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Abstract

Promoting physical activity is one of the main goals of interactive playgrounds.
To validate whether this goal is met, we need to measure the amount of physical
player activity. Traditional methods of measuring activity, such as observations
or annotations of game sessions, require time and personnel. Others, such as
heart rate monitors and accelerometers, need to be worn by the player. In
this paper, we investigate whether physical activity can be measured unobtru-
sively by tracking players using depth cameras and applying computer vision
algorithms. In a user study with 32 players, we measure the players’ speed
while playing a game of tag, and demonstrate that our measures correlate well
with exertion measured using heart rate sensors. This makes the method an
attractive alternative to either manual coding or the use of worn devices. We
also compare our approach to other exertion measurement methods. Finally, we
demonstrate and discuss its potential for automated, unobtrusive measurements
and real-time game adaptation.

Keywords: Play, Interactive playgrounds, Automated behavior analysis,
Physical activity, Exertion measurement, Depth cameras

1. Introduction

Technology has become embedded into many aspects of childrens lives, in-
cluding childrens play, and studies have suggested that it can limit its users to
screen-based solitary interactions [1]. A clear example of this is that children
currently spend a significant amount of time consuming online digital media,
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and a considerable part is dedicated to digital gaming [2]. Most young people
play video games at least occasionally and many of them play daily [3, 4]. In
doing so, the opportunities available for children to engage in full-body phys-
ical activity and in social interactions, both essential for their development,
can be drastically reduced [5, 6, 7]. Nonetheless, digital games can also be
used to encourage positive aspects of play [8]. Exertion games or active video
games (AVGs) provide the entertainment value of digital games while encour-
aging players to engage in physical activity [9, 10]. Interactive playgrounds are
instrumented spaces where exertion games can be played, usually with small
groups of players [11]. These playgrounds combine elements of traditional play-
grounds with digital elements to promote key aspects of play, including physical
activity [12]. In general, these approaches are designed to put body movement
as a core part of the gameplay in order to motivate players to exert themselves
(e.g., [13, 14]).

This does not necessarily mean that players engage in appropriate levels of
exertion [9]. Players could move very little, or players might move too much and
burn out quickly. Knowing beforehand how to stimulate players appropriately is
difficult, and is likely to differ between individuals. One promising alternative
to control the level of exertion is to adapt the stimulation of the players in
real-time, based on measurements of the players’ levels of physical activity [15].

Traditional methods of measuring physical activity in play include the an-
notation of game sessions, interviews and self-reports [16, 17]. These validated
methods provide varied information, but the outcome only becomes available
after, not during, the game session. Annotation requires observers to catego-
rize specific actions using annotation schemes, and it is typically performed on
recorded game sessions [18, 19]. Questionnaires to evaluate physical activity are
filled in after the game sessions since they ask players about their experiences.
A different approach to measuring physical activity in games is to use sensors
such as accelerometers, pedometers or heart rate monitors. These sensors are
worn or carried and provide continuous in-game measurements so the data can
be accessed directly. This presents an attractive alternative to manual annota-
tion and opens up the possibility of in-game adaptation of gameplay based on
sensor measurements. While these methods are suitable for the study of play
in a laboratory setting, the requirement of fitting sensors and registering them
to the game session hinders their use in everyday play. In the current paper,
we present an approach that overcomes this limitation by measuring exertion
in real-time and unobtrusively, using overhead cameras.

Our contributions are two-fold. First, we present a method to obtain in-game
measurements of physical activity using a completely unobtrusive method. We
track the players using cameras and computer vision algorithms and determine
their level of activity by measuring the average movement speed. We compare
this approach to a number of alternative sensor-based approaches and ques-
tionnaires. Second, we demonstrate that the level of physical activity can be
influenced in real-time by adapting a single gameplay element in an interactive
playground. To evaluate our approach, we conduct a user study with eight
groups of four players. Together, these contributions demonstrate the potential
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of automatically and unobtrusively measuring and modulating physical activity
in AVGs.

This paper is structured as follows. Section 2 presents an overview of how
physical activity is currently measured and evaluated in active video games. In
Sections 3 and 4 we describe the physical setup and the design of our user
studies respectively. We then present and discuss the results of this study in
Section 5, and conclude in Section 6 by discussing avenues for future work.

