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Abstract

This work presents an economic feasibility study of using algae and biochar

burial strategies to offset carbon emission from the use of conventional fossil-

derived transport fuels. The economic feasibility is quantified on the basis that

the final price of the decarbonised fossil-derived diesel should be lower or equal to

the price of biodiesel which is deemed to be the next best alternative. The extra

costs associated with the carbon capture/offset via algae and biochar burial are

estimated for the most typical scenarios using the economic models developed as

part of this work. In addition, High Dimensional Model Representation based
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global sensitivity analyses are performed in order to quantify an influence of key

model parameters on the overall costs. It was found that using algae burial to

offset carbon emissions is not viable for principle reasons such as the amount of

water required and the burial of phosphate as well as more than doubling the

current diesel price. This price is mainly due to the high costs of pumping dilute

algae slurry underground. The biochar burial approach, on the other hand, was

found to be much more economically viable as it only increases the conventional

diesel price by a small amount. This comparably low price is due to the revenue

generated from selling the electricity produced from the pyrolysis by-products.

In addition, the global sensitivity analysis revealed that the overall costs were

the most sensitive to the wood price, as the wood feedstock may either be an

income or an expenditure.
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1. Introduction

Over the past century, there has been a significant increase in atmospheric

concentration of carbon dioxide (CO2) due to human activities [1]. There is

near unanimous scientific agreement that uncontrolled emission of this and other

greenhouse gases will change Earth’s climate. This poses serious environmental

threats, such as, ocean acidification [2], desertification [3] and sea level rise [4]. A

rapid reduction in CO2 emissions is then required to prevent further irreversible

damage to the environment [1, 5].

Combustion of fossil fuels for energy is a primary human emission source of

carbon dioxide. This consists of two main sectors: electricity production from

burning coal, natural gas or various petroleum products and burning gasoline

and diesel for transportation purposes (to fuel cars, trucks, ships or planes).

It has been estimated that these two sectors contributed 30% and 26% to the

total greenhouse gas emission in the US in 2016, respectively [6]. Whilst there

are many options to decarbonise power generation systems, e.g. utilisation of

solar, wind, and nuclear energy or CO2 capture from the flue gases of coal-fired
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power plants, not many suitable “green” alternatives exist for the transport

sector. Indeed, whereas good progress has been made on decarbonising the

power sector, for the transport sector emissions are increasing [7].

A possible option to reduce the CO2 emission in the transport sector is to

utilise biomass-based fuels such as biodiesel from algae to provide a significant

proportion of the fuel required for the transport activities [8]. The advantage of

algal biodiesel is that, if produced using renewable energy, it can have a much

lower carbon footprint compared to the conventional fossil-derived fuel. This

is because the amount of CO2 released during combustion of this biofuel is in

part counter-balanced by its consumption due to the algal growth process when

the fuel is produced [9]. Taylor et al. [10] studied the economic feasibility of

an idealised case of carbon-neutral algal biodiesel. One of the main conclusions

from this work was that such process is possible, but it would have high energy

requirements and high production costs associated with the algae cultivation

and its transformation into usable liquid fuel. It has been estimated that the

production of biodiesel is 2.5 times more energy intensive than production of

conventional diesel [11]. Such a high energy demand poses difficulties in terms

of providing enough“green energy” to keep the whole process environmentally-

friendly, which in turn raises capital costs and shifts production to much larger

and not well-studied scales to be economically attractive or viable [10].

Given these problems, biofuels are expected to play rather a complimentary

role to conventional fossil fuels in the short and mid-term future [12]. It is an-

ticipated that in Europe, green vehicles will be an important, but not dominant

part of the transport sector [13]. Moreover, in the US the fossil-derived liquid

fuels are predicted to be a key source of energy in transportation for the next

30–40 years [8] despite efforts to develop green synthetic fuels. It is then believed

that at least in the short term a different and more realistic fuel decarbonisation

strategy is required that would take into account the more gradual diminishing

importance of fossil fuels.

