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The kinetic Monte Carlo (KMC) method is a popular modeling approach for reaching large materials
length and time scales. The KMC dynamics is erroneous when atomic processes that are relevant
to the dynamics are missing from the KMC model. Recently, we had developed for the first time
an error measure for KMC in Bhute and Chatterjee [J. Chem. Phys. 138, 084103 (2013)]. The error
measure, which is given in terms of the probability that a missing process will be selected in the
correct dynamics, requires estimation of the missing rate. In this work, we present an improved
procedure for estimating the missing rate. The estimate found using the new procedure is within an
order of magnitude of the correct missing rate, unlike our previous approach where the estimate was
larger by orders of magnitude. This enables one to find the error in the KMC model more accurately.
In addition, we find the time for which the KMC model can be used before a maximum error in the
dynamics has been reached. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4812319]

I. INTRODUCTION

The kinetic Monte Carlo (KMC) method1–6 is well suited
for studying activated processes that are rarely observed with
the computationally expensive molecular dynamics (MD)
technique.7 Instead of studying the vibrational motion of
atoms and molecules, as is done in MD, KMC can reach long
timescales by randomly selecting a process from the catalog
of processes for each state visited by the system during its
state-to-state evolution. Hence, KMC can be used to bridge
the large gap between atomic and experimental scales in sev-
eral material systems with modest computational resources.
At the heart of a KMC calculation is a “kinetic-map” of the
underlying potential energy surface8 (PES) that provides the
catalog of the pathways (or processes) connecting one state
(or energy basin) to other states along with the associated rate
constants. This kinetic map is the KMC model (also known
as the Markov state model). The KMC dynamics is accurate
as long as all atomic processes and their rates are correctly
known and the underlying assumption that the atomic pro-
cesses are independent Poisson processes is satisfied. How-
ever, in many situations atomic processes can be missing from
the KMC model. This is a source of error in the KMC dynam-
ics.

In order to address this problem, recently, attempts to
construct an “accurate” KMC model for different materials
have been made by starting with an interatomic potential
or a quantum mechanical representation and using basin es-
cape pathway search (BEPS) techniques to find atomic pro-
cesses from different basins visited by the system. Atomic
processes can be sought either using molecular statics BEPS
techniques such as minimum energy path and mode follow-
ing methods,9–15 or using dynamical BEPS approaches such

a)Author to whom correspondence should be addressed. Electronic mail:
abhijit@che.iitb.ac.in

as MD16–19 and accelerated MD20–24 methods that follow the
actual dynamics of the system. Unfortunately, processes that
occur at timescales larger than those accessible to BEPS cal-
culations cannot be sought using dynamical BEPS. A simi-
lar situation can arise in molecular statics BEPS because of
limited sampling. Processes that are missing from the KMC
model can be sought by performing additional BEPS calcu-
lations, however, it is not straightforward to guess how long
these BEPS calculations need to performed.

Recently, we developed a computational procedure in
Ref. 1 to address two aspects, namely, (i) finding the error in
the KMC dynamics when an incomplete catalog of processes
is being used and (ii) finding the time after which additional
BEPS calculations are required. The underlying philosophy of
our approach is that not all processes are relevant to the dy-
namics and that a KMC model should be created such that it
contains all the relevant processes. The relevance of a process
from a particular state is given by the probability of observing
the process in the correct dynamics. As it will become evi-
dent later, this probability depends on the process rates and
the timescales that are being accessed. Missing processes that
are unlikely to be observed in the dynamics will not affect
the accuracy significantly. On the other hand, the KMC dy-
namics can be incorrect when relevant processes are missing.
A process can become more relevant at longer times where
the probability of observing it is higher. The accuracy of a
catalog can be maintained by seeking missing processes and
ensuring that the probability of observing the missing pro-
cesses from a state in the correct dynamics remains small.
As discussed later, this introduces a timescale, called the va-
lidity time for a catalog, for which a fixed catalog of known
processes from a state can be used with a chosen accuracy.
The validity time for a catalog depends on the sum of missing
rates from the catalog, which unfortunately is not known to
us. The correctness of the error measure and the catalog valid-
ity time depends largely on our ability to accurately estimate
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the missing rate. The estimate developed in Ref. 1 was found
to be larger than the correct missing rate by orders of mag-
nitude. In this work, we present an improved estimate that is
within an order of magnitude of the correct missing rate. This
enables us to find the error associated with dynamical BEPS-
based KMC models as shown in this work and the error as-
sociated with standard KMC and self-learning local environ-
ment KMC models15, 25–27 as will be demonstrated in future
publications.

The paper has been divided into the following sections.
In Sec. II, mathematical expressions to obtain the relevance
of a process and the error associated with the KMC dynamics
are derived. In Sec. III, we present our improved procedure to
estimate the missing rate in a catalog. The estimate is assessed
by working with test catalogs that are completely known to us
at outset. In Sec. IV, we study a test catalog where process
timescales are overlapping. This represents a more realistic
picture of KMC models used in literature. Finally, conclu-
sions are provided in Sec. V.

II. ERROR IN A KMC MODEL

In this section, we describe the procedure for building a
KMC model with a chosen accuracy. First, we discuss about
the relevance of atomic processes in the KMC dynamics and
accuracy of a catalog of processes from a basin. Next, we dis-
cuss the error in a KMC model comprising of several basins.
We describe our original method in Ref. 1 to find the error
associated with a catalog that has been constructed using dy-
namical BEPS.

