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Abstract 

The three nicotinamide mononucleotide adenylyltransferase (NMNAT) family members 

synthesize the electron carrier nicotinamide adenine dinucleotide (NAD+) and are essential for 

cellular metabolism. In mammalian axons, NMNAT activity appears to be required for axon 

survival and is predominantly provided by NMNAT2. NMNAT2 has recently been shown to also 

function as a chaperone to aid in the refolding of misfolded proteins. Nmnat2 deficiency in 

mice, or in its ortholog dNmnat in Drosophila, results in axon outgrowth and survival defects. 

Peripheral nerve axons in NMNAT2-deficient mice fail to extend and innervate targets, and 

skeletal muscle is severely underdeveloped. In addition, removing NMNAT2 from established 

axons initiates axon death by Wallerian degeneration. We report here on two stillborn siblings 

with fetal akinesia deformation sequence (FADS), severely reduced skeletal muscle mass and 

hydrops fetalis. Clinical exome sequencing identified compound heterozygous NMNAT2 

variant alleles in both cases. Both protein variants are incapable of supporting axon survival in 

mouse primary neuron cultures when overexpressed. In vitro assays demonstrate altered 

protein stability and/or defects in NAD+ synthesis and chaperone functions. Thus, both patient 

NMNAT2 alleles are null or severely hypo-morphic. These data indicate a previously unknown 

role for NMNAT2 in human neurological development and provide the first direct molecular 

evidence to support the involvement of Wallerian degeneration in a human axonal disorder. 

 

SIGNIFICANCE 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 3 

Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) both synthesizes the electron 

carrier Nicotinamide Adenine Dinucleotide (NAD+) and acts a protein chaperone. NMNAT2 has 

emerged as a major neuron survival factor. Overexpression of NMNAT2 protects neurons from 

Wallerian degeneration after injury and declining levels of NMNAT2 have been implicated in 

neurodegeneration.  While the role of NMANT2 in neurodegeneration has been extensively 

studied, the role of NMNAT2 in human development remains unclear. In this work, we present 

the first human variants in NMNAT2 identified in two fetuses with severe skeletal muscle 

hypoplasia and fetal akinesia. Functional studies in vitro showed that the mutations impair both 

NMNAT2 NAD+ synthase and chaperone functions. This work identifies the critical role of 

NMNAT2 in human development.   

 

\body 

 

 

INTRODUCTION 

Fetal Akinesia Deformation Sequence (FADS) defines a broad range of disorders unified by 

absent fetal movement resulting in secondary defects often leading to sti llbirth or limited 

postnatal survival 1; 2. These secondary features include edema, hydrops fetalis, craniofacial 

anomalies including micrognathia, lung hypoplasia, rocker bottom feet, intrauterine growth 

restriction, and decreased muscle mass 3. Through previous experimental models of fetal 

paralysis, the secondary findings have been shown to be primari ly caused by a lack of fetal 

movement 1; 4.  FADS has both genetic and environmental causes that can affect any aspect of 

the motor system including the central nervous system (CNS), peripheral nervous system 
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(PNS), neuromuscular junction (NMJ), and/or skeletal muscle. Although most cases of FADS 

do not have a genetic diagnosis, multiple monogenic causes of FADS affecting PNS 

innervation development have been identified to date including RAPSN, DOK7, MUSK 5-7.     

 

Through whole exome sequencing and subsequent Sanger sequencing of a family with two 

fetuses with FADS, we identified compound heterozygous mutations in a gene previously 

unlinked to FADS, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2). NMNAT 

family members were first shown to play  a role in axon degeneration with the discovery of the 

slow Wallerian Degeneration (WldS) mutant mouse that showed delayed axon degeneration 

post transection 8. The WldS phenotype arose as the result of a spontaneous genomic 

rearrangement generating a fusion protein of NMNAT1 and the N-terminus of UBE4B, an E4 

type ubiquitin ligase9; 10.  Normally NMNAT1 is located only in the nucleus but the partial 

axonal location of the fusion protein leads to a gain-of-function explaining the slow Wallerian 

degeneration phenotype 11. 

There are three canonical NMNAT isoforms and each displays unique subcellular localization 

and tissue specific expression. NMNAT1 is nuclear and broadly expressed, NMNAT2 is in the 

cytoplasm and axoplasm and enriched in the brain. NMNAT3 is proposed to be localized to the 

mitochondria and has lower expression in the brain 12; 13. The functions of all three have been 

studied in mice but until now only NMNAT1 has been linked to human disease. NMNAT1 

mutations cause Leber’s Congenital Amaurosis 9 (LCA9) characterized by photoreceptor-

neuron degeneration resulting in congenital blindness 14-17. Two N-ethyl-N-nitrosourea 

generated Nmnat1 missense mouse mutants develop photoreceptor degeneration and closely 

model the pathology observed in LCA9 18. In contrast, Nmnat3 homozygous null mice show no 
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nervous system phenotype and instead develop splenomegaly and hemolytic anemia 19. 

Hikosaka, et. al. showed NMNAT3 is the predominant NAD producer in the cytoplasm of 

mature erythrocytes and loss of Nmnat3 resulted in defective glycolysis in these cells  19. To 

date, no patients with mutations in NMNAT3 have been identified. These data illuminate the 

tissue specific requirements for NMNAT family members during development. 

An essential role for NMNAT2 in axon growth and survival was established first by RNAi in 

primary neuronal culture and subsequently in MNMAT2-deficient mice 20-22. Acute removal of 

NMNAT2 in vitro from established axons causes axon degeneration through the Wallerian 

pathway, while its constitutive deletion in mice causes defects in PNS and CNS axon 

outgrowth, and consequent underdevelopment of the skeletal muscle which lacks innervation 

21; 22. Other features shared with FADS include craniofacial defects and perinatal lethality due 

to a failure to inflate the lungs at birth 21; 22. Furthermore, RNAi of the Drosophila ortholog 

dNMNAT is also sufficient to trigger spontaneous degeneration of established axons and 

genetic mutation causes growth and survival defects in axons and their presynaptic termini  23-

25. Conversely, overexpression of NMNATs after peripheral nerve transection can delay 

Wallerian degeneration  and rescues all mouse NMNAT2 and Drosophila dNMNAT genetic 

knockdown or deletion phenotypes mentioned above 13.  Deletion of another Wallerian 

pathway gene, Sarm1, also rescues axonal phenotypes in MNMAT2-deficient mice preventing 

perinatal lethality and allowing survival into old age with no overt behavioral changes 26; 27. 

These data demonstrate NMNAT2 protects against an active Wallerian Degeneration pathway 

mediated by SARM1.  Recently, it has been discovered that NMNATs including NMNAT2 act 

as chaperones for protein refolding as well as NAD-synthesizing enzymes 24; 28; 29. NMNAT2 

transcripts have been shown to be decreased in human neurodegenerative diseases and the 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 6 

chaperone function of NMNAT2 has been shown to protect against neurodegeneration in a 

variety of tauopathy models 29; 30. While it remains controversial which function(s) of NMNAT2 

are neuroprotective, we sought to investigate both functions in our patient variants of 

NMNAT2.  Interestingly, we found both functions are impaired. This finding and the striking 

similarity to the homozygous null mouse phenotype strongly support a causative role for these 

mutations.  

