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Abstract. Frictional finger trees are patterns emerging from non-equilibrium
processes in particle-fluid systems. Their formation share several properties with
growth algorithms for minimal spanning trees in random energy landscapes.
We propose that the frictional/ finger trees are indeed in the same geometric
universality class as the minimal spanning trees, which is checked using updated
numerical simulation algorithms, for “rictional fingers. = We also propose a
theoretical model for anomalous diffusion in these patterns, and discuss the role
of diffusion as a tool to classify geometry.

1. Introduction

Frictional finger patterns are a.result of flow instabilities in quasi-two dimensional
deformable media due to frictional and capillary forces [1, 2]. Although these patterns
have been studied for over a decade, the only means of characterizing their complex
geometry has been their channel width. The fingers appear when liquid is withdrawn
from a two-phase, particle-fluid system [1, 2, 3]. The particles are initially distributed
throughout the system, with an approximately uniform packing fraction ¢, before the
moving fluid-air interface compactify the particle packing. This process leaves behind
walls of particles while the inyading air forms bifurcating fingers in a tree-like pattern
(as illustrated in Fig.'2.and 3). The random geometry of the emerging patterns arises
due to non-uniformity in\the initial packing fraction. Figure 3 shows several patterns,
displaying the' range of sizes available. This set of figures is generated numerically,
following the procedure outlined in appendix Appendix A. Figure 1 shows the 1D
skeleton of the pattern, where the finger width has been contracted as in figure 2c).
It is the geometry of this skeleton tree we wish to understand.

The process that generates the frictional finger patterns is in many ways an
optimal path/finding process that happens in small bursts. The bursts take place along
the existing/interface where the force needed to overcome the compactified particle
front is the smallest. This is very reminiscent of the formation of minimal spanning
trees (MST). Here one assigns a weight e, often thought of as an energy, to every link
in.a graph or lattice. The MST is then the tree spanning all the vertices of the lattice
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Geometry of frictional fingers 2

Figure 1. A frictional fingertree representing the 1D skeleton of the frictional
finger pattern. Inset‘shows,a 5X magnification. The colors represent a Horton-
Strahler ordering, as explained,in section 3

(but not all bonds) such that theytotal energy is minimized [4]. Hence the MST is
a geometry constructed on the/basis of global optimization. For the frictional finger
structure, a very similar thing happens although the process now is off-lattice. Both
processes terminate when the strueturés are space-filling, i.e. they are both examples
of random spanning trees!

The MST universality /class is a famous one, to which many systems have been
argued to belong [5]s» Minimalspaths on MST, minimal paths on invasion percolation
clusters and watershed lines are examples of random planar curves with the same
apparent fractal dimensionof 1.22 [5]. Although the frictional finger trees and the
minimal spanning trees follow similar dynamical construction rules it is not obvious
that they share universality class. By numerically measuring various geometric
exponents we. will see.that these differences seemingly does not significantly alter
the resulting tree geometry,and that the two are in the same universality class.

Once'the geometric universality class is known we can predict other exponents by
using existingrsealing relations. Most interesting perhaps is the relation between the
exponents that define the geometric universality class and the exponents of dynamical
variables of a random walker. Random walks in random geometries, fractals and tree-
like structures often display anomalous diffusion[6, 7, 8, 9, 10], whereby the mean-
squared displacement of the random walk has a non-linear asymptotic scaling with
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a) @
b) EE c)

Figure 2. a) A small frictional finger pattern generated, numerically. Note
the inlet where the growth begins. b) Frictional fingers with simplified one-
dimensional skeleton tree. ¢) Simplified tree only.
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anomalous transport is typical in complex systems [11, 12, 13, 14, 15, 16, 17, 18].
The most famous example of subdiffusion is perhaps de Gennes “la fourmi dans
le labyrinthe” (the ant in the labyrinth), referring to a random walker on a“two-
dimensional (2D) critical percolation cluster [9]. In this case the diffusion exponent
a is determined by the critical percolation exponents [10]. Often « can be expressed
in terms of a handfull of parameters reflecting the system geometry and boundary
conditions. For example, in the case of a random comb model, the relevant geometrie
parameter is the tail index (scaling exponent) of the branch-length probability density
[7]. In this way, o depends on the class of geometries constructed using a certain type
of length distribution. Similarly, the universality class of MST specify such aclass of
random geometries in the case of spanning trees.

The rest of the paper is organized as follows. In Sec. 2, we introduee the different
scaling exponents and fractal dimensions in random tree-like geometries. “We also
discuss an effective model for anomalous diffusion in the finger geometry, relating the
diffusion exponent to the systems geometry. Sec. 3 discusseg'statistical measures of
branch ordering to classify different tree-like structures. This is then used to determine
the Hack exponent of the system. Numerical measurements of'scaling exponents are
presented in Sec. 4. Finally, concluding remarks are offered in Séc. 5. Numerical
details on the frictional finger labyrinths and pattern analysisiare included in the two
appendices.

2. Theory

For simplicity, we will make the assumption that the/width of the fingers can be
ignored. We therefore replace the 2D geometry, of Fig. 2 with the one-dimensional
(1D) tree shown in part ¢) of theAigure. This'corresponds to studying the pattern
on space and time scales that are much larger than the finger width. A much larger
version of the 1D tree is shown in figure 1.

