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Introduction 

To help develop future aircraft technologies, the authors investigated 

past developments and applications in the field of folding wingtips for 

inspiration, focusing on the XB-70 Valkyrie. Arguably the most iconic example 

of folding wingtip capable vehicle, it included the largest moving lifting 

surfaces ever flown and provides a good insight on the actuator and systems 

requirement for wingtip folding. 

Following a justification for incremental aircraft design changes, the 

authors introduce past and on-going developments in folding wingtip systems 

for large civil aircraft. A quick overview of the iconic XB-70 supersonic bomber 

is given, partly to identify key motivations and benefits in the implementation 

of the folding wingtips. A review of the gathered and derived data regarding the 

actuation system is given specifically in terms of size, weight, and actuation 

capability. With such results in hand, a comparison against spatial and loads 

requirements of a set of conventional tubular swept wing aircraft wings is made 

to assess the scalability of the system to civil applications. The paper concludes 

with a general discussion on the applicability of these results and impact on the 

flared folding wingtip design considered for loads alleviation (Castrichini et al., 

2016; Dussart, Lone, & O'Rouke, 2019; Wilson et al., 2017). 

 

The Case for Incremental Aircraft Geometry Changes 

Despite well knowing that High Aspect Ratio Wings (HARW), along 

with other disruptive aircraft designs such as box or blended wings, have overall 

better aerodynamic performance than conventional swept wing designs, large 

civil aircraft manufacturers have been unable to deploy such designs into 

service. This can be explained by multiple limitations, the main one being due 

to the type and technology in materials used. Development in manufacturing 

and design of composite wings have been at the heart of serious efforts and 

progress throughout the industry lately. Another major limitation lies in aircraft 

operating infrastructure capabilities. A new design cannot expect the global 

airport infrastructure and ground operating procedure to change and adapt in 

order to accommodate it. Such a scenario is clearly economically non-viable. 

One vibrant example of this can be found in the rail industry, with the 

development of the hover train by Jean Bertin's Aerotrain in 1960's France. 

Despite having demonstrated benefits over the existing rail system (especially 

at high speed), the hover train had to compete with the already well established 

and mostly incompatible infrastructures where they existed. Competition 

against the TGV which relied on the conventional rail system ultimately led to 

the prototypes being stored away. Undeniably, this highlights that adapting new 

ideas to match complex economic, political and environmental issues is easier 

than having the existing world adapt to new revolutionary ideas which in turn 

justifies an incremental engineering approach. It can be argued that in the case 

of products meeting new growing market demands, the operational environment 

or infrastructures can be modified as needed. Such was the case with the Airbus 
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A380, introduced to meet previously uncovered market shares, and which led 

to costly yet required changes in infrastructures where the aircraft would 

become successfully operated. However, the reader should note the recent 

decision to stop production of this aircraft, largely ahead of original plans. 

Ultimately, economics are what define the success of a solution. This includes 

safety, passenger capacity, investments and political struggles. Whilst some 

may see this as a rather defeatist view of innovation, with limitations and 

hindrance being set by elements independent from the engineering feasibility 

incremental changes are a safeguard against a wasting of resources and energy, 

and help engineers truly understand complex problems in details, favouring 

technological expertise and, most importantly in aviation, safety.  

Therefore, aircraft designers have mainly followed an incremental 

development route, leading to the now conventional tubular swept wing aircraft 

design with aircraft ground operations, infrastructure and spatial limitations on 

aircraft wing span being significant parameters in aircraft general design and 

more specifically wing shape and geometry. It appears, however, that engineers 

have pushed the aerodynamic performances of their designs to operational 

limits. Arguably, the use of sharklets and fixed wingtip extensions are the results 

of attempts to further optimise aerodynamic performances with aircraft 

structural and ground operational limitations. Nowadays, engineers are 

considering adapting the wing shape of large civil aircraft during ground 

operations to unlock the potential of higher aspect ratio wings without 

disrupting the current ground operational and infrastructural practices. 

 

Existing Ground Folding Technologies 

Ground folding was historically used as an effective way to reduce the 

aircraft wing span dimensions when operated on aircraft carriers, in both fixed 

and rotary winged vehicles. As only a limited fixed space can be allocated per 

aircraft to maintain fleet size and operational levels, engineers are forced to 

include these ground morphing devices to maintain vehicle performance whilst 

ensuring the aircraft meet market demands. Such systems saw great success as 

early as the 1940's with the iconic F4U Corsair and are still used today on navy-

based aircraft variants such as the Lockheed Martin F-35C. 

Facing similar concerns, and undoubtedly inspired by these proven 

systems, aircraft designers are now considering the implementation of similar 

ground wing span reduction strategies on large civil aircraft. Evidence of this 

can be found in the Boeing 777-X illustrated in Figure 1 with its now certified 

ground folding wingtip system, and the Boeing SUGAR concept (Bradley, 

Allen, & Droney, 2014) pictured in Figure 2. Aircraft size limitations, dictated 

by airport infrastructures, could then be virtually exceeded by implementing 

these folding systems, and therefore be operated within the same infrastructures 

as their predecessors. This leads to limited infrastructure changes and increases 

in operational costs to airports and airlines when replacing the outdated and less 

profitable fleet. Nonetheless, the folding device in turn brings a number of 

additional complications in design, maintenance, operations, and an obvious 
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weight (and therefore performance) penalty from the device itself which can be 

evaluated using the Breguet range equation (Hayes, Lone, Whidborne, & 

Coetzee, 2017). Undeniably, the negative impact of the ground folding system 

weight, not used once in flight, could be reduced if it could also be used in-flight 

and proven to bring loads alleviation, stability augmentation or control benefits. 