2. Measuring Physical Activity in Active Video Games

AVGs are interactive games that stimulate users to be physically active.
They are usually played in interactive playgrounds, physical installations that
include actuators such as screens, projectors, or speakers, and sensors such
as cameras and accelerometers. These sensors leverage body movements to
drive system interactions. AVGs that promote full-body movement generate
higher levels of exertion [9]. Many of these systems are designed to promote
specific types of movement and social interactions [20]. For instance, Tetteroo
et al. designed an open-ended game to stimulate physical activity for children
[21]. In their playground, children wear hats with infrared reflectors that are
tracked in the playing area. Shapes are projected on the floor and respond to
nearby children, stimulating running. Similarly, Avontuur et al. designed a game
where players chase and steal the “buzz” from players by approaching them [22].
Besides running, other forms of movement can be promoted, as Mueller et al.
show in “Hanging off a bar” [13]. In this game, a river is projected on the floor
and players have to hang off a bar until a small raft drifts by and the player is
allowed to jump onto it to rest. Once the raft drifts away, the player has to jump
and hang onto the bar again, requiring endurance and arm strength for extended
play. Another exergame designed to promote arm and upper body movement
is “Rapid Recovery” by Shewaga et al. [23]. It is a kayaking simulation that
requires players to paddle their canoe through a virtual course displayed in front
of them, using an augmented baton.

Most AVG researchers use offline methods to measure physical activity such
as the manual annotation of game recordings, or asking participants to assess
their experience through questionnaires [24]. These validated methods provide
important information about a player’s experiences, feelings, opinions or behav-
ioral characteristics but require additional time and personnel to carry out the
interviews or annotations. In-game measurements are an attractive alternative
because they provide a continuous stream of detailed data in real-time from
sensors; therefore they present researchers with objective data. This comes at
the cost of a more challenging interpretation of the data. Traditionally, sensors
have been mostly used as input for controlling games rather than as a measur-
ing tool for physical activity. Body-mounted trackers have been used to sense
upper body motion in games [25], or gloves equipped with sensors to interact
with projections on walls [26].

With the advent of affordable and accurate sensors, in-game measurements
in AVGs are becoming more common. The real-time data obtained through
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them can be used to react on-the-fly and adapt gameplay to steer behavior in
positive directions [27, 28]. Typically, this proceeds through actuators such as
screens and projectors. Considering that players’ in-game visual representation
has been shown to affect the amount of exercise that players engage in [29],
playing with these visual representations can be used to adapt the game play.

One goal of adaptation is to make the game more balanced for players with
different physical fitness levels, such as in the “Heart Burn” racing game by
Stach et al. [30]. Players have to speed virtual vehicles by pedaling on a sta-
tionary bicycle, while their heart rates are measured. Instead of using cycling
speed, their measured heart rates determine the vehicle speeds. Consequently,
people with better physical condition have to exert themselves more to com-
pete against less fit players, effectively balancing the game. Similarly, Mueller
et al. use heart rate to allow people at different locations to jog while “feeling
together” in “Jogging over a distance” [31]. Participants are equipped with
heart rate sensors and headsets for communication. The volume level of the
joggers is adjusted based on their individual heart rates. When the heart rate
of one participant is higher, his voice sounds as if he was ahead because of the
additional effort he is putting in, encouraging the lagging participant to exert
more.

Researchers have started to address the analysis and evaluation of a player’s
movement and activity levels without the need of wearable sensors, making the
measurement completely unobtrusive. Van Delden et al. measure player move-
ment using Kinect depth cameras in “Hang in There” [32]. In the game, players
hang from a climbing harness and move laterally to collect coins projected on
a screen in front of them. Landry and Pares not only analyze movement, but
use this to measure the physical activity of groups of children in the “Interac-
tive Slide” installation [14]. They project a game on a slide so that children
have to climb up and slide down to interact with the game elements. Computer
vision algorithms based on the difference between subsequent frames are used
to measure the total amount of movement. This approach is fairly straight-
forward, and provides a collective measure of exertion. Despite the reported
performance, the use of pixel difference is prone to issues of reliability due to
the influence of clothing, body size, camera viewpoint and lighting conditions
on the measurements.

