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Abstract
Current data assimilation methods still face problems in strongly nonlinear cases. A

promising solution is a particle filter, which provides a representation of the state

probability density function (pdf) by a discrete set of particles. To allow a particle

filter to work in high-dimensional systems, the proposal density freedom is explored.

We used a proposal density from synchronization theory, in which one tries to syn-

chronize the model with the true evolution of a system using one-way coupling, via

the observations. This is done by adding an extra term to the model equations which

will control the growth of instabilities transversal to the synchronization manifold. In

this paper, an efficient ensemble-based synchronization scheme is used as a proposal

density in the implicit equal-weights particle filter, a particle filter that avoids filter

degeneracy by construction. Tests using the Lorenz96 model for a 1,000-dimensional

system show successful results, where particles efficiently follow the truth, both

for observed and unobserved variables. These first tests show that the new method

is comparable to, and slightly outperforms, a well-tuned Local Ensemble Trans-

form Kalman Filter. This methodology is a promising solution for high-dimensional

nonlinear problems in the geosciences, such as numerical weather prediction.

K E Y W O R D S
data assimilation, ensemble, synchronization, nonlinear, particle filter

1 INTRODUCTION

Synchronization is a phenomenon first described by the Dutch

scientist Christiaan Huygens. He found that two pendulum

clocks suspended by a common frame would oscillate, after

some time, in opposite directions but in perfect consonance,

independent of their initial phases. He concluded that the

clocks were able to synchronize their phases due to the frame

they were sharing, a common factor between both. Nowa-

days, based on these ideas, researchers in this field focus on

exploring the synchronization of two or more systems while

they share common information. Typically, this is obtained by

a suitable relaxation term that forces the model (or models)

towards the observations and helps to control the stability of

the synchronization manifold.

There is a close connection between the concepts of

synchronization and data assimilation, as the latter aims to

synchronize the model evolution with the truth, via the obser-

vations, finding the best state estimate and its uncertainty. In

this case, the information to be shared between the systems

flows from the truth to the model, in a unidirectional way,

through noisy and sparse observations.

Through the light of Bayes’ Theorem, as explained in (e.g.)

van Leeuwen et al. (2015), data assimilation is actually a mul-
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tiplication problem rather than an inverse problem. Indeed,

one tries to represent a posterior probability density function

(pdf) by multiplying the information contained in the model

prior with the likelihood, which is updated when observations

are available. Data assimilation encompasses a more general

concept than synchronization.

Similarities can be found between synchronization and

data assimilation, as pointed out by Yang et al. (1996) and

Duane et al. (2006) and more recently by Pinheiro et al.
(2018), where a discussion can be found on the relations

and differences between time-delayed synchronization and

the Kalman smoother. A crucial difference is that the syn-

chronization framework allows one to reuse the observa-

tions, which is a complication in many data assimilation

methods.

Recent work in the synchronization field has explored the

time-embedding concept, by considering observations either

from the past or future (e.g. Rey et al., 2014a, 2014b; Par-

litz et al., 2014; Pazó et al., 2016). Based on these previous

works, Pinheiro et al. (2018) have focused on constructing

a more robust synchronization scheme that could potentially

be applied to a realistic geophysical model, in combina-

tion with a particle filter. To this end, they proposed an

ensemble-based synchronization framework (EnSynch) that,

with a small number of ensemble members, provided promis-

ing results for a high-dimensional system. As the authors

mention in their study, their ensemble methodology can-

not be used as a stand-alone data assimilation method, as

no uncertainties are computed and also because observa-

tions inside the time window are reused in different time

steps, which could bring complications in most data assim-

ilation methods. The authors also discussed the similarities

and differences between the ensemble synchronization and

methods like the ensemble smoother and also variational

methods that employ ensembles to avoid adjoint calculations

like, for example, the four-dimensional ensemble-variational

schemes (4DEnsVar) (e.g. Bannister, 2017 and section 4.5 in

Carrassi et al., 2018) and iterative ensemble smoothers like

the iterative ensemble Kalman smoother (IEnKS) of Boc-

quet and Sakov (2014). Compared to the ensemble smoother,

one of the main differences is that the ensemble synchro-

nization ignores the observation-error covariance matrix 𝑅 in

the gain. This possible weakness in the scheme is counter-

balanced by the inclusion of a tuning factor in the synchro-

nization formulation: the constant 𝑔. This constant regulates

the strength of the influence that the pseudoinverse of the

Jacobian of the operator 𝑆 (an embedding map, which con-

tains the dynamical model and the observation operator) will

have on the innovation. Another difference is that synchro-

nization allows observations to be reused along the iterations

in the time-embedded intervals, so they can increase the

observability of the system. This is an interesting feature of

synchronization.