 
Figure 1. Boeing 777-X. 

 
Figure 2. Boeing SUGAR III. 

 

In-flight Wingtip Folding Development 

Of course, the principle of changing the aircraft shape in-flight, or 

morphing, is hardly new. It can be traced back to the first flying machines, such 

as those sketched by Ader for his Aole aircraft concepts from 1890 or the early 

powered glider flights of the Wright brothers in 1903. But wing warping and 

other attempts at morphing quickly became marginal in aircraft development, 

as human flight made its first steps in history though military applications, 

quickly requiring strong, fast and more reliable airframes. A number of past 

flown morphing capable aircraft examples have nonetheless emerged 

(Barbarino, Bilgen, Ajaj, Friswell, & Inman, 2011; McGowan, Vicroy, Busan, 

& Hahn, 2009; Min, Kien, & Richard, 2010; Weisshaar, 2006). Variable sweep 

has arguably seen the most success, as it allows for significant performance 

changes and flight envelope extension for reasonable system specifications and 
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spatial requirements, with a number of military examples. In the field of 

dihedral folding wingtips of interest here, the most notable past flown example 

lies in the XB-70 Valkyrie, a large supersonic strategic bomber developed in 

the 1970's, pictured in Figure 3. Note that the term folding is used here, as the 

relative simplicity of the hinged control surface movement and control, however 

large, could arguably qualify as a morphing system (Barbarino et al., 2011; 

McGowan et al., 2009). 

 

 
Figure 3. The XB-70 AV-1 in flight, with wingtips folded 25° downward at 

low supersonic speeds. 

Morphing aircraft research in the academic and industrial worlds are 

currently exploring a number of innovative and complex solutions in an effort 

to reduce weight and increase the performances of morphing devices. Some rely 

on compliance structures (Ajaj, Beaverstock, & Friswell, 2015; Ajaj, Flores, & 

Friswell, 2013; Campanile, 2005; Previtali, 2015) to replace heavy and bulky 

hinges. Conventional control actuators are also replaced by more power dense 

actuators such as Shape Memory Alloys (SMA) or Polymers (SMP) (Hartl & 

Lagoudas, 2007). The morphing capability also includes smart skins (Thill, 

Etches, Bond, Potter, & Weaver, 2008) to ensure aerodynamic shape continuity 

throughout the aircraft morphing spectrum has also received significant interest. 

Mathematical investigations for complete mission analysis and flight controls 

were also made (Bowman et al., 2007; Seigler, 2005; Seigler, Bae, & Inman, 

2004; Seigler, Neal, Bae, & Inman, 2007) to highlight the benefits of multi-

mission continuous morphing vehicles through simulation, but a number of 

daunting tasks remains to be tackled, specifically in actuation, systems and 

structural requirements. In the recent years, a wide variety of working examples 

have been set forward, using a combination of all or part of the above. This 

includes a multi-mission Z-fold aircraft concept model and wind-tunnel 

demonstrator (Bye & McClure, 2007) or a mission adaptive compliant flap from 

development to setup and testing (Kota et al., 2006). Bourdin, Gatto, and 

Friswell (2008) developed an experimental wind tunnel model for aircraft 

control using folding wingtips with a more conventional actuation approach, 

highlighting their potential for longitudinal control when used in tandem. A 

corrugated skin concept for similar actuated wingtips was also investigated 

(Ursache, Melin, Isikveren, & Friswell, 2008). A demonstrator of a combination 

of a new actuation and smart skin was also made for a wing profile camber 

morphing (Peel, Mejia, Narvaez, Thompson, & Lingala, 2009). Lastly, a sub-
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scaled demonstrator was flown recently as part of the Spanwise Adaptive Wing 

(SAW) project (Kamlet & Gibbs, 2018; Warwick, 2018). The NASA led tests 

highlighted the potential for subsonic commercial applications of in-flight 

dihedral wingtip morphing using SMAs, including increased fuel-efficiency, 

controllability and possibility to reduce tail size as deflected wingtips offered 

enhanced directional stability. Furthermore, the results on applications to the F-

18 wing are encouraging for the field of morphing aircraft using SMA (NASA 

Glenn Research Center, 2018). 

 

Application to Large Civil Aircraft 

In the last few years, a joint academic and industrial research project 

between Cranfield University, the University of Bristol and Airbus Group 

looked at evaluating potential benefits and feasibility of implementing in-flight 

dihedral folding wingtips on large civil aircraft, rather than simple ground fold 

devices. Mathematical models of a flared folding wingtip device fitted on a large 

civil aircraft have led to the assessment of the gust load alleviation capabilities 

(Castrichini et al., 2016) and impact on roll dynamics of the aircraft (Dussart et 

al., 2018). Wind tunnel tests also highlighted the loads alleviation potential of 

the wingtip on a sub-scale model (Cheung, Castrichini, & Cooper, 2017; 

Cheung, Rezgui, Cooper, & Wilson, 2018/2019). A summary of the findings 

around the use of folding hinged wingtips (Wilson et al., 2017) was also 

published as part of the same project. These past investigations have provided a 

wide spectrum of encouraging results for in-flight wingtip folding applications 

on large civil aircraft. 

Concerns regarding the scalability to large civil aircraft flight of the 

technologies mentioned previously, particularly compliance structures, SMAs 

and SMPs were raised due to the dependency on weight, size and frequency of 

morphing required, maintenance and complexity. It remained unclear whether 

it would be plausible to rely on conventional actuation strategies (hydraulic or 

electric) for short term applications given the spatial and performance 

requirements, or if further development in actuation and morphing technologies 

were required to design feasible systems. This lack of certainty on full-scale 

actuation options for an in-flight folding wingtip device, a key system design 

criteria, motivated a review and analysis of the in-flight folding wingtip system 

capabilities used on the XB-70, undertaken to help further key development 

decisions in system design. 