A. Relevance of missing processes in the correct
dynamics

Consider a basin B in the PES. Some of the processes
from B might be already known to us. Alternatively, we can
create a catalog of processes using BEPS as described later
in Sec. II C. Let CK denote the catalog of known processes
from B. The catalog of missing or unknown processes is de-
noted CU. The complete catalog of pathways for B is given
by CC = CK ∪ CU. Similarly, catalogs of known processes
for other basins in the PES can be created. The KMC model,
as shown schematically in Fig. 1, contains a list of states and
their process catalogs. Next, we focus on the error associated
with the catalog CK for basin B.

The correct dynamics is obtained when the complete cat-
alog CC is used with the KMC method. Assuming the atomic
processes to be independent Poisson processes, the probabil-
ity density associated with the first escape involving a process
from the catalog CU in the correct dynamics is given by3, 28

pU(τ ) = kU exp (−kUτ ) . (1)

Here, kU denotes the missing rate, i.e., the sum of rates in
CU. The probability PU that at least one of the processes from
CU will be observed during time τB is obtained by integrating
Eq. (1) and is given by

PU(τB) = 1 − e−kUτB . (2)

(a) (b)

FIG. 1. (a) Schematic of a basin denoted B in the potential energy surface
(PES). Consider the case where four atomic processes from the basin B are
found by performing basin escape pathway search (BEPS). (b) By repeating
this procedure for other basins, we obtain a “kinetic map” of the PES, which
we will term the KMC model. This KMC model consists of a list of states
and atomic processes found. In addition, the process rates, the time for which
the system resides in each basin, and the number of times each process has
been witnessed in the BEPS calculations are also stored.

Equation (2) suggests that the probability PU is small when
kUτB � 1. Therefore, processes in CU are not relevant to the
dynamics at KMC time τB as these processes have a low prob-
ability of being selected. In such a situation, the catalog CK is
deemed to contain all relevant processes. The probability PU

can be significant when kUτB is large. Such situations can be
avoided by ensuring that the value of PU remains less than a
maximum error δ. From Eq. (2) we require that τB ≤ −ln (1
− δ)/kU. The time for which CK can be employed with KMC
while the error is less than δ is called the validity time τV for
catalog CK, i.e.,

τV = − ln(1 − δ)

kU
. (3)

For instance, when δ is chosen to be 0.01, the catalog validity
time τV ≈ 0.01/kU. The validity time is small when one or
more unknown processes have large rate constants, i.e., kU is
large. The average time required to observe the unknown pro-
cesses is 1/kU. The numerator −ln (1 − δ) in Eq. (3) accounts
for the fact that an unknown process can be selected in the
correct dynamics at times smaller than 1/kU.

It should be noted that the error δ and the validity time
depend only on the missing rate kU and not the individual
rates in CU. Unfortunately, kU is not known to us. We will
find an estimate for kU given by k̃U, such that k̃U ≥ kU. Using
the rate estimate in Eq. (3) we obtain

τ̃V = − ln(1 − δ)

k̃U
. (4)

Since the validity time τ̃V ≤ τV, the error associated with CK

will be less than δ.
So far we have derived expressions for the error (Eq. (2))

and the validity time (Eq. (4)) associated with the catalog CK.
Next, we find the error associated with the KMC model com-
prising of several states, catalogs of known processes, and va-
lidity times.
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B. Error in the KMC model

Consider a dynamical path denoted as π = {B1, B2, . . . ,
Bq} connecting two basins B1 and Bq in the PES. The path
can be constructed such that the system visits a basin more
than once. We know from Eq. (2) that the probability of ob-
serving at least once a process with rate constant ki in the
dynamical path in time τ i is given by 1 − exp (− kiτ i). Since
the basin-to-basin transitions are independent, the probability
that the escapes occur within the times {τ 1, τ 2, . . . , τ q − 1} is

given by
∏q−1

j=1 1 − exp(−kjτj). When kjτ j � 1, j = 1, 2, . . . , q
− 1, the probability associated with the sequence of escapes
is close to 1, i.e., the path is relevant to the dynamics. One
the other hand, the probability is less than δ as long as the
time τ j is smaller than the validity time τV,j for all basins Bj

in the path and the dynamical path comprises of one or more
missing processes. As long as the maximum error in the cat-
alog of known processes for each basin is δ, all dynamically
relevant paths at the current timescales can be constructed us-
ing the KMC model. The error in the KMC model is bounded
by δ. The KMC model needs to be updated by seeking missing
processes when longer timescales are accessed. It is possible
that several states might be missing from the KMC model.
Many of these states are not relevant to the KMC model at
the current timescales as the system will not visit these states.
However, it is possible that some states are added to the KMC
model as it is being updated. Such states have zero valid-
ity time when the catalog of known processes is empty, i.e.,
BEPS calculations will be required to move from these states
to other states of the system.

The systematic procedure described so far forms the
mathematical basis for maintaining the accuracy of a KMC
model. Clearly, our approach is different from the standard
approaches used in literature. Most KMC models assume a
fixed catalog of processes. According to our procedure the
error in the KMC model is determined by the largest cata-
log error for any of the states relevant to the dynamics. We
expect this error to be significant in many situations. Even
though our approach is computationally expensive, it repre-
sents a major advance over standard KMC models. One can
conceive ways in which dynamical trajectories from BEPS
techniques are used to build a KMC model. Using our ap-
proach the error associated with the model is obtained. Once
enough validity time has been accrued, the KMC model can
be reused to generate multiple dynamical trajectories with low
computational overhead. Readers familiar with local environ-
ment KMC models15, 25–27 would realize that our approach
will be particularly promising for accurately generating such
models. However, this will be the subject of a future publica-
tion. Next, we describe how one can construct a KMC model
using information collected from dynamical BEPS.