 

 

MATERIALS AND METHODS 

Subjects  

Initial exome analysis was performed as a clinical service (Ambry Genetics). Informed consent 

to study the sequence data on a research basis was obtained according to Cincinnati 

Children’s Hospital Medical Center (CCHMC) institutional review board protocol # 2014 -

3789.   Following consent, residual DNA samples were obtained for Sanger sequencing 

confirmation of exome sequencing analysis.  

 

Sanger Sequencing 

Sanger sequencing to confirm the results of whole exome sequencing was performed by PCR 

amplification of exon 5 of NMNAT2 with F primer 5’- gaggttcaggagcgatgaaa-3’ and R primer 5’- 

caggagaagagtgcacacca-3’ using genomic DNA. Exon 9 of NMNAT2 was PCR amplified from 

genomic DNA with F primer 5’- gctcaaatgtgcttgctgaa-3’ and R primer 5’- cagacatgggatggttgatg-

3’. Conservation and protein prediction scores for NMNAT2 R232Q variant were generated by 

SIFT, Polyphen, and MutationTaster algorithms. Schematic of NMNAT2 protein domains were 
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generated from existing literature and functional domains annotated by UniProt by homology. 

The crystal structure of NMNAT1 (PDB ID: 1kku) in stereo ribbon view was generated by 

PyMOL (v2.2.3)31.  

 

Histology 

Histology was performed on formalin-fixed, paraffin-embedded patient tissue collected at the 

time of autopsy. Hematoxylin and eosin staining was performed according to standard 

methods at the CCHMC Pathology Core Lab and analyzed by attending pathology physicians.  

 

Constructs  

The R232Q and Q135Pfs*44 NMNAT2 mutations were introduced separately by QuikChangeII 

site-directed mutagenesis (Stratagene) into the complete open reading frame of the canonical 

307 amino acid human NMNAT2 isoform cloned into expression vector pCMV-Tag2 

(Stratagene). The expressed NMNAT2 proteins have a Flag tag and short linker sequence (17 

amino acids) at their N-terminus. The presence of the mutations and absence of other PCR 

errors was confirmed by sequencing (Cogenics). pDsRed2-N1 (Clontech) was used for 

expression of variant Discosoma red fluorescent protein (DsRed) to label micro-injected 

neurons / neurites. pEGFP-C1 (Clontech) was used for expression of enhanced green 

fluorescent protein (GFP) to act as a transfection control and reference for NMNAT2 turnover 

in HEK 293T cells. 

 

HEK 293T transfection and stability assays. HEK 293T cells were cultured in DMEM with 

4,500 mg/L glucose and 110 mg/L sodium pyruvate (PAA), supplemented with 2 mM glutamine 
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and 1% penicillin/streptomycin (both Invitrogen), and 10% fetal bovine serum. Cells were 

plated in 24-well format to  reach 50-60% confluence for transfection with Lipofectamine 2000 

reagent (Invitrogen) according to the manufacturer’s instructions. In standard turnover 

experiments (Fig. 4A) 500 ng Flag-NMNAT2 expression construct (wild-type or mutant), 200 

ng of an empty pCMV-Tag series vector, and 100 ng pEGFP were transfected per well. To 

boost expression of the NMNAT2Q135Pfs*44 mutant 700 ng Flag-NMNAT2 expression construct 

and 100 ng pEGFP-C1 were transfected per well (Fig. 4C). After treatment ±10 µM emetine 

hydrochloride (Sigma-Aldrich), cells from single wells were lysed directly in 100 µl 2x Laemmli 

sample buffer and heated to 100C for 5 mins. Equal amounts of extract (either 10 or 15 µl) 

were resolved on 12% SDS polyacrylamide gels, transferred to Immobilon-P membrane 

(Millipore) and probed with antibodies essentially as described previously 20. The following 

primary antibodies were used: mouse monoclonal anti-FLAG M2 (1:2,000 Sigma-Aldrich 

F3165), mouse monoclonal anti-GFP clones 7.1 and 13.1 (1:2,000, Sigma-Aldrich 

11814460001) and rabbit polyclonal -Tubulin (1:7,500, Thermo Fisher Scientific PA5-29444). 

Appropriate HRP-conjugated secondary antibodies were used for band detection with 

SuperSignal™ West Dura Extended Duration Substrate (Thermo Fisher Scientific) using an 

Alliance chemiluminescence imaging system (UVITEC Cambridge).  Relative band intensities 

on captured digital images were determined (area under histogram peaks) using Fiji software 

(http://fiji.sc) 32. 

 

Microinjections and imaging. The preparation of dissociated SCG neuron cultures from wild-

type P0-P2 pups, microinjections, Flag immunostaining and quantification of neurite survival 

were all performed essentially as described previously 20; 22. Expression vectors and the 
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concentrations used in each specific injection experiment are described in the Figure 3 legend. 

Fluorescence images were acquired with a Leica DFC365FX fluorescence monochrome 

camera attached to a Leica DMi8 inverted fluorescence microscope (10x objective). Mean 

intensities of Flag immunostaining and DsRed fluorescence signals in injected SCG neurons 

were determined using Fiji software (http://fiji.sc) by thresholding (20, dark background) 

followed by particle analysis (size >250 pixels for 1392x1040 images) to identify neurons with 

signal intensity above background (the threshold value was subtracted from the mean intensity 

values obtained) 32. 

 

NMNAT recombinant protein expression and purification.  

For biochemistry assays (Fig. 5A-G), pET28c plasmid constructs were generated for 

NMNAT2R232Q and NMNAT2Q135Pfs*44 pET28c to produce recombinant proteins with an N-

terminal His tag and linker (MGSSHHHHHHSSGLVPRGSH) for affinity purification that 

matched a previously generated NMNAT2WT construct 33. Expression was carried out in E. coli 

BL21(D3) cells (Invitrogen) following 0.5 mM IPTG induction for 4 h at 25°C with subsequent 

purification using TALON chromatography (Clontech) as described 34. The purified proteins 

were desalted on PD-10 columns (GE Healthcare) in 50 mM HEPES/NaOH buffer, pH 7.5, 1 

mM Tris(2-carboxyethyl)phosphine (TCEP), 20 % glycerol, and stored at -80 °C. Their amount 

was measured by the Bio-Rad protein assay. Their purity was evaluated on SDS 

polyacrylamide gels either after Coomassie staining or immunoblotting. Proteins were 

transferred from gels to Immobilon-P membrane (Millipore) and probed with antibodies as 

described 20. Monoclonal anti-NMNAT2 (1:1,000 Abcam AB5698) or anti-tetra His (0.1 g/ml 

Qiagen 34670) were used as primary antibodies, followed by appropriate HRP-conjugated 
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secondary antibodies. SuperSignal™ West Dura Extended Duration Substrate (Thermo Fisher 

Scientific) was used for detection on an Alliance chemiluminescence imaging system (UV ITEC 

Cambridge). 

 

NMNAT enzymatic activity assay.  