We propose a pervasive approach for unobtrusive, in-game measurement of
player activity during group play. By tracking the individual players, we over-
come typical robustness issues when directly measuring exertion from sequences
of video frames. Furthermore, we demonstrate how the level of activity can be
influenced by adapting a gameplay element, effectively demonstrating the po-
tential of real-time measurement of player exertion.

3. Measuring Physical Activity in an Interactive Playground

In this section, we detail the interactive playground in which we conduct our
user study (Section 4). We then describe how we measure player exertion using
depth cameras and computer vision algorithms.
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Figure 1: People playing tag in the ITP.

3.1. Interactive Tag Playground

The Interactive Tag Playground (ITP) is an installation where players can
play an enhanced version of the game of tag [33]. It provides a 6m × 5m
space with floor projections. The location of each player is measured using four
Kinects V1, located in the ceiling of the playground. Two projectors that are
also mounted in the ceiling, project circles around the estimated position of each
player. The color of the circle represents the role of the player: orange for the
tagger and blue for runners (see Figure 1). To tag another player, the tagger
has to make her/his circle touch that of a runner. Upon the tag, the roles of
the two players switch. The new runner cannot be tagged for two seconds, to
encourage the new tagger to look for another player.

The floor projections are based on the positions of the players, as discussed
in the next subsection. As such, there is a feedback loop where the behavior
of the players can be shaped by altering how the floor projections take into
account the players’ behaviors. In previous work, it has been demonstrated that
careful adaptation of the floor projections could be used to increase proximity
between players [27] and stimulate risk taking [34]. In this paper, specifically, we
experiment with different sizes of the circle that is projected around each player.
Larger circles reduce the effort needed to tag another player. Consequently, we
expect that the size of the projected circle affects the amount of exertion.

3.2. Unobtrusive Measurement of Exertion

We propose to measure the amount of activity in a completely unobtrusive
manner through computer vision. We track players during the game and calcu-
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late their movement speeds. This allows us to estimate their physical activity
levels.

To track players, we use depth images from Kinect sensors located above
the play area and facing downwards. Since the depth images are obtained using
an infrared sensor, the light from the overhead projectors is not an issue. Also,
the sensor measurements are not sensitive to indoor lighting conditions, which
is an additional advantage. Basic filtering operations are applied on the depth
images to remove noise and enhance the head-shoulder region of the players.
Effectively, this allows us to focus on those regions in the image that are closer
to the camera. In a playground without physical props, these areas correspond
to the players. We isolate these regions by looking for local peaks in the depth
image. We then use a Kalman filter for each peak to track the corresponding
player. Kalman filters predict the player’s future location based on a motion
model and live observations. The model is updated continuously based on the
assigned detection’s position.

Given proper calibration of the depth cameras, we can project pixel distances
in the image to distances on the ground plane, in meters. By summing distances
between subsequent measurements over one-second time intervals, we can nicely
approximate the players’ speed in meters per second. The tracker has been
evaluated in [33] and performs well. Still, when players bump into each other,
their tracks are occasionally swapped. While this is a rare event, we cannot
guarantee that this never happens. From depth recordings, players cannot be
easily differentiated or identified. While this is an advantage for player privacy,
it prevents us from recovering from the track swaps. As a consequence, we
average the speeds of all players at a given moment. Our measure of exertion
based on the speed of tracked players is therefore a group measure.

4. Experiment Design

We conducted a user study in the ITP with two goals. Firstly, to demonstrate
that players’ speed can be used as a reliable measurement of physical activity in
interactive playgrounds, we compare our estimates with a number of reported
activity measurements including self-report and heart rate. Our second goal
is to modulate physical activity in the ITP by changing players’ circle sizes to
manipulate the amount of effort it takes to tag other players. The experiment
described here was approved by our university’s ethical committee.

