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Abstract 

Paramagnetic solid-state NMR of lanthanide (Ln) containing materials can be challenging due to the 

high electron spin states possible for the Ln f electrons, which result in large paramagnetic shifts, and 

these difficulties are compounded for 17O due to the low natural abundance and quadrupolar character. 

In this work, we present examples of 17O NMR experiments for lanthanide oxides and strategies to 

overcome these difficulties. In particular, we record and assign the 17O NMR spectra of monoclinic 

Sm2O3 and Eu2O3 for the first time, as well as performing density functional theory (DFT) calculations 

to gain further insight into the spectra. The temperature dependence of the Sm3+ and Eu3+ magnetic 

susceptibilities are investigated by measuring the 17O shift of the cubic sesquioxides over a wide 

temperature range, which reveal non-Curie temperature dependence due to the presence of low-lying 

electronic states. This behaviour is reproduced by calculating the electron spin as a function of 

temperature, yielding shifts which agree well with the experimental values. Using the understanding of 

the magnetic behaviour gained from the sesquioxides, we then explore the local oxygen environments 

in 15 at% Sm- and Eu-substituted CeO2, with the 17O NMR spectrum exhibiting signals due to 

environments with zero, one and two nearest neighbour Ln ions, as well as further splitting due to 

oxygen vacancies. Finally, we extract an activation energy for oxygen vacancy motion in these systems 

of 0.35 ± 0.02 eV from the Arrhenius temperature dependence of the 17O T1 relaxation constants, which 

is found to be independent of the Ln ion within error. The relation of this activation energy to literature 

values for oxygen diffusion in Ln-substituted CeO2 is discussed to infer mechanistic information which 

can be applied to further develop these materials as solid-state oxide-ion conductors.  

Introduction 

Solid-state NMR spectra of paramagnetic materials are in general difficult to acquire and interpret due 

to the large hyperfine interactions between the unpaired electrons and the NMR-active nucleus.1 Prior 

paramagnetic solid-state NMR studies have therefore typically focussed on nuclei further removed from 

the paramagnetic centre, e.g. 7Li in Li-ion battery cathode materials such as transition metal oxides, 

where the spin-transfer pathways from unpaired electrons to the NMR-active nucleus involve 

intervening O sites.2,3 17O NMR in such systems is hampered not only by the direct bonding interactions 

between paramagnetic ion and oxygen sites, but also by both the unfavourable natural abundance 

(0.037%) and quadrupolar character (I = 5/2) of the 17O nuclide.4 Nonetheless, the sensitivity of 

paramagnetic 17O NMR spectra to distances from, and the electronic and magnetic properties of, the 

paramagnetic centre has enabled insights in recent years into materials as diverse as metal-organic 

frameworks,5 battery materials,6 mixed ionic-electronic conductors,7,8 and phases of geological and 

radiochemical relevance.9,10 In these studies, computational results from periodic DFT calculations have 

also played a critical role, aiding in spectral assignment. Nonetheless, the behaviour of paramagnetic 
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17O NMR shifts even in relatively simple systems, such as polymorphs of the lanthanide oxides and 

other lanthanide-substituted phases, still remain unexplored. 

Lanthanides can have very large electron magnetic moments due to partial filling of the seven f-orbitals; 

moreover, the f-orbitals are contracted and hence do not interact strongly with bonded atoms, so that 

there is minimal crystal field splitting and therefore no driving force to undergo electron pairing and 

reduce the magnetic moment. These factors result in large paramagnetic NMR shifts, which can 

complicate spectra and make them challenge to record, but can also provide useful structural 

information in systems such as lanthanide pyrochlores11,12 and doped calcium scandate13, which have 

applications as catalysts and phosphors. Furthermore, due to the chemical similarity of lanthanides, the 

lanthanide ion can often be exchanged without significantly changing the structure and bonding of the 

system, which allows the paramagnetic shifts to be investigated as a function of the electron moment.  

The most stable oxidation state for most lanthanides is 3+, corresponding to the sesquioxides Ln2O3. 

The sesquioxides can adopt three different structures: hexagonal (A), monoclinic (B) and cubic (C); 

with decreasing ionic radius, moving across the lanthanide series, the most stable phase at intermediate 

temperatures changes from A to B and then to C, although it is sometimes possible to stabilise different 

polymorphs depending on the thermal history.14 A survey of the 17O NMR shifts of the lanthanide oxides 

has previously been made by Yang, Shore and Oldfield,15 however, their work did not include an 

example of a sesquioxide with the B-type monoclinic structure (Figure 1a). Of the lanthanides which 

can adopt the B-type structure, Sm2O3 and Eu2O3 are the easiest to prepare as the B phases are stable to 

the lowest temperatures out of the lanthanide sesquioxides (except for Pm2O3, but Pm is radioactive); 

in the present work we have thus chosen these two materials for investigation of their 17O paramagnetic 

NMR shifts. 

The magnetic behaviours of Sm3+ and Eu3+ are also of interest because both ions have low-lying 

electronic levels (the first of which are ~1000 cm-1 and ~250 cm-1 above the ground state for Sm3+ and 

Eu3+, respectively) which have larger magnetic moments than the ground state.16 This affects the 

magnetic susceptibility in two ways: firstly, the excited state can be thermally occupied, which increases 

the effective magnetic moment; secondly, the second-order mixing of these states results in an 

appreciable temperature-independent Van Vleck susceptibility, particularly for Eu3+. Given that the 

ground state of Eu3+ is non-magnetic to first order (J = 0), the effect of the excited state is especially 

important. The magnetic susceptibility of Sm3+ in fact exhibits a broad minimum at around 400 K, due 

to the competition of the Curie temperature dependence for each level and the Boltzmann population of 

the excited electronic level with a larger moment. To study the temperature dependence of the Sm3+ and 

Eu3+ magnetic susceptibilities, we measure the 17O paramagnetic shift of cubic Sm2O3 and Eu2O3 over 

a wide temperature range. The cubic polymorphs were chosen for this investigation as there is only a 

single crystallographic oxygen site in this structure,17 simplifying the spectra. 

As was first reported by Lewis et al. for the 17O NMR signal of aqueous solutions of trivalent lanthanide 

ions,18 the paramagnetic shift for atoms directly bonded to lanthanides is positive for Ce3+–Sm3+ and 

then negative for Eu3+–Yb3+. The paramagnetic shift in these cases arises from a polarisation 

mechanism:18,19 the bonding interaction is primarily between a lone pair on the oxygen and the empty 

6s orbital on the lanthanide, which causes a small degree of delocalisation of the electrons onto the 

lanthanide; then, due to the exchange interaction, the electron density at the lanthanide is polarised 

parallel to the time-averaged lanthanide electron spin (〈𝑆𝑧〉), leaving a net anti-parallel spin density at 

the oxygen nucleus, which causes a Fermi-contact shift. The sign and magnitude of this Fermi-contact 

shift is then determined by the lanthanide electron spin, the variation of which across the lanthanides 

explains the observed trend in chemical shifts. 

