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Spectral analysis and parameter estimation in levitated optomechanics

Chris Dawson1 and James Bateman1, a)

Department of Physics, College of Science, Swansea University, SA2 8PP, UK

(Dated: 24 May 2019)

Optical levitation of nanoscale particles has emerged as a platform for precision measure-
ment. Extremely low damping, together with optical interferometric position detection,
makes possible exquisite force measurement and promises low-energy tests of fundamental
physics. Essential to such measurement is an understanding of the confidence with which
parameters can be inferred from spectra estimated from the indirect measurement provided
by interferometry. We present an apparatus optimized for sensitivity along one motional
degree of freedom, a theoretical model of the spectrum, and maximum likelihood estimation.
The treatment accounts for the sinusoidal dependence of interferometric signal on particle
position, and we use the technique to extract thermodynamic quantities in a regime where
simpler treatments are confounded.

I. INTRODUCTION

Levitated optomechanics uses a nanoparticle, trapped
in vacuum by the optical dipole force, as a harmonic oscil-
lator in a thermal bath1. Despite the apparent simplicity,
interferometric position readout2 combined with optical
control, including intensity modulation2,3 and shaping of
the focus4, yields a rich platform for exploring nanoscale
dynamics5,6, and promises ultra-precise measurements7,8

and low energy tests of fundamental physics9–12.
Properties of the oscillator are not measured directly,

but rather are inferred from optical measurements, often
with the intermediate step of estimating spectral density
from time-series data. This optical measurement is in-
terferometric and therefore not linear with position: the
linear approximation is appropriate for geometries where
forward scattered light is used2, and care must be taken
when extracting parameters in backwards scattered ar-
rangements3,13,14, where phase to position sensitivity can
be much greater and there may be a non-zero phase off-
set. Backscatter is desirable because of increased sensi-
tivity and separation from the laser light, but even when
used at low centre of mass temperatures, where the phase
excursion is small, the offset can render measurement
non-linear.

Furthermore, spectral overlap of oscillator modes,
cross-coupling, and effects not accounted for in this sim-
plistic description, notably rotation15–17, can pollute the
spectrum and affect parameters extracted by, for exam-
ple, integrating a truncated region of the spectrum. For
example, temperature, or a quantity proportional to it,
can be found by integrating the spectral density asso-
ciated with a given mechanical mode18, but this is only
possible when the mode is spectrally resolved, precluding
use of this simple technique at high pressure (& 10 mbar).

We describe an experimental system which is opti-
mized for detection of one motional degree of freedom
(longitudinal) while rejecting, to first order, signal from
the other two (transverse). We use backscatter, which
offers a larger phase-shift for a given displacement than
does forward-scatter, but which in our experiment intro-

a)Electronic mail: j.e.bateman@swansea.ac.uk

duces an uncontrolled and slowly drifting offset phase-
shift; and we use an optical fibre system which collects
a significant fraction of the scatter and which guides
this, without diffractive loss, to detection electronics.
This collection and guiding offers alignment stability and
contrasts strongly with free-space detection where small
photodiode area and the comparatively large free-space
beams means that much of the collected light is unused.
Using scatter more efficiently is essential if we are to ap-
proach the standard quantum limit in these systems19.

In this manuscript, we describe our experiment,
present a theoretical spectrum, including narrow-band
limit and comparison with numerics, and then apply a
maximum likelihood approach to parameter extraction
from simulated and experimental data. Through this,
we observe a centre of mass heating effect at intermedi-
ate pressure, where spectral overlap confounds simpler
methods, and finally we describe the experimental limits
which we encounter in our specific implementation.

II. EXPERIMENTAL APPARATUS

Our apparatus, illustrated in figure 1, consists of a sin-
gle glass nanoparticle held, by the optical dipole force,
in the focus of hemispherical parabolic mirror. Gaussian
beam illumination of this mirror is provided by a triplet
collimator attached to a single-mode optical fibre. Laser
light is provided by a narrow linewidth telecommunica-
tions wavelength (λ = 1550 nm) all-fibre laser, which is
amplified by an erbium-doped fibre amplifier and sent,
via an optical circulator, to the output collimator. The
trapped particle explores . λ/10 around the focus, and
the potential is therefore well-approximated, for our pur-
poses, as harmonic, with a different natural frequency
along each of the Cartesian axes.

