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Abstract: 
A novel strategy to characterize and identify structural nonlinearities in MDOF systems based 

on reconstructing constant response tests from constant excitation tests is developed in this paper. 
Constant displacement frequency response functions (FRFs) can be measured by a stepped sine test 
where the displacement is controlled at every frequency of interest. In these FRFs the nonlinear 
restoring force is effectively linearized and natural frequencies can be estimated by linear modal 
analysis. Using a series of constant displacement tests, the relationship of equivalent stiffness versus 
displacement can be established by curve fitting and hence the nonlinear stiffness characterized. 
This paper proposes a method to reconstruct the constant displacement FRFs from stepped sine tests 
with constant excitation; this avoids the requirement to control either the response or force 
amplitude, leads to a faster and more stable testing programme. Similarly, damping nonlinearities 
in structures can be characterized and identified by constant velocity tests reconstructed in a similar 
way. This approach of FRF reconstruction is mathematically simple and suitable for structures with 
weak nonlinearities. The method is demonstrated on a framed structure with unknown weak 
nonlinearities, and the nonlinear stiffness and damping parameters of the structure are identified and 
validated. The results demonstrate the feasibility and effectiveness of the approach, and also show 
the potential for practical applications in engineering. 

1 Introduction 
Practical engineering structures often exhibit nonlinear dynamic behaviour. In order to 

accurately predict dynamic nonlinear responses, it is vital to characterize and identify these 
nonlinearities and construct accurate nonlinear models from measured vibration data. Recently, 
Noël and Kerschen [1] gave an overview of nonlinear system identification in structural dynamics 
and an updated literature review over the previous 10 years since the review by Kerschen et al. [2]. 
Hence only a brief overview, concentrating on modal and FRF methods, will be given here. 
Identification methods can use a range of measured and predicted responses to estimate uncertain 
parameters. Nonlinear normal modes (NNMs) are important dynamic features that can be used to 
understand the nonlinear response of a structure. The updating of finite element models based on 
nonlinear normal modes (NNMs) has also been recommended [3]. Kurt et al. [4] constructed 
frequency–energy plots (FEPs) from transient system responses, and the system parameters were 
characterized and updated by matching the backbone branches of the FEPs with reduced-order 
models using experimental or computational results. The finite element model updating of nonlinear 
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structures using stochastic filtering and batch Bayesian estimation has also been proposed [5],[6]. 
Wang et al. [7], [8] proposed a new nonlinear structural model updating method based on 
instantaneous characteristics. They also proposed a procedure to localise nonlinear elements using 
spatially incomplete measured frequency response data from a structural vibration test [9] and 
proposed a model updating strategy for structures with localised nonlinearities using frequency 
response measurements [10]. Ewins et al. [11] and Carri et al. [12] extended modal testing 
technology to validate models of engineering structures with sparse nonlinearities and divided their 
approach into three phases: Preparation, Test and Identification, and Verification and Validation. 
Cooper et al. [13] proposed a pragmatic approach to integrate test-based system identification and 
FE modelling of a nonlinear structure, with three different phases: the derivation of an Underlying 
Linear Model (ULM) of the structure, nonlinear identification using measured time series and 
augmenting the linear FE model, and experimental validation of the nonlinear FE model.  

