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Abstract

An unobserved components model in which the signal is buried in noise that is non-

Gaussian may throw up observations that, when judged by the Gaussian yardstick, are

outliers. We describe an observation driven model, based on a conditional Student t-

distribution, that is tractable and retains some of the desirable features of the linear

Gaussian model. Letting the dynamics be driven by the score of the conditional distribu-

tion leads to a specification that is not only easy to implement, but which also facilitates

the development of a comprehensive and relatively straightforward theory for the asymp-

totic distribution of the maximum likelihood estimator. The methods are illustrated with

an application to rail travel in the UK. The final part of the article shows how the model

may be extended to include explanatory variables.
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1 Introduction

Linear Gaussian unobserved components models play an important role in time series mod-

eling. The Kalman filter and associated smoother provide the basis for a comprehensive

statistical treatment. The filtered and smoothed estimators of the signal are optimal, in the

sense of minimizing the mean square error (MSE), the likelihood is given as a by-product of

one-step prediction errors produced by the Kalman filter and the full multi-step predictive

distribution has a known Gaussian distribution.

A model in which the signal is buried in noise that is non-Gaussian may throw up ob-

servations that, when judged by the Gaussian yardstick, are outliers. The purpose of this

article is to investigate the practical value of an observation driven model that is tractable

and retains some of the desirable features of the linear Gaussian model. The principal feature

of the model is that the dynamics are driven by the score of the conditional distribution of

the observations. As a result it is not only easy to implement, but its form also facilitates

the development of a comprehensive and relatively straightforward theory for the asymptotic

distribution of the maximum likelihood estimator. Models of this kind are called dynamic

conditional score (DCS) models and they have already proved useful for modeling volatility;

see Creal, Koopman and Lucas (2011) and Harvey (2013, ch. 4).

Modeling the additive noise with a Student t-distribution is effective and theoretically

straightforward. Indeed the attractions of using the t-distribution to guard against outliers

in static models are well-documented; see, for example, Lange, Little and Taylor (1989) and

Delaigle, Hall and Jin (2011). The approach based on specifying a heavy tail distribution

for the underlying process may be contrasted with the methods adopted in the robustness

literature; see, for example, Muler, Peña and Yohai (2009).

The plan of the article is as follows. Section 2 sets out a simple unobserved components

model and discusses the rationale for letting the dynamics depend on the conditional score.

The first-order conditional score model for a Student t-distribution is described in Section 3.

The asymptotic distribution of the maximum likelihood estimator is given in Section 4 and
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complemented by a Monte Carlo study on small sample properties. Section 5 then extends

DCS models using the state space form and Section 6 discusses how to model trend and sea-

sonality. The viability of a DCS model with trend and seasonal components is demonstrated

with real data in Section 6. Explanatory variables are introduced into the model in Section 7

and asymptotic results are presented. Section 8 concludes.

2 Unobserved components and filters

A simple Gaussian signal plus noise model is

yt = µt + εt, εt ∼ NID
(
0, σ2ε

)
(1)

µt+1 = ϕµt + ηt, ηt ∼ NID(0, σ2η),

for t = 1, . . . , T and where the irregular and level disturbances, εt and ηt respectively, are

mutually independent and the notation NID
(
0, σ2

)
denotes normally and independently

distributed with mean zero and variance σ2. The autoregressive parameter is ϕ, while the

signal-noise ratio, q = σ2η/σ
2
ε , plays the key role in determining how observations should be

weighted for prediction and signal extraction. The reduced form (RF) of (1) is an ARMA(1,1)

process

yt = ϕyt−1 + ξt − θξt−1, ξt ∼ NID
(
0, σ2

)
, t = 1, ..., T (2)

but with restrictions on θ. For example, when ϕ = 1, 0 ≤ θ ≤ 1. The latter are obtained by

equating the autocorrelation function (ACF) of yt in (1), with the ACF expressed in terms of

the parameters of the ARMA reduced form, see Harvey (1989, section 2.5.3). The forecasts

from the unobserved components (UC) model and RF are the same.

The UC model in (1) is effectively in state space form (SSF) and, as such, it may be handled

by the Kalman filter (KF). The parameters ϕ and q may be estimated by maximum likelihood

(ML), with the likelihood function constructed from the one-step ahead prediction errors. The

KF can be expressed as a single equation which combines µt|t−1, the optimal estimator of µt

based on information at time t − 1, with yt in order to produce the best estimator of µt+1.
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Writing this equation together with an equation that defines the one-step ahead prediction

error, vt, gives the innovations form of the KF:

yt = µt|t−1 + vt, (3)

µt+1|t = ϕµt|t−1 + ktvt.

The Kalman gain, kt, depends on ϕ and q. In the steady-state, kt is constant. Setting it equal

to κ in (3) and re-arranging gives the ARMA model (2) with ξt = vt and ϕ − κ = θ. A pure

autoregressive model is a special case in which κ = ϕ, so that µt|t−1 = ϕyt−1.

Now suppose that the noise in (1) comes from a heavy tailed distribution, such as Student’s

t. Such a distribution can give rise to observations which, when judged against the yardstick of

a Gaussian distribution, are considered to be outliers. The RF is still an ARMA(1,1) process,

but allowing the ξ′ts to have a heavy-tailed distribution does not deal with the problem as

a large observation becomes incorporated into the level and takes time to work through the

system. An ARMA model in which the disturbances are allowed to have a heavy-tailed

distribution is designed to handle innovations outliers, as opposed to additive outliers. There

is a good deal of discussion of these issues in the robustness literature; see, for example the

book by Maronna, Martin and Yohai (2006, ch. 8).

Simulation methods, such as Markov chain Monte Carlo (MCMC), provide the basis for

a direct attack on models that are nonlinear and/or non-Gaussian. The aim is to extend

the Kalman filtering and smoothing algorithms that have proved so effective in handling

linear Gaussian models. Considerable progress has been made in recent years; see Durbin

and Koopman (2012). However, the fact remains that simulation-based estimation can be

time-consuming and subject to a degree of uncertainty. In addition the statistical properties

of the estimators are not easy to establish.

