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The quadrupolar Maxwell electrostatic equations predict several qualitatively different results
compared to Poisson’s classical equation in their description of the properties of a dielectric interface.
All interfaces between dielectrics possess surface dipole moment which results in a measurable sur-
face potential jump. The surface dipole moment is conjugated to the bulk quadrupole moment density
(the quadrupolarization) similarly to Gauss’s relation between surface charge and bulk polarization.
However, the classical macroscopic Maxwell equations completely neglect the quadrupolarization
of the medium. Therefore, the electrostatic potential distribution near an interface of intrinsic
dipole moment can be correctly described only within the quadrupolar macroscopic equations of
electrostatics. They predict that near the polarized interface a diffuse dipole layer exists, which bears
many similarities to the diffuse charge layer near a charged surface, in agreement with existing
molecular dynamics simulation data. It turns out that when the quadrupole terms are kept in the
multipole expansion of the laws of electrostatics, the solutions for the potential and the electric field
are continuous functions at the surface. A well-defined surface electric field exists, interacting with the
adsorbed dipoles. This allows for a macroscopic description of the surface dipole-surface dipole and
the surface dipole-bulk quadrupole interactions. They are shown to have considerable contribution
to the interfacial tension—of the order of tens of mN/m! To evaluate it, the Maxwell stress tensor in
quadrupolar medium is deduced, including the electric field gradient action on the quadrupoles, as
well as quadrupolar image force and quadrupolar electrostriction. The dependence of the interfacial
tension on the external normal electric field (the dielectrocapillary curve) is predicted and the
dielectric susceptibility of the dipolar double layer is related to the quadrupolarizabilities of the bulk
phases and the intrinsic polarization of the interface. The coefficient of the dielectro-Marangoni effect
(surface flow due to gradient of the normal electric field) is found. A model of the Langevin type for
the surface dipole moment and the intrinsic surface polarizability is presented. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4933370]

I. INTRODUCTION

The interface between any two insulators, say water (W)
and oil (O), possesses specific surface dipole moment ΓP,
related to the preferential orientation of the molecules near
the interface. This orientation results into a specific potential
drop through the interface, ∆O

Wφ = φO
∞ − φW

∞, where φO
∞ and

φW
∞ are the respective bulk potentials (a list of symbols can be

found in the supplementary material A74). The two quantities
are related as1,2

ΓP = ε0∆
O
Wφ, (1)

where ε0 is the permittivity of vacuum. The dipole moment
ΓP plays a role in a great variety of surface phenomena:
light reflection,3 capillary waves,4 nucleation work of droplets
on ions,5 adsorption at solid surfaces;6 it contributes to the
potential of zero charge of the interface metal|electrolyte
solution;7 the long-ranged lateral interaction due to ΓP

results in beautiful structures observed in heterogeneous lipid
monolayers,8 etc. The surface dipole moment can be changed

independently of the bulk properties, e.g., by spreading an
insoluble monolayer on the interface. The respective change
of ∆O

Wφ can then be measured9—this is an important method
for studying such monolayers.

Unlike the change of ∆O
Wφ, the absolute value of the

potential drop is rather hard to measure; molecular simulations
are also inconclusive. Even for the basic case of clean water
surface, the experimental and theoretical estimations of ∆O

Wφ
vary by two orders of magnitude and even the sign is still
disputed.10,11 One reason for the discrepancy between the
published simulation data for different models of water is the
fact that the surface dipole moment depends strongly on the
quadrupole moment q of the molecules in the bulk phase.10,12

According to the theory of Stillinger and Ben-Naim,13 for a
clean aqueous surface, the force that orients the molecules
in the interfacial region is the image potential related to
water’s quadrupole moment—an idea that can be traced back
to Frenkel.14 The importance of q of the solvent molecules for
the value of the surface dipole moment ΓP was later observed
also in simulations.10,15 Horváth et al. performed series of
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simulations with models of water of decreasing quadrupole
moments to find that the higher quadrupole moment goes
with higher polarization of the interface.16 This relation is
probably the reason why different models of water yield very
different dipolar surface potentials (for water|gas, the classical
SPC,16 SPC/E, and TIP5P18 give ∆G

Wφ = φG
∞ − φW

∞ values of
+41.5 mV, −260 mV, and −103 mV, respectively; quantum
density functional theory yield either18−480 mV or19−18 mV;
the “net potential” of Beck20 is −430 V). Another example for
the role of the quadrupoles is the finding of Wilson et al.21 that
the gradient of the field in the interfacial region is so high that
the multipole expansion D = ε0E + P of the displacement field
is inadequate (E—electric field intensity and P—polarization).

A second reason for the confusion regarding the value of
∆O

Wφ is the definition of mean potential and more precisely,
whether the potential contains the bulk Bethe potential17,18 that
stems from the non-zero trace of the quadrupole moment, Trq,
of the molecules in the bulk phase. Trq does not contribute to
the multipole expansion of the electric field of a particle and
to the long-range interactions between molecules and ions,
respectively.1,22 For this reason, with field-based macroscopic
electrostatic equations, basic relation (1) excludes the Bethe
potential. If potential-based electrostatic equations are used, a
quadrupole term23,20 arises in Eq. (1)—details are given in the
supplementary material B.74 The Bethe potential is essentially
a bulk phenomenon that has nothing to do with the state of
the surface. It originates mainly from the quadrupole moment
of the system atomic nucleus-electronic cloud,24 and the
respective interactions are normally treated as the short-range
steric potential. The contribution of the Bethe potential to the
potential jump is experimentally attainable with techniques
such as high energy electron holography and diffraction,25,26

where the probe charge can overcome the steric repulsion.
On the other hand, the classical electrochemical experiments
concern the potential drop which is due to the state of the
interface only—and we use the symbol ∆O

Wφ for this particular
potential drop. It is often referred to as the surface dipolar
potential,16,27 and Eq. (1) must be considered its rigorous
definition. Therefore, below only the zero-trace part31 of the
tensor q is considered, unless explicitly stated otherwise.

The molecular quadrupole moment was found to affect
significantly not only the surface dipole moment but also the
surface tension of the liquid.12 This important finding has not
received much attention in the literature. An aim of our work
is to investigate further the nature of this relation.

Thus, enough evidence has been gathered that the quad-
rupole moments of the solvent molecules affect profoundly
the properties of the interface between two dielectrics. On
the other hand, the classical macroscopic Maxwell equations
neglect the quadrupoles completely. They are approximated—
they correspond to a multipole expansion22,28 of the exact
microscopic equations up to the dipole terms, while the
quadrupole moments q and the quadrupolarizabilities αq

of the molecules constituting the medium are truncated. It
is therefore concluded that the classical Maxwell equations
and their corollaries (e.g., Poisson-Boltzmann equation) are
inappropriate for modelling the polarized interfacial region.
An example of that is the fact that Poisson’s equation of
electrostatics predicts that the surface dipole moment does not

create electrostatic field. The charge distribution associated
with ΓP is equivalent to a condenser of zero thickness, and the
field is constrained between the two plates of this condenser
(supplementary material C74). Thus, contrary to what one
expects,29,30 according to the dipolar Maxwell equations, a
molecule in the vicinity of a homogeneously polarized surface
does not interact with it.

The second-order approximation of the macroscopic elec-
trodynamics is given by the quadrupolar Maxwell equations,
which account for the interaction of the quadrupoles with
the field (or its gradient). For electrostatic problems, the
correction22,28 is reduced to addition of the divergence of the
macroscopic density of quadrupole moment Q (the quadrupo-
larization tensor) in the electric displacement vector D,

D = ε0E + P − 1/2∇ ·Q. (2)

In this work, we are mainly concerned with flat symmetry and
isotropic bulk phases, where Eq. (2) simplifies to

Dz = ε0Ez + Pz − 1/2dQzz/dz. (3)

Coulomb’s macroscopic law reads22,28

∇ · D = dDz/dz = ρ, (4)

where ρ is the free charge density. This form of Coulomb’s
law is valid for both dipolar and quadrupolar media, but in
the latter case, the displacement field contains both dipole and
quadrupole moment distributions Pz(z) and Qzz(z). For the
purpose of definition, let us emphasize that Eqs. (2)-(4) are
field-based and the quadrupolarization Q in Eq. (2) is of zero
trace.31 This automatically excludes the Bethe potential from
the potential of Ez (cf. supplementary material B74).