2.1. Non-Euclidean fractal measures

Let us consider a 1D tree T in which distances are measured by the intrinsic distance
function d, given by the shortest-path or the geodesic distance between two points.
Thus, our trees are metric spaees consisting of 1D curves that are topologically
equivalent to line intervals! For any two points a,b € T there is a unique non-
intersecting curve cennecting them, with a geodesic length d(a,b). This formally
describes trees suchlas those in Figs. 1 and 2c).

To convert from.the geodesic distance to the Euclidean one, we need to embed
our tree into the plane.)The only requirement we put on our embedding is that the
tree becomes space-filling, to mimic the frictional finger trees or the MST. The space-
filling property is measured by the fractal dimension. Let us recall some well-known
relations betweenvarious, fractal dimensions. We will use the mass-length definition
of fractal dimension, following the conventions of [10].

Letra, b berpoints in T and d(a,b) the geodesic distance between them. If ¢ is
the functiom that embeds T into the Euclidean plane, we will write , = ¢(a) and
xp, =(b) for the 2D vectors. The intrinsic distance d and the Euclidean distance are
related by the minimum-path dimension d,,, typically introduced as [10]

d(a,b) ~ |z — 2| ™. (2)

Page 4 of 20
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We will use scalar variables r and ¢ for a generic Euclidean and geodesic distance
respectively. To make a global estimate for the typical fractal dimension of shortest
paths, we propose the following. Pick a point s inside the tree that is not a branching
point or end point. Then consider the set of points a geodesic distance ¢ away from s:

Py(0) = {p € T|d(s,p) = £}

This is nothing but a circle in the geodesic metric. The average Euclidean distance to
these points are then

= 1 Lg — X
= T 2 e

pEPs (Z)

where |Ps(¢)| are the number of points a geodesic distance ¢ away from s.) Based
on this we could define a local estimate for the minimum path dimension.+To go to
a global estimate we pick a discrete set of sample points S along line segments and
perform a weighted average

_ ZSGS WS <’l">s

7(£) S W,

where the weights W are taken to be the length of the line.segment containing s as
measured between the two nearest branching points.sln the remainder of this paper,
the overline will signify such an average over sample points. * We will then use the
following definition for the global minimum/path dimension

7(£) ~ (/41 (3)

which of course depends on the embedding ¢ through the local average (...)s.
The standard Euclidean fractal dimension'dy is defined by [10]

m(r) ~ P9 (4)

where m is the mass within Fuelidean radius r. By assumption, our embedding
produces dy = 2 for the space-filling frictional finger trees. We also introduce the
scaling exponent of the connected mass

me(r) ~ r47®) (5)

where m.(r) is the mass of the connected part of the structure within radius r from
a chosen reference point. That is, if a branch exists the disc of radius r and then
enters again somewhere else, the disconnected part is ignored. On length scales where
m.(r)/m(r) is a constant, the two Euclidean fractal dimensions coincide. This is the
scale where the system has a well-developed fractal behavior, but where still finite-size
effects has not significantly entered. Note that for small radii the ratio m.(r)/m(r)
is close to Asince all the mass is connected. In larger scales when the two masses
deviate we must have that’m.(r) < m(r), so the graph of their ratio initially decrease
with radius:. However, since we are working with a finite system size the ratio will
become unity again when the systems radius is hit. To avoid the finite size effects
we therefore)work in an intermediate range of radii where m.(r)/m(r) has not yet
began to increase towards 1. We will discuss this again for the frictional fingers in the
numerical section.

Finally we introduce the connectivity dimension d. as a fractal dimension that is
measured using the metric of T (geodesic distance d) and therefore does not depend
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on the embedding of the tree. For a ball of geodesic radius ¢ centered at a point s on
the tree,
B(s,t) = {p € Tld(s,p) <},

we can define the connectivity dimension d. by looking at how the mass within_the
ball scales with £, i.e. |B(s,£)| ~ ¢% [10, 19]. To get a global estimate we will again
perform an average over a set of sample point, and we define

1B(s, 0)] ~ £%. (6)

Since we will only refer to the global connectivity dimension, we will write dg= dfor
simplicity. The three fractal measures, d.,,ds and d., are related by the fact that the
mass, i.e. total length, of the tree should be conserved under an embedding., Using
equations 3 and 6 we see that

|B(s, )] ~ 7)™

The averaged mass |B(s,{)| measured using Euclidean length is nothing more that
the connected mass in equation 5. Hence, we expect that df[ = d.dy,. As mentioned
above, there is a range of length scales where the connected mass and the total mass
scales with the same dimension, so in this range we.expect that d; =df = dcdp,.
Hence we only need two of these three exponents/ We already know that our trees
have dy = 2 by construction, so d. and d,, are the interesting quantities.

2.2. Anomalous diffusion

To model anomalous diffusion in thesspace-filling frictional fingers we use an effective
medium approach, where the tree structure is replaced with a homogeneous medium
with a spatially varying diffusion coefficient.

We are interested in the transport in theradial direction. The current can be
written

i 2p(y) — plr +r)

where 7 is the time step and dr. = 7 - (i1 — @) is the projection onto the radial
direction of the random walkers step. Expanding in small step size we find

) or?
JD = — rP-
T

By performing an ensemble average we can read of the diffusion coefficient

where (...Jens S an ensemble average and D is defined so that the current takes the
standard Fickian form jp'= —DO0,.p. Since the diffusion happens on the tree structure,
there may be a non-trivial spatial dependence in the diffusion coefficient.

