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deacetylase (HDAC) inhibitors are currently in @l under development for the treatment of cancers.
Genome-wide DNA methylation profiling has been m®gd for use in disease diagnosis, and histone
modification profiling for disease stratificationllisffollow suit. However, whether epigenome sequiegc
technologies will be feasible for rapid clinic diegpis and patient treatment monitoring remainseteden,
and alternative detection technologies will almosttainly be needed. Here we used electrochemical
impedance spectroscopy (EIS) employing a grapheseeb screen-printed electrode system to directly
measure global DNA methylation and histone H3 datn to compare non-cancer and breast cancer cell
lines. We demonstrated that whilst global methglativas not useful as a differential marker in the
cellular systems tested, histone H3 acetylation effesctive at higher chromatin levels. Using bresasd
endometrial cancer cell models, EIS was then us@donitor cellular responses to the DNMT and HDAC
inhibitors 5-Aza-2deoxycytidine and suberoylanilide hydroxamic dciditro, and proved very effective

at detecting global cellular responses to eithesitinent, indicating that this approach could bdulise
following treatment response to epigenetic drugsredver, this work reports the first combined asialy

of two epigenetic markers using a unified grapheased biosensor platform, demonstrating the patenti
for multiplex analysis of both methylation and atation on the same sample.

1. Introduction

Cancer cells undergo epigenetic changes in 5-nwttodine distribution that include global DNA
hypomethylation and the hypermethylation of promd@@G islands associated with tumor-suppressor
genes. DNA methylation is just one facet in therdomted regulation of chromatin structure thabals
involves discrete modifications to histone proteimeluding histone H3 and H4 deacetylation, among
others, which collectively result in transcriptitigaltered states (Capp, 2017; Jones and Baylify2Lo
and Zhou, 2018; Sheahan and Ellis, 2018).

Large-scale epigenomic studies have been madebpossing established complex technologies. These
allow the genome-wide mapping of epigenetic marksluding DNA methylation and histone
modifications, which are critical for regulatingrge expression. In turn, we are learning how mapping
aberrant alterations to these epigenetic marksdeansed in clinical diagnostics (Bock et al., 20R86tler

and Dent, 2013; Libertini et al., 2016; Rendeiralet2016).

DNA methylation and histone modification biomarkdrave several advantages that qualify them for
broad use as in vitro diagnostics and to supparicel decisions: (i) They can be cell-type-spesifyet
robust toward transient perturbations. (i) Theg &inary marks (i.e., for a single cell and allade,
epigenetic mark is either modified or not), whicicifitates reliable measurements on heterogeneous
samples. (iv) The use of epigenetic markers toctlegncer sensitively is based on the premisettimabr-
derived chromatin/DNA is released into bodily flsjcor other remote samples, and can be detected by
abnormal DNA methylation and histone modificaticattprns (Bormann et al., 2018; Coleman and De,
2018; Graff-Baker et al., 2018; Singh et al., 204iBet al., 2018; Zhang et al., 2018).

Current approaches to assess the epigenetic statenity target individual genetic loci to determin
histone modification (predominantly acetylation andthylation) and DNA methylation status. Bisulphit
sequencing has been the mainstay of DNA methylaiaalysis with methylated and hydroxymethylated
DNA immunoprecipitation (MeDIP and (h)MeDIP) metlsodcoming online, whilst chromatin
immunoprecipitation (ChlIP) is the research toatlwbice for determining histone modifications. Hoerv
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88  require expensive and highly technical hardward,expert users for sample and data analysis.

89

90 Electrochemical immunosensors using advances immaterials are being developed for biosensing
91 applications (Zhu et al., 2015). For the detectiérepigenetic modifications electrochemical anabti