Routine assays were done by a spectrophotometric coupled method as described, in 0.5 mL 

mixtures containing 30 mM HEPES/NaOH buffer, pH 7.5, 0.5 mg/mL bovine serum albumin 

(BSA Sigma-Aldrich A7906), 75 mM ethanol, 30 mM semicarbazide (Sigma-Aldrich S2201), 

12.5 U/mL alcohol dehydrogenase (ADH Sigma-Aldrich A7011) 35. NMNAT2WT was assayed at 

25 mM MgCl2 and 1 mM of both ATP and NMN (Fig. 5C). The mutant R232Q was assayed at 

5 mM MgCl2, 5 mM Mg-ATP, and 1 mM NMN (Fig. 5D). For Mg2+-dependence studies the 

MgCl2 was increased up to 100 mM. Temperature studies were carried out under various 

treatments as indicated (Fig. 5E-G) using apo-enzyme solutions in buffer. With assays at 52 

°C, the reaction mixture at the end of incubation was cooled down to 37 °C and then enzyme 

was re-added to check for activity recovery, thus ruling out heat inactivation of the anci llary 

enzyme ADH. The Km and Kcat values were calculated at 37 °C as described using 0.5-5 mM 

Mg-ATP and 0.05-1 mM NMN for the mutant R232Q, or 0.05-0.6 mM ATP and 0.01-0.15 mM 

NMN for the wild type 36. Due to the known instability of NMNAT2 preparations after thawing, 

enzyme was always added as the last component to start the reaction, and control assays 

were performed in parallel 34. One Unit (U) of NMNAT activity refers to the amount of enzyme 

that forms 1 mol/min of product at the indicated temperature. 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 11 

Gel filtration. Gel filtration of pure NMNAT2R232Q was carried out by FPLC with a Superose 12 

HR 10/30 column (Amersham Pharmacia), equilibrated with 50 mM HEPES/NaOH buffer, pH 

7.5, 0.15 M NaCl, 1 mM DTT. Bovine serum albumin, ovalbumin, and carbonic anhydrase 

were used as the standards. 

 

In-cell luciferase refolding assay. 

HEK 293T cells were cultured in six-well plates and double transfected using jetPRIME 

transfection reagent (VWR International, Radnor, PA, USA) with pCMV-luciferase, and one of 

the following plasmids: pDsRed2 vector (control), pCMV-Hsp70, pCMV-Nmnat3, pCMV-

Nmnat2WT, pCMV-NMNAT2R232Q, and pCMV-NMNAT2Q135Pfs*44. At 48 hrs after transfection, 

protein synthesis was inhibited by adding 1 μg/ml cycloheximide. Cells were subjected to heat 

shock at 42 °C for 45 mins, and then recovered at 37 °C for 3 hours 37. Cells were lysed in 

lysis buffer containing 100 mM KCl, 20 mM HEPES, 5% glycerol, 0.1% Triton X-100, and 1mM 

dithiothreitol. Luciferase activity was measured with the Luciferase Assay System (Promega, 

Madison, WI, USA). 

 

Statistics. Statistical testing of data was performed using Excel (Microsoft) or Prism 

(GraphPad Software Inc., La Jolla, USA). The specific tests used are described in Figure 

legends.  

 

 

 

RESULTS 
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Clinical Summary of two fetuses with FADS 

Fetus 1. Fetus 1 was born to a 32yo Caucasian female evaluated for non-immune hydrops 

fetalis identified at 21 weeks gestation by ultrasonography.  Ultrasonography identified multiple 

abnormalities including cystic hygroma, skin edema, ascites, and pleural effusion. Fetal MRI 

confirmed these findings and revealed profound hydrocephalus and cystic hygroma (Fig. 

1A,B). The fetus was motionless though there was a normal amount of amniotic fluid. 

Amniocentesis showed a normal 46, XX karyotype and microarray analysis was negative for 

aneuploidy. Whole genome chromosome SNP microarray analysis was normal as well. Alpha 

fetoprotein was elevated and viral PCRs for toxoplasmosis, parvovirus, cytomegalovirus, and 

HSV were all negative.  

Fetal echocardiogram showed normal fetal cardiac anatomy, function, and rhythm 

approximately 2 weeks prior to delivery. Fetal MRI showed a head circumference that 

appeared to be within the normal range but showed evidence of severe dilation of the lateral 

and third ventricles (Fig.1A). The pons, cerebellum, and spinal cord were thin. Both kidneys 

were below the 5th percenti le in size for gestational age. Contrary to the findings in MNMAT2-

deficient mice, there were no abnormalities in the bladder either grossly or microscopically 21. 

Both extremities remained in position and muscle planes were markedly diminished during 

fetal MRI. The fetus was delivered stillborn at approximately 27 weeks gestation. 

Fetal autopsy was performed at Cincinnati Children’s Hospital Medical Center. Gross 

inspection identified multiple congenital anomalies including: hydrops fetalis, cystic hygroma, 

bilateral hypoplastic lungs, hydrocephalus, hypoplastic cerebellum, severely reduced skeletal 

muscle mass or absence, flexion contractures of all extremities, micrognathia, cleft palate, and 

hydropic placenta (Table 1). All tissues were extremely edematous with focal hemorrhage of 
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soft tissues. The musculature was very poorly developed and nearly absent in all extremities. 

The lungs were hypoplastic. The placenta was grossly hydropic with evidence of 

chorioamnionitis and very friable, spongy, dark red tissue with no focal areas of discoloration 

or evidence of infarcts. The umbilical cord had an eccentric insertion and the fetal membranes 

were not discolored. The spinal cord was thin and poorly developed throughout most of its 

length. A frozen section of the quadriceps muscle showed no recognizable skeletal muscle 

tissue and appeared to be composed essentially of immature fat tissue. There were no 

inflammatory cell infiltrates or evidence of degenerating or dysplastic skeletal muscle fibers. 

The brain was poorly developed and collapsed when the calvaria was opened along the suture 

lines. Evaluation of the brain was severely limited due to autolytic changes, however, sections 

showed very immature neural glial tissue and germinal matrix. Only one slide showed a few 

areas of recognizable cortex. 

 

Given this constellation of phenotypes, the cause of death in fetus 1 was determined to be 

hydrops fetalis with multiple congenital anomalies and fetal akinesia deformation sequence 

(FADS). It is unlikely the phenotypes were due to a congenital myopathy based on evaluation 

of the muscle biopsy taken at autopsy.  

 

Fetus 2. Fetus 2 was a second stillborn fetus of the same parents with an intervening healthy 

child (Fig.2A). The genetic analysis described below was used for prenatal counseling and 

fetus 2 was the product of prenatal genetic diagnosis/in vitro ferti lization (PGD/IVF) and was 

intended to be a carrier for NMNAT2 but developed severe hydrops at 16 weeks gestation as 

determined by Ultrasound (US).  Given the prognosis of fetus 1, fetus 2 was delivered at 23 
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weeks gestation by Cesarean section and submitted for autopsy. Fetus 2 was diagnosed with 

hydrops fetalis with multiple fetal anomalies similar to fetus 1. Upon gross inspection, the fetus 

displayed hydropic changes including diffuse body wall and soft tissue edema with prominent 

nuchal fold (Fig. 1C). Markedly, there was apparent absence of skeletal muscle, especially that 

of the shoulder, extremities, pelvic girdle and absence of the psoas muscles, bi laterally (Fig. 