Eqs. (2) and (4) are general in the sense that they do
not involve explicitly material characteristics. To make them
specific to a given medium, equations of state relating P and
Q to E and ∇E are required. For a linear isotropic dielectric,
the polarization is a linear function of E, e.g., for water and
oil,

PW = αW
PEW = ez

�
εW − ε0

�
EW
z , PO = ez

�
εO − ε0

�
EO
z . (5)

Here, εW and εO are the dielectric permittivities of water
and oil (related to the respective macroscopic polarizabilities
as ε = ε0 + αP) and ez is the Cartesian unit vector. The
constitutive relation for Q of a linear isotropic quadrupolar
medium was derived in Ref. 31; for flat symmetry, it reads

QW
=αW

Q

�
∇EW − U∇ · EW/3

�
= (ezez − U/3) αW

Q

dEW
z

dz
(6)

and likewise for QO; here, U is the unit tensor and αQ

is the macroscopic quadrupolarizability (of water or oil).
This characteristic is related to the molecular quadrupo-
larizabilities αq and quadrupole moments q of the mole-
cules31,32—the macroscopic αQ is approximately proportional
to C(αq + q : q/10kBT), where C is the particle number
density of the medium, kB is the Boltzmann constant, T is
temperature, and “:” denotes double scalar product, A : B
= Ai jBj i. The relation αQ ∝ C(αq + q : q/10kBT) can be
compared to the linear Langevin-Debye formula22,33 αP ∝
C(αp + p · p/3kBT), where αp and p are the average polar-
izability and the dipole moment of a solvent molecule.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.111.5.158 On: Mon, 26 Oct 2015 11:32:28



154707-3 Slavchov, Dimitrova, and Ivanov J. Chem. Phys. 143, 154707 (2015)

Substitution of Ampère’s law (E = −∇φ for electrostatics)
and the constitutive relations (5) and (6) into Eqs. (3) and (4)
leads to the explicit equations for the electrostatic potential φ
in the two phases,

d2φW

dz2 −
(
LW
Q

)2 d4φW

dz4 = −
ρW

εW ,
d2φO

dz2 −
(
LO
Q

)2 d4φO

dz4 = −
ρO

εO ,

(7)

here, the quadrupolar lengths are defined as31

LW
Q =


αW
Q
/3εW, LO

Q =


αO
Q
/3εO. (8)

In the absence of quadrupoles, the length will be LQ = 0 and
Eqs. (7) simplify to Poisson’s equation of electrostatics in
dipolar medium.

The quadrupolar equation for φ is of the fourth order
and requires additional boundary conditions compared to
Poisson’s equation. One of these new boundary conditions
was deduced by Graham and Raab34,3 and by Batygin and
Toptygin,35 and it explicitly relates the intrinsic surface
normal dipole moment PS

z to the bulk quadrupole densities,
QO

zz(z = 0) −QW
zz(z = 0) = 2PS

z . Since it is of key importance
for the theory of quadrupolar dielectrics, we will present
shortly its derivation in Sec. I A. Neither Graham and Raab
nor Batygin and Toptygin commented on the relation between
the intrinsic surface dipole moment PS

z and the total surface
dipole moment ΓP—as we will discuss in Sec. III, the two
quantities are different. The other new boundary condition
requires continuity of the normal component of the electric
field at the surface.36

The mechanics of quadrupolar media in external field
is discussed in Sec. II, where the respective Maxwell stress
tensor is derived. In Sec. III, it is shown that the surface
dipole moment creates a non-zero electrostatic field protruding
the plates of the surface condenser. Using the quadrupolar
Maxwell stress tensor, we derive the contribution of this field to
the interfacial tension. In Sec. III B, we consider the interaction
between the polarized interface and external field normal to
the interface.

A. Boundary conditions

Following Graham and Raab,34 we will derive the
boundary conditions using the singular distribution approach
developed by Albano, Bedeaux, and Vlieger.37,38 We investi-
gate the flat interface between two quadrupolar dielectrics; this
interface has surface charge density ρS and intrinsic normal
surface dipole moment density PS

z . For definiteness, let the
two dielectrics be water (z < 0) and oil (z > 0). The following
singular distributions of the densities ρ, P, and Q can be
written for this system,

ρ = ηWρW(z) + ηOρO(z) + δρS, (9)

Pz = η
WPW

z (z) + ηOPO
z (z) + δPS

z

= ηW �
εW − ε0

�
EW
z + η

O �
εO − ε0

�
EO
z + δPS

z , (10)

Qzz = η
WQW

zz(z) + ηOQO
zz(z). (11)

Here, η is the Heaviside step function, ηW ≡ η(−z), ηO ≡ η(z),
and δ ≡ δ(z) is the Dirac delta function. The quadrupole

density tensor components Qxx and Qy y are unimportant since
they are independent of x and y and fall off from ∇ ·Q in
Eq. (2); all other components of Q are zero. The intrinsic
surface quadrupole moment QS

zz can be added as a δ-term
in Eq. (11) (water, for example, is known for having surface
of high quadrupole moment15), but it can be shown that in
the macroscopic multipole expansion, the intrinsic surface
quadrupole moment is at the same level of approximation
as the bulk octupole moment density (if the bulk displacement
vector D is truncated to the octupole terms, the singular
distribution of Qzz must be truncated at the δ-term and vice
versa, otherwise the resulting electrostatic problem will be
ill-defined). Since water is in the domain z < 0, the surface
dipole moment is defined in direction towards oil or air—if
water molecules at the surface are, on the average, pointing
with the oxygen atom toward the hydrophobic phase, then
PS
z is negative. Note that PS

z differs from the total surface
dipole moment ΓP—the total Gibbs excess of the polarization
involves also a contribution from the adjacent bulk phases, as
discussed in Sec. III. Similarly, although QS

zz is neglected, the
surface still possesses an excess quadrupole moment.

Distributions (11) of Pz and Qzz are substituted in Eq. (3)
to obtain the singular distribution of Dz,

Dz = η
W

(
εWEW

z −
1
2

dQW
zz

dz

)
+ ηO

(
εOEO

z −
1
2

dQO
zz

dz

)
+ δ

(
PS
z +

1
2

QW
zz(z) − 1

2
QO

zz(z)
)
, (12)

where the relation dη(±z)/dz = ±δ was used. The singular
distributions (9) and (12) of Dz and ρ are then substituted
into Coulomb’s law (4) to obtain the singular expansion of the
quadrupolar Maxwell electrostatic equation,

η
W


d
dz

(
εWEW

z −
1
2

dQW
zz

dz

)
− ρW



+ ηO


d
dz

(
εOEO

z −
1
2

dQO
zz

dz

)
− ρO



+ δ

(
−εWEW

z +
dQW

zz

dz
+ εOEO

z −
dQO

zz

dz
− ρS

)
+ δ1

(
PS
z +

1
2

QW
zz(z) − 1

2
QO

zz(z)
)
= 0. (13)

Here, δ1 = dδ/dz. Using further the relations δf(z) = δf(0)
and δ1f(z) = δ1f(0) − δ (df/dz)z=0, the above simplifies to

η
W


d
dz

(
εWEW

z −
1
2

dQW
zz

dz

)
− ρW



+ ηO


d
dz

(
εOEO

z −
1
2

dQO
zz

dz

)
− ρO



+ δ

(
−εWEW

z +
1
2

dQW
zz

dz
+ εOEO

z −
1
2

dQO
zz

dz
− ρS

)
z=0

+ δ1

(
PS
z +

1
2

QW
zz −

1
2

QO
zz

)
z=0
= 0. (14)

Decomposition of Eq. (14) to its irreducible terms leads to the
two bulk Maxwell equations, corresponding to the multipliers
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of ηW and ηO, valid in the respective bulk phases,

z < 0 :
d
dz

(
εWEW

z −
1
2

dQW
zz

dz

)
= ρW,

z > 0 :
d
dz

(
εOEO

z −
1
2

dQO
zz

dz

)
= ρO,

(15)

which, together with Eq. (6), yield the explicit Eqs. (7) for φ.
Next, the multiplier of δ in Eq. (14) leads to the generalization
of Gauss’s law for the case where the bulk quadrupole moment
contributes to the fixed surface charge density,(

εOEO
z −

1
2

dQO
zz

dz
− εWEW

z +
1
2

dQW
zz

dz

)
z=0

= DO
z (0) − DW

z (0) = ρS. (16)

Thus, Gauss’s law for the jump of Dz at a surface of charge ρS

remains formally unchanged in quadrupolar solvents, except
for the fact that Dz contains quadrupolar terms. Finally, the
multiplier of δ1 in Eq. (14) yields a new boundary condition,
relating the intrinsic surface dipole moment PS

z to the jump of
the quadrupole moment,

1
2

QO
zz(0) − 1

2
QW

zz(0) = PS
z . (17)

This equation was derived with the classical methods by
Batygin and Toptygin35 (cf. also Eq. (65) of Shen and Hu39).
We will refer to it as multipolar (dipolar) condition for the
jump of the electric field gradient. The comparison with
Eq. (12) shows that the δ term in the singular distribution
of Dz is zero. The explicit forms of boundary conditions (16)
and (17) are obtained by combining them with E = −∇φ and
Eq. (6) for Q,

εW


dφW

dz
−

(
LW
Q

)2 d3φW

dz3



z=0

− εO


dφO

dz
−

(
LO
Q

)2 d3φO

dz3



z=0
= ρS, (18)

εW
(
LW
Q

)2 d2φW

dz2

�����z=0
− εO

(
LO
Q

)2 d2φO

dz2

�����z=0
= PS

z . (19)

Two final boundary conditions are valid—the potential
and the electric field must be continuous at z = 0,

φW(0) = φO(0) (≡ φS),
EW
z (0) = EO

z (0) (≡ ES
z ).

