).

For example, if we want to consider the effect of a drag device located at position
x0 inside a duct, the axial momentum equation needs to be forced with a mechanism
proportional to the unsteady velocity:

iωρ̄û+ ρ̄ū
dû
dx + dp̂

dx − Fuûδ(x− x0) = 0. (5.7)

Then, after normalization, the sensitivity of the eigenvalue to the drag device at the
given position is:

∂L
∂Fu

δFu = 0 =⇒ δω

δFu

=
〈
û+, ûδ(x− x0)

〉
= û+(x0)∗ û(x0). (5.8)

As can be observed in the continuous adjoint formulation, the feedback sensitivity is
given as product of the direct and adjoint eigenfunctions.

Discrete adjoint

Using a discrete adjoint formulation to compute the matrix δL in Eq. (5.5), we need
to introduce the feedback mechanism as a jump condition. This splits the domain
spanned by a duct in two. The associated jump conditions are given by integration of
the spatial terms in the axial direction of Eq. (2.3). For the drag device in Eq. (5.7) the
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corresponding jump conditions are given by:

[ρ̄û+ ūρ̂]x
+
0

x−
0

= 0, (5.9a)

[ρ̄ūû+ p̂]x
+
0

x−
0

= Fuû(x−
0 ), (5.9b)

[ρ̄ūŵ]x
+
0

x−
0

= 0, (5.9c)

[ūp̂+ γp̄û]x
+
0

x−
0

= 0. (5.9d)

In appendix D we prove that, to first order, the side (x−
0 or x+

0 ) in which the perturbation
is applied has no influence in the computation. However, in a shooting method, the
values just before the jump are preferred. Once the jump condition has been identified,
the next step is to compute matrix δL.

Since the elements of matrix L are the coefficients of the amplitudes of wave
forms (A+, A−, AE, AV ), the elements of matrix δL should be their first variations
(δA+, δA−, δAE, δAV ) induced by the application of the perturbations (M,F ,W ,Q),
which is: δL → δL(M,F ,W ,Q). To get the wave forms together with their first vari-
ations (i.e., A+ + δA+), we solve the 4 × 4 system generated by the new set of jump
conditions. Then, after application of the boundary conditions and substitution into the
jump conditions of the unperturbed system, we obtain the desired system:

(L + δL) (q̂ + δq̂) = 0, (5.10)

from which the matrix δL is readily available.
To illustrate the former procedure, consider the Rijke tube from § 3.3. The unper-

turbed nonlinear eigenvalue problem is given by Eq. (3.6). Since it is only governed by
the momentum and energy equations, we can only consider feedback mechanisms that
correspond to adding a force (F) or energy (Q)1. The original domain, which consists of
two ducts, is now divided into four segments as shown in Fig. 5.2. Following the notation
in the figure, the set of jump conditions upstream of the heat source (x = a) is:

p′
ii − p′

i = Fp1p
′
i + Fu1u

′
i, (5.11a)

γp̄1(u′
ii − u′

i) = Qp1p
′
i + Qu1u

′
i. (5.11b)

1To give an example, a feedback mechanism proportional to the pressure fluctuations after the flame
(p̂2) that acts on the energy equation (Q) is denoted by Qp2 .
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x
Ln

b

Ru Rd

Ai
+

Ai
−

a

c

Aii
+

Aii
−

Aiii
+

Aiii
−

Aiv
+

Aiv
−

Fig. 5.2 A network model split into 4 regions due to the presence of feedback devices at
x = a and x = c. The original system can be thought of as being the heat source and
the ducts from regions ii and iii. Since the perturbations must be introduced from the
surroundings into the system (see Eqs.(5.11) and (5.12)), the depicted wave-forms from
regions i and iv represent the unperturbed waves (Ai

+ = A+1 and Aiv
+ = A+2), while the

wave-forms of regions ii and iii represent the perturbed waves (Aii
+ = A+1 + δA+1 and

Aiii
+ = A+2 + δA+2)

The set of jump conditions downstream of the heat source (x = c) is:

p′
iv − p′

iii = Fp2p
′
iv + Fu2u

′
iv, (5.12a)

γp̄2(u′
iv − u′

iii) = Qp2p
′
iv + Qu2u

′
iv. (5.12b)

The wave forms and their first variations are given by solving both 2 × 2 systems
generated by the new sets of jump conditions (Eqs. 5.11 and 5.12) for the waves in
regions ii and iii. For example, consider the feedback mechanism located in the duct
before the heat source (x = a). For simplicity, we will only consider the device acting on
the momentum equation proportional to the velocity fluctuations (Fu1). If the strength
of the feedback mechanism is exactly 0, the waves before and after the jump are exactly
the same, i.e.,

Ai
+ = Aii

+, (5.13a)
Ai

− = Aii
−, (5.13b)

where we have dropped the frequency and spatial dependency of the waves to ease in the
development of the upcoming equations. Note that by setting Ai

+ = A+1 and Ai
− = A−1 ,

we recover the original formulation for the Rijke tube.
Now let the strength of the feedback mechanism have a small but finite value. The

presence of this device induces perturbations on the waves before and after the feedback
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device:

Ai
+ → Ai

+ + δAi
+, Aii

+ → Aii
+ + δAii

+, (5.14)
Ai

− → Ai
− + δAi

−, Aii
− → Aii

− + δAii
−. (5.15)

After substituting the perturbed waves into the jump conditions (5.11), and by using Eq.
(5.13) we obtain the following system of equations:

δAii
+ + δAii

− −
(
δAi

+ + δAi
−

)
= Fu1

ρ̄1c̄1

(
Ai

+ − Ai
−

)
+ Fu1

ρ̄1c̄1

(
δAi

+ − δAi
−

)
, (5.16a)

1
ρ̄1c̄1

(
δAii

+ − δAii
−

)
− 1
ρ̄1c̄1

(
δAi

+ − δAi
−

)
= 0. (5.16b)

After dropping out second order terms (last term in Eq. (5.16a)) and solving for the first
variation of the waves in region ii we obtain:

δAii
+ = δAi

+ + 1
2

Fu1

ρ̄1c̄1

(
Ai

+ − Ai
−

)
, (5.17a)

δAii
− = δAi

− + 1
2

Fu1

ρ̄1c̄1

(
Ai

+ − Ai
−

)
, (5.17b)

Since the variation of both waves is similar, we will focus only on the downstream
propagating wave. The full perturbed wave solution considering the frequency and spatial
dependency, all of the feedback mechanisms and using Ai

+ = A+1 and Ai
− = A−1 , is given

by:

Aii
+ + δAii

+ = A+1︸︷︷︸
(a)

+ 1
2

(
Fp1

(
A+1 + A−1e−iωτa

)
+ Fu1

ρ̄1c̄1

(
A+1 − A−1e−iωτa

)
︸ ︷︷ ︸

(b)

· · ·

+Qp1

c̄1

(
A+1 + A−1e−iωτa

)
+ Qu1

ρ̄1c̄2
1

(
A+1 − A−1e−iωτa

))
︸ ︷︷ ︸

(b)

+ δAi
+︸ ︷︷ ︸

(c)

, (5.18)

where τa = 2(b− a)/c̄1. This equation can be separated in 3 parts:

• (a) corresponds to the unperturbed wave, which is used to form matrix L.

• (b) corresponds to the terms proportional to the unperturbed waves and the feedback
mechanisms. These are used to form matrix δL.

• (c) corresponds to the first variation of wave which goes into the vector δq̂.
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The other three perturbed wave solutions have a similar structure in terms of coefficients.
After applying the same boundary conditions and substituting into the original jump
conditions Eq. (2.25), we obtain the perturbed system (L + δL)(q̂ + δq̂) = 0. The full
matrix δL is computed in appendix E following the above procedure.

We recall that in order to compute the eigenvalue drift the full perturbation expansion
due to the presence of the feedback device leads to:(

L + δL(Fu1) + δωj
∂L
∂ωj

)
(q̂ + δq̂) = 0. (5.19)

After expanding and retaining only first order terms gives:

Lδq̂ + δωj
∂L
∂ωj

q̂ + δL(Fu1)q̂ = 0. (5.20)

Premultiplying the equation by the adjoint vector q̂† eliminates the first term, and thus
the requirement to compute the first variations of the waves. After some manipulations
the previous equation leads to the eigenvalue drift formula Eq. (5.5).

To show some of the differences when a mean flow is included, we consider the choked
combustor in § 3.4. For this case, the feedback sensitivity can now consider the effects of
mass injection, M, and feedback devices can be extended to include density fluctuations.
Hence, instead of four possible feedback mechanisms (as in the Rijke tube) there are now
nine. The inclusion of entropy waves makes the sets of jump relations change slightly.
The jump conditions upstream of the flame (x = a) become:

ū1(ρ′
ii − ρ′

i) + ρ̄1(u′
ii − u′

i) = Mp1p
′
i + Mu1u

′
i + Mr1ρ

′
i, (5.21a)

ρ̄1ū1(u′
ii − u′

i) + (p′
ii − p′

i) = Fp1p
′
i + Fu1u

′
i + Fr1ρ

′
i, (5.21b)

ū1(p′
ii − p′

i) + γp̄1(u′
ii − u′

i) = Ep1p
′
i + Eu1u

′
i + Er1ρ

′
i, (5.21c)

while the jump conditions downstream of the flame (x = c) become

ū2(ρ′
iv − ρ′

iii) + ρ̄2(u′
iv − u′

iii) = Mp2p
′
iv + Mu2u

′
iv + Mr2ρ

′
iv, (5.22a)

ρ̄2ū2(u′
iv − u′

iii) + (p′
iv − p′

iii) = Fp2p
′
iv + Fu2u

′
iv + Fr2ρ

′
iv, (5.22b)

ū2(p′
iv − p′

iii) + γp̄2(u′
iv − u′

iii) = Ep2p
′
iv + Eu2u

′
iv + Er2ρ

′
iv, (5.22c)

where the term E ≡ Q+c̄2M arises due to the use of the continuity equation to express the
energy equation in terms of pressure. Some features of the wave-forms together with their
first variations (δA+, δA−, δAE) are that the acoustic waves (A+ and A−) are affected by
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mass, momentum and energy addition and are accompanied by a 1/(2(M̄ ± 1)) factor,
while the entropy waves (AE) are only affected by energy addition and accompanied by
a 1/M̄ factor.

5.2.2 Feedback from steady mechanisms

Consider the steady feedback mechanisms δm̄, δf̄ , δf̄θ, and δē, corresponding to steady
mass, axial momentum, angular momentum and energy addition, which are introduced
at position x0 in the base flow equations (2.2):

ρ̄
dū
dx + ū

dρ̄
dx = δm̄

A
δ(x− x0), (5.23a)

ρ̄ū
dū
dx + dp̄

dx = δf̄x

A
δ(x− x0), (5.23b)

dw̄
dx = δf̄θ

A
δ(x− x0), (5.23c)

ū
dp̄
dx + γp̄

dū
dx = (γ − 1)δē

A
δ(x− x0). (5.23d)

The network model requires each of the ducts to have homogeneous properties, so that
wave separation is allowed. Hence, the feedback mechanisms have to split the domain of
a duct and they have to enter into the system as a set of jump conditions. These are
given by:

[m̄]x
+
0

x−
0

= δm̄. (5.24a)[
f̄x

]x+
0

x−
0

= δf̄x + ū(x−
0 )δm̄, (5.24b)

[ē]x
+
0

x−
0

= δē+ ū(x−
0 )δf̄x +

(
h̄(x−

0 ) − c̄(x−
0 )2

γ(x−
0 ) − 1 + 1

2 ū(x−
0 )2

)
δm̄. (5.24c)

The angular momentum flux has been dropped because, by construction of the network
model, it is zero everywhere. For steady feedback sensitivities only the continuous adjoint
is developed.

Continuous adjoint

By using jump conditions to introduce the feedback devices, the sensitivities cannot be
obtained as in § 5.2.1 using a continuous adjoint formulation. In other words, they are
no longer calculated as an inner product between the adjoint base flow variable of a duct
equation and the feedback mechanism. Instead, since the device is introduced at a jump
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condition, which has a similar structure to an area increase or a heat source (without
their respective forcing terms), the corresponding adjoint variables are given by the
adjoint base flow fluxes (4.49), i.e., A+ = F +

x0
, where the subindex denotes the position

of the device in the network. For the generic devices, the corresponding eigenvalue shifts
are then given by:

δω =
{
F+

mx0
+ ūF+

xx0
+
(
h̄− c̄2

γ − 1 + 1
2 ū

2
)
F+

ex0
, δm̄

}
, (5.25a)

δω =
{
F+

xx0
+ ūF+

ex0
, δf̄x

}
, (5.25b)

δω =
{
F+

ex0
, δē

}
. (5.25c)

These expressions can be simplified further to show that, as expected, mass, momen-
tum and energy addition are proportional to R+, U+ and P+ respectively, plus some
contributions from the base flow modifications in the jump conditions.