92  methods offer several advantages over other teghgjgsuch as surface plasmon resonance and atomic
93 force spectroscopy, in terms of sensitivity, simipyi and portability (Stewart and Tsui, 2018).
94  Furthermore, they offer limits of detection of mgtted DNA within the levels reported to be found
95 circulating in plasma (Stewart and Tsui, 2018).addition, instrumentation required to make such
96 measurements is low-cost, with instrument refinemeducing costs even further (Sawhney and Conlan,
97  2019). Gold and carbon -based electrode systemaimetine most utilized working electrode materials,
98 despite many other materials having been evaly#sgjcova et al., 2017), and have been used irescre
99  printed formats that offer low cost per unit, arw bt require extensive preparation to obtain atipe
100 surface prior to use. Graphene as a working el@etaffers a high signal to noise ratio, and is lgasi
101  functionalized with antibodies when coated withyamiiline, which also serves a conductive polymet an
102 is used as an additive transducer layer to avadrtroduction of graphene surface defects (Gatzzt e
103 2018; Teixeira et al., 2014a). Graphene offersrthéu advantage over gold electrodes for the detect
104 and quantification of DNA as it lacks the inheretutsorption properties for unmodified DNA that are
105 displayed by gold surfaces due to affinity intei@ts (Koo et al., 2015). Here, we demonstrateuteeof
106 a graphene-based immunosensor, where anti-5-mgtbgioe (anti-5mc) and anti-acetylated histone H3
107 (anti-acH3) antibodies were directly coupled toodyaniline-modified screen-printed graphene elatgro
108 to detect DNA and chromatin using label-free ElSamgements. Using this system global levels of
109 methylated DNA and histone H3 acetylated chrombirels were assessed in normal (MCF12A) and
110 cancer (MCF7) breast cell models, and MCF7 and HE¢Hs treated with a DMNT or HDAC inhibitors
111 were found to show alterations in DNA methylatianhistone H3 acetylation respectively. Overallsthi
112  study highlights the effectiveness EIS grapheneumensensors for the direct label- and amplificafiee

113  detection of global epigenetic modifications in can cells, and thus their potential for monitoring
114  therapeutic efficacy.

115

116 2. Materialsand Methods

117

118  Cdll culture and treatments. MCF7 cells (ATCC, Maryland USA) were cultured iradgte’s Minimum
119 Essential Medium (Gibco, ThermoFisher Scientifid{)Usupplemented with 10% (v/v) foetal bovine
120 serum (Gibco) and 0.01mg/ml insulin (Sigma-Aldridissouri, USA). Hec50 cells (ATCC, Maryland
121 USA) were cultured in Dulbecco's Modified Eagle Med: Nutrient Mixture F-12 (DMEM/F12) (Gibco,
122 ThermoFisher Scientific, UK) supplemented with 1Q@%v) fetal bovine serum (Gibco), 1% (v/v)
123  penicillin and streptomycin (Gibco), sodium bicambte and sodium pyruvate. MCF12A cells (ATCC,
124 Maryland USA) were cultured in Dulbecco's Modifidgagle Medium: Nutrient Mixture F-12
125 (DMEM/F12) (Gibco, ThermoFisher Scientific, UK) qpmented with 5% (v/v) horse serum (Gibco),
126  20ng/ml human epidermal growth factor, 100 ng/mblela toxin, 0.01 mg/ml bovine insulin and 500
127 ng/ml hydrocortisone 95%. All cell lines were groan37°C in a humidified atmosphere with 5% CO2 to
128  90% confluency in T75 flasks (Corning, New York, A)Jefore collection. Cells were grown to 40% or
129  60% confluency respectively before exchanging gmiwth media for stripped media prior to treatment
130 with the DNMT inhibitor 5-Aza-2deoxycytidine (1 uM), suberoylanilide hydroxamicida (2.5 uM) or
131  vehicle (DMSO).
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Immunosensor assembly. Graphene-SPEs were purchased from DropSens (DB8PH Metrohm UK
Ltd, Runcorn, UK) and were composed of a carbomtanelectrode, a silver pseudo-reference electrode
and a printed graphene working electrode (4 mmElectrical characterization of SPEs was perfating
connecting the SPEs to the potentiostat/galvanastat suitable switch box (DropSens, Metrohm UK Ltd,
Runcorn, UK). In order to mediate selective immuetedtion of chromatin and gDNA to the graphene
sensor surface, PANI functionalization was utilizasl previously described (Teixeira et al., 2014b)

Electrochemical measurements. CV and EIS were performed using a Metrohm AutdBSTAT302N
equipped with FRA32M and DRP-DSC connector; confotl analysis were provided through Nova
software version 2.0.1 and higher (Metrohm UK LRiincorn, UK). CV procedures spanned -0.7 to 0.7
Volts starting and ending at OV with a scan ratdd@5 Volts per second. EIS procedures applied 50
frequencies between 1000 and 0.01 hertz, logarniigidistributed at an amplitude of 0.0kw on a DC
bias of 0.1V with the reference electrode. EIS deda fitted to a R(C[R(RC)]) equivalent circuit nebd
using a maximum of 300 iterations with weight facpplied.