The linearization method has continued to be an important and popular solution to engineering 
structures because of the maturity and extensive application of linear technology [1]. Recently, 
sinusoidal excitation and modal analysis techniques have been developed for nonlinear 
identification [14],[15],[16]. The method, based on equivalent linearization theory, is expected to 
be applied widely in industry because of its mathematical simplicity and the maturity of linear 
identification techniques [17]. Zang et al. [18] proposed an effective linearization method to validate 
the nonlinear structural dynamic model for the Sandia Structural Dynamics Challenge. 
Schwingshackl et al. [19] investigated the influence of nonlinearity on uncertainty and variability 
for dynamic models. Based on the simulated response of a three degrees of freedom vibration system 
with a weak nonlinearity, two dynamic tests, namely a constant-amplitude displacement test and a 
constant-amplitude velocity test, were exploited to identify the nonlinear stiffness and damping 
behaviour under sinusoidal force excitation. This method can effectively establish the relationship 
between displacement and equivalent stiffness, as well as the relationship between velocity and 
equivalent damping. The unknown nonlinearities may be characterized and their appropriate 
functional forms obtained. Zhang and Zang [20] successfully applied the constant response test 
method to a single degree of freedom system. The response comparison between the predicted 
response and the experimental test indicates that the identified nonlinear model can accurately 
represent the actual nonlinear behaviour of the structure, although there was a slight difference in 
the resonance zone. However, difficulties still exist in the application to more complicated multi 
degree of freedom systems, such the approach to characterize and identify the structural 
nonlinearities, how to establish the relationship between equivalent stiffness and displacement (or 
equivalent damping and velocity) to characterize the nonlinear stiffness (or damping) and the model 
validation process.  

This paper develops the strategy for identification of structural nonlinearities based on 
reconstructed constant response tests for nonlinear model validation. The method to reconstruct the 
constant response FRFs from stepped sine constant excitation test data is described and approaches 
for nonlinear characterization and parameter identification are also addressed. The method is 
demonstrated on a 3 DOFs system with unknown nonlinearities and the experimental results verify 
the feasibility of the method and its capability to characterize the nonlinearity and estimate the 
associated parameters.  

2 Nonlinear parameter identification in MDOF systems 

2.1 Strategy of nonlinear parameter identification  
The target structure for the proposed identification methods is a predominantly linear structure 

with a localized weak nonlinearity. The proposed strategy to identify the nonlinear parameters of 
the structural system includes several steps. First, the underlying linear model is validated based on 
experiments with low amplitude excitation forces; this works well for structures with smooth 
nonlinearities, and care has to be exercised for non-smooth nonlinearities such as friction. Following 
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the linear identification, higher amplitude tests are used for nonlinear detection, nonlinear 
characterization, parameter estimation and nonlinear model verification. The framework of this 
strategy is shown in 

 
Fig.1, where the main steps are to characterize the nonlinear stiffness and damping based on 
reconstructed constant displacement and velocity tests, and to estimate the nonlinear parameters by 
equivalent linearization theory.  

 

Fig.1. A framework for nonlinear parameter identification 

2.2 Model validation of the underlying linear model  
The first step of the framework for nonlinear parameter identification is to validate the 

underlying linear model. The influence of nonlinear elements on the natural frequencies and 
damping ratios of the linearized system are then analyzed in subsequent steps.  

There are usually two ways to obtain the underlying linear model of a nonlinear structure. One 
is based on the assumption that the nonlinearities in structures are negligible at low amplitudes of 
excitation. Therefore, if modal testing is performed on the nonlinear structure at a very low 
excitation level, the nonlinearity in the structure would be insignificant and can be ignored. In this 
case, a conventional (linear) model updating and validation procedure using linear modal parameters 
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from tests can be undertaken and an accurate mathematical linear model obtained.  The other 
approach is based on curve fitting and extrapolation of modal parameters under different excitation 
levels of the nonlinear structure. Usually, a series of modal tests of a nonlinear structure at different 
excitation levels are performed and the modal parameters extracted. Afterwards, the relationship 
between the different excitation levels and corresponding modal parameters can be built by curve 
fitting. By extrapolating the fitted curve to the zero excitation level, the corresponding modal 
parameters can be obtained and these parameters are assumed to represent the underlying linear 
structure. Generally, the former approach is often sufficient and simpler than the latter, but the latter 
is more precise to describe the linear part of the nonlinear structure.  

After the validation of the underlying linear model, a one-to-one mapping between the 
equivalent stiffness, , of the nonlinear element and the natural frequency, , that is 

, is established with the help of the underlying linear model simulation.  The 
corresponding relationship between the displacement amplitude, , and the natural frequencies, 
that is , is then found from the subsequent constant displacement tests, and the 
relationship between the equivalent stiffness and displacement is created as 

. The nonlinear stiffness is then characterized through curve fitting. This 
procedure is illustrated in Fig.2. 