5.3 Continuous vs discrete approach

The main advantage of the continuous adjoint approach is that the adjoint variables are
directly expressed in physical space, i.e., the adjoint spatial functions are known. This
means that (i) base state and feedback sensitivities for steady and unsteady flows are
computed as inner products between direct and adjoint variables and (ii) one can obtain
good physical understanding of the spatial system’s receptivity to harmonic forcing2. The
main disadvantage is that the adjoint equations, boundary conditions and normalization
condition, need to be derived analytically.

The main advantage of the discrete adjoint is that, as long as the operator L is known,
computing the base state sensitivities for unsteady flows does not require any further
implementation other than a complex transpose (see § 5.1.2). The main disadvantage
is that, to compute the feedback sensitivity for unsteady flows, we need to introduce
the feedback perturbations by splitting the domain as in Fig. 5.2. This implementation
is more complicated than that of the continuous approach. Furthermore when the
perturbation also modifies the base flow, the discrete approach needs to consider the
chain of base flow derivatives from the perturbation until the end of the network. If it is
a long network this could be a cumbersome task.

2The reason why the adjoint variables represent the receptivity of the system originates from
bi-orthogonal decomposition Luchini and Bottaro (2014); Magri and Juniper (2014a).
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5.4 Finite difference method and the Taylor test

Another way to compute the sensitivity of a system is by means of finite differences. After
perturbing any of the equations or variables in the system, we re-compute the perturbed
eigenvalue, ω + δω, and then subtract from it the unperturbed eigenvalue, ω. The major
drawback is that, unlike adjoint methods, this requires another full computation for
every perturbation. This finite-difference method is used throughout this thesis to check
the feedback sensitivities provided by the adjoint equations. For base state sensitivities
we perform finite differencing in the form of the Taylor test. This test compares the
eigenvalue drift calculated with the adjoint method (δωA) against the one computed
via a finite difference (δωF ). Given a small change in a parameter (δx), the difference
between eigenvalue drifts (|δωF − δωA|) should grow linearly with the square of the small
change (δx2). If it grows linearly with δx, then there is a bug in the code.

5.5 Sensitivity analysis of the Rijke tube

We begin by analysing the adjoint eigenfunctions of the most unstable mode in the
Rijke tube of § 3.3. Pressure eigenfunctions for the adjoint variables are normalized
as
∫ Ln

0 p̂+(x)p̂+(x)∗ dx = 1. In Fig. 5.3 we observe that the receptivity to the energy
equation (p̂+) inherits the jump at the heat source location from û and the boundary
conditions from p̂. Additionally, note that the receptivity to the momentum equation,
û+, is now continuous with a slight change of gradient at the heating gauze location.
Although not shown here, with zero unsteady heat release the direct pressure mode shape
is identical to the adjoint pressure mode shape, and the direct velocity mode shape is
identical to the adjoint velocity mode shape (see § 4.3.1).

(a) X (b)

Fig. 5.3 Normalised relative amplitudes (i.e., p̂+(x) = |p̂(x)+|eiθ) of the receptivity of the
energy equation p̂+(x) (a) and the receptivity of the momentum equation û+(x) (b) on
top of the pressure and velocity eigenfunctions.
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(a) (b)

Fig. 5.4 Growth rate shift δλ̃ (a) and angular frequency shift δσ̃ (b) caused by a change
in the base state variables, denoted by X̃ , for different positions of the heating gauze, b̃,
along the duct length.

In a self-adjoint system, the best position for a Helmholtz resonator is where p̂p̂∗ is
maximal, which is at the centre of the tube. In a system that it is not self-adjoint, this
is no longer true. Even though the pressure is still maximum around the centre of the
tube, the system is more receptive before the heating gauze location. The best location
to place the Helmholtz resonator in such a system is where the amplitude of p̂p̂+∗ is
maximum, which, in this case, is slightly upstream of the centre of the tube (Fig. 5.3a).
The sensitivities of the eigenvalue computed using continuous and discrete approaches
are the same to machine precision, and they match the results by finite difference.

The base state sensitivities for different positions of the heating gauze are presented
in Fig. 5.4. It can be seen that any small increase (from −1) in the reflection coefficients,
Ru and Rd, makes the system more stable. This is because less acoustic energy is reflected
back into the tube. The interaction index, β, has the smallest amplitude and it predicts,
as expected, that a heating gauze in the second half of the duct will stabilize the system.
The time delay, τ , of the unsteady heat release has a great impact on the eigenvalue drift.
Any increase will destabilize the system if the heating gauze is located in the first half of
the duct before b̃ = 0.4. Many of these remarks can be made from physical arguments.
The novelty is that, with these adjoint methods, they can be calculated cheaply by an
automated process and therefore could be used in a gradient-based optimization routine
(see chapter 6).

The unsteady feedback sensitivity encompasses four feedback mechanisms, shown in
Fig 5.5. The figure recovers similar results as those obtained using Galerkin methods, by
Magri and Juniper (2013b) for uniform temperature and in Magri and Juniper (2014a)
considering a jump in temperature. This achieves this thesis’s aim of validating the
wave-based adjoint method.
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(a) (b)

(c) (d)

Fig. 5.5 Growth rate shift δλ̃ denoted by —, •, and angular frequency shift δσ̃ denoted
by — , ◦, for each feedback mechanism. (a) and (b) display the drifts due to forcing
the momentum equation with a force proportional to pressure and velocity fluctuations
respectively. Similarly (c) and (d) show the drifts due to heat addition into the system.
The continuous lines (—,—) represent one calculation (via the adjoint method) while the
circles (•, ◦) represent 15 computations (via the finite difference method).

5.5.1 Experimental sensitivity analysis of the Rijke tube

Jamieson and Juniper (2017b) present experimental sensitivity analysis in the Rijke tube
using a pulsed forced technique to obtain the growth/decay rates of two passive control
devices: a drag mesh and a hot wire. They show that the growth rate shifts in both cases
are accurately captured, but the frequency shifts are substantially different from those
predicted by the original model. In this section, we present a new model of the Rijke tube
which, aided by the sensitivity analysis presented above, is able to capture qualitatively
well the growth rate shift shown by both experiments. The predictions for the frequency
shift due to the drag mesh are improved and although numerical comparison is still poor
the results show the right correct trends with varying grid position. For the secondary
heater the frequency shift is captured qualitatively and quantitatively well.
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Model

The physical model of the Rijke tube has the same elements as the one presented in § 3.3.
The tube is 1 m in length and 47.4 mm in diameter. To match the experimental results,
we consider a temperature of 296 K at the inlet and a pressure of 1 atm. The device
has the main heater located at 0.25 m from the inlet, which is operated with a power of
170 W. In order to better represent the physics in the device, we introduce a small mean
flow ūR. Therefore, all of the analysis is now carried with the equations given in § 2.3.
We further consider constant specific heat capacities, boundary conditions modelled
with reflection coefficients Rc = Rr + iRi and a velocity driven heat source model (Eq.
(2.15) with µu = 1, µr = 0 and µp = 0) with an n − τ model as FTF with interaction
index kR, and time delay τR. To get a good approximation of the real model, we use
the experimental data in Yu (2017), to fit the last five parameters (ūR, Rr, Ri, kR, τR).
The results are shown in table 5.1 and Fig. 5.6. Using this values the temperature
downstream of the heater gives 439 K. Once the model has been developed, we proceed
to identify the control methods using eigenvalue sensitivity analysis.

Quantity Variable Value
Inlet velocity ūR 0.5626 m/s
Reflection coefficients Rc = Rr + iRi −0.9584 + 0.1375i
Interaction index kR 0.3080
Time delay τR 2.398 × 10−3s

Table 5.1 Fitted values for the network model based on the experimental Rijke tube.

Fig. 5.6 Growth rates and frequencies of the dominant mode in the Rijke tube. The blue
line represents the model fitted with the experimental data given by the circle markers.
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Control via a passive drag device

The drag device as a control mechanism for the Rijke tube has already been identified in
the zero mean flow configuration as the unsteady feedback device proportional to velocity
acting in the momentum equation (Fig. 5.5b). To obtain the eigenvalue shift due to a
drag device in the new model, we introduce the following drag force into the momentum
equations:

FD = −1
2ρu

2CDAm, (5.26)

where CD is the drag coefficient and Am is the area of the object, in this case the control
mesh. Given the low Mach number of the flow, we neglect the influence of the density
perturbations and split the drag force into its mean and fluctuating parts:

FD = −1
2CDAmρ̄ū

2︸ ︷︷ ︸
δf̄x

−CDAmρ̄ūû︸ ︷︷ ︸
δFuû

. (5.27)

To obtain the eigenvalue shift we consider the contribution from the steady mechanism
δω
(
δf̄x

)
and the unsteady mechanism δω (δFuû). Therefore, the full eigenvalue shift at

position x0 is given by:

δω =
{
F+

x ,−
1
2CDAmρ̄ū

2
}

+
〈
û+,−CD

Am

Aduct

ρ̄ūûδ(x− x0)
〉
, (5.28)

where the duct area Aduct appears because the feedback mechanism is acting in the
unsteady momentum equation (2.3b) which is given per unit area of the duct. According
to Dowling (1995) the drag coefficient of a drag mesh can be computed as a function of
the blockage ratio Br = Am/Aduct

CD =
(
1 − (1 −Br)−1

)2
. (5.29)

Using Am = 0.00108 m2 (as measured from the mesh) provides a blockage ratio of circa
61% and a drag coefficient of 2.47. The eigenvalue shifts for the two mechanisms are
given in Fig. 5.7. From these figures we observe that, in the unsteady mechanism, the
growth rate shift is larger than the angular frequency shift. In the steady mechanism the
opposite is true. The magnitude of the eigenvalue shift given by the unsteady mechanism
is much larger than that of the steady mechanism, which implies that the drift is mostly
driven by the unsteady flow. Fig. 5.8 merges these two mechanisms and compares them
to the experimental results of Jamieson and Juniper (2017b). The growth rate shifts
compare qualitatively well. The experiment and the model share similar structures and
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(a) X (b)

Fig. 5.7 Growth rate shift δλ denoted by —, and angular frequency shift δσ denoted by
— , for the new model of the Rijke tube. Figure (a) shows the eigenvalue shift due to the
unsteady drag device and figure (b) shows the eigenvalue shift due to the steady drag
device.

Fig. 5.8 Total eigenvalue shift due to the presence of a drag device in the Rijke tube.
The left column shows the shift predicted by the model and the right column shows the
shift measured in the experiments (Jamieson and Juniper, 2017b).
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similar magnitudes. However, the jump at the heat source is not well captured by the
new model. The frequency shift predicted by the new model improves substantially from
the one to which the experimental results were originally compared. Now, the structure
of the shift is predicted qualitatively well, with an increase from the inlet, a jump at
the heater to values above zero, and then decay towards the outlet. The magnitude,
however, is still different by 3 orders of magnitude. This discrepancy is due to defects
in the model, not defects in the adjoint method. The discrepancies on the computation
of the frequency shift can be explained due to the lack of temperature gradients in the
model. On the one hand, the model considers an inlet temperature of 296 K which is
kept constant until the flow reaches the heating gauze. The heat added increases the
temperature to 439 K and this value is kept constant through the rest of the tube. On
the other hand, as suggested by the mean wall temperatures of the Rijke tube (see table
5.2), the experiment is exposed to strong temperature gradients. These generate a mean
flow temperature variation that affect the natural frequency of the duct, but not the
growth rate (Nicoud and Wieczorek, 2009). Hence the frequency shift obtained from the
experiment must contain to leading order the contribution of this mechanism, which is
not included in the model.

Wall position (x/Ln) 0.05 0.25 0.50 0.75 0.95
Temperature (K) 301.84 425.97 365.62 352.50 348.43

Table 5.2 Mean wall temperatures at different positions in the experimental Rijke tube.
Adapted from Fig. 4 in Jamieson et al. (2017).

Control via a secondary heat source

Given the original model of the Rijke tube, the unsteady secondary heater of Fig. 5.5d,
predicts stabilization if it is located towards the end of the duct. To obtain the eigenvalue
shift due to a secondary heat source in the new model of the Rijke tube, we introduce
another heat source driven by the unsteady velocity with an n− τ FTF into the energy
equations:

δQs = δQ̄s︸︷︷︸
δē

+ δQ̄s
û

ū
kse−iωτs︸ ︷︷ ︸

δQuû

, (5.30)

where the delta preceding the mean heat release terms indicates that the power used
is less than the mean heat release of the primary heater (45 W in the experiments).
The interaction index (ks) and time delay (τs) of the secondary heater are chosen to be
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(a) (b)

Fig. 5.9 Growth rate shift δλ denoted by —, and angular frequency shift δσ denoted by
— , for the new model of the Rijke tube. Figure (a) shows the eigenvalue shift due to the
unsteady heat source and figure (b) shows the eigenvalue shift due to the steady heat
source.

the same as the primary heater. Again, considering the contributions from the steady
mechanism δω (δē) and the unsteady mechanism δω (δQuû), the full eigenvalue drift per
unit of energy at position x0 is given by:

δω

δQ̄s

=
{
F+

e , 1
}

+
〈
p̂+,

1
Aduct

û

ū
kse−iωτsδ(x− x0)

〉
, (5.31)

Fig. 5.9 shows the two mechanisms. From these plots we observe that in terms of growth
rate shift, both mechanisms share similar magnitudes, but in terms of angular frequency
shift the steady mechanism is dominant. The comparison between the experimental and
the predicted eigenvalue shift can be seen in Fig. 5.10. From this figure we observe that
the structure and the magnitude of both frequency and growth rate shifts are very well
captured by the network model and the sensitivity analysis. In this occasion the influence
of the base flow sensitivity is clear, explaining the shift observed in the frequency of the
experimental results.

