
ZU064-05-FPR paper 20 May 2019 10:30

Under consideration for publication in J. Functional Programming 1

A SQL to C Compiler in 500 Lines of Code

Tiark Rompf ∗ Nada Amin†

∗Purdue University, USA: tiark@purdue.edu
†University of Cambridge, UK: na482@cl.cam.ac.uk

Abstract

We present the design and implementation of a SQL query processor that outperforms existing
database systems and is written in just about 500 lines of Scala code – a convincing case study
that high-level functional programming can handily beat C for systems-level programming where
the last drop of performance matters.

The key enabler is a shift in perspective towards generative programming. The core of the query
engine is an interpreter for relational algebra operations, written in Scala. Using the open-source
LMS (Lightweight Modular Staging) framework, we turn this interpreter into a query compiler with
very low effort. To do so, we capitalize on an old and widely known result from partial evaluation:
the first Futamura projection, which states that a process that can specialize an interpreter to any
given input program is equivalent to a compiler.

In this context, we discuss LMS programming patterns such as mixed-stage data structures (e.g.
data records with static schema and dynamic field components) and techniques to generate low-level
C code, including specialized data structures and data loading primitives.

1 Introduction

Let us assume that we want to implement a serious, performance-critical, piece of system
software, like a database engine that processes SQL queries. Would it be a good idea to
pick a high-level language and a mostly functional programming style? Most people would
reply within a range from “probably not” to “surely you must be joking”: for systems-level
programming, C reigns supreme as the language of choice.

But let us do a quick experiment. We download a dataset from the Google Books NGram
Viewer project: a 1.7 GB file in CSV format that contains book statistics of words starting
with the letter ‘a’. As a first step to perform further data analysis, we load this file into a
database system, for example MySQL:

mysqlimport --local mydb 1gram_a.csv

When we run this command we can safely take a coffee break, as the import will take
a good five minutes on a decently modern laptop. Once our data has loaded and we have
returned from the break, we would like to run a simple SQL query, perhaps to find all
entries that match a given keyword:

select * from 1gram_a where phrase = ’Attention’

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/210584277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ZU064-05-FPR paper 20 May 2019 10:30

2 Tiark Rompf, Nada Amin

Unfortunately, we will have to wait another 50 seconds for an answer. While we are
waiting, we may start to look for alternative ways to analyze our data file. We can write
an AWK script to process the CSV file directly, which will take 45 seconds to run. Imple-
menting the same query as a Scala program will get us to 13 seconds. If we are still not
satisfied and rewrite it in C using memory-mapped IO, we can get down to 3.2 seconds.

Of course, this comparison may not seem entirely fair. The database system is generic.
It can run many kinds of queries, possibly in parallel, and with transaction isolation in
the presence of updates. It may also automatically create caches and indexes to speed up
future queries once the data is loaded. In contrast to general-purpose systems, hand-written
queries run faster, but they are one-off, specialized solutions, unsuited to rapid exploration
of a dataset. In fact, this gap between general-purpose systems and specialized solutions
has been noted many times in the database community (Zukowski et al., 2005; Stonebraker
et al., 2007), with prominent researchers arguing that “one size fits all” is an idea whose
time has come and gone (Stonebraker & Çetintemel, 2005). While specialization is clearly
necessary for performance, would it not be nice to have the best of both worlds: being able
to write generic high-level code while programmatically deriving the specialized, low-level
code that is executed?

In this article, we show the following:

• Despite common database systems consisting of millions of lines of code, the essence
of a SQL engine is nice, clean and elegantly expressed as a functional interpreter for
relational algebra – at the expense of performance compared to hand-written queries.
We present the pieces step-by-step in Section 2.
• While the straightforward interpreted engine is rather slow, we show how we can turn

it into a query compiler that generates fast code with very little modification to the
code. The key technique is to stage the interpreter using LMS (Lightweight Modular
Staging (Rompf & Odersky, 2012)), which enables specializing the interpreter for
any given query (Section 3).
• Implementing a fast database engine requires techniques beyond simple code gen-

eration. Efficient data structures are a key concern, and we show how we can use
staging to support specialized hash tables and efficient data layouts, in particular
column storage (Section 4).
• Another key concern is low-level control over IO and data representations. By us-

ing LMS to generate C code, we can support specialized type representations and
memory-mapped IO to eliminate data copying (Section 5).
• We compare the performance of our query engine to the widely used PostgreSQL

database system, showing speedups from 4x to 7x for filter, join, and group-by
queries over a dataset of Amazon food and movie reviews (Section 6).

• We present a glimpse of how this query engine can be grown into a full-scale system,
summarizing results from SIGMOD’18 (Tahboub et al., 2018) and OSDI’18 (Esser-
tel et al., 2018) including experimental results on the standard TPC-H benchmark
(Section 7).

The SQL engine presented here is deliberately simple, but can be extended in straight-
forward ways. The database community, too, has significant work on query-to-native com-
pilation, mostly based on LLVM (Neumann, 2011). A first attempt at building a SQL

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 3

engine in LMS won a best paper award at VLDB’14 (Klonatos et al., 2014). The present
paper originated in a tutorial given at CUFP’14, in an attempt to distill the essence of the
VLDB work and present a more elegant design. A previous version was published as a
functional pearl at ICFP’15 (Rompf & Amin, 2015). The present version adds Section 6
(performance evaluation), Section 7 (scaling to a realistic SQL engine), and Section 8
(related work) as new material. Since then, the approach has been extended by the first
author’s group at Purdue into a complete SQL engine, which, in about 2500 lines of
code, includes support for indexes and parallelism, and is able to run the full TPC-H
benchmark (The Transaction Processing Council, 2002). Results are competitive with the
best SQL compilers from the database community and were published at SIGMOD’18
(Tahboub et al., 2018) and OSDI’18 (Essertel et al., 2018). Section 7 summarizes these
results. The full code accompanying the present article is available at:

scala-lms.github.io/tutorials/query.html

2 A SQL Interpreter, Step by Step

We start with a small data file for illustration purposes (see Figure 1). This file, talks.csv,
contains a list of talks from a recent conference, with identifier, time, title of the talk, and
room where it takes place.

tid,time,title,room

1,09:00 AM,Erlang 101 - Actor and Multi-Core Programming,New York Central

2,09:00 AM,Program Synthesis Using miniKanren,Illinois Central

3,09:00 AM,Make a game from scratch in JavaScript,Frisco/Burlington

4,09:00 AM,Intro to Cryptol and High-Assurance Crypto Engineering,Missouri

5,09:00 AM,Working With Java Virtual Machine Bytecode,Jeffersonian

6,09:00 AM,Let’s build a shell!,Grand Ballroom E

7,12:00 PM,Golang Workshop,Illinois Central

8,12:00 PM,Getting Started with Elasticsearch,Frisco/Burlington

9,12:00 PM,Functional programming with Facebook React,Missouri

10,12:00 PM,Hands-on Arduino Workshop,Jeffersonian

11,12:00 PM,Intro to Modeling Worlds in Text with Inform 7,Grand Ballroom E

12,03:00 PM,Mode to Joy - Diving Deep Into Vim,Illinois Central

13,03:00 PM,Get ’go’ing with core.async,Frisco/Burlington

14,03:00 PM,What is a Reactive Architecture,Missouri

15,03:00 PM,Teaching Kids Programming with the Intentional Method,Jeffersonian

16,03:00 PM,Welcome to the wonderful world of Sound!,Grand Ballroom E

Fig. 1. Input file talks.csv for running example.

It is not hard to write a short program in Scala that processes the file and computes a
simple query result. As a running example, we want to find all talks at 9am and print out
their rooms and titles. Here is the code:

printf("room,title")

val in = new Scanner("talks.csv")

in.next(’\n’)

while (in.hasNext) {

val tid = in.next(’,’)

val time = in.next(’,’)

ZU064-05-FPR paper 20 May 2019 10:30

4 Tiark Rompf, Nada Amin

val title = in.next(’,’)

val room = in.next(’\n’)

if (time == "09:00 AM")

printf("%s,%s\n",room,title)

}

in.close

We use a Scanner object from the standard library to tokenize the file into individual data
fields and print out only the records and fields we are interested in.

Running this little program produces the following result, just as expected:
room,title

New York Central,Erlang 101 - Actor and Multi-Core Programming

Illinois Central,Program Synthesis Using miniKanren

Frisco/Burlington,Make a game from scratch in JavaScript

Missouri,Intro to Cryptol and High-Assurance Crypto Engineering

Jeffersonian,Working With Java Virtual Machine Bytecode

Grand Ballroom E,Let’s build a shell!

While it is relatively easy to implement very simple queries in such a way, and the
resulting programs will run fast, the complexity gets out of hand quickly. So let us go
ahead and add some abstractions to make the code more general.

The first thing we add is a class to encapsulate data records:
case class Record(fields: Fields, schema: Schema) {

def apply(name: String) = fields(schema indexOf name)

def apply(names: Schema) = names map (apply _)

}

And some auxiliary type definitions:
type Fields = Vector[String]

type Schema = Vector[String]

Each records contains a list of field values and a schema, for now only a heading, i.e.,
a list of field names. With that, it provides a method to look up a field value, given a
field name, and another version of this method that return a list of values, given a list of
names. This will make our code independent of the order of fields in the file. Another thing
that is bothersome about the initial code is that I/O boilerplate such as the scanner logic is
intermingled with the actual data-processing. To fix this, we introduce a method processCSV
that encapsulates the input handling:
def processCSV(file: String)(yld: Record => Unit): Unit = {

val in = new Scanner(file)

val schema = in.next(’\n’).split(",").toVector

while (in.hasNext) {

val fields = schema.map(n => in.next(if (n == schema.last) ’\n’ else ’,’))

yld(Record(fields, schema))

}

}

This method fully abstracts over all file handling and tokenization. It takes a file name as
input, along with a callback that it invokes for each line in the file with a freshly created
record object. The schema is read from the first line of the file.

With these abstractions in place, we can express our data processing logic in a much
nicer way:

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 5

printf("room,title")

processCSV("talks.csv") { rec =>

if (rec("time") == "09:00 AM")

printf("%s,%s\n",rec("room"),rec("title"))

}

The output will be exactly the same as before.

Parsing SQL Queries While the programming experience has much improved, the query
logic is still essentially hardcoded. What if we want to implement a system that can itself
answer queries from the outside world – say, respond to SQL queries it receives over a
network connection?

We will build a SQL interpreter on top of the existing abstractions next. But first we
need to understand what SQL queries mean. We follow the standard approach in database
systems of translating SQL statements to an internal query execution plan representation–a
tree of relational-algebra operators. The Operator data type is defined in Figure 2, and we
will implement a function parseSql that produces instances of that type.

