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Abstract 
 
Objectives: The pressure-reactivity index (PRx) is defined in terms of the moving correlation 

coefficient between intracranial pressure (ICP) and mean arterial pressure (MAP) and is a 

measure of cerebral autoregulation ability. Plots of PRx against cerebral perfusion pressure 

(CPP) show U-shaped behaviour- the minimum reflecting optimal cerebral autoregulation 

(CPPopt). However U-shaped behaviour may also occur by chance. To date there has been no 

evaluation of the statistical properties of these signals. 

Materials and Methods: We simulated PRx/CPP distributions using synthetic ICP and MAP 

signals from Gaussian noise with known cross-correlation. We calculated the statistical 

distribution of extrema in the PRx/CPP relationship.  

Results: The calculation of PRx on random data is statistically biased to show a U-shaped 

behaviour when the signals are positively cross-correlated (equivalent to PRx>0). For PRx<0, 

the bias is towards inverse U-shaped behaviour. We demonstrate that this bias is eliminated 

by Fisher transforming the PRx data before CPPopt analysis. 

Conclusions: Cross-correlated signals are biased to show a U-shaped distribution. A 

“CPPopt-like” behaviour will be observed more often than not even from random ICP and 

MAP signals that do not exhibit autoregulation unless PRx is Fisher transformed. Care must 

be taken in interpreting CPPopt in terms of physiology calculated from untransformed data. 



Introduction 

Traumatic brain injury (TBI) is a leading cause of death and disability[1]. Intracranial 

pressure (ICP) and Cerebral Perfusion Pressure (CPP) monitoring is fundamental to the 

intensive care of patients with TBI in order to prevent secondary brain injury. Current 

guidelines for the management of severe TBI recommend maintaining ICP below 22mmHg 

and CPP between 60-70mmHg[2]. However TBI is highly heterogeneous and fixed 

thresholds do not account for this. Therapies to sustain cerebral perfusion can also be 

associated with harm. In particular, excessive CPP may exceed autoregulatory capacity 

increasing intracranial blood and oedema volumes. 

 

Management of patients based on the state of their cerebral autoregulation has been 

suggested. Cerebral autoregulation may remain intact over a narrowed range of CPP or be 

abolished after TBI[3][4]. It has been suggested that such individualized CPP therapy is more 

appropriate[3][5].  

 

One attractive method for quasi-continuous autoregulation assessment is the cerebrovascular 

pressure reactivity (PRx). PRx is defined as the moving Pearson correlation coefficient 

between 30 consecutive 10second averaged values (=5minute window) of mean arterial 

pressure (MAP) and ICP. Averaging suppresses pulse and respiratory transients[5]. PRx can 

provide a useful approximation of the state of autoregulation validated against both TCD and 

PET studies[6][7]. Software is available for the continuous determination of PRx at the 

bedside[4].  

 

Disturbed pressure reactivity leads to a more positive PRx and is of interest. PRx has been 

shown to be a more reliable predictor of mortality than ICP thresholds[6][8]. Plotting mean 

PRx over a moving 4hr window against 5mmHg bins of CPP reveals a U-shaped 

relationship[4]. The point for which PRx is the lowest is determined by curve fitting. This 

point defines the optimal CPP (CPPopt), representing the CPP for which autoregulation is 

best preserved. 

 

CPPopt appears to be clinically significant. Retrospective observational studies have 

demonstrated patients managed away from CPPopt were associated with worse clinical 

outcome[3]. Recent data suggested excess mortality for patients managed below CPPopt and 



excess severe disability for those managed above[4]. True causality is not yet established; 

nevertheless the concept of autoregulation-personalised treatment is attractive. The technique 

is technically feasible. Whilst CPPopt can be identified approximately 70% of the time[4], 

improved curve fitting heuristics and novel visualization techniques can aid appreciation of 

trends and overcome gaps in the data[9]. 