 

Historic and Technical Development of the XB-70 

When investigating past developments in the field of in-flight morphing, 

one would be hard pressed not to find mentions of the iconic XB-70 Valkyrie 

pictured in Figure 4, Figure 5, and Figure 6 (Pace, 1990). The aircraft, which 

first flew in 1964, 10 years after its inception by the United States Air Force 

(Jenkins & Landis, 2002; Pace, 1990) was designed as a strategic supersonic 

bomber for the Strategic Air Command. The conception obviously constituted 

an incredible challenge as it was intended for high altitude flights at three times 
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the speed of sound, and required ground-breaking developments in many 

aspects of aerospace vehicle design.  

 
Figure 4. XB-70 cut through engineering drawing. 

 

 
Figure 5. XB-70 geometric drawings. 

 

 
Figure 6. XB-70 wing profile sections, at both M and N truncation planes. 

Clever aerodynamic engineering and the use of an unconventional (at 

the time) canard design feature allowed for adequate aerodynamic performances 

to be achieved throughout the flight envelope, from landing speeds to Mach 3. 

A hinged nose cone was also used, which, when lowered, would give the pilots 
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sufficient visibility during low altitude subsonic flights. At higher speeds, the 

upper panel of the nose cone would then realign with the fuselage to restore 

better aerodynamic performances, a feature latter used on the Concorde. An 

obvious visual and aerodynamic design feature was the large cantilevered delta 

wing, which included in-flight folding wingtips. The XB-70 was designed to 

use compression lift, a phenomenon also referred to as Mach wave riding, which 

was demonstrated with the help of wind-tunnel tests (Pace, 1990; Ross & 

Rogerson, 1983). It was shown to provide an increase in total lift at supersonic 

speeds as wingtips folded downward, and would capture the shock waves 

generated by the aircraft. Wing lift could therefore significantly increase by up 

to 30% without any drag penalty (Jenkins & Landis, 2002; Ross & Rogerson, 

1983), which arguably gave the design presented by North American the edge 

over the competing Boeing concept at the end of the second and final 

competitive design phase. Note that following a congressional inquiry 

demanded by Boeing, it appeared that compression lift and related performance 

improvements ultimately convinced the Air Force to use a design that Boeing 

deliberately neglected by lack of faith in the concept and preliminary results 

(Jenkins & Landis, 2002). It was also demonstrated that the folding wingtips 

also enhanced the directional stability of the vehicle, even though it was still 

poor for the first vehicle variant. A wing dihedral modification by 5° on the next 

demonstrator (AV-2) led to better performances. The folding wingtips also 

allowed for a significant reduction in fin area. If the wingtips had been fixed, 

then the vertical fins required for stability would have needed to be double in 

area to those used in the folding capable design. Hence, this greatly reduced 

parasitic drag due to the vertical stabilisers and overall structural weight of the 

airframe. Furthermore, it also helped move the centre of lift closer to the centre 

of gravity at supersonic speeds, reducing the need for trim corrections. As 

wingtips folded, the effective wing area near the trailing edge (due to the 

drooping of the profile on the wingtip) was reduced, therefore decreasing the 

total lift aft of the centre of gravity and the needs for trim corrections, 

consequently leading to improved aerodynamic efficiency. For these reasons, 

the overall performance benefits greatly justified the use of folding wingtips on 

the XB-70 despite additional mass and system complexity. 

A number of significant breakthroughs were also made in many other 

fields, such as propulsion, engine design, materials and fuel. These advances 

were necessary to ensure that the aircraft was capable of sustained supersonic 

high-altitude flights and cope with the thermal and structural implications on 

both airframe and systems. For instance, a new honeycomb skin was developed 

to provide the required airframe weight reduction whilst maintaining stiffness 

of the overall structure. Thermal expansion and overall heating of the airframe, 

a phenomenon later encountered on the Concorde as well, also led to significant 

changes to internal systems and even livery application methods and paint 

composition.  

However, the XB-70 program never took-off to reach its original 

potential. Even before the tragic loss of the second XB-70 aircraft along with 
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one of the pilots on-board (Davies, 2018; Jenkins & Landis, 2002; Pace, 1990). 

Since the early days of development, the program was crippled by political and 

economic conflicts. Moreover, significant advancements in Inter Continental 

Ballistic Missiles (ICBM) and Ground-Air Missiles threatened the very purpose 

of the plane. Before the first test-flight, the program had already lost significant 

political momentum and funding, with the Air Force reducing the fleet to two 

demonstrators and a third example, already under construction, cancelled. The 

project was henceforth intended for large supersonic aircraft flight research, and 

paved the way for the development of Super Sonic Transport (SST) such as the 

Concorde, but was a mere shadow of the original vehicle imagined and designed 

for the Strategic Air Command.  

Truly captivating stories of the XB-70 project, both from an historical 

and political point of view, as well more specific aircraft design details can be 

found in excellent literature pieces (Jenkins & Landis, 2002; Pace, 1990). As 

this particular paper focuses on the folding wingtip system, the rest of the 

discussion will henceforth focus on the folding wingtip devices fitted on the 

experimental plane. 

 

System Requirements for Supersonic Actuation 

One must admit that details regarding the development and 

characteristics of the folding wingtip actuation devices is very scarce. Most of 

the existing available literature focuses on the innovations which were made in 

the fields of aerospace materials, fuel management and engine design required 

by supersonic flight of such a large vehicle. Arguably, these aspects drew 

significantly more attention and concerns compared to the wingtip folding 

mechanism problem. The authors believe that, with so many other challenges 

and problems occurring throughout the program (Jenkins & Landis, 2002; Pace, 

1990), the folding wingtip device was not judged as significant to the XB-70 

historical contribution. 