The DCS approach begins by writing down the distribution of the t-th observation, condi-

tional on past observations. Time-varying parameters are then updated by a filter in which

the prediction error, vt, in the KF equation is replaced by a variable, ut, that is proportional
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to the score of the conditional distribution. Thus the second equation in (3) becomes

µt+1|t = ϕµt|t−1 + κut (4)

where κ is treated as an unknown parameter. The attraction of this observation driven model

is that it becomes possible to derive the asymptotic distribution of the maximum likelihood

estimator and generalize in various directions.

3 Dynamic Student-t location model

When the location changes over time, it may be captured by a model in which, conditional

on past observations, yt has a tν-distribution

ft(yt|Yt−1, µ1) =
Γ
(
ν+1
2

)
√
πΓ
(
ν
2

)
(νe2λ)

1
2

(
1 +

(yt − µt|t−1)
2

νe2λ

)− ν+1
2

,

where Yt−1 = {yt−1,yt−2, ..}, exp(λ) is the scale and the location, µt|t−1, is generated by a

linear function of

ut =
(
1 + ν−1e−2λ(yt − µt|t−1)

2
)−1

vt, t = 1, ..., T, (5)

where vt = yt − µt|t−1 is the prediction error. Differentiating the log-density shows that ut is

proportional to the conditional score, ∂ ln ft/∂µt|t−1 = (ν+1)ν−1 exp(−2λ)ut. No restriction is

put on the degrees of freedom, ν, apart from requiring that it be positive: hence the reference

to location rather than the mean. The scaling factor, exp(2λ), cancels out if the score is

divided by the information quantity for the location.

The first-order model corresponds to the Gaussian innovations form, (3), and is

yt = µt|t−1 + vt = µt|t−1 + exp(λ)εt, t = 1, ..., T

µt+1|t = δ + ϕµt|t−1 + κut, (6)

where εt is serially independent, standard t-variate. More generally, a model of order (p, r) is

µt+1|t = δ + ϕ1µt|t−1 + ...+ ϕpµt−p+1|t−p + κ0ut + κ1ut−1 + ...+ κrut−r. (7)
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Figure 1: Plot of ut against observations yt from a zero mean and unit scale tν distribution,

for ν = 3 (thick line), ν = 10 (thin line) and ν → ∞ (dashed line).
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In the Gaussian case ut = vt. If q is defined as max(p, r + 1), yt is an ARMA(p, q) with MA

coefficients θi = ϕi − κi−1, i = 1, .., q.

Re-parameterization in terms of the unconditional mean, ω, gives

µt|t−1 = ω + µ†t|t−1, t = 1, ..., T, (8)

where µ†t|t−1 is as in (7), but without δ, and ω = δ/(1− ϕ1 − ...− ϕp).

Figure 1 shows the impact of ut against observations yt from a zero mean and unit scale t

distribution with various degrees of freedom. The Gaussian response is the 45 degree line. For

low degrees of freedom, observations that would be seen as outliers for a Gaussian distribution

are far less influential. As |y| → ∞, the response tends to zero. Redescending M-estimators,

which feature in the robustness literature, have the same property. On the other hand, the

Huber M-estimator has a Gaussian response until a certain point, whereupon it is constant;

see Maronna et al (2006, p 25-31). The implementation of M-estimates usually requires a

(robust) estimate of scale to be pre-computed.
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The variable ut can be written

ut = (1− bt)(yt − µt|t−1), (9)

where

bt =
(yt − µt|t−1)

2/ν exp(2λ)

1 + (yt − µt|t−1)2/ν exp(2λ)
, 0 ≤ bt ≤ 1, 0 < ν <∞, (10)

is distributed as beta(1/2, ν/2); see Harvey (2013, Chapter 3). The u′ts are IID(0, σ2u) and

symmetrically distributed. Even moments of all orders exist. In particular

Var(ut) = σ2u = ν exp(2λ)E(bt(1− bt)) = ν2(ν + 3)−1(ν + 1)−1 exp(2λ), (11)

and the kurtosis is less than three for ν < ∞. Since the u′ts are IID(0, σ2u), µt|t−1 is weakly

and strictly stationary so long as |ϕ| < 1. Although determining the statistical properties of

µt|t−1 requires assuming that it started in the infinite past, the filter needs to be initialized in

practice and this may be done by setting µ1|0 = ω or µ†1|0 = 0 in (8).

The existence of moments of yt is not affected by the dynamics. The autocorrelations can

be found from the infinite moving average representation; the patterns are as they would be

for a Gaussian model.

The minimum mean square error (MMSE) predictor of µT+ℓ|T+ℓ−1 can be computed re-

cursively as in Gaussian model. Thus in the stationary first-order model

µT+ℓ|T = ω(1− ϕℓ−1) + ϕℓ−1µT+1|T , ℓ = 2, 3, . . . (12)

the prediction error associated with µT+ℓ|T is
∑ℓ−1

j=1 ψjuT+ℓ−j , where ψj = κϕj for j =

1, 2, . . . .and so MSE(µT+ℓ|T ) = σ2u
∑ℓ−1

j=1 ψ
2
j , ℓ = 2, 3, . . . , where σ2u is given by (11). The

predictor of the observation at time T + ℓ, that is yT+ℓ = µT+ℓ|T+ℓ−1 + vT+ℓ, is yT+ℓ|T =

µT+ℓ|T , ℓ = 2, 3, . . . , and, when ν > 2, yT+ℓ|t is the MMSE ℓ-step ahead prediction of yT+ℓ.