In summary, the adjoint based sensitivity analysis developed as part of this thesis,
aided with a better network model of the Rijke tube, is able to predict qualitatively
the structure of the eigenvalue drift due to the effects of a drag device or a secondary
heat source. It is important to mention that the difference between the model and the
experimental data is due to the limitations of the modelling approach not the adjoint
method. The experimental Rijke tube is driven by convection due to the thermal
difference of the air in the tube, while the model has a forced inlet velocity. Thus, a
modelling approach that considers natural convection might improve the predictions.
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Fig. 5.10 Total eigenvalue shift due to the presence of a secondary heat source in the
Rijke tube. The left column shows the shift predicted by the model and the right column
shows the shift measured in the experiments (Jamieson and Juniper, 2017b).

5.6 Sensitivity analysis of the choked combustor

Following a similar approach as for the Rijke tube, we begin by analysing the adjoint
mode shapes for the choked combustor of § 3.4. Adjoint entropy waves appear upstream
and downstream of the flame in the component of the receptivity of the continuity
equation (ρ̂+ in Fig. 5.11c) and as oscillations in the receptivity of the energy equation
(p̂+ in Fig. 5.11a). In the latter, they appear in the upstream region mainly due to the
effect of the flame. They appear in the downstream region due to the choked end3. This
physically means that to produce a change in the generation of entropy waves through
the unsteady flame speed, we need to force the energy equation before the flame, as

3Due to the choked end, the downstream acoustic and entropy waves are reflected as an acoustic
wave. In the adjoint problem, however, the outgoing adjoint acoustic wave at the choked end creates
both a backward adjoint acoustic wave and a backward adjoint entropy wave. This is because the direct
equations propagate quantities forwards in time, while the adjoint equations propagate receptivities
backwards in time.
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(a) XX (b)

(c) (d)

Fig. 5.11 Mode shapes for the direct and adjoint variables. (a), (b) and (c) show the
receptivity to the energy equation, momentum equation and a component of the continuity
equation respectively (computed using the continuous adjoint approach) on top of the
pressure, velocity and density mode shapes. (d) represents the full receptivity of the
continuity equation (See § 5.2.1).

intuitively expected. Forcing the energy equation after the flame changes the intensity
with which the entropy waves interact with the choked end.

As with the Rijke tube, for this configuration the sensitivities computed using a
discrete and continuous adjoint are the same to machine precision. The base state
sensitivities for different flame positions are plotted in Fig. 5.12. (The choked end
does not allow a variation of the reflection coefficients in the downstream end, and its
sensitivity is thus omitted.) The upstream reflection coefficient shows a similar behaviour
to that in the Rijke tube. The sensitivity of the flame interaction index shows that
any increase in its value when the flame is in the first fifth of the duct will stabilize
the system but will destabilize the system everywhere else. On the other hand the
frequency is affected greatly when the flame is located in the first half of the duct, when
compared to the second half. This is because the unsteady heat release is proportional
to velocity, whose magnitude is reduced towards the choked end. The time delay is the
most influential parameter.



98 Sensitivity analysis of thermoacoustic configurations

(a) (b)

Fig. 5.12 Growth rate (a) and angular frequency (b) shifts cased by a change in the
base state variables, denoted by X̃ , for different positions of the flame, b̃, along the duct
length considering a mean flow, ū, and a moving flame front.

For the unsteady feedback sensitivity, we first analyse the mechanisms that cause
mass injection (row 1 of Fig. 5.13). For this system any feedback mechanism that causes
mass addition in phase with p̂, û, or ρ̂, will destabilize the system, as seen by the growth
rate shifts. The most physical mechanism is represented by feedback from pressure Fig.
5.13a, which models the effect of positioning a Helmholtz resonator in the duct. (The
phase of the resultant mass addition depends on the oscillation frequency relative to the
Helmholtz resonator frequency.) In a system with a choked end, the most influential
position to locate such a device is towards the exit x = 0.96, which is not quite the
antinode of the resonant mode.

The mechanisms that cause momentum addition in phase with p̂, û, or ρ̂, are shown
in row 2 of Fig. 5.13. The most physical mechanism would be the drag device from Fig.
5.13e, which forces the flow π out of phase with (i.e., in the opposite direction to) the
local velocity, and is strongly stabilizing. This can be seen by taking the negative of the
growth rate (continuous black line or filled dots) in Fig. 5.13e.

The mechanisms that cause heat addition in phase with p̂, û, or ρ̂, are shown in row 3
of Fig. 5.13. In all of these mechanisms there are oscillations upstream and downstream
of the flame. These are caused by the entropy waves and their contribution, after being
accelerated at the choked end, as acoustic waves. If entropy waves were allowed to convect
away from the system, the mechanisms would be similar to those for mass injection,
with oscillations only upstream of the flame. For example, any mechanism that causes
increased heat input in phase with the pressure will destabilize the system, as is the case
for solid rocket propellants.

In a choked nozzle two upstream-propagating acoustic waves are generated at the
throat: one by the entropy wave and one by the downstream-propagating acoustic wave.
If the superposition of the two upstream propagating waves is constructive, the feedback
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mechanisms will have similar shapes but with larger amplitudes. If the superposition
of waves is destructive, the feedback mechanisms will have similar shapes but smaller
amplitudes. For this particular configuration the superposition is destructive, so the
feedback devices are weakened by the indirect noise. In general when the length of
the duct between the combustion chamber and the exit nozzle changes by πū/ω the
interaction between the two upstream propagating waves can be expected to change
between destructive and constructive interaction.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5.13 Growth rate shift, δλ̃ denoted by —, •, and angular frequency shift, δσ̃ denoted
by — , ◦, for each feedback mechanism. The rows display the continuity, momentum
and energy equations, while the columns represent feedback from pressure, velocity and
density respectively. The continuous lines (—,—) represent one calculation via the adjoint
method while the circles (•, ◦) represent 15 computations via the finite difference method.
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5.7 Sensitivity analysis of geometric parameters

So far the effects of feedback devices and base state parameters such as interaction indices,
time delays and reflection coefficients have been investigated in simple network models.
For the more complicated network models the focus will be on the geometric parameters
such as areas, lengths and mean radii. The knowledge of these sensitivities is useful
during pre-design stages, given that small variations, for example, due to manufacturing
processes, can change the stability of a combustor. Furthermore, since this information
will be used to perform optimization in chapter 6, sensitivity analysis of the initial
configurations provides a good estimate of the changes that the configuration will go
through during the optimization process.

In this section, sensitivity analysis of geometric parameters is performed first on the
longitudinal combustor, then on the LPP annular combustor and finally on the CUED
annular combustor. Given that the focus of this thesis is to devise strategies to stabilize
all of the unstable modes in a configuration, the following sensitivity analysis will only
focus in the growth rate shifts.

5.7.1 Longitudinal combustor

The relevant geometric parameters of the longitudinal combustor, presented in § 3.5 are
the areas, lengths and mean radii. To ensure that the sensitivities with respect to these
parameters are correctly computed, we perform Taylor tests around the most unstable
eigenvalue. The results are shown in Fig. 5.14.

For the longitudinal combustor the growth rate sensitivity maps are shown in Fig.
5.15. The first observation is that length and mean radius sensitivities are on average 2
orders of magnitude smaller than area sensitivities. The former can be explained given
that a change in area causes base flow variations, while a change in length or mean
radius does not. Hence, for area changes, the base flow sensitivity adds to the unsteady
sensitivity. The most influential region is at the flame holder, where the area and mean
radius sensitivities have their largest magnitudes. The second most influential zone is the
neck area, with a large positive sensitivity. In order to stabilize this burner, we expect a
reduction in the flame holder and neck areas as well as shortening of the plenum’s length.

5.7.2 LPP annular combustor

For the LPP annular combustor the relevant geometrical parameters are the areas, lengths,
mean radii and time delay, since this element can be interpreted as the distance from
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injection until the flame front is reached. The Taylor tests for this configuration are
shown in Fig. 5.16. From Fig. 5.17 we observe that the sensitivity of the time delay
is at least one order of magnitude larger than any of the geometric parameters (see
Fig. 5.18). In this case, increasing the time delay decreases the growth rate of the two
unstable modes but decreases the decay rate of most of the stable modes. This shows, as
expected, that the time delay is one of the most influential elements of a thermoacoustic
system, and that it influences all modes differently. When the sensitivity to the time
delay is summed over all eigenvalues in the cost function, we expect the algorithm to
impose, for this case, small changes. The growth rate sensitivity maps for the geometric
parameters are shown in Fig. 5.18. The magnitudes of the sensitivities to changes in
area are one order of magnitude larger than length and mean radius sensitivities. The
most influential regions are given by the premix ducts’ area, the plenum’s length and the
combustion chamber’s mean radius.

5.7.3 CUED annular combustor

The last configuration is the CUED annular combustor. For this configuration the
relevant geometric parameters are the areas, lengths and mean radii. The corresponding
Taylor tests are shown in Fig. 5.19. The growth rate sensitivity maps are shown in
Fig. 5.20. The patterns are very similar to the previous two configurations. The most
influential zone is the area at the flame holder, followed by the area of the ring of premix
ducts. In order to stabilize this configuration we expect the premix ducts’ area to reduce,

(a) (b) (c)

Fig. 5.14 Taylor tests for different parameters of the longitudinal combustor. The
eigenvalue drift is computed for the mode near 364 Hz. A similar behaviour is expected
for any other mode. (a), (b), (c) show the Taylor tests generated by introducing small
changes in all of the areas (δA), lengths (δL), and mean radii (δR) of the configuration
respectively. The gray line in the background is a straight line between the initial and
final point, plotted for comparison. The figures confirm that the eigenvalue shift predicted
with the adjoint method is indeed correct to first order in δA, δL and δR.
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(a) Area sensitivity.

(b) Length sensitivity.

(c) Mean radius sensitivity.

Fig. 5.15 Growth rate sensitivity maps for the unstable modes in the initial configuration
of the longitudinal combustor. The maps show the sum of the growth rate sensitivities
of the unstable modes due to changes in areas (a), lengths (b) and mean radii (c). In (a)
and (c) the sensitivity at the flame holder location is indicated in red.

the flame holder area to increase, the premix ducts’ to elongate and the combustion
chamber to increase its mean radius. It is worth noting that all the higher order (|n| ≥ 2)
unstable azimuthal modes have sensitivities that point in the same direction.

5.7.4 Summary

From the previous sensitivity analysis a few conclusions are derived. First, the heat
source regions or heat source parameters have the largest sensitivities, which shows
that thermoacoustic systems are very sensitive to small changes. Second, from all the
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(a) (b)

(c) (d)

Fig. 5.16 Taylor tests for different parameters of the LPP annular combustor. The
eigenvalue drift is computed for the mode near 547 Hz, |n| = 1. See Fig. 5.14 for further
interpretation.

Fig. 5.17 Sensitivity of the growth rates to changes in the time delay for all the resonant
modes in the LPP annular combustor with azimuthal number n = 0 and |n| = 1. The
red box denotes an unstable mode.

geometric parameters analysed, the areas have, on average, the largest sensitivities due
to their influence in the mean flow. Third, the unstable modes of the longitudinal and
annular configurations show similar sensitivity patterns.
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(a) Area sensitivity.

(b) Length sensitivity. (c) Mean radius sensitivity.

Fig. 5.18 Growth rate sensitivity maps for the unstable modes in the initial configuration
of the LPP annular combustor. The maps show the sum of the growth rate sensitivities
of the unstable modes due to changes in areas (a), lengths (b) and mean radii (c).

(a) (b) (c)

Fig. 5.19 Taylor tests for different parameters of the CUED annular combustor. The
eigenvalue drift is computed for the mode near 1131 Hz, |n| = 1. See Fig. 5.14 for further
interpretation.
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(a) Area sensitivity.

(b) Length sensitivity.

(c) Mean radius sensitivity.

Fig. 5.20 Growth rate sensitivity maps for the unstable modes in the initial configuration
of the CUED annular combustor. The maps show the sum of the growth rate sensitivities
of the unstable modes due to changes in areas (a), lengths (b) and mean radii (c). In (a)
the sensitivity at the flame holder location is indicated in red.





Chapter 6

Optimization in low order
thermoacoustic networks

The aim of this project is to stabilize all of the thermoacoustically unstable modes of a
system. This is one of multiple requirements for gas turbines. Others include reduction
of emissions, optimization of fuel consumption and ease of serviceability (Lieuwen and
Yang, 2013).