(20)

Instead of continuous Ez, Chitanvis imposed continuity of
the second normal derivative of the potential, “. . . invoked on
physical grounds, to ensure a higher-order continuity of the
solution”40 (but the field itself remained discontinuous in his
work). In Ref. 36, it was rigorously shown that the correct
continuity condition is for the first derivative of φ, on the
example of the problems for infinitely thin condenser and
charged surface in quadrupolar medium. The derivation is
given in the supplementary material C.74

Eqs. (7)-(20) define a unique solution for the electrostatic
potential φ(z). Some simple consequences of it were investi-
gated previously36 and few examples are summarized in the
supplementary material C.74 Compared to the results of the
classical dipolar electrostatics, two common features of the

solutions of the quadrupolar electrostatic law can be pointed
out: the regularization of the potential and the damping of
the field gradient. A remarkable example of the first effect
is the finding31,40 that a point charge in quadrupolar medium
has finite potential; in addition to this, the electric field at a
charged surface is continuous, and the same is valid for the
electrostatic potential of an infinitely thin condenser.36

II. MECHANICS AND THERMODYNAMICS
OF NON-HOMOGENEOUS QUADRUPOLAR MEDIA

A. Quadrupolar ponderomotive forces
and the Maxwell stress tensor

The classical expression for the free energy of the electric
field in a linear, locally isotropic heterogeneous dielectric
remains valid for a quadrupolarizable medium,

Wel =
1
2


ρφdV =

1
2


D · EdV, (21)

where the integration is over the volume of the dielectric;
the equality of the two integrals follows1,41 from ∇ · D = ρ.
However, unlike the classical Wel, in quadrupolar media, the
displacement field D contains Q. Expression (21) is used in
supplementary material D74 for the derivation of the electric
force density fel following the formalism of Tamm.41 The final
result is

fel = ρE − 1
2

E2∇ε − 1
4


∇E : ∇E − (∇ · E)2/3 ∇αQ

+
1
2
∇
(
E2C

∂ε

∂C

)
+

1
4
∇

∇E : ∇E − (∇ · E)2/3C ∂αQ

∂C


.

(22)

As seen, the ponderomotive force involves a quadrupolar im-
age force (∇αQ) and quadrupolar electrostriction (∂αQ/∂C).
The result is of importance for the flexoelecric phenomena in
nanosized dielectrics39 and lipid membranes.42 If αQ or ∇E
are negligible, the expression above reduces to the classical
Helmholtz formula.1,41 Let us mention that in our derivation
of the ponderomotive force, we started with the variation of
the free energy, hence, the derivatives ∂ε/∂C and ∂αQ/∂C in
Eq. (22) are taken at constant temperature. If the variation of
the internal energy is used instead, then expression (22) for
the force would remain the same except for the derivatives,
which would have to be understood as isoentropic.

As a consequence of the conservation of the momentum,
electric force (22) can be presented in the form

fel = ∇ · TE, (23)

where TE is the stress tensor of the electric field (the Maxwell
stress tensor). In order to define TE, all terms in Eq. (22)
must be expressed as coordinate derivatives, which is done
in supplementary material D.74 There it is shown that TE in
Eq. (23) stands for

T E = DE +
1
2

Q · ∇E − U


1
2

(
ε − C

∂ε

∂C

)
E2

+
1
4

(
αQ − C

∂αQ

∂C

) 
∇E : ∇E − 1

3
(∇ · E)2


. (24)
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This is the generalized Maxwell stress tensor in an isotropic
quadrupolar medium. The quadrupolar terms in it correspond
to the τM

i jm,m tensor of Shen and Hu39 (cf. also Ref. 43 in regard
to the definition of TE).

Let us finally find the relation between the distributions
of the total stress tensor T and the electric field Ez near a
flat interface between two quadrupolar dielectrics. For the
flat symmetry considered in this paper, Maxwell tensor (24)
simplifies to

T E = ezez

εE2

z +
1
3
αQ

(∂zEz)2 − Ez∂zzEz


− 1

2
U

(
ε − C

∂ε

∂C

)
E2
z +

1
3

(
αQ − C

∂αQ

∂C

)
(∂zEz)2


.

(25)

The balance between the mechanic and the ponderomotive
forces requires that43

∇ · T = ∂

∂z
(−p(z) + TE,zz) = 0, (26)

where the total stress tensor T is

T = −p(z)U + T E, (27)

and p is the mechanical “plate pressure, Ppl” of Koenig.44 The
solution of Eq. (26) for p(z) reads

p = p0 + TE,zz, (28)

where p0 is the pressure at E = 0. Substituting this result back
into Eq. (27) for T, one obtains the sought relationship between
the total stress T and E,

Tzz = −p + TE,zz = −p0,

Txx = −p + TE,xx = −p0 − ε

E2
z+L2

Q

(∂zEz)2−Ez∂zzEz


.

(29)

The first formula states that for a system of flat symmetry in
equilibrium, the stress tensor must have constant zz compo-
nent. The second equation relates the tangential component
of T (which depends on z) to the field distribution. Eq. (29)
simplifies to a known result5,45 if LQ = 0.

The results above are valid for locally isotropic dielectric
and are inapplicable to pyroelectric materials1 where zero-field
polarization P0 is present in the constitutive relation for P.
Although the polarized interface is a pyroelectric, cf. Sec. III,
the P0 terms in the ponderomotive force are unimportant for
the current work and for brevity are not considered here. In
the excess surface stress tensor,39 however, these terms will
have a significant contribution.

B. Fundamental equations for a dielectric interface
in external normal field

Consider the heterogeneous insulating system water|oil
(ρ = 0) in the anisotropic medium illustrated in Fig. 1. The
medium is a condenser of total surface charge eS (which
sets a constant displacement field Dz normal to the surface)
and a thermostat; it has permeable walls (fixing the chemical
potentials µi of all species) and is an anisotropic barostat
(fixing the normal component Tzz of the stress tensor to −p0

FIG. 1. The thermodynamic variables imposed by the external medium onto
the two-phase system.

and the integral of the tangential component to a force per
unit length Fx). The interface has area A; let for definiteness,
the thickness of the two phases be h/2 and the position of the
interface be z = 0.

The variation of the internal energy of the heterogeneous
system is the sum of the heat TδS transferred from the
medium to the system, the mechanical work −p0Aδh − FxδA,
the chemical work Σµiδni and the work ∆φδeS for charging
the condenser,

δU = TδS − p0Aδh +

h/2
−h/2

TxxdzδA +


µiδni + ∆φδeS.

(30)

The total surface charge is related to the electric displacement
as eS = ρSA = −DzA. The potential difference between the
plates of the condenser is related to the field in the system as
∆φ = −


Ezdz. This leads to a more useful form of Eq. (30),

δU = TδS − p0Aδh +

h/2
−h/2

Txx(z)dzδA +


µiδni

+

h/2
−h/2

Ez(z)dzδ (ADz) (31)

compared with Eq. (3) of Koenig.44 Following the Gibbs
approach, we can now define an idealized system in which
the two bulk phases are homogeneous, with respective
fundamental equations,

δUW = TδSW − p0Aδ
h
2
+

0
−h/2

TW
xx∞dzδA

+


µiδnW
i +

0
−h/2

EW
z∞dzδADz

and

δUO = TδSO − p0Aδ
h
2
+

h/2
0

TO
xx∞dzδA

+


µiδnO
i +

h/2
0

EO
z∞dzδADz. (32)

Here, Txx∞ and Ez∞ are the values in the respective phases
far from the interface and are independent of z (they are
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left under the integral for convenience). We can then write
for the variation of the surface excess of the internal energy
US = U −UW −UO the equation,

δUS = TδSS + γδA +


µiδnS
i − ∆

O
WφδADz, (33)

where SS and nS
i are the total surface entropy and the total

adsorbed ith component, and the mechanical surface tension5

γ and the surface potential drop stand for the surface excesses
of Txx and −Ez, i.e.,

γ =

0
−h/2

�
Txx − TW

xx∞
�

dz +

h/2
0

�
Txx − TO

xx∞
�

dz, (34)

∆
O
Wφ = −

0
−h/2

�
Ez − EW

z∞
�

dz −
h/2
0

�
Ez − EO

z∞
�

dz. (35)

The integration limits ±h/2 can be substituted with ±∞ as
long as h ≫ LQ. The Euler equation for Eq. (33) reads

US = T SS + γA +


µinS
i − ∆

O
WφADz. (36)

The substitution of Eq. (36) into (33) yields the Gibbs-Duhem
equation of the surface

δγ = −sSδT −


ΓS
i δµi + Dzδ∆

O
Wφ, (37)

where sS = SS/A and ΓS
i = nS

i /A are the surface entropy per
unit area and the adsorption of the ith component. This is
the equation of Rusanov and Kuni.5 As remarked by them,
in an external field, the mechanical and the thermodynamic
definition of surface tension lead to different results—
the thermodynamic tension is given by σ = γ − Dz∆

O
Wφ.