Here are a few examples. For a query that returns its whole input, we get a single table-
scan operator:

parseSql("select * from talks.csv")

↪→ Scan("talks.csv")

If we select specific fields, with possible renaming, we obtain a projection operator with
the table scan as parent:

parseSql("select room as where, title as what from talks.csv")

↪→ Project(Vector("where","what"),Vector("room","title"),

Scan("talks.csv"))

And if we add a condition, we obtain an additional filter operator:

parseSql("select room, title from talks.csv where time=’09:00 AM’")

↪→ Project(Vector("room","title"),Vector("room","title"),

Filter(Eq(Field("time"),Value("09:00 AM")),

Scan("talks.csv")))

Finally, we can use joins, aggregations (groupBy) and nested queries. Here is a more
complex query that finds all different talks that happen at the same time in the same room
(hopefully there are none!):

parseSql("select *
from (select time, room, title as title1 from talks.csv)

join (select time, room, title as title2 from talks.csv)

where title1 <> title2")

↪→ Filter(Ne(Field("title1"),Field("title2")),

Join(

Project(Vector("time","room","title1"),Vector(...),

Scan("talks.csv")),

Project(Vector("time","room","title2"),Vector(...),

Scan("talks.csv")))

ZU064-05-FPR paper 20 May 2019 10:30

6 Tiark Rompf, Nada Amin

// relational-algebra ops

sealed abstract class Operator

case class Scan(name: Table) extends Operator

case class Print(parent: Operator) extends Operator

case class Project(out: Schema, in: Schema, parent: Operator) extends Operator

case class Filter(pred: Predicate, parent: Operator) extends Operator

case class Join(parent1: Operator, parent2: Operator) extends Operator

case class HashJoin(parent1: Operator, parent2: Operator) extends Operator

case class Group(keys: Schema, agg: Schema, parent: Operator) extends Operator

// filter predicates

sealed abstract class Predicate

case class Eq(a: Ref, b: Ref) extends Predicate

case class Ne(a: Ref, b: Ref) extends Predicate

sealed abstract class Ref

case class Field(name: String) extends Ref

case class Value(x: Any) extends Ref

Fig. 2. Query-plan language (relational-algebra operators)

def stm: Parser[Operator] =

selectClause ~ fromClause ~ whereClause ~ groupClause ^^ {

case p ~ s ~ f ~ g => g(p(f(s))) }

def selectClause: Parser[Operator=>Operator] =

"select" ~> ("*" ^^^ idOp | fieldList ^^ {

case (fs,fs1) => Project(fs,fs1,_:Operator) })

def fromClause: Parser[Operator] =

"from" ~> joinClause

def whereClause: Parser[Operator=>Operator] =

opt("where" ~> predicate ^^ { p => Filter(p, _:Operator) })

def joinClause: Parser[Operator] =

repsep(tableClause, "join") ^^ { _.reduce((a,b) => Join(a,b)) }

def tableClause: Parser[Operator] =

tableIdent ^^ { case table => Scan(table, schema, delim) } |

("(" ~> stm <~ ")")

// 30 lines elided

Fig. 3. Combinator parsers for SQL grammar

Parser Combinators In good functional-programming style, we use Scala’s combinator-
parser library (Odersky & Rompf, 2014; Jonnalagedda et al., 2014) to define our SQL
parser. The details are not overly illuminating, but we show an excerpt in Figure 3. While
the code may look dense on first glance, it is rather straightforward when read top-to-
bottom. The important bit is that the result of parsing a SQL query is an Operator object, a
representation we will focus on next.

Interpreting Relational-Algebra Operators Given that the result of parsing a SQL state-
ment is a query execution plan, we need to specify how to turn such a plan into actual query
execution. The classical database model would be to define a stateful iterator interface
with open, next, and close functions for each type of operator (also known as volcano

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 7

model (Graefe, 1994)). In contrast to this traditional pull-driven execution model, recent
database work proposes a push-driven model to reduce indirection (Neumann, 2011).

Working in a higher-order functional language and coming from a background informed
by PL theory, we consider a push model to be a more natural fit from the start: we would
like to give a compositional account of what an operator does, and it is easy to describe the
semantics of each operator in terms of what records it emits to its caller. This means that
we can define a semantic domain as type

type Semant = (Record => Unit) => Unit

with the idea that the argument is a callback that is invoked for each emitted record. With
that, we describe the meaning of each operator through a function execOpwith the following
signature:

def execOp: Operator => Semant

Even without these considerations, we might pick the push mode of implementation for
completely pragmatic reasons: the executable code corresponds almost directly to a text-
book definition of the query operators, and it would be hard to imagine an implementation
that is clearer or more concise. The following code might therefore serve as a definitional
interpreter in the spirit of Reynolds (1972; 1998):

def execOp(o: Operator)(yld: Record => Unit): Unit = o match {

case Scan(filename) =>

processCSV(filename)(yld)

case Print(parent) =>

execOp(parent) { rec =>

printFields(rec.fields) }

case Filter(pred, parent) =>

execOp(parent) { rec =>

if (evalPred(pred)(rec)) yld(rec) }

case Project(newSchema, parentSchema, parent) =>

execOp(parent) { rec =>

yld(Record(rec(parentSchema), newSchema)) }

case Join(left, right) =>

execOp(left) { rec1 =>

execOp(right) { rec2 =>

val keys = rec1.schema intersect rec2.schema

if (rec1(keys) == rec2(keys))

yld(Record(rec1.fields ++ rec2.fields,

rec1.schema ++ rec2.schema)) }}

}

So what does each operator do? A table scan just means that we are reading an input file
through our previously defined processCSV method. A print operator prints all the fields
of every record that its parent emits. A filter operator evaluates the predicate, for each
record its parent produces, and if the predicate holds it passes the record on to its own
caller. A projection rearranges the fields in a record before passing it on. A join, finally,
matches every single record it receives from the left against all records from the right, and
if the fields with a common name also agree on the values, it emits a combined record.
Of course this is not the most efficient way to implement a join, and adding an efficient
hash-join operator is straightforward. The same holds for the group-by operator, which we
have omitted so far. We will come back to this in Section 4.

ZU064-05-FPR paper 20 May 2019 10:30

8 Tiark Rompf, Nada Amin

To complete this section, we show the auxiliary functions used by execOp. Function
evalRef evaluates a reference, which may denote either a constant value or a record-field
reference:

def evalRef(p: Ref)(rec: Record) = p match {

case Value(a: String) => a

case Field(name) => rec(name)

}

Function evalPred evaluates an equality or disequality predicate on a given Record:

def evalPred(p: Predicate)(rec: Record) = p match {

case Eq(a,b) => evalRef(a)(rec) == evalRef(b)(rec)

case Ne(a,b) => evalRef(a)(rec) != evalRef(b)(rec)

}

Function printFields prints a list of fields as formatted output:

def printFields(fields: Fields) =

printf(fields.map(_ => "%s").mkString("",",","\n"), fields: _*)

Finally, to put everything together, we provide a main object that integrates parsing and
execution, and that can be used to run queries against CSV files from the command line:

object Engine {

def main(args: Array[String]) {

if (args.length != 1)

return println("usage: engine <sql>")

val ops = parseSql(args(0))

execOp(Print(ops)) { _ => }

}

}

With the code in this section, which is about 100 lines combined, we have a fully functional
query engine that can execute a practically relevant subset of SQL.

But what about performance? We can run the Google Books query on the 1.7 GB
data file from Section 1 for comparison, and the engine we have built will take about 45
seconds. This is about the same as an AWK script, which makes sense, as AWK is also an
interpreted language. Compared to our starting point, handwritten scripts that ran in 10s,
the interpretive overhead we have added is clearly visible.

3 From Interpreter to Compiler

We will now show how we can turn our relatively slow query interpreter into a query
compiler that produces Scala or C code that is practically identical to the handwritten
queries that were the starting point of our development in Section 2.

Futamura Projections The key idea behind our approach goes back to early work on
partial evaluation in the 1970s, namely the notion of Futamura Projections (Futamura,
1971). The setting is to consider programs with two inputs, one designated as static and
one as dynamic. A program specializer or partial evaluator mix is then able to specialize
a program p with respect to a given static input. The key use case is if the program is an
interpreter:

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 9

result = interpreter(source, input)

Then specializing the interpreter with respect to the source program yields a program that
performs the same computation on the dynamic input, but faster:

target = mix(interpreter, source)

result = target(input)

This application of a specialization process to an interpreter is called the first Futamura
projection. In total there are three Futamura projections:

target = mix(interpreter, source) (1)

compiler = mix(mix, interpreter) (2)

cogen = mix(mix, mix) (3)

The second Futamura projection observes that if we can automate the process of specializ-
ing an interpreter to any static input, we obtain a program equivalent to a compiler. Finally
the third Futamura projection observes that specializing a specializer with respect to itself
yields a system that can generate a compiler from any interpreter given as input (Consel &
Danvy, 1993).

In our case, we do not rely on a fully automatic program specializer, but we delegate
some work to the programmer to change our query interpreter into a program that special-
izes itself by treating queries as static data and data files as dynamic input. In particular,
we use the following variant of the first Futamura projection:

target = staged-interpreter(source)

Here, staged-interpreter is a version of the interpreter that has been annotated by the
programmer. This idea was also used in bootstrapping the first implementation of the
Futamura projections by Neil Jones and others in Copenhagen (Jones et al., 1993). The
role of the programmer can be understood as being part of the mix system, but we will see
that the job of converting a straightforward interpreter into a staged interpreter is relatively
easy.

Lightweight Modular Staging Staging or multi-stage programming describes the idea of
making different computation stages explicit in a program, where the present stage pro-
gram generates code to run in a future stage. The concept goes back at least to Jørring and
Scherlis (Jørring & Scherlis, 1986), who observed that many programs can be separated
into stages, distinguished by frequency of execution or by availability of data. Taha and
Sheard (2000) introduced the language MetaML and made the case for making such stages
explicit in the programming model through the use of quotation operators, as known from
Lisp and Scheme macros.

Lightweight modular staging (LMS) (Rompf & Odersky, 2012) is a staging technique
based on types: instead of syntactic quotations, we use the Scala type system to designate
future stage expressions. Where any regular Scala expression of type Int, String, or in
general T is executed normally, we introduce a special type constructor Rep[T] with the
property that all operations on Rep[Int], Rep[String], or Rep[T] objects will generate code
to perform the operation later.