C. Building a KMC model using dynamical BEPS

We again consider the basin B in the PES. None of the
processes from B are known to us when the basin is visited
for the first time. A BEPS technique such as MD with a ther-
mostat can be employed to obtain a sequence of nesc escapes
from the current basin B. Here, nesc is an integer value. Each

time an escape occurs from B the system is returned to the
basin and a new escape is sought. The goal is to obtain from
this sequence a KMC catalog and the associated error. When a
process is observed for the first time, the new state of the sys-
tem and the rate constant is recorded in CK. In addition, the
number of times the process is observed with BEPS is also
recorded, as this will be used to estimate the missing rate.

Let tB denote the total time elapsed over all dynamical
BEPS calculations performed in the basin, i.e., tB is the resi-
dence time in B. One expects that kU will become smaller as
time tB increases. The randomness inherent in BEPS implies
that two catalog generation attempts for the same basin can re-
sult in different values of kU even though the time tB might be
same for the two catalogs. An advantage of dynamical BEPS
methods, like MD and accelerated MD, is that they follow
the correct escape times from the basin. Generally, processes
with large rates will be observed first with dynamical BEPS,
while slower processes will be observed later. Hence, dynam-
ical BEPS techniques provide a systematic way of search-
ing for processes based on their rates. We consider this to be
an advantage of dynamical BEPS techniques. The orders of
magnitude computational speed-up of accelerated MD tech-
niques over standard MD renders them ideal for generating a
sequence of escapes from the basin. In the rest of this work,
we focus on dynamical BEPS based KMC models. Hereafter,
the term BEPS is used to refer to dynamical BEPS techniques.

A question that arises is how the validity time τ̃V is re-
lated to the BEPS time tB. Although one would expect that
τ̃V < tB, in order to answer this question we need to find how
k̃U depends on tB. In Ref. 1, we obtained k̃U as follows. Since
kU = kC − kK, where kC and kK are the sum of rates in the
complete and known catalogs, respectively, we estimated the
value of kC as m′/t′B using maximum likelihood estimation,
such that the estimate k̃C ≥ kC. Here, m′ and t′B are related
to the number of escapes from B and the time tB, respectively
(see Ref. 1 for more details). Unfortunately, we found that the
maximum likelihood estimate converges slowly towards cor-
rect value of kC as the number of escapes from the basin in-
creases. As a result, k̃U = k̃C − kK can be as large as kC, even
though kU might be orders of magnitude smaller. The calcu-
lated validity time is found to be much smaller than it should
be. Next, we develop an improved estimate for the missing
rate which enables better estimation of the error and the cata-
log validity time.

III. IMPROVED ESTIMATE FOR THE MISSING RATE

In this section, we develop an improved estimate for the
missing rate. The schematic in Fig. 2 is useful for understand-
ing the procedure. The x-axis denotes the time spent in the
basin. Several escapes might have been observed during this
time. Known processes are grouped along x-axis into spectral
bands according to their average escape times, i.e., inverse of
rate constants. The bars denote spectral bands. Processes are
numbered based on when they were first observed. Fast pro-
cesses (e.g., process index 1, 2, and 3 in the blue vertical bar),
which occur at shorter timescales, are observed many more
times than slower processes (e.g., process 7 and 8 in the green
and brown bars, respectively). When the width of the bar is
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FIG. 2. Schematic of number of times processes are observed when BEPS
calculations are performed in a particular basin. The x-axis denotes the time
tB spent in the basin with BEPS. Numbers inside the colored vertical bands
denote the process index; multiple sightings of a process are represented
by multiple circles. It is likely that processes belonging to the inaccessible
timescales and some of the processes from the accessible timescales are miss-
ing from the catalog.

small, processes belonging to a band have similar average es-
cape times and we expect them to be observed similar number
of times with BEPS. Most spectral bands lie within the total
time tB elapsed in the BEPS calculation for the basin. Few
processes with average escape times greater than tB might be
observed with BEPS. Such processes will lie in the shaded
region corresponding to times that have not been accessed so
far. The spectral bands for such processes are not shown in
Fig. 2.

The contributions to the missing rate from the accessible
and inaccessible timescales are estimated separately, i.e.,

k̃U = k̃U,accessible + k̃U,inaccessible. (5)

Processes can be missing from a particular band due to inher-
ent randomness in BEPS even though BEPS is accessing time
scales where these processes would occur. The estimate for
these missing processes is given by k̃U,accessible. Processes that
occur at timescales that have not been accessed by BEPS are
likely to be missing. The estimate for such processes is given
by k̃U,inaccessible.

