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This paper employs the unified transform to present a boundary-based spectral colloca-
tion method suitable for solving acoustic scattering problems. The method is suitable for
both interior and exterior scattering problems, and may be extended to three dimensions.
A number of simple two-dimensional examples are presented to illustrate the versatility
of this method, and, upon comparison with other spectral methods, or boundary-based
methods the approach presented in this paper is shown to be very competitive.

I. Introduction

Acoustic scattering problems arise in a wide number of applications in the aviation industry, for example
the propagation of sound along ducts, and in calculating trailing-edge noise through use of the reciprocal
theorem. Often the scattered field is calculated using a boundary element method (BEM), however these
are typically slow to run as they require a large number of boundary elements and thus converge only
algebraically.1 As the geometry of the scatterer becomes more complicated, computational time and storage
requirements increase and new techniques are sought to reduce these costs. In the case of a periodic scatterer,
recently Karimi et al2 exploited the Toeplitz structure of the discretised system to provide a BEM which
reduced computational time from O(N2.66) to O(N1.31). Further recent advances of BEM for acoustic
scattering are discussed by Chandler-Wilde & Langdon,4 with a particular focus toward high frequency
scattering, which can often be problematic.

An alternative to a BEM is a spectral method, discussed in early work for acoustic scattering by Hwang,3
or more generally by Trefethen,5 which provides good accuracy for relatively few basis functions due to
exponential convergence. An important first step in spectral methods is singularity removal, which is often
achieved through a coordinate transformation (BEM similarly encounters problems with singularities in
particular the numerical evaluation of singular integrals). For complex geometries however, it is often not
possible to transform away the singularities in a traditional spectral approach and calculation of singular
integrals is unavoidable.

This paper therefore presents a spectral collocation method for acoustic scattering which does not en-
counter problems from singularities, is suitable for high-frequency calculations, and, as it is boundary-based,
is very computationally competitive. The method implements the unified transform6 for the Helmholtz
equation to derive a so-called global relation relating transforms of known and unknown boundary data in
spectral space. By expanding unknown data in an appropriately chosen basis and evaluating the global
relation at suitably chosen collocation points, the unknown expansion coefficients can be swiftly calculated.

The method is illustrated first for the simple problem of acoustic scattering by a finite rigid flat plate7 , for
which a fully analytic solution is known in terms of Mathieu functions.8 Results are then given for acoustic
scattering by a finite elastic plate, and quadrupole scattering by rigid plates with finite elastic extensions.
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II. The Unified Transform Method

A. Deriving the Global Relation

For an acoustic scattering problem, with scattered field q(x, y) due to some incident field qinc(x, y), we must
derive the global relation for the Helmholtz equation,

∂2q

∂x2
+
∂2q

∂y2
+ k2

0q = 0. (1)

We suppose the domain over which the equation is to be solved, D, is the interior of a polygon with boundary
∂D. The domain D may be finite or infinite. a

Let v be a solution to the adjoint of the Helmholtz equation (also the Helmholtz equation). Multiplying
the Helmholtz equation by v, and then subtracting the same equation with q and v interchanged yields

∂

∂x

(
v
∂q

∂x
− q ∂v

∂x

)
+

∂

∂y

(
v
∂q

∂y
− q ∂v

∂y

)
= 0. (2)

Then, Green’s theorem implies∫
∂D

[(
v
∂q

∂x
− q ∂v

∂x

)
dy −

(
v
∂q

∂y
− q ∂v

∂y

)
dx

]
= 0. (3)

We now must include boundary conditions, therefore we parameterize q(x, y) and v(x, y) in terms of the arc
length, s, of ∂D. Differentiating the function q(x(s), y(s)) with respect to s we find

∂q

∂x
dx+

∂q

∂y
dy = qT ds, (4)

where qT denotes the derivative of q along the tangential direction. Thus,

∂q

∂x
dy − ∂q

∂y
dx = qnds, (5)

where qn denotes the derivative of q along the outward normal to the boundary. Inserting (5) into (3) we
find ∫