F I G U R E 1 Use of observations within the assimilation window

for different methodologies: IEnKs MDA, EnSynch and 4DEnsVar.

The black dots are the observations which are used in the cycle. The

IEnKS uses observations several times, but with increased observation

errors, the EnSynch uses observations several times, and 4DEnsVar

uses each observation only once (see text for details)

Note that the IEnKS also uses observations several times,

but with a factorization of the likelihoods, which does not

change the observability of the system.

Figure 1 shows how observations are used inside a data

assimilation window for the IEnKS MDA (Multiple Data

Assimilation window), the EnSynch and the 4DEnsVar. In

this illustration, observations exist at every time step, but

only the black ones are effectively used. Note that in the first

two cases the assimilation windows overlap and so the obser-

vations are re-used. In the quasi-static IEnKS MDA case,

the observations are assimilated several times, but they are

weighted within the window as: 1 =
∑𝐿

𝑘=1 𝛽𝑘, where 𝐿 is the

length of the assimilation window and 0 < 𝛽𝑘 < 1 is the

extra weight each observation at time 𝑘 receives within this

window.

In this work we will merge the efficiency of

synchronization described in Pinheiro et al. (2018) with

the data assimilation formalism. To this end, we will
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use synchronization indirectly, as a proposal density, in a

nonlinear data assimilation methodology: a particle filter.

It is well known that one can explore the proposal den-

sity freedom by modifying the model equations (e.g. Doucet

et al., 2001; van Leeuwen et al., 2015). In this concept, extra

terms can be included in the model equations, even count-

ing on tunable parameters. The main goal is to steer the

particles towards the high-probability region of the posterior

pdf between observation time steps. Some interesting exper-

iments can be found in the literature on tests with different

proposal densities. An ensemble Kalman filter has been used

as a proposal density in a particle filter by Papadakis et al.
(2010). Further tests with simple relaxation terms have been

performed by van Leeuwen (2010), by Ades and van Leeuwen

(2015) in a high-dimensional system and by Browne and van

Leeuwen (2015) in a climate model. The latter concluded

that the relaxation term used was not optimal, as the parti-

cles were spreading away from the truth between observation

time steps. In Browne (2016), the use of an ensemble Kalman

smoother as a proposal was still not effective. Therefore, the

main motivation of this paper is to investigate how effective

synchronization is as a proposal density in a particle filter.

One of the main issues of particle filters is that ensem-

bles of particles tend to collapse in high-dimensional systems

(also known as the curse of dimensionality or degeneracy).

The filter chosen for our experiments is based on the implicit

equal-weights particle filter (IEWPF; Zhu et al., 2016), but

with the extension advocated in Skauvold et al. (2019). This

filter does not suffer from degeneracy by construction and

allows for unbiased mean and covariance.

The paper is structured as follows: Section 2 describes

the methodology used to construct the ensemble-based syn-

chronization framework, gives a summary of the IEWPF

formulation and details the implementation of the ensemble

synchronization as a proposal in this particle filter. Section 3

presents results on the experiments using the Lorenz96 model

(Lorenz, 1995) in a 1,000-dimensional system. In Section 4,

we discuss the results and present conclusions.

2 METHODOLOGY

2.1 The ensemble-based synchronization
(EnSynch)
Pinheiro et al. (2018) have developed an ensemble-

synchronization scheme that can be applied to realistic

high-dimensional geophysical models. This methodology is

an ensemble-based time-embedding scheme, similar to an

ensemble smoother or a 4DEnsVar, which avoids the need

for tangent-linear models and adjoint calculations.

The scheme explores the use of time embeddings, in which

a delay dimension 𝐷d is defined in order to capture infor-

mation from 𝐷𝑦 observations, which occur at every 𝜏 time

steps within a time interval [𝑡, 𝑡 + (𝐷d − 1)𝜏Δ𝑡], where 𝜏 is

a constant. Observations are then included, so they can bring

additional information back to the present time. Pinheiro

et al. (2018) show that, after stabilizing the synchronization

manifold, which can be briefly described as a set of sub-

spaces which states are attracted to, very precise estimates are

obtained, both for observed and unobserved variables, allow-

ing accurate predictions over a significant forecast period.

