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Abstract

Many complex physical systems exhibit a rich variety of discrete behavioural modes. Often,

the system complexity limits the applicability of standard modelling tools. Hence, under-

standing the underlying physics of different behaviours and distinguishing between them is

challenging. Although traditional machine learning techniques could predict and classify

behaviour well, typically they do not provide any meaningful insight into the underlying phys-

ics of the system. In this paper we present a novel method for extracting physically meaning-

ful clusters of discrete behaviour from limited experimental observations. This method

obtains a set of physically plausible functions that both facilitate behavioural clustering and

aid in system understanding. We demonstrate the approach on the V-shaped falling paper

system, a new falling paper type system that exhibits four distinct behavioural modes

depending on a few morphological parameters. Using just 49 experimental observations,

the method discovered a set of candidate functions that distinguish behaviours with an error

of 2.04%, while also aiding insight into the physical phenomena driving each behaviour.

Introduction

Complex physical phenomena are often governed by highly non-linear, multidimensional

dynamics. Hence, it can be challenging to understand these systems using traditional model-

ling tools, as we lack knowledge of the underlying physical phenomena required to implement

these. The obvious course of action, then, is to infer these phenomena via physical experimen-

tation. Automating this inference process, in other words automating the discovery of system

physics from experimental data, has been the focus of intensive study.

Schmidt and Lipson [1] developed an algorithm to automatically discover analytical rela-

tionships in dynamical systems, ranging from simple harmonic oscillators to more complex

chaotic double pendulum systems. This was preceded by a method of non-linear model syn-

thesis from directly observed data using co-evolution [2]. Meanwhile, in the fluid dynamics

community sparse regression has been used to determine the fewest terms in the dynamic gov-

erning equations required to accurately represent the data [3]. Data-driven approaches to

modelling have also shown the ability to predict behaviours of dynamic systems [4, 5].
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Similarly, big-data has been utilised for the prediction and physical understanding of complex

systems include [6–10]. Other studies used evolutionary algorithms with feedback from envi-

ronmental interaction to optimise robotic morphologies without any system model [11–13].

These approaches present a few problems. First is the reliance on large datasets. Sampling

through physical experimentation typically involves searching high dimensional landscapes

[14]. This makes data generation difficult, especially for expensive-to-evaluate functions. Sec-

ond, although highly effective at identifying the inherent physical relationships of non-linear

systems, they have not shown the ability to predict the boundaries of these non-linear behav-

iours. This is of particular importance in systems with a diverse range of discrete behavioural

modes over their parameter space. In such systems, the dynamics of different behaviours may

be significantly different, and the driving factors causing behavioural switches unclear. Such

discrete behaviour systems are seen widely throughout nature including laminar-turbulent

behaviours in fluid dynamics [15], gait patterns in locomotion [16, 17] or even the behaviour

of flocking systems [18].

First proposed by Maxwell [19], one class of system that exhibits these characteristics is fall-

ing paper systems. For example, depending on properties such as diameter and fluid viscosity,

circular disks of paper and other materials exhibit four distinct free-falling behaviours: steady

falling, periodic oscillation, tumbling and chaotic falling [20]. There has been intensive study

on modelling and understanding the behaviours of falling disks [21–27], rectangles [28–42]

and other shapes such as parallelograms [43]. However, it is widely acknowledged that tradi-

tional modelling approaches such as solving the Navier–Stokes equations are intractable for

this problem, with most approaches relying on assumptions such as one-dimensionality.

As a result, many studies focus on using experimental behavioural observations to under-

stand the driving physical phenomena. Here, the approaches tend to characterise behaviours

using dimensionless quantities such as the Reynolds number Re or dimensionless moment of

inertia I� [30, 33, 36, 44, 45]. Using these quantities allows the construction of a dimensionless

parameter space in which different regions correspond to different falling behaviours. Similar

approaches using other dimensionless quantities such as the Froude Fr or Strouhal St numbers

have been used in the analysis of behavioural diversity in other systems [26, 46–49]. The bene-

fit of this method is that it facilitates a quantitative method to differentiate between behaviours,

while also exposing the underlying physical phenomena in the system. However, it requires

intensive testing of different dimensionless quantities to find those which are physically rele-

vant to the system.

In this paper we present Physics Driven Behavioural Clustering (PDBC), a novel method

that automates the process of discovering functions that enable behavioural clustering and

physical understanding of systems with discrete behavioural modes. The PDBC method has

the potential to discover physically insightful clustering functions based on relatively few

experimental observations, thus enabling breakthroughs in the understanding of expensive-to-

evaluate and behaviourally diverse systems.

In the PDBC method, observational data is organized and transformed into the parameter

space of a set of generic functions. We hypothesize that there exists a set of functions whose

parameter space is divided into distinct regions corresponding to different behavioural modes.