Therefore, for the variation of σ, one finds from Eq. (37),

δσ = −sSδT −


ΓS
i δµi − ∆

O
WφδDz. (38)

For the surface tension defined with Eq. (34) (excess of
the stress tensor), the correct Gibbs-Duhem relation is (37)
(compared to Ref. 2). The thermodynamic surface tension
(the surface omega potential) is instead the excess of the
quantity Txx + EzDz, or from Eq. (29), of −p0 − αQ(∂zEz)2/3.
A difference between the two tensions occurs also in the
case of, e.g., curved interfaces45 and surfaces of anisotropic
solids.46 Since γ and σ are related, an experiment determining
one of them is also giving the other, and their use is a question
of convenience. In statistical mechanics, σ is preferred.5

Fundamental equation (38) of σ contains the more natural
variable Dz. The thermodynamic interfacial tension controls
“energetic” phenomena such as self-dispersion and nucleation.
On the other hand, the expression for the generalized Laplace-
Young law is simpler5 in terms of γ, and it is more directly
related to “mechanistic” phenomena such as capillary pressure
and Marangoni effect.

III. THE INTERFACE WITH DIPOLE MOMENT

The dielectric properties of an interface are a question
of high practical importance, especially in regard to the new
nanodielectric materials,47,48 and to diverse problems arising

in biomembrane physics,29,30 semiconductor surfaces,49 nucle-
ation5 etc. There is a contrast between the importance of the
field and the degree of development of its macroscopic theory,
related to the fact that the dipolar macroscopic equations
of Maxwell are somewhat unsuited for modelling dielectric
surfaces.

Within the classical dipolar electrostatics, a flat surface
of homogeneous dipole moment does not create electric field.
A dipolar surface is an infinitely thin condenser; its electric
field is confined between the walls of this condenser and is
infinite,41 i.e.,

φ = ηO
∆

O
Wφ, Ez = −∂φ/∂z = −δ∆O

Wφ. (39)

Hence, from Poisson’s equation, it follows that the intensive
characteristic E has a singular distribution. However, the
conjugated extensive characteristic P also has a singularity,
Eq. (10). This poses several problems which are hard to resolve
within the macroscopic dipole expansion.

(i) A surface possessing dipole moment has infinite energy
(surface dipoles in infinite local Ez).

(ii) If one allows the adsorbed dipoles to have polarizability,
the singular surface field will induce infinite dipole
moment.

(iii) The interaction of the infinitely thin condenser with an
external field is hard to model within Poisson’s equation,
since the field jumps at the surface (which field acts on
the dipoles, the one on the left or on the right hand side
of the surface?).

(iv) The common case of a surface having both surface charge
and dipole is also messy—the surface charge is situated
at a point where the potential is discontinuous (which
potential acts on the charges, the one on the left or on the
right hand side of the surface?).

(v) According to classical formula (39), no electric field
is present at any z , 0. This leads to the following
curiosity: the electrostatic force acting on a positive
ion situated above a surface of positive PS

z , consisting
of an infinite number of oriented dipoles is zero. The
available data suggest that it is repulsion instead—the
ion-surface dipole interaction is especially important in
biophysical chemistry of membranes.29,30 The attempts
to resolve the problem gravitate around the discrete
distribution of the adsorbed dipoles.50–52 We find this
approach unsatisfactory53—the discreteness effect is
indeed significant, but the main hardship—the surface
singularities—remains. In result, the field of a 2D lattice
of dipoles at the interface is extremely sensitive to the
position of the dipoles with respect to z = 0. Therefore,
though a realistic model should account for the discrete
distribution of PS

z , discreteness alone cannot fix the
problematic setup that macroscopic dipolar electrostatics
offers for dielectric surfaces.

The question is further discussed in supplementary
material C.74 None of problems (i)-(v) are insurmountable
within classical electrostatics. However, the combination of
them results in models of the interface that are physically
complicated and often involve many undefined parameters. As
we will show below, the quadrupolar Maxwell equations give
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orderly and conceptually simpler description of the dielectric
interface. Apart from these “fundamentalistic” reasons, the
question for the role of the molecular quadrupoles for the
structure of the interface is of high interest on its own,12,16

regardless of the theoretical approach used to investigate it.

A. The contribution of the adsorbed dipoles
to the interfacial tension

Let us start with the problem for the role of the
surface dipole-bulk quadrupole interaction in the structure of
the interface between insulators in the absence of external
electric field. Croxton showed that this interaction has a
significant effect on the interfacial tension value;12 the surface
dipole–surface dipole interaction energy is substantial as
well.52

Consider the interface z = 0 between two dielectrics,
e.g., an aqueous (z < 0) and an oil phase (z > 0), which are
assumed insulators (ρW = ρO = 0). The surface is uncharged
(ρS = 0) but has dipole moment. We choose φ to be zero in
the bulk of the water phase, φW(−∞) ≡ φW

∞ = 0. The solution
of quadrupolar electrostatic equations (7) that decays properly
at z = ±∞ is

φW(z) = ∆S
Wφ exp(z/LW

Q), φO(z) = ∆S
Oφ exp(−z/LO

Q) + ∆O
Wφ.

(40)

This potential profile is similar to the dependence proposed
by Madden et al.54 and elucidates the nature of their empirical
decaying length. In Eq. (40), ∆S

Wφ ≡ φS − φW
∞ and ∆S

Oφ ≡ φS

− φO
∞ are the differences between the surface potential and bulk

phase potentials. They are related to the potential difference75

between the two bulk phases as ∆O
Wφ = φO

∞ − φW
∞ = ∆

S
Wφ

− ∆S
Oφ. These constants are determined by boundary condi-

tions (19) and (20) (Gauss’s law (18) is automatically
fulfilled)—they yield

∆
S
Wφ =

LW
Q

εWLW
Q
+ εOLO

Q

PS
z , ∆

S
Oφ = −

LO
Q

εWLW
Q
+ εOLO

Q

PS
z , (41)

∆
O
Wφ =

LW
Q
+ LO

Q

εWLW
Q
+ εOLO

Q

PS
z . (42)

Eq. (42) provides the relation between the surface potential
drop due to the adsorbed dipoles and the intrinsic normal
dipole moment density PS

z of the interface. The potential ∆O
Wφ

has the same sign as PS
z (this sign depend, of course, on the

choice of direction of z). Eq. (42) can be compared with the
often used Helmholtz formula

∆
O
Wφ = PS

z/ε
S, (43)

where εS is the dielectric permittivity of the hypothet-
ical medium between the two charged surfaces and is a
rather obscure quantity.55,51 Comparison between (42) and
(43) suggests that εS is an effective parameter equal to
(εWLW

Q
+ εOLO

Q
)/(LW

Q
+ LO

Q
) and thus it is, in fact, a bulk char-

acteristic. If the hydrophobic phase is gas G of quadrupolar
length LG

Q
≈ 0, Eq. (42) simplifies to

∆
G
Wφ = PS

z/ε
W. (44)

Using the value10,11,56,57 ∆G
Wφ = −100 mV for the dipolar

potential and εW = 78 × ε0, we find for the intrinsic dipole
moment of the clean water surface PS

z = −70 × 10−12 C/m.
The potential distribution corresponding to this value of PS

z is
illustrated in Fig. 2(a), according to Eqs. (40) and (41).