Figure 1 shows some of the possible carbon-capture strategies that could

be applied to the transport sector. Option A corresponds to an idealised case
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of carbon-neutral biodiesel cycle. Options B-E show various fossil fuel related

alternatives. They all rely on an idea that the conventional fossil fuel could

be decarbonised by burying the same amount of carbon as is produced by ex-

tracting, refining, transporting and using the fuel. In case of option B this is

achieved by absorbing CO2 from the atmosphere via algal ponds. These ponds,

depending on land availability, could be located either in close proximity to re-

fineries or in other places with high CO2 emissions. Such created algae biomass

can then be transported to suitable places and buried in the ground, which is

the most direct and simplest technological approach, giving some carbon credits

to the utility. Cases C and D explore the possibility to sink carbon in a geolog-

ically stable form via either direct burial of a waste wood or its conversion and

subsequent burial as a biochar. The last option (E) represents carbon dioxide

trapping in rock deposits by injecting it underground in a supercritical form.

The wood burial and supercritical CO2 sequestration techniques have been

already investigated [14, 15, 16]. When it comes to the former, it was found that

it is a viable carbon capture strategy at a small scale. Pursuing this option at

larger scales, however, may pose various not yet properly researched strains on

important ecosystems [14]. The latter option, on the other hand, has been found

to be a feasible solution at both small and large scales. However, it was also

concluded that injection of supercritical CO2 into rock deposits involves a bigger

risk of an uncontrolled CO2 leak that would make this method less effective and

potentially dangerous. In addition to that, the long term impact of storing large

amounts of supercritical CO2 in rock deposits on the environment are not yet

well understood [17]. Therefore, in this work it was decided to focus on the two

remaining carbon sequestration options that are algae and biochar burial.

It has to be also mentioned that the carbon offset strategies via algae and

biochar burial can only be feasible if they fulfill two important criteria. Firstly,

(i) the buried carbon must be permanently stored underground such that it is cut

off from the atmosphere for at least several decades. Secondly, (ii) overall costs

of fossil fuel production combined with a given carbon burial method should not

be higher than the next best alternative, which in this paper is considered as
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an idealised case of carbon-neutral biodiesel cycle (A). Fortunately, the selected

strategies naturally fulfill the first criterion as geochemical trapping of algae

slurry in depleted oil fields successfully prevents carbon release from such deep

voids [17] and biochar decomposition in soil requires milenia [18]. Therefore, the

focus of the current work is to assess the economic feasibility of these approaches.

A B C D E

algae pond

algae slurry

biodiesel plant

crude oil
wood burial biochar burial scCO2

CO2

CO2

CO2
CO2

refinery biochar plant

Figure 1: Carbon-neutral options to provide fuel for the transport sector. (A) biofuel versus

options to pre-offset carbon emissions from the use of conventional fossil fuel: (B)

algae burial, (C) wood burial, (D) biochar burial and (E) underground storage of

supercritical CO2.

The purpose of this paper is to assess the economic feasibility of using

algae burial (B) and biochar burial (D) to pre-offset carbon emissions from the

conventional fossil fuels as an alternative to the biofuels in the short/midterm

future of the transport sector. To our knowledge this is the first high level

analysis of algal burial and comparison with biochar burial for offsetting fossil-

diesel CO2 emissions in the transportation section. The paper is split into two

main sections. The methodology section provides a detailed description of each

process and sets out the criteria used to assess the economic feasibility of each

option. The results section assesses the implications of the economic analyses

and evaluates each option against the use of biofuel. A sensitivity analysis

is performed to assess the robustness of the results to changes in the model

assumptions. Conclusions are drawn and possible future work is identified.
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2. Methodology

The economic feasibility of the algae and biochar burial strategies is quan-

tified in this work as a difference between the price of carbon-neutral biodiesel

which represents an idealised next best alternative and the final price of the

decarbonised fossil-derived fuel. This can be written as follows

CB − (CD + CCPO) ≥ 0 (1)

where, CB = 1.05 £/l is the net price of a one litre of carbon-neutral algal

biodiesel taken from the techno-economic study of Taylor et al. [10], CD = 0.58

£/l is the current net price of one litre of the conventional diesel and CCPO

represents the cost of offsetting the carbon emissions due to combustion of

a one litre of the conventional diesel via algae or biochar burial. It can be

seen from equation (1) that the decarbonised fossil-derived diesel can only be

economically competitive if its final price (CD + CCPO) is either equal or lower

than the price of the carbon-neutral biodiesel.