 

Folding Hinge Actuator and Wingtip Details 

However, enough information can be gathered to understand and 

reasonably estimate the capabilities of the folding hinge mechanism. Relevant 

geometric details regarding wingtip size and aerofoil thickness are summarised 

in Table 1, which gathers data obtained from various geometric drawings 

(Jenkins & Landis, 2002; Pace, 1990) and data packs (Jenkins, DeAngelis, 

Friend, & Monaghan, 1969). The complete hinge mechanism is sketched in 

Figure 7. XB-70 actuator shaft layout Figure 7, extracted from XB-70 general 

arrangement document, and where the central shaft which served as an input to 

six power hinges distributed along the fold line is clearly shown. Another sketch 

given in Figure 8 show each power hinge was linked to the structure of the wing. 

A couple of Vickers hydraulic motors situated within the fuselage were used to 

pressurise the hydraulics system linked to each wingtip. For redundancy 

purposes, only one pump was used in the main hydraulic network whilst the 

second would have been used as back-up in the event of a hydraulic pressure 
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failure. Hence a total of 4 pumps on the aircraft dedicated solely to the wingtip 

mechanisms (Pace, 1990). The entire wingtip actuation motor and set of power 

hinges were housed within a black magnesium thorium fairing which covered 

the entire wingtip hinge line, from wing leading edge to elevon root, as shown 

in the above Figure 4. Obviously, this entire set of power hinges came with a 

significant size and mass cost to the aircraft.  

 

Table 1 

Geometric details of the XB-70 wingtip 

Folding Wingtip (Single Tip) 

 Area 48.4 (𝑚2) 

 Span 6.3 (𝑚) 

 Aspect ratio 0.83  

 Taper Ratio 0.05  

 Root Chord (9.67m spanwise) 14.6 (𝑚) 

 Tip Chord (16m spanwise) 0.7 (𝑚) 

 Mean aerodynamic chord 9.8 (𝑚) 

 Down Fold Angles [0,25,65] (°) 

 Aerofoil Thickness (% at root) 2.5 (%) 

 

A close-up picture of a Curtiss-Wright power hinge is given in Figure 

10 for a similar geometry to those which would have been used on the Valkyrie. 

Exact size and mass of each power hinge remains unclear, other than advised 

estimates made as follows. A picture taken during vehicle assembly puts the 

gearbox mechanism in perspective to an operator, as shown in Figure 9. 

Aerodynamic profile thickness at the fold line was estimated at best to be 36cm 

using data from Table 1. The power hinge appears to be roughly the diameter 

of an adult forearm, and fits within the dimensions of the aircraft structural wing 

box. Depth of the device can also be assumed to be similar. Thus, the power 

hinge is comparable to a cube-like shape with a side of roughly 30cm. Made 

primarily of H-11 steel (Ross & Rogerson, 1983) with a room temperature 

density of 7.80 𝑔. 𝑐𝑚−3, the weight is therefore estimated to lie between 120kg 

and 160kg assuming a gearbox density ratio between 35% to 45%, standard in 

these devices. More precise predictions using an in-house tool estimated the 

mass of the power hinge at around 140 ±  10 𝑘𝑔, with a safety margin 

depending on attachments thickness, shaft sizes and other parameters, 

narrowing previous estimates. 
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Figure 7. XB-70 actuator shaft layout. 

 

 
Figure 8. XB-70 actuator structural implementation. 

 

 

Figure 9. XB-70 power hinge inside the wingbox, with operator for size 

comparison. 
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Figure 10. A Curtiss-Wright power hinge similar to those found on the XB-70. 

 

 
Figure 11. Cut schematics of a two level - two stages planetary gear power 

hinge. 
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Accurately counting number of teeth and estimating size for retro-

engineering purposes is nearly impossible. Nonetheless, the unreferenced 

industrial report from which Figure 10 was extracted mentions a reduction ratio 

of 2440-to-1, with two stages driven by a common sun gear, giving high torque 

in a small diameter. Two concentric stages of reduction are used, such that the 

output ring gear of stage one serves as an input to the second stage as shown in 

Figure 11.The power hinge used for the XB-70 was similar in design and 

reportedly capable of an outstanding 32,000 − 𝑡𝑜 − 1 ratio (𝑅𝐺 = 32000). It 

is unclear however through which combination exactly such ratios were 

achieved as diameters and teeth numbers as well as the arrangement of fixed 

and moving gears have not been found. Note that this ratio is very high 

compared to conventional and heavier planetary gear systems.  

With six devices per wingtip, the total gearbox mass per wingtip can be 

estimated at 840kg, solely for the power hinges. This weight penalty then 

enabled the reduction of vertical fin by approximately half of its area though 

little to no data is available on the structural changes to the wing required for 

incorporation of the hinge set. 

 

Estimating Fin Mass Savings 

To put the weight of the hinges into perspective, it must be compared to 

the aircraft fin and overall masses. The XB-70 had an Maximum Operating 

Weight (MOW) of 𝑚𝑀𝑂𝑊 = 242500𝑘𝑔, Maximum Take Off Weight (MTOW) 

of 𝑚𝑀𝑇𝑂𝑊 = 246000𝑘𝑔, and Operating Empty Weight (OEW) of 𝑚𝑂𝐸𝑊 =
115030𝑘𝑔. For commercial airliners, a rough estimate of the vertical tail 

weight can be obtained by assuming it equal to 1% of the 𝑚𝑂𝐸𝑊. However, as 

the XB-70 is neither a commercial airliner, nor of conventional configuration, 

it was suitable to use the ratio of vertical fin weight over area to compute the 

total mass of the aircraft fins.  