Furthermore, we hypothesize that more physically relevant functions—such as Re and I� in the

falling disk system—will cluster similar behaviours together more effectively. We propose that

the predictive accuracy and clustering strength of a standard unsupervised clustering algo-

rithm in this parameter space can be used as a direct metric for physical significance, with

strongly clustered solutions with low predictive errors being more physically relevant.

We address the challenging problem of clustering and understanding the falling behaviours

in the V-Shaped Falling Paper (VSFP) system, which is a new contribution to the falling paper
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system class. This is inspired by the falling and fluttering behaviours observed by helicopter

seeds [50–52]. The VSFP system is an interesting challenge because although the design

parameter space is limited, it exhibits rich behavioural diversity. Therefore it is an ideal system

to demonstrate the PDBC method. We demonstrate the PDBC method can effectively cluster

and help explain the VSFP behaviours.

This paper is structured as follows. First, we describe the PDBC method for a general sys-

tem. Following this we describe the VSFP system. Next, we present experimental results of the

VSFP system and the PDBC method. We discuss the effectiveness and physical significance of

the results. Finally, we conclude and discuss further work.

Materials and methods

Physics-Driven Behavioural Clustering (PDBC)

The PDBC method is inspired by the idea of dynamic similarity, which uses dimensionless

quantities to assess the similarity between different systems whose properties are not necessar-

ily the same. For example, the flow of two fluids with different densities in pipes of differing

diameters are said be similar if a dimensionless quantities—the Reynolds Number (Re)— is

the same for each flow [53]. Furthermore, the value of Re indicates the flow behaviour, e.g.

laminar or turbulent. Hence, dimensionless quantities can be used both for clustering and

physical insight.

We hypothesise that for dynamic systems with discrete behavioural modes there exists a set

of functions whose parameter space is divided into distinct regions– separated by transitional

zones—corresponding to different behavioural modes. Although not strictly dimensionless,

we expect these functions to represent the underlying structure of dimensionless quantities,

and hence term them pseudo-dimensionless quantities (PDQ’s). We further hypothesise that

the more effectively PDQ’s cluster similar behaviours together, the greater physical insight

they contains.

PDBC is a formalised approach for searching through and evaluating different PDQ’s. Fig 1

shows a schematic of the process, which we explain individually in detail below.

Data acquisition and processing. The PDBC method is intended for use with systems

that that exhibit discrete and distinctive behavioural patterns as certain system variables are

changed. The input of PDBC is experimental data of such systems, containing a range of vari-

ables, behavioural patterns and outputs. These behavoural patterns should be distinguished

during the data acqusision phase by the user, either visually or otherwise. Table 1 summarises

each input of the process in detail.

(1) Formulation of generic PDQ’s. The first step in the PDBC process is to forumlate a

set of generic PDQ’s. As previously stated PDQ’s are representations of dimensionless quanti-

ties, so should describe some relationship between the system parameters and outputs. A

review of many common dimensionless quantities shows this relationship is usually character-

ised by the product of system parameters and outputs, raised to some exponent. Hence, the

generic PDQ’s should faciliate the testing of many different combinations of the system inputs,

outputs and exponents.

To satisfy this requirement, we formulate generic PDQ’s as exponential equations including

the system parameters, outputs and generic exponents βc for c = 1, 2, . . ., C, with β = (β1, β2,

. . ., βC) being the exponent vector. Each PDQ includes all system parameters but only one out-

put, with each term having one exponent. This allows us to specifically explore the relationship

between the system parameters and each output. The total number of generic exponents, then,
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Fig 1. Flow chart of generalised physics driven behavioural clustering method. Experimental observations with

different system parameters along with there corresponding behaviours are the input. (1) A set of general functions

called PDQ’s are formulated for the system. (2) Using a heuristic physics based approach, we define a range of

plausible values for the PDQ exponents. (3) We evaluate the PDQ’s with different combinations of exponents. (4-5)

For each exponent combination we run a clustering algorithm in the PDQ parameter space and evaluate the predicted

error of system behaviours, and the clustering strength. (6-7) We chose the exponent combination with the best trade

off between minimizing predictive error and maximizing clustering strength.

https://doi.org/10.1371/journal.pone.0217997.g001
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is C = AB + B and the PDQ’s are formulated as follows

fbðβ; p1; . . . ; pA; obÞ ¼
YA

a¼1

p
baþðAþ1Þb� A� 1
a

 !

o
baþðAþ1Þb� A
b ð1Þ

where as described in Table 1 a = 1, . . ., A and b = 1, . . ., B. Using this formulation, we can gen-

erate any number, say K, of exponent combinations βk ¼ ðb
k
1
; b

k
2
; . . . ; b

k
CÞ for k = 1, 2, . . ., K.