The simplest case to consider is Gd3+, which has a spin-only ground term (8S): the magnetic moment 

aligns parallel to the field, which results in an antiparallel spin moment at the oxygen nucleus due to 

the polarisation mechanism, and hence the negative observed paramagnetic shift. In the second half of 



the lanthanide series, Tb3+–Tm3+, the orbital magnetic moment augments the spin magnetic moment 

(for greater than half-filled shells, spin–orbit coupling favours parallel spin and orbital angular momenta 

in the ground state), so aligning the magnetic moment parallel to the field still requires a parallel spin 

moment, resulting in a negative paramagnetic oxygen shift. For Eu3+ (with a 7F ground term), the spin 

magnetic moment outweighs the orbital magnetic moment, so once again the spin magnetic moment 

aligns parallel to the field, which yields a negative paramagnetic shift for the oxygen. However, for 

Ce3+–Sm3+, the orbital magnetic moment is greater than the spin magnetic moment; the orbital magnetic 

moment therefore aligns parallel to the field and, since for less than half filled shells spin–orbit coupling 

favours an antiparallel arrangement of the spin and orbital angular momenta in the ground state, this 

results in an antiparallel spin moment at the lanthanide and therefore a positive paramagnetic shift for 

oxygen due to the polarisation mechanism. The lanthanide electron spins 〈𝑆𝑧〉 have been calculated by 

Golding and Halton,19 and Yang et al. showed that there was an excellent correlation between 〈𝑆𝑧〉 and 

the 17O chemical shift in lanthanide oxides.15  

Among the lanthanide oxides, ceria (CeO2) is arguably the most technologically important: it finds use 

as a catalyst in CO oxidation and NO reduction,20,21 as an oxygen storage material for chemical looping 

and in automotive catalytic converters,22,23 and is among the best known isotropic oxide-ion conductors 

in the intermediate temperature range (400–800 °C).24–26 This last property is significantly enhanced by 

means of aliovalent doping, commonly using trivalent lanthanide ions,26–28 leading to an increase in 

oxygen vacancy concentration due to charge compensation and a concomitant rise in oxide-ion 

conductivity. The exemplar phase of this class of conductors is Gd-doped ceria (GDC),29 which remains 

a common electrolyte (and anode component) used in solid oxide fuel cells.30,31 While the conductivity 

mechanism and activation energy barriers in GDC and other Ln-substituted CeO2 phases have typically 

been probed through impedance spectroscopy, DC conductivity, and oxygen permeability methods,32–

37 variable-temperature solid-state NMR studies have also provided complementary and atomic-level 

insights. Fuda et al. first showed that 17O spin-lattice relaxation (T1) measurements (up to 1000 °C) of 

CeO2 and Y-substituted CeO2 sensitively probed oxide-ion motion with a component at the Larmor 

frequency; Adler et al. later reinterpreted the multiple T1 minima as evidence of two distinct time scales 

for motion corresponding to nearby oxygen vacancy hops and exchange of the observed oxygen itself 

with vacancies.38 Studies by Kim and Stebbins on the Sc-substituted and Y-substituted CeO2 systems 

also showed how the 17O (and 45Sc/89Y) chemical shifts reflect the local distribution of aliovalent 

dopants, with evidence of cation–vacancy pairing.39,40  

Recent efforts by Heinzmann et al. have shown that 17O NMR (and T1) measurements can be applied to 

GDC to quantify doping behaviour and to extract activation energy values that can be ascribed to oxide-

ion motion.41 However, to our knowledge 17O NMR and/or relaxometry-based techniques have not been 

used to study conduction in other Ln-substituted CeO2 materials, likely due to the aforementioned 

difficulties in interpreting NMR spectra of paramagnetic phases. In this work, we apply the lessons 

learned regarding the magnetic behaviour of Sm3+ and Eu3+ as seen in the paramagnetic 17O NMR of 

the monoclinic Ln2O3 polymorphs to guide the analysis of variable-temperature 17O spectra of Sm- and 

Eu-substituted CeO2. 



 

Figure 1: a) Crystal structure, and b) local environments of the crystallographically distinct oxygen sites, of the monoclinic 

(B) Ln2O3 phase. Lanthanide ions are shown in silver and the oxygen ions are coloured according to the different O1 – O5 

sites. The structure was generated from ICSD entry 34291 (B-Sm2O3),42 using the VESTA software package43. 

Methods 

Synthesis 

Cubic Sm2O3 was prepared by decomposing Sm(OH)3 (Alfa Aesar, 99%) at 750 oC under air for 12 

hours.44 15 at% Sm- and Eu-substituted CeO2 were synthesised by grinding stoichiometric quantities of 

Sm2O3 (Aldrich, 99.9%) or Eu2O3 (Acros Organics, 99.99%) and CeO2 (Aldrich, 99.9%), pelletising at 

750 MPa under partial vacuum, and firing at 1500 oC for 48 hours.  

17O-enriched samples of Sm- and Eu-substituted CeO2 and cubic Eu2O3 were obtained by loading the 

samples into an alumina tube, which was placed inside a quartz tube filled with 17O2 gas (70%, NUKEM 

Isotopes), sealed with a stopcock, and then annealed at 1000 oC in a tube furnace for 15 hours. Cubic 

Sm2O3 was 17O-enriched by the same procedure at 750 oC for one week.  Monoclinic Sm2O3 and Eu2O3 

were enriched in an alumina tube inside a flame-sealed quartz tube under a 17O2 atmosphere, annealed 

at 1200 oC in a box furnace for 48 hours. Prior to 17O-enrichment, all Eu2O3 samples were dried in vacuo 

at 100 oC and transferred to an argon glovebox for subsequent preparation due to the highly hygroscopic 

nature of the material.  

Characterisation 

Powder X-ray diffraction (XRD) patterns were recorded in reflection mode with sample rotation on a 

PANalytical Empyrean diffractometer emitting Cu Kα (1.540598 Å + 1.544426 Å) radiation. Eu2O3 

samples were packed into a Kapton sample holder to avoid hydration. Phase identification was achieved 

by profile matching using the X’Pert HighScore Plus 2.2 software (PANalytical) and by comparison 



with the following Inorganic Crystal Structure Database (ICSD) entries: CeO2 (72155),45 cubic Sm2O3 

(40475),17 monoclinic Sm2O3 (34291),42 cubic Eu2O3 (40472)17 and monoclinic Eu2O3 (8056)46. 