Whenever the particles move in an external potential V', the equations take the
altered forms [20]

Op = —Vij(x), (7)
j() = —pu(x)pVV — DVp. (8)

Page 6 of 20
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Here p is the mobility. The current should vanish in equilibrium, where the
distribution takes on a Boltzmann form p = Z~te~V(®)/k5T  Using this to calculate
the gradient Vp we find

Jj(x) = [-p(x) + D(z)/ksT|(VV)p.

For this current to vanish, the Einstein relation p(z) = D(z)/kpT must hold locally
[20].

The mapping between the frictional fingers and the effective medium is made
through the Einstein relation for conductivity. We will demand that the,effective
medium satisfies the same Einstein relation as in the tree structure. Jn*the presence
of an electric field the mobility reads pu(z) = o(z)/ng?, where o is the conductivity, n
the equilibrium particle mass density and g the particle charge [10]. At large times the
particle density n is uniform throughout the space-filling tree, so’it ‘has no interesting
scaling. The Einstein relation then implies the scaling D(r) ~ gi(r), where'we assumed
a radial dependence only.

To extract the spatial scaling of the diffusion coefficient consider two large
concentric circles in the frictional finger tree, centered en the initial position of the
random walker. Let AR denote the radial distance separating the two circles. Since
the tree has a statistical self-similarity we expect that.if we remove all the shortest
branches and increase AR the statistics of the paths connecting the two circles remains
the same. In particular, the number of paths remains the same. A random walker
starting at the inner circle will pick one of the paths on'its journey to the outer circle,
and the typical geodesic distance of the path is (€) ~ AR where (...) is some
average over the fixed number of paths. The conductivity of a single path scales with
its inverse length, so the effective conductivity.should behave a leading order scaling

behavior i i

Using this as the relevant conduetivity, the Einstein relation gives the power-law
scaling D(r) ~ r~dm,

We can now solve the free diffusion problem. Using the continuity equation for
our Fickian current jp = —D(r)Vpsweé get the diffusion equation

00—~ [rD(r)o,] = 0. (9)

If we think of the diffusion.problem with spatially depending diffusivity as a Langevin
problem i = g(r)f(t) with 6-correlated white noise 7 and ¢g?/2 = D an interpretation
of the stochastic integrals is needed to derive the Fokker-Planck/diffusion equation.
Equation 9 corresponds’ to the Hanggi interpretation, in contrast to the Ito and
Stratonovich”interpretations which have an additional drift term proportional to
o0-D(r) [21, 20].

The solution/of Eq. ‘9 for a power-law diffusivity D(r) = Dyr~¢ is known to be
22)

24¢ 1 B r2t¢

27T (d, /2) [DO(Q + E)Qt} o (‘ Do(2+ s)%)
where ds = 4/(2 + &) is the so-called spectral dimension governing the scaling of the
teturnprobability p(0,t) ~ t~%/2. The distribution is normalized as fooo dr(2nr)p = 1.

p(T, t) =
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The moments of the distribution reads
() [Dole + 22 ¥
() = 2 .
()

In particular, the second moment scales as (r?) ~ t®, with a = 2/(2 + £). We know
that & = d,,, which implies the diffusion exponent

2
C 24dy’

et (10)
Had we not assumed that the particle density was uniform throughoutra space-filling
structure, the number 2 in the denominator would have been replaced with.the fractal
dimension, yielding the standard equation for diffusion exponent in trees [10].

2.3. Minimal spanning tree universality class

A minimal spanning tree is an example of a spanning tree/génerated by finding minimal
energy configurations on a lattice. If we write (7, 7) for alink connecting sites i and
Jj on the square lattice we assign some energy ¢;; tosthe links using some probability
distribution P(€). A subset S of the lattice now has the energy [4]

E(S) = Z €ij-

(i,5)€SCZ?

A MST is the tree on the lattice with lowest-energy. This globally optimized structure
can be obtained through algorithms based on a local optimization procedure [23]. Here
one chooses an initial site in the lattice and grows a spanning tree by first choosing the
bond connected to the initialssite with the lowest energy, and the proceeds by adding
minimal energy links connecting sites in the cluster to ones neighboring the cluster.
One can only add bonds that/does mot form a loop in the cluster. The resulting
geometry is independent of the initial site and is the unique minimal spanning tree on
the lattice provided that the energies €5 of bonds are unique [23]. This can in practice
be assumed to hold, since/if were not the case some infinitesimal perturbation of the
energies can be applied to make them unique.

It is well known shat there is some universality associated with the MST. In
particular, the values of.the link energies are irrelevant - only the ordering of energies
matter [4]. Clearly, if we were to shift all energies € — f(¢) in such a way that the
order remains unchanged, the same links will be invaded at every time step. This set
of transformations on the energy landscape leaves invariant the final geometry of the
resulting MST. Thisfreedom in choosing the energies by any order-preserving function
f is the aource of universality for the MST [4]. For example, it does not matter if
the energiessare distributed close to each other or with large fluctuations, as long as
the energy hierarchy is the same.