Thermoacoustic systems are exceedingly sensitive to small changes (Juniper and
Sujith, 2018) and can usually be stabilized by making only small changes. The ideal
approach is to tweak the shape of the system until a stable configuration is achieved.
The challenge is to identify these small changes before the full engine test stage. By
combining the sensitivity information of chapter 5 with an optimization routine, we can
stabilize all of these thermoacoustic modes by slightly modifying the geometry. Any
stable modes that become unstable can also be targeted and stabilized. The advantage of
this approach is that, unlike a Helmholtz resonator, it stabilizes all unstable frequencies.
The disadvantage is that it relies on an accurate model of the real system (a disadvantage
shared by any method that relies on such model).

The optimization process requires a cost function. To stabilize a combustor within a
given frequency range, the cost function can be proportional to the sum of the growth
rates of the unstable modes. In order to perform this minimization process, a handful of
parameters can be varied such as FTF parameters or geometric parameters (See chapter
5). We use the first order sensitivities of this cost function within a convex optimization
algorithm in order to find a stable configuration for the given operation conditions.
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6.1 The optimization algorithms

The adjoint-based sensitivity analysis described in chapter 5 gives the gradient of each
eigenvalue with respect to the geometric parameters. These gradients can be used in a
gradient descent algorithm. Our aim is to stabilize all of the thermoacoustic modes of a
given configuration simultaneously and we must allow for unstable modes to disappear
or re-appear during the optimization process. In general, to perform an optimization
routine, we follow the next steps:

1. Compute the resonant thermoacoustic modes of the system (the eigenvalues).

2. Compute the sensitivity of the eigenvalues with respect to the geometric parameters
(areas A, lengths L, mean radii R, and time delay τ).

3. Given a set of constraints and maximum allowed displacements, use an optimization
algorithm to compute the changes in the parameters such that the cost function is
optimally reduced.

4. Update the configuration and iterate until all the modes are stable.

As part of this thesis we explore two different algorithms: the box search and the
conjugate gradient.

6.1.1 Algorithm 1: Box search

The first algorithm is a routine that resembles a descent method to find local minima. To
develop the cost function we begin by introducing a small change to some of the system’s
parameters denoted by δpk for k = 1, 2, 3..., Nx, where Nx is the number of parameters
in the system. These cause the eigenvalues to shift. The predicted eigenvalue Ωj is given
by: Ωj = ωj + δωj , where ωj is an eigenvalue of the system, and δωj is the corresponding
eigenvalue drift. The eigenvalue drift is given by the sum of the sensitivities times the
perturbation size:

δωj =
Nx∑
k=1

∂ωj

∂pk

δpk, (6.1)

In the studied frequency range the system will have Nω resonant modes, each of them
represented by: ωj = σj − iλj . Our objective is to stabilize all of the resonant modes (i.e.,
λj < 0 for j = 1, ..., Nω) by introducing small changes into the system. To ensure that
all the modes end up with a negative (rather than zero) growth rate we set an objective
growth rate λo such that λo ≤ 0. Once λj reaches λo we do not seek to stabilize mode ωj

further.
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Let Γ(δp) be the function that denotes the difference between the perturbed and the
objective growth rates, which is given by:

Γ(δp) = λj +
Nx∑
k=1

∂λj

∂pk

δpk︸ ︷︷ ︸
−Im{Ωj(δp)}

− λo. (6.2)

With this we build a predictor function Ψj(δp), that gives 0 if a mode has growth rate
less than λo or the difference Γ if the growth rate is larger than λo. Mathematically:

Ψj(δp) = Hs(Γ)Γ(δp), (6.3)

where Hs(Γ) is the Heaviside step function, which in our model will be approximated by
the smooth function:

Hs(Γ) = 1
2

(
1 + tanh

(
Γ
µ

))
, (6.4)

where µ = 1 × 10−3 is a small number that controls the sharpness of the step. The
reduced version of the cost function J (δp), which we minimize, is then given by one
half of the sum of the square of the predictor functions over all of the eigenvalues of the
system.

We can further add a small constraint to the cost function in order to select the
parameters that produce the smallest variations in the configuration. By considering
δpmk

, the maximum allowed change of the kth parameter, the cost function becomes:

J (δp) =
Nω∑
j

1
2 (Ψj(δp))2

︸ ︷︷ ︸
Reduced version

+ 1
Nx

Nx∑
k=1

(
δpk

δpmk

)2

. (6.5)

In order to compute the changes in the parameters that best reduce the cost function, we
use the logarithmic barrier method in Boyd and Vandenberghe (2010). The constrained
minimization problem becomes:

minimize J (δp)
subject to − δpmk

≤ δpk ≤ δpmk
, k = 1, ..., Nx

where δpmk
is given as a small percentage of the parameter’s value.

The name of the algorithm "Box search", comes from the fact that the routine searches
in the domain (box) set by the maximum allowed changes for the point that minimizes
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the cost function. This point may not be in the same direction as the equivalent point
obtained using a steepest descent or conjugate gradient method. That is, the box search
does not prioritize the changes of the parameters with the largest sensitivities. However,
this algorithm has the advantage that it is less prone to becoming trapped in a local
minimum that does not stabilize all of the modes. It is also able to determine whether a
given change in the system will destabilize a given mode.

6.1.2 Algorithm 2: Conjugate gradient

Due to its ease of implementation, the conjugate gradient method is one of the most
used convex optimization algorithms. Following a similar procedure as in § 6.1.1, the
cost function for the conjugate gradient algorithm is given by:

J (δp) = 1
2

Nω∑
j=1

(λj(δp) − λo)2 (6.6)

The major changes between the cost functions in both algorithms are:

1. For the conjugate gradient algorithm, the sensitivity information does not enter
the cost function any more. Instead the sensitivity information goes directly into
the computation of the gradient.

2. If a change in parameters causes a mode to become unstable, the box search
algorithm accounts for this in the same iteration, but the conjugate gradient
algorithm takes no account of this until the following iteration.

The conjugate gradient (CG) method is a simple extension of the steepest descent.
The full algorithm is presented here in order to point out the subtleties that the cost
function in Eq. (6.6) produces during its implementation. Given a function f(x), where f
represents the cost function (J ) and x the changes in the parameters (δp) the conjugate
gradient algorithm (Press et al., 1992) is:

Algorithm Conjugate gradient method.
Require: a starting point x0 ∈ dom f .

∆x0 := −∇f(x0).
Line search. Choose step size t0 via backtracking line search.
Update. x1 := x0 + t0∆x0

s0 := ∆x0.
...
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repeat
∆xn := −∇f(xn).
CG update parameter. Choose step size βn (see below)
Update conjugate direction. sn = ∆xn + βnsn−1.
Line search. Choose step size tn via backtracking line search.
Update. xn+1 := xn + tnsn.

until stopping criterion is satisfied.

The CG update parameter is given by:

βn = 0 for steepest descent.

βn = ∆xT
n ∆xn

∆xT
n−1∆xn−1

for Fletcher–Reeves CG.

βn = ∆xT
n (∆xn − ∆xn−1)
∆xT

n−1∆xn−1
, and restart if βn = max {0, βn} for Polak–Ribiere CG.

When this algorithm is implemented, there is a problem in the line search procedure.
The eigenvalues of thermoacoustic systems can be very sensitive (Juniper and Sujith,
2018). Therefore the computed gradients can be exceedingly large. Updating the changes
in the parameters with these values may result in an non-physical geometry. To take this
into account, we begin the line search by ensuring that the parameters do not change by
more than a given percentage, which is enforced with a backtracking procedure. The
backtracking line search algorithm can be either linear (Boyd and Vandenberghe, 2010)
or parabolic:

Algorithm Backtracking line search.
Require: a descent direction ∆x for f at x ∈ dom f , α ∈ (0, 0.5), β ∈ (0, 1).
Ensure: t := 1

while f(x+ t∆x) > f(x) + αt∇f(x)T ∆x do
Linear: t := βt.
Parabolic: Compute f(x+ t∆x) at t0 = 0, t1 = t/2, t2 = t and find vertex tv.
if tv < 0 then

Perform linear backtracking: t := βt.
else

t := tv

end if
end while
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In general the parabolic method performs fewer computations. For this reason it is
the method used in this chapter. The next subtlety appears in the computation of the
CG update parameter, which due to the interference from the previous search direction
(via βn), this parameter can change the search direction to an ascent direction, making
the algorithm useless. Therefore, at every iteration we test to see whether the conjugate
direction sn is a descent direction. If it fails, we restart the method by setting βn = 0.

6.1.3 Parameter change in the implementation

In chapter 5 the sensitivities to geometric parameters such as areas, lengths and mean
radii were found. To ensure an optimal performance of the algorithms, all the parameters
are required to have similar magnitudes throughout the optimization. For this reason,
the optimization procedure uses inner radius, outer radius, and length rather than area,
mean radius and length.

6.2 Test Case

To show the differences between the algorithms we consider the following test case. The
geometry of the test configuration is given by a simplified model of the longitudinal
combustor, as shown in Fig. 6.1. The major differences are that we consider a perfect
gas, the area variations of the plenum and bluff body are computed as sets of only 2
steps, and the flame model is an n− τ model with parameters k = 0.5 and τ = 0.001 s.
For this configuration the boundary error plot is given in Fig. 6.2. From this we can
observe that the initial configuration has one unstable mode at 568 Hz with a growth
rate of 127 s−1. The objective growth rate is set to λo = −5 s−1. In order to stabilize the
system we are going to allow changes in only two parameters of the network. The first is
the area of the enclosure (last duct in the network model), which is going to be changed
through the variation of the outer radius rE. The second is the length of the enclosure
LE.

Fig. 6.1 Simplified network model for the test case.
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Fig. 6.2 Boundary error plot for the initial configuration of the test case network model.

Four optimization routines are performed in order to stabilize the system: box search,
steepest descent and the two variants of the CG. The paths taken by each of the algorithms
on top of the cost function (6.6) are shown in Fig. 6.3.

Fig. 6.3 Cost function for the test case. The blue, green and red markers denote the
paths taken by the CG Fletcher Reeves, CG Polak Ribiere and Box search respectively
until full stability is achieved. The steepest descent algorithm follows the same path as
the CG Polak Ribiere. The white arrows show the direction of the local gradient. rE0

and LE0 denote the outer radius and the enclosure length of the initial configuration.
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Fig. 6.4 Initial and final configurations of the test cases. The black line represents the
initial configuration, and the blue, green and red colours represent the final configurations
reached by the CG Fletcher Reeves, CG Polak Ribiere and the Box search respectively.
The blue line lies almost on top of the green.

From this figure it is clear that the box search does not follow the steepest descent
direction. Given that this algorithm is aided with a penalty function to ensure small
changes, it reaches the objective (zero in the cost function) without overshooting. For
this specific minimization process, the steepest decent and CG (Polak Ribiere) paths are
almost the same. As can be seen in Fig. 6.3, the CG algorithms follow a direction close
to the steepest descent direction and reach a different configuration from that of the box
search algorithm, by slightly overshooting the objective.

The different final configurations are shown in Fig. 6.4. This figure shows two of the
configurations that stabilize the system and that the final configuration is determined as
much by the optimization algorithm as by the system being stabilized.

From Fig. 6.3 it should be clear that any configuration that lies within the boundary
set by the zero in the cost function is a configuration that meets the requirements of being
stable in the analysed frequency range. These algorithms, however, have the limitation
that although providing a stable configuration, they do not assess which one is the best.
Defining what is best could be done by means of a robustness analysis which is left for
future investigation.

6.3 Stabilization of thermoacoustic configurations

In the following sections we stabilize the longitudinal combustor, the LPP annular
combustor and then the CUED annular combustor. For each of the configurations we
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first define the parameters to be optimized and then we perform a Box search and a CG
routine in order to find a stable configuration. All of the optimization routines have:

• objective growth rate of λo = −5 s−1, except for the CUED annular combustor for
which it is set to λo = −1 s−1,

• backtracking parameters α = 0.1 and β = 0.8,

• maximum allowed change in a parameter given as 5% of its current magnitude,
except for the LPP annular combustor for which it is set to 1%,

• stopping condition: J (δp) < 0.01.

The analysed frequency range for the longitudinal combustor and the LPP annular
combustor is from 0 to 1000 Hz and for the CUED annular combustor is from 0 to 2000
Hz.

6.3.1 Stabilizing the longitudinal combustor

To stabilize the longitudinal combustor we consider the following cases:

1. Areas and mean radii are allowed to change.

2. Areas, mean radii and lengths are allowed to change.

Variations in areas and mean radii

For case 1 the areas and mean radii of the configuration are varied. Fig. 6.5 shows the
initial and final configurations for the longitudinal combustor and table 6.1 summarizes
the changes in each of the sections.

We observe that large changes in some parameters are required in order to stabilize
the system. This is because there are several strongly-unstable modes in the configuration.
From the sensitivity analysis in Fig. 5.15a it is known that the flame holder area is the
most influential parameter, and that its increase causes the growth rate to increase. The
results of the optimization via both algorithms show a decrease in the flame holder area.
This shows that sensitivity analysis in itself is a powerful tool to identify the regions
which are more influential when changed. The other common pattern between the two
routines is the reduction in the neck area, which is the second most influential parameter
in the sensitivity analysis.
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(a) Box search.