In Secs. III A and III B, we develop a procedure to ob-
tain k̃U,inaccessible and k̃U,accessible, respectively. We shall em-
ploy KMC as a BEPS technique to select processes from a
complete catalog CC that is known to us a priori. This will
allow us to construct an incomplete catalog CK and assess the
estimate for the missing rate. A basin escape occurs in KMC-
based BEPS by randomly selecting a process from the catalog
CC with a probability proportional to its rate constant and ad-
vancing the time tB by

�tB = − ln ξ

kC
. (6)

Here, ξ is a uniform random deviate.
Before we proceed to derive the rate estimate we describe

how the accessible timescales are partitioned into spectral
bands. As we shall show later k̃U,accessible is obtained using
the approximation that all rates in a spectral band are iden-

tical. When the width of a band is large, the large variation
in the rates in the band causes this approximation to become
invalid. On the other hand, when the width is small, few pro-
cesses will be present in each band and a large number of
bands will be present. This can result in accumulation of er-
ror due to the noise present in the BEPS data. We define the
width w of the bth spectral band in terms of the largest rate
kmax,b and smallest rate kmin,b in band b, such that

kmax,b

kmin,b
≤ w. (7)

One can partition known processes into bands by starting with
the largest rate constant kmax,1 in CK in the first band, find-
ing kmin,1 using Eq. (7), and then proceeding to other spec-
tral bands with smaller rate constants. More details of the al-
gorithm are given in Sec. IV. In this work, we have chosen
w = 5. The averaged rate constant associated with the band is
given by

kb =
∑

μ∈b kμ

npb
. (8)

Here, kμ is the rate constant for a known process μ in the bth
band and npb denotes the number of known processes from the
band. The process rates in a band are replaced by the average
rate kb while estimating k̃U,accessible.

A. Rate estimate for inaccessible timescales

Suppose all missing processes belonged to the inaccessi-
ble timescales. The probability P′

U that no process from CU

has been observed during time tB from Eq. (1) is given by

P′
U = e−kUtB . (9)

The probability is independent of the individual process rates
in CU and depends only on kU. P′

U is close to one when kUtB
� 1. On the other hand, P′

U is small when kUtB � 1, i.e., it
is likely that one of the processes from CU would have been
observed in BEPS during time tB. In such a case, the catalog
CU can no longer contain only unknown processes, which is
contrary to the original definition of CU. We require that the
probability P′

U of not observing processes from catalog CU to
be significant, such that it is greater than α, i.e.,

α ≤ e−kUtB . (10)

From Eq. (10), the upper bound for the missing rate is given
by

k̃U,inaccesible = − ln α

tB
. (11)

In this work we have employed α = 4.54 × 10−5, i.e.,
k̃U,inaccesible = 10/tB. The small value of α accounts for the
rare situation some of the processes should have been ob-
served by now, but they are still missing.

This point will become clear as we study a catalog CC

with one process with rate k = 109 s−1 (see Fig. 3). The re-
sult from one of the catalog generation calculations is shown
by the black line. When ktB � 1, Eq. (11) provides an esti-
mate k̃U,inaccessible � k. This suggests that CU can have one or
more missing processes such that the missing rate is greater
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FIG. 3. Missing rate from a catalog CK for a basin that contains one process
with rate constant 109 s−1. The catalog CK is initially empty. Processes from
the basin are found by sampling escape pathways from the basin. The rate
estimate for the inaccessible timescales (dashed line; Eq. (11)) decreases as
the time tB spent in the basin increases. Circles denote the time at which the
process was first observed (shown for 100 independent catalog generation
calculations). The solid line denotes the correct unknown rate for one such
catalog.

than k (in this case we already know kU = k). After some-
time the process is observed with BEPS and the value of kU

becomes 0. This is shown by the step change in the value
of kU in Fig. 3. The escape occurs at dimensionless time ktB
= 5 × 10−3 even though the probability of observing the pro-
cess at this time is small. As we see in Fig. 3, Eq. (11) still
provides an estimate k̃U � k. The circles in Fig. 3 denote the
time at which the process is observed for the first time with 99
other catalog generation calculations. In few cases the escape
occurs after the average escape time 1/k yet k̃U,inaccesible > k
because of the chosen value of α in Eq. (11).

B. Rate estimate for a spectral band

Once a process from a spectral band is known, we focus
on the missing processes from the spectral band. We begin by
considering an example of a catalog CC with Np = 100 pro-
cesses. All processes have a rate constant k = 109 s−1. The
average time required to observe one of the Np processes is
given by 1/kNp = 10−11 s. Figure 4 shows results from a cat-
alog generation calculation. The value of kU is shown by the
black line. The symbols denote the rate after every nesc = 50
escapes from the basin. The estimate from Eq. (11) is shown
by the dashed line. At short times, none of the processes have
been observed and Eq. (11) can be used. As time tB increases
we begin observing processes with BEPS. After 50 escapes,
np = 42 processes are known, the time tB = 4.4 × 10−10 s, and
the estimate from Eq. (11) is smaller than the correct value of
kU by a factor of 2.57. Clearly, k̃U,inaccessible does not account
for the total missing rate. We find missing processes even af-
ter 200 escapes. The last process is observed at time tB = 5.3
× 10−9 s which is greater than the average time for a particu-
lar process given by 1/k = 10−10 s.

The rationale behind the estimate k̃U,accessible is as fol-
lows. Suppose np processes of the Np processes belonging to

109
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FIG. 4. Missing rate for a basin with Np = 100 processes. Each process has
a rate constant 109 s−1. Missing processes are observed as time tB elapsed
in the basin increases. The rate estimate from the inaccessible timescales
(dashed line; Eq. (11)) is smaller than the correct unknown rate kU. When
contributions from the accessible timescale spectral band are added to the
ones from the inaccessible timescales the rate estimate (blue line) is very
close to kU. Symbols denote the times when the rates were computed. Here,
np denotes the number of known processes.

the accessible band have been observed with BEPS. We can
write

k̃U = − ln α

tB
+ kb(Np − np), (12)

where kb = k for this catalog. Equation (12) is plotted in Fig. 4
(blue line). The contribution from the accessible band is larger
than the one from the inaccessible band. Obviously, Eq. (12)
overestimates the missing rate by −ln α/tB. As we have al-
ready witnessed in Sec. III A, the term −ln α/tB would have
been important to account for the missing processes in the in-
accessible timescales. Once all processes have been observed,
k̃U becomes −ln α/tB in Eq. (12). Although this example has
illustrated the importance of the contributions from the acces-
sible band to kU, the value of Np is not known to us in the first
place. Next, we develop a procedure to estimate Np.