∂D

(
v
∂q

∂n
− q ∂v

∂n

)
ds = 0, (6)

where v is any solution to the (adjoint) Helmholtz equation.
In what follows, in order to further simplify the global relation, we introduce the complex variable

z = x+ iy, and its conjugate z̄ = x− iy. This enables us to write the Helmholtz equation in the form

∂2q

∂z∂z̄
+ β2q = 0, (7)

where β = k0/2. We choose the following particular adjoint solution,

v = e−iβ(λz+ z̄
λ ). (8)

Then, (6) gives the global relation∫
∂D

e−iβ(λz+ z̄
λ )

[
qn + β

(
λ
dz

ds
− 1

λ

dz̄

ds

)
q

]
ds = 0, λ ∈ Λ; , (9)

where Λ is a domain containing all λ such that the integral converges (which depends on how D behaves at
infinity if it is unbounded, and the conditions satisfied by q at infinity).

The global relation (9) may be used directly, however to simplify it in the case of a polygonal domain
where ∂D consists of M straight sides, we let qj and qjn denote the Dirichlet and Neumann boundary values

aWhilst here we discuss convex polygons, for extensions to non-convex polygons one should consult Colbrook et al.9 The
unified transform can also be used for circular domains10–12 and non-polygonal domains with general curved edges.13
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on the jth side which connects corners zj and zj+1. We then expand qj and qjn in terms of a set of basis
functions, Sl(t):

qj(t) ≈
N−1∑
l=0

ajlSl(t), qjn(t) ≈
N−1∑
l=0

bjlTl(t), (10)

where t provides a suitable parameterisation of ∂D, and Sl(t) are a complete basis, chosen to suit the problem
at hand. For example, for acoustic scattering in an unbounded domain, functions are oscillatory therefore
Bessel functions of integer and half-integer order are beneficial.

Substituting the function expansions into the global relation for Helmholtz, (9), yields

M∑
j=1

N−1∑
l=0

e−iβ(m̄j/λ+λmj)

[
ajlβ

(
λhj −

h̄j
λ

)]
Ŝl

[
iβ
(
h̄j
λ

+ λhj

)]

+

M∑
j=1

N−1∑
l=0

e−iβ(m̄j/λ+λmj)bjl |hj |T̂l
[
iβ
(
h̄j
λ

+ λhj

)]
= 0,

for λ ∈ Λ, whereˆis defined via

F̂l(λ) =

∫ 1

0

eiλtFl(t)dt, λ ∈ C, (11)

which is consistent with previous work.14 For any given scattering problem, some of the constants {aj , bj}
are known, and some unknown. By evaluating the approximate global relation at suitably chosen points
collocation points we can construct sufficiently many equations to solve for the unknown constants {aj , bj}.

B. Problems involving multiple domains

For scattering in the interior of a convex polygon, a single global relation arises as given in the previous
subsection. However for external scattering problems, multiple domains will be required. For example,
scattering by a finite plate occupying x ∈ [0, 1], y = 0; in this case one domain is chosen as D1 = {y ≥ 0, x ∈
(−∞,∞)} and the other, D2 = {y ≤ 0, x ∈ (−∞,∞)}. The boundaries, ∂D1,2, thus cover all scattering
boundaries (above and below the plate).

Within each convex domain Di we obtain a global relation (9) valid for λ ∈ Λi (which may be different).
We combine the global relations by imposing continuity of q across any shared boundaries of Di which do
not contain the scatterer (in the case of the finite plate, continuity across y = 0, x < 0 and y = 0, x > 1).
This results in a single global relation, to which we can apply the approximations (10). This process shall
be illustrated explicitly for a finite flat plate in the following section.