4.1. Participants

The participants were BSc, MSc and PhD students from the University of
Twente. While these participants are not the intended target audience of inter-
active playgrounds, they are an easily accessible participant group. Moreover,
for the aim of the present study, we focus on the automated measurement of ex-
ertion. Aspects such as specific interactions and enjoyment, which are arguably
more age-dependent, are not the focus. Students were approached at the uni-
versity and asked if they wanted to voluntarily participate in a 30-minute study
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Figure 2: Difference between circle sizes in the HEC(t) and LEC(b)

in which they were going to play tag. If they agreed, they were taken to the
playing area. In eight sessions with four players each, we had a total of 32
participants: 23 male, 9 female (age 19-28, mean 21.9, standard deviation 2.36).

4.2. Design

We ran a series of 8 playground tag sessions, each involving a group of four
players. In each session, participants played three tag game sub-sessions with
breaks in between. In each sub-session, the group played the tag game with
different circle sizes (see Figure 2). The first sub-session used the standard
circle size and served to familiarise players with the game play. In the other
two sub-sessions, which had a duration of 4 minutes each, players played 2
different versions of the game that were designed to test whether the size of the
circles affected players’ activity levels. In the High Exertion Condition (HEC),
the circle size was smaller than the standard size while the circle was bigger
than the standard size in the Low Exertion Condition (LEC). Specifically, the
diameter of the circles was 102 cm in the standard condition, 66 cm in the HEC,
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and 149 cm in the LEC. The size of the circles in the HEC was set to resemble
the average shoulder width of young adults, whereas the size in the LEC was set
to approximate an arm’s reach. Within each condition, the size of the circles did
not change. To allow evaluation of possible order effects, we counterbalanced the
conditions such that groups in the odd-numbered sessions played tag in the HEC
before the LEC, and groups in the even-numbered sessions did the reverse. The
study thus has a within-participants design with exertion condition (or circle
size) as the independent variable.

4.3. Measurements

We used four exertion measures, including our novel, unobtrusive measure:

� Speed of tracked players is our newly proposed exertion measure. It
is calculated from the player’s tracked position, at 15 frames per second
(see Section 3.2). The speed information is obtained by calculating the
average track displacement per second, over all players. To eliminate the
noise inherent to data collection, we applied a median filter with a window
size of one third of a second on the position data, and we interpolated
position values when tracks went missing.

� Heart rate monitors are widely used to determine exercise intensity
[35], and provide ground truth measurements in this study. The unit used
for the heart rate (HR) measurements is beats per minute (bpm). We used
Scosche Rhythm Plus heart rate monitors, which were strapped to each
player’s right forearm. The sensor is claimed to be accurate within 1 bpm.
We measured HR every second for the entire duration (four minutes) of
the condition sub-sessions.

� Accelerometers measure the amount of acceleration to which the sen-
sor is subjected, a measurement related to the amount of movement of
the user. Accelerometers have been shown to measure exertion reliably
in previous studies [17, 36]. We used YEI 3-Space wireless accelerometers
for this study, which were placed in the right pockets of the players. We
collect acceleration data 15 times per second. We applied a median filter
with a window size of one third of a second to remove noise and inter-
polate missing values. The unit used for the acceleration values is g, the
gravitational constant.

� Pixel difference is a computer vision method by which the difference be-
tween consecutive images is calculated. In the case of a video feed of people
moving, the difference between consecutive frames yields an approximate
measurement of how much movement is present in the sequence. Because
we use floor projections and those can cause differences between frames
even when the players do not move, we use the depth images from the
Kinect instead of the traditional RGB images. To obtain the pixel dif-
ference value, we subtract consecutive depth images obtained from the
Kinects 15 times per second. We applied basic morphological operations
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(dilation, erosion) and a median filter (window size of one third of a sec-
ond) on the actual pixel difference values to remove noise.
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Figure 3: Average HR measurements of all players in the LEC and HEC. Only the last two
minutes of play are used for the data analysis.

For all measurements, we discarded the first two minutes of each recording
because during this period the HR is rising (see Figure 3). During the last two
minutes, HR has stabilized and more accurately represents activity levels. We
calculate, for each measure, the average value over the last two minutes. We
furthermore average the measurements per group of players to be able to directly
compare all measures, including our novel measure and pixel difference, which
are both group measures. This means we are averaging individual differences.
Also, this effectively reduces the number of observations, which makes statistical
analyses conservative. Still, we believe that a group measure is appropriate
because the behavior of all players is correlated.