Chromatin/gDNA detection and quantification. The functionalized biosensing platforms are Hase
impedance measurements resulting in changes sfivétsi (Rct) following the binding of a chromatin.

or gDNA to the specific antibody immobilized on tlsensor surface. Increasing concentrations of
chromatin ranging from 0.0086 to 134 ng/uL for MRQR10.0078 to 123 ng/uL for MCF7 and 0.0053 to
416 ng/uL for Hec50; and gDNA solutions, rangingnfr 0.0048 to 75 ng/ul for all cell lines, were
prepared by dilution of 1708 ng/pL of chromatin attdng/uL of gDNA stock solutions in media.

Chromatin immunoprecipitation. ChlP assays were performed using the Chromatrap®-€eq kit
following the manufacturers’ instructions (Porveitiences Ltd, Wrexham, UK). Chromatin was
quantified by Nanodrop 2000 (ThermoFisher Sciamjtifand visualized using by agarose gel
electrophoresis to ensure correct distributionrafifnent sizes prior to immunoprecipitation. 1 pgach
chromatin sample was used per ChIP with 2 ug eveait antibody; anti acetyl H3 antibody (Millipore,
Darmstadt, Germany) or non-specific rabbit IgG @hatrap, Porvair Sciences Ltd, Wrexham, UK).
gPCR was carried on the target gp@é forward primer 5’-CCCACAGCAGAGGAGAAAGAA; reverse
primer 5-CTGGAAATCTCTGCCAGACA.

Methylated DNA immunoprecipitation. MeDIP assays were carried out using the Chroma#t@pIP kit
according to the manufacturers’ protocol (PorvaieSces Ltd, Wrexham, UK). gDNA was quantified by
Nanodrop 2000 (ThermoFisher Scientific) and visaei using agarose gel electrophoresis to ensure
correct distribution of fragment sizes prior to inmoprecipitation. 500 ng DNA was used per MeDIFhwit
1lug kit supplied anti-5-methylcytosine antibody rarn-specific mouse IgG and linker. Samples were
neutralized, and amplification of enriched methsthtDNA carried out at th€XCL12 locus forward
primer 5-CTCATTCAGTTCCCGCCATCreverse primer 5-GCCGCTTATTGTCCCTGTG.

Western blotting. Total protein was extracted using RIPA buffed ajuantified using the DC Protein
assay (BioRad, Watford, UK). Relevant protein coniaions were separated by SDS PAGE. Proteins
were transferred to PVDF membrane, blocked andgutobith a 1/15,000 dilution of anti-acetyl H3
antibody (Millipore, Watford, UK) followed by ECL rdi-rabbit IgG horse radish peroxidase (GE
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Immun-Blot PVDF Membrane (BioRad, Watford, UK) wastivated with methanol and equilibrated with
transfer buffer prior to spotting the membrane wii€il®ng heat denatured gDNA. A 1/300 dilution of the
primary antibody anti-5mC (Chromatrap Porvair ScemnLtd, Wrexham, UK) was used to probe the
methylated DNA and detected with ECL anti-rabbiElporse radish peroxidase (GE Healthcare, Bucks,
UK).

3. Results
Immunosensor assembly and functionalization

Electrochemical impedance spectroscopy (EIS) iab&lland amplification free technique that enables
direct molecular measurements on modified surfdeetredes (Sanchez et al., 2008). Here, we adapted
our previously reported screen-printed electrodeE)Sgraphengblyaniline (PANI) platform to detect
methylated DNA and acetylated histone H3 using-amtt and anti-acH3 antibodies respectively. Sensor
optimization using control DNA and chromatin extest from cell line models established sensitivity
according to our established protocols (Teixeiral €22016).