FIG. 2. (a) Distribution of the potential φ(z) and (b) the field Ez(z) near the dipolar interface between two quadrupolar dielectrics in the absence of external
field. Parameters: PS

z0=−140 × 10−12 C/m, αS
zz/ε0= 15 nm, εW= 78 × ε0, LW

Q
= 2 Å, εO= 5 × ε0, LO

Q
= 1 Å. The case where the second phase is gas (εG= ε0,

LG
Q
= 0) is given for comparison.
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The experimental or simulation data provide not the
intrinsic, but the total dipole moment ΓP of the interface (the
total adsorption of dipoles). ΓP has contributions from the two
layers, aqueous and oil, adjacent to the interface, which are
polarized by the field of PS

z . The polarization of the water phase
is given by PW

z = −(εW − ε0)dφ/dz, and similarly for the oil;
therefore, using solutions Eqs. (40)-(42) for φ, the respective
dipole moments per unit area of the two surface layers can be
written as follows:

ΓW
P =

0
−∞

PW
z dz = −

�
εW − ε0

�
LW
Q

εWLW
Q
+ εOLO

Q

PS
z = −

�
εW − ε0

�
∆

S
Wφ

and

ΓO
P =

∞
0

PO
z dz = −

�
εO − ε0

�
LO
Q

εWLW
Q
+ εOLO

Q

PS
z =

�
εO − ε0

�
∆

S
Oφ. (45)

Hence, according to Eqs. (10), (42), and (45) and the Gibbs
definition of a surface excess, the total adsorbed dipole
moment per unit area ΓP is

ΓP = PS
z + ΓW

P + ΓO
P =

ε0

(
LW
Q
+ LO

Q

)
εWLW

Q
+ εOLO

Q

PS
z = ε0∆

O
Wφ. (46)

General relation (1) is fulfilled (regarding the Bethe TrQ
contribution23,20 to ∆O

Wφ, cf. supplementary material B74).
For water|gas, the value ∆G

Wφ = −100 mV corresponds to
total dipole moment ΓP = −0.9 × 10−12 C/m. Thus, within
the quadrupolar macroscopic model we are using, the dipole
moment of the water|oil interface is distributed in three layers.
The first one is of zero thickness (or better said, of thickness
hS ≪ LQ) and of moment PS

z , large and negative towards the
oil. The second layer (situated between say z = −3LW

Q
and 0)

consists of bulk water molecules oriented oppositely due to
the interaction with the specifically “adsorbed” PS

z ; their total
dipole moment is only slightly less than−PS

z . The third layer is
situated between z = 0 and, e.g., z = 3LO

Q
and possesses total

moment of about−PS
z (εO − ε0)LO

Q
/εWLW

Q
. The two bulk layers

compensate to a large extent the intrinsic dipole moment of the
surface (ΓP is always smaller than PS

z—cf. Eqs. (46) and (42)).
This picture corresponds to a structure similar to an electric
double layer, but instead of diffuse free charge neutralizing the
intrinsic surface charge ρS, one has a diffuse dipole distribution
compensating partially the intrinsic surface dipole moment PS

z .
We will call this structure the dipolar double layer. In Sec. IV,
the analogy between the electric and the dipolar double layer
will be pushed further.

The two orientational layers have been observed in
classical MD simulations of water surface16 and also at solid
surfaces, e.g., Fig. 5 in Ref. 6. The SPC model predicts dipolar
potential of ∆O

Wφ = +40 mV and ΓP = +0.4 × 10−12 C/m—
the sign corresponds to the opposite orientation of the
water molecules compared to the experimental negative sign,
but the values are of the correct order of magnitude (cf.
supplementary material E74). We used the data of Horváth
et al.16 to estimate also the order of magnitude of the intrinsic
dipole moment density of SCP water—our estimate gives74

PS
z = +2.4 × 10−12 C/m. In agreement with our predictions,

this is indeed much higher than the value of the total dipole

moment ΓP; yet the value of PS
z is lower than the one

following from Eq. (44). The reason seems to be the neglected
overlapping. As the analysis in supplementary material E74

shows, the thickness hS of the surface layer of dipoles
is of the same order of magnitude as LQ—since hS is a
characteristic of the length of action of the specific interactions
that orient the molecules (image forces, hydrogen bonds,
van der Waals, steric forces), it can be even larger than LQ.
Therefore, overlapping effect similar to the one observed in
the electric double layer at high electrolyte concentrations57,58

is inevitable. The bimodal distribution of the orientation of
water molecules near the surface observed in simulations15,16

corresponds, in the language of our work, to overlapping
surface layer of moment PS

z and oppositely oriented bulk layer
with moment ΓW

P .
It is also worth noting that, although the interface

possesses no intrinsic quadrupole moment (cf. Eq. (11)),
adsorbed quadrupole is present

ΓQ =

0
−∞

QWdz +

∞
0

QOdz

= (3ezez − U) ε
O
(
LO
Q

)2
− εW

(
LW
Q

)2

εWLW
Q
+ εOLO

Q

PS
z . (47)

For water|gas, using the values above and the quadrupolar
length31,59 LW

Q
= 2 Å, we obtain ΓQ,zz = −2ΓQ,xx = −LW

Q
PS
z

= 1.4 × 10−20 C.
Let us now consider the field distribution in the interfacial

region. Within the quadrupolar equations of electrostatics,
where Eq. (20) holds, the electric field is a continuous
function at the interface and a well-defined surface electric
field exists

ES
z = −

1
εWLW

Q
+ εOLO

Q

PS
z . (48)

The distribution of the electric field that follows from Eq. (40)
can be therefore written as

EW
z = ES

z exp(z/LW
Q), EO

z = ES
z exp(−z/LO

Q). (49)

This distribution is illustrated in Fig. 2(b). It is functionally
similar with the potential in an electric double layer, but
instead of the Debye length, the diffuse dipole layer thickness
is controlled by LQ. In Sec. IV, the analogy between
the electric and the dipolar double layer will be further
investigated.

In contrast to Eq. (48), the classical dipolar electrostatics
predicts different values of Ez at z = ±0, so ES

z is undefined
(except if one assumes that ES

z = −PS
z/ε

ShS, where hS is
the thickness of the surface condenser, another ill-defined
quantity). If the hydrophobic phase is gas and LG

Q
≈ 0, then,

according to Eq. (48), the surface electric field76 is equal to
ES
z = −PS

z/ε
WLW

Q
. Using the values of the parameters above,

we find ES
z = 5 × 108 V/m. This result can be compared with

simulation data. However, simulations lead almost always to
surface dipolar potential that differs from the experimental
one (e.g., Kathmann et al.19 obtained a rather small potential
of ∆O

Wφ = −18 mV—probably due to the small size of the
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simulated system). As far as we expect ES
z ∝ ∆O

Wφ, the direct
comparison of the ES

z values is inappropriate. We compare
instead the ratio −∆O

Wφ/ES
z = 2 Å obtained from our numbers

with the one stemming from the values of Kathmann et al.19—
the two ratios are equal. The physical meaning of this ratio can
be understood by comparing Eqs. (44) and (48)—they suggest
that −∆O

W φ/ES
z must be of the order of LW

Q
.

The surface field ES is extremely high and its direction is
the opposite to the one of PS, hence, it is able to depolarize
the surface (such an effect was discussed, e.g., in Refs. 5 and
60). Assuming linear response, we can write the constitutive
relation for the surface dipole moment,

PS
z = PS

z0 + αS
zzES

z . (50)

This is the constitutive relation for the polarization of a
pyroelectric1—the anizotropic surface layer has a symmetry
which allows for zero-field dipole moment PS

z0. The coefficient
αS
zz is the normal component of the intrinsic surface polariz-

ability tensor. The tangential component αS
xx was investigated

previously49—for InP surface, we found αS
xx/ε0 ∼ 10 nm, of

the order of the bulk dielectric constant of InP times the
thickness of the surface layer. The expected order of magnitude
of αS

zz/ε0 of water is, by analogy, ~5-50 nm (εW times several
ångstroms). If PS

z = −70 × 10−12 C/m and ES
z = 5 × 108 V/m,

Eq. (50) yields for PS
z0 a value between −90 × 10−12 and

−300 × 10−12 C/m. For the illustrative calculations below, we
will use αS

zz/ε0 = 15 nm and PS
z0 = −140 × 10−12 C/m.