  

Fig.2. Relationship between displacement response amplitude and equivalent stiffness 

Similarly, the one-to-one mapping between the equivalent damping and the structural damping 
ratio can also be analyzed. In fact, the underlying linear model builds a bridge linking the physical 
parameters (stiffness, damping) and the modal parameters (natural frequency, damping ratio). A 
precise linear model is the basis for the identification of the nonlinear parameters. 

The following describes how to analyze the influence of the equivalent stiffness on the natural 
frequencies and the equivalent damping on the damping ratio. 

2.2.1 Equivalent linearization of a nonlinear system 
For a clear description of the method, only one nonlinear element in the system is considered 

here, and the extension to multiple nonlinear elements in the system is discussed later. The general 
equation of motion for a nonlinear system with  DOFs with viscous damping and harmonic 
excitation is expressed as 

   (1) 

where M, C and K are the mass, damping and stiffness matrices of the underlying linear model, 
respectively. The vectors ,  and  represent the displacements, the external 
sinusoidal forces and the nonlinear internal force. 

Based on the equivalent linearization theory, the nonlinear system can be approximated by   

   (2) 

eqk w

( )eqk=w f
D

( )D=w j

( )( ) ( )1
eqk D f D-= =j f

Underlying linear modelConstant Displacement tests

SimulationTest

n

( ) ( ),nl t+ + + =Mx Cx Kx f x x f!! ! !

x ( )tf ( ),nlf x x!

( )eq eq t+ + + + =Mx Cx Kx K x C x f!! ! !



 

5 

 

where and  are the equivalent stiffness and damping matrices resulting from the nonlinear 

element. 

Due to the diversity of nonlinear characteristics, the equivalent stiffness and damping forces,  

and  have different forms. Furthermore, the nonlinear element could be grounded or located 

between two degrees of freedom; these cases are described below.  

（1）If the nonlinear force is related to only one DOF, such as , then   

   (3) 

where  and  are the equivalent stiffness and equivalent damping respectively.  

（2）If the nonlinear force is related to multiple DOFs, such as and , then the nonlinear terms 

are expressed as  

   (4) 

The nonlinear forces could be assembled into the matrix. The equivalent linearization form could 

also be written as 

   (5) 

2.2.2 The relationship between equivalent stiffness and damping and modal properties 
When the number of DOFs in the system is small, the eigenvalues and eigenvectors are easily 

computed. In this case, assuming the location of the nonlinearity is known, the relationships could 
be established by repeated calculation of the eigenvalues and eigenvectors. Thus, the natural 
frequency may be written as a function of the equivalent stiffness as  

   (6) 
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where r is the mode number. 

Often in linear systems proportional damping is assumed to make the calculation of damping 
ratio much easier. However, general linear damping may be analyzed by considering the state 
space form of the equations of motion and the resulting complex modes [21].  
n In either case, repeated calculation establishes the relationship between the equivalent damping 

and the damping ratio as 

   (7) 

Note that we have assumed that the natural frequency is only a function of equivalent stiffness, 

and the damping ratio is only a function of equivalent damping. For lightly damped structures this 

is a good approximation, although, in general, the damping ratio can have a slight sensitivity to the 

stiffness properties.  

2.3 Nonlinearity detection and characterization  
The purpose of nonlinearity detection is mainly to detect whether any nonlinearity exists in the 

structure over the frequency range of interest. In this case the system response with nonlinearity 

cannot be represented by a linear model. The detection of nonlinearity is often performed using a 

range of excitation force levels; for example, a series of sinusoidal sweeps at different excitation 

levels can be applied and differences in the FRFs indicate nonlinearity. Generally, sinusoidal tests 

(ST) at single frequencies are simple to set up. Although these tests are time-consuming, the 

obtained nonlinear dynamical behaviors are accurate and are highlight any nonlinear phenomena 

present.  