Let mt denote the total number of escapes observed with
BEPS. Assuming that the rates in a band are identical, the
probability of observing a particular process i is given by
pi = 1/Np. When Np is large the probability of selecting a
particular process becomes small. The probability of observ-
ing mi escapes with the ith process, i = 1,2,. . . , Np, is given
by the multinomial distribution

P(m1, m2, ..., mNp; mt) = mt!∏
i∈CC

mi!

∏
i∈CC

pmi
i . (13)

Equation (13) involves a constraint on {mi}, i ∈ CC, namely,∑
i∈CC

mi = mt. (14)

Assuming that the number of escapes for a particular process i
is independent of other processes, i.e., Eq. (14) is not required,
the distribution for the number of escapes mi is given by the
binomial distribution

P(mi; mt) = mt!

mi!(mt − mi)!
pmi

i (1 − pi)
mt−mi . (15)
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FIG. 5. Number of processes observed m times when the catalog was gener-
ated in Fig. 4 after a total of mt = 50 escapes from the basin. The value of Ñp
that results in the least sum of squared error with respect to the data from the
histogram is regarded as an estimate for the number of processes in a spectral
band.

Since pi = 1/Np, Eq. (15) is rewritten as

P(mi; mt, Np) = mt!

mi!(mt − mi)!

(
1

Np

)mi
(

1 − 1

Np

)mt−mi

.

(16)
Rewriting Eq. (16) in terms of an estimate for number of pro-
cesses in the band Ñp, we obtain

p(m; mt, Ñp) = mt!

m!(mt − m)!

(
1

Ñp

)m (
1 − 1

Ñp

)mt−m

.

(17)
Note that the subscript i in mi has been ignored as it applies
to all processes in the catalog.

Figure 5 shows a histogram for the number of processes
nm observed m times from the catalog generation calculation
in Fig. 4 after mt = 50 escapes. From Eq. (17) the number of
processes with m escapes is given by

ñm = Ñpp(m; mt, Ñp), m = 1, 2, .... (18)

The parameter Ñp is determined using least squared estima-
tion, i.e., by finding the value of Ñp that minimizes the sum of
squared error (SSE):

min
Ñp

∑
m

(
nm − Ñp

mt!

m!(mt − m)!

(
1

Ñp

)m (
1 − 1

Ñp

)mt−m
)2

.

(19)
Note that the sum is performed over the number of escapes m.
In order to perform a numerical fit we require at least two val-
ues of m for which nm > 0. The plot for ñm for three values of
Ñp, namely, 10, 125, and 1250, is shown in Fig. 5. The bino-
mial distributions with Ñp = 10 and 1250 are in poor agree-
ment with the BEPS data. Despite the noise present in the
BEPS data we find that the best estimate (Ñp = 125) is close
to the correct value (Np = 100) with only mt = 50 escapes.
This indicates that ignoring Eq. (14) might be a reasonable
approximation.

Figure 6 shows the plot for SSE in terms of Ñp for three
different complete catalogs. All processes have rate constants
k = 109 s−1 but the number of processes in the catalogs is
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FIG. 6. Sum of squared errors (SSE) obtained from a catalog being gener-
ated. Three complete catalogs with the number of processes Np being (a)
10, (b) 100, and (c) 1000 processes were considered (Np is indicated by the
dashed vertical line). All processes have identical rate constant given by k
= 109 s−1. SSE is plotted for different values of the parameter Ñp in Eq.
(17). The value of Ñp that gives the smallest SSE is the best estimate for the
number of processes in the spectral band.

given by Np = 10, 100, and 1000 for panels (a), (b), and (c),
respectively. The value of Ñp that gives in the least value of
SSE after a chosen number of escapes mt is the best esti-
mate. In Figs. 6(a)–6(c) we find once again that despite the
noise present in nm and the approximations involved in Eq.
(19), Ñp is close to correct value of Np. In Fig. 6(a) where Np

= 10, only np = 6 processes were observed with mt = 10,
yet the estimate Ñp is found to be 8. Ñp is 11 and 10 for mt

= 50 and 100, respectively. A better estimate for Ñp is ob-
tained when mt is large. When Np = 100, the optimum value
for Ñp is found to be 18 with mt = 10 escapes (not shown).
We obtain Ñp = 102 with mt = 50 although only 40 processes
were observed. Similarly when mt = 100, 62 processes have
been observed and Ñp = 90. When mt = 500, all the processes
in the band were observed and Ñp = 99. Based on these ob-
servations we choose nesc = 50, i.e., least squared estimation
of Ñp is performed after every 50 escapes. A more extensive
study of estimation of Ñp for the complete catalog in Fig. 6(b)
is performed in Fig. 7. The histogram was obtained from 1000
catalogs CK generated from the complete catalog after mt es-
capes. Although in some situations Ñp is significantly differ-
ent from Np, we find that the peak of the histogram lies at
Ñp = 100. It is clear that the noise in nm plays a role in the
value of Ñp. It is observed that the width of the histogram
decreases as mt increases.