1C-E). Long bone formation appeared adequate in length but slender with reduced formation 

of the femoral neck and trochanters. Sections of the limbs showed adequately formed long 

bones with adequate bony trabecular marrow space with scant trilineage hematopoiesis. The 

surrounding tissue was composed of mainly fibroadipose tissue in an edematous background 

with very few skeletal muscle fibers (Fig. 1H, J). The nuclei of the skeletal muscle were plump 

and evenly distributed at the edges of the pink proteinaceous myocyte fibers (Fig. 1I).The 

carpal cartilages were fused.  Both the upper and lower limbs showed an abnormal absence of 

bundling of skeletal muscle fibers. The hands and feet had an unusual flattened appearance 

with severe contractures but adequate ray and digit bony formation (Fig. 1F,G).  

The heart was of normal weight with apparently normal myocardium, indicating the skeletal 

muscle was affected but the cardiac muscle was spared (Fig. 1K). The lungs were hypoplastic 

with normal lobar formation and no focal lesions or other abnormalities. No lesions were 

identified in the kidneys or bladder. The brain showed no significant gyration as expected for 

gestational age. 

The placenta showed variable villous immaturity with irregular contours and occasional 

trophoblastic inclusions. There was a vascular distribution of fetal thrombotic vasculopathy.  

The cause of death for fetus 2 was likely related to placental insufficiency with placental 

immaturity, hydrops fetalis, and high-grade fetal thrombotic vasculopathy. Fetus 2 thus 
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displayed many features of FADS including severely diminished muscle mass, pulmonary 

hypoplasia, joint contractures, and micrognathia.   

 

Exome Sequencing and Filtering 

Genetic analysis was performed upon birth of fetus 1. Karyotyping and whole genome SNP 

microarray were normal suggesting a monogenic disorder. Clinical whole exome sequencing of 

the trio (Father, Mother, and Fetus 1) (Fig. 2A) was performed at Ambry Genetics. Mean 

coverage was 77.0, 105.6, and 86.7 reads per base for the father, mother and fetus, 

respectively. Filtering was performed by Ambry as detailed in Table S1. Briefly, multiple 

inheritance models were tested resulting in 26 potential gene candidates (with 40 total coding 

alterations) over all models. Manual review was performed for sequencing artifacts, known 

polymorphisms, additional artifacts and benign alterations.  

NMNAT2 was identified as the remaining candidate in an autosomal recessive model with two 

unique alterations suggesting a compound heterozygous inheri tance pattern (Supp Table 1). 

By co-segregation analysis, both parents were found to be heterozygous for one of the two 

mutations identified in fetus 1. NMNAT2 was deemed clinically novel as no patients have been 

identified to date but there is significant phenotypic overlap between the patient’s phenotype 

with a mouse model of NMNAT2 deficiency and the mutations are predicted to be damaging by 

SIFT and Polyphen 21; 22. When fetus 2 was diagnosed with such similar features, NMNAT2 

was directly tested with Sanger sequencing and found to have the same compound 

heterozygous variants.  

 

NMNAT2 Variants 
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The maternally inherited variant was a single duplication of a cytosine at position 403 in exon 5 

resulting in a frameshift and premature stop after 44 amino acids in NMNAT2 (c.403dupC, 

p.Q135Pfs*44; confirmed by Sanger Sequencing; Fig. 2B,D). The paternally inherited variant 

was a missense mutation in exon 9 (c.695G>A, p.R232Q; confirmed by Sanger Sequencing; 

Fig. 2B) resulting in a coding change of arginine to glutamine at position 232 (R232Q). 

Conservation alignment shows R232 is highly conserved to D. melanogaster and has a 

PhastCons score of 1 (Fig. 2C). Multiple algorithms predict this to be damaging sequence 

change (e.g.., PolyPhen score of 0.97, SIFT 0.0 and is predicted to be “disease causing” by 

MutationTaster.  The family has one unaffected daughter who was identified to carry only one 

of the NMNAT2 mutations. This finding supports a recessive model in which both affected 

alleles must be inherited in order to develop FADS.  

Although the human NMNAT2 crystal structure has not been characterized, it is predicted that 

the enzyme activity domains share the same structure folds as those of human NMNAT1 and 

NMNAT3 38. The R232 equivalent residue is invariant in all three human NMNAT isoforms and 

NMNAT homologs across distant phyla (Fig. 2C), suggesting its importance in protein function. 

Given that the R232 residue is located within the conserved region, we examined the crystal 

structure of human NMNAT1 to evaluate the potential structure-function consequences of the 

R232Q mutation in NMNAT2 39 (Fig. 2E). The residue is located at the end of a β strand 

connecting the substrate binding domains for NMN and ATP , suggesting it is part of a 

conformational change upon binding the adenine group of ATP substrate or NAD/NaAD 39. It is 

predicted that the significant change in the side chain from arginine to glutamine will alter the 

electrostatic distribution of the substrate binding sites. In addition, R232 is at the bend between 
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the β strand and a helix, positioned at the surface of the protein that likely participates in the 

interface of protein-protein interaction (Fig. 2E).  

 

Both the NMNAT2R232Q and NMNAT2Q135Pfs*44 variants have reduced capacity to delay 

Wallerian Degeneration 

Overexpression of mouse or human (Flag-tagged) NMNAT2 is sufficient to delay Wallerian 

degeneration in cultured mouse superior cervical ganglion (SCG) neurons. This affords us a 

ready assay to measure the capacity of a variant to support axon survival 20; 40. We therefore 

assessed whether this property is affected by the NMNAT2R232Q or NMNAT2Q135Pfs*44 variants 

found in the affected patents. We introduced expression vectors for Flag-tagged wild-type or 

variant NMNAT2 into SCG neurons by microinjection. We used a concentration for which the 

resulting expression from the Flag-NMNAT2WT construct preserves integrity of the majority 

(~70%) of neurites of the injected neurons for at least 24 hours after transection. Under these 

conditions we found little or no preservation of cut neurites from SCG neurons injected with 

either Flag-NMNAT2R232Q or Flag-NMNAT2Q135Pfs*44 expression vectors (Fig. 3A, B). This lack 

of protection is comparable to the lack of protection seen after injection with empty vector or 

eGFP expression vector 20; 40. 

 

Importantly, even when using 2.5 times the vector concentration previously used in the 

Wallerian degeneration assays, expression of the NMNA T2Q135Pfs*44 variant was barely 

detectable above background by Flag immunostaining in injected neurons (Fig. 3C). In 

contrast, robust expression of Flag-NMNAT2R232Q was observed that closely matched that of 

Flag-NMNAT2WT (Fig. 3C). Therefore, if the truncated Flag-NMNAT2Q135Pfs*44 mutant retains 
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any functionality, its inability to protect transected neurites in this assay could simply reflect 

very low levels of expression, whereas the failure of Flag-NMNAT2R232Q to protect must 

instead reflect either much more rapid loss of the mutant protein after injury relative to Flag-

NMNAT2WT, or a substantial loss of function. 