In addition to the exertion measures, we used a questionnaire. It served
two purposes. The first was to evaluate the perceived exertion of the players
after a condition session. The second goal was to keep players occupied during
the break so they would rest. Perceived exertion was measured using Borg’s
Rating of Perceived Exertion (RPE) Scale [37]. The Borg scale is a linear scale
from 6-20. The range of the scale was designed to broadly represent the HR of
healthy adults. A perceived exertion of 10 should coincide with a HR of 100
bpm. We also asked additional questions about players’ estimated fitness level,
physical characteristics (height, weight) and preference of game elements. This
information was not used for this study.

Below, we introduce, motivate and operationalize our hypotheses:

� Physical activity and circle size With larger circles, less effort is re-
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quired to tag others, potentially resulting in lower HR. Therefore, it should
be possible to influence the amount of physical activity of players by vary-
ing circle sizes.

H1: The HR of players is higher in the HEC than in the LEC.

We compare, per group, the average HR of all players of the last two
minutes in the LEC and HEC sub-sessions, respectively.

� Average player speed and circle size With larger circles, players
should be able to run slower and still tag other players. Therefore, players’
speed measurements through tracking should be lower in the LEC than in
the HEC.

H2: The speed of the players is higher in the HEC than in the LEC.

This hypothesis checks whether we can use player speed to measure phys-
ical activity. We comapre the average speed of all players in a group for
the last two minutes of the LEC and HEC sub-sessions.

� Heart rate and player speed The relation between heart rate and
exertion has been well-studied (e.g., [38]). Exertion measurements not
only depend on the amount of physical activity a player is undertaking,
but also on his or her fitness level and body properties. This introduces a
bias for different players. Still, players’ speed should affect the amount of
effort players are putting in when playing. Therefore, the speed at which
players move should be related to their HR.

H3: The speed and HR of the players are positively correlated. This
hypothesis checks whether we can replace HR measurements with players’
speed measurements to measure physical activity. To test this hypothesis,
we use the average speed and HR of all players in a group for the last two
minutes of the LEC and HEC sub-sessions.

4.4. Procedure

Before each session, all players were asked to read a consent form with a
description of the game. After signing, players were taken to the playing area,
were given an explanation of how the game works and left to play for one
minute. Afterwards, they were asked to sit down for four minutes. During this
time, the HRMs and accelerometers were fitted. The accelerometers were put
in the players’ trouser pockets, and the HRMs were secured to the upper part
of the players’ forearms. Once the break was over, players were asked to return
to the playing area to play the second sub-session for four minutes. Then they
filled in a short questionnaire while they rested. After the break, they were
asked to play the last sub-session. Afterwards, they sat down again, filled in the
last part of the questionnaire, and engaged in a short feedback session. Finally,
we collected the sensors.
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Figure 4: Average group speed per condition, per group.

5. Experiment Results

Our analyses are based on data from the questionnaires, the HRMs, the
accelerometers and the depth cameras.

5.1. Measuring Physical Activity using Tracking

First, we verify whether the LEC and HEC conditions elicited different
amounts of physical activity. Therefore, we check whether the HR measure-
ments using the HRMs differed between conditions. In Figure 3, the difference
between conditions is noticeable almost from the beginning. To check whether
the difference between conditions is statistically significant, we conducted a 2-
tailed paired samples t-test. The test shows on average statistically higher HR
in the HEC compared to the LEC (t(7) = 3.2, p < 0.05), with a difference of 9.6
bpm. This confirms hypothesis H1 that the HEC promotes more exertion than
the LEC and that circle size can be used to influence the amount of activity.

With H1 supported, we investigate whether the speed also differs between
conditions. The speed of the players in both conditions can be seen in Figure 4.
We ran a 2-tailed paired samples t-test to evaluate whether speed differs signif-
icantly between conditions. The test shows a statistically significantly higher
average speed in the HEC compared to the LEC (t(7) = 2.5, p < 0.05). This
supports our hypothesis H2 that players move faster in the HEC than in the
LEC. The difference of 0.06 m/s between the conditions is small overall. In gen-
eral, taggers run faster than runners in tag games [39], and we can investigate
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Speed (m/s)
Role Condition Mean SD

Runner
LEC 0.52 0.10
HEC 0.59 0.06

Tagger
LEC 0.66 0.07
HEC 0.68 0.07

Table 1: Players’ average speed values per role and condition.

