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Abstract 

Fundmental comprehension of light-induced processes of perovskites are still scarce. One 

active debate surrounds the influence of excess lead iodide (PbI2) on device performance, as well 

as optoelectronic properties, where both beneficial and detrimental traits have been reported. 

Here, we study its impact on the charge-carrier recombination kinetics by simultaneously 

acquiring photoluminescence quantum yield and time-resolved photoluminescence as a function 

of excitation wavelength (450 nm - 780 nm). The presence of PbI2 in the perovskite film is 

identified via a unique spectroscopic signature in the PLQY spectrum. Probing the 

recombination in the presence and absence of this signature, we detect a radiative bimolecular 

recombination mechanism induced by PbI2. Spatially resolving the photoluminescence, we 

determine that this radiative process occurs in a small volume at the PbI2/perovskite interface, 

which is only active when charge carriers are generated in PbI2, and therefore provide deeper 

insight into how excess PbI2 may improve the properties of perovskite based devices. 
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Metal halide perovskites have in merely a decade become strong contenders for absorber 

materials in commercially competitive solar cells, where recent advances are yielding power 

conversion efficiencies approaching that of silicon based devices.
1–3

 One limiting factor has long 

been the issue of poor stability under operational conditions, which for some time seemed an 

unfeasible hurdle to overcome. However, recent progress in compositional engineering of metal-

halide perovskite absorbers demonstrates that this is becoming less of an obstacle,
4,5

 resulting in 

improved efficiency and stability under concentrated illumination.
6
 Investigating the effect of 

long-term light exposure is of crucial importance to predict the intrinsic material stability and 

design more stable alternatives.  

It is known that lead-iodide based metal halide perovskite semiconductors decompose into lead 

iodide (PbI2) when exposed to a range of external stimuli, of which photons are highly relevant.
7–

14
 While decomposition of the perovskite absorber is clearly an undesirable effect, reports 

emerged early hinting toward beneficial aspects with excess PbI2.
15–17

 This sparked a debate 

around the role residual PbI2 actually plays, generating a number of publications dealing with the 

impact on material
18–20

 and device properties,
21–23

 which is nicely summarized by Jacobsson and 

co-workers.
24

  Today, the general consensus seems to be that a slight excess of PbI2 improves 

key device parameters such as the open-circuit voltage (VOC), short-circuit current (JSC), and 

power conversion efficiencies (η), but at the cost of reduced long-term stability.
25,26

  

From a more fundamental perspective, it has been demonstrated that recombination between 

charge carriers in the absorber and transport layers have been suppressed due to a thin interfacial 

layer of PbI2.
27–29

 In regard to charge carriers that form in the perovskite absorber, both a 

reduction of non-radiative recombination, and accelerated recombination with an excess of PbI2 

has been reported.
30–32

 These reports do not necessarily contradict one another but may rather 
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reflect a dependence on where, and how PbI2 has been introduced in the perovskite. So far, 

investigations have focused on charge carriers formed in the MAPbI3 layer only, while those that 

form in PbI2 are assumed parasitically lost and therefore not considered to partake in subsequent 

recombination mechanisms. 

Recombination of charge carriers is an important factor dictating the performance of a solar 

cell device, where non-radiative recombination should ideally be eliminated.
33

 This aspect is of 

key relevance when examining the properties of the absorber material without transport layers or 

contacts. Photoluminescence quantum yield (PLQY) measurements become important as they 

provide a qualitative measure of the competition between radiative and non-radiative processes. 

While both steady-state and time-resolved photoluminescence (PL) experiments are used as 

standard methods to characterize the optoelectronic properties of perovskite absorbers, as well as 

predict device performance,
 34–36

 a few considerations must be made. Steady-state PL alone 

cannot provide information on the recombination dynamics of photo-generated charge carriers 

and should hence be complemented with time-resolved PL (TRPL) measurements. At the same 

time, a long carrier lifetime can be obtained even if the PLQY is low, which may therefore by 

itself be a misleading figure of merit when assessing potential device performance, unless 

accompanied with extensive modeling.
37

 Thus, in order to better characterize the light conversion 

properties of a material, and also describe the underlying recombination processes via optical 

probes, TRPL and PLQY should be, where possible, performed in a complementary manner.
38

 

Herein, we present a study on the recombination kinetics in methylammonium lead triiodide 

(MAPbI3) films and the impact caused by PbI2 when introduced as a photo-induced degradation 

product over several hours, as well as via vapour-assisted deposition. Extracting the PLQY as a 

function of wavelength (450 nm – 780 nm) during light-soaking we find a unique spectral 
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signature related to PbI2 allowing us monitor its formation in time. By simultaneously acquiring 

the time-resolved PL at excitation wavelengths between 450 nm – 700 nm, we identify a change 

the in charge carrier recombination mechanism occurring in MAPbI3 facilitated by PbI2. 