Since it\is a spanning tree, the MST has fractal dimension dy(MST) = 2. It is also
known that the minimum path dimension takes the value d,,,(MST) = 1.22 £ 0.01 [4].
This is also the minimum path dimension of strands in invasion percolation, optimal
path cracks and fractal watershed lines [5]. From Eq. 6 we see that the connectivity
dimension for MSTs should be roughly d.(MST) ~ 2/1.22 ~ 1.64. Using Eq. 10, which

Page 8 of 20
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should hold for any space-filling tree structure, we also get an approximate diffusion
exponent «(MST) = 0.62.

As we noted in the introduction, the formation of frictional finger trees follow
similar rules as the MST. The interface in the fluid-particle system evolves by finding
the region along the interface where the energy barrier is smallest, and then evelves
until friction stops the growth. Hence the frictional finger trees are formed bylocal
optimization rules. Also in this case it is the ordering that matters. If one were
to partition the interface into boxes, each with an average energy barrier height,
it is clear that the interface will evolve in the box with smallest energy. Once
the interface has evolved it has become longer, and more boxes are needed.forthe
partition. New energies corresponding to new boxes are then added to the hierarchy
of energies. The evolution of the interface then proceeds again by finding the smallest
energy. The distribution of energy barriers for the frictional finger case.depends on
the random initialization of the packing fraction. Although the frictional finger trees
are constructed in the continuum while the MST on a lattice there.is a lot of similarity
in the two systems. Whether or not this analogy can be made inte.a statement of
equivalence is one of the main questions asked in this paper.

3. Horton-Strahler statistics

The ordering scheme due to Horton [24] /and Strahler [25] is a way to classify
topologically complex networks. Recall that,our working definition of a tree is a
connected set where for every two points there is. a unique curve connecting them.
We will need some more terminology for treesito proeeéd. A endpoint of the tree T
is a point p such that by removing it, T\p, we'still have one connected component.
A branching point is a point p €/T such that'J\p has at least three disconnected
components. Similarly, removing point along a line segment will split the tree into
two connected parts. The line segment connecting an endpoint to its closest branching
point is called a leaf. By a rootywe will mean/a designated endpoint of the tree, and
the line segment connecting this-point to a branching point is no longer considered a
leaf.

3.1. Topological branch ordeéring

The pruning of a rooted tree is a transformation
P:T = PT)

that gives a new tree obtained by removing all leaves from the original tree [26].
The order of aline segment in the tree is now defined as the number of pruning
transformations needed/to remove it. The union of a collection of connected line
segments with the same order is called a branch. The Horton-Strahler number of the
tree is defined as the number of pruning transformations needed to eliminate the tree
in its entirety, i.ef if P7(T) = () the tree has Horton-Strahler number H [26]. When
we want to make the Horton-Strahler number of a tree explicit we will write Tg¢. An
example of these ordering rules are shown in figure 4.

Note-that the Horton-Strahler number is a topological invariant of the tree -
there is no reference to a metric when defining it. It is also a measure of the size
and complexity of the tree. Another interesting topological invariant for trees is the
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bifurcation ratio. Let n, be the number of branches with order w. Following Ref.
[27], the bifurcation ratio is defined as
TN

rp(w) = — (11)
w—+1

This quantity contains information regarding the self-similarity of the tree. Thetype
of self-similarity is a topological one because it only relies on the counting of branches-
if the bifurcation ratio is independent of branch order rg(w) = rp the struicture has
rp more branches at order w than at order w + 1, and rp more branches at order
w + 1 than at order w + 2 et cetera. The termination of this process,is dictated by
the Horton-Strahler number, i.e. when w = JH — 1.

Analogously to the bifurcation ratio we can define a length scalingiratio. Let L,,
be the average internal length of a branch of order w. Then thedength scaling ratio
is defined as

ro(w) = . (12)

3.2. The topological fractal dimension

With the Horton-Strahler parameters defined we can analyze another generalized
dimension of our system. This analysis closely resemblesithat/in Refs. [28] and [29],
but we review it here for the sake of completeness.

Consider a tree with given Horton-Strahlerparameters rp(w), rr(w) and H. The
total mass of the tree can be written as a sum over.all orders

H
m(Tge) = Z 2N,
w=1

The topological fractal dimension d; can nowybe defined through this mass and the
length of the highest order branch m(Tg¢) ~ Ld}tf [28]. This can be rewritten as

dd(T3c) =Wlifn M_

1
F—o00 logL}( (3)

The number of branches of‘a given order n,, can be written as a product of bifurcation
ratios. Using the definition in Eq. 11, we have

b

Ny = H rp(w’).

Similarly, using, Eq. 12 the average lengths can be written

w

Lw/Ll = H ’I"L(U)/)

w!'=2

We will set theleaf lengths L; = 1, for simplicity. Assuming that we can approximate
our tree with a self similar tree we get n,, = r?‘w and L,, = TEU_Q. The mass is then
in theform of a geometric series

Page 10 of 20
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Figure 4. Example of a tree structure with highest order 3. This tree has seven
order 1 branches, two order 2 branches and one order 3hbranch. The root is
denoted R.