Rietveld refinement was performed with the TOPAS academic software package.47  

NMR 

NMR spectra were recorded on a 4.70 T or 7.05 T Bruker Avance III spectrometer or a 7.05 T or 9.40 

T Bruker Avance spectrometer, using 1.3, 1.9, 4, or 7 mm probes. Most variable-temperature spectra 

were acquired by applying heated or cooled nitrogen gas, with cooling achieved either with liquid 

nitrogen or with a Bruker cooling unit (BCU), except for the high-temperature spectra of cubic Sm2O3 

and Eu2O3 which were acquired by heating the sample with an infrared laser using a 7 mm Bruker laser 

probe. The sample temperature was determined using an ex-situ calibration with the temperature-

dependent 207Pb NMR shift of Pb(NO3)2,48 except for the laser heated samples where the temperature 

was determined in-situ by grinding the sample with KBr and measuring the temperature-dependent 79Br 

NMR shift.49 Spectra were recorded using a Hahn echo with pulse lengths corresponding to optimal 

excitation in the liquid and quadrupolar limits (π/2-τ-π-τ-acquire, or π/6-τ-π/3-τ-acquire for I = 5/2, 

respectively). The isotropic resonance for the cubic Eu2O3 spectra was determined at low temperatures 

by using a pj-MATPASS sideband separation pulse sequence,50 and at high temperature by comparison 

of spectra recorded at 3 and 4 kHz MAS. Longitudinal relaxation constants T1 were determined by total 

least-squares refinement of the saturation recovery data to a stretched exponential function using IGOR 

Pro. Spectra were referenced to liquid H2O at 0 ppm except for spectra recorded with a 1.9 mm probe 

which were referenced to CeO2 at 877 ppm.51 NMR spectra were processed with Bruker TopSpin 3.5 

and deconvoluted using the dmfit software.52 Full experimental details for each sample are summarised 

in Table S1, see Supplementary Information. 

DFT 

Ab initio calculations of the hyperfine coupling constant and electric field gradient parameters for 

monoclinic Sm2O3 and Eu2O3 were calculated using the CRYSTAL code.53 A standard B3LYP 

functional with 20% or 35% of the Hartree–Fock exchange component (termed ‘Hyb20’ and ‘Hyb35’, 

respectively) was used, as recently demonstrated for 17O shift calculations of paramagnetic systems.6 

Experimental cell structures of Sm2O3 and Eu2O3 were fully relaxed using the CRYSTAL default 

criteria with a self-consistent field (SCF) cycle convergence of 10−7 Hartree. A Monkhorst-Pack k-mesh 

of 6×6×6 was used in all cases. 

For the lanthanides, we have used a combined core pseudopotential and Gaussian basis set developed 

by Erba et al. which treats the 4f levels as valence states.54 In accordance with the previous study on 

Ln2O3 systems, the oxygen basis set developed by Towler et al. was used, with an integration grid 

consisting of 99 radial points and 1454 angular points.55 We note that this oxygen basis set was not 

specifically developed for hyperfine calculations, which need accurate treatment of the core states; more 

extended oxygen basis sets such as the IGLO-III set were attempted, but resulted in SCF instabilities, 

presumably arising from the ‘mixing’ of two basis sets with different qualities. 

 

Results and Discussion 

Monoclinic Sm2O3 and Eu2O3 

Monoclinic Sm2O3 and Eu2O3 were 17O-enriched as detailed in the methodology; the procedure required 

the use of a flame-sealed quartz tube in a box furnace in order to achieve an enrichment temperature of 

1200 oC, which was necessary to ensure formation of the monoclinic phases.44  Phase purity was 

determined by Rietveld refinement of the diffraction pattern (see Supplementary Information §2).  



Five crystallographically distinct oxygen sites are present in the monoclinic B-type sesquioxide 

structure (Figure 1b); however in the room-temperature 17O NMR spectrum of monoclinic Sm2O3 

(~40 oC sample temperature, Figure 2, top), only four signals can be distinguished. By cooling the 

sample to −44 oC, the expectation value of the electron spin increases, resulting in larger paramagnetic 

shifts so that all five resonances can be individually resolved (Figure 2, middle). The observed shift 

increases with decreasing temperature, indicating that the Curie paramagnetic shift is positive, which is 

consistent with the paramagnetic shift mechanism as described in the Introduction. 

In order to determine the multiplicities of each signal, a quantitative spectrum was recorded with a 

shorter, quadrupolar π/6 pulse (Figure 2, bottom), ensuring that quadrupolar nutation effects did not 

alter the relative signal intensities; the integrated intensities are given in Table 1. The signal at 19 ppm 

has approximately half the intensity of the other signals, so can be assigned to the O5 (2e) site, which 

has half the crystallographic multiplicity of the other oxygen sites. The low frequency of this resonance 

is also consistent with the higher, six-fold (~octahedral) coordination of the O5 site; the paramagnetic 

contribution to the shift is small for Sm3+, so the chemical shift is dominated by the diamagnetic 

contribution, and greater coordination typically leads to a lower frequency chemical shift for 17O.56 

Furthermore, by comparing the spectra acquired with different pulse lengths, it can be seen that the sites 

at 108 ppm and 255 ppm have greater relative intensities in the π/6 spectrum and thus larger quadrupolar 

coupling constants, CQ. In the monoclinic structure (Figure 1), two oxygen sites possess more distorted 

coordination environments, O1 (4i) which is five-fold coordinated square pyramidal, and O3 (4i) which 

is four-fold coordinated trigonal pyramidal; these are therefore assigned to the two resonances with 

larger CQs,57 with the five-fold coordinate O1 having the smaller chemical shift, again due to a lower 

frequency diamagnetic contribution, consistent with the higher coordination. The remaining two sites, 

O2 and O4 (4i), have very similar four-fold (~tetrahedral) coordination environments. The shifts of the 

signals at 162 ppm and 194 ppm are likewise insufficiently different to permit a definitive assignment. 

We note that the assigned 17O NMR spectrum of monoclinic Sm2O3 is analogous to that of diamagnetic 

monoclinic Y2O3,58 with the exception that for Y2O3 the O3 site resonates at a lower frequency (346 

ppm) than O2 and O4 (377 ppm and 383 ppm), and all of the signals are observed in the range 242 – 

383 ppm (see Supplementary Information §5), i.e. at significantly more positive frequencies than for 

Sm2O3. Given that for Sm2O3 the paramagnetic contribution to the chemical shift is positive, the lower 

frequency observed shifts for Sm2O3 imply a significantly less positive diamagnetic shift contribution, 

which we attribute to the weak covalency of the Sm–O bonding due to the contracted Sm valence 

orbitals, since covalent bonding acts to deshield the oxygen and hence increase the chemical shift.59 The 

temperature-independent Van Vleck paramagnetism of the ground state, due to mixing in of the low-

lying excited state, has a negative contribution to the shift, so will also contribute to the lower frequency 

shifts observed for Sm2O3.60,61 

Table 1: Summary of the 17O chemical shifts, integrated intensities and assignments for the oxygen sites in monoclinic Sm2O3 

at −44 oC. The calculated quadrupolar coupling constants CQ are shown for the Hyb35 functional, see Table S6.  