2.3.1 Constant displacement tests (CDT) and constant velocity tests (CVT) 

Generally, three types of constant dynamic tests are used for structures, with the objective to 
keep constant either the force, displacement, or velocity, during sinusoidal excitation. The constant 
force test is most widely used, and aims to keep the amplitude of the sinusoidal excitation force 
constant as the frequency is sweep over the range of interest. The constant displacement/velocity 
tests need to adjust the amplitudes of sinusoidal force in order to keep the displacement/velocity 
response amplitudes unchanged during the frequency sweep. The difficulty in conducting constant 
displacement/velocity tests is that a controller is required to maintain the constant response 
amplitudes at the steady state, and this is particularly challenging for lightly damped structures close 
to resonance. It should be noted that even constant force tests require active control of the excitation 
level from the analyzers because the interaction between the shaker and structure causes the force 
level to drop near the resonances for a given excitation voltage to the shaker. 

Constant displacement tests use single frequency sinusoidal excitation to measure the 
frequency response functions (FRFs) where the amplitudes of the displacement response are 

( ), 1,2, ,r eqc r n= = !z f
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constant at every frequency of interest by adjusting the amplitude of sinusoidal excitation. These 
FRFs are called constant displacement FRFs, while the FRFs in traditional stepped sine tests are 
constant voltage FRFs. At every frequency of the constant displacement FRFs, the equivalent 
stiffness of the structure is the same. The stiffness nonlinearities are effectively linearized and linear 
modal analysis techniques can be used to identify the modal parameters at the given amplitude of 
displacement response. The constant velocity test is similar. 

Constant displacement and velocity tests need feedback control and are usually time-

consuming as the control algorithm for the force amplitude needs to converge. A direct conversion 

method without feedback will be introduced reconstruct the constant displacement FRFs and the 

constant velocity FRFs from the constant voltage FRF test data. 

2.3.2 A transformation method from ST to CDT and CVT 

The purpose of the CDT and the CVT is to obtain FRFs with constant displacement or velocity. 

Here, a simple method is given to construct the constant displacement or velocity FRFs from the 

constant voltage FRFs so that no feedback control is required during testing.  However more 

constant voltage tests will typically be required.  

The relationship between the sinusoidal excitation and response amplitudes is affected by 

nonlinearity at various frequencies, and is generally not linear but remains monotonically increasing 

for many structures with weak nonlinearities. The transformation method is illustrated in Fig.3. 

Fig.3. The transformation method from ST to CDT and CVT 
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corresponding phase  is also obtained by interpolation. This allows the constant displacement 

FRF to be calculated at this frequency. This is repeated for all frequencies of interest. 

It should be noted that this transformation method is usually exploited in the case that the 

relationship between the excitation and response amplitudes is guaranteed to be monotonic. 

Difficulties will exist when the system is strongly nonlinear, particularly with jump phenomena. 

2.4 Parameter estimation of nonlinearity 

2.4.1 Equivalent stiffness and damping of one nonlinear element  

One nonlinear element could be placed in an SDOF system to obtain the equivalent 

linearization. In the case of an SDOF nonlinear system where the nonlinearity is additively separable, 

the equation of motion can be written as  

  (8) 

where   represents the weak nonlinearity of the damping behavior and  represents 

the weak nonlinear stiffness. Based on equivalent linearization theory,  and  may be 

approximated by: 

   (9) 

   (10) 

where  is the equivalent linear damping for the damping nonlinearity and  is the equivalent 

linear stiffness for the stiffness nonlinearity.  

Thus, its equivalent linearization is written as [17]: 

  (11) 

The development of equivalent linearization method is introduced in detail in refs. Error! 

Reference source not found., [23] and [24]. The equivalent linearization technique dates back to 

the fundamental work of Caughey[25], which considers statistical linearization. In order to reduce 

the error and lead to a better approximate solution, Anh [26] proposed a duality method to analyze 

,i kq

( ) ( ) ( )sind smx cx kx f x f x F t+ + + + =!! ! ! w
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eqc eqk
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the responses of nonlinear systems under periodic and random excitations. The harmonic balance 

method was also used to obtain the analytical expressions of equivalent linear stiffness and 

equivalent linear damping for nonlinear identification and characterization [16].Considering that the 

excitations are harmonic forces in the experiment, equivalent linearization by HBM is more concise 

mathematically. 