The particle Rayleigh scatters a small fraction of the
trapping light, half of which is backscattered towards the
parabolic mirror. This light is collimated by the mir-
ror and directed towards the fibre optic collimator, some
fraction of which is then coupled into the optical fibre.
Unscattered light, and forward scattered Rayleigh light,
diverges strongly as it travels towards the collimator,
and only a small fraction of this is coupled back into
the fibre. Imperfections in components of the fibre optic
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FIG. 1. Experimental schematic showing light from the the
low power seed laser split by a ratio 1:10, amplified by an
erbium-doped fibre amplifier (EDFA), and directed towards
the focussing mirror via a circulator. The optical fibres and
components, aside from the seed laser, are non-polarization
maintaining. The alternative path of this seed light goes via
an acousto-optical modulator (AOM) which shifts the light
in frequency by 80 MHz. The paths recombine with a ratio
1:1000 so that the majority of scattered light is retained. The
RF signal resulting from the photodiode detection is mixed
with a reference near 80 MHz and then low-pass filtered (LPF)
before recording.

network mean that other stray reflections, notably from
the fibre output facet (∼ 10−6) and the optical circula-
tor (∼ 10−5), make their way, with varying amplitudes
and phases, to the photodiode. Overall, light at this
frequency, which in other schemes would provide a refer-
ence for interferometry, drifts in phase and amplitude be-
cause of the macroscopic path difference. This motivates
our introduction of phase-coherent light at a shifted fre-
quency, implemented by the acousto-optical modulator
(AOM) and known as heterodyne detection, as discussed
in detail below.

This arrangement differs in two important ways from
the forward-scatter, free-space detection scheme, in
which laser light and forward-scattered Rayleigh light
falls onto a quadrant detector, with overall signal giv-
ing longitudinal information and the difference between
left/right or top/bottom pairs giving transverse position
information. Firstly, in this backscatter scheme the op-
tical phase of scattered light changes more rapidly with
particle position along the optical axis; secondly, the ge-
ometry and aggressive spatial filtering by the optical fi-
bre mean that, when correctly aligned, this scheme is
first-order insensitive to particle motion transverse to the
optical axis. For some applications in precision measure-
ment, this larger sensitivity to one axis with strong re-
jection of others could be a strong advantage. The fibre
optic approach also means that, once coupled into the
fibre, there are no diffractive losses and a large fraction
of guided light can be directed onto a fast photodiode.

A. Interferometric detection

The photodiode signal V arises from the interference
of a reference field Eref (phase θ) and scatter from the

particle Esca (phase φ). The signal is proportional to the
modulus squared of the total field, and contains offset
(proportional to the sum of the squares of the individual
fields) and a term sinusoidal with phase difference θ − φ
i.e. V ∝ E2

ref + E2
sca + 2ErefEsca cos (θ − φ).

We model the phase shift from particle displacement as
linear φ = κz where the sensitivity κ depends on the ge-
ometry, discussed below, and z is particle position, along
the optical axis, relative to the focus. In the forward-
scattered case, θ = −π/2 via the Gouy shift, expansion
to first-order in φ is justified because the overall phase ex-
cursion is typically small, and hence V is approximately
linear with position. For backwards scatter, θ may drift,
and phase excursion is not necessarily small.

B. Position to phase sensitivity

Through the focus of a Gaussian beam, the optical
phase evolves more slowly than would a comparable non-
focussed beam. This Gouy shift, near the focus, mod-
ifies the rate of change of phase from k = 2π/λ to
k′ = k − 1/zR where zR is the Rayleigh range. Hence,
for forward scatter, the rate of change (with particle po-
sition) of phase difference between Rayleigh scatter and
laser field is κ ≈ k − k′ = 1/zR. For back scatter, laser
light accrues phase delay while travelling to the particle,
and accrues additional phase delay on its return, giving
the larger sensitivity κ ≈ k + k′ = 2k + 1/zR.

When focussing with numerical aperture & 0.5, the
paraxial approximation underlying Gaussian beam treat-
ments is not valid20. For uniform illumination of a circu-
lar aperture21, with numerical aperture NA = 1 as in our
parabolic mirror, we find κ = 2k− 1.41π/λ. However, il-
lumination would better be approximated by a truncated
Gaussian, and we have not modelled the reflection and
collimation of scattered light.