(b) CG Polak Ribiere.

Fig. 6.5 Initial and final configuration of the longitudinal combustor after stabilizing all
of the unstable modes by changing the areas and mean radii. The initial configuration is
shown in black. The final configuration is shown in red for the box search algorithm and
in blue for the CG algorithm.

Algorithm Inlet Plenum Neck Flame holder Enclosure
Areas: (A/A0 − 1)

Box Search 1.8808 -0.5665 -0.4356 -0.2428 -0.3727

CG PR 0.2814 -0.0729 -0.4910 -0.1780 -0.0157
Mean radii: (R/R0 − 1)

Box Search 0.7379 -0.2379 0.0384 -0.1618 -0.2080

CG PR 0.5370 0.1130 0.2660 -0.0571 -0.0079

Table 6.1 Relative change of the final area/mean radius with respect to the initial
area/mean radius of a section for case 1 in the stabilization of the longitudinal combustor.

Variations in areas, mean radii and lengths

For case 2, areas, mean radii and lengths are allowed to vary simultaneously. To avoid
having a base flow about to choke at the bluff body the maximum allowed change
for the box search algorithm is changed to 4.5%. Fig. 6.6 shows the initial and final
configurations and table 6.2 summarizes the changes in each section.

The results show that the box search algorithm allows the changes in length to be as
prominent as the changes in areas. The CG algorithm shows that, as expected from the
sensitivity analysis, the variations in length are very small compared to those in area. In
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fact, most of the configuration follows a similar pattern in the change in areas as in case
1. Most of the variations in length follow the trends predicted by the sensitivity analysis.

(a) Box search.

(b) CG Polak Ribiere.

Fig. 6.6 Initial and final configuration of the longitudinal combustor after stabilizing
all of the unstable modes by changing the areas, mean radii and lengths. The initial
configuration is shown in black. The final configuration is shown in red for the box search
algorithm and in blue for the CG algorithm.

Algorithm Inlet Area Plenum Area Neck Area Flame Enclosure
increase decrease decrease holder

Areas: (A/A0 − 1)
Box Search 0.2994 – 0.1107 – -0.2575 – -0.3847 0.4350

CG PR 0.2772 – -0.0707 – -0.5518 – -0.3925 -0.0132
Mean radii: (R/R0 − 1)

Box Search 0.1580 – 0.0672 – -0.0538 – -0.0803 0.1979

CG PR 0.5360 – 0.1142 – 0.2407 – -0.0555 -0.0066
Lengths: (L/L0 − 1)

Box Search 0.1391 0.0219 0.0500 0.0347 0.0101 0.0898 – 0.0297

CG PR 0.0116 0.0081 0.0008 0.0021 0.0001 -0.0030 – 0.0011

Table 6.2 Relative change of the final area/mean radius/length with respect to the initial
area/mean radius/length of a section for case 2 in the stabilization of the longitudinal
combustor.



118 Optimization in low order thermoacoustic networks

As mentioned previously, there are many configurations that will match the require-
ments of being stable and we can obtain a different stable configuration by changing
any of the optimization parameters. In order to show an example, the previous case is
re-run, however, this time the unstable mode at 58 Hz is stabilized first. The lowest
frequency mode is the least sensitive of all the unstable eigenvalues, so any change that
could potentially stabilize higher frequency modes changes this mode only slightly. By
optimizing this mode first, the system requires fewer changes to become fully stable. The
results of this variation are shown in Fig. 6.7 and table 6.3.

(a) CG Polak Ribiere.

Fig. 6.7 Initial and final configuration of the longitudinal combustor after stabilizing
all of the unstable modes by changing the areas, mean radii and lengths. The initial
configuration is shown in black. The final configuration is shown in blue for the CG
algorithm with the lowest frequency mode stabilized first.

Algorithm Inlet Area Plenum Area Neck Area Flame Enclosure
increase decrease decrease holder

Areas: (A/A0 − 1)
CG PR 0.2772 – -0.0707 – -0.5518 – -0.3925 -0.0132

Mean radii: (R/R0 − 1)
CG PR 0.5360 – 0.1142 – 0.2407 – -0.0555 -0.0066

Lengths: (L/L0 − 1)
CG PR 0.0116 0.0081 0.0008 0.0021 0.0001 -0.0030 – 0.0011

Table 6.3 Relative change of the final area/mean radius/length with respect to the initial
area/mean radius/length of a section for case 2 (lowest frequency mode first) in the
stabilization of the longitudinal combustor.

Fig. 6.7 shows that only the inlet, neck and flame holder areas require large changes
in order to stabilize the full system.

The most effective ways to stabilize this combustor are to reduce the flame holder
area and to reduce the neck area.
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In terms of the performance of the optimization algorithms, we observe that in the case
where only the areas and mean radii are varied, both algorithms produce configurations
with similar magnitudes of relative change. However, when the lengths are introduced,
the box search algorithm produces larger changes in parameters with small sensitivities
(lengths). In contrast, the CG algorithm, due to its steepest descent nature, follows a
similar path as the first case and produces little changes to the parameters with small
sensitivities. Therefore, if one is seeking a configuration which can be stabilized by
introducing smaller changes, the CG algorithm is better.

6.3.2 Stabilizing the LPP annular combustor

The inclusion of an azimuthal direction in the eigenvalue problem requires the consid-
eration of azimuthal wave numbers higher than 0. Given that all of the changes in
the system are symmetric, no azimuthal modal coupling is introduced. Therefore the
sensitivities of the eigenvalues of azimuthal mode n are the same as those of azimuthal
number −n.

From the boundary error plot in Fig. 3.12 we observe that there are three resonant
modes (one each for n = 0, n = +1, and n = −1). They have relatively small growth
rates so we expect that only small changes will be required to stabilize the system. To
ensure that higher order n modes are not unstable we consider azimuthal wave numbers
|n| ≤ 3. We further note that the eigenvalues are symmetric in n, which means that
when all the unstable modes are included in the cost function, the system will prioritize
the stability of the circumferential modes (|n| ≥ 1) because they will be present twice.

For this configuration 5 cases are examined:

1. Variations in areas.

2. Variations in areas and mean radii.

3. Variations in areas and lengths.

4. Variations in areas, lengths and mean radii.

5. Variations in areas, lengths, mean radii and time delay.

Variations in areas

For the first case, only the areas are allowed to change. The final configurations are
shown in Fig. 6.8 and summarized in table 6.4. We observe that the box search algorithm
favours changes in the plenum while the CG algorithm favours changes in the premix
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ducts. Most of the predictions from the sensitivity analysis (Fig. 5.18a) follow through
to these results.

(a) Box search. (b) CG Polak Ribiere.

Fig. 6.8 Initial and final configuration of the LPP annular combustor after stabilizing all
of the unstable modes by changing the areas. The initial configuration is shown in black.
The final configuration is shown in red for the box search algorithm and in blue for the
CG algorithm.

Algorithm Plenum Premix ducts Premix ducts Combustion
(inlet) (outlet) chamber

Areas: (A/A0 − 1)
Box Search -0.2366 -0.1017 -0.1017 0.1225

CG PR -0.0002 -0.1102 -0.1102 0.0018

Table 6.4 Relative change of the final area with respect to the initial area of a section for
case 1 in the stabilization of the LPP annular combustor.

Variations in areas and mean radii

For the second case, the variation in areas and mean radii is allowed. The initial and
final configurations are shown in Fig. 6.9 with their corresponding changes summarized
in table 6.5. We observe that the box search algorithm reduces considerably the area
of the plenum and premix ducts, while expanding the combustion chamber. The CG
algorithm produces a very similar configuration as in case 1. Note that, while the box
search algorithm produces small changes in the mean radius, the CG algorithm produces
virtually none. This is explained due to the small sensitivities to changes in the mean
radii when compared to the sensitivities to changes in areas.
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(a) Box search. (b) CG Polak Ribiere.

Fig. 6.9 Initial and final configuration of the LPP annular combustor after stabilizing all
of the unstable modes by changing the areas and mean radii. The initial configuration is
shown in black. The final configuration is shown in red for the box search algorithm and
in blue for the CG algorithm.

Algorithm Plenum Premix ducts Premix ducts Combustion
(inlet) (outlet) chamber

Areas: (A/A0 − 1)
Box Search -0.1995 -0.1066 -0.1066 0.1577

CG PR -0.0001 -0.1113 -0.1113 0.0009
Mean radii: (R/R0 − 1)

Box Search -0.0125 0.0000 0.0000 0.0275

CG PR -0.0000 0.0000 0.0000 0.0000

Table 6.5 Relative change of the final area/mean radius with respect to the initial
area/mean radius of a section for case 2 in the stabilization of the LPP annular combustor.

Variations in areas and lengths

For the third case, variations in areas and lengths are allowed. The initial and final
configurations can be seen in Fig. 6.10 and summarized in table 6.6. We observe a similar
behaviour as that in case 2: the box search algorithm produces larger changes than the
CG algorithm and the CG algorithm takes the same path as in the previous two cases.
As in case 2 (variations in areas and mean radii) the changes in length are very small
when compared to the changes in areas, especially in the CG routine.

Variations in areas, lengths and mean radii

For the fourth case, the areas, lengths and mean radii are allowed to change. The initial
and final configurations are shown in Fig. 6.11 and the changes are summarized in table
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(a) Box search. (b) CG Polak Ribiere.

Fig. 6.10 Initial and final configuration of the LPP annular combustor after stabilizing
all of the unstable modes by changing the areas and lengths. The initial configuration is
shown in black. The final configuration is shown in red for the box search algorithm and
in blue for the CG algorithm.

Algorithm Plenum Premix ducts Premix ducts Combustion
(inlet) (outlet) chamber

Areas: (A/A0 − 1)
Box Search -0.2300 -0.0956 -0.0956 0.1429

CG PR -0.0002 -0.1124 -0.1124 0.0018
Lengths: (L/L0 − 1)

Box Search -0.0410 -0.0264 0.0408 -0.0199

CG PR -0.0001 0.0001 0.0000 0.0001

Table 6.6 Relative change of the final area/length with respect to the initial area/length
of a section for case 3 in the stabilization of the LPP annular combustor.

6.7. The box search algorithm follows a path similar to a combination of cases 2 and 3
and the CG algorithm produces a similar configuration as in the previous three cases.
This demonstrates, once again, the small magnitude in the sensitivities of the mean
radius and lengths.

Variations in areas, lengths, mean radii and time delay.

The last case is similar to case 4 but the time delay is also allowed to change. This
parameter is often associated with the fuel convection time in the injection process and
is altered by changing the fuel injector. The initial and final configurations can be seen
in Fig. 6.12 and the changes are summarized in table 6.8. Using a box search algorithm
the overall changes are similar to those in case 4. The time delay only changes by 4.5 %
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(a) Box search. (b) CG Polak Ribiere.

Fig. 6.11 Initial and final configuration of the LPP annular combustor after stabilizing
all of the unstable modes by changing the areas, lengths and mean radii. The initial
configuration is shown in black. The final configuration is shown in red for the box search
algorithm and in blue for the CG algorithm.

Algorithm Plenum Premix ducts Premix ducts Combustion
(inlet) (outlet) chamber

Areas: (A/A0 − 1)
Box Search -0.1987 -0.1019 -0.1019 0.1769

CG PR -0.0001 -0.1092 -0.1092 0.0009
Mean radii: (R/R0 − 1)

Box Search -0.0124 0.0000 0.0000 0.0220

CG PR -0.0000 0.0000 0.0000 0.0000
Lengths: (L/L0 − 1)

Box Search -0.0491 -0.0229 0.0438 -0.0298

CG PR -0.0001 0.0001 0.0000 0.0001

Table 6.7 Relative change of the final area/length/mean radius with respect to the initial
area/length/mean radius of a section for case 4 in the stabilization of the LPP annular
combustor.

(from 1.500 × 10−3 s to 1.567 × 10−3 s). This small change is explained by the fact that
the algorithm takes into account how a change in the time delay also affects the stable
eigenvalues, many of which are rendered less stable by changes that stabilize unstable
modes (see Fig. 5.17). With a CG algorithm we observe a similar behaviour to that
in case 4, but with slightly smaller changes in the geometric parameters (especially the
area of the premix ducts) and a large change in the time delay. This change is explained
due to the large magnitude in the sensitivity to changes in the time delay and the fact
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that the CG algorithm does not take into account how the stable modes are affected by
changing this parameter.

(a) Box search. (b) CG Polak Ribiere.

Fig. 6.12 Initial and final configuration of the LPP annular combustor after stabilizing
all of the unstable modes by changing the areas, lengths, mean radii and time delay. The
initial configuration is shown in black. The final configuration is shown in red for the
box search algorithm and in blue for the CG algorithm.