Experimental 

Shift /ppm 

Relative 

Integration /% 

Assignment Coordination Calculated 

CQ /MHz 

19 9 O5 (2e) ~Oct. (6) 0.15 

108 24 O1 (4i) Square pyr. (5) 1.34 

162 20 
O2, O4 (4i) ~Tet. (4) 

0.67 

194 20 0.26 

255 27 O3 (4i) Trig. pyr. (4) 1.09 

 



 

Figure 2: 17O NMR spectra of monoclinic Sm2O3 recorded at 9.40 T and 30 kHz MAS with a recycle delay of 0.05 s, with and 

without sample cooling, and using either Hahn echo pulse sequences with either π/2 or quadrupolar π/6 pulses (π/2-τ-π-τ-

acquire or π/6-τ-π/3-τ-acquire). The signal observed at 78 ppm in the 40 oC spectrum (orange, top) is attributed to the overlap 

of the peaks at 162 and 108 ppm observed at −44 oC (red and yellow, respectively). 

The 17O NMR spectrum of monoclinic Eu2O3 recorded at 4.70 T and 60 kHz MAS is shown in Figure 

3, top, with the signals summarised in Table 2; the low field and fast MAS are necessary to sufficiently 

separate the spinning sidebands due to the wide dispersion of paramagnetic chemical shifts. Four 

isotropic resonances can be observed, but the signal at −3260 ppm has a significantly higher intensity 

than the others (which is not due to differential T1 or T2 relaxation, although the spectrum is not fully 

quantitative; see Figure S7), and so is attributed to a superposition of signals from two crystallographic 

sites. Since the two most similar sites are the O2 and O4 tetrahedrally-coordinated oxygens, this signal 

is most likely due to these environments; although the O2 and O4 sites could be distinguished in Sm2O3, 

the linewidth for Eu2O3 (110 ppm) is significantly larger than for Sm2O3 (30 ppm), so it is unsurprising 

that the signals cannot be resolved for the former. An additional spectrum was recorded at −20 oC, but 

the two resonances could still not be resolved (Figure S8). 

Of the remaining resonances, those at −1850 and −1300 ppm show an increased relative intensity in the 

π/6 spectrum so are assigned to the more distorted O1 and O3 sites (comparison of Figure 3, middle 

and bottom, see Table S2; the higher field of 9.40 T was required to achieve sufficient intensity in the 

π/6 spectrum). The diamagnetic shift contribution by which the two sites were distinguished for Sm2O3 

makes a far smaller relative contribution to the shift in the more paramagnetic Eu2O3, so cannot be used 

to further distinguish the sites; however, on the basis of the larger calculated hyperfine coupling constant 

Aiso (see below), the O3 site is tentatively assigned to the more paramagnetically shifted −1850 ppm 

signal and O1 therefore to the −1300 ppm signal.  By a process of elimination, the signal at −2780 ppm 

is attributed to the O5 site. To support this assignment, a spectrum with an quantitative recycle delay of 

1 s and a π/2 pulse was recorded (Figure S9); the integrated intensities for each resonance were then 

weighted by the relative intensities between the spectra recorded with π/2 and π/6 pulses to account for 

the non-quantitative excitation afforded by π/2 pulses (Table 2, see Table S2 for details). Based on the 

assignment and crystallographic multiplicities, the relative integrated intensities should occur in the 

ratio 44:11:22:22, which agrees reasonably well with the experimental values (38:14:24:24), 

corroborating the assignment.  



Table 2: Summary of the 17O chemical shifts, integrated intensities and tentative assignments for the oxygen sites in monoclinic 

Eu2O3 at 45 oC. The calculated hyperfine coupling constants Aiso are shown for the Hyb35 functional, see Table S7. 

Shift /ppm Relative 

Integration /% 

Assignment Coordination Calculated Aiso  

/MHz 

−3260 38 O2, O4 (4i) ~Tet. (4) −4.02, −3.18 

−2780 14 O5 (2e) ~Oct. (6) −2.04 

−1850 24 O3 (4i)  Trig. pyr. (4) −2.64 

−1300 24 O1 (4i) Square pyr. (5) −2.04 
 

 

Figure 3: 17O NMR spectra of monoclinic Eu2O3 recorded at 60 kHz MAS and either 4.70 T or 9.40 T, using a Hahn echo with 

either π/2 or π/6 pulses and recycle delays of 0.1 s at 4.70 T and 0.2 s at 9.40 T. Spinning sidebands are marked with an asterisk.  

The degree of 17O enrichment for the monoclinic sesquioxides was estimated by comparison with a 17O 

NMR spectrum of natural abundance H2O to be ~1% (see Supplementary Information §4). The low 

enrichment level is most likely to be due to exchange between the 17O2 gas and 16O in the quartz tube at 

the high enrichment temperature (1200 oC); this increases the difficulty of acquiring adequate signal-

to-noise, especially for monoclinic Eu2O3. Nevertheless, the enrichment level is sufficient to acquire 

and assign the 17O NMR spectra, as has been shown.  

To gain initial quantitative insight into the approximate diamagnetic contributions to the observed shifts, 

the isotropic 17O chemical shifts for the isostructural diamagnetic analogue Y2O3 were calculated using 

CASTEP62 (chemical shift calculations in paramagnetic systems are not implemented in CRYSTAL). 

The calculated chemical shifts for monoclinic Y2O3 are in good agreement with the previous 

experimental results58 (Table S4), if the experimental assignments of the similar O2 and O4 sites are 

reversed; furthermore, the calculation confirms the trend of decreasing chemical shift with increasing 

coordination, which was used to assign the spectrum of Sm2O3. 