Experimental studies of similar parabolic mirrors have
revealed strong sensitivity to alignment and manufactur-
ing tolerances22,23. For lower aperture optical systems,
or those employing compound lens microscope objectives,
we could be more confident of the calculated value, and
thereby convert the extracted phase modulation depth
into a measurement of the temperature to mass ratio.
The proportionality of phase modulation to temperature
remains, and we use this result later in this work.

C. Heterodyne detection

Interferometric detection in levitated optomechanics is
usually by homodyne detection, where scatter interferes
with light at the same frequency, i.e. θ is constant. Here,
implementation of this scheme is complicated by the pres-
ence of several contributions to light at this frequency,
and a consequent drift in phase and amplitude because
of the macroscopic (metre-scale) optical paths.

Instead, we employ heterodyne detection, where scat-
tered light is interfered with phase-coherent, frequency-
shifted light. In our experiment, this light is derived from
the same laser and frequency shifted using an acousto-
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optical modulator at 80 MHz. It is guided to the photo-
diode and mixed with the scattered light using a 1:1000
coupler, which allows us to retain ∼ 99.9% of the scat-
tered light at this component. The electrical signal from
the photodiode is shifted down in frequency to 3 MHz
using a radio frequency components and 77 MHz local
oscillator. Radio frequency mixing and filtering in any
realistic device degrades the signal to noise; implementa-
tions without this stage are possible using, for example,
a electro-optical phase shifter at 3 MHz.

The principle advantage of heterodyne detection in our
experiment is that spectrum remains stable regardless
of slow drifts in the offset of the phase θ, which now
evolves at a rate fast compared with the dynamics of
the system. It also allows us to use results from radio-
frequency communication to understand the spectrum.

III. THEORETICAL SPECTRUM

For illustration, although we will soon improve this
description, we consider purely harmonic particle mo-
tion z = z0 sin(Ωt), which gives phase modulation φ =
φ0 sin(Ωt) where φ0 = κz0, with a phase offset θ treated
as constant over the timescale of observation. We find

cos [θ − φ0 sin (Ωt)] = cos θJ0 +

2 cos θ

even∑
n≥2

Jn cos(nΩt) + 2 sin θ

odd∑
n≥1

Jn sin(nΩt) (1)

where Jn is the nth order Bessel function evaluated at
φ0. This description has been used to understand op-
tomechanical spectra, including a case where θ was var-
ied systematically3. The (co)sinusoidal dependence of
(even)odd harmonics is a feature of this expansion being
around zero frequency, and a useful interpretation is of
negative orders being reflected about the origin to overlap
and interfere with their positive frequency counterparts.

We now improve the description of particle motion. To
obtain a spectrum, we necessarily observe for a time long
compared with the relaxation time. Therefore, it is not
accurate to treat motion as purely harmonic. Hereafter,
we treat the particle as a stochastic harmonic oscillator,
which leads to an important difference. Moreover, to
avoid interference of negative and positive orders, we ex-
pand about a frequency large compared with the width
of the spectrum, by using θ = ω0t+ θ0.

The differential equation describing a stochastic har-
monic oscillator, with natural frequency Ω and damping
Γ, is

z̈ + Γż + Ω2z = w(t) (2)

where z is the particle position, over-dot means differen-
tial with time, and w is a Wiener process with volatility
kBTΓ/M chosen to agree with equipartition; kB is Boltz-
mann’s constant, T is centre of mass temperature, and
M is the particle mass. From the fluctuation–dissipation
theorem and linear response theory, the spectrum of fluc-
tuations is

Szz(ω) =
2kBT

M

Γ

(ω2 − Ω2)
2

+ Γ2ω2
. (3)

For forward scatter at low temperature, where θ =
−π/2 and φ0 � 1, detection is approximately linear and
it is often sufficient to approximate the signal as a scaled
version of equation 3. For backward scatter, where these
conditions are not satisfied, previous work has combined
equations 1 and 3 in a heuristic way, by considering a
scaled delta function at each frequency, broadened by
the position spectrum3. Here, instead, we use a result
from radio communications which gives an exact result.