 

NMNAT2Q135Pfs*44 variant produces an unstable protein whereas NMNAT2R232Q variant is 

slightly more stable than wild-type NMNAT2 

To investigate whether the stability of either variant Flag-NMNAT2 protein is altered relative to 

Flag-NMNAT2WT, we assessed their relative rates of turnover in transfected HEK 293T cells 

after a protein synthesis block. Expression of the exogenous proteins was kept low to avoid 

saturation of the degradation machinery. Levels of Flag-NMNAT2WT and Flag-NMNAT2R232Q at 

the start of the protein synthesis block were comparable, whereas Flag-NMNAT2Q135Pfs*44 

levels were greatly reduced (Fig. 4A, B). Flag-NMNAT2Q135Pfs*44 migrates at the expected size 

for the truncated protein but, intriguingly, Flag-NMNAT2R232Q consistently migrates slightly 

slower than Flag-NMNAT2WT (Fig. 4A). To give a more representative comparison of turnover 

rate of the Flag-NMNAT2Q135Pfs*44 mutant we increased its expression to better match starting 

levels of the Flag-NMNAT2WT and Flag-NMNAT2R232Q (Fig. 4C). In broad agreement with 

previous analyses, we saw almost complete loss of Flag-NMNAT2WT within the 8 hour 

timeframe of these assays with only ~25% remaining at 2 hours (Fig. 4A,D) 20; 40. In 

comparison, Flag-NMNAT2Q135Pfs*44 was undetectable on blots even at 2 hours, even from the 

highest starting levels (Fig 4C), whereas significantly more Flag-NMNAT2R232Q  was detectable 

at both 2 and 4 hours (Fig. 4A,D). Notably however, Flag- NMNAT2R232Q was also almost 

completely lost by 8 hours (Fig. 4A,D). 
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These data indicate that Flag-NMNAT2Q135Pfs*44 is much less stable than Flag-NMNAT2WT 

whereas Flag-NMNAT2R232Q is modestly more stable. The reduced stability of Q135Pfs*44 

Flag-NMNAT2 could thus partly explain both its lower expression level in SCG neurons and 

transfected HEK cells and its greatly reduced capacity to protect injured axons (above), even 

in the unlikely event the severely truncated protein remains functional. In contrast, the slightly 

increased stability of Flag- NMNAT2R232Q instead suggests that its lack of axon-protective 

capacity is likely due to a loss of one or more other functional properties. 

 

NMNAT2R232Q variant displays impaired NAD synthase and chaperone functions 

Recombinant human NMNAT2WT, NMNAT2R232Q and NMNAT2Q135Pfs*44 were obtained as His-

tagged fusion proteins after bacterial expression and His-tag affinity chromatography. 

Typically, this yielded ~2 mg of relatively pure recombinant protein per 0.5 L of bacterial culture 

for both NMNAT2WT and NMNAT2R232Q (Fig. 5A and 5B). Notably, the purified NMNAT2R232Q 

was found to have NMNAT activity of just 0.51 ± 0.04 U/mg in these preparations compared to 

11.2 ± 0.23 U/mg for purified NMNAT2WT (Fig. 5C). In contrast, NMNAT2Q135Pfs*44 purifications 

yielded 0.1 mg or less of protein per 0.5 L of bacterial culture with a ~22 kDa His-tagged 

protein, corresponding in size to NMNAT2Q135Pfs*44, seemingly a relatively minor component of 

the preparations (Fig. 5A and 5B). This is consistent with low level expression of the truncated 

protein in bacteria, as in mammalian cells. While the highly heterogeneous NMNAT2Q135Pfs*44 

preparations did have detectable NMNAT activity, size-exclusion and ion exchange 

chromatography revealed that none of the activity was associated with the 22 kDa protein 

species (not shown). Instead, the invariant presence of a ~34 kDa protein recognized by both 
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anti-His and anti-NMNAT2 antibodies (Fig. 5A and 5B), and thus likely to be His-tagged 

NMNAT2WT, probably accounts for the activity in these preparations. The origin of the full-

length protein in these clonal preparations remains unknown but correction of the frameshift 

mutation in the construct by ribosomal frameshifting or transcriptional slippage are possible 

explanations. Crucially, however, this effect is likely to be restricted to bacteria / prokaryotes as 

no detectable full-length NMNAT2WT is produced from a NMNAT2Q135Pfs*44 expression 

construct in HEK cells (Fig. 4C). Both NMNAT2R232Q and NMNAT2Q135Pfs*44 thus appear to 

have substantially reduced enzyme activity.  

 

The purity of NMNAT2R232Q preparations allowed us to perform further characterization that 

was not possible for NMNAT2Q135Pfs*44. NMNAT2R232Q was eluted as a monomer following size-

exclusion chromatography and was stable at -80 °C for months but was progressively 

inactivated after thawing, similar to wild type NMNAT2 34; 41. There was also a linear decline of 

NMNAT activity for NMNAT2R232Q at Mg2+ concentrations above 5 mM (Fig. 5D) so all 

subsequent assays were performed at MgCl2 concentrations only marginally exceeding the 

ATP concentration (see Methods) thus avoiding the large excess of free Mg2+ ions in solution 

usually employed for assaying NMNAT2WT 35; 36. Further assays revealed a relative thermal 

resistance and stability of NMNAT2R232Q which showed a markedly higher residual activity, at 

least relative to its lower baseline (Fig. 5C), than NMNAT2WT after 1 hour incubations at 

temperatures ranging from 25 °C to 47 °C  (Fig. 5E) and, at ~40 min, the activity half-life of 

NMNAT2R232Q at 37 °C was more than twice that of NMNAT2WT (Fig. 5F). Nevertheless, the 

optimum temperature for activity was the same for NMNAT2WT and NMNAT2R232Q (Fig. 5G). 

Crucially, however, the R232Q mutation had a profound negative effect on kinetic properties of  
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the enzyme: Kcat was found to be reduced by ~20-fold and the Km values for NMN and ATP 

were both increased ~10-fold (Table 2). These striking changes predict a ~200-fold reduced 

catalytic efficiency (Kcat/Km) of NMNAT2R232Q compared to NMNAT2WT (Table 2). In fact, the 

loss of catalytic activity may even be greater in vivo where physiological concentrations of ATP 

(~1 mM) and NMN (5 µM) in brain predict a 500-fold or greater reduction compared to the wild 

type enzyme 42. 

 

Together, these data suggest that both NMNAT2R232Q and NMNAT2Q135Pfs*44 have a substantial 

loss of NMNAT activity. Although the R232Q mutation makes the enzyme slightly more 

resistant to heat denaturation in vitro, any increased stability is likely to be completely negated 

by the substantial detrimental effect it has on catalytic activity. In contrast, reduced 

expression/stability and impaired catalytic activity (largely predicted from the absence of key C-

terminal motifs resulting from truncation) likely combine to severely impair the activity of 

NMNAT2Q135Pfs*44. The presence of only NMNAT2R232Q and NMNAT2Q135Pfs*44 in neurons would 

thus be predicted to be highly limiting for NMN consumption and NAD+ biosynthesis in axons, 

thereby limiting survival. 