Employing fluence dependent TRPL and spatially resolved spectroscopic measurements, we 

determine that charge carriers generated in PbI2 funnel to a transition phase interlinking PbI2 and 

MAPbI3 where they undergo radiative bimolecular recombination with a blue-shifted PL 

emission in relation to typical MAPbI3 emission (775 nm). Our observations therefore provide 

necessary insight into how the overall recombination kinetics in MAPbI3 may be altered by PbI2, 

which may further resolve some of the ambiguity surrounding the role of PbI2 in regard to both 

material and device properties. 

 

Spectrally Resolved PL Quantum Yield 

MAPbI3 thin films were prepared inside a glove box on thin glass substrates according to the 

methods outlined in the Supporting Information, where structure and morphology of the films 

were characterized by SEM and XRD (see SI Note 1). Optical characterization was made in a 

novel microscope developed to simultaneously measure PL excitation spectra together with 

absorptance in the wavelength range of 450 nm – 780 nm. For excitation, we employed a tunable 

pulsed laser source, allowing us to also acquire the time-resolved PL (see SI for further details). 

PLE spectra were acquired by scanning the excitation from 450 nm to 780 nm while integrating 

PL from the tail of the emission band above 790 nm (Figure 1a). Calibrating the excitation 

density to 0.1 W/cm
2
 (1 Sun), we simultaneously light-soak the sample while also probing the 

optoelectronic properties (see SI Note 2 for details). Unless otherwise noted, measurements were 
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conducted such that the excitation impinges on the material side of the sample, where PL also is 

collected (see inset in Figure 1a). 

 

Figure 1. (a) Absorptance (%A, black trace), PLE (red/solid trace) and PL emission (red/dashed 

trace) spectra. The red shaded region indicates which part of the PL emission band is integrated 

for the PLE signal. Inset schematic demonstrates the measurement geometry where PL is 

detected in the same direction of the incoming light and %A = (1-I/I0) × 100. (b) Relative PLQY 

spectrum acquired by dividing the PLE spectrum by the absorptance spectrum. The PLQY 
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spectrum is normalized at 750 nm. The grey shaded region indicates the spectral range (>750 

nm) where uncertainty is high due to a low PLE signal. 

 

Figure 1a shows the PLE and the absorptance (%A) spectra of an MAPbI3 film prior to 

extensive light-soaking. We can quantify the difference by extracting the relative PL quantum 

yield spectrum (henceforth just PLQY), which we acquire by dividing the PLE spectrum by the 

absorptance spectrum (Figure 1b), and observe the yield is twice as high at 450 nm compared to 

750 nm. We have indications that this may be related to the amount of excess/lack of PbI2 

formed in the perovskite, which is obtained by varying the PbI2/MAI precursor molar ratios (see 

Figure S4), although more extensive measurements are required to verify this with better 

certainty.  

 

The Spectral Fingerprint of PbI2  

We performed simultaneous PLE/absorptance measurements for 120 consecutive excitation 

scans, extracting PLQY spectra in each round. We measured in ambient air with a relative 

humidity around 40%, which are conditions typical for PbI2 formation under light exposure
8
 (see 

Figure S5 for measurements in dry nitrogen). The 2D maps in Figures 2a,b show the evolution of 

the absorptance and normalized PLQY spectra during the 6 hour measurement, with selected 

spectra from three instances plotted in Figures 2c,d. From the absorptance we verify that MAPbI3 

decomposes into PbI2. After 2.5 hours, we find that the PLQY starts to drop off for a very 

distinct spectral range (between 450 nm – 520 nm), forming what we will refer to as a “dip” in 

the PLQY spectrum which coincides with the absorption of PbI2. We explain this as photons that 
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are absorbed in PbI2 and generate charge carriers are parasitically lost (filter effect),
39

 even if 

they recombine radiatively since PbI2 emission (~520 nm) is filtered out in our detection scheme 

(see Figure 1a).  