The correlation function Rvv(t) = 〈v(t)v(t − τ)〉τ of
a signal v(t) = v0 sin [ω0t+ φ(t)] phase-modulated by a
Gaussian random process φ(t) with correlation function
Rφφ(t) and variance Φ2 = κ2〈z2〉 is24

Rvv(t) = v2
0 exp

[
Rφφ(t)− Φ2

]
(4)

the Fourier transform of which is the spectrum and can
be represented as25,26

σvv(f) = e−Φ2
∞∑
n=0

Φ2n

n!
σzz(f)

n
~ σzz(f) (5)

where σzz(f) = 2π Szz(2πf)/〈z2〉 is the normalized po-

sition spectrum (such that
∫ +∞
−∞ σzz(f)df = 1), and

n
~

is the nth order convolution infix operator defined recur-

sively via a
n
~ a = a ~ a

n−1
~ a, with a

2
~ a = a ~ a the

standard convolution, a
1
~a = a, and a

0
~a = δ the Dirac

delta.
The overall appearance is of peaks near integer mul-

tiples of natural frequency Ω, as in equation 1. Higher
order terms give contributions to lower order harmonics,
and hence the energy (and information) contained within
a given harmonic is a result of a series summation, not
just the contribution from a given order. This expression
valid for under- and over-damped oscillators.

A. Illustrative, typical spectra

An example of a typical spectrum is shown in figure 2.
Also shown here is a spectrum estimated from a simu-
lated realisation of a random process; spectral estimation
is discussed further in Section IV.

The spectrum is centred on the chosen modulation fre-
quency, ω0 = 2π × 3 MHz, with peaks spaced at integer
multiples of Ω symmetrically either side. The amplitude
of higher order peaks reduces monotonically and series
convergence is assured because of the factorial in the de-
nominator.

The overall, broad pedestal arises from the increasingly
broad contribution of higher order convolutions to the
overall spectrum. The presence of this pedestal makes
clear that the integrated area under the first order peak is
not necessarily an accurate representation of the variance
in φ(t), especially because the shape of the spectrum will
change as this variance is e.g. reduced by cooling.

B. Narrow-band limit

Often, with this kind of system, one has a narrow-
band process. Modelling this as purely sinusoidal gives
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FIG. 2. (a) Illustration of the theoretical spectrum (orange)
compared with that obtained by simulating particle trajec-
tories with stochastic differential equations and estimating
the spectral density using Bartlett’s method (blue) with 9
periodograms, with model parameters Ω = 2π × 100 kHz,
Γ = 20 kHz, Φ = 0.75. (b) Normalised residuals of the same.
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FIG. 3. Relative fraction of signal contained within nth or-
der peak, for the narrow-band case, according to Equation 6,
or using (unmodified) Bessel functions as might be expected
when treating motion as purely harmonic. The deviations
are significant for large modulation depth. The variance of
φ = φ0 cos Ωt is φ2

0/2, and hence we plot Jn(
√

2 Φ)2 (dashed)
and In(Φ2) (solid).

Equation 1; instead, we observe that the limiting case for
low damping is that the process has a sinusoidal corre-
lation function Rφφ = Φ2 cos Ωt for which, using Equa-
tion 4 and the Jacobi–Anger identity with imaginary am-
plitude, we find

R(narrow)
vv (t) = v2

0e
−Φ2

[
I0 + 2

∞∑
n=1

In cosnΩt

]
(6)

where In is the modified Bessel function of the first kind
evaluated at Φ2. Details of the algebra are given in
Appendix A. Previous work3,13 used the (non-modified)
Bessel functions to estimate physical parameters from ob-
served spectra, which agrees with Eq. 6 for small Φ.

The ratio of predicted peak amplitudes, relative to the
first order, is illustrated in figure 3, and the treatments
agree for small Φ. Notably, treating motion as purely
harmonic predicts that the first order will vanish at Φ ≈

3.8, the first zero of J1; the modified Bessels have no such
zero crossings.

IV. PARAMETER ESTIMATION FROM TIME SERIES

Our goal is to estimate model parameters describ-
ing the process from the time-series measurements of
a phase-modulated signal arising from a realisation of
this process. Ideally, we would compute the likelihood
of the time-series data for given model parameters, and
thereby infer the probability density for these parame-
ters27. However, the experimental spectrum, while rel-
atively clean, contains features not described by this
model, and these are easily filtered in the spectral do-
main. Therefore, we first make a non-parametric esti-
mate of the spectrum, and then compute the likelihood
of this spectrum, over the relevant regions, for given
model parameters. Future work may address this para-
metric estimation problem without the intermediate non-
parametric spectral estimation step. There is interest in
this approach, but to our knowledge the existing treat-
ments (e.g. autoregressive maximum likelihood; other
Bayesian methods28) are not applicable when the mea-
surement of the process is non-linear.