 

To characterize the chaperone function, we used an in-cell luciferase refolding assay to 

measure the ability of NMNAT isoforms to facilitate the refolding of unfolded luciferase after 

heat shock 43; 44 (Fig. 6). Chaperones may act as “holdases” to protect their client protein from 

unfolding, or as “foldases” to assist the folding to the native state 45; 46. The in-cell luciferase-

refolding assay allows the measurement of the luciferase unfolding after heat shock (red bars), 

as well as the luciferase refolding after recovery (green bars) 43; 44. We found that both 
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NMNAT2WT and NMNAT2R232Q greatly protected luciferase from unfolding during heat shock, 

indicating strong “holdase” activity (Fig. 6, red bars). However, when “foldase” activity was 

analyzed, we found a remarkable loss of foldase activity specifically in NMNAT2R232Q 

expressing cells, while NMNAT2WT facilitated the refolding of luciferase after heat shock, 

comparable to heat shock protein 70 (Hsp70) and NMNAT3 (Fig. 6, green bars). Compared to 

NMNAT2WT and NMNATR232Q, NMNAT2Q135Pfs*44 did not exhibit either “holdase” or “foldase” 

activity, indicating a lack of stable or functional protein. 

 

Collectively, these biochemical and cellular analyses revealed two functional consequence of 

the NMNAT2 mutation p.R232Q: a significant loss of enzymatic activity and a complete loss of 

chaperone foldase activity. Considering the essential neuronal maintenance function of 

NMNAT220; 47; 48, disruption of both activities provides the molecular basis for compromised 

embryonic metabolism and neuronal development, contributing to FADS. 

 

DISCUSSION 

The critical role of NMNAT2 in promoting axon survival in mice has been well established 

using in vitro and in vivo models. Declining NMNAT2 levels have been associated with a 

variety of neurodegenerative diseases, including Alzheimer’s disease and other tauopathies 24; 

25; 29; 47; 49, but a direct role in human disease causation has not previously been demonstrated. 

Here we report two related fetuses that are both compound heterozygous for severe loss-of-

function NMNAT2 alleles. They both present with a FADS phenotype closely resembling that of 

homozygous null mice. Thus, for the first time, we present strong evidence that NMNAT2 loss 

of function causes a human disorder.  
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We performed detailed molecular analyses of the NMNAT2 variants to support our claims. We 

first tested the ability of the variants to protect axons in a Wallerian Degeneration model. 

Consistent with previous reports, the NMNAT2WT construct was able to protect nearly 75% of 

axons from Wallerian Degeneration. However, both NMNAT2 variants were severely 

compromised in their ability to delay degeneration with 10% or less of neurites remaining intact 

24 hours post transection. These data argue both patient variants significantly impair NMNAT2 

function in PNS axons.  

 

We also performed in vitro experiments to specifically query enzymatic and chaperone 

functions for NMNAT2. We most conclusively demonstrated severe loss-of-function of the 

NMNAT2R232Q variant. The strong conservation of the R232 residue across evolutionarily 

distant NMNAT homologues suggested that the R232 residue is functionally relevant. The 

invariable R residue is at the end of a β strand connecting the substrate binding domains for 

NMN and ATP, therefore we predicted the R232Q mutation likely affects substrates and NAD+ 

binding. Indeed, we found the R232Q substitution substantially reduces affinity for both 

substrates and largely abolishes NMNAT activity of the variant protein.  Furthermore, R232 

forms the bend between the β strand and a helix and is positioned at the surface of the protein 

that likely participates in the interface of protein-protein interactions. The reduced refolding 

activity of NMNAT2R232Q is also thus consistent with reduced protein-protein interaction(s) with 

the cellular refolding machinery as a result of the missense mutation. Interestingly, 

NMNAT2R232Q also consistently shows retarded migration during electrophoresis. While the 

R232Q missense mutation could influence migration by altering the charge and/or structural 
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rigidity of the protein, the possibility that it might be the result of altered posttranslational 

modification also needs to be considered, especially in the context of the loss-of-function and 

increased stability of this variant.  

 

The relative instability of the NMNAT2Q135Pfs* variant protein largely precluded the same degree 

of functional assessment. However, this instability is probably sufficient on its own to explain 

the observed loss-of-function in our assays. Nevertheless, the fact that the frameshift mutation 

results in a truncated protein lacking its entire C-terminal half, including many residues that are 

critical for ATP binding, likely accounts for the apparent lack of NMNAT activity and makes it 

extremely likely that NMNAT2Q135Pfs*44 will also be defective for chaperone function. 

Interestingly, because we expressed NMNAT2Q135Pfs*44 from an intronless construct in our 

assays, its relative instability likely reflects an increased susceptibility of the truncated peptide 

to direct proteolytic cleavage. However, it remains possible that nonsense mediated decay of 

the aberrant mRNA could also further limit expression the FADS cases.  

 

Importantly, the FADS phenotype seen in the human patients shows broad overlap with that of 

MNMAT2-deficient mice, in particular the severely reduced skeletal muscle mass and akinesia, 

which are both likely due to failed peripheral innervation 21; 22. However, the human cases and 

the mouse model also show a number of notable differences. First,  viability is further reduced 

in humans; fetal patient demise occurs at around 27 weeks in gestation whereas MNMAT2-

deficient mice die perinatally. Second, at least one patient developed hydrocephalus in which 

the cortex was essentially spared. We do note Nmnat2 shows strong expression in the CNS 

and PNS and therefore it is possible that Nmnat2 deficiency is related to the hydrocephlsus 50. 
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Third, the bladder is consistently distended in the mouse model but we did not identify defects 

in the bladder of either patient. Crucially, these differences could all be related to significantly 

longer gestation and longer axons in humans than mice which likely allow for more severe 

neurodegeneration in humans in utero and an increased likelihood of fetal demise 51. In 

addition, some symptoms specific to the human cases, including cystic hygroma, ascites, and 

edema are likely to be a consequence of the fetal demise in utero. Interestingly, mice 

nullizygous for other FADS-associated genes, such as Dok7 and Musk 52; 53, have a phenotype 

remarkably similar to MNMAT2-deficient mice, providing additional support for a direct link 

between the NMNAT2 loss-of-function alleles in these cases and their FADS presentation. 