Generally, the fundamental harmonic of the response are dominant in the experiment for 

weakly nonlinear systems. Therefore, we mainly consider the first harmonic and neglect the sub-

harmonics and the super-harmonics in the harmonic balance method for weakly nonlinear systems. 

For strongly nonlinear systems, in order to improve the identification accuracy, it is necessary to 

consider the high order harmonics in the HBM if the influence of higher order harmonics are not 

negligible. 

Assuming that the response to a sinusoidal excitation is a sinusoid at the same frequency, the 

displacement and velocity can be expressed as 

  (12) 

  (13) 

where A is the amplitude of the displacement response at steady state.  

The harmonic balance (HB) method applied to the equation of motion yields the equivalent 

stiffness as 

  (14) 

and the equivalent damping as 

  (15) 

According to Eqs. (14) and (15), the equivalent stiffness is a function of displacement 

amplitude and the equivalent damping is a function of velocity amplitude. Therefore, if the 

amplitudes of displacement are kept constant through adjusting the amplitude of the sinusoidal force 

over the frequency range of interest, the influence of the nonlinear stiffness on the measured FRF 

data can be minimised. This constant displacement test can be used to measure the relationship 

between the equivalent stiffness and the displacement amplitude. The nonlinear damping behaviour 

and terms can be also obtained in a similar way from a constant velocity test of the structure. 
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Afterwards, the identified nonlinear properties can be included into the model to predict the response 

of nonlinear system. 

2.4.2 Parameter estimation of the nonlinearity 

Suppose the functional form of equivalent stiffness, , and displacement amplitude, , 

could be established through polynomial curve fitting after the constant displacement test. Thus  

   (16) 

 Considering the symmetry of nonlinear forces, the nonlinear stiffness force could be written as  

   (17) 

According to the integral formula of equivalent linearization, Eq. (14), the equivalent stiffness 

 could be written as 

   (18) 

Assuming that 

   (19) 

where the coefficients are . 

Thus, the nonlinear stiffness parameters can be expressed as 

   (20) 

The estimation of nonlinear damping parameters is similar. 

2.5 Verification of the identified nonlinear model 
The whole nonlinear model is established after validation of the underlying linear model and 

identification of the nonlinear stiffness and damping parameters. But the effectiveness of the 
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nonlinear model also needs further verification through a comparison between response prediction 

and experimental results to evaluate the accuracy of the nonlinear model. This is done by simulating 

the measured constant voltage FRFs. The identified model with nonlinear parameters can then 

accurately predict the nonlinear vibration behavior of the structure.  

3 Application: 3DOF system with a weakly nonlinear connection 

3.1 The 3-DOF test structure with weak nonlinearity 
In order to illustrate and verify the identification method for the nonlinear parameters, a series 

of tests has been conducted on a frame structure with bolted joints shown in Fig.4. This structure 

represents a 3DOF system by just considering the vibration in the x-direction; the 3 steel plates are 

equivalent to 3 lumped masses, and the 4 aluminum plates are divided into 3 parts, equivalent to 3 

stiffnesses. Four rubber rings are installed between the four aluminum beams and the base plate 

respectively to introduce unknown nonlinear stiffness and damping behavior.  

                                                          

Fig.4. The 3 DOF system with unknown nonlinearities 

3.2 Construction of the underlying linear model 

3.2.1 Construction of the underlying linear model 

The basic equation of motion of the 3DOF system can be written as 

   (21) 
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,  represents the unknown nonlinearity and 

 represents the external excitation applied on the first DOF, . 

The modal data obtained from modal testing with a low excitation level were used to construct 

the underlying linear spatial model. Thus, the mass, stiffness, and damping matrices can be derived 

from 

   (22) 

   (23) 

   (24) 

where ,  denote the rth natural frequency and damping factor, and the matrix  is the 
modal matrix with columns consisting of mass-normalized mode shape vectors. Modal testing is 
carried out at a low excitation level. The excitation signal is a chirp and the RMS of the force is 
0.85N，as shown in Fig.5Error! Reference source not found.. The mode shapes are given in Fig.6. 
Table 1 shows the modal parameters. Hence the  matrices can be obtained and the 
underlying spatial model can be constructed. 