We base our spectral-domain approach on Whittle’s
approximate log-likelihood29:

L(α) =
∑
i

logS(α) + Ŝ/S(α) (7)

where α are the model parameters, S is the theoreti-
cal spectrum, and Ŝ is an estimator of the spectrum
from the time-series. Summation is over the discrete
frequencies at which the spectrum is estimated. The
probability density for the parameters given the data27

is prob(α|Ŝ) ∝ exp [−L(α)].

The Whittle likelihood is an approximation of the true
likelihood for a stationary Gaussian time-series model.
While the underlying harmonic oscillator can be de-
scribed by such a model, our measurement of it cannot.
Therefore, it is unclear whether the Whittle likelihood
will give an accurate estimate in this case. We make a
slight adaption (described below) and verify the effective-
ness numerically in our use case.

The Whittle likelihood was originally formulated for
the periodogram, the modulus squared of the discrete
Fourier transform. This estimator is asymptotically
unbiased, but it is not consistent: the variance does
not decrease for a large number of points. We trade
points for consistency by averaging the periodogram us-
ing Bartlett’s method: split the time-series data of length
N into many M -length segments, each of which is win-
dowed using the Tukey–Hanning window, and then com-
pute the average periodogram over these segments. The
distribution of this estimator relative to the true value
is30 νŜ/S ∼ χ2

ν where this is the χ-squared distribu-
tion, and the degrees of freedom ν is twice the num-
ber of segments, ν = 2N/M ; this is illustrated in fig-
ure 4. For large ν, this tends to a Gaussian distribution
Ŝ/S − 1 ∼ N (0,

√
2/ν)
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FIG. 4. A histogram of normalised residuals from figure 2(b)
(grey), with a theoretical χ2

ν distribution (black). For these
numerics, to illustrate the χ2 nature and the tend towards
Gaussian, we use the relatively low value of ν = 18.

A. Parameter estimation with simulated trajectories

We compute the likelihood function and consequent
probability density for a simulated trajectory with known
parameters α0, as we vary α about the true value.
The physical parameters describing our spectrum are
α = (Φ,Ω,Γ). For illustration, since Ω is well con-
strained, we vary (Φ,Γ) while holding Ω = Ω0. Details of
the simulation are described in Appendix B, and the cal-
culated probability density is illustrated in figure 5. The
central spectral peak, the delta function resulting from
n = 0 in equation 5, contains no information about the
random process, is relatively large, and depends critically
on the spectral windowing function; we therefore exclude
a small region near to this peak from our likelihood cal-
culations.

To assess whether this Whittle probability density is an
accurate representation of the information which can be
extracted through this process, we we create an ensemble
of simulations with known α, find the maximum likeli-
hood estimate in each case αMLE, and estimate prop-
erties of the assumed Gaussian probability distribution
from which these estimates are picked. This ensemble
estimate of the probability distribution is compared with
that obtained by computing exp [−L(α)] directly.

Rather than raster the parameter space, we compute
the profile likelihood, by constraining one element of α
and fitting all others. This gives access to the marginal
probability, effectively integrating over the other (nui-
sance) parameters. The difference between computing
marginal probability density prob(Φ) =

∫
prob(Φ,Γ) dΓ

and evaluating prob(Φ,Γ = Γ0) is apparent in figure 5,
where the extremal Φ accessible for a given probability
density is larger if we integrate over Γ (marginal distri-
bution) or allow Γ to be adjusted (profile likelihood),
compared with constraining Γ = ΓMLE.

V. APPLICATION TO EXPERIMENTAL DATA

Experimental measurements are subject to additional
complications not captured by the simulations. The col-
lected optical power and the responsivity of the photode-
tector give some scaling to the recorded voltage signal,
and an advantage of the technique is that information
is encoded in the spectral shape, not the absolute scale.
In addition, the detection system introduces measure-
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FIG. 5. Probability density obtained from L by varying (Φ,Γ)
for Ω = 2π × 100 kHz. The natural frequency is well con-
strained so it is reasonable to compute at fixed Ω rather
than marginalising. The true values (Φ = 0.20,Γ = 20 kHz)
are contained within the uncertainty ellipse, and the anti-
correlation between these parameters is apparent.
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FIG. 6. (a) Illustration of the fitted theoretical spectrum (or-
ange) compared with that obtained experimentally by record-
ing time-series and estimating the spectral density using
Bartlett’s method (blue) with 38 periodograms, with best-
fit parameters Ω = 2π × 70.5 kHz, Γ = 62.0 kHz, Φ = 0.24.
(b) Normalised residuals of the same. The central peak is
excluded because this contains no information about the mo-
tion, the amplitude drifts from multi-path interference, and
the width is dominated by the spectral windowing function.