Then, to further explore the spectral assignments for monoclinic Sm2O3 and Eu2O3, DFT-based 

calculations of the isotropic hyperfine coupling constant Aiso and the quadrupolar coupling constant CQ 

were performed in CRYSTAL. Examination of the lattice parameters in the relaxed structures of Sm2O3 

and Eu2O3 (Table S5) shows that the Hyb20 functional (standard B3LYP) significantly overestimates 

the lattice parameters, whereas the inclusion of 35% HF exchange energy (Hyb35) gives a better 

agreement to the experimental lattice parameters. As Hyb35 was previously found to yield better 

agreement with the experimental hyperfine and quadrupolar parameters in our studies of Li-, Na-, and 



Mg-transition metal oxides,63–65 we predict that Hyb35 is also likely to give the more accurate agreement 

here. Although the use of lower quality oxygen basis sets not specifically designed for hyperfine-type 

calculations, which is necessary here to be compatible with the available lanthanide basis sets, is likely 

to hinder the quantitative prediction of these parameters, some qualitative agreements between the 

experiment and theoretical assignments could be obtained.  

As previously noted, the principal contribution to the observed 17O shifts in Sm2O3 arises from the 

chemical shift component, which provides the basis for the assignment. Due to the small paramagnetic 

contribution, the calculated hyperfine coupling constants Aiso cannot be directly correlated to the 

observed shifts. However, the calculated quadrupolar constants CQ (Table 1 and Table S6) confirm that 

the O1 and O3 sites are more distorted, as previously asserted, supporting the assignment of the 108 

ppm and 255 ppm signals on the basis of the increased intensity in the π/6 spectrum. For Eu2O3, on the 

other hand, the paramagnetic shift dominates, so it is informative to inspect the calculated Aiso values 

(Table 2 and Table S7). Despite the imperfect quantitative agreement, qualitative information can still 

be extracted. The two sites with the largest calculated Aiso are O2 and O4, corroborating the assignment 

of these sites to the most paramagnetically shifted signal at −3260 ppm (although one would expect the 

signals to have the same Aiso given they are observed at the same frequency). The Aiso for the other three 

sites are smaller, and although a less negative experimental shift might therefore be expected for O5, 

some of this discrepancy may be accounted for by the lower frequency diamagnetic contribution due to 

the six-fold coordination (as seen for Y2O3 and Sm2O3). The calculated Aiso for O3 is slightly larger 

than for O1, on which basis the −1300 and –1850 ppm signals are tentatively assigned; although we 

again stress limitations may arise from the use of a less extensive oxygen basis set, which was not 

specifically developed to probe the core properties, in order to be compatible with the lanthanide basis 

sets. 

 

Cubic Sm2O3 and Eu2O3 – Variable Temperature Spectra 

The room temperature 17O NMR spectra of cubic Sm2O3 and Eu2O3 are shown in Figures S10 and S11, 

with shifts of 2 ppm and −3075 ppm, respectively. These are in agreement with the previous results of 

Yang, Shore and Oldfield (10 ppm and −3290 ppm),15 considering that the additional frictional heating 

of the faster MAS rate used here will reduce the paramagnetic shift, yielding less positive and less 

negative shifts for Sm2O3 and Eu2O3, respectively. The oxygen site in the cubic Ln2O3 polymorph is 

four-fold coordinated, with a geometry intermediate between those of the trigonal pyramidal O3 site 

and the approximately tetrahedral O2 and O4 sites in the monoclinic structure; this is consistent with 

the similarity between the cubic Eu2O3 17O shift (−3075 ppm) and the shift of the O2 and O4 sites in 

monoclinic Eu2O3 (−3260 ppm). The 17O shift of cubic Sm2O3 (2 ppm), on the other hand, is at a lower 

frequency than the four-fold coordinated sites in monoclinic Sm2O3 (101 ppm and 139 ppm at room 

temperature); this is most likely to be due to a less positive diamagnetic shift in the cubic phase caused 

by reduced covalency in the less dense structure (the cell volume per formula unit is 81.6 Å3 for the 

cubic structure c.f. 74.8 Å3 for the monoclinic structure). The enrichment level was estimated for the 

cubic Sm2O3 sample to be 40% (see Supplementary Information §4), which is approaching an ideal 

enrichment given the 70% enrichment of the 17O2 gas; this indicates that at the lower enrichment 

temperature of 750 oC, there is minimal exchange between the 17O in the gas and the 16O in the quartz 

tube.  

The temperature dependence of the Sm3+ and Eu3+ magnetism can be explored by measuring the 17O 

paramagnetic shift over a wide temperature range. Figure 4a shows the 17O shift of cubic Sm2O3 as a 

function of temperature: at lower temperatures the paramagnetic shift increases due to the increased 

expectation value of the electron spin, as was observed for monoclinic Sm2O3 (Figure 2); however, at 

higher temperatures, there is little temperature dependence of the shift. This behaviour can be most 

easily seen when plotted as a function of reciprocal temperature (Figure 4b), where a clear deviation 



from the linear Curie temperature dependence is seen below around 1000/T = 3 K-1 (T = 333 K). This 

is due to thermal occupation at the elevated temperatures of an excited state with a higher moment than 

the ground state. 

The 17O shift of Eu2O3 exhibits a greater temperature dependence than that of Sm2O3 (Figure 4d and e), 

as expected given the larger paramagnetic shift. The magnetic behaviour of Eu3+ is determined by the 

thermal population of multiple excited levels with different magnetic moments and the Curie 

temperature dependence of each, combined with a very large Van Vleck paramagnetism of the ground 

state, which itself has no Curie paramagnetism because J = 0. As a result, any agreement between a 

Curie fit and the experimental data is essentially fortuitous, rather than reflecting any functional 

dependence. In the case of Sm3+, on the other hand, the ground state has a non-zero moment and there 

is no appreciable thermal occupation of other levels below ~300 K, so paramagnetic shifts do follow 

the Curie law below room temperature, as has been shown previously.61,66 

To quantitatively analyse the temperature dependence of the 17O NMR spectra, the lanthanide electron 

spins were calculated as a function of temperature using the method of Golding and Halton (see 

Supplementary Information §6).19 The linear relationship between the experimental shifts and the 

calculated electron spins (per unit field) can be seen in Figure 4c and f, and the agreement for Eu2O3, in 

particular, is excellent. From the linear regression, the hyperfine coupling constant ( 𝐴𝑖𝑠𝑜 ) and 

diamagnetic shift (𝛿0) can be extracted according to 

𝛿𝑒𝑥𝑝 =
𝐴𝑖𝑠𝑜

𝛾
×

〈𝑆𝑧〉

𝐻
+  𝛿0, 

where γ is the nuclear gyromagnetic ratio; these parameters are shown in Table 3. The hyperfine 

coupling constants are negative due to the polarisation mechanism mediated by the lanthanide 6s orbital 

(see Introduction), and the value determined for Eu2O3 (−2.206 MHz) is in reasonable agreement with 

that determined by Yang, Shore and Oldfield (−2.7 MHz).15 The latter was deduced from the 

relationship between the room temperature 17O shift of different lanthanide sesquioxides and the 

calculated electron spin, with the assumption that the same hyperfine coupling constant applied across 

the lanthanide series; Aiso will in fact vary across the lanthanide series, and the value obtained by Yang 

et al. will be skewed towards the values for lanthanides with greater spins, which may partially explain 

the discrepancy in the values.  