 

PRx is a derived parameter obtained from relatively complex calculations. The statistical 

properties of PRx measurements are not immediately obvious, but it is important to be sure 

that there are no biases affecting subsequent analyses. Successive PRx / CPP measurements 

form a distribution. However if MAP and ICP are correlated/anticorrelated, this distribution 

moves because mean PRx increases/decreases. Because PRx is limited to values between -1 

and +1 the distribution becomes asymmetrical because of a ceiling effect and this may 

introduce spurious apparent U-shaped relationships between PRx and CPP. 

 

Furthermore, the distribution of PRx with CPP depends on the statistical signal properties of 

the MAP / ICP waveforms. Statistical fluctuations in these signals can have a complex long-

range autocorrelation and it is known that the spectral properties (or equivalently degree of 

self-similarity/signal complexity) of physiological recordings reflects the underlying 

homeostatic burden/reserve. This can vary with physiological stress or manipulation[10] and 

so may vary with time and can be highly prognostic[11]. This signal autocorrelation further 

distorts the distribution of PRx / CPP measurements and could be another source of bias. 

 

A common (but not universal) heuristic is to first Fisher transform PRx to “normalize” its 

distribution before assessing for a CPPopt minimum. However the use of the Fisher 

transformation to remove the ceiling effect of correlated data has not been investigated. This 

simulation investigates whether the Fisher transformation is necessary to remove the 

distribution bias of the data and to produce a curve from which a meaningful CPPopt can be 

calculated.   

 

In this study, we present Monte Carlo simulations characterising the statistical properties of 

PRx as a function of CPP looking for potential sources of U-shaped bias that may confound / 

distort any true underlying autoregulation behaviour. In particular, we examine the effect of 

different levels of correlation between MAP and ICP. Furthermore, we examine the influence 



of autocorrelation on bias. Finally, we study the effect of Fisher transformation on any such 

bias. 

 

Materials and Methods  
MAP and ICP signals were synthesised from white noise. A degree of first-order lagged 

autocorrelation was then introduced into both MAP and ICP signals according to Equation 1. 

 

𝑦 𝑡 ⟼ 1− 𝜙 .𝑦 𝑡 + 𝜙.𝑦(𝑡 − 1) 

(Equation 1) 

 

The parameter 𝜙 was tuneable simulating different degrees of memory in the signal varying 

between -1 (antipersistent) and +1 (persistent). 

 

Correlation was subsequently added to ICP according to Equation 2.  

 

𝐼𝐶𝑃⟼ 𝜌.𝑀𝐴𝑃 +  1− 𝜌!. 𝐼𝐶𝑃 

(Equation 2) 

 

Thus 𝜌 represents an underlying correlation between the two signals. Crucially, this 

correlation does not imply any autoregulation; 𝜌 is not a function of CPP. Thus, whilst we 

expect PRx to be non-zero for non-zero 𝜌, there should be no U-shaped behaviour in the 

PRx/CPP relationship if the CPPopt calculation is unbiased. 

 

In order to test this null hypothesis, we calculated PRx as the moving window Pearson 

correlation coefficient from our synthetic signals analogously with clinical practice. PRx 

values so obtained were evenly binned against mean CPP for the window period and a 

quadratic fit performed to this mean PRx/CPP data (Equation 3 where U, V and W are fitted 

parameters).  

𝑃𝑅𝑥 = 𝑈.𝐶𝑃𝑃! + 𝑉.𝐶𝑃𝑃 +𝑊 

 

(Equation 3) 

 



We extracted the quadratic parameter, 𝑈, from the fit as a measure of the curvature of the 

PRx/CPP relationship with 1000-fold repetition to obtain a mean/standard deviation. This 

was repeated for different values of 𝜌 ∈ [−1,+1] and 𝜙 ∈ [−1,+1]. 

 

To examine the effect of the Fisher transform on the statistical properties of PRx, we 

additionally transformed the calculated PRx values before our quadratic fit using Equation 4. 