 

There is strong evidence in the li terature from several independent groups suggesting that 

NMNAT2 enzymatic activity is the key activity for preventing activation of Wallerian-like axon 

degeneration and that enzyme dead / chaperone competent mutants broadly fail to protect 

axons 13. At the moment it is not known whether NMNAT2 chaperone function also contributes 

to axon protection and the finding that blocking the Wallerian degeneration pathway by 

removal of SARM1 “fully” rescues axon defects and survival of mice lacking NMNAT2 

suggests that chaperone activity is dispensable for survival or overt health in mice, at least in 

the context of a relatively non-stressful home cage environment 26; 27.  However, as we found 

the R232Q variant affects both chaperone and NAD synthase functions of NMNAT2, we 

cannot definitively exclude a critical requirement for the chaperone function in human 

development.  
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We conclude that the compound heterozygous variant NMNAT2 alleles in the FADS cases 

described here encode proteins whose enzymatic and chaperone functions are both either 

directly or indirectly impaired and are a likely underlying cause of the disorder. As in MNMAT2-

deficient mice, we propose that defects in PNS axon outgrowth and/or survival primari ly lead to 

decreased innervation of the skeletal muscle in the fetuses resulting in severely reduced 

skeletal muscle mass. We argue NMNAT2 may be added to the growing list of genes involved 

in developing or maintaining PNS innervation that have been linked to FADS or FADS-

associated symptoms such as DOK7, MUSK, RAPSN, ADCY6, GPR126, ECEL1, GLDN, and 

PIEZO2 1. NMNAT2 mutations should be investigated in other cases with fetal hydrops, fetal 

akinesia, and widespread skeletal muscle deficiency. 

It will also be important to determine whether more modest NMNAT2 loss-of-function alleles 

are associated with other disorders. Interestingly, in the accompanying paper [Huppke et al; 

EXNR-19-319], another set of patients has been identified that are homozygous for a 

temperature-sensitive, partial loss-of-function NMNAT2 allele who develop a childhood-onset 

peripheral neuropathy phenotype. This raises the possibility of an NMNAT2 allelic series with 

mutations that have a less severe effect on NMNAT2 function leading to childhood or later-

onset neuropathies, rather than prenatal lethality, and/or preclinical phenotypes that 

predispose to adult-onset disorders.  

 

 

 

Supplemental Data 

Two tables with more information on variants identified in whole exome sequencing. 
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Figure 1. Gross phenotype and histology of affected fetuses. (A,B) Fetal MRI of Fetus II-1 

in which hydrocephalus is noted by asterisk and cystic hygroma by arrowhead. (C) Dorsal view 

of fetus II-3 with notable edema and lack of skeletal muscle in the extremities. (D) Fetus II-3 

displays malrotation of the gut with the appendix in the upper left quadrant. (E) Absence of the 

psoas muscles bilaterally is noted by the asterisks. (F,G) Fetus II-3 displays flattened hands 

with contractures of the elbow (F), and nearly complete absence of skeletal muscle of the leg 

(G). (H) Histology of the right radius and ulna shows reduced skeletal muscle fiber packing 

near the bone. (I) Histology of the interosseous muscles of the right hand show sparsely 

spaced muscle fibers with plump nuclei. (J) Histology of the hip joint shows fibrofatty tissue 

replacement of the musculature of the hip (K) Histology of the left ventricle shows normal 

architecture of the myocardium. 

  

 

Figure 2. Whole exome sequencing identifies compound heterozygous mutations in 

NMNAT2.  (A) Family pedigree. Stillborn infants are depicted as filled triangles with slashes 

(A). (B) Sanger sequencing of NMNAT2. (C) Conservation of arginine at aa232 in NMNAT2 

homologues across distant phyla. (D) Diagram of functional domains  of NMNAT2 with patient 

variant positions in red. (E) 3D structure model of NMNAT1. The conserved β strands and α 

helices important for enzymatic function are marked in yellow and cyan, respectively. The 

disordered region in NMNAT that contains the nuclear localization sequence is indicated by a 

dashed line. The R232 equivalent residue is labeled in red.  
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Figure 3. NMNAT2R232Q and NMNAT2Q135Pfs*44 both have reduced capacity to maintain 

neurite survival. (A) Representative images (of n = 4 independent experiments) of cut 

neurites of SCG neurons co-injected with expression vectors for Flag-NMNAT2WT, or Flag-

NMNAT2R232Q, or NMNAT2Q135Pfs*44 (10 ng/µl) and DsRed (pDsRed2, 40 ng/µl). Neurites were 

cut 48 hours after injection when DsRed expression allows clear visualization of the distal 

neurites of the injected neurons. Images show transected neurites, just distal to the lesion, 

immediately after (0h) and 24 hours after cut. The lesion site is located the bottom edge of 

each field. Brightness and contrast have been adjusted for optimal visualization of neurites. (B) 

Quantification of neurite survival at 24 hours after cut for experiments described in panel A. 

The number of intact neurites with continuous DsRed fluorescence at 24 hours is shown as a 

percentage of intact neurites at 0h. Individual values and means ± SEM are plotted (individual 

values represent the average of two fields per separate culture). n.s. = not significant (p > 

0.05), *** p < 0.001, one-way ANOVA with Tukey’s multiple comparisons test. (C) Relative 

expression level of Flag-NMNAT2 variants in injected SCG neuron cell bodies. Representative 

fluorescent images of SCG neurons 24 hours after co-injection with expression vectors for 

Flag-NMNAT2WT, Flag-NMNAT2R232Q or Flag- NMNAT2Q135Pfs*44 and DsRed (each at 25 ng/µl). 

DsRed identifies injected neurons, Flag immunostaining shows expression of the Flag-

NMNAT2 proteins, and DAPI labels nuclei. Relative intensities (± SEM) of Flag 

immunostaining and DsRed signal are shown after transformation to the mean of levels in 

neurons injected with the Flag-NMNAT2WT construct. The data for WT, R232Q and 

Q135Pfs*44 were calculated from 47, 62 and 40 injected neurons (DsRed positive) of which 

87.2%, 81,3% and 22.5% were Flag-positive respectively.  
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Figure 4. Relative stabilities and activities of NMNAT2R232Q and NMNAT2Q135Pfs*44 in HEK 

293T cells. (A) Representative immunoblots (of n = 3) of extracts of HEK 293T cells co-

transfected with expression vectors for Flag-NMNAT2WT, Flag-NMNAT2R232Q or Flag-

NMNAT2Q135Pfs*44 and eGFP at the indicated times after addition of 10 µM emetine. Emetine 

was added 24 h after transfection. Extract from non-transfected cells is also shown (NT). Blots 

were probed with Flag, eGFP and -Tubulin antibodies. To avoid saturation of the protein 

degradation machinery that might artificially slow rates of turnover, expression of the Flag-

NMNAT2 proteins was kept relatively low by including empty vector as part of the transfection 

mix (see Materials and Methods). Co-transfected eGFP or endogenous -Tubulin (present in 

transfected and non-transfected cells) are both relatively stable proteins and were respectively 

used as a reference for Flag-NMNAT2 protein turnover (to control for transfection efficiency) 

and for loading. Arrows indicate the positions of bands corresponding to Flag-NMNAT2WT 

(black, ~34 kDa), Flag-NMNAT2R232Q (red, ~37 kDa), and Flag-NMNAT2Q135Pfs*44 (green, ~22 

kDa). The position of a faint non-specific band is also marked (*). (B) Relative steady-state 

Flag-NMNAT2 protein band intensities (0h, just before emetine addition) after normalization to 

co-transfected eGFP for blots described in panel A. Individual values (n = 4-5) and means 