 

Fig.5. The chirp force applied to mass 1 for modal testing 
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（a）Mode 1 （b）Mode 2 (c) Mode 3 

Fig.6. Mode shapes of the 3 DOF system under low excitation level 

Table 1  Modal parameters of the 3DOF system under low excitation 

Modal parameters Mode 1 Mode 2 Mode 3 
Natural frequency(Hz) 24.47 88.15 155.36 

Loss factor (%) 5.20 2.43 0.43 

3.2.2 Response prediction of the underlying linear model 

The FRFs and time response need to be verified in view of the importance of the underlying 
linear model. The test FRF and the predicted FRF of the constructed underlying linear model are 
shown in Fig.7 and they are in good agreement. 

 

Fig.7. The test FRF and predicted FRF of the underlying linear model 

The test and predicted time response of mass m1 to the low level chirp excitation is also in good 

agreement, as shown in Fig.8. Hence this model is valid and can be used in the nonlinear 

identification procedure. 
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Fig.8. Time response of mass m1 to the low level chirp excitation 

3.2.3 The equivalent linear stiffness and damping  

For a non-linear structure, the non-linear elements in the structure can be considered to have 

equivalent linear stiffness or damping coefficients if the amplitudes of the vibration responses are 

of fixed steady-state amplitude at each frequency. Then, the values of these equivalent linear 

stiffness or damping factors can be identified as a linear system. An equivalent equation is described 

as follows, 

   (25) 

where  and  

The influence of the equivalent stiffness  on the natural frequencies could be analyzed though 

simulation and is shown in Fig.9 to 11. Thus, the one-to-one mapping between the equivalent 

stiffness  and the natural frequencies has been established.  
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Fig.9. The influence of the equivalent stiffness   on the natural frequency of Mode 1 

 

Fig.10. The influence of the equivalent stiffness  on the natural frequency of Mode 2 

 

Fig.11. The influence of the equivalent stiffness  on the natural frequency of Mode 3 

Similarly, the one-to-one mapping between the equivalent damping and the structure damping 

ratio also can be established as shown in Fig.12. 

eqk

eqk

eqk
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Fig.12. The influence of the equivalent damping  on the damping factors 

3.3 Nonlinear detection 

3.3.1 Overlays of FRFs 

To detect the nonlinearity of the 3 DOF system, a series of swept sinusoidal excitation with 

various force levels from 0.8N to 18.9N are applied to the frame and the acceleration responses are 

measured. Obviously, the overlay of the measured FRFs in Fig.13 shows the distortion of the 

acceleration FRFs at higher force levels. With an increase of excitation force level, the resonant 

frequency shifts downwards, so that it is a softening system. The changes in the natural frequency 

of mode 1 are clearly shown in Fig.14.  

 

Fig.13. Overlays of acceleration FRFs in the chirp test  

eqc
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(a) amplitude 
 

(b) phase 

Fig.14. Acceleration FRFs (20-30Hz) in the chirp test 

3.3.2 The change of modal parameters with the excitation level 

The modal parameters can be extracted from the FRFs using the circle fit method. It can be 

seen that the natural frequency of mode 1 decreases by 9% and the loss factor of mode 1 shifts from 

5% to 14.5%, when the excitation force is increased from 0.8N to 20N, as shown in Fig.15.  

 
(a) The deviation of natural frequencies at different 

excitation levels 

 
(b) The loss factors at different excitation level 

Fig.15. The deviation of natural frequencies and the loss factors at different excitation level 

3.4 Sinusoidal tests at a single frequency 
20 sets of single frequency sinusoidal test were conducted, and the test parameters are shown 

in Table 2. A group of sine tests needs about 7 minutes and 20 groups of tests need 140 minutes. 