ment noise, which we treat as white, and which therefore
manifests spectrally as a constant offset. We treat this
scaling and offset as nuisance parameters by finding their
maximum likelihood values for each calculation of S(α),
thereby computing the profile likelihood as described in
Section IV A.

An example of a typical maximum likelihood fit at a
reasonably high pressure, where overlap between peaks is
significant, is shown in figure 6. Normalised residuals are
shown and, because we are averaging over a large number
of periodograms, their distribution approaches Gaussian.
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profile likelihood method of constraining (in this case) Φ and
fitting all other parameters in α. For scenarios where Ω and
Γ are well-behaved, the trajectory through parameter space
reveals probability densities for both constrained and fitted
parameters.

A. Probability densities and parameter uncertainties

Once parameters αMLE have been found which maxi-
mize the Whittle likelihood, we compute the probability
density for a given parameter by constraining this pa-
rameter (to some value near to the maximum likelihood
value) and then maximizing probability by adjusting all
other parameters. Moreover, when the fitted parame-
ters depend monotonically on the constrained parameter,
then this calculation also reveals the probability density
for the fitted parameters. An example of probability den-
sities computed in this way is shown in figure 7.

For spectra with relatively high damping (Γ & 1 kHz)
our model describes the experimental spectrum well, and
we are able to extract Φ and the associated uncertainty
in a regime where spectral overlap with harmonics would
confound the naive approach of integrating under peaks.
For spectra with lower damping, the intensity stability
of our experiment affects the peak shape, principally
through the square-root dependence of Ω on power; this
limitation is particular to our apparatus, does not limit
the technique in general, and is discussed further in Sec-
tion V C. For Γ . 150 Hz we expect an effect from win-
dowing of our finite-length time series, and this could be
included in a description of the theoretical spectrum.

B. Observing heating at intermediate pressure

We apply our estimation technique to spectra obtained
for a nominally 100 nm silica particle in a dipole trap, as
we reduce the gas pressure in the vacuum chamber. Prob-
ability density for Φ is found by computing the Whittle
likelihood as this parameter is constrained and all oth-
ers are adjusted to maximize this likelihood. The best-
estimate and uncertainty are calculated from this prob-
ability distribution in the standard way, and results are
plotted as a function of pressure in figure 8. The three
points at highest pressure (around 100 mbar) are derived
from probability distributions which are not Gaussian,
but are sufficiently broad so as to not be misleading when
described by symmetric errorbars.

As discussed in Section II B, the phase to position sen-
sitivity is not known accurately in this system. The
phase modulation depth is proportional to temperature
Φ2 ∝ T/(MΩ2) and hence, because Ω is well-constrained

100 101 102

Pressure [mbar]

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

FIG. 8. Experimentally observed phase modulation Φ with
uncertainties derived from the Whittle likelihood. Φ is not
well determined above 100 mbar, with a probability density
which is non-Gaussian and consistent with zero; at low pres-
sure on this scale, the effect of laser intensity noise affects the
estimate. Near 10 mbar, where this technique works well, we
observe an increase in the phase modulation depth, which we
associate with an increase in centre of mass temperature.

and we assume particle mass M remains unchanged, we
interpret the slope near 10 mbar as an increase in tem-
perature. Comparing the relative plateaus near 20 mbar
and 2 mbar, we estimate an increase in temperature of
approximately 90 K.

Decrease in mass would also manifest as an increase
in Φ. Recent experiments on similar systems have re-
vealed that micron-sized particles are porus and can con-
tain significant water31. However, the strong absorption
of 1550 nm light by water suggests that there would be
low content even at atmospheric pressure. We cannot
rule out the possibility that mass reduces, and future ex-
periments, perhaps cycling pressure with different back-
ground gases, may be informative.