(a) Speed (b) Pixel difference (c) Acceleration

Figure 5: Scatter plots showing relation of predictors speed (a), pixel difference (b) and
acceleration (c) to heart rate. Regression line with 95% CI is shown.

how circle size affects the speed for each role individually. We find that taggers
are not affected much by the size of the circles (Table 1). Runners, on the other
hand, have a significantly higher average speed in the HEC compared to the
LEC (0.07 m/s difference, t(7) = 3.1, p < 0.05). This difference hints at the
possibility of balancing physical activity between roles in the ITP. In Session 5,
the measurement is opposite to what we expected. This is discussed in more
detail in Section 5.3.

Finally, given that both HR and speed significantly differ between conditions,
we check whether the two variables are correlated. We used a 2-tailed bi-variate
Pearson correlation test and found a statistically significant correlation (r =
0.72, p < 0.01). Pearson’s r measures the degree of linear relationship between
two variables, the strength of their relationship. An r value of 0.72 is considered
a strong relationship. Next, we check whether speed can be used as a predictor
for heart rate. To this end, we use the Spearman rank correlator to estimate
the magnitude of association between speed and HR. We found ρ = 0.74, which
again indicates a strong relation between the two variables. Figure 5a shows
the regression line, with 95% confidence interval. We accept hypothesis H3. It
is thus possible to use tracking and calculate average speed to measure physical
activity as an alternative to HRMs.

5.2. Comparison to Other Activity Measurement Methods

We compared our proposed approach to two other physical activity mea-
surement methods: pixel difference and accelerometers. We also compare the
actual exertion with the perceived exertion, obtained from the questionnaires.
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Figure 6: Average group pixel difference per condition, per group.

5.2.1. Pixel Difference

Pixel difference has been used in interactive playgrounds to measure the
physical activity of groups of children [14]. An issue with this approach is that
it can be affected by elements not related to movement. Factors unrelated to
exertion such as body size, clothing, viewpoint, occlusion can also affect the pixel
count. Pixel difference is inherently a global feature, which means it considers
the entire image for a single measurement. As a consequence, pixel difference
can only be used as a group measure.

We found a statistically significantly higher pixel difference count of 0.97%
in the HEC compared to the LEC (t(7) = 2.7, p < 0.05). Spearman rank
correlation resulted in ρ = 0.63, which indicates a slightly lower association
between pixel difference and HR than between speed and HR (see also Figure 5b.
As we can see in Figure 6, Session 3 did not show a higher number of changed
pixels in the HEC. Sessions 1 and 5 also show a limited increase.

5.2.2. Accelerometer

Compared to tracking people and counting pixel differences, using accelerom-
eters does not require having a computer vision system in place. Rather, ac-
celerometers need to be attached to the body or clothing. This limits their
practical value in autonomous public installations as additional personnel would
be required to hand out and collect the sensors. Since accelerometers measure
changes in speed, the measurements depend on where on the body they are
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Figure 7: Average group acceleration per condition, per group.

HR (bpm)
Condition RPE Perceived Measured

LEC 12.75 127.50 157.53
HEC 14.63 146.30 167.08

Table 2: Perceived and measured exertion (HR) for both conditions.

attached [40]. To mitigate this issue, all players put the accelerometers in their
right trousers pockets.

We found a statistically significantly higher average acceleration in the HEC
compared to the LEC (t(7) = 2.5, p < 0.05, difference of 0.07g). Spearman
rank correlation (ρ) between acceleration and HR was 0.49, see also Figure 5c.
From Figure 7, it can be observed that acceleration also exhibits unexpected
measurements in Session 5.

5.2.3. Perceived Exertion Analysis

Perceived exertion informs us whether players were aware they were exerting
differently in the two conditions. This could be valuable in the design of future
game interventions. Promoting high levels of exertion without players being
aware of it could lead to longer play sessions. For this study, players rated their
perceived exertion after each condition, resulting in two ratings per player.