The costs CCPO of burying carbon to compensate for the CO2 emission

generated by one litre of conventional fuel were calculated according to the

following formula

CCPO = CC × θ × 12

44
[£/l] (2)

where, CC are the burial costs of a one kg of carbon, θ = 3.0514 kg/l is an

average CO2 emission per litre of a conventional diesel [19, 20] and the 12/44

factor accounts for the carbon mass content in the emitted CO2.

Due to the number of used literature parameters and required assumptions,

the costs for algae and biochar burial can only be approximated. However, the

value is expected to be sufficiently accurate to assess the feasibility of this carbon

offset approach. Additionally, a global sensitivity analysis of key parameters was

conducted to elucidate the reliability of the calculated costs.

2.1. Costs of algae burial to offset CO2 emission

Algae burial to offset CO2 emission involves three main process steps (Fig.

2). In the first step (I) algae are cultivated in open raceway ponds similar to the
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algae system studied by [21]. In the second step (II) the algae content in the

slurry is increased in a buffer tank using gravity sedimentation [22]. This is the

most common method for biomass collection during waste water treatment and

does not require additional resources [23]. In the final step (III), the produced

algae-water-slurry is pumped into depleted onshore oil reservoirs or something

equivalent. For the purpose of this rough estimate we assume a depleted onshore

oil reservoirs is available.

Figure 2: Schematic of algae burial process.

All parameters required for algae burial cost analysis are summarised in

Table 1. Where necessary, the currencies are converted to £ and parameters

are scaled to match our case size.

The capital expenditures (CAPEX) for algae cultivation include a paddle

wheel, CO2 injector, electricity supply and water delivery system. These costs

are assumed to scale linearly from a 4820 acre pond assessed by Davis et al.

[24]. Operational expenditures (OPEX) include maintenance, operating labour,

laboratory cost, plant overheads, local taxes and insurance and were assumed to

be 6.45% of the capital expenditures [25]. The required amount of fresh water
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was approximated by multiplying the amount of buried slurry with its water

content. For a conservative estimate we assume that water evaporation to be

negligible. Furthermore, electricity is required for operating a paddle wheel to

circulate the pond water. The bulk of electric power required by an algae pond

is utilised by the paddle wheels [26], thus other electricity consumers were not

considered. Nutrients and CO2 are considered to be free of charge. Former is

assumed to be part of the fresh water while flue gas from an adjacent power

plant is used as CO2 feedstock.

Harvest tanks are the only capital expenditure for the algae harvesting [22].

As gravity sedimentation is used for this process step, no additional operational

costs have to be considered [23, 27].

Pumping of algae is assumed to be similar to the technology applied for

supercritical CO2 burial described by Metz et al. [17]. The capital expendi-

tures are taken from the supercritical CO2-storage project Sleipner in Norway.

Operational expenditures are average costs for supercritical CO2 injection into

onshore oil fields. The expected additional costs for pumping slurry containing

solid algae compared to supercritical CO2 was accounted for by multiplying the

operational costs with a factor α ≥ 1.

2.2. Costs of biochar burial to offset CO2 emission

CO2 offset via biochar burial is considered to consist of three main process

units (Fig. 3). A pyrolysis plant (I) converts biomass into biochar. The plant

capacity is assumed to be mfeed = 16000 odt/year (oven-dry tonnes per year),

similar to the work of Shackley et al. [30]. During the pyrolysis, syngas (H2+CO)

and methane (CH4) form and are converted into electricity with a gas engine

(II). Finally, the produced biochar is buried underground (III). The process

details, assumptions and utilised literature values for calculating the cost of

biochar burial are presented in Table 2.

The economic analysis is based on the work of Shackley et al. [30]. Capital

expenditures for the pyrolysis plant include design, construction, civils and gas

engine. Operating costs for labour, plant handling and natural gas to initiate
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Figure 3: Schematic of biochar burial process.

the pyrolysis are adjusted to a biochar production of 5396 odt/year. The wood

utilisation can generate income if process receives money for using the waste

wood. This is known as the wood gate fee. If the wood has to be bought, the

operational costs would increase. Here, wood is assumed to be free of charge in

the base case while the wood feedstock will be an income or expenditure in the

sensitivity analysis.