Using Eq. 13 with Ly = rz{_Q and assuming that ry /rp <1 we find as in [28]

_ logrp

A(Toe) =0 (14)

This topological fractal dimension is expected to satisfy the same relation as the
connectivity dimension, i.e. dy = did,, [30], and henee we expect that d. = d;. This
will be checked numerically in the next section.
The topological fractal dimension is eloselyrelated to the so-called Hack exponent.
For any point p € T we denote by T, the subtree rooted at p containing all points
further away from the main root. Let also ;(J,) denote the geodesic length of the
largest path containing p in/such a subtree. /The Hack exponent h is then defined
through [30]
m(Tp) s~ € (Tp). (15)

In the study of river network topology, this exponent is typically defined through
the relation between the drainage basin area connected to p, sometimes denoted a,,
and the maximal geodesic léngth linside it, but for space-filling structures we expect
ap ~ m(Yp). For self-similar,treés it is also expected that ¢,,,(7T},) scales in the same
way as the highest order branch in the subtree. In this case the Hack exponent should
be h = 1/d;. Tt_is_known.that the Hack exponent indeed satisfies the inverse of
equation 14 [30]¢ We will measure the Hack exponent independently in addition to
the Horton-Strahler ratigs in the next section.

Before we turn to the numerical section we want to point out that for space-filling
systems with dy = 2 every, other geometric exponent discussed in this paper can be
expressed (in/terms of the Hack exponent by using the discussed scaling relations. In
summary:

d,=d; =1/h, (16)
dp = 2h, (17)
a=(1+h)"1 (18)
rL =1k (19)
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Exponents
Defining relation Name Value (direct | Value (Us- |pValue (MST)
measure- ing Hack
ment) exponent)
dy m(r) ~ r¥ Fractal dimension 1.997+0.007 | x 2
h m(Tp) ~ € (T,) /" | Hack exponent 0.60£0.015 | x 0.61 + 0.005
d. m(€) ~ €% Connectivity di- | 1.67+0.05 1.67£0.04 1.64 +£0.01
mension
dm, { ~ rdm Minimum path di- | 1.25 4+ 0.03 1.20 £ 0.03 1.22 + 0.01[4]
mension
dy m(T) ~ Ldfc Topological fractal | x 1.67+£0.04 1.64 +0.01
dimension
! (g — 20)?) ~ t™ Diffusion exponent | 0.64 4 0.03 0.63.40.01 0.62 + 0.002

Table 1. Definitions and values for various exponents. The fourth column shows
the value of various exponents based on direct measurements/in the frictional
finger trees. The last two columns shows the valuesfor frictional finger trees and
for MST based on expected scaling relations from Eqs. 16, 17, 18. The values for
MST are based on the value for d,, given in [4];and the values for the frictional
finger trees are based on the direct measurement ofithe Hack exponent. In both
cases we assume dy = 2 is known. The algorithms usedfor direct measurements
are described in the text.

The last of these equations can be seen as a consistency condition between the Horton-
Strahler ratios and the Hack exponent for self:similar, systems in the thermodynamic
limit.

4. Numerical results

In this section, we numerically, calculate the yvarious dimensions and exponent that
we have discussed in the theory and Horton-Strahler sections. We also measure the
diffusion exponent and comparg¢ with equation 18. The frictional finger patterns used
are generated numerically using, the scheme presented in Appendix A, and they are
mapped into 1D trees using-the pattern analysis method from Appendix B. Table 1
summarizes the values for various, exponents.

4.1. Connectivity and minimum paths

The connectivity dimensionsd, and the minimum-path dimension d,, are defined by
Eq. 6 and 3 respectively. A set of sampling points a is chosen such that it contains
one random point along the length of each line segment of the tree. Then for a series
of lengths [ along the branches, we measure both the total branch length within [ from
a, |B(a,l)[; and the mean Euclidean distance D from a of the set of points exactly [
from a. Foréach [, we take a weighted average by branch length of both |B(a,l)| and
D across all peints a to derive mean values for the whole pattern. To avoid influence
fromthe pattern’s edge, only points a at least a geodesic distance [ from the labyrinth
perimeter are considered.

Therfractal dimensions d. and d,,, can be found by plotting |B(a,l)| and D
respectively against [, as is shown in Fig. 6, using data from the largest labyrinth
with Horton-Strahler number 9. Numerical values are obtained of d. = 1.67 & 0.05

Page 12 of 20
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Figure 5. Graph showing the ratio of connected mass tototal mass as a function
of radius for finger patterns of various radii R in arbitrary units{ A range of radii
are identified as the domain where this ratio is more oriless constant. In the figure
this corresponds to the unshaded region for the largest labyrinth.
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Figure 6. Graph showing, for a series of lengths [ along the branches, the total
length |B(a4l)| within | of a position (red squares), and the mean Euclidean
distance D of points exactly | away from a position (blue circles), averaged over
many reference, positions within the largest labyrinth. Equations 6 and 3 may be
used to estimate the fractal dimensions d. and d,, respectively from the gradients
of these lines. Lengths [ are in arbitrary units, ranging between the typical width
of fingers at the left of the graph to the radius of the labyrinth at the right. Values
for small length scales — which are strongly influenced by the characteristic length
scalejof the fingers — are not used for estimating the slopes. The non-shaded area,
obtained.from figure 5, is the domain used when fitting the data.

and dp = 1.256£0.03. Note that d.d,, = dy = 2.09 £ 0.08, which, in theory, should
corrgspond te the Euclidean fractal dimension dy.