This time is relatively long and the temperature of the elastomer may increase during the test, 

leading to changes in the stiffness and damping properties. However, we will assume that the 

structure does not change its properties during the tests. 
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Table 2 The parameter settings for the constant voltage test 

Frequency span  Frequency interval Voltage levels Sampling Freq Sampling time 

20 Hz—27Hz  0.1Hz 0.05:0.05:1V 2000Hz 4s 

3.4.1 The force dropout phenomenon near resonance 

In each stepped excitation frequency sinusoidal test, the excitation voltage for each frequency 

point was kept constant. There exists a force drop-off phenomenon near resonance that is clearly 

shown in Fig.16. Therefore, feedback control would be required for a constant amplitude force test, 

which is usually time-consuming. In our test, the purpose is to test the relationship between external 

excitation and vibration response. Thus, feedback control is not necessary. 

 

Fig.16. The force dropout near resonance 

3.4.2 The FRFs from ST tests 

The accelerance FRFs obtained from the sinusoidal tests and their amplitudes and phases against 

frequency are shown in Fig.17.  

 

Fig.17. The test acceleration FRFs 
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If the accelerance FRFs are , the mobility FRFs  and the receptance FRFs  

can be written as 

   (26) 

   (27) 

The mobility FRFs and receptance FRFs generated from the acceleration FRFs are plotted in Fig.18 

and Fig.19 respectively. 

‘   

Fig.18. The mobility FRFs generated from the acceleration FRFs 

  

Fig.19. The receptance FRFs generated from the acceleration FRFs 

3.4.3 The relationship between response and excitation 

The variation of the amplitude and phase of the displacement with the excitation level at 

different frequencies can be obtained directly as shown in Fig.20 and Fig.21, which are 3D plots. 
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The right views shown in Fig.22 and Fig.23 represent the relationship between the response and the 

excitation. A monotonic increasing function between force and displacement amplitudes can be seen 

clearly while the phase shows a complex function. Similarly, the variations of amplitude and phase 

of the velocity with excitation level at different frequencies could also be obtained.  

 

Fig.20. The 3D plot of the displacement amplitude 

 

Fig.21. The 3D plot of the displacement phase 
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Fig.22. The variation of displacement amplitude with the excitation levels at different frequencies 

 

Fig.23. The variation of displacement FRFs phase with the excitation levels at different 
frequencies 

3.5 Reconstructing the constant displacement test 

After obtaining the relation between the excitation and the response at each frequency, the excitation 
and the phase difference between the excitation and the response can be obtained by interpolation 
at a given displacement level. Then the constant displacement FRFs at the given level can be 
obtained.  

In the constant displacement test, the range of displacements is from 0 to 5×10-4 m, and the 
corresponding excitation forces for each test are shown in Fig.24. 
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Fig.24. The force for each constant displacement test 

The FRFs of the constant displacement tests for the 5 sets of displacement levels are shown in 
Fig.25. 

 

Fig.25. Constant displacement FRFs 

These FRFs are effectively linearized at the given displacement level. Hence, linear modal 

analysis techniques such as the rational fraction method [22], can be used to identify the modal 

parameters. Then the relation between displacement and natural frequency can be obtained as shown 

in Fig.26.  

The relation between displacement and equivalent stiffness  is then established, as shown 

in      Fig.27, considering the relation between the equivalent stiffness  and the natural 

frequency given by the underlying linear model. 

eqk

eqk
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Fig.26. Curve fitting of natural frequencies     Fig.27. Curve fitting of equivalent stiffness 

Different functional forms may be tried to fit the curve of equivalent stiffness versus displacement 

in Fig. 27. A quartic polynomial was found the most suitable function. Thus 

   (28) 

where  is the amplitude of the displacement. 

The nonlinear elastic restoring force  is then written as  

   (29) 

According to the Eq.(20), the nonlinear stiffness parameters identified through constant 

displacement tests are computed and listed in Table 3. 

Table 3  The identified nonlinear stiffness parameters 

k1 k2 k3 k4 

-1.9280×108 1.0290×1012 -2.2566×1015 1.6973×1018 

3.6 Reconstructing the constant velocity test 

Similar to the nonlinear stiffness identification, the range of velocity is from 0 to 0.07 m/s, and the 
corresponding velocity and excitation force for each test are shown in Fig.28. 