Typical ratios, or surface densities, were computed for various 

commercial aircraft. Obviously, internal structures required to cope with 

aerodynamic stresses, materials used and to some extent profile type and 

thickness all contribute to differences in total fin mass between a commercial 

aircraft and the extensively different XB-70. However, this assumption should 

be sufficient to derive estimates of comparable accuracy to that of the hinge 

weight. For a fin area 𝐴𝑓 = 21.7𝑚2, a surface density 𝜎𝑓 =  22.5kg. m−2 

similar to that of commercial aircraft with comparable fin sizes was assumed as 

shown in Figure 12. This particular surface density is lower than that of 

comparable 𝑚𝑂𝐸𝑊 commercial aircraft at 27𝑘𝑔. 𝑚−2. In the latter, the single fin 

configuration requires a larger area per fin, hence height and therefore internal 

structural weight to cope with the aerodynamic stresses. By having two smaller 

fins, the XB-70 can use a smaller surface density, effectively reducing weight 

for a given vertical fin area. With 𝐴𝑓 and 𝜎𝑓 in hand, the mass of a single fin is 

compared against 𝑚𝑂𝐸𝑊 as shown in Figure 13. Single fin mass for the XB-70 

was assessed at approximately 𝑚𝑓1 = 500𝑘𝑔 or 0.45% of 𝑚𝑂𝐸𝑊. Total mass 
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of the fin set is therefore estimated at 𝑚𝑓2 = 2 × 𝑚𝑓1 = 1000𝑘𝑔, or 0.9% of 

𝑚𝑂𝐸𝑊.  

It was claimed in the literature that folding wingtips helped divide fin 

size in half by enhancing directional stability when deployed. Considering a 

non-wingtip folding aircraft, with a single fin area of 𝐴𝑓 = 43.6𝑚2 required for 

equivalent directional stability, surface density would have been set to 𝜎𝑓 =

27𝑘𝑔. 𝑚−2, as shown in Figure 13 In turn, this would have led to a single fin 

weighing nearly 𝑚𝑓1 = 1170𝑘𝑔, or slightly over 1% of 𝑚𝑂𝐸𝑊. As the XB-70 

uses a dual fin configuration, that leads to fins weighing at 𝑚𝑓2 = 2 × 𝑚𝑓1 =

2340𝑘𝑔 or 2% of 𝑚𝑂𝐸𝑊. 

Overall, the folding wingtip system, with the two sets of power hinges 

alone, weighing approximately 1680kg, has helped save an estimated 1340kg, 

or nearly 60% in vertical tail mass, whilst enhancing directional stability at 

supersonic speeds. Note that other systems, including the hydraulics, electric 

systems, shaft, and brakes were not accounted for in this trade-off. Nonetheless, 

it was shown that lift performance increase due to compression lift and the 

forward shift in the aircraft centre of lift at supersonic speeds has clearly made 

the system relevant, and even essential, for the XB-70 to reach required 

performance and control. 

 

 
Figure 12. Fin surface density 𝜎𝑓 as a function of fin area 𝐴𝑓 and 𝑚𝑂𝐸𝑊. 
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Figure 13. Fin mass 𝑚𝑓 to 𝑚𝑂𝐸𝑊 ratio as a function of fin area 𝐴𝑓 and 𝑚𝑂𝐸𝑊. 

 

The reader should note that such a drastic fin area reduction was 

achieved for the following reasons. Firstly, folding wingtips were deflected to 

very high dihedral angles (up to 65°) and effectively served as additional fins. 

Secondly, the delta wing configuration placed the folding tips near the tail of 

the aircraft, or nearly aligned with the vertical fins of the vehicle. This in turn, 

allowed for much more authority around the vertical axis given the forward 

position of the centre of lift and centre of gravity. In comparison, if such a device 

was to be used in a conventional aircraft configuration, the wingtip position 

along the longitudinal axis would not be as far aft, greatly reducing the authority 

of the wingtips, now similar to additional fins. Nonetheless, if weight savings 

could be achieved by reducing vertical tail size (even to less drastic extents), it 

would still greatly help in the case for in-flight folding wingtip device 

implementation. 

 

Power Hinge Capabilities Assessment 

Following the estimation of actuator size and mass, interest shifts to the 

torque or loading capability of the device. The necessity to use six power hinges 

was dictated by aerodynamic twist and bend loads experiences throughout the 

flight envelope. It is unclear whether the actuators were designed to deal with a 

single mechanical component failure, with the lack of redundancy in the 

mechanical link suggesting this was acceptable on an experimental military 

aircraft. For simplification, it is assumed that each of the power hinges was 

designed to cope with a sixth of the maximum allowable hinge moment, without 

safety margins. This should give a fairly conservative estimate of the maximum 

allowable hinge moment or torque per actuator.  
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The nominal folding strategy of the XB-70 wingtips, illustrated in 

Figure 14 and Figure 15 was therefore investigated. From these graphs, it is 

clear that wingtips were to be held planar until higher transonic speeds. At Mach 

0.9 the wingtips were folded to a 25° downward angle. This anhedral fold was 

increased when reaching Mach 1.4 to a 65° deflection and maintained 

throughout the higher end of the velocity spectrum. Valuable in-flight data and 

measurements obtained using strain gauges to measure the hinge moments at 

multiple flight conditions were extracted from a NASA report (J. M. Jenkins et 

al., 1969). Approximations of the folding wingtip hinge moment coefficients 

made in the report are redrawn in Figure 16. These coefficients correspond to 

an entire set or wingtip device (a combination of all six power hinges and 

motor). The coefficients can then be scaled back to the equivalent hinge moment 

acting on the device as shown in Figure 17.  