In order to elucidate the physical nature of the quantities
PS
z0 and αS

zz, let us develop a model of the Langevin type
for the pyroelectric interface. Consider a molecule of dipole
moment p at the surface (|p| = 6.2 × 10−30 Cm for water
molecule; for simplicity, we neglect its polarizability αp). Let
Γ such molecules be subjects to an orientating potential—
image force,13 hydrogen bonding,15 van der Waals and steric
forces16—for which one can write in linear approximation
uor = −kor cos θ. Here, θ is the angle between the dipole p and
the z-axis. If the energy is minimal when the partial positive
charge is pointing toward the aqueous phase (z < 0), then the
coefficient kor must be negative. The dipoles interact also with
a local surface electric field ES

z , which may be due to the
dipoles themselves or may be external, as discussed in the
following Sec. III B. The total potential energy of a molecule
is

u(θ) = −(kor + |p|ES
z ) cos θ. (51)

The average macroscopic dipole moment PS
z corresponding to

potential (51) is then given by Langevin’s function,33

PS
z = Γ |p| (coth X − 1/X) , (52)

where X stands for

X = (kor + |p/ES
z )/kBT. (53)

The expansion in series of Eq. (52) for small X yields
constitutive relation (50) of the pyroelectric interface, where
PS
z0 and αS

zz are given by

PS
z0 = Γ |p| kor/3kBT, αS

zz = Γ |p|2/3kBT. (54)

Assuming that Γ is of the order of the bulk concentration of
water C times 1 or 2 water diameters (Γ ∼ 0.033 Å−3 × 1-2
× 2.8 Å, i.e., one water molecule per 5-10 Å2 is subject to
uor), we obtain for αS

zz/ε0 the value 3-6 nm. The Langevin
theory underestimates the macroscopic polarizabilities of bulk
dielectrics and of water especially33 and it is likely that the
same is valid for our pyroelectric surface. Therefore, αS

zz/ε0
will probably be few times larger than what follows from
Eq. (54). This is in agreement with the simpler estimation
above. As for the zero-field polarization, a value kor = −5
× kBT (of the order of the energy of a weak hydrogen
bond) results in PS

z0 between −100 and −200 × 10−12 C/m,
which is reasonable. These values suggest, however, that the
linearization of Eq. (52) is not an adequate approximation
and a non-linear dependence of PS

z on both kor and ES
z

must be expected. In addition, the order of magnitude of the
electric field found above, ES

z = 5 × 108 V/m, suggests that
hyperpolarizabilities will affect also the bulk polarization.61

The non-linear problem is, however, beyond the scope of the
current work.

As in Langevin’s linear problem, the free energy per
dipole is −kBT X2/6, so the total free energy σS

P per unit area
of Γ dipoles is

σS
P = −ΓkBT X2/6 = −

�
PS
z0 + αS

zzES
z

�2
/2αS

zz = −
�
PS
z

�2
/2αS

zz,

(55)

where Eqs. (54) and (50) were used. Within the quadrupolar
electrostatics, the potential φ is a continuous functions
at z = 0. Since no jump of φ occurs at z = 0 (so ∆+0

−0φ
≡ φ(+0) − φ(−0) = 0), then, according to the relation σS

P

= γS
P − Dz∆

+0
−0φ, for the surface layer of dipoles, there is no

difference between the thermodynamic and the mechanical
tension.

Eqs. (48) and (50) are two linear equations for ES
z and PS

z

and their solution is

ES
z = −

1
εWLW

Q
+ εOLO

Q
+ αS

zz

PS
z0,

PS
z =

εWLW
Q
+ εOLO

Q

εWLW
Q
+ εOLO

Q
+ αS

zz

PS
z0.

(56)

According to it, the intrinsic dipole moment PS
z of the interface

is smaller than PS
z0, because of the depolarizing field ES

z (acting
in the opposite direction of PS

z ). If the surface polarizability is
low (αS

zz ≪ εWLW
Q
+ εOLO

Q
), the dipole moment PS

z is equal
to PS

z0, i.e., the dipole is solid. On the other hand, if the
quadrupolar lengths tend to zero, ES

z reaches the limiting value
−PS

z0/α
S
zz, which corresponds to complete depolarization of

the interface and PS
z = 0, cf. Eq. (50). This limit does not

correspond to a real physical situation, but it accentuates the
role of the interaction of the bulk quadrupoles with the surface
dipoles for the correct description of the properties of the
polarized interface.

The contribution of the bulk electric field to the mechan-
ical interfacial tension γ can be calculated as the surface excess
of Txx. Using results (29) for Txx and Tzz and the formula of
Bakker,62,45 we obtain
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γW
P =

∞
0

�
TW
xx − TW

zz

�
dz = −εW

∞
0




�
EW
z

�2
+

(
LW
Q

)2


(
dEW

z

dz

)2

− EW
z

d2EW
z

dz2






dz,

γO
P =

0
−∞

�
TO
xx − TO

zz

�
dz = −εO

0
−∞




�
EO
z

�2
+

(
LO
Q

)2


(
dEO

z

dz

)2

− EO
z

d2EO
z

dz2






dz.

(57)

Substituting here field (48) and (49) following from the
quadrupolar Maxwell equations, one finds the contribution
to γ of the electric field created by the surface dipoles in the
two bulk phases, W and O,

γW
P = −

εWLW
Q(

εWLW
Q
+ εOLO

Q

)2

�
PS
z

�2

2
,

γO
P = −

εOLO
Q(

εWLW
Q
+ εOLO

Q

)2

�
PS
z

�2

2
.

(58)

The total contribution γP of the adsorbed dipoles to the
mechanic surface tension of the interface is the sum of
Eqs. (55) and (58),

γP = −
εWLW

Q
+ εOLO

Q

εWLW
Q
+ εOLO

Q
+ αS

zz

(
PS
z0

)2

2αS
zz

, (59)

where we used also Eq. (56). In the absence of external
field, γP coincides with the thermodynamic tension σP

= γP − Dz∆
O
Wφ (since the displacement field Dz is zero).

For water|gas surface of PS
z = −7 × 10−11 C/m, LW

Q
= 2 Å,

and αS
zz/ε0 = 5 or 50 nm, we find that the surface dipole

moment has a very significant contribution to the surface
tension of water: σP = −73 or −23 mN/m, respectively. This
order of magnitude is comparable with the results in Refs. 63,
12, and 52. Eq. (59) can be written as σP = −(PS

z0)2/2αS
zz

− PS
z0ES

z/2, where −(PS
z0)2/2αS

zz = −Γk2
or/6kBT is the energy

gain due to the orientation potential uor and −PS
z0ES

z/2 is the
positive electrical energy which opposes the orientation. The
contribution σP is very sensitive to the quadrupolar moment
and the quadrupolarizability of the water molecules through
the quadrupolar length LQ (at LQ → 0, σP approaches 0).

B. The interaction of normal electric field
with the interface and the dielectrocapillary curve

We now investigate a more general setup, where besides
surface dipole-induced surface electric field (48), an external
field acts on the interface. The interaction between a static field
and an interface between insulators (where the interface is an
entity on its own, with its intrinsic electrical and mechanical
properties) has been investigated by Rusanov and Kuni5 in
regard to its effect on nucleation. Warshavsky and Zeng further
investigated the role of the bulk quadrupoles in this problem,
using density functional theory.64 Bedeaux and Vlieger38 and
Graham and Raab3 investigated the interaction of a dielectric
interface with light. Apart from the applications mentioned in
the Introduction, the problem may be of practical importance

for, e.g., the electrospinning process.65 The effects investigated
in this section will have significant contribution also to the
image force acting on an ion (the ion polarizes not only the
bulk phases but also the surface).

Consider an electrostatic field E = ezEW
z∞ acting on the

aqueous phase and penetrating the oil as ezEO
z∞. The interface

is also subject to this field and, in addition, to a significant field
gradient due to the swift change of Ez from EW

z∞ to EO
z∞ in a

dipolar double layer that is several Å thick. Within the classical
macroscopic dipolar equations of electrostatics, Ez experience
a discontinuity at z = 0, while within the quadrupolar ones,
Ez is continuous, Eq. (20).

For this problem, it is convenient to choose the zero of
the potential at z = 0 (i.e., φ(0) = 0). The solution of Eqs. (7)
that has the proper asymptotic behaviour at z → ±∞ is

φW = ∆S
Wφ


exp(z/LW

Q) − 1

− EW

z∞z,

φO = ∆S
Oφ


exp(−z/LO

Q) − 1

− EO

z∞z.
(60)

Here, ∆S
Wφ and ∆S

Oφ are integration constants, and together
with EO

z∞, they are determined by boundary conditions
(18)-(20). Gauss’s law (18) leads to the trivial result

εWEW
z∞ = εOEO

z∞ (=Dz). (61)

In the absence of free charges, the displacement field Dz is
independent of z. For ∆S

Wφ and ∆S
Oφ, we obtain

∆
S
Wφ =

LW
Q

εWLW
Q
+ εOLO

Q

PS
z −

�
εW − εO� LW

Q
LO
Q

εWLW
Q
+ εOLO

Q

EW
z∞,

∆
S
Oφ = −

LO
Q

εWLW
Q
+ εOLO

Q

PS
z −

�
εW − εO� LW

Q
LO
Q

εWLW
Q
+ εOLO

Q

EO
z∞

(62)

compared to Eqs. (41). Potential (60) is illustrated in Fig. 3(a).
From Eqs. (60)-(62), we find that the surface electric field

ES
z = −dφ/dz |z=0 is

ES
z = −

1
εWLW

Q
+ εOLO

Q

PS
z +

LW
Q
+ LO

Q

εWLW
Q
+ εOLO

Q

Dz. (63)