 

𝑃𝑅𝑥⟼
1
2 ln 

1+ 𝑃𝑅𝑥
1− 𝑃𝑅𝑥  

 

(Equation 4) 

 

Calculations were carried out using MATLAB Release 2015b (The MathWorks Inc, Natick, 

Massachusetts, United States) on Linux. Code was optimised to run in parallel on 16x3.3GHz 

Intel Xeon cores with a total of 32GB RAM, (typical runtime ~23hrs). 

 

 

Results  
Figure 1 shows how the quadratic parameter, U, varies with correlation parameter 𝜌 for white 

noise ICP / MAP (𝜙 = 0). For 𝜌 = 0, U is close to zero. For increasing positive 𝜌 (ICP and 

MAP are correlated) U becomes positive and non-zero, demonstrating a U-shaped tendency 

to the PRx / CPP relationship. Since the ICP and MAP signals are simulated from correlated 

noise only, without any autoregulation behaviour, this represents a U-shaped bias. 

 

For 𝜌 below zero, U is negative/non-zero meaning that there is, on average, an inverted U-

shaped bias for situations where PRx is negative. For 𝜌 = ±1 the parameter U becomes zero 

since PRx is exactly ±1 for all CPP. 

 

Figure 2 shows analogous data to Figure 1, but in this case, the simulated PRx values were 

first Fisher transformed before fitting a quadratic curve against CPP. Within errors, the 

relationship of U against 𝜌 is seen to be abolished. 

 

Figure 3 shows the effect of changing the degree of autocorrelation 𝜙, for a fixed 𝜌 = 0.6 

(chosen so that U is approximately maximal in figure 1). The U-shaped bias is seen to reduce 



slightly with increasing positive autocorrelation. For negative autocorrelation, U is found to 

increase dramatically. 

 

Discussion 
Our simulations demonstrate that PRx is statistically biased to display U-shaped behaviour, 

centred on the mean value of CPP, in the absence of autoregulation. The direction and 

magnitude of this U-shape depends on the degree and sign of the cross-correlation between 

MAP and ICP. This consideration is important: For positively correlated signals (such as 

occurs with a generally pressure-passive ICP/MAP relationship), this could distort the true 

autoregulatory minimum or even introduce a spurious CPPopt. For negatively correlated 

ICP/MAP (as might be expected on average for an autoregulating system), the U-shape bias 

is inverted which may serve to distort or abolish the true autoregulatory minimum. 

 

In Figure 1, it is noteworthy that the relationship is not symmetrical 𝜌 = ±1, the maximum U 

being greater than the minimum. This results from inherent correlation between ICP and CPP 

since CPP=MAP-ICP. Repeating the simulations for the ICP/MAP relationship (as opposed 

to the clinically important case of ICP/CPP) removes the asymmetry.   

 

 

Conclusions 
We show that PRx/CPP is statistically biased and this applies to any similar parameter from 

two correlated time series). Furthermore this bias is exacerbated if the signals are 

autocorrelated with antipersistence. Since changes in autocorrelation and signal complexity 

are known to occur in the face of physiological perturbation, the U-shaped bias is therefore 

expected to be dependent on physiological stress. We recommend that the Fisher transform is 

always used before analysing such data. This rescales the Pearson correlation coefficient in 

such a way as to normalise its distribution. 
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Figure Captions 

 

Figure 1. Plot of fitted quadratic parameter U (arbitrary units x 10-5) against ICP/MAP 

correlation strength ρ. Positive values of U suggest a U-shaped tendency between ICP and 

CPP, negative values represent an inverted U-shape. 

 

Figure 2. Equivalent plot to Figure 1 for Fisher transformed PRx. Unlike the untransformed 

case, there is no longer a demonstrable U-shape bias for any value of 𝜌. 

 

Figure 3. Parameter U (logarithmic scale) as a function of autocorrelation 𝜙 for simulated 

ICP/MAP data with fixed 𝜌 = 0.6. For zero autocorrelation, this corresponds to a value of U 

near the maximum seen in Figure 1. The bias is reduced slightly for increasing positive 

autocorrelation (persistence). However with negative autocorrelation (anti-persistent data), 

the U-shaped bias increases dramatically.  
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