Table 3: Hyperfine coupling constants (𝐴𝑖𝑠𝑜) and diamagnetic shifts (𝛿0) determined assuming a linear regression between the 

calculated electron spins and the experimental 17O NMR shifts for cubic Sm2O3 and Eu2O3, as an implicit function of 

temperature. 

 Aiso /MHz δ0 /ppm 

Sm2O3 −0.604 ± 0.03 17 ± 2 

Eu2O3 −2.206 ± 0.005 −44 ± 7 

Extrapolating the linear relationship determined for Eu2O3 to small electron spins yields shifts which 

are approximately coincident with the experimental shifts for Sm2O3 (Figure 4f), however the linear 

relationship determined for Sm2O3 has a very different gradient to that of Eu2O3 (reflected in the 

different hyperfine coupling constants in Table 5). Given that these materials share the same structure, 

and that the “average” hyperfine coupling constant across the lanthanide series was determined by 

Yang, Shore and Oldfield to be −2.7 MHz, it is unlikely that the hyperfine coupling constant for Sm2O3 

could be as small as −0.604 MHz. Nevertheless, by using the values in Table 5, the calculated shifts 

match well with the experimental results (Figure 4, solid lines), although the agreement is better for 

Eu2O3.  



The discrepancies for Sm2O3 may be due to a temperature dependence of the diamagnetic shift being 

erroneously accounted for in the temperature dependence of the paramagnetic shift, because the 

paramagnetic shift in Sm2O3 is less significant than the diamagnetic shift (as seen for monoclinic 

Sm2O3). Another potential explanation is a pseudo-contact shift, which would have a strong temperature 

dependence;1 although normally far less significant than Fermi-contact shifts when the latter is present, 

a pseudo-contact shift could make a greater contribution in this case because it depends on the 

anisotropy of the total magnetic moment, rather than the magnitude of the spin which happens to be 

small for Sm3+. Furthermore, the pseudo-contact shift depends on 1/r3 and the internuclear separation, 

r, is small for direct Ln–O bonding. An estimate of the magnitude of the pseudo-contact shift in cubic 

Sm2O3 is made in §7 of the Supplementary Information, which reveals that it could compete with the 

diamagnetic and Fermi contact shift contributions. 

 

Figure 4: 17O chemical shifts of cubic Sm2O3 (a–c) and Eu2O3 (d–f) as a function of temperature, reciprocal temperature and  

calculated electron spin at 9.40 T, recorded with a Hahn echo pulse sequence and recycle delays of 0.05 s and 0.15 s, 

respectively. The high- and low- temperature spectra were recorded at 4 and 10 kHz MAS, respectively. Shown too are 

empirical fits assuming a Curie temperature dependence (dashed lines), and the shifts predicted from the calculated electron 

spin (solid lines). The dashed lines in c) and f) are the linear regressions between the experimental shifts and the calculated 

electron spins.  

Sm- and Eu- Substituted CeO2 

Sm- and Eu-substituted CeO2 were synthesised as detailed in the methodology. Bulk incorporation of 

the lanthanide ions was demonstrated by XRD (see Supplementary Information §2), which exclusively 

showed reflections from the cubic fluorite CeO2 structure, but with expanded unit cell parameters of 



5.433 Å and 5.426 Å respectively, as compared to 5.412 Å for pure CeO2;45 this is consistent with the 

ionic radii of the lanthanide ions: Sm3+ > Eu3+ > Ce4+.67  

The deconvoluted 17O NMR spectrum of 15 at% Sm-substituted CeO2 (Figure 5a) broadly shows three 

distinct regions of intensity: ~850 ppm, ~700 ppm and ~550 ppm. A similar spectrum was previously 

observed for diamagnetic 15 at% Y-substituted CeO2,39 for which the three regions were ascribed to 

oxygen environments with zero, one, and two Y nearest neighbours, respectively. Analogously, the 

signals observed in the three regions here are ascribed to oxygen environments with zero, one, and two 

Sm nearest neighbours. This assignment is consistent with the lower intensity of the ~550 ppm region, 

due to the decreased likelihood of having two Sm nearest neighbours (note that the intensity of the ~850 

ppm region is not quantitative given the short recycle delay of 1 s). 

In addition to the shift caused by Sm nearest neighbours, further splitting of the resonances is observed 

which, as was also reported for Y-substituted CeO2, is ascribed to nearest neighbour oxygen vacancies; 

for every two trivalent ions substituted for Ce4+, an oxygen vacancy (vO) is formed. Specifically, the 

833 and 694 ppm signals are ascribed to environments with one nearest neighbour oxygen vacancy, and 

zero or one nearest neighbour Sm atom(s), respectively. The 565 ppm signal (ascribed to two Sm nearest 

neighbours) is however too broad to distinguish the environments with and without neighbouring 

oxygen vacancies. Finally, two components can be distinguished for the highest frequency signal with 

no Sm or oxygen vacancy nearest neighbours: a sharper component centred at 877 ppm and a broad 

component at 879 ppm. The former is assigned to environments with the pure CeO2 structure and no 

substitution in the long-range vicinity, consistent with the very sharp peak of pure CeO2 at 877 ppm,51 

while the latter is ascribed to environments with next-nearest neighbour Sm substitution and/or oxygen 

vacancies resulting in a heterogeneously broadened signal. 

These assignments could be corroborated by recording a second spectrum at lower temperature (Table 

4 and Figure S12). The paramagnetic shift due to Sm is small and positive (as observed for Sm2O3), the 

magnitude of which increases at lower temperatures; consequently, the observed chemical shift also 

increases (becomes more positive) at lower temperature for the signals with Sm nearest neighbours, 

with the greatest increase seen for the environment with two Sm nearest neighbours. Although the 

paramagnetic shift is positive, the net effect of Sm nearest neighbours is to reduce the 17O shift, because 

the diamagnetic shift contribution dominates. Furthermore, the change in diamagnetic shift is greater 

(more negative) for Sm substitution (~150 ppm/Sm) than for Y substitution (~50 ppm/Y), which is 

consistent with the less positive diamagnetic chemical shifts observed for Sm2O3 than for Y2O3 (see 

above). 

Table 4: Summary of 17O environments in Sm-substituted CeO2, with the number of Sm and oxygen vacancy (vO) nearest 

neighbours, and the chemical shifts observed at 56 oC and −12 oC.  