III. Example: finite rigid plate

Consider the scattering of an acoustic incident wave with potential

qinc = eik0 cos θx−ik0 sin θy (12)

by a finite flat plate occupying the region y = 0, 0 < x < 1. The scattered potential field, q, satisfies

∂2q

∂x2
+
∂2q

∂y2
+ k2

0q = 0. (13)

subject to
∂q

∂y
(x, 0±) = f(x) = ik0 sin θeik0 cos θx 0 < x < 1, (14)

and the Sommerfeld radiation condition.
We take two convex domains, D1 = {y ≥ 0, x ∈ (−∞,∞)} and D2 = {y ≤ 0, x ∈ (−∞,∞)}, over which

we apply the unified transform. We impose continuity across the shared boundaries;

∆q(x, 0) = 0, x < 0 and x > 1, (15)

where ∆q denotes the jump in q, ∆q(x, 0) = q(x, 0+)− q(x, 0−).
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A. Global relation

Applying (9) in D1 we obtain∫ 0

−∞
e−iβx(λ+ 1

λ )

[
−qy(x, 0+) + β

(
λ− 1

λ

)
q(x, 0+)

]
dx

+

∫ 1

0

e−iβx(λ+ 1
λ )

[
−f(x) + β

(
λ− 1

λ

)
q(x, 0+)

]
dx

+

∫ ∞
1

e−iβx(λ+ 1
λ )

[
−qy(x, 0+) + β

(
λ− 1

λ

)
q(x, 0+)

]
dx = 0, (16)

where β = k0/2. This is valid for λ ∈ (−∞,−1) ∪ (0, 1) ∪ {eiθ : 0 < θ < π} = Λ1. Similarly in D2 we obtain∫ 0

−∞
e−iβx(λ+ 1

λ )

[
qy(x, 0−)− β

(
λ− 1

λ

)
q(x, 0−)

]
dx

+

∫ 1

0

e−iβx(λ+ 1
λ )

[
f(x)− β

(
λ− 1

λ

)
q(x, 0−)

]
dx

+

∫ ∞
1

e−iβx(λ+ 1
λ )

[
qy(x, 0−)− β

(
λ− 1

λ

)
q(x, 0−)

]
dx = 0, (17)

valid for λ ∈ (−1, 0) ∪ (1,∞) ∪ {eiθ : π < θ < 2π} = Λ2.
The real values allowed in Λ1,2 are determined such that e−iβ(λz+ z̄

λ ) converges for large |z| in ∂D1,2

respectively, whilst the complex values are permitted because q satisfies the radiation condition at infinity.
We note that Λ1 and Λ2 are not the same, however we can apply a symmetry transform, λ→ λ−1 which

maps Λ2 → Λ1. Under this transform (17) becomes∫ 0

−∞
e−iβx(λ+ 1

λ )

[
qy(x, 0−) + β

(
λ− 1

λ

)
q(x, 0−)

]
dx

+

∫ 1

0

e−iβx(λ+ 1
λ )

[
f(x) + β

(
λ− 1

λ

)
q(x, 0−)

]
dx

+

∫ ∞
1

e−iβx(λ+ 1
λ )

[
qy(x, 0−) + β

(
λ− 1

λ

)
q(x, 0−)

]
dx = 0, (18)

for λ ∈ Λ1. We now subtract (16) from (18), and apply the continuity conditions (15) to yield our final
global relation ∫ 0

−∞
e−iβx(λ+ 1

λ )qy(x, 0)dx+

∫ 1

0

e−iβx(λ+ 1
λ )f(x)dx

+

∫ 1

0

e−iβx(λ+ 1
λ ) β

2

(
λ− 1

λ

)
∆q(x, 0)dx+

∫ ∞
1

e−iβx(λ+ 1
λ )qy(x, 0)dx = 0, (19)

where we also use qy(x, 0+) = qy(x, 0−) for x < 0 and x > 1.
We now set

qy(−t, 0) =

N−1∑
l=0

alS
1
l (t) t ∈ [0,∞) (20)

∆q(t, 0) =

N−1∑
l=0

blS
2
l (t) t ∈ [0, 1] (21)

qy(t+ 1, 0) =

N−1∑
l=0

clS
3
l (t) t ∈ [0,∞) (22)
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as a basis expansion of our unknown boundary data. Upon substitution into (19) we obtain

N−1∑
l=0

{
alS̃

1
l

[
β(λ+

1

λ
)