Figure 2b shows that the normalized PLQY spectrum remains unchanged for the first few 

hours, although the non-normalized spectra (Figure S6) demonstrate that there is a significant PL 

enhancement prior to any degradation. The general consensus in the community is that an 

increase in the PLQY during light-soaking is related to passivation/annihilation of defects, 

although it is still debated whether this is mediated by atmospheric species (O2, H2O),
40–42

 

migrating ions,
43

 and/or PbI2 itself.
16

 Quitsch and co-workers recently demonstrated a strong 

dependence of photo-induced PL enhancement/degradation on excitation wavelength, where 

enhancement (photo-brightening) was exclusively reported for excitation wavelengths longer 

than 520 nm.
44

 Since we here focus on the photo-induced formation of PbI2 (degradation), 

normalizing the PLQY spectra at 750 nm removes the spectral signature of photo-brightening 

(observed for longer wavelengths), which isolates the signature of PbI2 formation as shown in 

Figure 2d.  
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Figure 2. 2D maps showing the temporal evolution of (a) absorptance and (b) normalized PLQY 

spectra during 6 hours of light-soaking. PLQY spectra are normalized at 750 nm. The right 

vertical axis shows the cumulative light-dose throughout the experiment. (c,d) Selected spectra 

from the two maps at three points in time, t = 0 h (solid), t = 2.5 h (dashed) and t = 3.75 h 

(dotted). The PbI2 absorption spectrum in (c) is adapted with permission from
45

. The “dip” in (d) 

is the indicator of PbI2 formation. 
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Spectrally & Temporally Resolved PL 

We acquire PLQY spectra (Figure 3a) with intermittent measurements of the PL decay kinetics 

using 450 nm and 700 nm excitation wavelengths (Figure 3b) during 600 min of light-soaking. 

We employ the time-correlated single photon counting (TCSPC) method and fit the PL decays 

with a stretched exponential function from which we extract the average lifetimes (Figure 3c) as 

detailed in SI Note 2 (measurement) and SI Note 3 (fitting). Prior to any extensive light-soaking, 

the extracted lifetimes are similar for both excitation wavelengths. The mono-exponential nature 

of the decays points to the dominant recombination mechanism being trap-assisted,
46

 which is 

consistent with the estimated photo-generated carrier density (Δn ≈ 10
15

 cm
-3

, see SI note 2) 

being an order of magnitude lower than the trap density (Nt ≈ 10
16

 cm
-3

) that is typically reported 

for solution processed MAPbI3 films.
43,47

 Even if the photon flux is kept constant, the carrier 

generation toward the excited surface (where we also detect PL) is expected to be slightly higher 

for 450 nm excitation since the absorption coefficient is higher, which is reflected in the 

marginally higher initial amplitude of the decay. However, we establish that at t = 0 min this 

difference in generation is not sufficient to induce a different recombination mechanism.  

During the first few hours, the lifetimes of both decays increase in a similar fashion and 

maintain their mono-exponential shape while the PLQY also increases, which are both 

commonly reported signatures of photo-induced defect passivation
40

 (see Figure S7 for non-

normalized PLQY spectra). However, once the PbI2 related dip emerges in the PLQY spectrum (t 

= 420 min), an additional fast component in the PL decay evolves only for 450 nm excitation. 

With further light soaking, the PbI2-related PLQY dip increases while the discrepancy between 

the two PL decays becomes even more pronounced, which is demonstrated in Figure 3c.  



 11 

 

Figure 3. (a) PLQY spectra at four instances throughout the 10 hour light-soaking experiment. 

The dashed traces in the bottom three panels represent the PLQY at t = 0 min. Vertical scale is 

the same for all panels. (b) PL decays generated with 450 nm (blue traces) and 700 nm (red 

traces) excitation energies at the same time instances shown in (a). Vertical scale is the same for 

all panels. The two excitation wavelengths generating the PL decays in (b) are indicated by blue 

(450 nm) and red (700 nm) arrows in the top panel of (a). (c) Average lifetimes extracted using 

stretched exponential fits for both excitation wavelengths (see Figure S8 for the complete data 

set and fit parameters). 

 

In Figure 3b we can see two distinct features in the PL kinetics evolve: (i) increasing of the 

slow decay component, which is observed as soon as light-soaking initiates, and (ii) increasing of 
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the fast decay component which has an onset after a few hours. Process (i) occurs for both 

excitation wavelengths, while process (ii) exclusively occurs for 450 nm. Regardless of the 

underpinning mechanism, we conclude that (i) appears as a result of passivation of non-radiative 

recombination channels as previously reported.
40

 Process (ii) appears when a substantial dip in 

the PLQY spectrum (t = 420 min) emerges which, interestingly, only seems to be present when 

exciting in the spectral range of PbI2 absorption (450 nm – 520 nm). As the detection excludes 

emission from PbI2, we conclude that the carrier recombination kinetics can be altered in the 

perovskite by the mere presence of PbI2, as long as photons are absorbed by it. 