A formula for the multi-step predictive distribution cannot be found unless the model is Gaus-

sian. However, simulation is a viable option. The prediction error associated with yT+ℓ|t is∑ℓ−1
j=1 ψjuT+ℓ−j + vT+ℓ, ℓ = 2, 3, . . . and so uT+j, j = 1, .., ℓ − 1, and vT+ℓ can be generated

from independent t variates.
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4 Maximum likelihood estimation

The asymptotic distribution of the maximum likelihood estimator is derived in Harvey (2013,

p. 65) and outlined in the appendix. Let yt | Yt−1 have a tν-distribution with location, µt|t−1,

generated by (8) where µ†t|t−1 is a stationary first-order model, as in (4), and |ϕ| < 1. Define

a = ϕ− κ
ν

ν + 3
, b = ϕ2 − 2ϕκ

ν

ν + 3
+ κ2

ν
(
ν3 + 10ν2 + 35ν + 38

)
(ν + 1) (ν + 3) (ν + 5) (ν + 7)

and let ψ = (κ, ϕ, ω)′. Assuming that b < 1 and κ ̸= 0, (ψ̃
′
, λ̃, ν̃)′, the ML estimator of

(ψ′, λ, ν)′, is consistent and the limiting distribution of
√
T (ψ̃

′
−ψ′, λ̃−λ, ν̃−ν)′ is multivariate

normal with mean vector zero and covariance matrix given by inverse of the information matrix

I(ψ, λ, ν) =


ν+1
ν+3 exp(−2λ)D(ψ) 0 0

0 2ν
ν+3

−2
(ν+3)(ν+1)

0 −2
(ν+3)(ν+1) h(ν)/2

 (13)

with

h(ν) =
1

2
ψ′ (ν/2)− 1

2
ψ′ ((ν + 1)/2)− ν + 5

ν (ν + 3) (ν + 1)
,

where ψ′ (.) is the trigamma function, and

D(ψ) = D


κ

ϕ

ω

 =
1

1− b


σ2u

σ2
uaκ

1−aϕ 0

σ2
uaκ

1−aϕ
σ2
uκ

2(1+aϕ)
(1−ϕ2)(1−aϕ)

0

0 0 (1−ϕ)2(1+a)
1−a

 (14)

A series of Monte Carlo experiments were carried out to investigate small sample prop-

erties. Table 1 reports the sample means and root mean square errors (RMSEs) from 1000

replications1 for T = 500 and 1000 observations from first-order models with ν = 6 and a

range of (realistic) values of κ and ϕ. The expression for the information matrix shows that

the asymptotic standard errors (ASEs) are independent of ω and that λ only appears as a

scaling factor. Hence setting ω = λ = 0 implies no loss in generality.

1We carried out some simulations using 5000 and 1000 replications, but since the results were the same up

to the third decimal, we concentrated on 1000 replications (Matlab codes are available upon request).
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Table 1: Simulation results for ML estimation of first-order DCS model.
T = 500 T = 1000

ϕ = 0.8 κ = 0.5 ω = 0 λ = 0 ν = 6 ϕ = 0.8 κ = 0.5 ω = 0 λ = 0 ν = 6

Mean 0.784 0.501 0.002 -0.007 6.358 0.793 0.499 0.000 -0.005 6.164

RMSE 0.055 0.076 0.128 0.050 1.853 0.037 0.053 0.093 0.035 1.161

NSE 0.053 0.075 0.129 0.050 1.674 0.036 0.052 0.093 0.035 1.066

ASE 0.050 0.061 0.133 0.053 1.545 0.037 0.043 0.094 0.038 1.092

ϕ = 0.8 κ = 1 ω = 0 λ = 0 ν = 6 ϕ = 0.8 κ = 1 ω = 0 λ = 0 ν = 6

Mean 0.791 1.004 0.003 -0.009 6.153 0.796 1.001 -0.000 -0.005 6.088

RMSE 0.036 0.092 0.196 0.045 1.305 0.025 0.067 0.144 0.031 0.920

NSE 0.035 0.088 0.200 0.044 1.263 0.025 0.063 0.144 0.031 0.855

ASE 0.034 0.063 0.208 0.053 1.545 0.024 0.045 0.147 0.038 1.092

ϕ = 0.8 κ = 1.3 ω = 0 λ = 0 ν = 6 ϕ = 0.8 κ = 1.3 ω = 0 λ = 0 ν = 6

Mean 0.792 1.301 0.012 -0.007 6.149 0.796 1.302 -0.000 -0.005 6.054

RMSE 0.031 0.103 0.228 0.041 1.208 0.022 0.071 0.167 0.029 0.781

NSE 0.031 0.089 0.234 0.041 1.090 0.021 0.069 0.169 0.029 0.730

ASE 0.030 0.061 0.245 0.053 1.545 0.021 0.043 0.174 0.038 1.092

T = 500 T = 1000

ϕ = 0.95 κ = 0.5 ω = 0 λ = 0 ν = 6 ϕ = 0.95 κ = 0.5 ω = 0 λ = 0 ν = 6

Mean 0.939 0.500 0.002 -0.007 6.337 0.945 0.499 0.013 -0.004 6.140

RMSE 0.023 0.070 0.325 0.049 1.797 0.015 0.048 0.244 0.035 1.100

NSE 0.020 0.068 0.319 0.049 1.616 0.013 0.048 0.245 0.035 1.030

ASE 0.017 0.053 0.381 0.053 1.545 0.012 0.038 0.269 0.038 1.092

ϕ = 0.95 κ = 1 ω = 0 λ = 0 ν = 6 ϕ = 0.95 κ = 1 ω = 0 λ = 0 ν = 6

Mean 0.942 0.994 0.019 -0.007 6.243 0.946 1.001 0.023 -0.005 6.066

RMSE 0.019 0.093 0.486 0.045 1.352 0.0121 0.064 0.387 0.031 0.882

NSE 0.016 0.091 0.531 0.044 1.280 0.011 0.064 0.416 0.031 0.836

ASE 0.014 0.061 0.684 0.053 1.545 0.010 0.043 0.484 0.038 1.092

ϕ = 0.95 κ = 1.3 ω = 0 λ = 0 ν = 6 ϕ = 0.95 κ = 1.3 ω = 0 λ = 0 ν = 6

Mean 0.943 1.307 0.014 -0.009 6.080 0.947 1.303 -0.005 -0.004 6.048

RMSE 0.017 0.107 0.561 0.042 1.081 0.011 0.071 0.445 0.029 0.740

NSE 0.015 0.092 0.609 0.041 1.061 0.010 0.069 0.495 0.029 0.728

ASE 0.014 0.061 0.843 0.053 1.545 0.010 0.043 0.596 0.038 1.092
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In most cases convergence was rapid and few computational problems were encountered.