The ensemble methodology detailed in their paper is sum-

marized here. Define a true state xT ∈ ℜ𝐷𝑥 in the evolution

equation of the true system:

x𝑗+1

T
= 𝑓 (x𝑗

T
) + 𝜷

𝑗+1

T
, (1)

where 𝑓 is the nonlinear model at time 𝑗 and 𝜷
𝑗+1

T
is a stochas-

tic perturbation represented by a normal distribution of 𝑁 ∼
(0, 0.01). Compute the evolution of a state estimate x𝑗 with

time using the coupled dynamics and the perfect model 𝑓 :

x𝑗+1 = 𝑓 (x𝑗) + 𝑔 𝑛
𝜕S(x𝑗)
𝜕x𝑗

†

{Y𝑗 − S(x𝑗)} + 𝜷
𝑗+1

T
, (2)

where we include the augmented 𝐷e-dimensional vectors

S(x𝑗) and Y𝑗 . The embedding dimension 𝐷e is defined by

𝐷e = 𝐷d 𝐷𝑦. The vector S ∈ ℜ𝐷e is related to the states of the

model and Y ∈ ℜ𝐷e is related to the observations y ∈ ℜ𝐷𝑦 ,

as:

S(x𝑗) =
[
(𝐻{x𝑗)}T, {𝐻(x𝑗+𝜏)}T, ..., {𝐻(x𝑗+(𝐷d−1)𝜏)}T

]T

(3)

and

Y𝑗 =
[
(y𝑗)T, (y𝑗+𝜏)T, ..., (y𝑗+(𝐷d−1)𝜏)T

]T
. (4)

The states x𝑗 in S(x𝑗) are the means of the ensemble of

states x𝑗
𝑖 , where 𝑖 is the ensemble index. S(⋅) is a map from

physical to an embedding space. 𝐻 is the observation oper-

ator, which can be linear or nonlinear. It is assumed that 𝐻

does not change with time, but it is straightforward to make

it time-dependent. The coupling constant 𝑔 determines the

strength of the coupling, which is progressively increased by 𝑛

along the interval between observations. At an observed time

step, when we update the variables, 𝑛 = 1. During the time

steps without observations, 𝑛 is increased from 1 to (𝑜int − 1)
at the last unobserved time step in the interval, where 𝑜int is

the observation interval.

𝜕S(x𝑗)∕𝜕x𝑗 is the Jacobian matrix of S. Its pseudoinverse,

(𝜕S(x𝑗)∕𝜕x𝑗)†, is responsible for spreading the information

from the observed to the unobserved variables. It is computed

as follows:

𝜕S(x𝑗)
𝜕x𝑗

†

≈ X𝑗

⎛⎜⎜⎜⎜⎝

𝐻(X𝑗)
𝐻(X𝑗+𝜏)

⋮

𝐻(X𝑗+(𝐷d−1)𝜏)

⎞⎟⎟⎟⎟⎠

†

, (5)
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where the pseudoinverse on the right-hand side is computed

via a truncated SVD. X𝑗 is the ensemble perturbation matrix,

that is, each column is the difference between each member

and the mean.

Additionally, the ensemble synchronization scheme uses

a localization method to reduce the influence of observa-

tions which are far away from the variables (Houtekamer and

Mitchell, 1998). Pinheiro et al. (2018) give an overview of the

localization implementation in this scheme.

When implemented in the particle filter, the scheme of

Pinheiro et al. (2018) is adapted, to reduce its computational

cost and also to fit it into the particle filtering framework, as

follows.

In order to avoid calculating the forecast ensembles sev-

eral times, we store the initial set of ensemble perturbation

matrices X computed at time step 𝑗, so we have:

X = (X𝑗 ,X𝑗+𝜏 , ...,X𝑗+(𝐷d−1)𝜏). (6)

Note that these perturbation matrices are obtained while

constructing the Jacobian 𝜕S(x𝑗)∕𝜕x𝑗 . We also store the

ensemble means at each of the embedding times described in

Equation (6).