(2) Exponent search policy. Given the generic PDQ’s, we next define a policy to search

through the possible exponent values previously described. The goal of this policy is to evaluate

the physically plausible exponents for a particular parameter or output, while ignoring those

which are physically unlikely. Hence, for each parameter and output the user should define an

exponent range and discretization increment that give rise to a set of plausible exponents. We

denote this algebraicly as follows. The ath parameter has an exponent range

b
k
aþðb� 1ÞAþðb� 1Þ

2 f� Pa; � Pa þ Da; . . . ;Pa � Da;Pag ð2Þ

and the bth output has an exponent range

b
k
Aþðb� 1ÞAþðb� 1Þ

2 f� Pb; � Pb þ Db; . . . ;Pb � Db;Pbg ð3Þ

wherePa and Pb define the minimum and maximum values for each parameter or output,

and Δa and Δb the corresponding discretization increment. The total number of exponent

combinations K is therefore

K ¼
YA

a¼1

2Pa

Da
þ 1

� �
YB

b¼1

2Pb

Db
þ 1

� �

ð4Þ

Clearly, setting Pa,Pb, Δa and Δb requires a heuristic approach. For example, parameters

with units of length may relate to inertial terms or their inverses, soP = 4, and could be discre-

tized with Δ = 0.5. Limiting the range or using a large increment may lead to useful PDQ’s

Table 1. PDBC inputs.

Input Symbol Size Description

System Parameters pa a = 1, . . ., A System parameters that can be varied, leading to

different behavoural modes.

System Outputs ob b = 1, . . ., B System outputs than can be measured for all

behavioural modes.

Behavioural Category μ μ 2 {1, . . ., N} Numeric identifiers for each of the N behavoural modes

observed in the system.

Experimental System

Parameters
P ¼

p1
1;...;A

..

.

pI
1;...;A

2

6
6
6
4

3

7
7
7
5

I × A Array of system parameter combinations tested over I
experiments.

Experimental System

Outputs
O ¼

o1
1;...;B

..

.

oI
1;...;B

2

6
6
6
4

3

7
7
7
5

I × B Array of system outputs measured over I experiments.

Experimental System

Behaviours
μ ¼

m1

..

.

mI

2

6
6
6
4

3

7
7
7
5

I × 1 Matrix of observed behavioural modes observed over I
experiments

https://doi.org/10.1371/journal.pone.0217997.t001
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being lost. However, increasing the range or using a low incremement vastly increases the

compuational cost of the PDBC process.

The authors present Table 2 as a suggested guide for choosing reasonable exponent ranges

for certain parameter and outputs types.

(3-4) PDQ clustering. We seek to determine how, given an exponent vector βk, the

PDQ’s cluster similar behaviours together. To achieve this we apply the K-Means unsupervised

clustering algorithm [54] on the PDQ parameter space. This partitions the experimental obser-

vations into N clusters—corresponding to the number of system behaviors—which can be

evaluated for their predictive accuracy and clustering strength. As previously mentioned, we

hypothesise that more physically meaningful PDQ’s will yield stronger and more accurate

clustering.

We evaluate the experimental parameters and outputs P and O into the PDQ parameter

space Xk

Xk ¼

f1ðβ; P1
1
; . . . ; P1

A;O
1
1
Þ . . . fBðβ; P1

1
; . . . ; P1

A;O
1
BÞ

..

. ..
. ..

.

f1ðβ; PI
1
; . . . ; PI

A;O
I
1
Þ . . . fBðβ; PI

1
; . . . ; PI

A;O
I
BÞ

2

6
6
4

3

7
7
5 ð5Þ

The K-Means clustering algorithm is applied to X, yielding

vk ¼ KMCNðX
kÞ ð6Þ

where N is the number of clusters to form, in this case the number of system behaviours, and

vk is an I dimensional array of cluster assignments, with vk
i 2 f1; 2; . . . ;Ng. As is standard

practice, the algorithm is run multiple times, three in this case, to avoid clustering anomalies.

(5) Evaluation of clustering performance. We introduce two measures of clustering per-

formance; predictive error � and clustering strength �s.
Predictive error: K-Means is an unsupervised method, so the cluster assignments in vk do

not correspond to the behavioural labels in μ. In order to associate clusters assignments with

behavioural labels we define v̂k, in which we uniquely reassign cluster assignments such that

the fraction of misclassified behaviours—the predictive error �k—is minimized

ðv̂k
i 6¼ vk

i Þ ^ ð9! v̂k
i 2 f1; 2; . . . ;NgÞ,min

v̂k
�k ð7Þ

where

�k ¼
1

I

XI

i¼1

eki ð8Þ

Table 2. Suggested exponent ranges and increments.