The estimates were stable with respect to the initial values for the parameters. Problems only

emerged for a significant number of replications when κ was assigned a value close to zero,

the reason being that the model is not identifiable when κ = 0. The sample means give little

indication of any significant bias. The ASEs, which were obtained from the square roots of

the diagonal elements of the inverse of (13) divided by the sample size, are generally not far

from the empirical RMSEs. The numerical standard errors (NSEs) were computed from the

Hessian matrix of the log-likelihood function and averaged over all replications. On the whole

they are very close to the corresponding RMSEs.

A set of experiments was also conducted to see what might be lost by using our Student-t

model when the observations are Gaussian. The answer appears to be very little because in

5000 replications we encountered no estimate of ν less than 200.

Estimation of the unknown parameters adds another element of uncertainty to the predic-

tions. However, because the parameters are estimated consistently, the contribution to the

MSE of µT+ℓ|T , and hence yT+ℓ|T , is of O(1/T ). Nevertheless it may be of some significance

in small samples. When the parameters are estimated by ML, (12) is replaced by

µ̃T+ℓ|T = ω̃(1− ϕ̃ℓ−1) + ϕ̃ℓ−1µ̃T+1|T , ℓ = 1, 2, 3, . . . ,

and so the term µ̃T+ℓ|T − µT+ℓ|T is added to the estimation error associated with µT+ℓ|T . To

illustrate the effect of estimating the unknown parameters, we simulated 1000 replications of

the model and for each replication computed the difference between µT+ℓ|T and µ̃T+ℓ|T and

hence constructed an estimate of the additional contribution to the MSE of the estimator

of µT+ℓ|T+ℓ−1. Table 2 shows the results for one of the parameter configurations in Table 1,

namely ϕ = 0.8, κ = 0.5, ω = 0, λ = 0 and ν = 6, with T = 500 and T = 1000. As can be

seen, the bias is insignificant and the increase in the MSE is small in relation toMSE(µT+ℓ|T ).
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Table 2: Estimation error, simulation results, M = 1000

Steps ahead for T = 500 Steps ahead for T = 1000

ℓ = 2 ℓ = 3 ℓ = 10 ℓ = 2 ℓ = 3 ℓ = 10

Mean of µ̃T+ℓ|T − µT+ℓ|T -0.0005 0.0007 0.0045 0.0021 -0.0009 -0.0027

MSE of µ̃T+ℓ|T − µT+ℓ|T 0.0014 0.0012 0.0002 0.0005 0.0004 0.0001

MSE(µT+ℓ|T ) 0.0914 0.1499 0.2494 0.0914 0.1499 0.2494

5 Higher-order models and the state space form

The general statistical treatment of unobserved components models is based on the state

space form. The corresponding innovations form facilitates the handling of higher-order DCS

models.

5.1 Linear Gaussian models and the Kalman filter

For simplicity let us assume a time-invariant univariate time series model and exclude any

deterministic components. The general case is set out in Harvey (1989, Chapter 3). The

observation in the Gaussian state space model is related to an m×1 state vector, αt, through

a measurement equation, yt = ω + z′αt+εt, t = 1, ..., T, where ω is a constant, z is an m× 1

vector and εt ∼ NID(0, σ2ε). The elements of αt are usually unobservable but are known

to be generated by a transition equation αt+1 = δ + Tαt + ηt, t = 1, ..., T,where δ is a

vector of constants and ηt ∼ NID(0,Q). The specification is completed by assuming that

E (α1) = α1|0 and Var (α1) = P1|0, where P1|0 is positive a semi-definite matrix, and that

E (εtα
′
0) = 0 and E (ηtα

′
0) = 0 for t = 1, , ..., T. It is usually assumed that the disturbances

are uncorrelated with each other in all time periods, that is E (εtη
′
s) = 0 for all s, t = 1, ..., T ,

though this assumption may be relaxed.

When the disturbances and initial state are normally distributed, the minimum mean

square error estimates of the state and observation at time t, based on information at time

t − 1, are their conditional expectations. The Kalman filter is a recursive procedure for
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computing these estimates, given z, σ2ε ,T and Q together with the initial conditions, α1|0 and

P1|0. When the initial conditions are unknown, the filter may be started off as discussed in

Durbin and Koopman (2012).

The Kalman filter can be written as a single set of recursions going directly from αt|t−1 to

αt+1|t. The innovations form, generalizing (3), is

yt = ω + z′αt|t−1 + vt, t = 1, ..., T, (15)

αt+1|t = δ +Tαt|t−1+ktvt,

where vt = yt − ω − z′tαt|t−1 is the innovation and ft = z′Pt|t−1z + σ2ε is its variance. The

gain vector is kt = (1/ft)TPt|t−1z and Pt|t−1 is calculated by a matrix recursion. Since (15)

contains only one disturbance term, it may be regarded as a reduced form model with kt

subject to restrictions coming from the original structural form. In the steady-state, kt and

ft are time-invariant.

5.2 The DCS model

A general location DCS model may be set up in the same way as the innovations form of a

Gaussian state space model. The model corresponding to the steady-state of (15) is

yt = ω + z′αt|t−1 + vt, t = 1, ..., T, (16)

αt+1|t = δ +Tαt|t−1 + κut.

The z vector and T matrix may be specified in the same way as for the Gaussian UC models.

The transition equation in (16) is stationary provided that the roots of the transition matrix

T have modulus less than one. When this is the case, δ is superfluous and initialization is

achieved by setting α1|0 = 0. If αt|t−1 contains nonstationary elements, the best option seems

to be to treat their initial values as unknown parameters.