At the next time steps in which we have observations, we

perform the following procedures:

(1) Rescale all perturbation matrices in X with a factor:

𝛾𝑘 =
𝜎𝑘(new)

𝜎𝑘(prior)
, (7)

where 𝑘 here corresponds to the state variables and

𝜎𝑘 =

√√√√ 1

𝑁ens − 1

𝑁ens∑
𝑖=1

(𝑥𝑘
𝑖 − �̄�𝑘)2 (8)

is the formulation used to compute the spread. The

𝜎𝑘(prior), then, is the ensemble spread for the actual time

step propagated from the previous observation time, i.e.

the prior. 𝜎𝑘(new) is the spread of the perturbation matrix

newly computed at the actual time step, after using

Equation (2).

(2) Recentre the ensembles at each observed time, by adding

to the means previously stored, the difference between

the mean of the new ensemble and the prior ensemble.

(3) Propagate the last rescaled and recentred ensemble, that

is, the one at 𝑡 + (𝐷d − 1)𝜏Δ𝑡 for an additional 𝜏 time

steps, to have a complete X, as needed in Equation (2).

2.2 Particle filters
Particle filters are based on Bayes’ Theorem, in which the pos-

terior pdf of the state x𝑛, given the observations y𝑛 at time 𝑛

is:

𝑝(x𝑛 ∣ y𝑛) =
𝑝(y𝑛 ∣ x𝑛)𝑝(x𝑛)

𝑝(y𝑛)
. (9)

The basic idea is to represent the prior pdf, a probability

density that contains information from the model, as a discrete

set of model states or particles x𝑖:

𝑝(x𝑛) ≈ 1

𝑁

𝑁∑
𝑖=1

𝛿(x𝑛 − x𝑛
𝑖 ). (10)

This approximation, combined with Bayes’ formulation,

leads to the following representation of the posterior:

𝑝(x𝑛 ∣ y𝑛) ≈
𝑁∑
𝑖=1

𝑤𝑛
𝑖 𝛿(x

𝑛 − x𝑛
𝑖 ), (11)

in which 𝑤𝑛
𝑖 are the weights:

𝑤𝑛
𝑖 =

𝑝(y𝑛 ∣ x𝑛
𝑖 )∑𝑁

𝑘=1 𝑝(y𝑛 ∣ x𝑛
𝑘
)
. (12)

These weights are attached to each particle to give them

a relative importance, according to how close or distant the

model states are from the observations. If only few particles

are close to the observations and receive non-zero weights,

the posterior pdf will lose its full statistical information, as

the other particles will be discarded, due to their inability to

follow the observations. This is called filter degeneracy or

filter collapse and it happens in even small-dimensional sys-

tems. Doucet et al. (2001) gives a more detailed mathematical

explanation on particle filters.

Several methods have been developed to mitigate this

problem. Snyder et al. (2008; 2015) proved that resampling

would not solve the degeneracy, even using the so-called

optimal proposal density.

To avoid the particles becoming degenerate, it is crucial

to ensure that equally significant particles are drawn from

the posterior density. To do this, we must perform two dif-

ferent and important steps: (a) guarantee that the particles

are located at the high-probability regions of the posterior

and (b) ensure similar or equal weights of the particles, so

they will never collapse. To this end, several methods have

been recently developed, such as the Equivalent Weights Par-

ticle Filter (EWPF; van Leeuwen, 2010) and the IEWPF (Zhu

et al., 2016; Skauvold et al., 2019).

Regarding the first step, we need a scheme that pulls the

particles towards the observations, between observation time

steps. An interesting property of particle filters that can be

explored to this purpose is the so-called proposal transition

density.

Consider time steps 𝑗 and 𝑗 + 1 between two observation

time steps 𝑛 − 1 and 𝑛, that is, 𝑡𝑛−1 < 𝑡𝑗 < 𝑡𝑗+1 < 𝑡𝑛. The
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model is assumed to be Markovian. This way, the pdf 𝑝(x𝑗+1)
can be written as:

𝑝(x𝑗+1) = ∫ 𝑝(x𝑗+1, x𝑗) dx𝑗

= ∫ 𝑝(x𝑗+1 ∣ x𝑗)𝑝(x𝑗) dx𝑗 ,
(13)

where 𝑝(x𝑗+1 ∣ x𝑗) is the transition density of the original

model. We have the freedom to introduce a proposal density

𝑞 as follows, without changing the previous equation:

𝑝(x𝑗+1) =∫
𝑝(x𝑗+1 ∣ x𝑗)

𝑞(x𝑗+1 ∣ x𝑗 , y𝑛)
𝑞(x𝑗+1 ∣ x𝑗 , y𝑛) 𝑝(x𝑗) dx𝑗 . (14)

This is possible if the support of 𝑞 is equal to or larger

than the one in 𝑝. This way, we avoid dividing the previous

equation by zero.