Term Units P Δ Reasoning

Length L 4 0.5 Includes inertial terms

Angle - 4 0.5 Includes Inertial Terms

Linear Velocity LT−1 2 0.5 Includes Energy Terms

Angular Velocity T−1 2 0.5 Includes Energy Terms

https://doi.org/10.1371/journal.pone.0217997.t002
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and

eki

(
1 v̂k

i 6¼ mi

0 v̂k
i ¼ mi

ð9Þ

Clustering Strength: We use the silhouette criterion [55] ski 2 ½� 1; 1� to quantify the cluster-

ing strength. ski is a measure of data consistency within clusters, representing how similar the

ith observation is to its own cluster, relative to other clusters. The higher s, the stronger the

clustering assignment for a particular observation is. We define the clustering strength as the

mean of ski for all observations, e.g.

�sk ¼
1

I

XI

i¼1

ski ð10Þ

(6-7) Optimal exponent vector selection. At this point in the PDBC process, all candi-

date exponent vectors have been evaluated for their predictive error �k and clusterring strength

�sk. Hence, we must define a measure of optimality by which we sort the PDQ’s from the most

to the least physically insightful. We denote the optimal PDQ exponent vector as βk� .

Solutions with a low predictive error are desirable, as under our hypothesis these PDQ’s

are likely to be more physically insightful. However, if the exponent search space is large there

may be multiple solutions with a low predictive error; some arising from physically signifi-

cance and some arising coincidentally. Hence, we must also consider the clusterring strength

of the solution, with stronger clusterring also indicating more physical insight.

To achieve this we introduce the exponent ranking factor rk, that rewards strongly classified

solutions with low predictive error. It is simple the sum of −�k and �sk.

rk ¼ �sk � �k ð11Þ

Hence, the optimal exponent vector βk� corresponds to the highest rank rk� , and represents

the PDQ’s with the best trade-off between predictive error and clustering strength. To ease

the interpretation of the rankings we can sort the solutions in descending order in terms of rk,
defining the solution rank number k̂ðrkÞ such that

rk̂ðrkÞ� 1 � rk̂ðrkÞ � rk̂ðrkÞþ1 ð12Þ

for k̂ðrÞ 2 f1; . . . ;Kg. Hence, the optimal solution rk� corresponds to k̂ðrk� Þ ¼ 1, with solu-

tions k̂ðrkÞ ¼ 2; . . . ;K decreasing in their optimality.

V-shaped falling paper system

To test the PDBC method we created the V-Shaped Falling Paper (VSFP) System, in which the

passive falling behaviours of a V-shaped paper structure with an affixed mass are studied. The

VSFP is a novel addition to the falling paper class of systems, and is to our knowledge unstud-

ied. Here, we describe the VSFP system and experimental procedure, in the context of the

PDBC method.

System morphology. We study the passive falling behaviours of a V-Shaped piece of

paper with an affixed mass; together termed a structure. The morphology of a structure is fully

defined by the four parameters shown in Fig 2: the wing length l, wing angle θ, wing width w
and affixed mass m. l and θ may vary, while w and m are fixed at 10mm and 5g. Hence, the two

system parameters to be used in the PDBC method are p1 = l and p2 = θ.

Physics driven behavioural clustering of free-falling paper shapes
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System behaviours. As the morphological parameters l and θ are varied, the passive fall-

ing behaviours change. During free-fall, structures exhibit a transient and steady state phase;

when falling they may rapidly pass through more than one behaviour before settling on a

single behaviour. In this study, we neglect the transient phase as we found it to be highly

unpredictable. Hence, the output of each drop test is the steady state behaviour. Four beha-

vioural modes are directly observable; plummeting, undulating, helicopter rotation and asym-

metric rotation. Fig 3 shows example snapshots of each of these while Table 3 outlines the

Fig 2. A parametrized paper V-shape with an affixed mass. The variable parameters are wing length l and wing angle θ. The fixed

parameters are wing width w = 10mm and affixed mass m = 5g.

https://doi.org/10.1371/journal.pone.0217997.g002
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characteristics of each behaviour; see also S1 Video. The rotative behaviours (c,d) are easily

distinguishable from each other and the non-rotative behaviours (a,b).

System outputs. There are many possible outputs, such as falling speed, rotation speed,

rotation angle, oscillatory frequency or horizontal speed; some of these are only measurable

in certain behavioural modes. The PDBC method is designed to be used with universally
measurable outputs, which we define as being observable in all behavioural modes. In the

case of the VSFP system, this limits the outputs to falling speed _z and rotation speed; the

rotational speed of the plummeting and undulating behavioural modes being negligible, but

measurable. _g. Fig 4 shows a schematic of the different behaviours and universally measur-

able outputs.