There remains the question of how to specify the parameters in the vector κ. More specif-

ically, what restrictions should be imposed? The issues are explored for trend and seasonal

components below.
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Remark The general model, (7), of order (p, r) may be put in the state space form of (16)

in a similar way to an ARMA(p, r) plus noise unobserved components models.

6 Trend and seasonality

Stochastic trend and seasonal components may be introduced into UC models for location.

These models, called structural time series models, are described in Harvey (1989) and imple-

mented in the STAMP package of Koopman et al (2009). The way in which the innovations

forms of structural time series models lead to corresponding DCS-t models is explored below.

6.1 Local level model

The Gaussian random walk plus noise or local level model is

yt = µt + εt, µt = µt−1 + ηt, (17)

where εt ∼ NID(0, σ2ε), ηt ∼ NID(0, σ2η) and E(εtηs) = 0 for all t and s. The signal noise

ratio is q = σ2η/σ
2
ε and the parameter, θ in the ARIMA(0, 1, 1) reduced form representation,

(2), lies in the range 0 ≤ θ < 1 when σ2ε > 0. Since θ = 1−κ, the range of κ in the steady-state

innovations form is 0 < κ ≤ 1. In this case µt+1|t is an exponentially weighted moving average

in which the weights on current and past observations are non-negative.

The local level DCS-t model is

yt = µt|t−1 + vt, µt+1|t = µt|t−1 + κut. (18)

The initialization of the KF in (17) is best done using a diffuse prior; see Harvey (1989, pp

107-8). This is not an option for the DCS model. One possibility is to set µ2|1 = y1, but the

filter could be adversely affected if the first observation is an outlier. An alternative approach

is to treat the initial value, µ1|0, as an unknown parameter that must be estimated along with

κ and ν. This is the technique used by Ord, Koehler and Snyder (1997) to initialize nonlinear

single source of error models (see also Hyndman et al, 2008).
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Because ut = (1− bt)(yt − µt|t−1), re-arranging the dynamic equation in (18) gives

µt+1|t = (1− κ(1− bt))µt|t−1 + κ(1− bt)yt. (19)

A sufficient condition for the weights on current and past observations to be non-negative is

that κ(1 − bt) < 1 and, because 0 ≤ bt ≤ 1, this is guaranteed by 0 < κ ≤ 1. However, the

restriction κ ≤ 1 is neither necessary nor desirable. Estimates of κ greater than one are not

unusual and are entirely appropriate when the signal is strong relative to the noise.

As regards asymptotic properties, the result in Section 4 can be modified to deal with the

nonstationary case. to be specific, when b < 1 and µ1|0 is fixed and known or µ2|1 = y1, where

y1 is fixed, the ML estimator of κ in (18) is consistent and
√
T (κ̃− κ) has a limiting normal

distribution with mean zero and variance

Var(κ̃) =

(
2κ

ν

ν + 3
− κ2

ν
(
ν3 + 10ν2 + 35ν + 38

)
(ν + 1) (ν + 3) (ν + 5) (ν + 7)

)(
ν + 3

ν

)2

.

It can be seen that κ > 0 is a necessary condition for b < 1 and hence Var(κ̃) > 0. When

the initial value, µ1|0, is treated as a parameter to be estimated, it appears from some limited

simulation evidence that the distribution of the ML estimator of κ is essentially unchanged.

The result extends to the random walk plus drift trend, that is

µt+1|t = β + µt|t−1 + κut, (20)

where β is an unknown constant. The ML estimators of κ and β are asymptotically inde-

pendent. Thus Var(κ̃) is unchanged and adapting expression (2.44) in Harvey (2013, p 38)

gives

Var(β̃) = e2λ

(
2κ

ν

ν + 3
− κ2

ν
(
ν3 + 10ν2 + 35ν + 38

)
(ν + 1) (ν + 3) (ν + 5) (ν + 7)

)
ν + 3

ν + 1

νκ

(2− κ)ν + 6
.

6.2 Local linear trend

The DCS filter corresponding to the UC local linear trend model is

yt = µt|t−1 + vt, (21)

µt+1|t = µt|t−1 + βt|t−1 + κ1ut, βt+1|t = βt|t−1 + κ2ut.

14



The initialization β3|2 = y2 − y1 and µ3|2 = y2 can be used, but, as in the local level model,

initializing in this way is vulnerable to outliers at the beginning. Estimating the fixed starting

values, µ1|0 and β1|0, may be a better option.

An integrated random walk trend in the UC local linear trend model implies the contraint

κ2 = κ21/(2 − κ1), 0 < κ1 < 1, which may be found using formulae in Harvey (1989, p.

177). The restriction can be imposed on the DCS-t model by treating κ1 = κ as the unknown

parameter, but without unity imposed as an upper bound.

6.3 Stochastic seasonal

A fixed seasonal pattern may be modeled as γt =
∑s

j=1 γjzjt, where s is the number of seasons

and the dummy variable zjt is one in season j and zero otherwise. In order not to confound

trend with seasonality, the coefficients, γj , j = 1, ..., s, are constrained to sum to zero. The

seasonal pattern may be allowed to change over time by letting the coefficients evolve as

random walks. If γjt denotes the effect of season j at time t, then

γjt = γj,t−1 + ωjt, ωt ∼ NID(0, σ2ω), j = 1, ..., s. (22)

Although all s seasonal components are continually evolving, only one affects the observations

at any particular point in time, that is γt = γjt when season j is prevailing at time t. The

requirement that the seasonal components evolve in such a way that they always sum to zero,

that is
∑s

j=1 γjt = 0, is enforced by the restriction that the disturbances sum to zero at each

point in time. This restriction is implemented by the correlation structure in Var (ωt) =

σ2ω
(
I− s−1ii′

)
, where ωt = (ω1t, ..., ωst)

′ , coupled with initial conditions requiring that the

seasonals sum to zero at t = 0. It can be seen that Var (i′ωt) = 0.