Sensor assembly was evaluated using scanning axegticroscopy and atomic force microscopy (Fig.
S1), and electron transfer properties determinedinay a redox probe and evaluated by cyclic
voltammetry (CV) and EIS. Unmodified graphene-SPi®wed a quasi-reversible electrochemical
response for the [Fe(CNY"* redox couple witt\Ep of 0.158 V andlp of 0.285 mA, respectively. After
10 cycles, the modification of graphene-SPE surfaite PANI resulted in a\lp increase of 0.894 mA
and aAEp decrease of 2.898 V (Fig. 1A) attributed to fpesiy charged amino groups of the PANI
molecule attracting the negative charge of [Fe@) promoting electron transfer on the electrode
surface (Zor et al., 2013). A cyclic voltammografrttee SPE-graphene/PANI/Antibody electrode showed
a decrease peak-to-peak potential separati@@p (of 0.547 V). Further, addition of the BSA blonfi
agent to the SPE-graphene/PANI/Ab electrode surfpmee rise to a change on the electrochemical
behavior of [Fe(CNJ*"*, leading to aAEp increase of 0.258 V and decreasadpl value of 0.546 mA.
BSA molecules cause masking of the electrode saidaiation/reduction of the redox probe [Fe(gN)

" (Daniels and Pourmand, 2007).

EIS data are presented as Nyquist plots where thetRhe electrode surface is given by the hegieir
diameter obtained in EIS and can be used to ddfieeinterface properties of the electrode. The
unmodified graphene surface display fast electransfer properties (Rct = 88@, Fig. 1B), which
increases following PANI deposition (Rct = 1.182KFig. 1B). Following covalent attachment of anti-
acH3 antibody, the Rct increased to 1.82 &ig. 1B), demonstrating that electron exchangaéen the
redox probe and the electrode was impeded, andvissenhanced further when BSA was added to the
SPE-graphene/PANI/Ab (Rct = 2.04X Fig. 1B). Similar data was obtained for the d&mtie antibody
sensor platform build (Fig. 1C and D)o define linear ranges for 5mc and acH3 conceatrst Rct
values of genomic DNA (gDNA; 4.8pg/uL - 75ng/uL)dachromatin (8.6pg/uL - 134ng/uL) were
determined (Fig. 2A and B respectively).

DNA methylation and histone H3 acetylation statusin normal and breast cancer cell models
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using dot blotting (Fig. 3B). Single locus analysisa CpG island in the 5UTR of CXCL12, which
encodes the stromal cell derived factargotein commonly overexpressed in many cancers (&al.,
2016), also demonstrated that DNA methylation lewetre similar in both normal and cancer breast cel
types (Fig. 3C).

EIS also enabled direct measurement of global méstd3 acetylation (acH3) in MCF7 cells for e.g.,
4460Q £ 50 Q, 134 ng/uL input chromatin which was significantiigher than the levels measured in
MCF12A (3287Q + 589Q, 75 ng/uL input chromatin) (Fig. 3D), and thisfeiEnce was confirmed by
protein blotting (Fig. 3E). Conversely ChIP anadyat the cyclin dependent kinase inhibitor 1 (d@tys
revealed an 8-fold lower level in acetylation in MIC compared to MCF12A cells (Fig. 3F),
demonstrating that whilst globally the MCF7 gendmbyperacetylated compared to MCF12A cells, there
are also locus specific and therefore functiondledinces between these breast cancer cell types.
Suppression of p21 expression through loss of ktity results in loss of cell cycle arrest, driyin
proliferation, a hallmark of cancer cells, andherefore expected in the cancer cell line.

EIS sensor measurements show that global measureofeepigenetic marks can be useful in

differentiating cancer and non-cancer cell typesd @hat combining epigenetic signatures may be
beneficial. For example, MCF7 (low methylation gthiacetylation) can be distinguished from MCF12A
(low methylation + low acetylation). With the addit of other epigenetic marks an algorithm could be
developed to provide a cell specific signature.

Monitoring global response to decitabine and vorinostat treatmentsin cancer cdl lines.