]
+
β

2
bl

(
λ− 1

λ

)
Ŝ2
l

[
−β(λ+

1

λ
)

]
+ e−iβ(λ+ 1

λ )clS̃
3
l

[
−β(λ+

1

λ
)

]}

= −
∫ 1

0

e−iβx(λ+ 1
λ )f(x)dx, λ ∈ Λ1, (23)

where the right hand side is known (and in this case can be evaluated explicitly), and

S̃l(λ) =

∫ ∞
0

eiλtSl(t)dt. (24)

B. Collocation points and basis choice

We first must consider what behaviour can be expected for the unknown functions involved in (23). Over
the finite plate, we expect square root type behaviour of ∆q close to the edges, x = 0, 1. To capture this, we
use a weighted Chebyshev basis b

Cm(t) =

cos(mχ(t)), m odd

i sin(mχ(t)), m even
, (25)

where χ(t) = arcsin(t) ∈ [0, π/2]. For the semi-infinite intervals we used the Bessel functions {Jn+1
2

(k0x)/x}N̂−1
n=0

to capture the oscillatory behaviour. These also have the advantage of capturing the correct singular be-
haviour near the plate edges when n is even, and they decay with the correct algebraic rate at infinity.

For collocation points λ ∈ Λ1, we chose M1 Halton nodes in the interval (0,1), minus their reciprocal
values in (−∞,−1), and M2 points in {eiθ : 0 < θ < π} with θ corresponding to Halton nodes in (0, π).
With the change of variables ω = β(λ+ λ−1), this corresponds to sampling frequencies along the entire real
line of the Fourier transforms of the relevant functions.

Recall, the complex collocation points along the unit circle are allowed precisely because the solution
satisfies the Sommerfeld radiation condition so that the contribution of Green’s identity along the relevant
semi-circular arc vanishes in the infinite radius limit15 . To obtain accurate numerical solutions we must
sample these points as this corresponds to implementing the boundary conditions that make the problem
well posed.
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Figure 1: Left: Errors for the single plate problem. UT denotes the unified transform whereas BIM denotes
the boundary integral method. Right: The analytic solutions ∆q(x, 0) for different k0.

bMore precisely, Chebyshev polynomials of the second kind multiplied by
√
1− t2.
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C. Numerical results

We compare the solution for ∆q(x, 0) against the known analytical solution which can be obtained in terms
of Mathieu functions16,17 to obtain a discrete error. We also compare against a classic boundary integral
method.18 Figure 1 shows the error results for the unified transform and the boundary integral method for
θ = π/6. The unified transform is able to obtain near machine precision for a wide range of wavenumbers k0

(the required number N to gain a specified number of digits also appears to grow linearly with k0
7 ), whereas

the boundary integral method struggles, especially for higher frequencies. This is due to the difficulty in
computing singular integrals, a difficulty which is entirely avoided when using the unified transform. The
unified transform is very fast, taking a couple of seconds for N = 120 (corresponding to 600 basis functions).

We can, as is standard for BEMs, obtain the full scattered field by using a Green’s function integral
representation. We illustrate some scattered fields in Figure 2 for an incident plane wave.
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Figure 2: Real part of the total field (incident plus scattered) due to plane wave scattering off a rigid plate.
Arrow denotes the direction of propagation of the incident wave. Left: k0 = 10. Right: k0 = 50.

IV. Example: acoustic scattering by an elastic plate

We now consider the scattering of an incident pressure field by a finite elastic plate with end points
x = 0, 1 executing small deformations from y = 0. The deformation of the plate is η(x)e−iωt (where as
before, time factors will be removed throughout). The scattered field, q(x, y), thus satisfies the Helmholtz
equation as before, but now we require a dynamic condition in the plate;(

∂4

∂x4
− k4

0

Ω4

)
η = − ε

Ω6
k3

0∆q on y = 0, (26)

where ε is the fluid loading parameter, and Ω the vacuum bending wave Mach number for the plate.19 We
also require a kinematic condition;

k2
0η =

∂qinc
∂y

+
∂q

∂y
on y = 0. (27)