Except for the self-field of the dipoles, Eq. (63) contains a
second term over Eq. (48), standing for the contribution of the
external field Dz. Eq. (63) is similar to Eq. (12) of Onsager,66

used for his famous model for dipolar fluids. The first term in
Eq. (63) is the surface analogue of Onsager’s reaction field and
the second one is similar to his cavity field.66 The molecules
at the surface are subject to the total field ES

z (“local internal
field”). Eqs. (63) and (50) are two linear equations for ES

z

and PS
z (compare to Eqs. (4) and (12) of Onsager66) and their
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FIG. 3. (a) Distribution of the potential φ(z) and (b) the field Ez(z) near a polarized interface in external field EW
z∞=Dz/ε

W. Material parameters as in Fig. 2.
The external field value 1 GV/m is close to the point of zero surface dipole of this interface.

solution is

ES
z = −

1
εWLW

Q
+ εOLO

Q
+ αS

zz

PS
z0 +

LW
Q
+ LO

Q

εWLW
Q
+ εOLO

Q
+ αS

zz

Dz,

(64)

PS
z =

εWLW
Q
+ εOLO

Q

εWLW
Q
+ εOLO

Q
+ αS

zz

PS
z0 +

(
LW
Q
+ LO

Q

)
αS
zz

εWLW
Q
+ εOLO

Q
+ αS

zz

Dz.

(65)

Note that PS
z0 is the dipole moment in the absence of local

internal field and not in the absence of external field. Even
when Dz is absent, the local field is not zero due to the reaction
field; the inherent dipole moment and field of the interface,
Eqs. (56), are obtained from Eq. (65) by setting Dz = 0.

The following form follows for the electric field distribu-
tion in the interfacial region from (60)-(63),

EW
z =

�
ES
z − EW

z∞
�

exp(z/LW
Q) + EW

z∞,

EO
z =

�
ES
z − EO

z∞
�

exp(−z/LO
Q) + EO

z∞.
(66)

The field profile is illustrated in Fig. 3(b). Note the functional
similarity of this field distribution to Overbeek’s potential
distribution near a charged surface between two electrolyte
solutions that build up a Galvani potential67—this is another
example for the analogy between diffuse charge and diffuse
dipole layers.

Let us now calculate the Gibbs excess of the dipole
moment—we substitute Eqs. (65) and (66) into the definition
of ΓP,

ΓP=PS
z +

0
−∞

�
PW
z − PW

z∞
�

dz +

∞
0

�
PO
z − PO

z∞
�

dz

=
ε0

(
LW
Q
+ LO

Q

)
εWLW

Q
+ εOLO

Q
+ αS

zz

PS
z0 + χSDz, (67)

where the dielectric susceptibility of the dipolar double layer
χS stands for

χS=
∂ΓP

∂Dz

=
ε0

εWεO

�
εW − εO�2LW

Q
LO
Q
+

(
εWLO

Q
+εOLW

Q

)
αS
zz

εWLW
Q
+εOLO

Q
+ αS

zz

. (68)

Relations (67) and (68) set the basic theory of the coefficients
in the constitutive relation of ΓP(Dz) (compare to those in
Ref. 5). A feature of Eq. (67) is that the total dipole moment
of the interface becomes zero at a certain displacement field
of zero dipole,

Dz,P=0 = −
εWεO

(
LW
Q
+ LO

Q

)
(εW − εO)2LW

Q
LO
Q
+

(
εWLO

Q
+ εOLW

Q

)
αS
zz

PS
z0.

(69)

In the limit where both quadrupolar lengths tend to zero, this
field becomes undefined (another weakness of the classical
Maxwell equations).

One can substitute field (66) in definition (35) of the
potential drop in the surface condenser due to the surface
dipole moment to show that ∆O

Wφ = ΓP/ε0 with ΓP given by
Eq. (67). Therefore, the basic Eq. (1) is fulfilled also in the case
of external field acting on an interface between quadrupolar
media (Eq. (3.8) in Ref. 2).

The electric energy of the adsorbed dipoles per unit area
(σS

P = γS
P) in the local field ES

z is still given by Eq. (55), but the
surface dipole PS

z is altered by the external field according to
Eq. (65). The total energy of the dipoles involves also the
contribution of the electric field in the bulk. In case that
external field is present in the bulk phases, the bulk stress
tensors are anisotropic, i.e., TW

xx∞ , TW
zz and TO

xx∞ , TW
zz . The

Tzz component is constant equal to −p0 and the respective
values of TW

xx∞ and TO
xx∞ follow from Eq. (29) at z → ±∞

(where Q is zero):

TW
xx∞ = −p0 − εW�EW

z∞
�2
, TO

xx∞ = −p0 − εO�EO
z∞
�2
. (70)

In such case, Bakker’s formula is invalid and instead of it one
should use directly definition (34) of γ—it yields
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γW
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0
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�2 −
�
EW
z∞
�2
+

(
LW
Q

)2


(
dEW

z

dz

)2

− EW
z

d2EW
z

dz2






dz,
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xx − TO
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dz = −εO
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−∞
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

�
EO
z

�2 −
�
EO
z∞
�2
+

(
LO
Q

)2


(
dEO

z
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)2

− EO
z

d2EO
z

dz2






dz,

(71)

compared to Eqs. (57). Substituting here solutions (64) and
(66) for the field and summing with σS

P from Eq. (55) with PS
z

from Eq. (65), we obtain for the mechanical interfacial tension
of the interface in external field,

γP = σS
P + γ

W
P + γ

O
P = γP(Dz = 0) + χSD2

z/2ε0, (72)

where the contribution of the adsorbed dipoles to the
mechanical interfacial tension in the absence of external field
is given by Eq. (59) and the susceptibility χS—by Eq. (68).
From this result, it follows that γ increases in normal external
field, cf. the blue curve in Fig. 4 (where the non-electrostatic
contribution to γ is added to γP by substituting γP(Dz = 0)
with σ0 = 72 mN/m). The curve γ(EW

z∞) is symmetrical with
respect to EW

z∞ = 0, so the direction of the field is unimportant
for γ. A field of strength EW

z∞ = ±5 × 106 V/m applied to a
water|gas surface will result in increase of γ of the order of
0.001 mN/m, which is enough to cause a significant Marangoni
flow. Thus, in case that tangential gradient of Ez exists along
the surface, it will draw liquid from the low-field region to the
high-field region (which can be called dielectro-Marangoni
effect—compared to the electro-Marangoni effect68 driven by
tangential gradient of φ). The effect will have a first order

FIG. 4. Dependence of the mechanical surface tension γ(EW
z∞) (blue line)

and the thermodynamic surface tension σ(EW
z∞) (red line) on the normal

electric field in the aqueous phase and for water|gas, Eqs. (72) and (73). The
field of zero surface dipole is marked with dashed-dotted line.

contribution to all surface properties considered in Ref. 39
(and to Eq. (12) in particular).

The thermodynamic tension is obtained as σP

= γP − Dz∆
O
Wφ from Eqs. (1), (67), and (72),

σ = σ0 −
LW
Q
+ LO

Q

εWLW
Q
+ εOLO

Q
+ αS

zz

PS
z0Dz −

χS

2ε0
D2

z, (73)

the non-electrostatic contributions to σ has been added and σ0
is the total surface tension in the absence of field (γP(Dz = 0)
is different from σ0; this equation follows strictly from
Eqs. (1), (38), and (67)). The function σ(Dz) is asymmetric,
Fig. 4. If Dz is of the same sign as PS

z0, the thermodynamic
surface tension decreases. For Dz in the opposite direction
of the adsorbed dipoles, σ first increases and then passes
through a maximal value located at Dz = Dz,P=0. According
to Rusanov and Kuni,5 this asymmetry explains why water
droplets nucleate preferentially on negative charges. Eq. (73)
predicts the existence of one negative value and one positive
value of the external field that nullify σ, causing self-
dispersion. It is seen that the thermodynamic surface tension
becomes zero at two values of the external displacement field,
namely,

Dz,σ=0 = Dz,P=0 ±


D2
z,P=0 + 2ε0σ0/χS. (74)

For water|gas surface, using LW
Q
= 2 Å, αS

zz/ε0 = 15 nm,
PS
z0 = −140 × 10−12 C/m, and σ0 = 72.2 mN/m, we obtain

from Eqs. (68), (69), and (74), (i) susceptibility of the dipolar
double layer χS = 1.3 × 10−12 m; (ii) field of zero dipole
EW
z∞,P=0 = Dz,P=0/ε

W = +1.0 × 109 V/m; and (iii) field of
self dispersion EW

z∞,σ=0 = Dz,σ=0/ε
W = +2.8 × 109 and −7.5

× 108 V/m. These fields are so high that linear relationships
(5) between P and E are no longer valid.61 Instead, for a
quantitatively correct theory, a non-linear dependence of the
Langevin type or at least quadratic P(E) dependence should
be used, as already discussed. Our results above correspond
to a linear dipolar double layer theory. They are probably
as far from truth as the linear Gouy-Chapman theory of
the electric double layer differs from the non-linear one.69,70

Nevertheless, we expect the qualitative features of our theory
to be correct. The numerical estimations for the parameters
from Sec. III, however rough, are summarized in Table I for
the surfaces of the two dielectrics for which both LQ and ∆G

Lφ
have been estimated from experimental data:10,31,53,71 water
and methanol.
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TABLE I. Estimated dielectric, pyroelectric, and mechanistic characteristics of the water and methanol surfaces.