The remaining operational costs depend on the amount of produced biochar

and syngas. These amounts are associated to operating conditions such as tem-

perature, pressure, water and oxygen contents in the feedstock. The pyrolysis

unit is modelled in Cantera [31] using a multiphase equilibrium process involv-

ing wood, treated as cellulose C6H10O5, graphite, CO, H2, CO2, CH4, H2O and

O2. Thermodynamic properties of cellulose are calculated by applying raw data

from Blokhin et al. [32].

The costs of biochar burial are calculated based on the price for wood burial

given by Zeng [14]. The provided price per ton of carbon in wood is converted

to £ per ton of carbon in biochar using the carbon content and density of wood
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and biochar.

To estimate the profit from electricity sale, the amount of energy stored in the

pyrolysis products H2, CO and CH4 is computed according to its composition

and lower heating values (LHV). A gas engine with a conversion efficiency of

35% [30] is used for the electricity generation. The LHV values are taken from

Tasma and Panait [33] while the electricity price was assumed to be identical

to the one used in the algae process.

2.3. Global sensitivity analysis

A global sensitivity analysis is used to examine uncertainties corresponding

to key model variables with respect to the carbon offset costs. The analysis was

conducted with the High Dimensional Model Representation (HDMR) technique

[34]. A brief summary of HDMR is given below while more detailed descriptions

can be found in literature [35, 21].

The HDMR method approximates a complex multivariate response or target

function as a hierarchical correlated function expansion in terms of the model

input variables. The first term of the correlation function is a constant and

represents the zeroth-order component or the mean response. The first-order

terms represent an effect of the input variables acting alone whereas the second

and higher order terms account for the cooperative effects of a group of variables

upon the model output. In practical applications and in calculations performed

in this paper, the HDMR function is truncated to second-order terms with negli-

gible impact on accuracy [34]. Hereby, the computationally demanding complex

multivariate target function is replaced by significantly more efficient approxi-

mation model. Besides the inherent uncertainties of the input parameters, the

HDMR method accounts for potential non-linearities and contributions due to

interactions between input parameters.

The selected algae burial model parameters for the HDMR analysis are pre-

sented in Table 3. The yield Y of dry biomass and the carbon mass content

xC,algae in algae were varied as different algae species could be used. The range

of the two parameters are based on work of Azadi et al. [21] and Williams and
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Laurens [36], respectively. The harvesting efficiency is represented by the final

solid algae concentration φ in the harvest tank. The minimum boundary is

equal to the concentration in the cultivation pond while the maximum value

represents the limit of a Newtonian fluid [37, 23]. As the the actual costs for

pumping algae underground are unknown, the factor α was varied to assess the

influence of different pumping expenditures.

In case of the biochar model five parameters are varied in the sensitivity

analysis (Table 4). Two specify the input composition, two quantities affect

the thermodynamic equilibrium and the fifth parameter is the price of wood.

The water mass content xw in wood and oxygen-wood-ratio represent the input

composition. Parameters for the thermodynamic equilibrium (temperature and

pressure) are chosen to vary within the most common pyrolysis conditions [38].

The costs of wood are varied in between the avoided wood gate fees when wood

waste is used [39] and the average price of harvested wood [30].

3. Results and discussion

3.1. Viability of carbon offset via algae burial

As an initial case the annual costs of algae burial based on an 1 ha open

raceway algae pond were calculated using the base parameters listed in Table

1. The expenditure shares of the process steps, that were annualised over the

life time of the plant, as well as the required feedstock and products are pre-

sented in Table 5. The algae cultivation consumes 70.7% of the overall algae

burial costs. The OPEX hereby amount to £12896 (60.2%) of the overall cul-

tivation costs. Some saving might be possible when the plant size is increased

(decrease in labour and laboratory costs) or certain tasks are automatised. In

the calculations CO2 and nutrients are assumed to be freely available. This how-

ever requires the algae ponds to be adjacent to a CO2 emitting source (power

plant, cement factory, etc.) and a nutrition rich water supply. Latter might be

achieved by using waste water in which case water costs would be eliminated.
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The dry biomass content in the algae slurry is increased from 2 wt% to 8

wt% in the harvesting step [23]. The overall costs amount to only 2.8% as the

sedimentation tank is the only expenditure. Nevertheless, the amount of algae

slurry is decreased from 4000 t to 1000 t, significantly reducing the amount that

needs to be pumped underground.