Assignment Shift @ 56 oC /ppm Shift @ −12 oC /ppm Difference /ppm 

0×Sm, 0×vO 
877 

876 
−1 

879 −3 

0×Sm, 1×vO 833 829 −4 

1×Sm, 0×vO 737 740 +3 

1×Sm, 1×vO 694 700 +5 

2×Sm 565 576 +11 

 

In order to investigate oxygen diffusion in Sm-substituted CeO2, the spin-lattice relaxation (T1) 

constants for each site were measured as a function of temperature (Figure 5b); the T1 of the sharp 

component at 877 ppm was too long to practically measure in a reasonable time frame. The 

environments with Sm nearest neighbours have markedly short T1 constants (on the order of 1 – 10 ms) 

due to paramagnetic relaxation enhancement,1 for which there is no appreciable temperature 

dependence. The T1 constants for the 879 ppm and 833 ppm signals, on the other hand, exhibit a clear 



Arrhenius temperature dependence with a positive gradient, which is evidence of motion faster than the 

Larmor frequency (27 MHz at 4.70 T).38,68 At the lowest temperature, the T1 constants deviate from 

Arrhenius behaviour, which is ascribed to the contribution of a different relaxation mechanism that 

begins to outweigh the relaxation due to motion. The gradients are equivalent within error for both 

resonances and correspond to an activation energy of (0.35 ± 0.01) eV. The lack of Arrhenius 

dependence for the T1 constants of the environments with Sm nearest neighbours is attributable to the 

rapid paramagnetic relaxation, which dominates over the relaxation induced by oxygen motion. 

 

 

Figure 5: a) Deconvoluted 17O NMR spectrum of 15 at% Sm-substituted CeO2, recorded at 7.05 T and 40 kHz MAS, with a 

Hahn echo pulse sequence and a recycle delay of 1 s. b) Arrhenius plot of the T1 for each environment as a function of 

temperature, measured with a saturation recovery experiment at 4.70 T and 14 kHz MAS.  

The 17O NMR spectrum of Eu-substituted CeO2 (Figure 6a) is similar to that of Sm-substituted CeO2, 

but spans a much wider range, because the paramagnetic shift due to Eu is both larger than that for Sm, 

and negative so that it reinforces the change in diamagnetic shift. The signal for environments with no 

Eu nearest neighbours, centred at 867 ppm, is broader than that for Sm-substituted CeO2 due to 

interactions with next-nearest-neighbour Eu ions and the pseudo-contact shift1; however, a shoulder can 

be distinguished, centred at 839 ppm, which is ascribed to environments with a nearest-neighbour 

oxygen vacancy. A second signal can also be observed at 267 ppm, which is ascribed to environments 

with a nearest-neighbour Eu atom. In order to identify further signals which arise from environments 

with Eu nearest neighbours, a T1-filtered spectrum was acquired (Figure 6b), by taking the difference 

between spectra recorded with recycle delays of 1 s and 0.1 s, scaled so as to remove the slower-relaxing 



signal at ~850 ppm; this highlights additional intensity between 0 and −1000 ppm. As the chemical shift 

contribution from lanthanide neighbours is approximately additive,11 the signal at −498 ppm is ascribed 

to environments with two Eu nearest neighbours.  

There are two further resonances which can be distinguished, at −106 ppm and −911 ppm. These are 

similar to the shoulders observed for Sm- and Y-substituted CeO2, which were assigned to nearest-

neighbour oxygen vacancies; however for Eu-CeO2 the additional signals are shifted to lower frequency 

by ~400 ppm relative to the main resonance, compared to 44 ppm and 20 ppm for Sm- and Y-CeO2 

respectively. These signals in Eu-CeO2 are therefore instead assigned to environments with one and two 

nearest-neighbour Eu ions respectively, where (one of) the adjacent Eu atom(s) has an oxygen vacancy 

in its nearest-neighbour coordination shell: this undercoordination of the Eu atom will result in stronger 

bonding to the oxygen of interest, and hence a larger transferred spin density and a greater paramagnetic 

shift. This is consistent with the greater relative intensity of the −911 ppm signal to the −498 ppm signal, 

compared with that of the −106 ppm signal to the 267 ppm signal, because the former signals arise from 

environments with two Eu nearest-neighbours, and so are more likely to have an oxygen vacancy in the 

coordination shell of one of the ions. 

To confirm the assignment, a second spectrum was recorded at a lower temperature (Table 5, Figure 

S13). The shift for environments with nearest-neighbour Eu atoms decreases at lower temperature, due 

to an increase in the expectation value of the electron spin and hence in the magnitude of the 

paramagnetic shift. Furthermore, the amount by which the paramagnetic shift increases (becomes more 

negative) scales with the magnitude of the paramagnetic shift, i.e. the more shifted signals decrease in 

frequency even further. This corroborates the increased hyperfine coupling due to a second Eu nearest-

neighbour or due to the presence of an oxygen vacancy in the coordination shell of a nearest-neighbour 

Eu atom. 

Table 5: Summary of the 17O environments in Eu-substituted CeO2, and the chemical shifts observed at 46 oC and 8 oC.. 

Assignment Shift @ 46 oC /ppm Shift @ 8 oC /ppm Difference /ppm 

0×Eu, 0×vO 867 867 0 

0×Eu, 1×vO 839 836 −3 

1×Eu 267 215 −52 

1×Eu + vO −106 −175 −69 

2×Eu −498 −571 −73 

2×Eu + vO −911 −1014 −103 

 

To investigate oxygen diffusion in Eu-substituted CeO2, the T1 constants were similarly measured as a 

function of temperature (Figure 6c). The lower temperature experiments were performed at 40 kHz 

MAS, which allowed the 267 ppm resonance to be distinguished, however the T1 constants for the lower 

frequency signals could not be measured accurately due to insufficient signal-to-noise levels. The higher 

temperature experiments were performed at 14 kHz MAS, which was insufficient to resolve the 267 

ppm signal. A similar result is observed as for the Sm-substituted CeO2: the lower frequency signal at 

267 ppm, ascribed to environments with a Eu nearest neighbour, possesses a short T1 constant (~1 s) 

induced by paramagnetic relaxation, which shows no significant temperature dependence over the 

observable range. The higher-frequency ~865 ppm signal, on the other hand, again displays a marked 

Arrhenius-like temperature dependence of its T1 constant, which corresponds to an activation energy of 

(0.34 ± 0.02) eV for both components. 