∆G
Lφ potential drop at the

surface (mV) ε dielectric constant
LQ quadrupolar

length (Å)
PS
z intrinsic surface

dipole, Eq. (44) (C/m)
ΓP total surface dipole moment,

Eq. (1) (C/m)

Water|gas −10010,11,56,57 78 × ε0 231,53 −70 × 10−12 +0.9 × 10−12

Methanol|gas +18071 33 × ε0 153 +50 × 10−12 +1.6 × 10−12

ES
z surface field, Eq. (48)

(V/m)
αS
zz/ε0 surface

polarizabilitya (nm)
PS
z0 zero-field

polarizationa (C/m)

σP contribution of PS
z

to σ, Eq. (59) (mN/m)
σ0 surface tension of the

clean surface (mN/m)

Water|gas 0.5 × 109 15 −140 × 10−12 −36 72
Methanol|gas −1.3 × 109 3.3 +100 × 10−12 −85 23

EW
z∞.σ=0 field of self-dispersion, Eq. (74) (V/m)

χS surface susceptibility,
Eq. (68) (m)

EW
z∞,P=0 field of zero

dipole, Eq. (69) (V/m) Lower Higher
σP=0 maximal value of the surface

tension (at Dz,P=0), Eq. (73) (mN/m)

Water|gas 1.3 × 10−12 +1 × 109 −0.8 × 109 +3 × 109 110
Methanol|gas 1.5 × 10−12 −3.4 × 109 −7 × 109 +0.4 × 109 110

aThe values are chosen for illustrative purposes only; they correspond to αS
zz = εLQ and PS

z0= 2PS
z.

TABLE II. Comparison between electric double layer and dipolar double layer.

Diffuse charge layer Diffuse dipole layer

The specifically adsorbed surface charge density ρS is compensated by
a diffusely distributed bulk free charge. The total charge of the surface
is zero

The intrinsic surface dipole moment PS
z is partially compensated by bulk dipoles of

diffuse distribution. The total surface dipole ΓP is smaller than PS
z

In linear approximation (small φS), the bulk potential decays
exponentially with characteristic length LD = (εkBT /2e2Cel)1/2 (the
Debye length), where 2Cel is the concentration of free charges

The potential decays exponentially with characteristic length LQ = (αQ/3ε)1/2 (the
quadrupolar length)

L2
D is approximately proportional to p ·pC/e2Cel (ε ∼ p ·pC/T ). LD

is nearly independent of T
L2
Q is approximately proportional to q : qC/p ·pC (αQ ∼q : qC/T ). LQ is nearly

independent of T
Its structure determines the shape of the electrocapillary σ(φ) curves,
according to Lipmann’s equation. A feature of this curve is a maximum
at the potential of zero charge

Its structure determines the shape of the dielectrocapillary curves σ(Dz), according
to Rusanov-Kuni equation (37). This curve has a maximum at field (69) of zero
surface dipole

Gouy’s equation relates φS and ρS; it follows from Gauss’s law69 Eq. (63) relates ES
z and PS

z. It follows from Graham-Raab multipolar condition (17)
The diffuse charge layer due to the Galvani potential at the interface
between two electrolyte solutions has potential profile given by
Overbeek’s formula67

The diffuse dipole layer due to the external field at the interface between two
insulators has electric field profile given by Eq. (66)

IV. CONCLUSIONS

(i) The work presents a full set of boundary conditions
(Eqs. (16), (17), and (20)) at a flat interface between
two isotropic media for the quadrupolar equation of
electrostatics. Their corollaries were investigated on
the example of several problems. Compared to the
classical results that follow from Poisson’s equation, the
quadrupolar electrostatics leads to regularization of the
potential (continuous φ and E at an interface possessing
surface charge and surface dipole moment).

(ii) The quadrupolar electrostatic equations predict that near
a polarized interface, a diffuse dipole layer is formed.
Strong analogy exists between diffuse charge layer near a
charged surface and diffuse dipole layer near a polarized
surface—these are summarized in Table II. The main
difference is that the electric double layer is electroneutral
at equilibrium, while the dipolar double layer has an
equilibrium non-zero total dipole moment ΓP.

(iii) The Maxwell stress tensor and the electric force density
in a linear isotropic quadrupolar medium are derived,
Eqs. (22) and (24). The ponderomotive force has

contribution from the action of the electric field gradient
on the bulk quadrupoles, as well as from the quadrupolar
image force and the quadrupolar electrostriction.

(iv) Significant effects from the bulk quadrupolarizability
on several properties of the dielectric interface are
found, among them the surface field, the electrostatic
contribution to the interfacial tension, the double layer
susceptibility, etc., cf. Table I.

(v) The dependences of the mechanical and the thermody-
namic interfacial tensions on the external electrostatic
field normal to the surface are predicted (the dielectro-
capillary curves, Fig. 4). The relation of the susceptibility
of the dipolar layer (χS = dΓP/dDz), the field of zero
surface dipole and the dielectro-Marangoni coefficient
dγ/d(D2

z) to the surface and bulk dielectric properties is
analyzed.

The presented macroscopic description of the interfacial
structure within the macroscopic quadrupole expansion is
natural and straightforward. The presented model is, however,
of quite limited applicability. Let us summarize the main
limitations and the route for their elimination.
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(i) The surface electric field is very high, close to the point
of dielectric saturation, and non-linear dependence of P
vs. E must be expected. The linearization of Eq. (52)
is also hardly a good approximation. This problem was
realized also by Rusanov and Kuni,5 who accounted for
hyperpolarizability in their model of PS

z .
(ii) The assumption that the surface layer where the intrinsic

dipole PS
z is situated is thinner than the quadrupolar length

LQ is far from truth. Overlapping between the adsorbed
layer and the diffuse dipole layer will be present, which
must be dealt with similarly to the overlapping between
the diffuse and the adsorbed electric layers near the
charged surface of a concentrated electrolyte solution.57

(iii) We present a macroscopic theory for a nano-object
few ångstroms thick. Strong structural effects must be
expected, which can be resolved by introducing levels
of microscopic description.59,72 The results for discrete
dipole distribution at the interface are an example for
such an approach.50–53

(iv) Most parameter values used for the examples are quite
uncertain. The value LW

Q
= 2 Å is probably overesti-

mated,31,59 ∆O
Wφ is disputed,10,11 and the values of PS

z0
and αS

zz are nothing more than rough estimations.

The above limitations unfortunately make the predictive
power of our model questionable. The calculated values in
Table I should be therefore considered estimations of the order
of magnitude.

We deliberately have not considered the nature of the
orientation potential uor = −kor cos θ in Eq. (51), for the sake of
generality and simplicity. Note that this potential is also most
probably closely connected to the quadrupolar electrostatics.
For example, the image forces13 will obviously depend on
LQ, PS

z , and αS
zz, as well on the tangential polarizability of

the interface49 αS
xx. This is a problem that we will hopefully

consider in the near future.
Precise mechanistic model of the PS(E) dependence is

another requirement for the successful application of the
quadrupolar theory. Langevin’s model (51)-(54) is a first step
which neglects numerous features of the interface. One such
feature is that the quantities αS

xx and αS
zz must involve, in

principle, a contribution due to the profile of the dielectric
permittivity tensor (cf., e.g., Refs. 5 and 73)—in a sense, αS

xx

and αS
zz are the surface excesses of the tangential and the

normal component of the ε tensor.
An important conclusion from our macroscopic model

of the interface is the tight relation between surface dipole
and the bulk quadrupole moments. It elucidates the high
sensitivity of the surface potential obtained by various models
and simulations to the quadrupole moment of water.10,15,13,12,16

Such sensitivity is evident already from multipolar condition
(17) at the interface. It states that the quadrupole terms in
the macroscopic multipole expansion in the bulk phases are
of the same order of approximation as the surface dipole
moment. To put it simply, from Eq. (17), it follows that
in a simulation, if the implemented molecular quadrupole
moments and quadrupolarizabilities are inaccurate, then the
surface dipole moment and the surface potential drop obtained
will be exactly as inaccurate as them.
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