To analyze the difference in perceived exertion, we conducted a 2-tailed
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paired samples t-test on the RPE questionnaire answers. This showed a statis-
tically significantly higher perceived exertion in the HEC compared to the LEC
on the Borg scale (difference of 1.88 corresponding to a 18.8 bpm) (t(31) =
6.2, p < 0.01). This is roughly twice the difference measured using HRM (9.6
bpm). Players’ higher exertion in the HEC is also consistent with their reports
on the Borg scale. From the measured and perceived HR in Table 2, we observe
that players underestimated their amount of exertion in both conditions, but
especially in the LEC. This conveys that players thought they were exerting less
than they actually were.

5.3. Discussion

The findings reported in this paper are important for a number of reasons.
First, we have shown that completely unobtrusive measurements of physical
activity are possible. Such measurements can alleviate the workload required
to evaluate interactive playgrounds. In cases where the use of questionnaires or
observational studies is not possible, our method can provide an estimation of
the amount of physical activity. Second, these physical activity measurements
can be used in-game to adapt gameplay and steer behavior.

Specifically in the ITP, we have shown that changing the size of the circles
affects the speed at which players run. This could be useful in practice to
ensure that players exert themselves as intended. For example, the circles could
be enlarged or shrunk to modulate physical activity. Given the larger effect of
circle size on the runners’ speed, we can also influence exertion levels through
role assignment.

Physical activity method HRM Tracking Pix. Diff. Accel.
ρ-HRM 1 0.74 0.63 0.49
Tracking X

Contactless X X
Individual X Possible X

Table 3: Comparison of physical activity measurement methods by exertion measure.

Table 3 shows a comparison of the investigated methods for physical activ-
ity measurements. Tracking players and measuring their speed is unobtrusive,
has a strong correlation to HR, and could potentially be used to assess physi-
cal activity individually. Currently, estimating physical activity individually is
only possible by manually correcting players’ tracks. However, our tracker can
provide functionality beyond the assessment of group physical activity, such as
analyzing movement patterns or estimating distances between players.

Pixel difference is also unobtrusive and has a moderate correlation to HR
measurements. It does not require tracking but is affected by factors not related
to physical effort such as the number of players, their size or their clothing.
Also, without tracking, it is impossible to focus on individual players. Finally,
accelerometers could measure physical activity differences between conditions,
but their correlation to HR is limited. Also, even though accelerometers allow
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for measuring both group and individual activity, they are not unobtrusive. For
interactive playgrounds, accelerometers are therefore not suitable to measure
exertion.

Speed (m/s) Speed (m/s)
(2 minutes) (4 minutes)

Playing Order Mean SD Mean SD

LEC
First 0.52 0.09 0.56 0.10
Last 0.60 0.12 0.60 0.12

HEC
First 0.61 0.12 0.64 0.12
Last 0.62 0.11 0.65 0.11

Table 4: Speed values of players per condition and playing order using different time-windows.

We now turn to the different sessions. In Sessions 1, 3 and 5, measurements
are contrary to what we expected. Since all odd-numbered sessions started with
the HEC, we looked at the speed of the players based on whether they were
played first or last, to see if there were any order effects (Table 4). Surprisingly,
the speed at which players ran in the second condition was always higher. Due
to exhaustion, we had predicted that it would be more likely for players to
run slower in conditions played last, but the opposite was true. This might be
because players were more willing to exert themselves in the last sub-session,
having already invested significant effort in the previous one. It could also be
that they were “warmed up” and gained confidence. This would explain why
the expected difference between conditions was small or sometimes reversed in
Sessions 1, 3 and 5. On average, the speed of the HEC when played first was
only slightly higher than the LEC when played last. This effect is not very
visible when the HEC was played last, probably because players are already
running fast due to the intervention.

Since players ran faster in the sub-sessions that were played last, we looked
at the speed of the players over time within each sub-session. In Figure 8, we
can see that player speed diminished over time within a session, probably due
to exhaustion. The decrease in speed is not linear, but follows a sinusoidal-like
pattern, with consecutive peaks and valleys of speed. This conveys that players
had outbursts of high speed, followed by short recovery periods, and that all
players adapted to this pattern.