2 3 4
, 1 2 3 4+ +eq testk p D p D p D p D= +

D

( )sf x

( ) ( ) ( )2 3 4 5
1 2 3 4sf x k sign x x k x k sign x x k x= + + +
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Fig.28 The force for each constant velocity test 

The amplitude and phase characteristics of the constant velocity FRFs within the frequency range 

from 22 to 27Hz are plotted in Fig.29. 

 

Fig.29. Constant velocity FRFs 

These FRFs are effectively linearized at the given velocity level. So the linear modal analysis 

technique can be used to identify the modal parameters. Then the relation between velocity and 

damping ratio can be obtained and is shown in Fig.30. The relationship between velocity and 

equivalent damping  is then established, as shown in        Fig.31. eqc
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Fig.30. Curve fitting of damping ratio          Fig.31. Curve fitting of equivalent damping 

The equivalent damping could also be fitted by a quartic polynomial. Thus  

   (30) 

where  is the amplitude of the velocity and  is the amplitude of the displacement. 

The nonlinear damping force  is then written as  

 

According to Eq. (20), the linear and nonlinear damping parameters identified through the constant 

velocity tests are computed and listed in Table 4 . 

Table 4 The identified nonlinear stiffness parameters 

c1 c2 c3 c4 
3.5383×103 -1.3491×105 1.9320×106 -8.8839×106 

3.7 Verification of the identified nonlinear model  
The complete nonlinear model is constructed using the underlying linear model and the identified 

nonlinear stiffness and damping parameters. Comparisons between the prediction and the 

measurement under the same low and high excitation levels were taken to verify the identified 

nonlinear model, especially for the linear and nonlinear behaviors. The Harmonic Balance Method 

(HBM) is used to predict the fundamental response. The overlay of the predicted and measured 

FRFs at a low level force of 0.2 N and a high level force of 2.2 N are plotted in Fig.32. It can be 

seen that the resonance frequency shifts downwards and the amplitude decreases with the increase 

of the excitation level. The results are consistent with only a slight discrepancy near the resonance 

2 3 4
, 1 2 3 4+ +eq testc p V p V p V p V= +

V D=w D

df

( ) ( )2 3 4 5
1 2 3 4df c sign x x c x c sign x x c x= + + +! ! ! ! ! !



 

26 

 

for the nonlinear case. The constructed nonlinear model is able to predict the linear and nonlinear 

behaviors of the structure under different excitation levels.  

 

 

Fig.32. The predicted and measured constant voltage tests  

4 Conclusion and discussion 

 The relationship of equivalent stiffness and displacement of the MDOF system with weak 

nonlinearity can be established by reconstructing constant displacement tests with the proposed 

method. A similar approach gives the relationship of equivalent damping and velocity by 

reconstructing constant velocity tests. These relationships can be curve fitted to achieve nonlinear 

characterization and can be used to construct the functional forms of the nonlinearities of the system. 

The equivalent linearization theory used in this approach is concise in mathematical form. The 

method effectively linearizes the constant displacement FRFs and constant velocity FRFs at the 

given response level so that the standard linear modal analysis techniques may be used to extract 

the modal parameters. This is a convenient approach for application in industry, and builds on 

existing knowledge of modal testing. The stepped sine test data can fully characterize the 

nonlinearities in the structure and can identify the nonlinear parameters effectively, although it is 

time-consuming. 

 The theoretical analysis of the equivalent linearization and the harmonic balance method in 

this approach are used to establish the relationships of both equivalent stiffness vs displacement and 

equivalent damping vs velocity. Establishing the relationship using analytical formulas for MDOF 

nonlinear systems is still a challenge. The identified nonlinear parameters of the MDOF nonlinear 

system may need further updating. In addition, the case of a nonlinear system with strong 

nonlinearities and small damping, especially a nonlinear system with jump phenomena, is not 
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considered here because of the hugely different responses near and far from the resonance and it is 

rather difficult to ensure that the response amplitude at each frequency can be kept constant. 
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