Small chemical modifications that trigger chromatiemodeling through processes including DNA
methylation and histone acetylation are of incregsinterest as therapeutic targets in cancer disedise

to reversible nature of these epigenetic modificeti (Dawson and Kouzarides, 2012; Flavahan et al.,
2017). For example, 5-Azd-8eoxycytidine (decitabine) is a strong inducebbfA de-methylation and is
approved for the treatment of myelodysplastic sy (Mossman et al., 2010; Ramos et al., 2015), and
suberoylanilide hydroxamic acid (vorinostat) isistdne deacetylase inhibitor (HDACI) approved foe t
treatment of cutaneous T cell lymphoma (Qu et24l1,7). The rapid detection of global epigenetitusta
could represent a useful tool for risk assessrd@gnosis, and for treatment monitoring, compleigrbcus
specific analysis of tumor suppressor and oncogpigenetic status in patients.

EIS was used to assess MCF7 and HEC50 cells foonmss to decitabine and vorinostat treatments @Ag.
and D; Fig. 5A and D). The response of MCF7 callsl¢citabine was readily distinguished using EIS
sensors at higher concentrations of input gDNA 15ng/pL). For example, AQ between untreated
(2630Q + 160Q at 75 ng/uL) compared to treated (2038 122Q at 75ng/uL) was -5@0 showing an
expected decrease in DNA following treatment. Fatagnetrial cancer cells a similar trend was obskrve
for example a meanQ of -780 at 75ng/uL (Fig. 5A).

These responses were validated using a methylahé8l §pecific dot blot, where 100ng total gDNA
extracted from both MCF7 and HEC50 cells showedatsed intensity following treatment (Fig. 4B and
5B), and by MeDIP where the CpG island region ef @XCL12 gene was significantly demethylated. A
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increased acetylation was observed in the treaetples compared to untreated controls in both MCF7
and HEC50 withAQ much greater compared to that observed for den#gabeatment (Fig. 4D and 5D).
For MCF7, aAQ of +653 (81732 + 99Q treated, 752@ + 331Q untreated) was measured in MCF7 at
the highest input chromatin concentration of 246.h for untreated and 44 ng/ pL for vorinostattes,
indicative of an increase in open chromatin architee. For Hec50, AQ of +4600 was (7832 + 90Q
treated, 323Q * 38Q untreated) was obtained for 83.2 ng/pL for ungdatells and 58 ng/uL for treated
cells).

Immunosensor performance was also validated byewesiotting (Fig. 4E and 5E), and p21 ChIP where
a 2.11 and 3.28 -fold increase in H3 acetylatidiofdng vorinostat treatment were measured in MCF7
and HECH50 respectively (Fig. 4F and 5F).

The use of EIS in monitoring cellular responsesinag treatment is clearly very effective, and sach
monitoring would be of value in determining patier@sponses to such treatments, particularly if
measurements could be made directly from free laiting methylated DNA and modified chromatin that
are known to alter in patients.

4. Discussion

The adaptation of a graphene based EIS immunoséasognabled for the first-time direct amplificatio
free and label-free detection of both DNA- and Basbme- linked epigenetic modifications. The method
developed here utilizes antibodies that have bedidated and widely used for locus specific genome
wide analysis associated with ChlP- and MeDIP- nepies, making comparison between EIS and
epigenomic analysis more robust. The EIS methodemts a snapshot of ‘gross’ epigenetic statusmrathe
than the ‘statically global view' obtained from tlassimilation of multi-loci epigenome datasets. The
speed of signal acquisition compared to PCR or Bfdguencing is substantially improved as there is no
requirement for template amplification. Furthermdbe relative simplicity of the analytical processd
very low sample volumes lend this approach to céihitility. This technology is envisioned to be@m
price competitive point-of-care system, where singise functional screen-printed electrodes are
preferable to reusable systems due to the neednimipe false positive results that would likelycoe
due to incomplete biological sample removal frora Hiosensor surface. Future miniaturization of this
technology, as printing techniques become moraedfand with higher resolution, will go some way to
reducing the associated waste stream. Currentldéigis necessitates that clinical samples are ctiyre
handled of therefore sensor chips exposed to alimiaterial must be disposed of appropriately.