When a single band is present, Eq. (12) is rewritten as

k̃U = − ln α

tB
+ kb(max(Ñp, np) − np). (20)

The contribution from the accessible timescales will be zero
in Eq. (20) when Ñp ≤ np.The average rate constant for the
band kb from Eq. (8) is employed so that the numerical
scheme can be used when the rate constants vary within a
spectral band.

We expect that as processes from the band are observed
more often, beyond a certain time tb there should be no miss-
ing process from the band. The probability of missing a pro-
cess from the band in BEPS is given by exp (− kbtb). We
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require this probability to be smaller than α. The time tb af-
ter which the band b stops contributing to the missing rate is
given by

tb = − ln α

kb
. (21)

Thus, all processes are deemed to be known once tB ≥ tb. In
other words,

k̃U =
{− ln α/tB + kb(max(Ñp, np) − np)

− ln α/tB
, tB ≤ − ln α/kb

, tB > − ln α/kb
.

(22)
In Fig. 8(a) we again study the catalog CK in Fig. 4. The es-
timate from Eq. (20) is shown in blue circles after every 50
escapes. Note Ñp is estimated each time k̃U needs to be com-
puted. The noise present in Ñp causes k̃U to fluctuate. Since
k̃U is used to obtain τ̃V, the new value of k̃U is accepted only
when it is smaller than the current value so that τ̃V never de-
creases. This results in step increase in the validity time in
Fig. 8(c). It is observed that Eq. (20) can reasonably esti-
mate the missing rate even though the value of Ñp was less
than 100 in Fig. 6(a) in some cases. All processes in the cat-
alog CC were observed within 500 escapes, however, k̃U re-
mains non-zero because of contributions from the inaccessi-
ble timescales.

We study a complete catalog with Np = 1000 processes
in Fig. 8(b). Once again we find that Eq. (22) can provide a
reliable estimate of the missing rate. The number of missing
processes at 10−9 s (which corresponds to the average escape
time for a process) is 32 and 394, for Figs. 8(a) and 8(b), re-
spectively. It is also observed that in some cases k̃U is slightly
less than kU. Equation (22) is used with Eq. (4) to obtain the
validity time for a catalog. The validity time for catalogs with
100 and 1000 processes can be completely different as shown
in Fig. 8(c). The validity time of the catalog in Fig. 8(a) is
larger than the validity time for the catalog in Fig. 8(b) be-
cause fewer processes are missing in the former catalog. Af-
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FIG. 8. Estimate for the missing rate for a catalog generated with BEPS.
The catalog contains (a) Np = 100 and (b) 1000 processes. Each process
has a rate constant k = 109 s−1. Black line in panels (a) and (b) denotes the
correct unknown rate kU. Red dashed and blue solid lines denote rate estimate
from Eqs. (11) and (22), respectively. Symbols denote the time when the rate
estimate was obtained. The estimate is non-zero even though kU becomes
zero after some time. (c) Validity times for catalog generated in panels (a)
and (b) using δ = 0.1.

ter Eq. (21) is satisfied, k̃U contains contributions only from
the inaccessible timescales and both catalogs have the same
validity time.

C. Extension to multiple spectral bands

Next, we study complete catalogs where two spectral
bands are present. Each band b in the catalog contains
Npb = 100 processes. The catalog is chosen such that all pro-
cesses in first band have a rate constant given by k1, while pro-
cesses in the second band have a rate k2. Figure 9(a) shows re-
sults from a catalog generation attempt with k1 = 109 s−1 and
k2 = 106 s−1. A large spectral gap is present between the
two bands. Processes with rates k1 are observed first with
BEPS. The number of processes in the first band Ñp1 are es-
timated using least squared estimation. Once tB > −ln α/k1,
the contribution from the first band becomes zero, however,
the k̃U,inaccessible contributes to k̃U. Eventually, a process from
the second band is observed at time tB = 1.38 × 10−8 s indi-
cating the presence of a second spectral band. Equation (22)
is rewritten as

k̃U=− ln α

tB
+

Nb∑
b=1

kb(max(Ñpb, npb)−npb)(1−�(tB+ ln α/kb))

(23)
to account for Nb number of spectral bands. The term with
the Heaviside function �(tB + ln α/kb) indicates that the
contribution from a spectral band is included as long as tB
< −ln α/kb. Using Eqs. (4) and (23), the validity time for the
catalog CK is given by

τ̃V= − ln(1−δ)

− ln α
tB

+∑Nb
b=1kb(max(Ñpb, npb)−npb)(1−�(tB+ ln α/kb))

.

(24)



244112-8 V. Bhute and A. Chatterjee J. Chem. Phys. 138, 244112 (2013)

107

109

1011 (a)

107

109

1011 (b)

107

109

1011

10-10 10-9 10-8 10-7 10-6

Time tB (s)

(c)

M
is

si
ng

 r
at

es
 (

s-1
)

FIG. 9. Estimate for missing rate from a catalog CK generated for a
basin using BEPS. Two spectral bands are present. The first band contains
Np1 = 100 processes with individual rate constant k1 = 109 s−1, while the
second band contains Np2 = 100 processes with rate constant (a) k2 = 106

s−1, (b) k2 = 107 s−1, and (c) k2 = 108 s−1. Black line denotes the correct
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As in Sec. III B the number of processes Ñpb from each
band can be estimated using the least squared estimator in Eq.
(19). A faster way of estimation is possible by realizing that in
the limit where the number of escapes nb → ∞, one obtains

kbÑpb = lim
tB→∞

nb

tB
, b = 1, 2, . . . . (25)

Here, nb is the number of escapes from the bth band. The left-
hand side gives the total rate from the bth band. Using Eq.
(25) we obtain

nb

n1
= kbÑpb

k1Ñp1
, b > 1. (26)

Here, Ñpb is the estimated number of processes in the band b.
From Eq. (26) one can write

Ñpb = k1nb

kbn1
Ñp1. (27)

When all processes from the first band are known, the number
of processes from the bth band is found using Eq. (27). This
procedure has been used for bands b > 1 and as shown in
Fig. 9 it is found to work very well.