Some experiments in levitated optomechanics have suf-
fered from an unexpected increase in particle loss proba-
bility at these intermediate pressures, and there has been
work to understand temperature in this setting32,33. Ex-
periments using telecommunications wavelength 1550 nm
(rather than 1064 nm) appear to suffer less from this
unexplained loss, and this is assumed to be because
of the lower material absorption of silica at this wave-
length. This technique may be a useful tool to esti-
mate temperature changes in this regime, with applica-
tions including diagnosing material properties of fabri-
cated nanoparticles designed to minimize heating caused
by laser absorption34.

C. Intensity noise and non-linear broadening

An additional complication, relevant at low Γ, is rela-
tive intensity noise: the laser intensity at the focus has
some small, low-frequency drift, and this affects proper-
ties of the spectrum. For a fibre laser, the noise spectrum
is extremely quiet at or above the particle oscillation fre-
quency Ω, making this a good choice to minimize para-
metric heating35; it is more significant at low frequencies,
corresponding to slow drifts during data collection.
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FIG. 9. Comparison of experimental spectra with theoretical
spectrum and a theoretical spectrum broadened by inclusion
of relative intensity noise (R = 1%) illustrating that this is
significant even for small intensity noise. Other parameters
are Φ = 0.35, Ω = 2π × 69.8 kHz, and Γ = 2.5 k/s and the
pressure is 0.8 mbar, just below the minimum of figure 8. The
maximum likelihood fit is over the entire spectrum, and a
zoomed region around the 3rd order peak is shown, where the
broadening and damping are comparable i.e. R× 3Ω ≈ Γ.

From direct measurement of the intensity at points in
our fibre network we constrain R . 1% and therefore this
is significant only for Γ . Ω/100 ∼ 10 kHz.

To model this effect, we assume that drifts in intensity
are slow compared with the relaxation time of the oscil-
lator Γ−1 and that the distribution of intensity is Gaus-
sian with some width R. This model is unlikely to be
sufficient for precision measurements, and future experi-
mental work must be undertaken to minimize this drift.
Under these assumptions, we can describe the observed
spectrum as an average over the intensity distribution.

The intensity affects several aspects of spectrum: the
overall scale (linearly); the natural frequency Ω (square
root); and the modulation depth Φ (square root) via the
natural frequency because the spatial extent of the ther-
mal state depends inversely on Ω. Therefore, the overall
broadened spectrum is

S′(Φ,Ω,Γ) =
1√
2πR

∫
(1 + r) e−r

2/(2R2)×

S(Φ/
√

1 + r,Ω
√

1 + r,Γ) dr . (8)

An example spectral peak, with experimental, un-
broadened theoretical, and broadened theoretical accord-
ing to equation 8 is shown in figure 9. The model param-
eters are found by maximizing the likelihood over the
entire spectrum, and a zoomed in region, where the ef-
fect is most visible, is shown for illustration. While this
Gaussian broadening captures the behaviour well, and
quite often fits our experimental results, care must be
taken if this is used for parameter extraction because
the duration of the measurement is not sufficiently long
that the intensity distribution can be reliably approxi-
mated as Gaussian; the dynamics of the drift are too
slow. Sometimes, for example, intensity undergoes a lin-
ear drift, which results in an asymmetric peak; this might
explain examples in the literature, e.g. figure 3 in Ref. 3.
Estimates based on the integrated area are unaffected,
but the use of this whole spectrum method must account
more carefully for any such drift.

An additional source of broadening is the thermal av-
erage of the Duffing non-linear frequency shift36. This
effect, and the consequent distinctive asymmetric peak
shapes, is masked in our system by the slightly larger
intensity noise. It is straightforward to include this non-
linear broadening by averaging the heterodyne spectrum
over the Boltzmann distribution, with frequency shift
∆Ω ∝ E and oscillation amplitude variance Φ ∝

√
E,

similarly to equation 8. In constrast with slow intensity
drifts, it is reasonable to sample sufficiently long that the
Boltzmann average is a good approximation, and there-
fore we expect, although cannot currently verify, that our
parameter estimation approach remains valid.

VI. CONCLUSIONS

We have presented a technique for extracting, with
confidence intervals, thermodynamic quantities from
interferometric position measurements of a levitated
nanoparticle by careful treatment of the estimated spec-
tral density. The techniques relies on the shape of the
spectrum, and is indifferent to calibration of the pho-
todiode responsivity or changes in the signal amplitude.
We have demonstrated this technique with experimental
apparatus which is long-term stable and optimized for
sensitivity along one direction, with strong rejection of
others, giving a spectrum well described by the model.
The technique allows extraction when spectral features
are not well resolved, and permits spectral windowing,
which means it can be used when experimental spectra
are cluttered by unmodeled features.