 

Probing the Recombination Mechanism 

Having indications of a different recombination mechanism in the perovskite that is active only 

when charge-carriers are generated in PbI2, we investigate the effect of a 130 nm thick PbI2 layer 

evaporated on top of a 400 nm thick MAPbI3 thin film (see cross-section SEM in Figure 4a) and 

compare the PL kinetics to a reference sample without any evaporated PbI2. Assuming similar 

absorption coefficients for PbI2 and MAPbI3,
48

 the 130 nm PbI2 layer should absorb approx. 75-

80 % of photons for excitation wavelengths between 450 nm – 520 nm. The non-normalized 

PLQY spectrum in comparison to the reference sample (without a PbI2 layer) not only verifies 

that the so-called “dip” is related to PbI2, but also shows that there is a two-fold increase of the 

PLQY for wavelengths longer than 520 nm (Figure 4b). This observation supports the notion that 

PbI2 passivates the MAPbI3 surface,
16,30

 although our results suggests it is only visible when 

probed with excitation wavelengths longer than 520 nm.  
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The PLQY of the sample containing a layer of PbI2 is approx. 80% lower in the range of the 

dip compared to the reference sample, which is similar to the percentage of expected photon-

absorption in PbI2. From the PLQY alone, it would therefore seem that the detected emission 

comes from charge carriers that are directly generated in MAPbI3 via absorption of photons that 

manage to penetrate through the PbI2 layer (for λex = 450 nm - 520 nm). However, when 

comparing the PL decays at 450 nm and 700 nm we see the same discrepancy as previously 

observed (Figure 4c). We cannot rationalize why such different PL kinetics are observed 

between the two excitation wavelengths with only a marginal difference in the charge carrier 

concentration directly generated in MAPbI3 (depth-resolved carrier generation profiles 

schematically drawn in Figure 4a are estimated from α in ref. 48). Furthermore, such a scenario 

would require a 100% radiative yield of the carriers generated in the MAPbI3 layer for 450 nm 

excitation in order to explain the matching PLQY reduction and estimated parasitic losses, which 

finds no support in literature for the films investigated here. We therefore conclude there must be 

a radiative component that is missing in our analysis. 

We measure PL decays at various pulse fluences with the two excitation wavelengths (450 nm 

and 700 nm). When exciting through the PbI2 layer first, it becomes evident that there is a carrier 

density dependent recombination mechanism present only for 450 nm excitation (Figure 4d – λex 

= 450 nm, Figure 4e – λex = 700 nm). Measuring through the substrate side of the sample, thus 

absorbing directly into MAPbI3, both excitation wavelengths generate similar monoexponential 

PL decays (Figure S8). We therefore relate the emerging fast component to a higher order 

bimolecular recombination process which is enabled by the presence of PbI2.  

The pulse fluences where bimolecular recombination becomes dominant are relatively low (a 

few nJ/cm
2
) compared to other reports on similarly prepared perovskite thin films.

47
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Furthermore, we demonstrated in the light-soaking experiment (Figure 3) that the PL decay 

changes without altering the pulse fluence. This suggests that the predominant recombination 

mechanism transitions from monomolecular to bimolecular recombination with the formation of 

PbI2 alone. Indeed, we have indications that photo-induced passivation of defects is at play 

(photo-brightening), but if Nt were to reduce to a point where bimolecular recombination 

becomes relevant (Δn ≈ Nt), we should see this expressed in the PL decays generated with all 

excitation wavelengths. Since this is not the case (see Figure S8), we find the most logical 

explanation to be that the actual volume into which charge carriers accumulate and recombine is 

much smaller than previously estimated for the entire film with thickness d = 400 nm. This 

consequently yields an effective carrier density (Δne) that could be orders of magnitude larger 

than Δn. Therefore, if charge carriers become confined by some mechanism induced by PbI2, 

bimolecular recombination could indeed become the predominant recombination mechanism 

even with a rather low incident flux.  
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Figure 4. (a) Cross-section SEM showing the thickness of the evaporated PbI2 layer (~130 nm) 

as well as the MAPbI3 layer (~400 nm). Blue and red shaded regions show the carrier generation 

profiles with 450 nm and 700 nm excitation wavelengths respectively when exciting with the 

same photon flux. (b) PLQY of the PbI2 - evaporated sample (solid) in comparison to a reference 