Cytosine methylation and gross histone H3 acetytatire regulatory mechanisms for, and established
markers of, transcription repression and activatespectively. DNA methylation directs gene sileggi
through the establishment of condensed heterochiostauctures, whereas histone H3 acetylationlt®su

in the loss of association between lysine residodsistone tails and the negatively charged phaspha
backbone of DNA resulting in transition to a euchatic state. Furthermore, both mechanisms are the
target of currently available therapeutics inclgddtecitabine, a cytosine analogue that functiores RBIA
methylase transferase (DNMT) inhibitor. Followints iincorporation into DNA during replication,
decitabine irreversible binds to DNMT1, sequestgitrthe site of interaction and rendering it iretive.
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or chromatin present has not been directly detexchilowever, as total global DNA methylation levels
are estimated to be 0.7 — 2.8 mole percent i.desmaf 5-methyl cytosine per 100 bases of total DNA
eukaryotes (Hall, 1971), we estimate for exampét €h52-2.1ng/ulmethylated DNA per 75ng/uL input
DNA is being detected in the EIS assay. Simildtlis estimated that only 1.2% of chromatin is gtzged

at histone H3 (Roh et al., 2005), therefore wedatecting approximately 1.6 ng/jalcetylated histone H3
per 134ng/uL input chromatin.

DNA methylation levels were similar for normal abreast cancer cell lines tested using EIS sugggstin
that global methylation without any selection ohggc loci is not useful in differentiating betwete cell
types used in this study. In contrast, the levajlobal acetylation in the MCF7 cancer cell linesviegher
than in the non-cancer MCF12A cells illustratingattheven in the absence of any pharmacological
treatment that can modify cellular epigenetic statdifferences can be determined between cell s
originate from the same tissue.

Using EIS sensors we were able to trace cellugpaese to treatments with DNMT or HDAC inhibitors,
monitoring the respective decreases in DNA methogdabr increases in histone H3 acetylation. The
response of both breast and endometrial cances telllecitabine and vorinostat was as expected with
differentiation between cell responses to eitheatinent detectable at detectable very low leveiamit
DNA or chromatin. With this detection platform abadile it will now be possible to monitor patient
responses to treatment directly from patient sasaple

With the recent surge in global efforts to map epigmes across cancer types and patient cohort& @@oc
al., 2016; Libertini et al., 2016; Rendeiro et @D16; Xi et al., 2018) it is becoming possibleagsociate
global epigenetic changes with disease status wssaiiptical approaches. We propose that multifes
could be used to simultaneously assess severakregiigs marks, and that such an approach could
accurately diagnose and even stage disease priogressectly from patient samples. Such an approach
would obviate the need for DNA sequencing or indéedcomplex and ongoing processes of identifying
and characterizing circulating protein biomarkéise use of a multi-epigenetic marker algorithm dedp
with the AQ differential quantification against known and pFemined/preprogrammed standards
provides an obvious and compelling strategy that needs to be exploited.

5. Conclusions

Whilst a number of DNA methylation sensors havenbeeported (Krejcova et al., 2017) no single
platform has yet emerged as a preferred solutioradourate and rapid methylation testing. The dse o
biosensors in monitoring changes in global metioyatevels in response to cancer cell treatmenih wit
decitabine is reported here for the first time. Tdevelopment of biosensors for detection of histone
acetylation lags significantly behind that of DNAethylation biosensors, and has to date been linited
fluorescent based approaches (Wang et al., 201#. syystem presented in the current study uses an
antibody-based approach, and employs the sameptatfsed for DNA methylation detection. Using this
system, we were able to demonstrate for the finst-the amplification and label free immuno-detatti

of histone H3 acetylation, and monitor responsdsreast and endometrial cancer models to vorinoestat
drug that has undergone clinical trials for thetmgent of advanced breast cancer (Luu et al., 2018
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the way to monitoring multiple epigenetic modificats, particularly targeting the multitude of
modifications that occur on histone proteins, whichwell as acetylation, include protein methylatio
ubiquitylation, phosphorylation, sumoylation, rigtagion and citrullination. Developments in smaller
multiplexed sensors are now required, and couldltrés a move from SPEs to emerging FET-based
systems (Campos et al., 2019).
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methylated DNA and histone H3 acetylated chromatin level

System application demonstrated global alterations in DNA methylation or histone H3 acetylation in
response to treatment with decitabine and vorinostat respectively.

Results were corroborated using established techniques including ChiP and MeDIP.

The study opens up the opportunity for assessing point-of-care monitoring of patient responses to

epigenetic therapeutics, and multiplexing epigenetic marker detection on a unified platform.
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