Algorithm Plenum Premix ducts Premix ducts Combustion
(inlet) (outlet) chamber

Areas: (A/A0 − 1)
Box Search -0.1867 -0.0956 -0.0956 0.1469

CG PR -0.0001 -0.0913 -0.0913 0.0009
Mean radii: (R/R0 − 1)

Box Search -0.0140 0.0000 0.0000 0.0186

CG PR -0.0000 0.0000 0.0000 0.0000
Lengths: (L/L0 − 1)

Box Search -0.0420 -0.0203 0.0409 -0.0205

CG PR -0.0001 0.0001 0.0001 0.0001
Time delay: (τ/τ0 − 1) at the heat source

Box Search 0.0445

CG PR 0.2619

Table 6.8 Relative change of the final area/length/mean radius/time delay with respect to
the initial area/length/mean radius/time delay of a section for case 5 in the stabilization
of the LPP annular combustor.
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We can draw some practical conclusions from the optimization routines in which
many parameters can change. The first concerns the magnitude of the changes when
more parameters are allowed to change. It may be intuitive to think that increasing the
number of changeable parameters will decrease the magnitude of the required changes,
given that there are more degrees of freedom available to the optimization routine. This
is true sometimes but not always. The inclusion of another variable in the optimization
routine changes the path that the algorithm takes to find a stable configuration. This
new path can point in a direction that requires more changes in all of the parameters (as
in most of the previous cases).

In terms of performance of the algorithms, the box search algorithm produces larger
changes into the system, while the CG algorithm follows a similar path every time, unless
a variable with a large sensitivity (the time delay) is introduced in the optimization
routine.

For the LPP annular combustor, using a CG algorithm, the most prominent changes
are to reduce the premix ducts area and to change the time delay. These are the same
changes suggested for the stabilization of the longitudinal combustor.

6.3.3 Stabilizing the CUED annular combustor

The last configuration to be stabilized is the CUED annular combustor. Given that it
is unstable for high azimuthal wave numbers (|n| = 8) the optimization routine is run
considering only the positive values of n to speed up the computations. That is, we
consider n = 0, 1, 2, ..., 8. Then given that we are not introducing modal coupling, the
symmetric nature of the eigenvalues ensures that all azimuthal wave numbers |n| ≤ 8 are
stabilized. By looking only at positive values of n, the path taken by the optimization
routine changes, but the desired outcome (stability) does not. We examine the following
cases:

• Variations in areas and mean radii.

• Variations in areas, mean radii and lengths.

Variations in areas and mean radii

The initial and final configurations are shown in Fig. 6.13 and the changes in each of the
sections are summarized in table 6.9. For the box search algorithm the largest changes
are in the flame holder area, which increased 26% followed by a decrease in the premix
ducts area of 18.9%. The rest of the configuration undergoes comparable changes in both
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areas and mean radii in almost all of the sections. Using a CG algorithm the largest
change is found in the flame holder area which increases by 30.6%, followed by a small
decerase of 2.8% in the premix ducts area, while the rest of the configuration changes
only slightly.

(a) Box search.

(b) CG Polak Ribiere.

Fig. 6.13 Initial and final configuration of CUED annular combustor after stabilizing all
of the unstable modes by changing the areas and mean radii. The initial configuration is
shown in black. The final configuration is shown in red for the box search algorithm and
in blue for the CG algorithm.

Variations in areas, mean radii and lengths

For the last case the areas, lengths and mean radii are allowed to change. The initial
and final configurations are shown in Fig. 6.14 and the changes are summarized in table
6.10. With the introduction of the length as an optimization variable the box search
algorithm reduces the changes required in the flame holder area to an increase of 10%
and now the dominant change is at the sphere end, which increases by 16.2%. The CG
algorithm behaves almost the same as in the previous case.
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Algorithm Inlet Plenum Sphere Premix Flame Combustion Outlet
duct end ducts holder chamber duct

Areas: (A/A0 − 1)
Box Search -0.1133 0.0574 0.0026 -0.1889 0.2598 -0.1328 -0.0114

CG PR 0.0014 -0.0018 -0.0044 -0.0275 0.3058 0.0000 0.0000
Mean radii: (R/R0 − 1)

Box Search -0.0583 0.0283 0.0418 0.0000 0.0000 0.0331 -0.0057

CG PR 0.0007 -0.0009 -0.0002 0.0000 0.0000 0.0000 0.0000

Table 6.9 Relative change of the final area/mean radius with respect to the initial
area/mean radius of a section for case 1 in the stabilization of the CUED annular
combustor.

(a) Box search.

(b) CG Polak Ribiere.

Fig. 6.14 Initial and final configuration of CUED annular combustor after stabilizing
all of the unstable modes by changing the areas, mean radii and lengths. The initial
configuration is shown in black. The final configuration is shown in red for the box search
algorithm and in blue for the CG algorithm.
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Algorithm Inlet Area Plenum Sphere Premix Area Flame Combustion Outlet
duct increase end ducts decrease holder chamber duct

Areas: (A/A0 − 1)
Box Search -0.0407 – 0.0877 0.1616 -0.0550 – 0.0996 0.0241 0.0287

CG PR 0.0014 – -0.0017 -0.0043 -0.0279 – 0.3057 0.0000 0.0000
Mean radii: (R/R0 − 1)

Box Search -0.0206 – 0.0429 0.0243 0.0000 – 0.0000 0.0157 0.0142

CG PR 0.0007 – -0.0009 -0.0002 0.0000 – 0.0000 0.0000 0.0000
Lengths: (L/L0 − 1)

Box Search 0.0207 0.0251 0.0439 -0.0231 -0.0529 -0.0220 – -0.0197 0.0151

CG PR 0.0001 0.0001 0.0001 -0.0007 -0.0002 -0.0060 – -0.0000 0.0000

Table 6.10 Relative change of the final area/length/mean radius with respect to the
initial area/length/mean radius of a section for case 2 in the stabilization of the CUED
annular combustor.

6.3.4 Summary of optimization results

In summary, three thermoacoustic systems are stabilized by making small changes to
their geometric parameters. Two different algorithms are used: a box search algorithm
and a CG algorithm. The box search algorithm allows any parameter to change within
some percentage of their current magnitude. With this algorithm, the configurations
require large changes to achieve stability. The CG algorithm follows a direction close to
the steepest descent direction. This produces configurations that require significantly
less changes in order to become stable.

Using a CG algorithm the most influential changes required to achieve stability in all
the configurations are:

1. The reduction of the neck or premix ducts area.

2. Modification of the FTF parameters.

(a) In the case of the longitudinal combustor and the CUED annular combustor
a change in the flame holder area.

(b) In the case of the LPP annular combustor an increase in the time delay.

Point 2a is explained because the flame holder area is proportional to the time delay of
the FTF as can be seen in the nondimensional frequencies of Eqs. (A.12) and (A.13).
In general the geometric changes done during the optimization process de-phase the
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unsteady heat release from the pressure fluctuations enough such that the work done at
the boundaries is larger than the work done by the heat source. This basically ensures
that the Rayleigh criterion for instabilities Eq. (1.2) is not met.





Chapter 7

Conclusions and future work

In this thesis the low order network modelling approach to analyse thermoacoustic
systems is reviewed. Then adjoint methods are developed in order to extract gradients of
the eigenvalue with respect to system parameters. Using gradients, systems are stabilized
with various optimization algorithms. The outcome of this thesis is the generation of
PILOT, a low order thermoacoustic tool with adjoint-based sensitivity analysis and
optimization.

In chapter 2 the wave-based low order network model of Stow and Dowling (2001,
2003, 2004) is presented as a tool to analyse linear thermoacoustic oscillations. The main
components are straight ducts, which propagate acoustic, entropy and vorticity waves.
These are connected with different sets of jump conditions to represent a full combustion
system. The network model produces a nonlinear eigenvalue problem from which the
frequencies, stabilities and modeshapes can be studied. Due to its modularity and the
possibility of including a mean flow, these models are very versatile, much more so than
Galerkin methods. The major disadvantage of this approach is that it only works with
frequencies low enough such that the radial or transverse modes are cut off in the ducts
and with area changes and heat sources which span over a distance short enough such
that they can be considered acoustically compact.

Low order network models are computationally fast, and are used in industry and
academia.

Chapter 3 presents five different configurations: the Rijke tube, a choked combustor,
a longitudinal combustor, a generic LPP annular combustor and the laboratory scale
annular combustor built in CUED. Each is modelled using the low order network tool
from chapter 2 and their stability is examined. Due to the small number of elements in
the configuration of the Rijke tube and the choked combustor, their nonlinear eigenvalue
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problems are explicitly derived. Then the modeshapes of the dominant eigenvalue are
investigated. For the longitudinal combustor a FTF that mimics the real flame is derived.
Stability analysis shows an unstable mode with a frequency close to the one in which the
burner is observed to saturate into a limit cycle. The generic LPP annular combustor
introduces an azimuthal direction in the configuration. This is examined using wave
numbers larger than 0. Stability analysis shows two unstable modes: one corresponding
to a longitudinal mode and the other to a helical mode. The CUED combustor is
modelled using another FTF and stability analysis shows a handful of unstable modes.
The dominant eigenvalue corresponds to a helical mode with a frequency close to the one
observed in experiments. Despite the simplicity of the modelling approach, these models
are able to predict the stability of the real configurations and assist the investigation
on how to mitigate them. Further development of these configurations requires more
elaborate FTFs and boundary conditions to be included in the longitudinal combustor
(Graham, 2012) and the CUED annular combsutor. This will provide the model with a
more accurate description of the flame dynamics and therefore aid in the prediction of
the unstable modes.

Chapter 4 is devoted to the development of adjoint methods in wave based approaches.
For the nonlinear eigenvalue problem obtained using the tools from chapter 2 there exists
a corresponding adjoint eigenvalue problem. This is derived using a continuous or a
discrete method.

In the continuous approach, the adjoint equations are derived by a Lagrangian
formalism. Using the Rijke tube as a worked example, we mathematically show that
the adjoint variables are governed by a wave equation. The adjoint equations are then
solved in the same way as the direct equations, by obtaining the eigenvalues and right
eigenvectors of the adjoint matrix. In the discrete approach, the adjoint eigenvector is
simply the left eigenvector of the direct matrix. For the wave-based model in this thesis,
the continuous approach provides greater physical understanding in terms of receptivity
because the adjoint spatial functions are known.

This analysis shows that the equations governing duct acoustics, without considering
boundary conditions, are self-adjoint. We also show that the system with no unsteady
heat release and reflection coefficients with magnitude different from 1 is self-adjoint under
the transformation t → −t, which is equivalent to saying that forward-propagating waves
become backward-propagating waves and vice versa. The thermoacoustic system becomes
non-self-adjoint when there is velocity-coupled unsteady heat release, in agreement with
findings available in the literature.
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Finally, we derive the continuous adjoint equations for both unsteady and steady
flows for all the modules presented in chapter 2.

In chapter 5 sensitivity analysis of the thermoacoustic configurations is performed.
By combining the eigenfunctions from the direct and adjoint systems, we obtain the
base state sensitivities and feedback sensitivities of the different configurations. When a
change in the base state variable does not modify the base flow its sensitivity is easier to
implement with the discrete approach. Otherwise the continuous approach is preferred.
The feedback sensitivity is easier to implement with the continuous approach. Both
adjoint methods provide the same results, which are validated against finite-difference
calculations.

The base state sensitivity provides the gradient of the eigenvalue with respect to any
parameter of the model in a single calculation. Hence, it reveals how to make eigenvalues
more or less stable. The feedback sensitivity provides the gradient of the eigenvalue with
respect to linear feedback mechanisms. In this paper, it is obtained for co-located sensors
and actuators.

The base state sensitivity analysis of the Rijke tube and the choked combustor shows
that, as expected, the most influential stability parameter is the time delay between
velocity and heat release.

Feedback sensitivity analysis is carried out in the Rijke tube and the choked combustor
showing the influence of the devices that react to pressure, velocity and density fluctuations
and force the mass, momentum or energy equations. The optimal position to locate
a feedback device is given by the product of the direct and adjoint eigenfunctions. In
a self-adjoint system, the adjoint eigenfunction is identical to the direct eigenfunction,
so the optimal position can be determined from the direct eigenfunctions alone. In
a non-self-adjoint system, however, the adjoint eigenfunction differs from the direct
eigenfunction and the optimal placement is altered accordingly. This needs to be taken
into account in thermoacoustic systems, which are non-self-adjoint. For example, this
information can aid the design of retrofitted devices such as Helmholtz resonators.

The low Mach number Rijke tube model is improved by estimating parameters
from experimental data. Then feedback sensitivity analysis is performed to study the
effects of (i) a drag device and (ii) a secondary heat source. These results are compared
with the experimental results in Jamieson and Juniper (2017b). For the drag device,
unsteady feedback analysis is able to predict qualitatively the growth rate shift observed
in experiments. The frequency shift, however, is 3 orders of magnitude different from that
found in the experiment. Nonetheless the results still show the correct trend with varying
mesh position. For the secondary heat source the inclusion of the base flow feedback
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sensitivity predicts qualitatively and quantitatively the growth rate and frequency shifts
observed in experiments. All discrepancies arise from the modelling approach and not
from the adjoint method. The model imposes a fixed velocity at the inlet, while the
experiment is driven by bouyancy.