film without a PbI2 layer (dashed). The blue arrow indicates the “dip” (reduction of PLQY) due 

to PbI2 and the red arrow indicates the subsequent two-fold PL enhancement. (c) PL decays 

acquired for λex = 450 nm (blue) and λex = 700 nm (red). (d,e) Fluence dependent PL decay 

curves for 450 nm (black/blue traces) and for 700 nm (black/red traces). The schematics show 

from which direction the sample is excited, where PL is collected from the same side. (f) Fluence 

dependent PL spectra acquired with 450 nm excitation (blue traces) and 600 nm excitation (red 

traces) with long-pass emission filter at 610 nm. 
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We measure the PL spectra with 450 nm excitation as a function of excitation density (exciting 

through the PbI2 layer) with a long-pass filter at 610 nm. At the lowest fluence, we observe that 

there is a strong blue-shift and broadening of the PL band. In fact, rather than a single emission 

band, the irregular shape of the blue-shifted PL spectra is indicative of a collection of 

overlapping bands. With higher fluence, the PL spectrum red-shifts and becomes more narrow. 

With λex = 600 nm we excite MAPbI3 directly and not via PbI2, and the PL emission peak 

remains at 775 nm and exhibits no shift or broadening/narrowing when changing excitation 

density (Figure 4f). Measuring through the substrate side first (direct absorption by MAPbI3) we 

see a steady, non-shifting nor broadening PL spectrum centered at 775 nm (Figure S9) for both 

excitation wavelengths. We therefore conclude that the blue-shifted emission is caused by direct 

excitation into PbI2 and consequently relate the blue-shifted emission to the PbI2-enabled 

bimolecular recombination.  

We acquire PL images generated with excitation wavelengths ranging from 450 nm to 600 nm 

(see SI Note 2 for details). Figure 5a shows two PL images of the same region generated with 

450 nm and 700 nm where bright domains are observed only for the former. These domains 

disappear once the excitation wavelength is longer than 520 nm (see Figures S10-11 for PL 

images with excitation wavlengths between 450 nm – 600 nm). This points to the PL emission 

related to the PbI2-enabled recombination mechanism coming from localized domains, which 

also supports the notion that the recombination mechanism is induced by charge carriers 

becoming confined when generated in PbI2.  
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Figure 5. (a) PL images of the same region measured with λex = 450 nm (top) and λex = 700 nm 

(bottom) showing bright emissive domains with the former. The scale bar represents 5 μm. (b) 

Spatially resolved PL spectra identifying a distribution of blue-shifted PL peaks related to the 

emissive domains observed in (a) for an excitation density of 1 Sun. (c) Spatially resolved 

spectra from same region with excitation density increased to 100 Sun where the blue-shifted 

peaks disappear. Excitation wavelength in (b) and (c) is 450 nm. 
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We also extract spatially resolved spectra from a ~2 μm wide vertical segment of the image 

and capture the PL spectra of these bright domains when exciting with 450 nm. Each horizontal 

line in Figures 5b-c represent the spectrum from a point in the vertical segment from the image 

(see SI Note 2 for details). It becomes evident that not only do the bright domains exhibit blue-

shifted emission, but also that there is a distribution of how large the shift is (Figure 5b), which 

explains the irregular shape of the spatially averaged PL spectra in Figure 4f. Moreover, as the 

fluence is increased by two orders of magnitude, the blue-shifted localized emission disappears, 

showing only the expected emission from MAPbI3 at 775 nm (Figure 5c).   

 

PbI2/MAPbI3 Interface Assisted Recombination 

Since we observe a red-shift of the emission toward that of pristine MAPbI3 with increasing 

power (Figure 5c), we rule out the Burstein-Moss effect (band-filling)
49

 as the mechanism giving 

rise to the spectral shifts. We previously reported blue-shifted PL in MAPbI3 single crystals and 

films arising from intermediate phases between the MAPbI3 and PbI2 structure exhibiting 

distortions and difference in connectivity between lead-halide octahedra due to the loss of 

structure-stabilizing methylammonium cations.
11,50

 This spatial gradient of lattice distortion 

consequently gives rise to a bandgap gradient, increasing in energy from MAPbI3 towards PbI2 

regions. We therefore propose that as PbI2 forms in the perovskite, whether via a photo-induced 

process or evaporation, it gives rise to a transition phase at the PbI2/MAPbI3 interface comprising 

a small volume which alters the recombination kinetics. Our observations suggest that the Δne 

giving rise to the higher order recombination mechanism arises due to the confinement of charge 
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carriers, from which we find it likely that charge carriers generated in PbI2 funnel into the 

relatively small volume of the disordered interface. 