Experimental procedure

Manufacturing. An Endurance MakeBlock XY engraving/cutting machine—as shown in

Fig 5a—was to cut the shape out of Silvine A4 Graph Refill paper. The paper has a weight of 80

grams per square metre. The mass—for which 2 standard M4 steel washers were used— was

affixed to the tip using superglue, with one washer on either side of the shape. Fig 6 shows the

experimental procedure.

Testing. Each structure—as shown in Fig 5b—was manually dropped from a height of 3m

into still air and using a tip up initial condition, as shown in Fig 5c. Structures fell against a

black backdrop, and were recorded using a Logitech BRIO camera recording at 120 fps. The

system outputs _g and _z were manually extracted from the video data. Each structure was

Fig 3. Snapshot images of the four directly observable behaviours in the VSFP system. (a) Plummeting (b) Undulating (c)

Helicopter rotation (d) Asymmetric rotation. These snapshots show the structures falling a height of 2.5m.

https://doi.org/10.1371/journal.pone.0217997.g003

Table 3. Qualitative description of behavioural modes of paper shapes.

Behavioural Mode Characteristics

Plummeting Shape falls directly to the ground with no wing movement.

Undulating Shape falls directly to the ground, wings oscillate.

Helicopter Rotation Wings splay in either direction, shape rotates to the ground.

Asymmetric Rotation Shape rotates around mass.

https://doi.org/10.1371/journal.pone.0217997.t003
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dropped J = 5 times, and the average outputs �_g and �_z were calculated

½�_g i
�_zi� ¼

1

J

XJ

j¼1

½ _g
j
i _zj

i� ð13Þ

Results

VSFP experimental results

A series of structures were manufactured and their behaviours recorded, as previously

described. The PDBC method was applied to these results with the aim of clustering the system

Fig 4. Diagrammatic representation of the four different behaviours, showing the measured outputs _z and _γ . For the non-

rotative behaviours (a,b) _g ¼ 0.

https://doi.org/10.1371/journal.pone.0217997.g004

Fig 5. The experimental set-up, showing (a) Endurance MakeBlock XY engraving/cutting machine (b) structure comprising of

paper shape and affixed mass (c) camera view of experimental drop zone.

https://doi.org/10.1371/journal.pone.0217997.g005
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behaviours and gaining physical insight into the system. In this section we describe the VSFP

results, including the type of behaviours observed, their outputs and any relationship to l
and θ.

The l − θ parameter search space was discretized such that

l 2 f75; 95; 115; 135; 155; 175; 195g ðmmÞ ð14aÞ

y 2 f30; 37:5; 45; 52:5; 60; 67:5; 75g ðdegÞ ð14bÞ

Hence, a total of I = 49 structures were tested, some of which are shown in Fig 7. First, we

describe the results of these experiments.

Behavioural diversity and structure. There are four observable behavioural modes, as

described in Table 3. Fig 8 shows the observed dominant behaviour as a function of l and θ,

which were also stored in the behavioural ground-truth vector μ. There are five distinct beha-

vioural regions; lines have been added by hand to indicate their approximate boundaries.

Despite this apparent structure, there is no obvious rule to differentiate between behaviours

based solely on l and θ. Morphologies with l� 155mm are dominated by undulating behaviour

across all angles except 30˚. These morphologies have long wings with a range of angles.

Morphologies with l� 95mm are dominated by asymmetric rotation, except at the limits of

Fig 6. Flow chart of the experimental procedure. Structures are manufactured using the laser cutter. Structures are dropped and

recorded J = 5 times. The dominant falling behaviour is extracted across these trials. The measured outputs are extracted and average

over these trials, yielding �_z and _�g. The process is repeated for every combination of l and θ in the search space.

https://doi.org/10.1371/journal.pone.0217997.g006
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θ� 37.5o and θ = 75o. These morphologies have short wings with a smaller range of angles.

Plummeting behaviours can be observed in morphologies with l� 115mm and θ� 37.5o,

and also morphologies with 95mm� l� 135mm and θ� 67.5o. Plummeting is the only

behaviour observed in two distinct regions of the morphological search space, with the mor-

phologies having either short wings with a low angle or mid-length wings with a high angle.

The helicopter rotation region spans a range of l and θ. At the lower boundary l increases as θ
decreases. The upper boundary is less well defined, with a general transition from to plummet-

ing behaviours.