Here is a simple example of using LMS:

ZU064-05-FPR paper 20 May 2019 10:30

10 Tiark Rompf, Nada Amin

val power4 = new LMS_Driver[Int,Int] {

def power(b: Rep[Int], x: Int): Rep[Int] =

if (x == 0) 1 else b * power(b, x - 1)

def snippet(x: Rep[Int]): Rep[Int] = {

power(x,4)

}

}

power4(3)

↪→ 81

We create a new LMS_Driver object. Inside its scope, we can use Rep types and corre-
sponding operations. Method snippet is the ‘main’ method of this object. The driver will
execute snippet with a symbolic input. This will completely evaluate the recursive power
invocations (since it is a present-stage function) and record the individual expressions in the
intermediate representation (IR) as they are encountered. On exit of snippet, the driver will
compile the generated source code and load it as an executable into the running program.

Here, the generated code corresponds to:

class Anon12 extends ((Int)=>(Int)) {

def apply(x0:Int): Int = {

val x1 = x0*x0

val x2 = x0*x1

val x3 = x0*x2

x3

}

}

The performed specializations are immediately clear from the types: in the definition of
power, only the base b is dynamic (type Rep[Int]); everything else will be evaluated stat-
ically, at code-generation time. The expression driver(3) will then execute the generated
code and return the result 81.

Some LMS Internals While not strictly needed to understand the rest of this paper,
familiarity with some of the internals might be useful.

LMS is called lightweight because it is implemented as a library instead of baked into a
language, and it is called modular because there is complete freedom to define the available
operations on Rep[T] values. To user code, LMS provides just an abstract interface that lifts
(selected) functionality of types T to Rep[T]:

trait Base {

type Rep[T]

}

trait IntOps extends Base {

implicit def unit(x: Int): Rep[Int]

def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int]

def infix_*(x: Rep[Int], y: Rep[Int]): Rep[Int]

}

Internally, this API is wired to create an IR which can be further transformed and finally
unparsed to target code:

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 11

trait BaseExp {

// IR base classes: Exp[T], Def[T]

type Rep[T] = Exp[T]

def reflectPure[T](x:Def[T]): Exp[T] = .. // insert x into IR graph

}

trait IntOpsExp extends BaseExp {

case class Plus(x: Exp[Int], y: Exp[Int]) extends Def[Int]

case class Times(x: Exp[Int], y: Exp[Int]) extends Def[Int]

implicit def unit(x: Int): Rep[Int] = Const(x)

def infix_+(x: Rep[Int], y: Rep[Int]) = reflectPure(Plus(x,y))

def infix_*(x: Rep[Int], y: Rep[Int]) = reflectPure(Times(x,y))

}

Another way to look at this structure is as combining a shallow and a deep embedding for
an IR object language (Svenningsson & Axelsson, 2012). Methods like infix_+ can serve
as smart constructors that perform optimizations on the fly while building the IR (Rompf
et al., 2013). With some tweaks to the Scala compiler (or alternatively using Scala macros
(Rompf, 2016b)) we can extend this approach to lift language built-ins like conditionals or
variable assignments into the IR, by redefining them as method calls (Rompf et al., 2012).

Mixed-Stage Data Structures We have seen above that LMS can be used to unfold
functions and generate specialized code based on static values. One central design pattern
that will drive the specialization of our query engine is the notion of mixed-stage data
structures, which have both static and dynamic components.

Looking again at our earlier Record abstraction:

case class Record(fields: Vector[String], schema: Vector[String]) {

def apply(name: String): String = fields(schema indexOf name)

}

We would like to treat the schema as static data and treat only the field values as dynamic.
The field values are read from the input and vary per row, whereas the schema is fixed per
file and per query. We thus go ahead and change the definition of Records like this:

case class Record(fields: Vector[Rep[String]], schema: Vector[String]) {

def apply(name: String): Rep[String] = fields(schema indexOf name)

}

Now the individual fields have type Rep[String] instead of String which means that all
operations that touch any of the fields will need to become dynamic as well. On the other
hand, all computations that only touch the schema will be computed at code-generation
time. Moreover, Record objects are static as well. This means that the generated code
will manipulate the field values as individual local variables, instead of through a record
indirection. This is a strong guarantee (enforced by the type-checker): records cannot exist
in the generated code, unless we provide an API for Rep[Record] objects.

Staged Interpreter As it turns out, this simple change to the definition of records is the
only creative one we need to make to obtain a query compiler from our previous interpreter.
All other modifications follow by fixing the type errors that arise from this change. We
show the full code again in Figure 4. Note that we are now using a staged version of the
Scanner implementation, which needs to be provided as an LMS module.

ZU064-05-FPR paper 20 May 2019 10:30

12 Tiark Rompf, Nada Amin

val driver = new LMS_Driver[Unit,Unit] {

type Fields = Vector[Rep[String]]

type Schema = Vector[String]

case class Record(fields: Fields, schema: Schema) {

def apply(name: String): Rep[String] = fields(schema indexOf name)

def apply(names: Schema): Fields = names map (this apply _)

}

def processCSV(file: String)(yld: Record => Unit): Unit = {

val in = new Scanner(file)

val schema = in.next(’\n’).split(",").toVector

while (in.hasNext) {

val fields = schema.map(n=>in.next(if(n==schema.last)’\n’else’,’))

yld(Record(fields, schema))

}

}

def evalRef(p: Ref)(rec: Record): Rep[String] = p match {

case Value(a: String) => a

case Field(name) => rec(name)

}

def evalPred(p: Predicate)(rec: Record): Rep[Boolean] = p match {

case Eq(a,b) => evalRef(a)(rec) == evalRef(b)(rec)

case Ne(a,b) => evalRef(a)(rec) != evalRef(b)(rec)

}

def execOp(o: Operator)(yld: Record => Unit): Unit = o match {

case Scan(filename) =>

processCSV(filename)(yld)

case Print(parent) =>

execOp(parent) { rec =>

printFields(rec.fields) }

case Filter(pred, parent) =>

execOp(parent) { rec =>

if (evalPred(pred)(rec)) yld(rec) }

case Project(newSchema, parentSchema, parent) =>

execOp(parent) { rec =>

yld(Record(rec(parentSchema), newSchema)) }

case Join(left, right) =>

execOp(left) { rec1 =>

execOp(right) { rec2 =>

val keys = rec1.schema intersect rec2.schema

if (rec1(keys) == rec2(keys))

yld(Record(rec1.fields ++ rec2.fields, rec1.schema ++ rec2.schema)) }}

}

def printFields(fields: Fields) =

printf(fields.map(_ => "%s").mkString("",",","\n"), fields: _*)

def snippet(x: Rep[Unit]): Rep[Unit] = {

val ops = parseSql("select room,title from talks.csv where time = ’09:00 AM’")

execOp(PrintCSV(ops)) { _ => }

}

}

Fig. 4. Staged query interpreter = compiler. Changes are underlined.

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 13

Results Let us compare the generated code to the one that was our starting point in
Section 2. Our example query was:

select room, title from talks.csv where time = ’09:00 AM’

And here is the handwritten code again:

printf("room,title")

val in = new Scanner("talks.csv")

in.next(’\n’)

while (in.hasNext) {

val tid = in.next(’,’)

val time = in.next(’,’)

val title = in.next(’,’)

val room = in.next(’\n’)

if (time == "09:00 AM")

printf("%s,%s\n",room,title)

}

in.close

The generated code from the compiling engine is this:

val x1 = new scala.lms.tutorial.Scanner("talks.csv")

val x2 = x1.next(’\n’)

val x14 = while ({

val x3 = x1.hasNext

x3

}) {

val x5 = x1.next(’,’)

val x6 = x1.next(’,’)

val x7 = x1.next(’,’)

val x8 = x1.next(’\n’)

val x9 = x6 == "09:00 AM"

val x12 = if (x9) {

val x10 = printf("%s,%s\n",x8,x7)

} else {

}

x1.close

}

So, modulo syntactic differences, we have generated exactly the same code! And, of course,
this code will run just as fast. Looking again at the Google Books query, where the inter-
preted engine tooks 45s to run the query, we are down again to 10s but this time without
giving up on generality!

Error Handling Both our initial query interpreter and the staged query compiler operate
on an untyped syntax tree of query operators. Hence, there is the possibility of runtime
errors for queries that refer to non-existant fields, for example. Such errors manifest as
runtime exceptions during execution in the interpreter, and, since the data schema is static,
in most cases as exceptions during staging in the query compiler. It is an easy exercise to
add a separate semantic analysis pass to checks for such errors, and such a pass could serve
as a basis for a proper type-checking pass once other datatypes than strings are supported
(see Section 5). Other errors may of course still occur during execution, caused for example
by unexpected IO conditions such as a premature end-of-file.

ZU064-05-FPR paper 20 May 2019 10:30

14 Tiark Rompf, Nada Amin

4 Specializing Data Structures

In this section, we look at efficient join algorithms that require auxiliary data structures and
we show how can leverage generative techniques for this purpose as well, going beyond
simple compilation.

Hash Joins and Aggregates A full-fledged SQL engine may include many different kinds
of join operators (e.g., inner, outer, anti-, and semi-joins) and a high-level query opti-
mizer that picks a physical realization (e.g., hash join or sort-merge join). As before, we
content ourselves with standard inner joins on equality predicates, but we add a variant
implemented as hash joins. We also add grouped summation, implemented using hash
aggregation. We can either add a simple query optimizer to pick between the nested-loops
join operator introduced above and the new hash join operator, or we expose the choice
in the SQL syntax. Maintaining the style of a definitional interpreter, we would like to
implement the new operators by extending execOp in the following way:

def execOp(o: Operator)(yld: Record => Unit): Unit = o match {

// ... pre-existing operators elided

case Group(keys, agg, parent) =>

val hm = new HashMapAgg(keys, agg)

execOp(parent) { rec =>

hm(rec(keys)) += rec(agg)

}

hm foreach { (k,a) =>

yld(Record(k ++ a, keys ++ agg))

}

case HashJoin(left, right) =>

val keys = resultSchema(left) intersect resultSchema(right)

val hm = new HashMapBuffer(keys, resultSchema(left))

execOp(left) { rec1 =>

hm(rec1(keys)) += rec1.fields

}

execOp(right) { rec2 =>

hm(rec2(keys)) foreach { rec1 =>

yld(Record(rec1.fields ++ rec2.fields,

rec1.schema ++ rec2.schema))

}

}

}

An aggregation will collect all records from the parent operator into buckets and accumu-
late sums in a hash table. Once all records are processed, all key-value pairs from the hash
map will be emitted as records. A hash join will insert all records from the left parent into
a hash map, indexed by the join key. Afterwards, all the records from the right will be used
to look up matching left records from the hash table, and the operator will pass combined
records on to its callback. This approach is much more efficient for larger data sets than
the naive nested loops join from Section 2.