±SEM are plotted. n.s. = not significant (p > 0.05), ** p < 0.01, one-way ANOVA with Tukey’s 

multiple comparisons test (only comparisons to Flag-NMNAT2WT. (C) Representative 

immunoblots (of n = 4) of extracts of HEK 293T cells, as in panel A, but transfected with a 

higher concentration of Flag-NMNAT2Q135Pfs*44 expression vector and with increased loading 

per lane to maximize Flag band intensity at the 0h time point so that its level at 0h is similar to 

that of Flag-NMNAT2WT in panel A. This allows for a more accurate comparison of turnover 

rates. Only a ~22 kDa band corresponding to the predicted size of Flag-NMNAT2Q135Pfs*44 is 
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seen. (D) Relative turnover rates of Flag-NMNAT2 proteins after emetine addition. Flag-

NMNAT2 band intensities on blots described in panel A (Flag-NMNAT2WT and Flag-

NMNAT2R232Q) and panel C (Flag-NMNAT2Q135Pfs*44) were normalized to co-transfected eGFP 

and intensities at each time point after emetine addition were calculated as a proportion of the 

intensity of the 0h, untreated band. Means ± SEM (n = 4) are plotted. n.s. = not significant (p > 

0.05), ** p < 0.01 and *** p < 0.001, two-way ANOVA with Sidak’s multiple comparisons test for 

effects between variants. One-phase decay curves were fitted to the data sets for Flag-

NMNAT2WT and Flag-NMNAT2R232Q using non-linear regression. The R2 value and half-life (t½) 

are reported. No intensity values could be obtained for Flag-NMNAT2Q135Pfs*44 at any timepoint 

assessed after emetine addition precluding curve fitting and statistical analysis.   

 

 

Figure 5. Bacterial expression and in vitro characterization of the activity of 

recombinant NMNAT2R232Q and NMNAT2Q135Pfs*44. (A) Coomassie blue stained 12 % SDS 

polyacrylamide gel loaded with similar amounts (~3 g) of NMNAT2WT and each indicated 

recombinant NMNAT2 variant arising from His-tag affinity chromatography. (B) Immunoblots of 

~0.3 µg of the same protein samples as in A probed with anti-His and anti-NMNAT2 antibodies 

as indicated. As in HEK cells, bacterially-expressed NMNAT2R232Q migrates slower than 

NMNAT2WT and NMNAT2Q135Pfs*44, which lacks the epitope recognized by the NMNAT2 

antibody (raised against the C-terminus of the full-length protein), is expressed at a low level. 

The NMNAT2Q135Pfs*44 preparation contains a ~34 kDa protein recognized by both anti-His and 

anti-NMNAT2 antibodies that is likely to be His-tagged NMNAT2WT (red boxes). (C) NMNAT 

specific activity of His-tag purified preparations measured at 37 °C with saturating 
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concentrations of substrates. The less pure NMNAT2Q135Pfs*44 preparation is omitted despite 

some activity found since it was not associated with the His-tagged 22 kDa truncated protein 

arising from the frame shift mutation (see text). (D) Magnesium-dependent rates of NMNAT 

activity referred to 1 mM MgCl2 (arbitrary 100 % value). (E) Enzyme stability after 1 hour 

treatment at different temperatures. Treated enzyme solutions were then assayed at 37 °C. 

Relative rates are expressed as percentages of the untreated enzyme kept at 4 °C (100 % not 

shown). (f) Enzyme stability at 37 °C as function of time. Rates are relative to time zero. (g) 

Optimum temperature after heating of whole assay mixtures at the indicated temperatures. 

Relative rates are expressed as percentages of the maximum observed (42 °C for both 

enzymes). All data presented are the mean ± SEM from n = 3 independent measures. T test p 

values vs corresponding WT are marked by (*) p < 0.015 or by (**) p < 0.005 (Two Sample t 

Test, unequal variances). 

 

 

Figure 6. NMNAT2R232Q and NMNAT2Q135Pfs*44 have reduced chaperone activities. HEK 

293T cells were co-transfected with luciferase and one of the following plasmids: DsRed2 

vector (control), Hsp70, NMNAT3, NMNAT2WT, NMNAT2R232Q, and Nmnat2Q135Pfs*44. At 48 hrs 

after transfection, protein synthesis was inhibited, and cells were subjected to heat shock at 42 

°C for 45 mins, and then recovered at 37 °C for 3 hours.  Quantification of luciferase activity 

measured without heat shock (blue bars), after heat shock (red bards), and after recovery 

(green bars). Luciferase activity in each group was normalized to no heat shock (set to 1). All 

data were presented as mean ± SD, n=4. Statistical significance was established by two-way 
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ANOVA post hoc Tukey’s multiple comparison test. ***P<0.001, ****P<0.0001, NS: not 

significant. 
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Table 1. Clinical Features of fetuses II-1 and II-3. 

 

Measurement II-1 II-3 

 Reference 
 (24 weeks) 

Weight 810 g 282.2 g 586 ± 74g 

Crown to rump length 23 cm 23.5 cm 21 ± 1.4 cm 

Head circumference 25.5 cm 17.4 cm 21.8 ± 1.4 cm 

Inner canthal distance 2c m 1.9 cm 1.5 ± 0.17 cm 

Outer canthal distance 5c m 3.4 cm 4.21 ± 0.41 cm 

Foot length 4.5 cm 3 cm 4.4 ± 0.2 cm 

Lung weight 3.6 g 1.7 g 15.8 ± 5.3g 

Heart weight 3.4 g 0.9 g 4.4 ± 0.9g 

Brain weight 100 g 45 g 81.7 ± 14.8g 

Placenta weight 475 g 152.4 g 225 ± 69g 
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Placenta area 18x17 cm N/A 

 Fetal hydrops + + 

 Cystic hygroma + + 
 Flexion contractures + + 

 Lung hypoplasia + + 

 Hydrocephalus + Unknown 

 Hypoplastic cerebellum + Unknown 

 Muscle atrophy + + 

 Micrognathia + + 

 Cleft palate + + 
 Hydropic placenta + + 
 Gut malrotation + + 
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Table 2. Kinetic parameters of human NMNAT2 WT and R232Q. 

Enzyme Substrate Km (M) Kcat (s
-1) Kcat/Km (s-1M-1) 

NMNAT2WT ATP 159.6 + 28.6 6.84 + 3.21 0.429 * 105  

NMN 22.3 + 8.13 6.84 + 3.21 3.070 * 105 

NMNAT2R232Q ATP 1820.9 + 121.1 0.31 + 0.03 0.002 * 105 

NMN 178.5 + 10.8 0.31 + 0.03 0.017 * 105 

 

Data represent Mean ± SEM of 3 independent experiments. 
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Highlights 

 Two stillborn fetuses with FADS carry compound heterozygous mutations in NMNAT2 

 NMNAT2 synthesizes NAD+ and acts as a molecular chaperone in neurons 

 Both patient mutations impair both NAD+ biosynthesis and chaperone functions 

 Both patient mutations fail to delay Wallerian Degeneration in cultured neurons 

 Mutations in NMNAT2 impair Wallerian Degeneration and lead to human disease  
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