The range corresponding to the unshaded region in figure 6 is taken from figure
5, which shows the ratio m.(r)/m(r). We see that as expected the graph interpolated
between 1 at small » and 1 at large r, and in between stabilizes in a range of radii.
This range depends on the size of the system. The data in figure 6 corresponds to the
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Figure 7. Sketch of the numerical situation. The fingers are discretizediso that
the finger width is of the order 5 — 7 lattice spacings. Boundary conditions are
reflective.

largest system.

4.2. Anomalous diffusion in frictional finger labyrinths

Diffusion in frictional fingers is studied by Brownian random walkers. Fig. 7 shows
the schematic setup of the simulations. A discrete random walk is released inside the
frictional fingers, with a lattice spacing that is smaller than the finger width by one
order of magnitude. For the sake of simplicity, we use hard-wall boundary conditions,
i.e. when the particle hits the walls that stepiis discarded and a new step is taken.

The mean-squared displacement (|z; — 2¢/%) & t“ is then calculated for labyrinths
of different sizes. Fig. 8 shows the simulation tesults in systems where the sizes differ
by a factor of 16. The largest system.corresponds to Fig. 1. We see that the diffusion
exponent decreases with system size, and for the biggest system we have o ~ 0.64.

In Fig. 8 the slopes are found by the best fit of the data points. The diffusion
exponent could also be found through detrended fluctuation analysis (DFA). In
general, DFA is a tool that cambe used to study correlations or scaling for long time
series [31, 32, 33]. By applying thesmethods of DFA to the random walkers position
x¢, one can through the scaling exponent/ apga of the DFA fluctuation function find
the anomalous diffusion exponent through o = 2(appa — 1) [33]. Hence we expect
apra ~ 1.32, signifying a time, signaliwith positive correlations [31, 32].

4.83. Topological scaling and Hack exponent

From the simplified 1D tree structure, it is possible to find the Horton-Strahler order
of each branch, and-to report the number and mean length of branches of each order.
These trees are mot perfectly self-similar, but to a good approximation we can use
an average value of the Horton-Strahler ratios when doing our calculations. Fig. 10
shows the number of branches of a given order and their average geodesic length in a
logarithmic scale. Note that in a self-similar tree we should have n,, = r%c_“’, so that
log ny, ~ =wlog(rg). Hence the slope in this plot determines the bifurcation ratio for
a self-similaristructure, giving rp ~ 4.1 & 0.15. Similarly we find rp = 2.15 £ 0.10
from the slope of the blue (circular) data points in Fig. 10.

Figure 9 shows the mass of subtrees versus maximal geodesic length, which gives
ussthe Hack exponent h = 0.60 + 0.015. Using equation 19 one can show that the
measuted value for A and the values for rg and ry, indeed are consistent, within the
uncertainties. Using the numerical values of the ratios and Eq. 19, solving for h gives

Page 14 of 20
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log;o<(x;—x0)>>

Figure 8. Figure showing the mean-square displacement for systems of different
size. The orange line corresponds to a labyrinth with diameter'd; = 30cm, the
blue line to a diameter do = 8d;, and the purple linéto the biggest labyrinth with
diameter d3 = 16.7dy. For reference, lines with slope 6/10 and 7/10 has been
included. We expect that the slopes have an unecertainty of the order +0.03.
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Figure 9! Figure showing the maximal length of subtrees versus their mass, for
simplicity ‘denoted a (”area”). Slope gives the Hack exponent h = 0.60 & 0.015.

the value 0.54 £ 0.06. However, there are larger sources of error in the measurements
of the ratios, so the direct measurement of the Hack exponent is more reliable.
Using equations 16,17 and 18 we have from the measured Hack exponent the
values
dy =167 £ 0.04;d,,, = 1.20 £ 0.03; &« = 0.63 + 0.01

We see thiswalue of d; agrees very well with the direct measurement of the connectivity
dimension d. as expected. The diffusion exponent also agrees with simulations on
frictional fingers. Within the uncertainties these values all agree with those of the
MST wuniversality class.
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12 T T 12

Inn,

Figure 10. Graph showing the scaling of branéh €ount n, (red squares) and
mean branch length [, (blue circles) with branch orderaws Black lines show fits of
rp = 4.1 and r; = 2.15, ignoring the points corresponding to branch order 1 in
each case. Uncertainties on n,, are assumed equal to \/m , and uncertainties on
ly are estimated from the standard deviagion. There is no uncertainty for lg or
lg due to insufficient data to find a standard deviation, and these values are not
used in the fit. The error bars on most other points are smaller than the symbols.

5. Conclusion

We have argued that the frictional/finger trees.belong to the same universality class
as the minimal spanning trees. Several, geometric exponent were measured, both
directly and indirectly, and compared with walues for minimal spanning trees, which
confirmed the hypothesis. The values of the geometric exponents also give a value
for the diffusion exponent associated with the universality class, which agrees with
random walk simulations.
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Appendix A. Numerical generation of labyrinths

The numerical simulations’that generate the labyrinth are in principle the same as
those described in [2]. Motion of the air-grain front takes place where there is least
resistance in terms of frictional and capillary forces. This means that both inertial
and viscous forces are neglected.