In the state space form, the transition matrix is just the identity matrix, but the z vector

must change over time to accommodate the current season. Apart from replacing z by zt, the

form of the KF remains unchanged. Adapting the innovations form to the DCS observation

driven framework, (16), gives

yt = z′tαt|t−1 + vt, αt+1|t = αt|t−1 + κtut, (23)
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where zt picks out the current season, γt|t−1, that is γt|t−1 = z′tαt|t−1. The only question is

how to parameterize κt.

The seasonal components in the UC model are constrained to sum to zero and the same is

true of their filtered estimates. Thus i′κt = 0 in the Kalman filter and this property should

carry across to the DCS filter. If κjt, j = 1, .., s, denotes the j − th element of κt in (23),

then in season j we set κjt = κs, where κs is a non-negative unknown parameter, while

κit = −κs/(s− 1) for i ̸= j. The amounts by which the seasonal effects change therefore sum

to zero.

The seasonal recursions can be combined with the trend filtering equations of (21) in order

to give a structure similar in form to that of the Kalman filter for the stochastic trend plus

seasonal plus noise UC model, sometimes known as the ‘basic structural model’. Thus

yt = µt|t−1 + γt|t−1 + vt, (24)

where µt|t−1 is as defined in (21). The initial conditions at time t = 0 are estimated by treating

them as parameters; there are s−1 seasonal parameters because the remaining initial seasonal

state is minus the sum of the others.

6.4 Application to rail travel

In a project carried out for the UK Department for Transport by one of the authors, the

STAMP 8 package of Koopman et al (2009) was used to fit an unobserved components model

to the logarithm of National Rail Travel, defined as the number of kilometres traveled by UK

passengers. (Source: National Rail Trends). The observations started in the first quarter of

1980 and finished in the second quarter of 2009. Trend, seasonal and irregular components

were included but the model was augmented with intervention variables to take out the effects

of observations that were known to be unrepresentative. The intervention dummies were: (i)

the train drivers strikes in 1982(1,3); (ii) the Hatfield crash and its aftermath, 2000(4) and

2001(1); and (iii) the signallers strike in 1994(3).

Fitting a DCS model with trend and seasonal, that is (24), avoids the need to deal explicitly
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Figure 2: Trend from a DCS-t model fitted to UK National Rail Travel.
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with the outliers. The ML estimates for the parameters in a model with a random walk plus

drift trend, (20), are

κ̃ = 1.421(0.161) κ̃s = 0.539 (0.070) β̃ = 0.003 (0.001)

ν̃ = 2.564 (0.553) λ̃ = −3.787 (0.107)

with initial values µ̃ = 2.066 (0.009), γ̃1 = −0.094 (0.007), γ̃2 = −0.010 (0.006) and γ̃3 =

0.086 (0.006). The figures in parentheses are numerical standard errors. The last seasonal is

γ̃4 = 0.018; it has no SE as it was constructed from the others.

The filtered DCS-t trend shown in Figure 2 appears not to be affected by the outliers.

We also found that it is very close to the filtered trend obtained from the UC model with

interventions. The same is true of the filtered seasonal.

Figure 3 shows the residuals, that is the one-step ahead prediction errors, for the DCS

model, together with the scores. The outliers, which were removed by dummies in the UC

model, show up clearly in the residuals. In the score series the outliers are downweighted and

the autocorrelations are slightly bigger than those of the residuals, presumably because they
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Figure 3: Residuals, vt and (scaled) scores, ut, from DCS-t model.
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are not weakened by aberrant values. The Box-Ljung Q(12) statistic is 19.78 for the scores

and 12.40 for the residuals. If it can be assumed that only the number of fitted dynamic

parameters affects the distribution of the Box-Ljung statistic, its distribution under the null

hypothesis of correct model specification is χ2
10, which had a 5% critical value of 18.3. Thus the

scores reject the null hypothesis, albeit only marginally, while the residuals do not. Having

said that, the score autocorrelations do not exhibit any clear pattern and the ACF shown

in Figure 4 is almost indistinguishable from the corresponding sample partial autocorrelation

function (PACF). Hence it is difficult to see how the dynamic specification could be improved.

7 Explanatory variables

The location parameter may depend on a set of observable explanatory variables, denoted by

the k× 1 vector wt, as well as on its own past values and the score. The model can be set up

as

yt = µ†t|t−1 +w′
tγ + εt exp(λ), t = 1, ..., T, (25)
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Figure 4: ACF and PACF of the scores from DCS-t model.
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where µ†t|t−1 could be a stationary process, as in (8), or a stochastic trend such as (21). The

model may be augmented by a seasonal component as in sub-section 6.4.

If it is possible to make a sensible guess of initial values of the explanatory variable co-

efficients, the degrees of freedom parameter, ν, and the dynamic parameters, ϕ and κ for a

stationary first-order model or β and κ for a random walk with drift, can be estimated by

fitting a univariate model to the residuals, yt −w′
tγ̂, t = 1, .., T. These values are then used

to start off numerical optimization with respect to all the parameters in the model.

7.1 Asymptotic distribution

The following result is obtained by specializing Corollary 10 in Harvey (2013, Section 2.6).

Consider model (25) with a stationary first-order component. Assume that the explanatory

variables are weakly stationary with mean µw and second moment Λw and are strictly exoge-

nous in the sense that they are independent of the εt́s and therefore of the u′ts. Provided that

b < 1 and κ ̸= 0, the ML estimator of (κ, ϕ,γ ′,λ, ν)′, is consistent and the limiting distribution

of
√
T (κ̃ − κ, ϕ̃ − ϕ, γ̃ ′ − γ ′, λ̃ − λ, ν̃ − ν)′ is multivariate normal with mean vector zero and
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covariance matrix given by the inverse of the information matrix in (13) but with ψ replaced

by (κ, ϕ)′ and D(ψ) replaced by

D


κ

ϕ

γ

 =
1

1− b


σ2u

σ2
uaκ

1−aϕ 0′

σ2
uaκ

1−aϕ
σ2
uκ

2(1+aϕ)
(1−ϕ2)(1−aϕ)

0′

0 0 Cw

 ,
with

Cw = (1 + ϕ2)Λw − 2ϕΛw(1) + 2a(1− a)−1(1− ϕ)2µwµ
′
w,

with Λw(1) = E(wtw
′
t−1) = E(wt−1w

′
t).