Pumping the algae slurry underground claims 26.5% of the overall algae

burial costs. Due to the assumed carbon content in algae and dry biomass

content in the slurry, the buried 1000 t of algae slurry amount to only 43.84 t

of carbon.

For easier comparison with biodiesel, the price of algae burial per litre of

compensated fossil diesel was calculated according to Equation 2 and is shown

in Fig. 4. It can be seen, that the total algae burial costs to offset the emissions

of one litre of conventional fuel are 0.57 £/l. Thus making fossil diesel CO2

neutral would approximately double its net fuel price of 0.58 £/l [10]. The

calculated price of algae burial is however dependent on numerous parameters

that can only be approximated, motivating the sensitivity analysis.

C c u l t

C h a r v

C p u m p

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4
C o s t  s h a r e s  i n  £ / l

Figure 4: Cost shares for storing carbon via algae burial per liter of fuel.

The impact of the model input variables on the algae burial costs were

assessed with a sensitivity analysis (Fig. 7). The solid algae content φ in the

slurry has the largest effect on the overall costs (51.4%). This can be expected
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as a higher φ translates into decreased quantities of slurry that needs to be

pumped underground. Thus the efficiency of the harvesting step is one key

parameter in making the algae burial process more cost-effective.

The pumping factor α is the second most sensitive variable. This parameter

is difficult to quantify as data regarding pumping costs of slurries into depleted

oil fields are scare. Furthermore, α is expected to be influenced by the viscosity

of the pumped fluid. Increasing φ might thus decrease the amount of algae

slurry that needs to be pump underground but simultaneously increase α. The

other model variables are only of minor importance and account to less than

21% of the global sensitivity.

5 1 . 7 5 %

2 . 4 4 %4 . 8 5 %

 S o l i d  a l g a e  c o n t e n t  �
 P u m p i n g  f a c t o r  �
 Y i e l d Y
 O t h e r
 C a r b o n  c o n t e n t  x C

1 3 . 3 9 %

2 7 . 5 8 %

  

Figure 5: Global sensitivity of input parameters with respect to carbon storage costs via algae

burial.

The UK consumes 3.58 · 107 t/y of transport fuel, corresponding to an emis-

sion of 1.48 · 108 t/y CO2 [40]. It would require 3.38 · 106 ha of ponds, which is

14% of the total UK land area [41], and 3.1·109 t/y of water, which is 38% of the

annual fresh water withdrawal of the UK [42] in order to offset these emissions

via algae burial using the suggested method.

3.2. Viability of carbon offset via biochar burial

Annual costs for carbon offset via biochar burial were calculated for the base

case using values presented in Table 2. The CAPEX value was annualised over
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the plant life time as per Table 2. Final results, spanning all process steps with

expenditures, required feedstock and products are presented in Table 6. The

pyrolysis unit is the most cost-generating step that 98.2% of the overall burial

costs. The operational expenditures of the pyrolysis are 54.2% of the cultivation

costs, and can potentially decrease with increasing plant size. In the present

base case there are no operational expenditures for wood. However, revenue

could be generated if waste wood would be used.

The concentrations of the pyrolysis products represent the ideal case of ther-

modynamic equilibrium. Here, 63.5% of the carbon in wood is converted to

biochar which accumulates to 4514 t of biochar. The remaining carbon together

with O and H in the cellulose (in the base case the water content was 0) forms

the other pyrolysis products CO, CH4, and H2. These gases can be used as

a feedstock for a gas engine to produce electricity and generate income. The

ratio of formed biochar and pyrolysis gases depends on the reaction tempera-

ture and pressure and amount of water and oxygen in the system. Notably,

an increase in pyrolysis gases would increase the revenue but simultaneously

decrease the amount of biochar that can be buried. Thus optimisation of the

process parameters could potentially further economise the overall burial costs.

The gases produced during the pyrolysis are converted to electricity using

a gas engine. Within this process 9.08 GWh of electricity is produced, which

can cover the typical power consumption of 1973 UK households [43]. Hereby, a

revenue of -£850056 is generated, which compensates 70.4% of all expenditures.

This revenue is highly dependent on the local electricity rates and rising prices

would increase the feasibility of biochar burial.

The burial of the biochar accumulates to 1.8% of the total spendings. In

the present scenario biochar was assumed to consist entirely of carbon. Thus

compared to the algae burial relatively small quantities of biochar have to be

buried to offset a certain amount of CO2. This explains the relatively small share

of biochar burial on the overall process costs compared to the algae pumping.