The simulations are based on a discretization of the front into points labeled
which are updated by moving one point at the time a certain length dz along the local
unit normal n; at each update, as is illustrated in Fig. A1. Where motion takes place,
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Figure A1l. The discretized front, showing the point r; be m long the
unit normal n;. Here L;41 is the local front width, and t iu curvature
R coincides with the local position vector r;.
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curvature and L t al fr width. Figure Al shows how these quantities are
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Figure A3. The movement of the front is stopped when it méetsitself.

In the limit where b > a we have the following expression for the eurvature

1 _ 2(21‘1 —Tiy1 — ri—l) 1N,
2R (rip1 —ri—1)?

(A.2)

In addition to the front particle positions {r;}, the localyfront thickness needs to be
stored and updated. When r; — r; + n;dz the front thickness must be updated
simultaneously. This happens by the combined aetion of front stretching, which
reduces L;, and mass accumulation, which' increases’ L. »The mass accumulation
happens because a region of packing densityn¢ < 1 becomes a ¢ = 1 region. The
mass added to the front gives an addition ¢/(1'= ¢)dz to L. The stretching adds
no mass to the front, so that this step conseryes therarea Ls (see Fig. Al), that is,
d(Ls) = 0, so that dL = —Lds/s. The two steps.combined then gives

L; =
g 1—¢ S;

where s; = \/(I'i+1 —1;)2+ (ri—1=r;)? , so that we may write the increment

(ri+1 1 — 21‘1') d l‘lidI
& A

dSi =

(A4)

If the front folds back to meet\itself, it is stopped, as is illustrated in Fig. A3.
Randomness is introducediby adding a 10% white noise on the initial packing fraction

¢.

Appendix B. Pattern analysis methods

In order to measure branching statistics and fractal dimensions of our patterns, it is
necessary to'represent them as logical tree structures. Labyrinths are first rendered
as binary images, 'and a binary closing operation is performed to remove small-scale
structure on length scales’below that of the frictional fingers. A skeletonising algorithm
then réduces all branches to single-pixel width. A custom algorithm (previously used
in [34]) usesthis skeletonised image to produce a form of the labyrinth expressed as
a hierarchical tree of nodes, in which each node holds information on its parent and
descendant nodes, on its position, and on the length and shape of its branch. Leaves
with length below the length scale of the binary closing operation are pruned from the
tree, as they are unlikely to represent real structural features.

Page 18 of 20



Page 19 of 20

coNOTULT A~ WN =

oouuuuuuuuuuUu DDA DNDDNDNDNMNDAENDANEDNDNWWWWWWWWWWNNNNNNNNNN=S =S 2 39 @922 a0
O VWO NOULEAEWN=O0OUVONOOTULLAARWN=_OUVONOOTULLAAWN=—_OVONOOCULDDWN=—__OOVONOOUDWN=O

329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

AUTHOR SUBMITTED MANUSCRIPT - NJP-110249.R1

Geometry of frictional fingers 19

References

[1] B. Sandnes, H. A. Knudsen, K. J. Malgy, and E. G. Flekkgy. Labyrinth patterns in confined
granular-fluid systems. Phys. Rev. Lett., 99:038001, Jul 2007.

[2] Henning Arendt Knudsen, Bjgrnar Sandnes, Eirik Grude Flekkgy, and Knut Jgrgen Malgy.
Granular labyrinth structures in confined geometries. Phys. Rev. E, 77:021301, Feb 2008:

[3] Jon Alm Eriksen, Renaud Toussaint, Knut Jergen Malgy, Eirik Flekkgy, and Bjgrnar Sandnes.
Numerical approach to frictional fingers. Phys. Rev. E, 92:032203, Sep 2015.

[4] R. Dobrin and P. M. Duxbury. Minimum spanning trees on random networks. Phys. Rev. Lett.,
86:5076-5079, May 2001.

[5] Jose S. Andrade, Saulo D.S. Reis, Erneson A. Oliveira, Eric Fehr, and Hans J. Herrmann.
Ubiquitous fractal dimension of optimal paths. Computing in science and engineering, 13:74—
81, 2011.

[6] Michael F. Shlesinger. Asymptotic Solutions of Continuous-Time Random Walkss=dournal of
Statistical Physics, 10(5):421-433, 1974.

[7] Shlomo Havlin, James E. Kiefer, and George H. Weiss. Anomalous diffusion _on a random
comblike structure. Phys. Rev. A, 36:1403-1408, Aug 1987.

[8] S. Havlin, Zorica V. Djordjevic, Imtiaz Majid, H. E. Stanley, and G. H. Weiss. Relation between
dynamic transport properties and static topological structure for the lattice-animal model of
branched polymers. Phys. Rev. Lett., 53:178-181, Jul 1984.

[9] P. G. de Gennes. La percolation: un concept unificateur. La Recherche, 7:919, 1976.

[10] Daniel ben-Avraham and Shlomo Havlin. Diffusion and Reactions in Fractals and Disordered
Systems. Cambridge university press, 2000.

[11] Aleksei V. Chechkin, Flavio Seno, Ralf Metzler, and Igor M. Sokelov. Brownian yet non-
gaussian diffusion: From superstatistics to subordination of diffusing diffusivities. Phys. Rev.
X, 7:021002, Apr 2017.