Base state sensitivity analysis of geometric parameters is performed on three con-
figurations: the longitudinal combustor, the LPP annular combustor and the CUED
annular combustor. The most sensitive geometric parameter is the cross-sectional area
of each duct, mainly due to its influence on the base flow. Where a FTF is used, the
flame holder area has the largest sensitivity. In all the configurations the second most
influential parameter is the neck area in the longitudinal combustor or the premix ducts
area in the annular combustors.

Chapter 6 presents two optimization algorithms to stabilize thermoacoustic configura-
tions: the box search algorithm and the conjugate gradient algorithm. The box search
algorithm stabilizes a configuration by changing every parameter that makes the system
more stable by a given percentage. Depending on the number of unstable modes, this
algorithm tends to cause large changes to parameters. The conjugate gradient algorithm
stabilizes a configuration following a direction close to the steepest descent direction.
This algorithm produces large changes in a reduced number of parameters, leaving the
least sensitive parameters almost untouched. Most of the predictions from the sensitivity
analysis in the initial configurations are observed in the final and stable configurations.
The reduction of the neck or premix ducts area and the flame holder area are the most
common changes that promote the stability of the analysed thermoacoustic systems,
because the fluctuating heat release reduces when the mean flow velocity before the
heat source increases. When the system is not very unstable as with the LPP annular
combustor, only small changes are required and, by employing a global optimization
routine, it is likely that a stable configuration could be found with even smaller changes
than the ones showed in this thesis. These proposed changes are preferable to the addition
of passive devices such as Helmholtz resonators, which add weight, cost, and complexity.

Adjoint-based sensitivity analysis and optimization could become an indispensable
tool for the design of thermoacoustically-stable combustors. It is easy to add other
constraints, either by adapting the cost function or by preventing the algorithm from
entering regions of the design space.

Thermoacoustic systems can be stabilized with small geometry modifications because
thermoacoustic oscillations are very sensitive to small changes. This also means that
any model of a system is severely prone to systematic error in the measurement of its
parameters. It is useful that adjoint-based sensitivity analysis reveals the most influential
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parameters. This also highlights, however, that experiments are required to ensure that
the model, on which the sensitivity analysis is based, is an accurate description of reality.

7.1 Future work

In order to get a better representation of the physics behind the low order modelling
approach, further development of the network modules is required. Some recommenda-
tions are the development of better approximations of the current modules and boundary
conditions or the inclusion of new elements such as the compositional waves developed in
Magri et al. (2016c) for the study of indirect noise. To obtain better predictions, data
driven analysis is required to find the optimal model parameters that fit these models.
By applying statistical methods to low order thermoacoustic models: state estimation,
parameter estimation and model assessment is being performed. These improvements
allow for a more accurate prediction of the stability of the system and thus of the
sensitivity analysis of real configurations.

In terms of global optimization, the question arises of which of the many stable
configurations is best. To correctly assess this question, a robustness analysis is required.
There are configurations which require little changes to become stable but that become
unstable with small variations. On the other hand, there are configurations that require
large changes to become stable but that are less sensitive to small variations. From
a manufacturing and operational perspective the latter configuration would be more
advisable. Therefore, the condition to find a stable configuration might not be enough.
Instead the aim should be to obtain a stable configuration with small gradients such
that the variations that might appear, for example, due to manufacturing processes, will
not cause the system to be unstable. Essentialy this requires the combination of adjoint
methods with uncertainty quantification (Magri et al., 2016b).

These methods can be extended to Helmholtz solvers, which can analyse complex
geometries. On numerical modelling, a Helmholtz solver which aims to solve the inho-
mogeneous wave equation and by means of adjoint methods assess the sensitivity of
thermoacoustic systems is under development. This model includes the sensitivity of the
surfaces of the domain, which is required to perform shape optimization. This modelling
approach should be able to provide direct comparison to the results presented in this
thesis at low Mach number, and extend to more complex geometries.

Finally, on the experimental side, we suggest development of a modular burner with
simple laminar flames for which the FTFs are well known. Once the optimization has
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been carried out, different duct sizes could be tested on the burner to experientially
demonstrate its stabilization.
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Appendix A

Flame transfer functions

Flame transfer functions (FTF) are a key element in the analysis of linear thermoacoustic
oscillations. They are used to track the response of the flame, and hence the heat
release fluctuations, to incident perturbations of the velocity or the equivalence ratio.
Therefore, FTFs are the fundamental component that close the loop between acoustics
and combustion.

FTFs can be obtained by experimental or numerical investigation, such as in Ducruix
et al. (2000); Langhorne (1988); Paschereit et al. (2002) or by analytical methods such
as in Schuller et al. (2003). In the latter branch we have the pioneering work of Fleifil
et al. (1996), which used a level set method to track the evolution flame front (originally
introduced by Markstein (1964)) and then relate it to the unsteady heat release kinematics
from which the flame transfer function is derived. The method was applied to a conical
flame, and the FTF obtained was a function of the perturbations of the flame area
only, which were directly related to the velocity perturbations at the base of the flame.
Many other studies in thermoacoustics followed a similar procedure to obtain FTFs for
different flame models. For example, Dowling (1999) used a similar procedure to analyse
a V-shaped flame, and goes a step further by developing a flame describing function
to analyse the nonlinear regime in which the burner operates. Later on Hubbard and
Dowling (1998) and Dowling and Hubbard (2000), extended the types of perturbation
studied by considering that the laminar flame speed and the enthalpy of reaction are
also a function of the equivalence ratio perturbations. More extensions include the use of
flame stretch and strain effects (Preetham, 2007), as well as different methods to account
for the total time that a fluctuation takes to reach the flame front (Graham, 2012).

For this thesis, we use an extended version of the FTF of the V-shaped flame presented
in Dowling (1999) which is derived in the following section. We also present the FTF of
the annular cone used in Hubbard and Dowling (1998) for completeness.
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A.1 V-shaped FTF

Flame front kinematics

Consider the burner given in Fig. A.1. In order to obtain an analytical flame model, we
assume that the flow is one dimensional and that the geometry is axisymmetric.

xb

uG

uG

r

x

n

G(x; r; t) = 0

r

ξ(r; t)

b
a

G < 0

G > 0

Fig. A.1 Geometry of the flame holder and flame initiation surface from Dowling (1999).

The flame front kinematics are modelled with a kinematic transport equation also
known as the G-equation:

∂G

∂t
+ u · ∇G = Sc|∇G|, (A.1)

where G(x, r, t) = 0 is the flame initiation surface, u = ⟨uG, 0⟩ is the velocity vector and
Sc is the flame propagation speed. We designate G0 = x− ξ(r, t) as the position of the
flame front. Then, after substitution into Eq. (A.1) and some manipulation, we obtain
an equation that allows us to track the evolution of the flame front:

∂ξ

∂t
= uG − Sc

√√√√1 +
(
∂ξ

∂r

)2

. (A.2)

The relationship between the flame front (ξ) and the flame area (Af ) is:

dAf = 2πr

√√√√1 +
(
∂ξ

∂r

)2

dr, (A.3)

which when integrated from r = a to r = b, provides the mean area of the flame.
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Heat release

The time variation of the spatially integrated heat release Q(t) is given by:

Q(t) =
∫

Af

ηρhr(φ)Sc(φ) dAf (A.4)

where η is the combustion efficiency, ρ is the density of the unburned mixture, hr(φ)
is the enthalpy of reaction, Sc(φ) is the flame propagation speed and Af is the flame
surface area. hr and Sc are assumed to depend on the equivalence ratio φ only.

Density

Through all this analysis we will consider that the variations in density due to the change
in temperature at the flame front are negligible. Hence, we will approximate it as ρ = ρ̄.

Equivalence ratio

For our model we assume that the perturbations need to convect from the base of
the flame until they reach the flame front, which gives a mean convection time delay
of ξ̄/ū. Here we have used ū to denote the mean value of uG. In the linear regime,
where we assume the existence of small harmonic perturbations, we can approximate the
equivalence ratio fluctuations by:

φ̂ = −φ̄ û
ū

e−iωξ̄/ū. (A.5)

Enthalpy of reaction

For the applications that are going to be analysed, the fuel used is ethylene (C2H4) -air
mixture. To model the enthalpy of reaction of such fuel we follow Graham (2012) and
assume the following form:

hr = 3.2 × 106 min(φ, 1)
1 + 0.067φ J kg−1. (A.6)

To ensure that the function is continuous everywhere, we substitute the the min(φ, 1)
function by a smooth approximation of the Heaviside step function Hs(φ):

min(φ, 1) = φ−Hs(φ− 1)(φ− 1), where Hs(φ− 1) = 1
2

(
1 + tanh

(
φ− 1
δ

))
.

(A.7)
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where δ = 1 × 10−5 is a small value that controls the sharpness of the step.

Flame speed

Depending on the operating conditions, the flame speed Sc can be in the laminar regime
(denoted by SL) or in the turbulent regime (denoted by ST ). The laminar flame speeds
of several hydrocarbons was approximated by Orf and Cant (1996) using the following
formula which is a function of the equivalence ratio only:

SL = k1φ
k2e−k3(φ−k4)2

, (A.8)

where the constants k1 = 16.83104 ms−1, k2 = 4.51397, k3 = 1.10530, k4 = −0.72341
where obtained by regression of the data presented in Jomaas et al. (2005), for the
case of the laminar flame speed of ethylene in air at atmospheric conditions. Since the
experimental cases that we are modelling are in the turbulent regime we use the extension
given in Lipatnikov and Chomiak (2002) to approximate the turbulent flame speed from
the laminar flame speed:

ST = SL

(
1 + C

(
uT

SL

)n)1/n

, (A.9)

where C = 2.1 and n = 2 are constants of the model and uT = 1.1476 ms−1 is the r.m.s.
turbulent velocity, which is treated as a constant to adjust the flame length in order to
match the experimental results.

Flame transfer function

Given the previous considerations, for linear perturbations in the frequency domain
expanding Eq. (A.4) and dividing by the mean quantities gives:

Q̂

Q̄
=

∫
Af

ĥr dĀf

h̄rĀf

+

∫
Af

ŜT dĀf

S̄T Āf

+

∫
Af

dÂf

Āf

. (A.10)

After integration, each of the terms can be further subdivided into the different contribu-
tions (Cho and Lieuwen, 2003):

Q̂

Q̄
= û

ū
(Fu + Fφ) with Fφ = Fh + FSD

+ FSA
. (A.11)

Here, Fu is the transfer function due to velocity perturbations at the flame base and
Fφ is the transfer function due to equivalence ratio perturbations convected from the
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base of the flame to the flame front. The latter is further subdivided into Fh, FSD
and

FSA
which are the transfer functions due to equivalence ratio perturbations through the

enthalpy of reaction, the direct contribution of the flame speed to the unsteady heat
release and the contribution of the flame speed through the fluctuations induced in the
flame area respectively. Their transfer functions are given by:

Fu = 2
iΩ/V (a+ b)

(
a− be−iΩ/V + b− a

iΩ/V
(
1 − e−iΩ/V

))
, (A.12a)

Fh = −

 φ̄

h̄r

dhr

dφ

∣∣∣∣∣
φ̄

 2
iΩV (a+ b)

(
a− be−iΩV + b− a

iΩV
(
1 − e−iΩV

))
, (A.12b)

FSD
= −

 φ̄

S̄T

dST

dφ

∣∣∣∣∣
φ̄

 2
iΩV (a+ b)

(
a− be−iΩV + b− a

iΩV
(
1 − e−iΩV

))
, (A.12c)

FSA
= −

 φ̄

S̄T

dST

dφ

∣∣∣∣∣
φ̄

 2
iΩ/V (a+ b)

ū2

S̄2
T

((
a− be−iΩ/V + b− a

iΩ/V
(
1 − e−iΩ/V

))
· · ·

(A.12d)

−
(
a− be−iΩV + b− a

iΩV
(
1 − e−iΩV

)))
.

Here we have used the non dimensional frequency Ω = ω(b− a)/S̄T and the elongation
factor V =

√
1 − S̄2

T/ū
2. As noted in Dowling and Hubbard (2000) for a similar flame, the

component given by FSA
presents saturation. That is, unlike the rest of the components,

it does not decay with increasing frequency.

Application to the CUED annular combustor

The V-shaped flame is characteristic of the CUED combustor as reported in Worth and
Dawson (2013a). The major differences presented between this model and the experiment
include the fact that flame merging, and swirling is not accounted for in the FTF; which
according to Worth and Dawson (2013a,b) are key features in the self excitation of the
combustion chamber.

To model the FTF of such system we have used as geometric parameters a =
√
A1/π

and b =
√

2A1/π, where A1 represents the area in between a single premix duct and
the bluff body. These values produce a similar flame front structure to that modelled
using LES in Bauerheim (2014) and allow us to track the dependency of the flame front
with respect to the burner area. Given that the experiment used premixed conditions,
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we consider that Fφ = 0. Using the parameters for this configuration (§ 3.7), Fig. A.2,
shows the total FTF for a single burner.