Finally, as before, we demand continuity of q upstream and downstream of the plate along y = 0.
The ends of each plate will be specified as either clamped or free. Supposing the end of an elastic plate

is at x = x0, it is clamped if
η(x0) = η′(x0) = 0, (28)

or it is free if
η′′(x0) = η′′′(x0) = 0. (29)

In this example we shall consider the leading edge, x = 0, to be clamped, and the trailing edge, x = 1, to be
free.
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Since the setup of the problem in this example satisfies the same governing equation (Helmholtz), we can
follow the same procedure as outlined in the previous section. As such the equivalent approximate global
relation to (23) is

N∑
j=1

aj

∫ 1

−1

e−iβx(λ+ 1
λ )

[
k2

0 −
βΩ6

2k3
0ε1

(
d4
j −

k4
0

Ω4

)(
λ− 1

λ

)]
fj(x)dx

+

2∑
n=1

N∑
j=1

L̂j,n (λ) bj,n =

∫ 1

0

e−iβx(λ+ 1
λ ) ∂qI
∂y

(x, 0)dx,

where fj and dj are eigenfunctions and eigenvalues respectively for the ∇4 operator (which can be calculated
via standard spectral methods). Thus this expansion is equivalent to expanding the plate deformation, η, in
its modal basis. The basis functions Lj,n are, as for the rigid case, transforms of Bessel functions such that

∂q

∂y
(−t, 0) =

N∑
j=1

bj,1
Jj/2(k0t)

t
, (30)

∂q

∂y
(t+ 1, 0) =

N∑
j=1

bj,2
Jj/2(k0t)

t
. (31)

We illustrate some sample scattered acoustic fields in Figure 3 for various elastic plates
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Figure 3: Real part of the scattered field due to plane wave scattering off an elastic plate with ε = 0.135.
Arrow denotes the direction of propagation of the incident wave with k0 = 10. Left: rigid. Centre: Ω = 0.8.
Right: Ω = 0.4.

V. Example: aerodynamic noise generated by a partially elastic plate

Elastic plates are known to reduce aerodynamically generated noise19 versus rigid plates. However,
practically a fully elastic plate is undesirable, thus we wish to consider the acoustic benefits of partially
elastic plates.20 In this section we thus suppose a rigid plate lies in the region x ∈ [0, 1 − l], and an elastic
plate is clamped to it along x ∈ [1− l, 1], for l < 1. The incident field is taken as a lateral quadrupole located
close to the trailing edge.

Figure 4 illustrates the relative far-field sound power, defined as the sound power for the partially elastic
plate divided by the sound power for an equivalent rigid plate, for varying l and elasticity parameter, Ω. We
see clearly plates with elastic sections are beneficial in reducing noise, however resonances of the plate can
lead to noise increases and are affected by the total length and flexibility of the plate, as expected. Overall
this figure indicates for highly flexible plates (small Ω), a 25% elastic extent may provide significant noise
reduction, more so even than plates with greater elastic extents. It could therefore be of future interest to
use this method to determine an optimal aeroacoustic and aerodynamic balance for partially elastic plates.

VI. Conclusions

This paper has presented a boundary-based spectral collocation method suited to acoustic scattering
problems which can significantly out perform boundary element and boundary integral methods, and due
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10 -1 10 0

10 0

Figure 4: Relative sound power due to a lateral quadrupole scattering at the trailing edge of a partially
elastic plate, for k0 = 10, ε = 0.0021.

to the approach not requiring the evaluation of singular integrals, it is competitive against other spectral
methods, particularly in complex geometry domains. The method has been validated by considering the
problem of an acoustic wave scattering by a finite rigid flat plate, and illustrated for the cases including
plate elasticity.

Whilst formulated for polygonal domains in this paper, this method extends to more arbitrary geome-
tries,13 including multiple disjoint scatterers with a range of physical boundary conditions. It may also be
extended to three-dimensions by allowing for two complex parameters, λ and µ during the selection of an
arbitrary solution v. This however leads to much more complicated symmetry transforms and basis selection,
thus work is ongoing.
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