[12] E. Barkai, E. Aghion, and D. A. Kessler. From the area under the bessel excursion to anomalous
diffusion of cold atoms. Phys. Rev. X, 4:021036; May 2014«

[13] Johannes H. P. Schulz, Eli Barkai, and Ralf Metzler. "Aging renewal theory and application to
random walks. Phys. Rev. X, 4:011028, Feb 2014.

[14] O. Bénichou, P. Illien, G. Oshanin, A. Sarracino, and R. Voituriez. Diffusion and subdiffusion
of interacting particles on comblike structures.  Phys. Rev. Lett., 115:220601, Nov 2015.

[15] Takuma Akimoto, Eli Barkai, and Keiji Saito. Universal fluctuations of single-particle diffusivity
in a quenched environment. Phys. Rev. Lett., 117:180602, Oct 2016.

[16] Dan S. Bolintineanu, Gary S. Grest, Jeremy B. Liechinan, and Leonardo E. Silbert. Diffusion in
jammed particle packs. Phys. Rev. Lett., 115:088002, Aug 2015.

[17] M. V. Tamm, L. I. Nazarov, A. A. Gavrilov, and A. V. Chertovich. Anomalous diffusion in
fractal globules. Phys. Rev. Lett., 114:178102, Apr 2015.

[18] Pan Tan, Yihao Liang, Qin Xu, Eugene Mamontov, Jinglai Li, Xiangjun Xing, and Liang Hong.
Gradual crossover from subdiffusion to normal diffusion: A many-body effect in protein
surface water. Phys. Rev. Lett.;120:248101, Jun 2018.

[19] R. Burioni and D. Cassi. /Random walks on graphs: ideas, techniques and results. J. Phys. A:
Math. Gen, 38:45-78,12005.

[20] A. W. C. Lau and T. C. Lubensky: State-dependent diffusion: Thermodynamic consistency and
its path integral formulation. Phys. Rev. E, 76:011123, Jul 2007.

[21] I.M. Sokolov. Ito, Stratenovich, Hanggi and all the rest: The thermodynamics of interpretation.
Chemical Physics, 375(2):359 — 363, 2010. Stochastic processes in Physics and Chemistry (in
honor of Peter Hnggi).

[22] Ben O’Shaughnessy and Itamar Procaccia. Analytical solutions for diffusion on fractal objects.
Phys. Rew. Lett., 54:455-458, Feb 1985.

[23] Albert-Laszlé Barabdsi. Invasion percolation and global optimization. Phys. Rev. Lett.,
76:3750-3753, May 1996.

[24] Robert. E/Horton. Erosional development of streams and their drainage basins; hydro-physical
approach to quantitative morphology. Bull. Geological Soc. America, 56:275-370, 1945.

[25] Arthus N. Strahler. Hypsometric (area-altitude) analysis of erosional topology. Bull. Geological
Soc. America, 63:1117-1142, 1952.

[26] Yevgeniy Kovchegov and Ilya Zaliapin. Horton law in self-similar trees. 2015.

[27] Idde Yekatieli and Benoit B. Mandelbrot. Horton-Strahler ordering of random binary trees. J.
Phys."A, 27:285-293, 1994.

28] Tanzhuo Liu. Fractal Structure and Properties of Stream Networks. Water resources research,

28(11):2981-2988, 1992.



coNOTULT A~ WN =

aoouuuuuuuuuuUu DDA DNDDNDNMNDMNDAENDANDNDNWWWWWWWWWWNDNNNNNNNNN=S =S 2 9 @929 a9
O VWO NOULEAEWN=_O0OUVONOOTULLAARWN=—_OUVONOOTULLAAWN=—_OUVONOOCULDDWN=—_OOVONOOUD,WN=O

389
390

392
393

395
396
397
398
399
400

402

AUTHOR SUBMITTED MANUSCRIPT - NJP-110249.R1 Page 20 of 20

Geometry of frictional fingers 20 \

29]
(30]
(31]

(32]

(33]

(34]

Einar L. Hinrichsen, Knut Jgrgen Malgy, Jens Feder, and Torstein Jgssang. Self-similarity and
structure of DLA and viscous finger clusters. J. Phys. A: Math. Gen, 22:271-277, 1989.
Peter Sheridan Dodds and Daniel H. Rothman. Unified view of scaling laws for river nefworks.

Phys. Rev. E, 59:4865-4877, May 1999.
Kun Hu, Plamen Ch. Ivanov, Zhi Chen, Pedro Carpena, and H. Eugene Stanley. Effect of tI‘EI\

on detrended fluctuation analysis. Phys. Rev. E, 64:011114, Jun 2001.
Zhi Chen, Kun Hu, Pedro Carpena, Pedro Bernaola-Galvan, H. Eugene Stanley, and Pla Ch.
Ivanov. Effect of nonlinear filters on detrended fluctuation analysis. Phys. Rev. E, 71 4,
Pedro

Jan 2005.

Concepcién Carretero-Campos, Pedro Bernaola-Galvan, Plamen Ch. Ivanov,
Carpena. Phase transitions in the first-passage time of scale-invariant correlated processes.
Phys. Rev. E, 85:011139, Jan 2012.

James M. Campbell, Deren Ozturk, and Bjgrnar Sandnes. Gas-driven fract o
granular media. Phys. Rev. Applied, 8:064029, Dec 2017.

S

KN
\@b

C)Q
Y.,