Similar to the algae burial process, the cost shares of biochar burial for

compensating the CO2 emission from one litre of fossil diesel were calculated
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(Fig. 6). The total costs are 0.07 £/l as a large fraction of the pyrolysis costs

are compensated by the electricity sales. Compared to a fossil fuel price of 0.58

£/l, the CO2 neutral fuel based on the biochar burial strategy will be only

12.1% more expensive.

C p y r o

C b u r y

C e l e c t r

- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2
S t o r a g e  P r i c e  £ / l

Figure 6: Cost shares for storing carbon via biochar burial per liter of fuel

Figure 7 presents results of the sensitivity analysis to assess the impact of

the model variables on the biochar burial costs. it can be seen that with a share

of 48.37%, the wood price Pwood has the largest effect on the total costs. In

the analysis Pwood was varied between an average wood price of 50.00 £/twood

[30] and an income due to avoided gate fee of -35.00 £/twood, which in turn

translated into variation in feedstock price from £800000 to -£560000 for a

base case capacity as specified in Table 2. A high sensitivity of this parameter

is therefore not surprising. Additionally, it was found that in order to generate a

profit in the base case scenario (Table 2) the price of the waste wood should be

no higher (less negative) than -23.00 £/twood while keeping all other parameters

fixed.

Leaving all other variables fixed this means that the case calculated in Table

6 would generate an overall profit if the process receives money for using the

waste wood and if the unit price of this wood is no higher (less negative) than

-23.00 £/twood. The total biochar burial costs are second most sensitive to
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the interaction of temperature T and pressure p (25.0%). These parameters

combined define the pyrolysis reaction conditions and thus specify the ratio

between produced biochar and pyrolysis gases. Amount of biochar determines

how much carbon for the burial is generated while the pyrolysis gases generate

the main income of the overall process. Temperature and pressure alone have

a minor impact on the total costs, shown by their small sensitivities values of

4.21% and 0.73%, respectively. All other variables and variable interactions are

of minor importance and combined account to less than 22%.

0 . 1 3 %

4 8 . 3 7 %

0 . 7 3 %4 . 2 1 %

 P r i c e  o f  w o o d  P W o o d
 T e m p e r a t u r e  T  a n d  p r e s s u r e  p
 O t h e r
 T e m p e r a t u r e  T
 P r e s s u r e  p
 O x y g e n - w o o d - r a t i o   �

2 1 . 5 3 %

2 5 . 0 3 %

Figure 7: Global sensitivity of input parameters with respect to carbon storage costs via

biochar burial.

It is estimated that the UK produces approximately 5.56 · 106 t tonnes of

waste wood per year that could be available for pyrolysis biochar systems [30].

This would be sufficient to offset 3.6% of the 1.48 · 108 t/y CO2 emissions from

transport fuel in the UK. It is additionally estimated that the UK carbon se-

questration potential from coarse wood debris is approximately 0.11 kgC/m2/y

[14], corresponding to 43% of the carbon emission from the transport sector.

3.3. Comparison of algae and biochar burial

Figure 8 shows the final comparison of the algae and biochar burial ap-

proaches to offset carbon emission from utilising fossil fuels. The data are in
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the form of cumulative costs per one litre of carbon-neutral diesel and are de-

picted as an addition to the current net diesel price CD of 0.58 £/l . The

model parameters used in the costs calculations represent the base case scenar-

ios and are listed in Tables 1 and 2. Additionally, the algae and biochar data

are benchmarked against the price of biodiesel which is considered as the next

best alternative. Moreover, it was assumed that the production of biodiesel

is carbon-neutral. This represents the ideal situation that was investigated by

Taylor et al. [10] from which the final biodiesel price equal to 1.05 £/l was taken.

As shown in Figure 8 the final carbon neutral fossil diesel price for algae

and biochar burial is equal to 1.15 £/l and 0.65 £/l, respectively. Conventional

diesel combined with algae burial is thus 9.5% more expensive than biodiesel.

Nevertheless, it would potentially be compatible if the pumping factor α would

be reduced or the dry biomass content after harvesting φ would be increased.