 
Figure 14. XB-70 nominal folding strategy against airspeed. 

 

Figure 15. XB-70 typical flight envelope, with folding limitations and flight 

conditions. 
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The scaling to hinge moment is done using the following formula, 

similar to the equation conventionally used for ailerons, elevators or rudders, 

also found in the original NASA document (J. M. Jenkins et al., 1969): 

            𝐶ℎ𝑤𝑡
=   

𝐻𝑤𝑡

𝑞̅ × 𝑆𝑒 × 𝑙𝑤𝑡
 

⇔        𝐻𝑤𝑡 =  𝐶ℎ𝑤𝑡
× 𝑞̅ × 𝑆𝑒 × 𝑙𝑤𝑡  

where 𝐶ℎ𝑤𝑡
 is the hinge moment coefficient acting around the fold line 

(bending), 𝑞̅ is dynamic pressure, 𝑆𝑒 is the wingtip surface area and 𝑙𝑤𝑡 is the 

wingtip length 𝐶ℎ𝑤𝑡
 and dynamic pressure 𝑞̅  are both functions of the flight 

conditions at which the measurements were made, the details of which are 

provided in Jenkins et al. (1969). Dynamic pressures used in this study were 

derived using the compressibility corrections and atmospheric temperature 

models adequate for high altitude supersonic flight conditions. Note that the 

dynamic pressures computed are comparable but not strictly identical to those 

given in the NASA report (Jenkins et al., 1969).  

With dynamic pressure 𝑞̅  and hinge moment coefficients 𝐶ℎ𝑤𝑡
 in hand, 

it was possible to derive the hinge moment 𝐻𝑤𝑡. Both are illustrated in Figure 

16 and as a function of flight conditions at which they were measured. The 

general trend shows an increase in bending moment with angle of attack as 

expected: the lift produced on the lifting surface increases as the aircraft pitches 

up relative to the flow. Somewhat counter intuitively, the maximum hinge 

moments are not obtained at the higher Mach number. This is due to: a) air 

density reduces at higher altitudes, and therefore counter acts the effect of 

increasing airspeed, and b) as the wingtips are folded downwards, the profile 

shape and pitch trimmed attitude changes induces an overall reduction in lift on 

the wingtips (Jenkins & Landis, 2002; Pace, 1990). 

 

Table 2 

Flight Conditions Used for Hinge Moment Measurements on the XB-70 

Folding Wingtip Device 

Flight conditions for hinge moment coefficient assessment 

 FC Mach Alt. (m) Fold 𝛿𝑤𝑡(°) 𝑞̅ (𝑁. 𝑚−2) 

 1.1 0.4 3000 0 7850 

 1.2 0.8 7620 0 16841 

 2.1 0.8 7620 25 16841 

 2.2 0.95 9144 25 19005 

 2.3 1.2 12190 25 20379 

 2.4 1.4 12190 25 27738 

 3.1 1.25 12190 65 22113 

 3.2 1.4 12190 65 27738 

 3.3 2.1 15000 65 45991 

 3.4 2.8 21340 65 26990 

 3.5 3 21340 65 30984 
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Figure 16. Hinge moment coefficient 𝐶ℎ𝑤𝑡

 against angle of attack. 

 

 
Figure 17. Hinge moment 𝐻𝑤𝑡 against angle of attack. 

 

Derived from both trimmed steady flight and coordinated turns (Jenkins 

et al., 1969) these results are reliable indicators of the power hinge capacity to 

withstand aerodynamic loads and fold the wingtips in flight. In fact, the highest 
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bending moments 𝑀𝑥, reaching up to 700kN.m were obtained in the lower 

supersonic regions with a 25° deflection. In the subsonic region, the hinge 

moment lays within 450kN.m and 600kN.m, with very little difference between 

the baseline and 25° deflection cases. As a single motor was used, the gear ratio 

𝑅𝐺 = 32000 suggests that, in the case of an idealised system (no friction), a 

maximum torque 𝑇𝑠ℎ𝑎𝑓𝑡
𝑚𝑎𝑥 = 22 𝑁. 𝑚 (𝑀𝑥

𝑚𝑎𝑥/𝑅𝐺) would have been required to 

drive the shaft feeding through all power hinges. In reality, this would have been 

significantly more, due to friction and efficiency of the hinges. But comparable 

torques are easily achievable using electric or hydraulic rotary motors with 

diameters well below 30cm, thus falling within acceptable ranges. These results 

clearly show that the wingtip folding devices were capable of coping with high 

bending moments. Furthermore, none of the tests included wingtip fuel tanks, 

for which the system was designed originally. 

Another point of interest is wingtip shaft rotational speed 𝑟𝑝𝑚𝑠ℎ𝑎𝑓𝑡 

during wingtip folding. With the reduction ratio 𝑅𝐺  of the power hinges, and 

data extracted from non accelerated footage of in-flight folding of the wingtips, 

it is possible to get an estimate of the shaft rotational speed in revolutions per 

minute. A video sample was used to measure both time to fold from ideal 0° to 

25°,  𝑡0°−25° and change in fold angle during that time Δ𝛿𝑤𝑡. 𝑟𝑝𝑚𝑠ℎ𝑎𝑓𝑡  is 

calculated using: 

𝑟𝑝𝑚𝑠ℎ𝑎𝑓𝑡 = RG × 
Δ𝛿𝑤𝑡 × 60 

𝑡0°−25° × 360
 

 

where 𝑡0°−25° was estimated at 17 ±  0.5𝑠 and Δ𝛿𝑤𝑡 was assumed ideal at 25°. 