An estimator of the asymptotic covariance matrix can be obtained by replacing Λw and

Λw(1) by T
−1
∑

wtw
′
t and T

−1
∑

wtw
′
t−1 respectively. The constant term, ω, will normally

appear as an explanatory variable in which case the corresponding element in wt will be unity.

When µ†t|t−1 is known to be a random walk with drift, β, as in (20), and µ†1|0 is fixed and

known, the information matrix is as in (13) but with

D


κ

γ

β

 =
1

1− b


σ2u 0′ 0′

0 C∆w µ∆w

0 µ′
∆w 1

 , b < 1,

where µ∆w = E(∆wt) and C∆w = E(∆wt∆w′
t). The first differences of the explanatory

variables must be weakly stationary but their levels may be nonstationary. It follows that the

covariance matrix of the limiting distribution of
√
T γ̃ is

Var(γ̃) =

(
2κ

ν

ν + 1
− κ2

ν
(
ν3 + 10ν2 + 35ν + 38

)
(ν + 1)2 (ν + 5) (ν + 7)

)
e2λ(C∆w − µ∆wµ

′
∆w)

−1. (26)

7.2 Application to rail travel

Potential explanatory variables for the rail travel series of Sub-section 6.5 are: (i) Real GDP (in

£2003 prices), (ii) Real Fares, obtained by dividing total revenue by the number of kilometres

travelled and the retail price index (RPI), and (iii) Petrol and Oil index (POI), divided by

RPI. The fares series was smoothed by fitting a univariate UC model.
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Fitting an unobserved components time series model using STAMP gave the following

estimates for the coefficients of the logarithms of the explanatory variables: GDP was 0.716

(0.267), fares was -0.416 (0.245) and POI was 0.050 (0.065). Because the explanatory variables

enter the model in logarithms, their coefficients are elasticities. All the estimates are plausible.

The coefficient of the petrol index is not statistically significant at any conventional level, but

at least it has the right sign.

Failure to deal with outliers in a time series regression can lead to serious distortions and

this is well-illustrated by the rail series when the intervention variables are not included. In

particular the fare estimate is plus 0.28.

When rail travel was seasonally adjusted by removing the seasonal component obtained

from the univariate DCS-t model fitted in sub-section 6.5 and LPOI was also seasonally

adjusted, estimating the DCS-t model without a seasonal component gave

κ̃ = 1.346(0.151) λ̃ = −3.879 (0.123) ν̃ = 2.436 (0.648) β̃ = 0.001 (0.002),

where the figures in parentheses are asymptotic standard errors. The ASEs calculated for the

coefficients of LGDP, Lfare (level) and LPOI (seasonally adjusted) using Var(γ̃) in (26) were

0.251, 0.246 and 0.050 respectively. These figures are close to the standard errors for the UC

model (with seasonal component) reported in the first paragraph of this sub-section. (The

estimated SEs obtained from a UC model fitted to seasonal adjusted data were similar).

Fitting the full DCS-t model with the seasonal gave κ̃ = 2.212, κ̃s = 0.771, λ̃ = −4.059,

ν̃ = 2.070 and β̃ = 0.0004, with initial values µ̃ = −6.162, γ̃1 = −0.084, γ̃2 = −0.007 and

γ̃3 = 0.070. The coefficients of the explanatory variables were: LGDP = 0.734, Lfare =

−0.427 and LPOI = 0.056. The Box-Ljung Q(12) statistic is 5.30 for the score and 16.12 for

the residuals. This result is a little surprising because in the univariate model the Q-statistic

for the score was bigger than that of the residuals.

A good deal, but by no means all, of the growth in rail travel from the mid-nineties is

due to the increase in GDP. The continued fall after the economy had moved out of the

recession of the early nineties is partly explained by the fact that fares increased sharply in
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Figure 5: Trend in rail travel after explanatory variables have been taken into account. (A

constant has been added to the trend so that it is at a level comparable with that of the

series.)
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1993 in anticipation of rail privatisation and continued to increase till 1995. Nevertheless, as

is apparent from Figure 5, there remain long-term movements in rail travel that cannot be

accounted for by the exogenous variables.

8 Conclusions

In this paper we develop, analyse and apply a robust time series model based on a conditional

t−distribution. Our Monte Carlo results show that maximum likelihood estimation works

well in moderate size samples, with the asymptotic standard errors giving a good indication

of empirical RMSEs. Furthermore, the theoretical MSEs of the predictions appear not to be

significantly affected when parameters are estimated.

The model is extended to include trend and seasonal components and its viability is illus-

trated with real data containing outliers. Finally, explanatory variables are introduced into

the model and the asymptotic distribution of the estimated coefficients is presented. The
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application shows that the model deals effectively with the outliers.
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APPENDIX

A Consistency and asymptotic normality of the ML estimator

This appendix explains how to derive the information matrix of the ML estimator for the

first-order model and outlines a proof for consistency and asymptotic normality. As noted in

the text, if the model is to be identified, κ must not be zero and or such that the constraint

b < 1 is violated. A more formal statement is that the parameters should be interior points

of the compact parameter space which will be taken to be |ϕ| < 1, |ω| < ∞ and 0 < κ < κu,

κL < κ < 0 where κu and κL are values determined by the condition b < 1.

The first step is to decompose the derivatives of the log density wrt ψ into derivatives wrt

µt|t−1 and derivatives of µt|t−1 wrt ψ, that is

∂ ln ft
∂ψ

=
∂ ln ft
∂µt|t−1

∂µt|t−1

∂ψ
.

Since the scores ∂ ln ft/∂µt|t−1 are IID(0, σ2u) and so do not depend on µt|t−1,

Et−1

[(
∂ ln ft
∂µt|t−1

∂µt|t−1

∂ψ

)(
∂ ln ft
∂µt|t−1

∂µt|t−1

∂ψ

)′
]
=

[
E

(
∂ ln ft
∂µ

)2
]
∂µt|t−1

∂ψ

∂µt|t−1

∂ψ′ = σ2u
∂µt|t−1

∂ψ

∂µt|t−1

∂ψ′ .