We have used this technique to observe centre of mass
heating at intermediate pressure, where the simpler tech-
nique of integrating under a peak is not appropriate. This
technique may find use in diagnosing temperature depen-
dence in this pressure range, for example when character-
ising unwanted heating in carefully fabricated extremely
pure nanodiamonds. Alternatively, it may be used if the
temperature is known and the mass changing, such as by
deliberate evaporation of a nanoparticle to obtain small
trapped nanoparticles, with thermalisation via buffer gas.

This implementation was limited by intensity noise,
but this is not a fundamental limitation of the technique.
Further, one could in principle record for sufficiently long
that the histogram of intensity fluctuations is well de-
scribed by a Gaussian, for which the model would then
be expected to fit, but a reduction in the noise is a more
efficient approach.

The high aperture optical trap, with possible manufac-
turing and experimental imperfections and an incomplete
model of the focussing and collection optics, means that
we cannot, with confidence, calculate the phase to po-
sition sensitivity in our experiment; if this were better
known, by either direct measurement, calculation, or us-
ing different optics, the technique would allow for direct
calculation of the temperature to mass ratio from the
extracted phase modulation depth.

This work focussed on heterodyne detection, which can
be implemented fully optically with little loss in signal
quality. However, many existing experiments use homo-
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dyne detection, and future work is to extend the formal-
ism to cover this case.
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Appendix A: Narrow band spectrum

Starting with equation 4 for the correlation function
Rvv of the phase-modulated signal v,

Rvv(t) = v2
0 exp

[
Rφφ(t)− Φ2

]
(A1)

we use a narrow-band process φ which has correlation
function Rφφ = Φ2 cos Ωt to find

Rvv(t) = v2
0e
−Φ2

e−Φ2 cos(Ωt). (A2)

The modulated exponential term can be expressed
using the Jacobi–Anger identity with the replacements
iz = Φ2 and θ = Ωt:

eiz cos θ = J0(z) + 2

∞∑
n=1

inJn(z) cos(nθ) (A3)

where Jn is the nth order Bessel function. Hence,

eΦ2 cos(Ωt) = J0(−iΦ2) + 2

∞∑
n=1

inJn(−iΦ2) cos(nΩt)

= I0(−Φ2) + 2

∞∑
n=1

ininIn(−Φ2) cos(nΩt)

= I0(Φ2) + 2

∞∑
n=1

In(Φ2) cos(nΩt) (A4)

where In is the nth order modified Bessel function, and we
have used the identities Jn(ix) = inIn(x) and In(−x) =
(−1)nIn(x).
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Appendix B: Ensemble simulation comparison

We simulate the process using the Euler–Maruyama
method with δt = 1 ns, and sampled at 10 MS/s for 1 s to
generate 10 M points. (The crudeness of the numerical
method makes necessary the short time-step.) For an en-
semble of trajectories (∼ 40), we estimate the spectrum
with Bartlett’s method as described in the main text us-
ing M = 216, and find the maximum likelihood estimate
of the parameters, αMLE.

We use Ω = 2π × 100 kHz, Γ = (10, 20, 50, 100) kHz,
and use Φ = 0.1, 0.2, 0.5, 1.0 for calculating the phase-
modulated spectrum. We use a temperature of 300 K
and a mass of 10−18 kg; these are typical experimental
values, and only their ratio enters the simulation. In
keeping with the experimental system, we use a centre

frequency f0 = 3 MHz. Since the physical parameters are
encoded in the shape of the spectrum, and are not reliant
on any scaling, we use a unity amplitude sinusoid.

For this simulation we expect full agreement across
the spectrum. For the experimental system, regions be-
tween the peaks are slightly polluted with either second-
order transverse motional peaks, or cross-coupling terms.
Therefore, for low Γ where these additional unmodeled
peaks become visible, it becomes necessary to window the
spectrum. This has little effect on the probability density,
since these regions, at low Γ, do not depend strongly on
the model parameters, and so have little influence (other
than an inconsequential constant offset) on the Whittle
log-likelihood. We explored this windowing for low Γ,
but found our experiment limited by intensity noise, as
described in Section V C, and so have not used any se-
lective windowing in the work presented.