This also provides some insight as to why player speeds in the LEC and
HEC were very similar when the LEC was played last. Since we only used
measurements obtained during the last two minutes of each sub-session, we
only looked at the segments of play where exhaustion was kicking in. Since the
HEC requires a higher level of effort, the onset of exhaustion should have been
faster and more pronounced than in the LEC. Indeed, Table 4 shows that when
calculating the speed of each condition based on the playing order, and taking
into account the whole session, the difference between both conditions is more
evident. When we calculate the average group speeds in both conditions using
the whole session (Figure 9), the speed in the HEC is higher in all sessions.
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Figure 8: Average player speed during a sub-session over all sessions.

5.3.1. Limitations

These results show that the proposed approach has many merits. In its
current state, there are also shortcomings. First, because the scope of our work
is interactive playgrounds, our approach is designed to work in playing spaces
of limited size. Increasing the playing area would require additional equipment.

A second limitation stems from the use of cameras to sense behavior. While
we can measure player positions unobtrusively, there is information that cannot
be easily measured visually, such as the age or the fitness level of the players.
While this ensures privacy of the players, the lack of personal information might
be an issue when studying properties of play. In such cases, questionnaires or
interviews are necessary. Similarly, not all behavioral cues can be robustly
measured visually. In these cases, observational approaches such as manually
annotating behavior are needed.

Third, we have performed our user study with, mostly male, university stu-
dents. Playgrounds, traditional and interactive, have predominantly younger
audiences. While the play behavior between university students and primary
school children is likely to be very different, the relation between exertion and
movement on the playground might be more similar. More research is needed
to understand how our findings relate to a younger audience.

Finally, we only showed that group speed measurements can be used to
measure differences in group physical activity. When averaging speed and HR
values for all players, we may be discarding relevant information that could lead
to better insights on player behavior. Our work can considered an important
step towards individual-based measures. Future work should address the ro-
bustness of the tracking in terms of maintaining identity information for the
tracks.
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Figure 9: Average group speeds for each group using the measurements of the entire session.

6. Conclusions and Future Work

We have investigated whether group physical activity can be measured un-
obtrusively by tracking players. To this end, we have conducted a user study in
which we successfully manipulated the exertion levels of the players by varying
one parameter of the Interactive Tag Playground. We showed that by tracking
the players and measuring their speed, we could assess differences in group phys-
ical activity levels. Finally, we showed that speed measurements are strongly
correlated to heart rate, which validates the usefulness of player tracking as a
tool to measure physical activity.

We compared our approach to alternative physical activity measurement
methods: using heart rate monitors, counting pixel differences and using ac-
celerometers. Pixel difference also makes use of computer vision and is a suit-
able tool to assess physical activity, but only at a group level. Accelerometers
showed a lower correlation compared to HR, and neither accelerometers and
heart rate monitors are unobtrusive. Given that interactive playgrounds should
run autonomously, with players being able to go in and out without hassle, we
believe tracking players is an appropriate method. Moreover, such unobtrusive
in-game measurments enable the system to respond to events on-the-fly.

Future work will be aimed at improving the tracker. If the tracker could
reliably keep track of every player, we could measure physical activity of every
player individually, which would provide better insight into their behavior. Ad-
ditionally, we would like to measure how a player moves, instead of just how
much. The quality of the movement can be further analyzed to understand play
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[41]. Another direction of research is to apply these findings in-game by setting
specific exertion goals and automatically adapting the game to meet these. If we
recognize that a particular player is not moving much, the system could assign
her/him to the tagger role to encourage more movement. Changing circle size
on an individual basis could also be an option. Even though adjusting circles
sizes is inherently tied to the ITP, the automated measurement of physical ac-
tivity using tracking can be easily used to trigger other interventions in different
playgrounds.

Interactive playgrounds have value as entertainment tools, and we have
shown that this is not their only use. They can be used to study play be-
havior, and to steer behavior to meet desired goals. Tracking is a promising
method that enhances this potential. We believe that game interventions based
on tracked players open up exciting opportunities for game design and evalua-
tion.
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