Behavioural outputs. The behavioural outputs �_z and �_γ were extracted. Fig 9a shows these

outputs plotted against each other, as well a clustering regions which demonstrate the need

for the PDBC method. The full results set can be found in S1 Table. There is a clear distinction

between the rotating and non-rotating behaviours. The plummeting and undulating observa-

tions are non-rotating, i.e. �_g ¼ 0 so the output space is one-dimensional. The helicopter and

asymmetric rotation behaviours have non-zero �_g and �_z components. Plummeting behaviours

range from 2.4m/s to 3.5 m/s in �_z and 0rad/s in �_g. Undulating behaviours range from 2.1m/s

to 3.9 m/s in �_z and 0rad/s in �_g. Helicopter rotation behaviours range from 0.9m/s to 2.1 m/s in

Fig 7. Example of manufactured and tested structures.

https://doi.org/10.1371/journal.pone.0217997.g007
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�_z and 3rad/s to 20rad/s in �_g. Asymmetric rotation behaviours range from 0.9m/s to 2.1 m/s in

�_z and 5rad/s to 9rad/s in �_g.

In general, non-rotative behaviours almost exclusively fall faster than rotative behaviours.

Within this, plummeting behaviours tend to fall faster than undulating behaviours. For rota-

tive behaviours there is no clear behaviour that falls fastest or slowest. Nor is there an obvious

relationship between falling speed and rotation speed, with the range in �_z being similar for

both behaviours. However, the �_g in helicopter rotation is around four times that of asymmetric

rotation.

PDBC results

We applied to PDBC method to the VSFP system with the aim of discovering a set of functions

to classify the N = 4 observed behaviours and infer physical significance from this clustering.

In the VSFP system there are two variables l and θ, and two outputs �_z and �_g. Hence, A = 2 and

B = 2 so we formulate two PDQ’s with a total of C = 6 exponent, yielding

f1ðβ
k; l; y; �_z Þ ¼ lb

k
1y

bk
2�_gb

k
3 ð15aÞ

f2ðβ
k; l; y; �_g Þ ¼ lb

k
4y

bk
5�_zb

k
6 ð15bÞ

where the exponent vector ranges were set following those described in Table 2

b
k
1;2;4;5

2 f� 4; � 3:5; � 3; � 2:5; � 2; � 1:5; � 1; � 0:5; 0; 0:5; 1; 1:5; 2; 2:5; 3; 3:5; 4g ð16aÞ

b
k
3;6
2 f� 2; � 1:5; � 1; � 0:5; 0; 0:5; 1; 1:5; 2g ð16bÞ

Hence, the total number of exponent vectors to test was K = 6765201.

Fig 8. Dominant system behaviours across the morphological search space. Each behaviour is marked with a symbol, as shown in

the legend. Lines have been added to estimate where the boundary between behaviours lies.

https://doi.org/10.1371/journal.pone.0217997.g008
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Fig 9. Clustering solutions for (a) raw system outputs, (b) 1000th ranked, (c) 100th ranked and (d) optimal exponent vector.

https://doi.org/10.1371/journal.pone.0217997.g009
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Optimal exponent vector. After examining all exponent vectors, we ranked the solutions

with respect to the criterion specified by (11). While most of these solutions do not cluster

the experimental data well as shown in Fig 9b and 9(c), the highly ranked solutions show a

clear structures in the output space, the best of which is shown in Fig 9d. The highest ranked

solution has a predictive error � = 0.0204—corresponding to one misclassified behaviour—and

a clustering strength �s ¼ 0:8581. The optimal exponent vector was

β� ¼ ð1:5; 0:5; 0:5; 3; 1; 0Þ ð17Þ

which corresponds to optimal PDQ’s of the form

f �
1
¼ l1:5y0:5�_g0:5 ð18aÞ

f �
2
¼ l3y ð18bÞ

The plummeting and undulating behaviours both have f �
1
¼ 0. Hence, they can be

distinguished using only f �
2

, with the region f �
2
< 0:24 being characterised by plummeting

behaviours and f �
1
> 0:24 characterised by undulating behaviours. The single misclassified

behaviour is a plummeting behaviour that has been incorrectly clustered with the undulating

behaviours at f �
2
¼ 0:275. The asymmetric rotation behaviours are tightly clustered together

with 0:4 < f �
1
< 0:575 and f �

2
< 0:075. The helicopter rotation behaviours are more scat-

tered, with 0:79 < f �
1
< 1:25 and f �

2
< 0:35. f �

1
can be used to distinguish between the heli-

copter rotation, asymmetric rotation and plummeting/undulating behaviours combined.

Only when combined with f �
2

can all four behaviours be distinguished in the PDQ parameter

space.

Solution landscape. As well as the optimal solution, we examined the landscape of all

K exponent vectors. Fig 10 shows the rk, �k, �sk and β1,. . .,6 for all tested solutions, sorted in

decreasing rank order. The main characteristics of the solution landscape a presented here.

rk, �k and �sk: The top-ten highest ranked solutions all have �k� 0.0612, with six solutions

having the minimum �k = 0.0204. Correspondingly, for these ten solutions �sk � 0:75.