A minimum Δ𝛿𝑤𝑡 = 20° was also considered. These parameters led to an 

approximated 𝑟𝑝𝑚𝑠ℎ𝑎𝑓𝑡 = 8000 𝑟𝑝𝑚 (maximum of 8100 𝑟𝑝𝑚 and as low as 

6100 𝑟𝑝𝑚 in the worst measurement case  at 𝑡0°−25° = 17.5𝑠,  Δ𝛿𝑤𝑡 = 20°). 

This value sits well within the range of realistic motor capabilities that could be 

fitted within the wing. 

Overall, the size, mass and actuation power of the folding mechanism 

fitted on the XB-70 were presented in this section. It is now clear that powerful 

in-flight wingtip actuators have been used in the past for military applications, 

and could potentially serve as inspiration to future civil concepts. The following 

step is naturally to compare these results against a number of wing box sizes 

and assess if such a device could be applied to large civil aircraft. 

 

Inspiration for a Large Civil Aircraft Design 

In this section, the idea of using a similar system to that of the XB-70 in 

a number of use-case aircraft will be tackled. In fact, a span extended single 

aisle aircraft wing concept was used as a baseline and scaled to various sizes. 

The spanwise position of the wingtip hinge was kept constant and consistent 

with ground operational limitations. Hence the challenge is to fit a sufficient 

number of power hinges within a thinner aerofoil profile and shorter chord 
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length than those of the XB-70. Aerodynamic loads should also differ 

substantially from that of the experimental plane, as flight conditions and 

wingtip area are drastically different. 

 

Design Space Calculations 

Different wing variants lead to a variety of aerodynamic profile 

thickness, chord, and aerodynamic loading in cruise. The aerodynamic and 

structural properties of an aircraft wing were therefore implemented within a 

geometrical initialisation environment derived from CA2LM, an 

aeroservoelastic framework developed at Cranfield University (Andrews, 2011; 

Dussart, Portapas, Pontillo, & Lone, 2018). An illustration of the wing once 

implemented is given in Figure 18. Furthermore, the baseline wing was 

modified in chord 𝑐̅, thickness 𝑡 and span 𝑠 using a global scaling factor so that 

root chord 𝑐𝑟̅, tip chord 𝑐𝑡̅, span and profile thickness to chord ratio at the hinge 

line 𝑡/𝑐ℎ̅ vary. This multi-dimensional scaling of the wing, gives a sufficiently 

precise idea of available dimensions as a function of wing size despite being 

relatively unrealistic. Details of the wings investigated herein are given in Table 

3 where the original baseline wing is given in bold. The hinge line central point 

(intersection with the centre chord position) was fixed at 17m to respect ground 

limitations for all wings. A change in wingtip length  𝑙𝑤𝑡 is therefore introduced. 

Profile sizing results with both line of flight 𝑐ℎ̅ and maximum hinge thickness 

at the hinge line  𝑡ℎ  are also given. 

 

Table 3 

Geometric Details of the Wings Investigated 

Wing Characteristics at root, tip and hinge positions 

 N° 𝑠 𝑐𝑟̅ 𝑐ℎ̅ 𝑐𝑡̅ 𝑡ℎ 𝑡ℎ/𝑐ℎ̅ 𝑙𝑤𝑡 𝑀𝑥 

  (𝑚) (𝑚) (𝑚) (𝑚) (𝑚) (%) (𝑚) (𝑘𝑁. 𝑚) 

 1 21.0 5.813 1.780 .703 .194 10.9 4 - 

 2 22.5 6.200 1.899 .750 .209 11.0 5.5 80 

 3 24.0 6.643 2.035 .804 .230 11.2 7 - 

 4 25.0 6.920 2.120 .837 .242 11.3 8 170 

 5 26.0 7.200 2.205 .871 .253 11.4 9 200 

 

From these spatial sizing results, it is possible to have an appreciation of 

the size of the available profile compared to that of the XB-70. A visual 

comparison is made in Figure 19 where both XB-70 and baseline civil wing are 

shown. It is clear that, where six power hinges could easily be fitted within the 

XB-70 wing, it is widely different in the case of the civil aircraft wing, 

regardless of the variant. The profile is both too thin to fit a power hinge without 

using an aerodynamic fairing and too short to fit six along the hinge line. But it 

should not need to, as smaller wingtips and different flight conditions, hinge 

bending moments will surely lead to smaller wingtip actuation devices, as we 

will see in the following section. 
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Figure 18. Wing layout after geometric implementation within the framework, 

with a folded wingtip at 17m, folded upward by 15°. 

 

Figure 19. Profile size comparisons between XB-70 and wing of interest 

(NASA SC-2 0610 used for illustrative purposes). 