Data-Structure Specialization What are the implementations of hash tables that we need
to provide to make the above code work? We could opt to just use lifted versions of the
regular Scala hash tables, i.e. Rep[HashMap[K,V]] objects. However, these are not the most

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 15

efficient for our case, since they have to support a very generic programming interface. We
want to execute only the actual data-dependent operations such as computing hash values,
but we do not want to incur any dispatch overhead that, e.g., has to look up a method to
perform those hash computations. Morever, recall our staged Record definition:

case class Record(fields: Vector[Rep[String]], schema: Vector[String]) {

def apply(name: String): Rep[String] = fields(schema indexOf name)

}

A crucial design choice was to treat records as a purely staging-time abstraction. If we
were to use Rep[HashMap[K,V]] objects, we would have to use Rep[Record] objects as well,
or at least Rep[Vector[String]]. The choice of using Vector[Rep[String]] means that all
field values will be mapped to individual entities in the generated code. This property
naturally leads to a design for data structures in column-oriented instead of row-oriented
order. Instead of working with:

Collection[{ Field1, Field2, Field3 }]

We work with:

{ Collection[Field1], Collection[Field2], Collection[Field3] }

This layout has other important benefits, for example in terms of memory-bandwidth
utilization, and is becoming increasingly popular in contemporary in-memory database
systems.

Usually, programming in a columnar style is more cumbersome than in a record-oriented
manner. But fortunately, we can completely hide the column-oriented nature of our internal
data structures behind a high-level record-oriented interface. Let us go ahead and imple-
ment a growable ArrayBuffer (following the corresponding class from the standard Scala
collections library), which will serve as the basis for our HashMaps:

class ArrayBuffer[T:Typ](dataSize: Int, schema: Schema) {

val buf = schema.map(f => NewArray[T](dataSize))

var len = 0

def +=(x: Seq[Rep[T]]) = {

this(len) = x

len += 1

}

def update(i: Rep[Int], x: Seq[Rep[T]]) = {

(buf,x).zipped.foreach((b,x) => b(i) = x)

}

def apply(i: Rep[Int]) = {

buf.map(b => b(i))

}

}

The array buffer is passed a schema on creation, and it sets up one buffer for each of the
columns. Here, we keep it simple, yet it would be very easy to introduce specialization,
for example specialized columns (see Section 5), or sparse or compressed columns for
cases where we know that most values will be zero. The update and apply methods of
ArrayBuffer still provide a row-oriented interface, working on a set of Fields together, but
internally access the distinct column buffers.

ZU064-05-FPR paper 20 May 2019 10:30

16 Tiark Rompf, Nada Amin

With this definition of array buffers at hand, we can define a class hierarchy of hash
maps, with a common base class and then derived classes for aggregations (storing scalar
values) and joins (storing collections of objects):

class HashMapBase(keySchema: Schema, schema: Schema) {

val keys = new ArrayBuffer(keysSize, keySchema)

val htable = NewArray[Int](hashSize)

def lookup(k: Fields) = ...

def lookupOrUpdate(k: Fields)(init: Rep[Int]=>Rep[Unit]) = ...

}

// hash table for groupBy, storing scalar sums

class HashMapAgg(keySchema: Schema, schema: Schema) extends

HashMapBase(keySchema: Schema, schema: Schema) {

val values = new ArrayBuffer(keysSize, schema)

def apply(k: Fields) = new {

def +=(v: Fields) = {

val keyPos = lookupOrUpdate(k) { keyPos =>

values(keyPos) = schema.map(_ => 0)

}

values(keyPos) = (values(keyPos) zip v) map (_ + _)

}}

def foreach(f: (Fields,Fields) => Rep[Unit]): Rep[Unit] =

for (i <- 0 until keyCount)

f(keys(i),values(i))

}

// hash table for joins, storing lists of records

class HashMapBuffer(keySchema: Schema, schema: Schema) extends

HashMapBase(keySchema: Schema, schema: Schema) {

// ... details elided

}

Note that the hash-table implementation is oblivious of the storage format used by the
array buffers. Furthermore, we’re freely using object-oriented techniques like inheritance
without the usually associated overheads because all these abstractions exist only at code-
generation time.

5 Switching to C and Optimizing IO

While we have seen impressive speedups just through compilation of queries, let us recall
from Section 1 that we can still go faster. By writing our query by hand in C instead of
Scala we were able to run it in 3s instead of 10s. The technique there was to use the mmap

system call to map the input file into memory, so that we could treat it as a simple array
instead of copying data from read buffers into string objects.

Memory-Mapped IO and Data Representations LMS provides code-generation facili-
ties not only for Scala but also for C. The C back-end provides low-level APIs for pointers
and memory management, which we will use to implement memory-mapped IO. One
key benefit will be to eliminate data copies and represent strings just as pointers into
the memory-mapped file, instead of first copying data into another buffer. But there is a
problem: the standard C API assumes that strings are null-terminated, but in our memory-
mapped file, strings will be delimited by commas or line breaks.

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 17

To this end, we introduce our own operations and data types for data fields. Instead of the
previous definition of Fields as Vector[Rep[String]], we introduce a small class hierarchy
Value with the necessary operations:

type Fields = Vector[Value]

abstract class Value {

def print()

def compare(o: Value): Rep[Boolean]

def hash: Rep[Long]

}

case class StringValue(data: Rep[Pointer[Char]], len: Rep[Int]) extends Value {

def print() = ...

def compare(o: Value) = ...

def hash = ...

}

case class IntValue(value: Rep[Int]) extends Value {

def print() = printf("%d",value)

def compare(o: Value) = o match { case IntValue(v2) => value == v2 }

def hash = value.asInstanceOf[Rep[Long]]

}

The new string type StringValue consists of a raw pointer into a buffer of characters and a
length. Note that this change is again completely orthogonal to the actual query-interpreter
logic. However, we generalize our specialized ArrayBuffer data structure from Section 4 to
work with these specialized field representations.

abstract class ColBuffer

case class IntColBuffer(data: Rep[Array[Int]]) extends ColBuffer

case class StringColBuffer(data: Rep[Array[Pointer[Char]]],

len: Rep[Array[Int]]) extends ColBuffer

class ArrayBuffer(dataSize: Int, schema: Schema) {

val buf = schema.map {

case hd if isNumericCol(hd) =>

IntColBuffer(NewArray[Int](dataSize))

case _ =>

StringColBuffer(NewArray[Pointer[Char]](dataSize),

NewArray[Int](dataSize))

}

...

def update(i: Rep[Int], x: Fields) = (buf,x).zipped.foreach {

case (IntColBuffer(b), IntValue(x)) => b(i) = x

case (StringColBuffer(b,l), StringValue(x,y)) => b(i) = x; l(i) = y

}

def apply(i: Rep[Int]): Fields = buf.map {

case IntColBuffer(b) => IntValue(b(i))

case StringColBuffer(b,l) => StringValue(b(i),l(i))

}

}

The array buffer now sets up one ColBuffer object for each of the columns. In this version
of our query engine we also introduce typed columns, treating a column whose name starts
with “#” as numeric. This enables us to use primitive integer arrays for storage of numeric
columns instead of a generic binary format.

ZU064-05-FPR paper 20 May 2019 10:30

18 Tiark Rompf, Nada Amin

As the final piece in the puzzle, we provide our own specialized Scanner class that gen-
erates mmap calls (supported by a corresponding LMS IR node) and creates Value instances
when reading the data:

class Scanner(name: Rep[String]) {

val fd = open(name)

val fl = filelen(fd)

val data = mmap[Char](fd,fl)

var pos = 0

def next(d: Rep[Char]) = {

//...

StringValue(data + start, len)

}

def nextInt(d: Rep[Char]) = {

//...

IntValue(num)

}

}

With this, we are able to generate tight C code that executes the Google Books query in
3s, just like the hand-written optimized C code. The total size of the code is just under 500
(non-blank, non-comment) lines.

The crucial point here is that while we cannot hope to beat hand-written specialized C
code for a particular query–after all, anything we generate could also be written by hand–
we are beating, by a large margin, the highly optimized generic C code that makes up
the bulk of MySQL, PostgreSQL, and other traditional database systems. By changing the
perspective to embrace a generative approach we are able to raise the level of abstraction,
and to leverage high-level functional-programming techniques to achieve excellent perfor-
mance with very concise code.

6 Performance Evaluation

We have seen impressive speedups for the Google Books query, but what about more com-
plex queries, including joins and aggregates? To substantiate our claims to performance
further, we present additional experiments below. Performance results on the standard
TPC-H benchmark are discussed in Section 7, summarizing a paper from SIGMOD’18
that describes a more complete SQL engine developed in the same style (Tahboub et al.,
2018).

Amazon Reviews We pick a dataset based on Amazon reviews for movies and food
products. Figure 5 shows the schema description of the Movies table (1,000,000 tuples)
and the Food table (500,000 tuples). The experiment runs three different queries (Filter,
Join and Group-by, shown in Table 6) and measures the running time of PostgreSQL, our
unstaged query interpreter in Scala, and our staged query compiler generating Scala as well
as optimized C.

Figure 7 shows the results. The access path in all queries is a file scan, i.e., data is
processed in-situ without a pre-loading phase, and without using indices in PostgreSQL.
The reported numbers are minimums of 5 consecutive runs. The filter query scans the
Movies table and filters out tuples where the value of the helpful attribute is equal to

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 19

Movies Table: Food Table:

productid VARCHAR productid VARCHAR

userid VARCHAR userid VARCHAR

helpful VARCHAR helpful VARCHAR

score INTEGER score INTEGER

time INTEGER time INTEGER

Fig. 5. Movies and Food tables used in experiments

Filter select * from Movies where helpful = ’10/10’

Join select * from Food, Movies where Food.userid = Movies.userid

Group by select productid, sum(score) from Movies group by productid

Fig. 6. Queries used in experiments

‘10/10’. The compiled C code outperforms the Scala interpreter by 11x and PostgreSQL
by 4.75x. Similar to the Google Books query, the improvement in Filter is mainly due
to removing the overhead of iterator-style query evaluation by operating in push-mode
rather than pull-mode, and removing further interpretive overhead via code generation.
The Join query finds Movies and Food reviews written by the same person. The Hash Join
implementation builds a hash table on Food.userid. The compiled C code is one order of
magnitude faster than the unstaged Scala and 4.47x faster than PostgreSQL. Finally, the
Group-by query groups data based on the productid and then calculates the sum of scores
for each group. The optimized C code outperforms unstaged Scala by 15x and PostgreSQL
by 7.24x. The large performance improvement in Group-by relative to PostgreSQL is
mainly due to compiling specialized data structures, where PostgreSQL has to use a generic
representation.