IV. ALGORITHM FOR GENERATING A KMC MODEL
OF CHOSEN ACCURACY

Based on the discussion in Sec. III, we now present the
algorithm for generating the validity time for a catalog of
known processes from a basin that can be used to decide when
additional BEPS calculations are required. The main steps in-
volved in building a catalog CK for a particular basin B are (i)
seek processes from the basin using BEPS, (ii) categorize the
known processes according to their rates to form the spectral
bands, (iii) estimate missing rate for the current catalog CK,

and (iv) obtain the validity time for the catalog CK based on
the chosen accuracy. The details of the steps are as follows.

Step 1: Initialization step: Recover the catalog CK contain-
ing the following escape information: known processes
from B, their rate constants, number of times each pro-
cess has been observed during past visits to the basin,
and the time tB spent in the basin. When the basin is
visited for the first time, the catalog is empty and the
validity time is zero.

Step 2: Search step: Perform nesc BEPS calculations in the
basin. Analyze the escapes that have occurred. Update
the catalog CK and total time spent in the basin tB.

Step 3: Create spectral bands: Known processes are cate-
gorized into spectral bands based on their rates. Initially
the number of bands Nb is zero. The bands are created
in starting with the largest rates. First band to be created
is denoted as b = 1. Following steps are required:

a. Select the fastest rate that has not been included in
any band as kmax,b for the new band b. The small-
est rate kmin,b in the band is found using Eq. (7).

b. Rates between kmax,b and kmin,b belong to the spec-
tral band b. Count the number of processes npb be-
longing to band b.

c. Compute the average rate kb using Eq. (8).
d. Create the next spectral band (Step 3a) if there

are processes which have not been included in any
band.

Step 4: Estimate missing rate from the accessible
timescale: Initialize rate k̃U = 0 and proceed with fol-
lowing steps for b = 1,. . . ,Nb, where Nb is the number
of spectral bands.

a. If tB < −ln α/kb, go to step 4b. Otherwise, analyze
the next band.

b. Estimate the total number of processes Ñpb from
the band (using Eqs. (19) or (27)).

c. Increment k̃U by kb(max(Ñpb, npb) − npb).

Step 5: Estimate missing rate from the inaccessible
timescale: Increment k̃U by −ln α/tB.

Step 6: Retain the previous value for k̃U in case the new
estimate is smaller than the previous one for the basin.

Step 7: Compute the validity time τ̃V for the catalog CK

using Eq. (4).

V. RATE ESTIMATE WHEN PROCESS TIME
SCALES OVERLAP

Typically, KMC is used for material systems that are
large in size and involve a large number of processes from
each state of the system. The slowest processes in the system
are less relevant as they occur at very large timescales. In such
cases, some processes will always be missing from the cata-
log CK and the situation in Sec. III A where only inaccessible
timescales contribute to the missing rates will not arise. Fur-
thermore, the rate constants often overlap with each other, i.e.,
there is no separation of process timescales. We shall demon-
strate using a catalog with overlapping rate constants that the



244112-9 V. Bhute and A. Chatterjee J. Chem. Phys. 138, 244112 (2013)

107

108

109

1010

1011

1012

10-10 10-9 10-8 10-7 10-6

M
is

si
ng

 r
at

es
 (

s-1
)

Time tB (s)

-ln α/tB kU

kU

~

10 8 10 9 10 10

Rates (s -1 )

Band 1Band 2Band 3

(a)

104

105

106

107

108

109

1010

1011

1012

10-11 10-9 10-7 10-5 10-3

M
is

si
ng

 r
at

es
 (

s-1
)

Time tB (s)

-ln α/tB

kU

kU

~

(b)

FIG. 10. Estimate for missing rate for a particular basin with (a) Np = 100
and (b) Np = 1000 processes. Rate constants and the three spectral bands to
which the rates belong for panel (a) are shown in the inset by the vertical lines
and the shaded area, respectively. Black line denotes the correct unknown
rate. Dashed red and solid blue lines denote estimate from Eqs. (11) and (23).

estimated rate constant shall remain within an order of mag-
nitude of the correct missing rate.