Fig. A.2 Flame transfer function for a single burner used in the CUED annular combustor.

A.2 Annular cone FTF

The second flame transfer function follows directly from the previous one. It is derived
in Hubbard and Dowling (1998) and presented here for completeness. The major
consideration is that now there are two flame fronts (denoted by ξ(r, t) and ζ(r, t)) that
merge exactly at the middle as shown in Fig. A.3. We also considered that it is an
elongated flame and therefore V ≈ 1. To match the flame length (Balachandran, 2005)
we set uT = 0.38254 ms−1. The result is an axisymmetric flame with the following FTF:

uG

uG

r

x

n G(x; r; t) = 0

ξ(r; t)

b
a

G < 0

G > 0

r r

ζ(r; t)

Fig. A.3 Geometry of the flame holder and flame initiation surface, adapted from Hubbard
and Dowling (1998).
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Fu = 1
iΩ
(
1 − e−iΩ

)
, (A.13a)

Fh = −

 φ̄

h̄r

dhr

dφ

∣∣∣∣∣
φ̄

 1
iΩ
(
1 − e−iΩ

)
, (A.13b)

FSD
= −

 φ̄

S̄T

dST

dφ

∣∣∣∣∣
φ̄

 1
iΩ
(
1 − e−iΩ

)
, (A.13c)

FSA
=
 φ̄

S̄T

dST

dφ

∣∣∣∣∣
φ̄

 e−iΩ, (A.13d)

where Ω = ω(b− a)/(2S̄T ) is a non dimensional frequency that depends on the external
duct radius b, the internal duct radius a and the mean flame speed. The components of
the FTF as applied to the longitudinal combustor (§ 3.5) are given in Fig. A.4.

Fig. A.4 Components of the flame transfer function for the longitudinal combustor.
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Mean Flow matrix L(ω)

The components of the mean flow matrix L(ω) are:

L11 = ρ̄2

ρ̄1

(
(1 − M̄1) −Rue−iωτu(1 + M̄1)

)
−
(
ρ̄2

ρ̄1
− 1

)
ke−iωτ (1 −Rue−iωτ ),

L12 = c̄1

c̄2

(
(M̄2 + 1) +Rde−iωτd(M̄2 − 1)

)
,

L13 = c̄1

c̄2

(
− M̄2 +Ree−iωτe(M̄2 − 1)

)
,

L21 = −(M̄1 − 1)2 −Rue−iωτu(M̄1 + 1)2,

L22 = (M̄2 + 1)2 +Rde−iωτd(M̄2 − 1)2,

L23 = −M̄2
2 +Ree−iωτe(M̄2 − 1)2,

L31 = 1 − γM̄1

γ − 1 + M̄2
1

2 (3 − M̄1) −N
(
1 − M̄1 − ke−iωτ

)
· · ·

−Rue−iωτu

(
1 + γM̄1

γ − 1 + M̄2
1

2 (3 + M̄1) −N
(
1 + M̄1 − ke−iωτ

))
· · ·

+ k
Q̄/A

ū1

e−iωτ

ρ̄1c̄2
1

(1 −Rue−iωτ ),

L32 = c̄2

c̄1

(
1 + γM̄2

γ − 1 + M̄2
2

2 (3 + M̄2) −Rde−iωτd

(
1 − γM̄2

γ − 1 + M̄2
2

2 (3 − M̄2)
))

,

L33 = c̄2

c̄1

(
−1

2M̄
3
2 +Ree−iωτe

(
(M̄2 − 1)

(
1

γ − 1 − M̄2 + M̄2
2

2

)))
,

where
N = 1

2

(
M̄2

1 − M̄2
2
p̄2

p̄1

)
+ 1 − p̄2/p̄1

γ(γ − 1) .





Appendix C

Sensitivities to base flow
modifications at the jump conditions

For the jump conditions governed by mass, axial momentum and energy fluxes, consider
the sensitivities to base flow modifications at the jump conditions in vector form: Ji =
[JMi

, JXi
, JEi

]T . Assuming that the adjoint variables of the unsteady jump conditions
are given by a+

m, a+
x , a+

θ and a+
e , and that the vector direct unsteady variables is given

by: q̂i = [p̂∗
i , ρ̂

∗
i , û

∗
i , ŵ

∗
i ]T , the sensitivities to base flow modifications become:

Ji =
(
a+

mBmi
+ a+

x Bxi
+ a+

θ Bθi
+ a+

e Bei

)
q̂i, (C.1)

where, by considering

fc =
[
h̄i(γi − 1) − c̄2

i − 1
2 ū

2
i (γi + 1) , γiūi , 0 , −(γi − 1)

]T

,

and Γi = γip̄i − ρ̄iū
2
i , the matrices that depend only on base flow variables become:

Bmi
= 1

Γi

 0 fc − ρ̄i

ūi

fc +


c̄2

i − ū2
i

0
0


 0

 , (C.2)

Bxi
= 1

Γi

 0 2ūifc −2ρ̄i


c̄2

i − ū2
i

0
0

 0

 , (C.3)

Bθi
=

 0 0 0
−Ri

0
0

 , (C.4)
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Bei
= 1

Γi

 γi

γi − 1fc

(
h̄i − c̄2

i

γi − 1 + 3
2 ū2

i

)
fc − ρ̄i

ūi

(h̄i − ū2
i

2

)
fc +

(
c̄2

i − ū2
i

)ū2
i

0
1


 0

 · · ·

(C.5)

+ Λ
Γi

 −M̄2
i fc + (1 − M̄2

i )

h̄i + ū2
i

2
0

−1

 ū2
i

γi
fc − c̄2

i − ū2
i

γi

h̄i + ū2
i

2
0

−1

 0 0

 ,

with
Λ = dcp(T̄i)

dT̄i

(γi − 1)T̄i

Rg

.

Similarly, for jump conditions that depend on the mass and energy fluxes, together with
entropy conservation, the sensitivities to base flow modifications Gi = [GMi

, GSi
, GEi

]T

are given by:
Gi =

(
a+

mCmi
+ a+

x Csi
+ a+

θ Cθi
+ a+

e Cei

)
q̂i, (C.6)

where, by considering:

gc = 1
ρ̄i

[
−
(
h̄i + 1

2 ū
2
i + c̄2

i

)
, −m̄ic̄

2
i

Rg

, 1
]T

, (C.7)

and βi = c̄2
i − ū2

i , the matrices become:

Cmi
= 1
βi

 0 gc − ρ̄i

ūi

(gc) − 1
ūi


c̄2

i − ū2
i

0
0

 0

 , (C.8)

Csi
= cp(T̄i)

m̄iβi

 γi

c̄2
i

gc + 1 − M̄2
i

ρ̄i


γi

m̄i(γi − 1)
Rg

0

 −gc − 1
ρ̄i


c̄2

i − ū2
i

0
0

 0 0

 · · · (C.9)

+

dcp(T̄i)
dT̄i

m̄icp(T̄i)βi

 −γi

gc + c̄2
i − ū2

i

ρ̄i


1
m̄i

Rg

0


 c̄2

i

gc + c̄2
i − ū2

i

ρ̄i


1
m̄i

Rg

0


 0 0

 ,

Cθi
=

 0 0 0
−Ri

0
0

 , (C.10)
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Cei
= 1

βi

 γi

γi − 1gc

(
h̄i − c̄2

i

γi − 1 + 3
2 ū2

i

)
gc − ρ̄i

ūi

(
h̄i − ū2

i

2

)
gc − 1

ūi

(
c̄2

i − ū2
i

)ū2
i

0
1

 0

 · · ·

(C.11)

+ Λ
βi

 −gc − c̄2
i − ū2

i

ρ̄i


1

m̄i

Rg

0

 c̄2
i

γi

gc + c̄2
i − ū2

i

ρ̄i


1

m̄i

Rg

0


 0 0

 .





Appendix D

The triviality of choice of side on
which a perturbation is applied

In this appendix we prove that, to first order, the side on which a perturbation is applied
has no influence in the computation of the unsteady feedback sensitivity. Let subscript 1
denote the position just before the perturbation (x−

0 ) and subscript 2 the position just
after (x+

0 ). Given the assumption that the base flow variables do not change after the
perturbation then, ū2 = ū1 = ū, and similar expressions for the other variables. We begin
by rewriting the momentum and energy equations from Eq. 5.9 using ϵ = Fu:

ρ̄ū (û2 − û1) + (p̂2 − p̂1) = ϵû1, (D.1)
ū (p̂2 − p̂1) + γp̄ (û2 − û1) = 0. (D.2)

Equating the momentum equation (D.1) to zero gives:

ρ̄ū

(
û2 − û1

(
1 + ϵ

ρ̄ū

))
+ (p̂2 − p̂1) = 0. (D.3)

Divide the equation by (1 + ϵ
ρ̄ū

):

ρ̄ū

 1
(1 + ϵ

ρ̄ū
) û2 − û1

+ 1
(1 + ϵ

ρ̄ū
) (p̂2 − p̂1) = 0. (D.4)

For small values of ϵ
ρ̄ū

the fraction in the equation can be expanded. To first order it
gives:

ρ̄ū

((
1 − ϵ

ρ̄ū

)
û2 − û1

)
+
(

1 − ϵ

ρ̄ū

)
(p̂2 − p̂1) = 0. (D.5)
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Rearranging:
ρ̄ū (û2 − û1) + (p̂2 − p̂1) = ϵû2 + ϵ

ρ̄ū
(p̂2 − p̂1) . (D.6)

To prove that (p̂2 − p̂1) is of order ϵ, recast Eq. (D.1):

(p̂2 − p̂1) = ϵû1 − ρ̄ū (û2 − û1) , (D.7)

From the energy equation (D.2) we have that:

(û2 − û1) = − ū

ρ̄c̄2 (p̂2 − p̂1) . (D.8)

Substituting back into Eq. (D.7) gives:

(p̂2 − p̂1) = ϵû1 + M̄2 (p̂2 − p̂1) , (D.9)

Rearranging:
(p̂2 − p̂1) = ϵ

1 − M̄2
û1. (D.10)

Hence, the unsteady pressure difference is of order ϵ, substituting this result back into
equation (D.6) and removing second order terms gives:

ρ̄ū (û2 − û1) + (p̂2 − p̂1) = ϵû2 (D.11)

Hence, it has been shown that, to first order, the side on which the perturbation is
applied has no influence in the computation of the unsteady feedback mechanisms.



Appendix E

Computing matrix δL for the Rijke
tube

Once the boundary conditions have been applied, by taking the Laplace transform of the
perturbed wave solutions (i.e., Eq. (5.18)) we obtain:

Aii
+ = A−1

(
Rue−iωτu + EA+1

)
, (E.1a)

Aii
− = A−1(1 + EA−1

), (E.1b)
Aiii

+ = A+2(1 + EA+2
), (E.1c)

Aiii
− = A+2(Rde−iωτd + EA−2

), (E.1d)

where

EA+1
= 1

2

(
Fp1

(
Rue−iωτu + e−iωτa

)
+ Fu1

ρ̄1c̄1

(
Rue−iωτu − e−iωτa

)
· · ·

+Qp1

c̄1

(
Rue−iωτu + e−iωτa

)
+ Qu1

ρ̄1c̄2
1

(
Rue−iωτu − e−iωτa

))
, (E.2a)

EA−1
= 1

2

(
Fp1

(
Rue−iω(τu−τa) + 1

)
+ Fu1

ρ̄1c̄1

(
Rue−iω(τu−τa) − 1

)
· · ·

−Qp1

c̄1

(
Rue−iω(τu−τa) + 1

)
− Qu1

ρ̄1c̄2
1

(
Rue−iω(τu−τa) − 1

))
, (E.2b)

EA+2
= 1

2

(
−Fp2

(
1 +Rde−iω(τd−τc)

)
− Fu2

ρ̄2c̄2

(
1 −Rde−iω(τd−τc)

)
· · ·

−Qp2

c̄2

(
1 +Rde−iω(τd−τc)

)
− Qu2

ρ̄2c̄2
2

(
1 −Rde−iω(τd−τc)

))
, (E.2c)
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EA−2
= 1

2

(
−Fp2

(
e−iωτc +Rde−iωτd

)
− Fu2

ρ̄2c̄2

(
e−iωτc −Rde−iωτd

)
· · ·

+Qp2

c̄2

(
e−iωτc +Rde−iωτd

)
+ Qu2

ρ̄2c̄2
2

(
e−iωτc −Rde−iωτd

))
, (E.2d)

where τa = 2(b− a)/c̄1 and τc = 2(c− b)/c̄2. After substitution of these expressions into
the jump conditions Eq. (2.25) we get the perturbed problem:

(L + δL) (q̂ + δq̂) = 0, (E.3)

where L and q̂ are given by Eq. (3.6), and δL is:

δL =
 −EA+1

− EA−1
EA+2

+ EA−2

(EA−1
− EA+1

)
(
1 + γ−1

γp̄1
βe−iωτ

)
c̄2
c̄1

(
EA+2

− EA−2

) . (E.4)
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