Thus the unconditional expectation requires evaluating the last term.

The derivative of µt|t−1 wrt κ is

∂µt|t−1

∂κ
= ϕ

∂µt−1|t−2

∂κ
+ κ

∂ut−1

∂κ
+ ut−1, t = 2, ..., T.
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However,

∂ut
∂κ

=
∂ut

∂µt|t−1

∂µt|t−1

∂κ
,

Therefore

∂µt|t−1

∂κ
= xt−1

∂µt−1|t−2

∂κ
+ ut−1 (27)

where

xt = ϕ+ κ
∂ut

∂µt|t−1
, t = 1, ...., T. (28)

Define

a = Et−1(xt) = ϕ+ κEt−1

(
∂ut

∂µt|t−1

)
= ϕ+ κE

(
∂ut
∂µ

)
Since ∂ut/∂µt|t−1 is IID, unconditional expectations can replace conditional ones. When the

process for µt|t−1 starts in the infinite past and |a| < 1, taking conditional expectations of the

derivatives at time t− 2, followed by unconditional expectations gives

E

(
∂µt|t−1

∂κ

)
= E

(
∂µt|t−1

∂ϕ

)
= 0 and E

(
∂µt|t−1

∂ω

)
=

1− ϕ

1− a
.

To derive the information matrix, square both sides of (27) and take conditional expecta-

tions to give

Et−2

(
∂µt|t−1

∂κ

)2

= Et−2

(
xt−1

∂µt−1|t−2

∂κ
+ ut−1

)2

= b

(
∂µt−1|t−2

∂κ

)2

+ 2c
∂µt−1|t−2

∂κ
+ σ2u, (29)

where

b = Et−1(x
2
t ) = ϕ2 + 2ϕκE

(
∂ut
∂µ

)
+ κ2E

(
∂ut
∂µ

)2

≥ 0, and

c = Et−1(utxt) = κE

(
ut
∂ut
∂µ

)
Taking unconditional expectations gives

E

(
∂µt|t−1

∂κ

)2

= bE

(
∂µt−1|t−2

∂κ

)2

+ 2cE

(
∂µt−1|t−2

∂κ

)
+ σ2u
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and so, provided that b < 1,

E

(
∂µt|t−1

∂κ

)2

=
σ2u

1− b
.

Expressions for other elements in the information matrix may be similarly derived; see Harvey

(2013, Appendix A). Fulfillment of the condition b < 1 implies |a| < 1. That this is the case

follows directly from the Cauchy-Schwarz inequality E(x2t ) ≥ [E(xt)]
2 .

The information matrix, (13), is given by noting that

∂ut
∂µ

= 2(1− bt)bt − (1− bt). (30)

The distribution of (30) does not depend on µ and E(∂ut/∂µ) = −ν/(ν + 3). Similarly

E

(
ut
∂ut
∂µ

)
= E(2(1− bt)bt − (1− bt))(yt − µt|t−1)(1− bt) = 0

because E((yt − µt|t−1) | bt) = 0, and

E

(
∂ut
∂µ

)2

= E(2(1− bt)bt − (1− bt))
2 =

ν
(
ν3 + 10ν2 + 35ν + 38

)
(ν + 1) (ν + 3) (ν + 5) (ν + 7)

≤ 1.

Consistency and asymptotic normality can be proved by showing that the conditions for

Lemma 1 in Jensen and Rahbek (2004, p 1206) hold. The main point to note is that the

first three derivatives of µt|t−1 wrt κ, ϕ and ω are stochastic recurrence equations (SREs); see

Brandt (1986) and Straumann and Mikosch (2006, p 2450-1). The condition b < 1 is sufficient2

to ensure that they are strictly stationarity and ergodic at the true parameter value. Similarly

b < 1 is sufficient to ensure that the squares of the first derivatives are strictly stationary and

ergodic.

Let ψ0 denote the true value of ψ. Since the score and its derivatives wrt µ in the

static model possess the required moments, it is straightforward to show that (i) as T → ∞,

(1/
√
T )∂ lnL(ψ0)/∂ψ → N(0, I(ψ0)), where I(ψ0) is p.d. and (ii) as T → ∞, (−1/T )∂2

lnL(ψ0)/∂ψ∂ψ
′ P→ I(ψ0). The final condition in Jensen and Rahbek (2004) is concerned

2The necessary condition for strict stationarity is E(ln |xt|) < 0. This condition is satisfied at the true

parameter value when |a| < 1 since, from Jensen’s inequality, E(ln |xt|) ≤ ln E(|xt|) < 0 and as already noted

b < 1 implies |a| < 1.
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with boundedness of the third derivative of the log-likelihood function in the neighbourhood

of ψ0. The first derivative of ut, (30) is a linear function of terms of the form b∗t = bht (1− bt)k,

where h and k are non-negative integers, as is the second derivative. As regards ut itself, since

ut = (1− bt)(yt−µt|t−1), it can be seen that that ut = 0 when yt = 0 and ut → 0 as |yt| → ∞.

Thus ut, like its derivatives, is bounded for any admissible ψ. Since

bt = h(yt;ψ)/(1 + h(yt;ψ)), 0 ≤ h(yt;ψ) ≤ ∞,

where h(yt;ψ) depends on yt and ψ, it is clear that for any admissible ψ, 0 ≤ bt ≤ 1 and so

0 ≤ b∗t ≤ 1. Furthermore the derivatives of µt|t−1 must be bounded at ψ0 since they are stable

SREs which are ultimately dependent on ut and its derivatives. They must also be bounded

in the neighbourhood of ψ0 since the condition b < 1 is more than enough to guarantee the

stability condition E(ln |xt|) < 0.

Unknown shape parameters, including degrees of freedom, pose no problem as the third

derivatives (including cross-derivatives) associated with them are almost invariably non-stochastic.
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