Beyond this, the predictive error increases to a maximum of �k = 0.5510, while the clustering

strength decreases to a minimum of �sk ¼ 0:2959. Across this trend, there are many solutions

with a high �sk, indicating strong clustering. However, they correspond to low � values, so are

not ranked highly. This shows that strong clustering can be achieved regardless of �, rein-

forcing the need to consider both � and �sk. As � increases and �s decreases, the rk decreases

to zero, as these solutions are neither distinguish between behaviours or exhibit strong

clustering.

β1, β2 and β3: These are the exponents corresponding to the first PDQ (15a). Over the top

1000 solutions, 55% of β1, 52% of β2 and 98% of β3 values remain with ±0.5 of the optimum

values of 1.5, 0.5 and 0.5 respectively. After this point, they begin to vary more. β2 is limited to

the range [0 2], since negative values were unable to computed as they resulted in a division by

zero.

β4, β5 and β6: These are the exponents corresponding to the second PDQ (15b). Over the

top 1000 solutions, 5% of β4, 7% of β5 and 5% of β6 values remain with ±0.5 of the optimum

values of 1.5, 0.5 and 0.5 respectively.

Fig 9b and 9c shows representative clustering solutions for the 100th and 1000th highest

ranked exponent vectors. We can see that as the solution rank increases, the grouping of beha-

vioural groups increases, while the separation between groups decreases. The exponent vector

βk = (0, 0, 1, 0, 0, 1) corresponds to PDQ’s using just the raw measured outputs �. . . g and �_z .

This is an interesting solution to examine as the PDBC method is predicated on the notion
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Fig 10. Solution landscape for all tested exponent vectors, showing the rank rk, predictive error �, clustering

strength �sk and exponent values β1,. . .,6.

https://doi.org/10.1371/journal.pone.0217997.g010
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that the raw outputs alone are not enough to distinguish between system behaviours. This

was confirmed, as the solution had a ranking number of k̂ðrÞ ¼ 35568 with �k = 0.5102 and

�sk ¼ 0:8550. Fig 9a shows this clustering solution.

Physical significance. Inferring physical significance from the PDBC results is challeng-

ing, but some general statements can be made. We consider the optimal PDQ’s f �
1

and f �
2

separately.

f �
1
¼ l1:5y0:5�_g0:5: The analysis of the solution landscape showed that the performance ranking

was highly sensitive to exponent changes in this PDQ. This is particularly the case for �_g, which

is strongly dependant on an exponent of 0.5. Hence, we can infer that this term is key in under-

standing each behaviour. Furthermore, we can show that f �
1

may represent some form of the

Reynolds number Re. First, we observe that the term l _g can represent the wing tip velocity of

the rotative structures. Defining this as Vtip ¼ l _g, we can recast f �
1

as

f �
1
¼ ðlyÞ0:5ðlVtipÞ

0:5
ð19Þ

The Reynolds number is the ratio of a velocity and length term to the kinematic viscosity ν
of the liquid under study. In the VSFP system ν is the kinematic viscosity of the air in which

the structures fall, and remains unchanged between all experimental observations. Hence,

lVtip = νRe, and we can recast (19) as

f �
1
¼ ðlyÞ0:5ðnReÞ0:5 ð20Þ

Hence, following the physical meaning of Re, the rotative behaviours may be characterised by

the ratio of inertial to viscous forces at their wing tip, relative to lθ, which is a shape parameter

representing the wing length and angle. For the non-rotative behaviours, this analysis doesn’t

apply as the rotation speed is zero.

f �
2
¼ l3y: The analysis of the solution landscape showed that the performance ranking is less

sensitive to exponent changes in this PDQ. Interestingly, the optimal PDQ doesn’t rely on �_z at

all. The terms in the PDQ are harder to interpret, but they tell us that the transition between

the plummeting and undulating behaviours is governed by the wing length cubed multiplied

the wing angle. This term is very similar to a moment of inertia term, indicating that this

transition is related to the ease with which the structure can rotate or oscillate relative to the

airflow.

Discussion

In this paper we presented the PDBC method as a framework for clustering and aiding under-

standing of systems with discrete behavioural modes. Furthermore, we presented the VSFP

problem, a new category of falling paper systems, and applied the PDBC method to it.

The PDBC method is the main contribution of this paper. The results indicate that the

PDBC method is an effective way of finding a parameter space in which behaviours can be

clustered together with a high degree of accuracy, with the optimal exponent vector having a

predictive error of just � = 0.0204. In terms of physical significance, the optimal PDQ’s showed

that behaviours can be clustered and categorized using a variant of the rotative Reynolds num-

ber on one axis, and a shape factor similar to the moment of inertia on the other. Interestingly,

this is a relationship that is common among falling paper problems with [20, 30], for example,

reporting a similar behavioural relationship. Hence, this reinforces the hypothesis that choos-

ing the most accurate and strongest clustered solutions reveals physically significant PDQ’s.