For completeness, Figure 7 also shows the performance of compiling to Scala. While
generally in between the Scala interpreter and the compiled C version, the Join query shows
only a minimal speedup when generating Scala. This somewhat surprising result exposes
one of the pitfalls of running on a managed runtime such as the JVM: the generated code is
larger than a certain internal JVM threshold and therefore not considered for just-in-time
compilation.

Environment All experiments were run on an HP compute node with two 10-core Intel
Xeon-E5 processors and 256 GB of memory. The operating system is Red Hat Enterprise
Linux 6. We used Scala version 2.11.2, PostgreSQL 9.4 with 50GB of shared_buffers, and
gcc 4.9 with optimization flags -O3. The Java Virtual Machine for running Scala programs
was configured with 20 GB of heap space.

ZU064-05-FPR paper 20 May 2019 10:30

20 Tiark Rompf, Nada Amin

0	

200	

400	

600	

800	

1000	

1200	

Filter	 Join	 Group	 by	

Ru
nn

in
g	
8m

e	
(m

s)
	

PostgreSQL	

Scala	 Interpreter	

Compiled	 to	 Scala	

Compiled	 to	 C	

Fig. 7. Performance evaluation: Compiled C code is 4-7x faster than PostgreSQL and 10-15x faster
than the Scala interpreter.

7 Scaling to a Realistic SQL Engine

LB2 is a more complete SQL engine presented at SIGMOD’18 (Tahboub et al., 2018)
and OSDI’18 (Essertel et al., 2018), implemented by the first author’s group at Purdue,
in particular his graduate students Grégory Essertel, Ruby Tahboub, and James Decker.
LB2 was implemented as a full-scale extension of the 500 line engine presented in the
preceding sections. It supports indexes and parallelism, and supports enough SQL to run
the industry-standard TPC-H benchmark. Performance-wise, LB2 matches and sometimes
beats the best query compilers from the database community. This section summarizes key
technical details and experimental results from the corresponding publications (Tahboub
et al., 2018; Essertel et al., 2018), to which we refer readers for a more complete exposition.

LB2 does not implement a SQL parser of its own. Instead, it uses the SQL parser, type
checker, and high-level query optimizer from the Spark SQL project (Armbrust et al.,
2015). Flare (Essertel et al., 2018) is an extension of LB2 that integrates directly with Spark
and acts as a drop-in accelerator that provides increased performance for Spark workloads
when executed on a single node. The inputs to LB2 and Flare are query plans produced by
Spark’s Catalyst query planner, which LB2 translates to its own operator representation.
Data can be stored in multiple formats, including CSV, Apache Parquet, and as straight
binary dump of LB2’s own internal columnar or row-oriented representation, which can be
directly mmap’ed back into memory. This way, LB2 delegates caching and paging decisions
to the operating system without having to implement a persistence layer of its own.

LB2’s internal operator representation is a direct extension of the Operator type from
Sections 2 and 3. The difference of course is that LB2 needs to support a larger number
of operators, including semi joins, anti joins, outer joins, sorting, etc., as well as operators
with more complex interfaces, such as group-by with multiple aggregates, non-equi-joins
with complex predicates, and so on. To handle this larger number of operators, LB2 imple-
ments the main operator logic in an instance method exec on class Operator instead of in an
external function execOp. The core interface and implementations of Select and HashJoin

are shown below:

type Pred = Record => Rep[Boolean]

type KeyFun = Record => Record

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 21

// object-oriented operator interface for increased modularity

class Operator {

def exec(f: Record => Unit): Unit

}

// select operator

class Select(op: Operator)(pred: Pred) extends Operator {

def exec(cb: Record => Unit) = {

op.exec { tuple =>

if (pred(tuple)) cb(tuple)

}

}

}

// hash join operator

class HashJoin(left: Operator, right: Operator)(lkey: KeyFun)(rkey: KeyFun) extends Operator {

def exec(cb: Record => Unit) = {

val hm = new HashMapBuffer(resultSchema())

left.exec { rec =>

hm += (lkey(rec), rec)

}

right.exec { rec =>

for (lr <- hm(rkey(rec))

cb(merge(lr,rec))

}

}

}

Note that HashJoin adds key selector functions lkey and rkey to support joins other than
natural joins, i.e., joining fields with different names.

Internally, LB2 supports both row-oriented and column-oriented records. To abstract
over this choice under a clean interface, Record becomes an abstract base class with two
concrete implementation classes:

// support both row-oriented and column-oriented records with a common interface

abstract class Record { def schema: Seq[Field]; def apply(name: String): Value }

// implementation subclasses

case class NativeRec(pt: Rep[Pointer[Byte]], schema: Seq[Field]) extends Record {

def apply(name: String) = getField(schema,name).readValue(pt, getFieldOffset(schema,name))

}

case class ColumnRec(fields: Seq[Value], schema: Seq[Field]) extends Record {

def apply(name: String) = fields(getFieldIndex(schema,name))

}

LB2 also needs to support a variety of data types. Section 5 already introduced a split
between field types Int and String using a common base class Value:

abstract class Value // models an attribute’s value

case class IntValue(value: Rep[Int]) extends Value { ... }

case class StringValue(data: Rep[Pointer[Char]], length: Rep[Int]) extends Value { ... }

But in this previous setting we used the column name to encode the type, treating columns
whose name started with “#” as numeric. For a full-scale SQL engine this is not an option,
so LB2 introduces a proper hierarchy of field descriptors to model the types of columns
and potentially other column attributes, such as size bounds, nullability, foreign-key con-
straints, or the presence of indexes.

ZU064-05-FPR paper 20 May 2019 10:30

22 Tiark Rompf, Nada Amin

abstract class Field { def name: String, ... } // models an attribute’s name and type

case class IntField(name: String) extends Field // Int type attribute

case class StringField(name: String) extends Field // String type attribute

As in Section 5, the implicit lesson here is that object-oriented abstraction and staging work
together just fine.

7.1 Index Structures

It is often desirable to speed up up query execution by using indexes. This way, search
over an input relation can be replaced by a lookup operation on an index data structure,
reducing a linear-time operation to logarithmic time with tree indexes or expected constant
time with hash indexes. Decisions when and how to use an index are typically made during
the query planning and optimization phase, based on statistics and metadata. To add index
capabilities, LB2 provides a corresponding set of indexed query operators in the same style
as other operators. The code below shows an index join. The operator interface is extended
with a getIndex method, which enables IndexJoin.exec to find tuples that match the join
key:

// Index join operator that uses index created on the left table

class IndexJoin(left: Op, right: Op)(lkey: String)(rkey: KeyFun) extends Op {

def exec(cb: Record => Unit) = {

val index: Index = left.getIndex(lkey) // obtain index for left table

right.exec { rTuple => // use index to find matching tuples

for (lTuple <- index(rkey(rTuple))) cb(merge(lTuple, rTuple))

} } }

LB2 implements sparse and dense index data structures for primary and foreign keys
behind a uniform Index interface. An IndexEntryView class enables iterating over index
lookups via foreach. An additional method exists is used byIndexSemiJoin andIndexAntiJoin
operators. Indexes are implemented in the same way as other data structures (Section 4).

In addition to query evaluation, LB2 generates data loading code for different storage
formats, which is extended to create index structures. These can serve as additional access
paths on top of underlying data, or as primary partioned and/or replicated data format, e.g.,
when there are multiple foreign keys.
Date Indexes. LB2 represents dates as numeric values to speed up filter and range op-
erations. If metadata about date ranges is available, it will enable further shortcuts. LB2
breaks down dates into year and month and uses existing abstractions to index dates based
on year or month. Adding a date index is similar to creating an index on a primitive type.
Hence, we elide further details.
String Dictionaries. Another form of indexing is compressed columns and dictionary en-
codings. LB2 implements string dictionaries to optimize operations such as startsWith. In-
dividual columns can be marked as dictionary-compressed in the database schema. Build-
ing on the StringValue and ColBuffer abstractions discussed in Section 5, LB2 defines an
alternative string representation class DictValue and a class StringDictionary that stores
and provides access to compressed string values.

class DictField(name: String) extends Field {

def dict: StringDictionary = ...

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 23

}

class DictValue(idx: Rep[Long]) extends Value {

def startsWith(p: DictValue) = p.idx <= idx

...

}

Let us consider the simple case of compressing a single string column. At loading time,
the StringDictionary is loaded from memory or mmap’ed from secondary storage. When the
loader reads a string via Scanner.next, it creates a StringValue and uses the StringDict to
convert it into its DictValue compressed form: the index where the StringValue is stored
inside the StringDictionary. String dictionaries do not add any new query operators, i.e.,
they operate transparently as part of the data representation layer.

7.2 Parallel Execution

Query engines typically realize parallelism either explicitly by implementing special split
and merge operators (Mehta & DeWitt, 1995), or implicitly by modifying the internal
operator logic to orchestrate parallel execution. LB2 does the latter, and generates code
that uses OpenMP.

The callback signature for exec defined earlier works well in a single-threaded environ-
ment, but multi-threaded environments require synchronization and thread-local variables.
Thus, LB2 defines a new class ParOP with a modified exec signature that adds another
callback level.