 



 

Figure 6: a) Deconvoluted 17O NMR spectrum of 15 at% Eu-substituted CeO2, recorded at 7.05 T and 60 kHz MAS, with a 

Hahn echo pulse sequence and a recycle delay of 1 s, as well as an expansion of the ~865 ppm signal. b) T1-filtered 17O 

spectrum, obtained by taking the difference between two spectra recorded with recycle delays of 1 s and 0.1 s, scaled so as to 

remove the ~865 ppm signal with a longer T1 constant. Sidebands are marked with an asterisk. c) Arrhenius plot of the T1 

constants as a function of temperature at 7.05 T. The lower temperature experiments were performed with a 1.3 mm probe at 

40 kHz MAS; the two components of the ~865 ppm signal were not sufficiently distinct to be differentiated. The higher 

temperature experiments were performed with a 4 mm probe at 14 kHz MAS, for which both components of the ~865 ppm 

signal could be distinguished, but the 267 ppm resonance could not be resolved.  

Oxygen diffusion in CeO2 is known to arise from the motion of oxygen vacancies,25,26 which in this 

case are introduced by substitution with trivalent ions. The motion of these vacancies causes 

fluctuations in the electric field gradient at an oxygen nucleus and hence in the quadrupolar coupling, 

thereby inducing longitudinal relaxation.38,69 The activation energies for oxygen vacancy motion in Sm- 

and Eu-substituted CeO2 determined here are the same within error; this supports the prevalent 

assumption that the activation energy for vacancy hops is largely independent of the substituent.25 

 



The activation energy for oxygen diffusion in 15 at% Sm-substituted CeO2 has previously been reported 

as 1.00 eV from the DC conductivity34 and 0.84 eV from impedance spectroscopy35. An activation 

energy for oxygen diffusion in 15 at% Eu-substituted CeO2 has not been reported to our knowledge, but 

impedance spectroscopy experiments have yielded activation energies for 10 at% and 20 at% Eu-

substituted CeO2 of 0.64 eV and 0.89 eV, respectively.36,37 

These values are all significantly higher than the activation energies observed here (0.35 eV). The 

discrepancy between the activation energies determined by NMR and by other techniques for oxygen 

diffusion has been discussed by Kim et al.,70 and was ascribed to two main factors. Firstly, bulk 

diffusion techniques measure the motion of vacancies that contributes to the macroscopic transport, 

whereas NMR is sensitive to any vacancy motion; in particular if a vacancy hops back after a forward 

hop it will contribute to nuclear relaxation but not to bulk diffusion. Secondly, vacancies can be trapped 

by defects: at low temperatures the positively charged oxygen vacancies associate with the negatively 

charged trivalent ion substitutional defects.25 The activation energy for bulk diffusion includes the 

energy required to dissociate these vacancy–defect pairs, whereas nuclear relaxation can be caused by 

vacancy hops where the vacancy remains associated. An association energy of ~0.5 eV can be predicted 

for trivalent substituents on the basis of a point-defect model,71 which brings the activation energy 

observed here more in line with the values for bulk oxygen transport. 

The point-defect model is insufficient, however, to explain the variations in the total activation energy 

for oxygen motion with different trivalent substituents, as in this case the charge on the defects is the 

same; instead one must also consider the degree of lattice strain, which also acts to trap oxygen 

vacancies, so that the lowest association energy is observed when the ionic radius of the substituent 

matches that of Ce4+.25 The ionic radius of Eu3+ (1.09 Å) is closer to that of Ce4+ (1.01 Å) than to that 

of Sm3+ (1.10 Å),67 which explains the lower activation energies for overall vacancy diffusion reported 

in the literature for Eu-CeO2, as the association energy will be lower than for Sm-CeO2; however, as 

our results show, the activation energies for vacancy motion are the same, in agreement with the current 

understanding of ionic transport in CeO2.   

Conclusions 

The 17O NMR spectra for monoclinic Sm2O3 and Eu2O3 have been reported for the first time and the 

resonances assigned, primarily on the basis of the integrated intensities and the magnitude of the 

quadrupolar coupling constants. Further assignment for Sm2O3 is based on the diamagnetic chemical 

shifts as estimated from the O coordination, which dominate for Sm2O3 due to the modest magnetic 

susceptibility of Sm3+ and hence small paramagnetic shifts. DFT calculations of the quadrupolar and 

hyperfine coupling constants provide qualitative insights and help to corroborate the assignments, as 

well as permit a tentative assignment of two otherwise unassignable resonances in Eu2O3.  

The effect of low-lying excited electronic states on the magnetic susceptibilities of Sm3+ and Eu3+ have 

been investigated by recording the 17O spectra of the cubic sesquioxides over a wide temperature range. 

In particular, above room temperature the shift of Sm2O3 deviates from Curie temperature dependence 

due to the thermal population of an excited state with a greater magnetic moment, while the shift of 

Eu2O3 at lower temperatures is dominated by the temperature-independent Van Vleck paramagnetism 

of the ground state. The electron spin (〈𝑆𝑧〉) was calculated as a function of temperature, yielding 

predicted shifts which reproduce the aforementioned behaviour and agree well with experiment.  

The 17O NMR spectra have also been recorded for 15 at% Sm- and Eu- substituted CeO2 which reveal 

signals due to environments with zero, one and two Ln nearest neighbours, as well as further splitting 

due to the presence of oxygen vacancies. The T1 constants have been measured as a function of 

temperature and while the environments with Ln nearest neighbours show largely temperature-

independent short T1 constants due to the paramagnetic relaxation enhancement, the T1 constants for 

environments without Ln nearest neighbours exhibit a clear Arrhenius temperature dependence, 



corresponding to an activation energy of 0.35 eV, which is the same within error for both Sm- and 

Eu- substituted CeO2 and for environments both with and without nearest neighbour oxygen vacancies. 

This Arrhenius behaviour is ascribed to motion of oxygen vacancies and the activation energy is 

compared to literature values for oxygen transport: NMR is sensitive to local motion, so does not include 

the vacancy–defect association energy which also contributes to the activation energy for bulk oxygen 

motion, explaining the larger activation energies reported in these materials using other techniques.   

The paramagnetic NMR study presented here highlights the adversities that are commonly faced in such 

systems due to poor signal-to-noise levels as well as broad dispersions of hyperfine shifts, but also 

reveals the structural and mechanistic insights that can be attained, whilst providing examples of 

strategies to overcome these difficulties. Furthermore, the challenges and successes in using DFT 

methods to predict NMR parameters in paramagnetic lanthanide oxides are demonstrated for the first 

time. The understanding gained by a combination of these experimental and theoretical methods allows 

us to explore the local oxygen environments and vacancy motion in Ln-substituted CeO2, which may 

aid in future improvements of their performance as solid-state oxide-ion conductors. We also hope that 

the specific techniques described in the present study will enable detailed paramagnetic 17O NMR 

studies of other as-yet unexplored systems by adventurous spectroscopists. 
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