The VSFP system represents another significant contribution of this paper. The majority

of falling paper systems consider rigid, or almost-rigid, objects as this eases the aerodynamic
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analysis. The VSFP system departs from this, with two of the four system behaviours—heli-

copter rotation and undulating—relying on large amounts of deformation. Allowing for

such deformation yields a system with rich, varying and beautiful behaviours. However,

these behaviours display highly complex dynamics, making modelling difficult or impossible.

Hence, the VSFP system is an ideal candidate to be used in conjunction with the PDBC

method.

Novelty and limitations

As described in the introduction, there are a range of data-driven algorithms for system under-

standing. Dynamic Mode Decomposition (DMD) [5] can be used to discovers physically

meaningful modes and governing equations [3] from high dimensional time series datasets.

Meanwhile, the work of Schmidt and Lipson [1] can distill free-form natural laws directly

from time series data. PDBC is conceptually similar to these methods—in that it aids in under-

standing complex systems—but also fundamentally different in its application.

PDBC is designed to give global insight into systems whose behaviours change across their

parameter space. The inteded usage is for systems with significantly different behaviours, such

as those demonstrated in the VSPF system. In their current forms, the afformentioned alterna-

tives are not well suited to this application. Rather, they would be effective in understanding

the dynamics driving a particular behavioural mode. This is highly valuable, but does not pro-

vide the same global snapshot as PDBC. Indeed, the comparison is in some ways redundant as

the two methods are in fact complimentary; PDBC provides the global picture, while alterna-

tive methods provide more specific insight of each behaviour.

More direct comparisons can be made with other approaches from the machine learning

community. Support-vector machine (SVM) can be used to classify behaviours in real world

systems via feature extraction. Gait anaylsis is one such example, with [56] using SVM for the

autmated classification of gait in young versus elderly human subjects. The extracted features

and decision boundaries are kin to PDQ’s in that they define a behavioural parameter space.

However, the physical relevance of these features is hard to interpret. In this type of application,

PDBC would perform the classifcation while also outputing physically interpreatble PDQ’s.

This would also be the case for other machine learning classifiers such as neural networks.

Having said this, there are systems for which the current PDBC algorithm is inapplicable.

Clearly, systems with no clear behavioural diversity are ruled out. More subtly, however, are

systems with non-discrete behavioural modes. Here, there may be a clear range of behaviours

separated by a continous transitonal zone, in which one behaviours blends into the next;

period doubling, for example. Within this transitional zone behavoural classifcaiton is ambi-

gous, making the data acqusition step of PDBC challenging. One approach may be to restrict

sampling to areas within the parameter space with very clear behavours.

Human bias

As previosly discussed, in PDBC the user must initially assign behaviours to experimental

observations. In the VSFP system this was a relatively simple task, as the observed behaviour

were clearly different from each other, allowing a completely unambigous classification. How-

ever, in general the users role in behavoural classifcaiton is siignificant. The user must decide

what constitutes a behaviour, then apply this to the system observations. Hence, in the case of

behavioural ambiguity, there may be no consensus among users regarding the total number of

behaviours in the system.

As a short term solution, there are a few options. Firstly, to use a panel of observers to clas-

sify behaviours and reach consessus together. Alternatively, the PDBC algorithm can be run
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multiple times for each consensus. The solutions can be compared in terms of their solution

landscape and physical significance. In the long term, however, the autmated interpretation of

behaviours presents an interesting challenge. In the case of the VSFP system, motion capture

systems could provide a wealth of trajectory data for such a system. The authors hope to imple-

ment this into PDBC in the future.

Applications

The PDBC algorithm was designed with tha aim providing physical insightful behavoural clas-

sifcation for behavourally diverse systems. There are many applications in which this is desir-

able. Automated design optimisation, for example, often focusses on hard to model problems

such as the real-world evolution of locomotion [12]. Behavourally diverse systems could multi-

ple solutions to such problems. PDBC could be used in conjunction with quality diversity

algorithms such as MAP-Elites [57, 58] to optimises such systems and provide a physically

inshgtful snapshot of the solution landscape.

Conclusion

For systems which do exhibit discrete behavioural modes, this approach opens up new avenues

of analysis and understanding. However, further work is required to apply the method to sys-

tems with ambiguous or continuous behavioural phases. Additionally, further work is required

in the choice of system parametrisation, output selection and behavioural interpretation. One

of the main issues here is the human interpretation of system behaviours. Although relatively

clear in the VSFP system, more complex system may exhibit a range of similar behaviours

which are hard to distinguish between. Hence, there is scope to automate the process deciding

what constitutes a discrete behavioural mode.

To fully realize the impact of this approach a more generalised method of approaching

and achieving morphological range is required so it is not prescribed or influenced by initial

human bias.
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