Both parameters were shown to have the biggest impact of the overall algae

burial costs (Fig. 7) and are simultaneously difficult to quantify. Alternative

harvesting techniques might significantly increase φ and α can only be approxi-

mated due to lacking literature data. Further work is also required in determin-

ing the interaction between the two parameters as an increase in φ is expected

to increase α as well.

Another long term consideration for algal burial is the burial of the phospho-

rus in the algae. Many algae strains require a significant amount of phosphorus,

which is then incorporated into the algae, such that the algal burial would re-

move this from the terrestrial system [44]. Current reserves of phosphate are

anticipated to be exhausted in a century, which will require careful management

of geochemical phosphates in the future [45]. For algal burial this would require

the phosphate to be extracted from the algae before burial. Biochar on the

other hand is produced from low phosphorus feedstocks and burial in soil keeps

the mineral accessible to plants. Biochar has also been considered a potential

means to capture waste phosphorous and slowly release it to plants [46].

The biochar burial approach leads to the cheapest carbon-neutral biodiesel

among all the options presented in Figure 8. The main reason is the significant
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Figure 8: Comparison of average costs per litre of carbon neutral fuel: Biofuel costs CB,

fossil diesel costs CD and carbon pre-offset costs CCPO

revenue that can be generated through the production and sales of electricity. It

is important to note that the pyrolysis conditions have the biggest impact on the

overall process as they determine the amount of produced biochar and pyrolysis

gases for the gas turbine. Therefore, the process could be further optimised by

balancing the electricity generation and biochar production. Biochar burial is

further highly dependent on the wood feedstock expenditures. Ideally, waste

wood should be used because of the revenues that would be generated from

the avoidance of gate fees. Further work will require case/site specific stud-

ies be conducted to assess the potential for offsetting transportation emissions

with biochar burial, including detailed consideration of the local availability of

resources and the impact of this on the optimal reactor design. For example

producing biochar poultry litter waste in the UK [47], or from wood in the US

as well as analysis of specific reactors; stationary [48, 49] or portable [50].

In summary, both offset methods are potentially capable and feasible al-

ternatives to biodiesel. There are, however, a number of variables such as the

long-term price development of fossil diesel, biodiesel, and electricity or the
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availability of wood waste. Each of them may become a dominant factor in the

near future.

4. Conclusion

The feasibility of algae and biochar burial to offset carbon emission from

fossil fuels usage were studied with economic models developed in this work.

The expenses of the two approaches were estimated for base case scenarios. The

sum of conventional diesel and CO2 offset costs were compared to biodiesel. A

global sensitivity analysis was applied to elucidate the correlation between key

model variables and the economic feasibility of the carbon offset method.

The total costs of algae burial to offset the carbon emission of conventional

fuel are 0.57 £/l in the base case, which would double the assumed net fuels

price. The global sensitivity analysis shows that algae burial costs are most

sensitive to the solid algae content φ (51.75%) and pumping factor α (27.58%).

Both are difficult to quantify due to a lack of data in the literature and it is

expected that φ influences α.

Total costs in order to offset the carbon emission of conventional fuel via

biochar burial are 0.07 £/l. This comparably low price is attributed to the

revenue from selling electricity produced from the pyrolysis by-products. The

carbon offset costs are most sensitive to the wood price Pwood (48.37%), as the

wood feedstock might either be an income or an expenditure. The second most

sensitive variable is the interaction of temperature T and pressure p (25.0%),

representing the pyrolysis reaction conditions. These determine the ratio of

produced biochar and pyrolysis gases.

In our study conventional diesel combined with algae burial is 9.5% more

expensive than biodiesel in the base case. While also using significant amounts

of fresh water and removing phosphate from the terrestrial system making it

unsuitable method for storing carbon due to these principle reasons. In the

base case, the combination of conventional diesel and biochar burial is already

cheaper and might be further optimised. Two possibilities for improvement are
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the pyrolysis conditions to improve the biochar/electricity production ratio and

the usage of wood waste. Thus, both approaches for offsetting carbon emission

from conventional fossil fuels are economically competitive with biodiesel.

Neither of the methods would be suitable to completely offset the CO2 emis-

sions in the UK from transport fuel. Nevertheless, the biochar burial offset

deserves more attention as it may be a promising technology to reduce the

impact of transport on the UK carbon footprint at a reasonable cost.
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Table 1: Key assumptions and model details for the algae burial model.