We assess our procedure by studying a complete catalog
CC that contains 100 processes with rates given by a geomet-
ric series, such that the largest and the smallest rates in the
complete catalog are 1010 and 108 s−1, respectively. The pro-
cess rates are shown in the inset of Fig. 10(a). Three spectral
bands shown by the shaded regions in inset are found using
w = 5 as the width of the spectral band. The first and sec-
ond bands contain 35 processes. The third band contains the
remaining processes. As evident, no clear-cut separation of
timescales is present. Figure 10(a) shows estimate k̃U (blue
line) for a catalog generated from CC. The black line denotes
the correct unknown rate kU. It is observed that k̃U is greater
than kU. After the first 50 escapes have occurred the first band
contains process rates in the range 1010 to 2 × 109 s−1, while
the second band contains only 5 processes in the range 1.96
× 109 to 3.92 × 108 s−1. The number of processes in the cata-
log CK changes with time as shown in Fig. 11(a). Figure 11(b)
shows the validity time obtained for the catalog at different
times tB with 90% accuracy, i.e., δ = 0.1. Eventually, all 100
processes have been found once the times shown in the gray
shaded area are reached in Fig. 11. We believe that in realistic
systems such a situation will never arise as the number of pro-
cesses will be large and processes will span timescales that are
not relevant to the dynamics. Examples of such behavior were
demonstrated in our recent work on local environment depen-
dence of rate constants in metal systems.29 Generally, the con-
tribution from the accessible timescales will dominate over
the contributions from the inaccessible timescales. Hence, a

0

50

100

C
ou

nt
, n

p (a)

10-11

10-9

T
im

e 
τ V

 (
s) (b)

~

0.00

0.06

0.12

10-10 10-9 10-8 10-7

Pr
ob

ab
ili

ty

Time tB (s)

(c)

δobs

δ

FIG. 11. (a) Number of processes observed for catalog in Fig. 10 with time
tB spent in the basin. All processes known once times in the shaded area
are reached. (b) Validity time for the catalog as it is being generated. (c)
Average observed error δobs is less than the target error δ = 0.1. Averaging
was performed over 100 independent KMC runs.

proper assessment of the rate estimate can be made when con-
tributions from the accessible timescales are present. As in
Figs. 8 and 9, we find that the estimate is within one order of
magnitude of the correct missing rate.

Figure 10(b) shows another example of a complete cat-
alog CC that contains 1000 processes with rates given by a
geometric series; the largest and the smallest being 1010 and
104 s−1, respectively. The gap between the rates is smaller
than the one present in the rate catalog of Fig. 10(a). It is ob-
served in Fig. 10(b) that once again the estimated missing rate
is remarkably close to the correct missing rate. Next, we in-
vestigate in more detail the maximum error from the complete
catalog in Fig. 10(a).

In order to verify that the maximum error is indeed given
by δ we performed the following tests. The catalog CK is
deemed to be successful when all processes observed in the
correct dynamics are already present in it. Otherwise, the cat-
alog CK is said to have failed. The probability of failure, given
by Eq. (2), is less than δ as long as the KMC time is less
than the catalog validity time. In Fig. 11(c), we perform nu-
merical calculations to obtain the observed fraction of failures
δobs associated with CK. We performed 1000 catalog genera-
tion calculations with the complete catalog to find the number
of times the generated catalog CK failed for different valid-
ity times. It is found that δobs was less than δ = 0.1. The value
of δobs decreases as tB increases because the contribution from
the inaccessible band remains significant even though the cor-
rect missing rate is much smaller.

The observed fraction of failures δobs for 100 catalog gen-
eration attempts with three different target errors, namely, δ

= 0.001, 0.01, and 0.1, is shown in Fig. 12. The catalogs
are generated after 100 escapes are observed with BEPS. For
each catalog that was generated, 1000 KMC calculations per-
formed with the complete catalog till the catalog validity time
was reached. Figure 12 shows the histogram for δobs. We find
that in some cases δobs is slightly greater than δ, which can be
attributed to the noise in the BEPS data. The majority of times
the catalogs were found to be safe, i.e., δobs, was less than δ.
The number of catalogs (out of 100 catalogs) that resulted in
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target error δ (a) 0.001, (b) 0.01, and (c) 0.1 (shown as percentage in figure)
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that resulted in more than δ was 14, 7, and 6 times for panels (a), (b), and (c),
respectively.

δobs > δ was 14, 7, and 6 for δ = 0.001, 0.01, and 0.1, respec-
tively. Similar results were obtained for the complete catalog
in Fig. 10(b). It is found that the maximum observed error
(number of catalogs out of 100 catalogs that resulted in δobs

> δ) is 0.004 (10), 0.015 (12), and 0.11 (4) for δ = 0.001,
0.01, and 0.1, respectively. The catalogs were generated after
1000 escapes in this case. These results demonstrate that the
procedure outlined in this work can reliably estimate the error
associated with a catalog of processes generated for a basin
using dynamical BEPS.

VI. CONCLUSIONS

We have presented an improved procedure for building
a KMC model with a chosen accuracy. The KMC model can
be prepared by cataloguing processes found from states in the
PES using BEPS calculations. The catalog of processes from
a state can be incomplete as some of the processes, which can
be observed in the correct dynamics, might be missing in the
catalog. This introduces an error in the dynamics when the
catalog is employed with the KMC method. In this work, we
have developed a mathematical framework to ascertain this er-
ror. The error associated with the process catalog is obtained
in terms of the probability that a process that is missing from
the catalog will not be selected in the correct dynamics. Fur-
ther, the introduction of a validity time associated with the
catalog ensures that we can specify maximum error associ-
ated with a catalog. We show that the missing rate can be es-

timated within an order of magnitude of the correct missing
rate in most realistic situations where the contribution from
the accessible timescales to the missing rate will dominate
over the contribution from the inaccessible timescales. Thus,
our approach can be used to find both the error and validity
time of a KMC model even though all states and processes
in the PES might not be known to us a priori. Besides laying
a mathematical foundation for finding error associated with
KMC, our approach provides a way of deciding when to stop
seeking for missing processes when self-learning KMC mod-
els are being generated.
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