Supasai and co-workers demonstrated quite early that PbI2 induces defect-formation at the 

interface to MAPbI3, which could certainly trap charge carriers funnelled from PbI2.
15

 Once 

trapped, carriers may recombine and yield emission with higher energy than the MAPbI3 

bandgap. It is also reported that carrier mobility is reduced in a disordered energy landscape 

which also, according to Langevin theory, should increase the rate of free electron/hole 

recombination.
51

 Regardless of the mechanism via which charge-carriers accumulate, we 

conclude that radiative recombination must occur with a transition energy higher than the 

MAPbI3 bandgap. Figure 5b shows that a low fluence yields a broad emission which arises from 

both the PbI2/MAPbI3 interface and bulk MAPbI3. As fluence increases, the interface saturates 

due to its relatively small volume which leads to more carriers transferring to the MAPbI3 bulk 

where emission at 775 nm becomes dominant. Therefore, increasing the fluence high enough 

manifests as a red-shift and narrowing of the PL emission.  

Direct absorption into the transition phase with excitation wavelengths longer than 520 nm 

should also occur, but since this phase comprises such a small volume in the film, the majority of 

photons are absorbed in the MAPbI3 bulk yielding emission at 775 nm, with the predominant 

recombination mechanism being monomolecular (judging from the decays in Figures 3 and 4 for 

λex > 520 nm). Thus, population of the transition phase with charge carriers is most effective 

when injecting them via PbI2. We summarize the proposed recombination mechanism occurring 

at the PbI2/MAPbI3 interface in Figure 6. 
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Figure 6. Schematic demonstrating the recombination mechanism via PbI2 with an excitation 

wavelength within the range of PbI2 absorption (450 nm – 520 nm) at low vs. high fluence. 

Charge carriers are first generated by direct absorption in PbI2 (top) after which a fraction 

recombines non-radiatively in the PbI2 bulk. Remaining charge-carriers diffuse to the transition 

phase where they accumulate and effectively yield a high carrier density. This subsequently leads 

to an increased rate of radiative recombination having blue shifted PL emission. As fluence 

increases, the transition phase saturates and recombination in the MAPbI3 bulk becomes 

successively more dominant causing the PL emission to shift toward 775 nm, while also 

becoming narrower. 
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In summary, we have presented an in-depth spectroscopic study on the role of PbI2 in MAPbI3 

thin films when it has been formed as a photo-induced degradation product, and via vapour-

assisted deposition. Combining measurements of PLQY and TRPL we identify three optical 

signatures that can be used to detect the presence of PbI2 in MAPbI3 thin films: (i) parasitic 

absorption, (ii) a fast recombination component in the PL decay, and (iii) a blue-shift of PL 

emission. Each of these phenomena exhibits a dependence on excitation wavelength and the 

geometry in which the sample is excited when PbI2 is present. Furthermore, these signatures are 

only present when charge carriers are generated in PbI2 directly. Thus, depending on the 

configuration in which the measurement is made, one can acquire some information in regard to 

where in the perovskite bulk the predominant presence of PbI2 is (i.e. toward the top or the 

bottom surface of the film). 

We also characterize the underpinning mechanism giving rise to phenomena (ii) and (iii) as a 

radiative bimolecular recombination mechanism occurring in a confined volume at the 

PbI2/MAPbI3 interface. Since charge-carriers accumulate in a small volume, bimolecular 

recombination may still occur despite a relatively low incident photon flux. Thus, as PbI2 induces 

parasitic losses for photons in the range between 450 nm – 520 nm, our results imply that a 

relevant portion of these charge carriers may in fact contribute to the open-circuit voltage of the 

perovskite. We therefore provide insight to the open debate regarding the beneficial/detrimental 

aspect of excess PbI2 amount with a simple picture where we assume that the interface between 

PbI2 and MAPbI3 contributes to the beneficial aspect (radiative recombination) and the bulk PbI2 

contributes to the detrimental aspect (non-radiative recombination). Thus, the surface-to-volume 

ratio of PbI2 domains within the perovskite bulk, and also where in relation to the incoming light 

they form, may largely affect the overall recombination kinetics. Finally, the notion of PbI2 
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acting as a funnel for charge-carriers to a defined region in space could certainly inspire new 

designs for device applications, not only for perovskite photovoltaics, but for material science in 

general.  
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