For stateless operators such as Select, the parallel implementation is very similar to the
single-threaded one. In fact, it is possible to use a wrapper to transform a single-threaded
pipeline into a parallel one. Assuming we have a parallel scan operator ParScan, we can
perform a parallel selection like this:
def ParSelect(op: ParOp)(pred: Pred) =

parallelPipeline(inner => Select(inner)(pred))(op)

val ps = ParSelect(ParScan("Dep"))(t => t("rank") < 10)

The definition of ParOp and parallelPipeline is as follows:

type ValueCallback = Record => Unit

type DataLoop = ValueCallback => Unit

type ThreadCallback = Rep[Int] => DataLoop => Unit

// parallel operator interface

class ParOp {

def exec: ThreadCallback => Unit

}

// lifting a sequential operator pipeline

def parallelPipeline(seq: Op => Op) =

(parent: ParOp) => new ParOp {

def exec = {

val opExec = parent.exec

(tCb: ThreadCallback) => opExec { tId => dataloop =>

tCb(tId)((cb: ValueCallback) =>

seq(new Op { def exec = dataloop }).exec(cb) })

} } }

ParScan

ParSelect

callback

callbacktId

tId

tuples

tuplesexec

exec

The communication between operators is illustrated in the drawing above. The downstream
client of ParSelect initiates the process by calling exec, which ParSelect forwards upstream

ZU064-05-FPR paper 20 May 2019 10:30

24 Tiark Rompf, Nada Amin

SF10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Postgres 241581 6665 33835 7980 30158 23485 32577 29953 64429 33237 7113 38040 31425 22154 23183 13450 155541 91241 29548 65681 299691 11766

DBLAB 809 219 6575 7977 3049 232 3598 5494 32313 4175 104 3847 (1079) 526 933 2961 3795 4771 6353 763 13851 1328

LB2 (DBLAB plan) 476 140 491 573 576 223 914 1941 4540 1230 52 691 4012 377 373 595 2001 1294 2623 569 1887 235

HyPer 613 61 1193 872 991 233 982 637 2029 1021 138 504 3718 342 261 1274 580 3764 2003 439 1658 190

LB2 (HyPer plan) 476 141 494 573 649 222 706 862 2806 1378 51 691 4012 246 189 593 1994 1289 2965 833 1793 234

100
101
102
103
104
105

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

R
un

tim
e

(m
s) Postgres DBLAB LB2 (DBLAB plan) HyPer LB2 (HyPer plan)

Fig. 8. The absolute runtime in milliseconds (ms) for DBLAB, LB2 (with DBLAB’s plans), HyPer,
LB2 (with HyPer’s join ordering plans) in TPC-H SF10. Only TPC-H compliant optimizations are
used (results from Tahboub et al., 2018).

to ParScan. ParScan starts a number of threads, and on each thread, calls the exec callback
with the thread id tId and another callback dataloop. This allows the downstream operator
to initialize the appropriate thread-local data structures. Then the downstream operator
triggers the flow of data by invoking dataloop and passing another callback upstream, on
which the ParScan will send each tuple for the data partition corresponding to the active
thread.

While the parallelPipeline transformation covers the simpler state-less operators, extra
work is required for pipeline breakers. For operators such as aggregations, LB2’s parallel
implementations split their work internally across multiple threads, accumulating final
results, etc. By using callbacks in a clever way, we can delegate some of the synchroniza-
tion effort to specialized parallel data structures. Tahboub et al. (2018) present examples
of using a ParHashMap class as the basis for a parallel aggregation operators. Essertel et
al. (2018) show the implementation of a parallel hash join operator and also discusses
optimizations to take advantage of NUMA (Non Uniform Memory Access) characteristics
on large multi-socket machines.

7.3 TPC-H Experiments

In this section, we review performance experiments from Tahboub et al. (2018), comparing
LB2 on the standard TPC-H benchmark to PostgreSQL and two recent state-of-the-art
compiled query engines: Hyper (Neumann, 2011), and DBLAB (Shaikhha et al., 2016).
HyPer implements code generation using LLVM, and DBLAB is a query compiler that
generates C through multiple intermediate languages and lowering passes. Reported num-
bers are the median of five runs. All experiments are run on a single machine with 4 Xeon
E7-88904 CPUs, 18 cores and 256GB RAM per socket (1 TB total). We refer readers to
(Tahboub et al., 2018) for a full analysis of the experiments.

TPC-H-Compliant Execution The first experiment (Figure 8) evaluates the performance
of LB2 with only those optimizations that are compliant with the official TPC-H rules, i.e.,
excluding precomputation and advanced index structures. Since it is difficult to unify query
plan across all systems, we report two sets of results for LB2. The line LB2 (dblab plan)

uses DBLAB’s plans and LB2 (hyper plan) uses HyPer’s plans to the extent possible but at
least with the same join ordering. At first glance, LB2 outperforms Postgres and DBLAB
in all queries where query plans are matched. Furthermore, LB2 and HyPer’s performance
is comparable.

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 25

SF10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

DBLAB-idx 827 144 2341 631 380 236 123 332 900 765 100 1167 (1379) 272 919 4648 266 4680 247 312 1408 208

LB2-idx 521 87 685 316 207 223 127 81 1021 663 15 489 3895 272 440 1157 144 183 69 84 347 104

DBLAB-idx-date 928 101 422 217 207 117 78 292 846 703 85 1242 (1337) 289 40 5355 218 200 311 414 626 173

LB2-idx-date 485 85 152 162 212 80 108 81 1024 455 17 294 3895 26 54 1153 138 204 69 83 406 104

DBLAB-idx-date-str497 97 138 222 225 82 79 23 510 603 130 362 (4507) 16 41 555 13 198 15 401 494 176

LB2-idx-date-str 487 74 166 185 170 79 85 35 641 408 16 184 3904 10 56 774 7 184 11 85 384 104

100

101

102

103

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

R
un

tim
e

(m
s)

DBLAB−idx
LB2−idx

DBLAB−idx−date
LB2−idx−date

DBLAB−idx−date−str
LB2−idx−date−str

Fig. 9. The absolute runtime in milliseconds (ms) after enabling non-TPC-H-compliant indexing,
date indexing and string dictionaries for SF10 using DBLAB plans (results from Tahboub et al.,
2018).

0

250

500

750

1000

1 2 4 8 16

R
un

tim
e

(m
s)

LB2

HyPer

Query 4

0

100

200

300

400

1 2 4 8 16

R
un

tim
e

(m
s)

LB2

HyPer

Query 6

0

2000

4000

6000

1 2 4 8 16

R
un

tim
e

(m
s)

LB2

HyPer

Query 13

0

100

200

300

400

1 2 4 8 16

R
un

tim
e

(m
s)

LB2

HyPer

Query 14

0

100

200

300

400

1 2 4 8 16

R
un

tim
e

(m
s)

LB2

HyPer

Query 22

Fig. 10. The absolute runtime in milliseconds (ms) for parallel scaling of LB2 and HyPer with
SF10 on 2, 4, 8 and 16 cores (results from Tahboub et al., 2018).

On a query by query analysis, LB2 outperforms DBLAB in aggregate queries Q1 and Q6
by 70% and 4% respectively. On join queries Q3, Q5, Q10, etc. LB2 is 3×-13× faster than
DBLAB. Similarly, LB2 is 5×-13× faster in semi join and anti join queries Q4, Q16, Q21
and Q22. In Q13, DBLAB replaces the outer join operator with a hard-coded imperative
array computation that has no counterpart in the query plan language. Hence, a direct
comparison for this query is misleading, and we do not attempt to recreate an equivalent
“plan” in LB2. Comparing the performance of LB2 and HyPer, we observe that LB2 is
faster by at least 2×-3× in Q3, Q11, Q16 and Q18. Also, LB2 is 25%-50% faster than
HyPer in Q1, Q4, Q5, Q7, Q14 and Q15. On the other hand, HyPer is faster than LB2
by 2×-3× in Q2 and Q17. The respective performance gaps can be attributed to various
internal implementation choices.

Index Optimizations The second experiment (Figures 9) focuses on evaluating three
advanced optimizations that were used by DBLAB to justify a multi-pass compiler pipeline
(Shaikhha et al., 2016); primary and foreign key indexes, date indexes, and string dictio-
naries. In their full generality, these optimizations are not compliant with the TPC-H rules
(Chiba & Onodera, 2015) since they incur pre-computation and a duplication of data.

On a query by query analysis, LB2 outperforms DBLAB in join query Q3 by 3× and
by 15%, 80% in Q10 and Q5 respectively. Similarly, LB2 is 2×-4× faster in semi join and
anti join queries Q4, Q22, Q16, Q21. On the other hand, DBLAB is faster than LB2 in Q7
and Q9 by 3% and 13% respectively.

The date indexing optimization is used when a table is filtered on a date attribute.
This optimization is always beneficial in both systems. DBLAB and LB2 create string
dictionaries to speed up commonly used string operations: equality, startsWith, endsWith
and certain forms of like. LB2 is 35%-95% faster in Q12, Q17, Q19 whereas DBLAB is
20%, 50% faster in Q3 and Q8 respectively. Moreover, Q2 and Q14 uses startsWith and

ZU064-05-FPR paper 20 May 2019 10:30

26 Tiark Rompf, Nada Amin

endsWith. LB2 is 30% and 60% faster in these queries. Finally, Q9, Q13 and Q16 use like,
which LB2 does not optimize.

Parallelism This experiment compares the scalability of LB2 with HyPer (DBLAB does
not support parallelism). The five selected queries represent aggregates and join variants.
Figure 10 gives the absolute runtime for scaling up LB2 and HyPer for Q4, Q6, Q13, Q14
and Q22 in SF10. The speedup of LB2 and HyPer increases with number of cores, by an
average 4×-5× in Q22 and by 5×-11× in Q4, Q6, Q13 and Q14.

At a closer look, LB2 outperforms HyPer in semi join Q4 by 50% with 2 to 8 cores.
In outer join Q13, LB2 is 10%-20% faster than HyPer up to 16 cores. On the other hand,
the performance of LB2 and HyPer is comparable in aggregate query Q6. Finally, HyPer
outperforms LB2 in anti join Q22 by 10%-50% with 2 to 16 cores.

Conclusion The experiments show that LB2 can compete against state-of-the-art query
compilers from the database community. However, LB2’s design is simpler than both
DBLAB and HyPer; it is derived from a straightforward query interpreter design and does
neither require low-level coding with LLVM nor multiple compiler passes or additional
intermediate languages.

8 Related Work

Query compilation Query compilation itself is not a new idea. Historically, the very first
relational database, IBM’s System R (Astrahan et al., 1976), was initially designed around
a form of templated code generation. However, before the first commercial release, the
code generator was replaced by interpreted execution (Chamberlin et al., 1981), since at
the time, the benefits of code generation were outweighed by its complexity and issues
such as code portability, cost of maintenance, and prevailing I/O-intensive workloads.
Indeed, compiling code for query-evaluation pipelines (QEPs) is a nontrivial task. First,
code-generation mechanisms need to consider database-level optimizations, compiler-level
optimizations and handling nontraditional data types. Second, code generators need to be
extensible and expressive. Third, the generated code should be sufficiently portable, i.e.,
be easily mapped to a variety of target platforms.

In recent years, query compilation has received renewed interest, mainly because with
the decline of Moore’s law, I/O is no longer the key bottleneck in data-processing systems,
and compute performance has become much more important. Traditional query engines
are built around an iterator model (Graefe & McKenna, 1993), which pipelines processing
of tuples between operators and hence eliminates unnecessary I/O blocking at the ex-
pense of computational overhead. In the new era of large main memory, which reduces
the necessary disk I/O, this model loses much of its attractiveness. MonetDB (Boncz
et al., 2006) vectorizes query processing by processing blocks of intermediate results,
instead of repeatedly invoking the operator interface for each single tuple. On recent query-
compilation work, Roa et al. (2006) compile queries to JVM bytecode. HIQUE (Krikellas
et al., 2010) realized query compilation using code templates, and HyPer (Neumann, 2011)
uses LLVM to generate code from a producer/consumer query-execution model, translating
traditional query plans into push-based operators.