Process data

Plant type Open raceway pond

Growth area 1 ha

Plant life time 30 years

Yield Y of dry algaea 80 t/year

Average dry biomass content in pond 2 wt%

Average dry biomass content φ in harvest tank a 8 wt%

Major equipment costs

Cultivationb 6665 £/year

Harvestingc 852 £/year

Pumpingd 90 £/tslurry

Operational costs

Cultivatione 6.45% of equipment

Water 0.06 £/m3

Electricity 0.0936 £/kWh

[28]

Pumpingf α · 1.02 £/tslurry

Other data

Pond mixingg 0.22 W/m2

Average carbon content xaC,algae 54.8 wt%

Pumping algae factor αa 5 -

Water density (25 ◦C) 997.1 kg/m3 [29]

a Variable of model, given value is the base case

b Pond, paddle wheel, CO2 injection, electrical system and water delivery [24]

c Harvest buffer tank assuming four times more biomass as in [22]

d Facility, other and total capital investment cost for industrial CO2 storage project

Sleipner in Norway [17]

e Includes maintenance, operating labour, laboratory costs, plant overheads, local taxes

and insurance [25]

g Requirement of paddle wheel in baseline scenario [26]
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Table 2: Key assumptions and model details for the biochar burial model.

Process data

Plant type Pyrolysis plant

Plant life time 20 years

Average capacity 16000 odt/year

Temperaturea 700 K

Pressurea 1 atm

Water mass content xW in wooda 0 wt%

Oxygen-drywood-moles-ratio λa 0 -

Major equipment costs

Pyrolysisc,d 543660 £/year

Operational costs

Pyrolysise,f 642124 £/year

Price of wooda 0.0 £/twood

Biochar burial 4.73 £/tC [28]

Sales of electricity 0.0936 £/kWh [28]

Other data

Gas engine efficiency 35 % [30]

LHV of H2 11.2 MJ/Nm3 [33]

LHV of CO 13.1 MJ/Nm3 [33]

LHV of CH4 37.1 MJ/Nm3 [33]

a Variable of the model, given value is the base case

b odkg - oven dry kg

c Includes design, construction, civils and commission costs and gas engine [30]

d Annulised with 8% interest rate

e Includes labour, plant, handling, natural gas and other operating costs [30]

f Calculated with an assumed biochar production of 5396 odt/year

g Requirement of paddle wheel in baseline scenario [26]
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Table 3: Input variables of algae burial model.

Variable Min Max Unit

Yield Y of dry biomass 60 100 t/year

Carbon mass content in algae xC,algae 53 60 wt%

Solid algae content φ after harvesting 2 8 wt%

Factor α for pumping algae 1 10 -

Table 4: Input variables of biochar burial model.

Variable Min Max Unit

Water mass content xw 0 40 wt%

Oxygen-drywood-moles ratio λ 0 0.4 -

Temperature T 600 900 K

Pressure p 0.5 10 atm

Price of wood Pwood -35.00 50 £/twood
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Table 5: Annual feedstocks, products and costs of algae burial based on a 1 ha open raceway

algae pond.

Process Feedstock Products Amount CAPEX OPEX

Cultivation £6665 £12896

Water 920 t £55

Electricity 84.93 GJ £1804

CO2 - £0

Nutrients - £0

Algae slurry 4000 t

(φ = 2 wt%)

Harvesting £852

Algae slurry 4000 t

(φ = 2 wt%)

Gravity - £0

Algae slurry 1000 t

(φ = 8 wt%)

Pumping £3005 £5008

Algae slurry 1000 t

(φ = 8 wt%)

Stored carbon 43.84 t
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Table 6: Annual feedstocks, products and costs of biochar burial based on a mfeed = 16000

odt/year pyrolysis plant.

Process Feedstock Products Amount CAPEX OPEX

Pyrolysis £543660 £642124

Wood 16000 odt £0

Biochar 4514 t

H2 16.68 · 1010 l

CH4 19.82 · 108 l

CO 90.56 · 106 l

Gas engine

H2 16.68 · 1010 l

CH4 19.82 · 108 l

CO 90.56 · 106 l

Electricity 9.08 GWh -£850056

Burial £21351

Biochar 4514 t

Stored Carbon 4514 t
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