 

Loads Scalability to the Civil Aircraft Wing 

Prior investigations were made to identify the aerodynamic forces and 

moments acting on the hinge line at cruise, for different wing variants. These 

results are provided in Table 3. Focusing solely on the hinge bending loads, it 

was found that a maximum of 200kN.m would be reached in cruise conditions 

for the larger wing variant, whilst the baseline wing would only have to fight 

against 80kN.m. This is well below the XB-70 values derived in the previous 

sections and points to a possible reduction in the required number and ratio of 

the power hinges, effectively reducing the size of the entire actuation system. In 

fact, if similar hinges in reduction ratio were to be implemented, the system 

could do with just a pair of actuators on each wing. In their current state, an 

aerodynamic fairing would obviously be required, a daunting engineering task 

in itself. It is also possible to use multiple, yet smaller power hinges and motors 

to help with redundancy and sizing of the system, which could overall greatly 

improve the final solution and cut out the needs of an aerodynamic fairing, 

similar to flap track fairing positioned at the hinge line for instance. 
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Overall, it was found that despite being significantly larger than the 

available space, the use of conventional hinged actuation for the folding wingtip 

concept is not as far-fetched in terms of dimensional sizing as previously 

assumed. It is possible to nuance the gap in size, especially knowing that 

performances of the final device fitted on the civil aircraft wing are closely 

linked to the final system size, due to the trade-off in torque and rotation speed 

in the power hinge. The sizing of actuator elements and transmission rods are 

outside the scope of this paper, but motor and shaft dimensions can be relatively 

well predicted using simple physics based techniques (Dussart, Lone, & 

O’Rourke, 2019). Gearbox sizing with adequate teeth size for safe loads 

transmission is more tedious. However, a similar solution to that found in the 

XB-70 could be realistically considered for a civil aircraft where smaller loads 

are encountered, and therefore smaller gearboxes and transmission elements 

could be used. 

 

Conclusions and Further Work 

In this paper, the authors have presented a quick overview of the history 

behind the development of the XB-70 Valkyrie, with an emphasis on the needs 

and benefits for the folding wingtips. 

 

Conclusions 

It is clear from historical sources that the folding wingtips have led to a 

reduction in fin area, enhanced directional stability at supersonic speeds, and 

increased lift performances by benefiting from more compression lift. The 

specific details of the hinge devices and actuation were then derived, as very 

little data is currently available. Using flight test reports and geometrical data 

sheets, the number, size, weight and actuation capabilities of the power hinges 

and motors were estimated. Each power hinge was found to weigh 

approximately 140kg, and are roughly equivalent to 30cm sided cubes in size. 

The 32,000-to-1 ratio of the power hinges allowed for a shaft rotating at 

approximately 8000rpm in order to output wingtip rotational speeds of 0.25rpm. 

The extremely high bending moments, estimated as up to 700kN.m during flight 

test, could therefore become easily manageable by a relatively small motor. An 

estimate of the weight penalty due to the additional power hinge mass was also 

compared to the fin weight savings using conventional aircraft fin surface 

densities. It was found that overall, the weight penalty and savings were 

equivalent, allowing for overall better performances and previously mentioned 

benefits of the folding wingtips.  

The scalability of the folding device was assessed against a conventional 

civil aircraft. A set of wings were used to assess available design space at the 

hinge line situated at 17m from the central line, to respect airport size 

limitations. It was found that despite being too thin and short to house the XB-

70 actuation system, a similar approach could be scaled down, as different loads, 

flight conditions and wingtips are considered in this use case. If three power 
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hinges or gear reduction systems were used in parallel instead of six, the 

effective loads per actuator would still half those encountered in the XB-70 for 

the larger wing variant, and less than a fifth for the baseline wing, thus allowing 

for significant downsizing possibilities of the system. Whilst not dismissing the 

idea of having lighter and more power dense solutions in SMA alternatives, this 

investigation shows that an electric motor and gearbox or power hinge 

combination as found on the XB-70 could be considered for short term 

applications due to their respective technology readiness level. 

 

Additional Discussion Points 

Nonetheless, the authors believe that a few additional statements should 

be made. First, it must be stated that maintenance requirements and life cycle 

expectations of the power hinges may be inadequate for viable commercial 

applications. This obviously was not an issue for the experimental military 

project, having been reduced to barely more than 200 cumulated flight hours 

throughout the program, but could be a potential show-stopper when applied to 

civil commercial aircraft. As military certifications strongly diverge from those 

used in the civil sector, what seemed acceptable for the XB-70 aircraft in terms 

of life cycle and maintenance implications may become unacceptable for our 

use case. Had the program gone through the experimental stages and into active 

service, a precious insight on the long-term use and maintenance of such devices 

would have been gained. Furthermore, a significant fin mass and area reduction 

was achieved by using folding wingtips on the XB-70. Such drastic changes 

should not be expected for the reasons already highlighted in Section 0. 

Different configurations of commercial aircraft would benefit differently as 

moving the wingtips further aft (delta wing Concorde-like configurations) or 

forward (low swept HARW) would respectively increase and decrease the 

directional stability changes. In the case of the conventional tubular swept wing, 

wingtips being placed only slightly aft of the centre of lift and centre of gravity 

only yields a small increase in restoring yawing moment or stability as the 

longitudinal moment arm is so small. Furthermore, the wingtips on the XB-70 

were, as previously outlined, the biggest movable surfaces ever designed and 

therefore, led to significant changes in vertical lift surface area when deflected. 

 

Further Work 

Significant challenges remain, as most of the results presented herein, 

extracted from enlightened assumptions and mathematical predictions, could 

greatly benefit from validation against real aircraft data. Interesting results 

could be highlighted by further investigating high gear reduction system similar 

to the Curtiss-Wright design for instance. To complete the sizing analysis for 

large civil aircraft applications, additional system sizing should also be carried 

out, including the sizing of hydraulic and electric actuators as a function of 

required torque for instance. Initial sizing methods for early design and 

prototype development stages were investigated by the authors concurrently to 

this work (Dussart et al., 2019). Non-conventional actuation such as Shape 
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Memory Alloy (thermal or magnetic) and their scaling potential should also be 

investigated, as they could lead to lighter and more power dense solutions, as 

recently shown in the SAW project led by NASA and Boeing researchers 

(Kamlet & Gibbs, 2018; Warwick, 2018).  
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