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 27

Hekaton (Diaconu et al., 2013), DryadLINQ (Isard et al., 2007), Impala (Kornacker
et al., 2015) and Spade (Gedik et al., 2008) are examples of commercial query compilers.
Tupleware (Crotty et al., 2015) focuses on support for user-defined functions. DBLAB
(Shaikhha et al., 2016) advocates a many-pass compiler design. The first system to use
LMS for query compilation was Legobase (Klonatos et al., 2014). More recent systems
that are directly based on the conference version of this paper (Rompf & Amin, 2015) are
LB2 (Tahboub et al., 2018), LB2-Spatial (Tahboub & Rompf, 2016), and Flare (Essertel
et al., 2018), a native compiler back-end for Apache Spark.

Generative Programming Multi-stage programming (MSP, staging for short), as estab-
lished by Taha and Sheard (2000), enables programmers to delay evaluation of certain
expressions to a generated stage. MetaOCaml (Calcagno et al., 2003) implements a classic
staging system based on quasi-quotation. Lightweight Modular Staging (LMS) (Rompf &
Odersky, 2010; Rompf & Odersky, 2012) uses types instead of syntax to identify binding
times and generates an intermediate representation instead of target code (Rompf, 2012).
LMS draws inspiration from earlier work such as TaskGraph (Beckmann et al., 2003), a
C++ framework for program generation and optimization. Delite is a compiler framework
for embedded DSLs that provides parallelization and heterogeneous code generation on
top of LMS (Rompf et al., 2013; Brown et al., 2011; Rompf et al., 2011; Lee et al., 2011;
Ackermann et al., 2012; Sujeeth et al., 2013a; Sujeeth et al., 2013b; Brown et al., 2016).

While this line of work demonstrates that Scala is a good choice as host environment for
generative programming (Odersky & Rompf, 2014), other expressive modern languages
can be used just as well, as demonstrated by Racket macros (Tobin-Hochstadt et al.,
2011); DSLs Accelerate (McDonell et al., 2013), Feldspar (Axelsson et al., 2011), and
Nikola (Mainland & Morrisett, 2010) in Haskell; the Copperhead (Catanzaro et al., 2011)
system in Python; and Terra (DeVito et al., 2013; DeVito et al., 2014) as multi-stage
extension of Lua. Various patterns for realizing program transformations for increased per-
formance through generative programming have been identified by the high-performance-
computing community (Cohen et al., 2006; Ofenbeck et al., 2017), but there is compar-
atively fewer work in the context of systems-oriented software. The essence of LMS has
been described as a combination of techniques such as operator overloading and eager
let-insertion (Rompf, 2016a; Rompf, 2016b), which can be realized in different ways in
both statically and dynamically typed languages (Amin & Rompf, 2018; Moldovan et al.,
2019).

Partial Evaluation Partial evaluation (Jones et al., 1993) is an automatic program-specia-
lization technique. Some notable systems include DyC (Grant et al., 2000) for C, JSpec and
Tempo (Schultz et al., 2003), the JSC Java Supercompiler (Klimov, 2009), Civet (Shali &
Cook, 2011), and Lancet (Rompf et al., 2014) for Java. Preserving proper semantics in
the presence of state has been an important goal (Bondorf, 1990; Hatcliff & Danvy, 1997;
Lawall & Thiemann, 1997; Thiemann & Dussart, 1999). Further work has studied partially
static structures (Mogensen, 1988) and partially static operations (Thiemann, 2013) and
compilation based on combinations of partial evaluation, staging and abstract interpretation
(Sperber & Thiemann, 1996; Consel & Khoo, 1993; Kiselyov et al., 2004).

ZU064-05-FPR paper 20 May 2019 10:30

28 Tiark Rompf, Nada Amin

9 Perspectives

This paper is a case study in “abstraction without regret”: achieving high performance
from very high-level code. More generally, we argue for a radical rethinking of the role of
high-level languages in performance-critical code (Rompf et al., 2015).

Our case study illustrates a few common generative design patterns: higher-order func-
tions for composition of code fragments, objects and classes for mixed-staged data struc-
tures and for modularity at code-generation time. While these patterns have emerged and
proven useful in several projects, the field of practical generative programming is still in
its infancy and is lacking an established canon of programming techniques. Thus, our plea
to language designers and to the wider PL community is to ask, for each language feature
or programming model: “how can it be used to good effect in a generative style?”

Acknowledgements

We thank Grégory Essertel and Ruby Tahboub (Purdue University) for contributing the
experiments reported in Section 6 and for scaling up the approach to a realistic SQL engine
as summarized in Section 7. Parts of this research were supported by ERC grant 321217,
NSF awards 1553471 and 1564207, and DOE award DE-SC0018050.

References

Ackermann, Stefan, Jovanovic, Vojin, Rompf, Tiark, & Odersky, Martin. (2012). Jet: An
embedded DSL for high performance big data processing. International Workshop on End-to-
end Management of Big Data (BigData 2012).

Amin, Nada, & Rompf, Tiark. (2018). Collapsing towers of interpreters. PACMPL, 2(POPL).
Armbrust, Michael, Xin, Reynold S, Lian, Cheng, Huai, Yin, Liu, Davies, Bradley, Joseph K, Meng,

Xiangrui, Kaftan, Tomer, Franklin, Michael J, Ghodsi, Ali, et al. . (2015). Spark SQL: Relational
data processing in spark. SIGMOD.

Astrahan, Morton M., Blasgen, Mike W., Chamberlin, Donald D., Eswaran, Kapali P., Gray, Jim,
Griffiths, Patricia P., III, W. Frank King, Lorie, Raymond A., McJones, Paul R., Mehl, James W.,
Putzolu, Gianfranco R., Traiger, Irving L., Wade, Bradford W., & Watson, Vera. (1976). System
R: relational approach to database management. ACM trans. database syst., 1(2).

Axelsson, Emil, Claessen, Koen, Sheeran, Mary, Svenningsson, Josef, Engdal, David, & Persson,
Anders. (2011). The design and implementation of Feldspar: An embedded language for digital
signal processing. IFL’10.

Beckmann, Olav, Houghton, Alastair, Mellor, Michael R., & Kelly, Paul H. J. (2003). Runtime code
generation in C++ as a foundation for domain-specific optimisation. Domain-Specific Program
Generation. Lecture Notes in Computer Science, vol. 3016.

Boncz, Peter, Grust, Torsten, Van Keulen, Maurice, Manegold, Stefan, Rittinger, Jan, & Teubner,
Jens. (2006). MonetDB/XQuery: a fast XQuery processor powered by a relational engine.
SIGMOD.

Bondorf, Anders. (1990). Self-applicable partial evaluation. Ph.D. thesis, DIKU, Department of
Computer Science, University of Copenhagen.

Brown, Kevin J., Sujeeth, Arvind K., Lee, HyoukJoong, Rompf, Tiark, Chafi, Hassan, Odersky,
Martin, & Olukotun, Kunle. (2011). A heterogeneous parallel framework for domain-specific
languages. PACT.

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 29

Brown, Kevin J., Lee, HyoukJoong, Rompf, Tiark, Sujeeth, Arvind K., De Sa, Christopher, Aberger,
Christopher, & Olukotun, Kunle. (2016). Have abstraction and eat performance, too: Optimized
heterogeneous computing with parallel patterns. CGO.

Calcagno, Cristiano, Taha, Walid, Huang, Liwen, & Leroy, Xavier. (2003). Implementing multi-stage
languages using asts, gensym, and reflection. GPCE.

Catanzaro, Bryan, Garland, Michael, & Keutzer, Kurt. (2011). Copperhead: compiling an embedded
data parallel language. PPoPP.

Chamberlin, Donald D., Astrahan, Morton M., Blasgen, Michael W., Gray, James N., King, W. Frank,
Lindsay, Bruce G., Lorie, Raymond, Mehl, James W., Price, Thomas G., Putzolu, Franco, Selinger,
Patricia Griffiths, Schkolnick, Mario, Slutz, Donald R., Traiger, Irving L., Wade, Bradford W., &
Yost, Robert A. (1981). A history and evaluation of System R. Commun. ACM, 24(10).

Chiba, Tatsuhiro, & Onodera, Tamiya. 2015 (October). Workload characterization and optimization
of tpc-h queries on apache spark. Tech. rept. RT0968.

Cohen, Albert, Donadio, Sébastien, Garzarán, María Jesús, Herrmann, Christoph Armin, Kiselyov,
Oleg, & Padua, David A. (2006). In search of a program generator to implement generic
transformations for high-performance computing. Sci. comput. program., 62(1).

Consel, Charles, & Danvy, Olivier. (1993). Tutorial notes on partial evaluation. POPL.

Consel, Charles, & Khoo, Siau-Cheng. (1993). Parameterized partial evaluation. Acm trans.
program. lang. syst., 15(3).

Crotty, Andrew, Galakatos, Alex, Dursun, Kayhan, Kraska, Tim, Binnig, Carsten, Çetintemel, Ugur,
& Zdonik, Stan. (2015). An architecture for compiling UDF-centric workflows. PVLDB, 8(12).

DeVito, Zachary, Hegarty, James, Aiken, Alex, Hanrahan, Pat, & Vitek, Jan. (2013). Terra: a multi-
stage language for high-performance computing. PLDI.

DeVito, Zachary, Ritchie, Daniel, Fisher, Matthew, Aiken, Alex, & Hanrahan, Pat. (2014). First-class
runtime generation of high-performance types using exotypes. PLDI.

Diaconu, Cristian, Freedman, Craig, Ismert, Erik, Larson, Per-Ake, Mittal, Pravin, Stonecipher,
Ryan, Verma, Nitin, & Zwilling, Mike. (2013). Hekaton: SQL Server’s memory-optimized OLTP
engine. SIGMOD.

Essertel, Grégory M., Tahboub, Ruby Y., Decker, James M., Brown, Kevin J., Olukotun, Kunle,
& Rompf, Tiark. (2018). Flare: Optimizing apache spark with native compilation for scale-up
architectures and medium-size data. OSDI.

Futamura, Yoshihiko. (1971). Partial evaluation of computation process — an approach to a
compiler-compiler. Transactions of the Institute of Electronics and Communication Engineers
of Japan, 54-C(8).

Gedik, Bugra, Andrade, Henrique, Wu, Kun-Lung, Yu, Philip S, & Doo, Myungcheol. (2008). Spade:
the system s declarative stream processing engine. SIGMOD.

Graefe, Goetz. (1994). Volcano - an extensible and parallel query evaluation system. IEEE trans.
knowl. data eng., 6(1).

Graefe, Goetz, & McKenna, William J. (1993). The Volcano optimizer generator: Extensibility and
efficient search. ICDE.

Grant, Brian, Mock, Markus, Philipose, Matthai, Chambers, Craig, & Eggers, Susan J. (2000). DyC:
an expressive annotation-directed dynamic compiler for C. Theor. comput. sci., 248(1-2).

Hatcliff, John, & Danvy, Olivier. (1997). A computational formalization for partial evaluation.
Mathematical structures in computer science, 7(5).

Isard, Michael, Budiu, Mihai, Yu, Yuan, Birrell, Andrew, & Fetterly, Dennis. (2007). Dryad:
distributed data-parallel programs from sequential building blocks. EuroSys.

Jones, Neil D., Gomard, Carsten K., & Sestoft, Peter. (1993). Partial evaluation and automatic
program generation. Prentice-Hall, Inc.

ZU064-05-FPR paper 20 May 2019 10:30

30 Tiark Rompf, Nada Amin

Jonnalagedda, Manohar, Coppey, Thierry, Stucki, Sandro, Rompf, Tiark, & Odersky, Martin. (2014).
Staged parser combinators for efficient data processing. OOPSLA.

Jørring, Ulrik, & Scherlis, William L. (1986). Compilers and staging transformations. POPL.
Kiselyov, Oleg, Swadi, Kedar N., & Taha, Walid. (2004). A methodology for generating verified

combinatorial circuits. EMSOFT.
Klimov, Andrei V. (2009). A Java supercompiler and its application to verification of cache-

coherence protocols. Ershov Memorial Conference.
Klonatos, Yannis, Koch, Christoph, Rompf, Tiark, & Chafi, Hassan. (2014). Building efficient query

engines in a high-level language. VLDB, 7(10).
Kornacker, Marcel, Behm, Alexander, Bittorf, Victor, Bobrovytsky, Taras, Ching, Casey, Choi, Alan,

Erickson, Justin, Grund, Martin, Hecht, Daniel, Jacobs, Matthew, Joshi, Ishaan, Kuff, Lenni,
Kumar, Dileep, Leblang, Alex, Li, Nong, Pandis, Ippokratis, Robinson, Henry, Rorke, David, Rus,
Silvius, Russell, John, Tsirogiannis, Dimitris, Wanderman-Milne, Skye, & Yoder, Michael and.
(2015). Impala: A modern, open-source SQL engine for Hadoop. CIDR.

Krikellas, Konstantinos, Viglas, Stratis D, & Cintra, Marcelo. (2010). Generating code for holistic
query evaluation. ICDE.

Lawall, Julia L., & Thiemann, Peter. (1997). Sound specialization in the presence of computational
effects. TACS. Lecture Notes in Computer Science, vol. 1281.

Lee, HyoukJoong, Brown, Kevin J., Sujeeth, Arvind K., Chafi, Hassan, Rompf, Tiark, Odersky,
Martin, & Olukotun, Kunle. (2011). Implementing domain-specific languages for heterogeneous
parallel computing. IEEE micro, 31(5).

Mainland, Geoffrey, & Morrisett, Greg. (2010). Nikola: embedding compiled GPU functions in
Haskell. Haskell Symposium.

McDonell, Trevor L., Chakravarty, Manuel M.T., Keller, Gabriele, & Lippmeier, Ben. (2013).
Optimising purely functional GPU programs. ICFP.

Mehta, Manish, & DeWitt, David J. (1995). Managing intra-operator parallelism in parallel database
systems. SIGMOD.

Mogensen, T. AE. (1988). Partially static structures in a self-applicable partial evaluator. Bjørner,
D., Ershov, A. P., & Jones, N. D. (eds), Partial Evaluation and Mixed Computation.

Moldovan, Dan, Decker, James M., Wang, Fei, Johnson, Andrew A., Lee, Brian K., Nado, Zachary,
Sculley, D., Rompf, Tiark, & Wiltschko, Alexander B. (2019). AutoGraph: Imperative-style
coding with graph-based performance. SysML.

Neumann, Thomas. (2011). Efficiently compiling efficient query plans for modern hardware.
PVLDB, 4(9).

Odersky, Martin, & Rompf, Tiark. (2014). Unifying functional and object-oriented programming
with scala. Commun. ACM, 57(4).

Ofenbeck, Georg, Rompf, Tiark, & Püschel, Markus. (2017). Staging for generic programming in
space and time. GPCE.

Rao, Jun, Pirahesh, Hamid, Mohan, C, & Lohman, Guy. (2006). Compiled query execution engine
using JVM. ICDE.

Reynolds, John C. (1972). Definitional interpreters for higher-order programming languages.
Proceedings of the ACM Annual Conference - Volume 2. ACM ’72.

Reynolds, John C. (1998). Definitional interpreters for higher-order programming languages.
Higher-order and symbolic computation, 11(4).

Rompf, Tiark. (2012). Lightweight Modular Staging and Embedded Compilers: Abstraction Without
Regret for High-Level High-Performance Programming. Ph.D. thesis, EPFL.

Rompf, Tiark. (2016a). The essence of multi-stage evaluation in LMS. A List of Successes That Can
Change the World. Lecture Notes in Computer Science, vol. 9600.

Rompf, Tiark. (2016b). Reflections on LMS: exploring front-end alternatives. Scala Symposium.

ZU064-05-FPR paper 20 May 2019 10:30

A SQL to C Compiler in 500 Lines of Code 31

Rompf, Tiark, & Amin, Nada. (2015). Functional pearl: a SQL to C compiler in 500 lines of code.
ICFP.

Rompf, Tiark, & Odersky, Martin. (2010). Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. GPCE.

Rompf, Tiark, & Odersky, Martin. (2012). Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. Commun. ACM, 55(6).

Rompf, Tiark, Sujeeth, Arvind K., Lee, HyoukJoong, Brown, Kevin J., Chafi, Hassan, Odersky,
Martin, & Olukotun, Kunle. (2011). Building-blocks for performance oriented DSLs. IFIP
Working Conference on Domain-Specific Languages (DSL). EPTCS, vol. 66.

Rompf, Tiark, Amin, Nada, Moors, Adriaan, Haller, Philipp, & Odersky, Martin. (2012). Scala-
Virtualized: linguistic reuse for deep embeddings. Higher-order and symbolic computation, 25(1).

Rompf, Tiark, Sujeeth, Arvind K., Amin, Nada, Brown, Kevin, Jovanovic, Vojin, Lee, HyoukJoong,
Jonnalagedda, Manohar, Olukotun, Kunle, & Odersky, Martin. (2013). Optimizing data structures
in high-level programs. POPL.

Rompf, Tiark, Sujeeth, Arvind K., Brown, Kevin J., Lee, HyoukJoong, Chafi, Hassan, & Olukotun,
Kunle. (2014). Surgical precision JIT compilers. PLDI.

Rompf, Tiark, Brown, Kevin J., Lee, HyoukJoong, Sujeeth, Arvind K., Jonnalagedda, Manohar,
Amin, Nada, Ofenbeck, Georg, Stojanov, Alen, Klonatos, Yannis, Dashti, Mohammad, Koch,
Christoph, Püschel, Markus, & Olukotun, Kunle. (2015). Go meta! A case for generative
programming and DSLs in performance critical systems. SNAPL.

Schultz, Ulrik Pagh, Lawall, Julia L., & Consel, Charles. (2003). Automatic program specialization
for Java. Acm trans. program. lang. syst., 25(4).

Shaikhha, Amir, Klonatos, Ioannis, Parreaux, Lionel Emile Vincent, Brown, Lewis, Dashti
Rahmat Abadi, Mohammad, & Koch, Christoph. (2016). How to architect a query compiler.
SIGMOD.

Shali, Amin, & Cook, William R. (2011). Hybrid partial evaluation. OOPSLA.
Sperber, Michael, & Thiemann, Peter. (1996). Realistic compilation by partial evaluation. PLDI.
Stonebraker, Michael, & Çetintemel, Ugur. (2005). "One Size Fits All": An idea whose time has

come and gone (abstract). ICDE.
Stonebraker, Michael, Madden, Samuel, Abadi, Daniel J., Harizopoulos, Stavros, Hachem, Nabil, &

Helland, Pat. (2007). The end of an architectural era (it’s time for a complete rewrite). PVLDB.
Sujeeth, Arvind K., Rompf, Tiark, Brown, Kevin J., Lee, HyoukJoong, Chafi, Hassan, Popic,

Victoria, Wu, Michael, Prokopec, Aleksander, Jovanovic, Vojin, Odersky, Martin, & Olukotun,
Kunle. (2013a). Composition and reuse with compiled domain-specific languages. ECOOP.

Sujeeth, Arvind K., Gibbons, Austin, Brown, Kevin J., Lee, HyoukJoong, Rompf, Tiark, Odersky,
Martin, & Olukotun, Kunle. (2013b). Forge: Generating a high performance DSL implementation
from a declarative specification. GPCE.

Svenningsson, Josef, & Axelsson, Emil. (2012). Combining deep and shallow embedding for EDSL.
Trends in Functional Programming (TFP).

Taha, Walid, & Sheard, Tim. (2000). MetaML and multi-stage programming with explicit
annotations. Theor. comput. sci., 248(1-2).

Tahboub, Ruby Y, & Rompf, Tiark. (2016). On supporting compilation in spatial query engines
(vision paper). SIGSPATIAL.

Tahboub, Ruby Y., Essertel, Grégory M., & Rompf, Tiark. (2018). How to architect a query compiler,
revisited. SIGMOD.

The Transaction Processing Council. (2002). TPC-H Revision 2.
Thiemann, Peter. (2013). Partially static operations. PEPM.
Thiemann, Peter, & Dussart, Dirk. (1999). Partial evaluation for higher-order languages with state.

Tech. rept. Universität Tübingen, Germany.

ZU064-05-FPR paper 20 May 2019 10:30

32 Tiark Rompf, Nada Amin

Tobin-Hochstadt, Sam, St-Amour, Vincent, Culpepper, Ryan, Flatt, Matthew, & Felleisen, Matthias.
(2011). Languages as libraries. PLDI.

Zukowski, Marcin, Boncz, Peter A., Nes, Niels, & Héman, Sándor. (2005). MonetDB/X100 - a
DBMS in the CPU cache. IEEE data eng. bull., 28(2).