Instead of drawing from 𝑝(x𝑗+1 ∣ x𝑗) and so using the orig-

inal model, we now draw from 𝑞(x𝑗+1 ∣ x𝑗 , y𝑛). This way, the

prior at time 𝑛 is now defined as:

𝑝(x𝑛) =
𝑁∑
𝑖=1

𝑤𝑖
𝑛
𝛿(x𝑛 − x𝑛

𝑖 ), (15)

in which the weights are accumulated during the time steps

between observations until time 𝑛:

𝑤𝑖
𝑛 =

𝑛∏
𝑗=1

𝑝(x𝑗+1

𝑖 ∣ x𝑗
𝑖 )

𝑞(x𝑗+1

𝑖 ∣ x𝑗
𝑖 , y𝑛)

. (16)

It is possible to choose any proposal transition density for

𝑞(x𝑗+1 ∣ x𝑗 , y𝑛), so the aim is to use one that includes addi-

tional information from the observations in the future, in an

optimal way.

2.3 Ensemble synchronization as a
proposal density in the IEWPF
Considering the proposal density freedom, several methods

can be used for this, including traditional methods such as

the four-dimensional variational schemes (4D-Var), as essen-

tially proposed in Chorin and Tu (2009), and the ensemble

smoothers, like in Browne (2016). However, these are rather

expensive, as it usually involves solving a problem similar to

4D-Var for each particle. Thus, typically, simpler schemes are

employed between observation times. These schemes will be

less efficient, although we can ensure that Bayes’ Theorem is

fulfilled exactly for each particle.

Some authors (e.g. Zhu et al., 2016) implemented the par-

ticle filter with a weak relaxation term between observations

to control the spread and to achieve better-converging trajec-

tories of the particles. To this end, the relaxation transition

proposal density that appears in Equation (14) was defined by

those authors as:

𝑞(x𝑗+1 ∣ x𝑗
𝑖 , y

𝑛) ∼ 𝑁(xrelax,Q), (17)

where Q is the model error covariance and

xrelax = 𝑓 (x𝑗
𝑖 ) + 𝐵(𝜏)[y𝑛 −𝐻𝑓 (x𝑗

𝑖 )], (18)

where 𝐵(𝜏) is the relaxation strength, given by

𝐵(𝜏) = 𝑏 𝜏 𝑄𝐻TR−1. (19)

In this formulation, 𝑏 is a constant, 𝜏 increases linearly

from zero to one along the unobserved time steps and R is the

observation-error covariance matrix.

They concluded from this formulation that the relaxation

term used was a weakness in their scheme. They also argued

that proposal densities can be more sophisticated than the one

they have used and should be tested to improve the perfor-

mance and increase robustness. That is exactly what we are

investigating in this work.

We will assume that the model errors and the proposal are

Gaussian. The transition density in Equation (13) for the prior

is related to the original model via

𝑝(x𝑗+1 ∣ x𝑗) ∶ x𝑗+1

𝑖 = 𝑓 (x𝑗
𝑖 ) + 𝜷

𝑗+1

𝑖 , (20)

where 𝜷𝑗+1 is a stochastic vector representing the model error

𝜷
𝑗+1

𝑖 ∼ 𝑁(0,Q). This leads to:

𝑝(x𝑗+1

𝑖 ∣ x𝑗
𝑖 ) ∼ 𝑁{𝑓 (x𝑗

𝑖 ),Q}, (21)

where

𝑝(x𝑗+1

𝑖 ∣ x𝑗
𝑖 ) ∝ exp

[
−1

2

{
x𝑗+1

𝑖 −𝑓 (x𝑗
𝑖 )
}T

Q−1
{

x𝑗+1

𝑖 −𝑓 (x𝑗
𝑖 )
}]

.

(22)

The proposal density that appears in Equation (14) is

related to a proposed model, in our case, the ensemble syn-

chronization equation:

x𝑗+1

𝑖 = 𝑓 (x𝑗
𝑖 ) + 𝑔 𝑛

(
𝜕S(x𝑗)
𝜕x𝑗

)†
(Y𝑗 − S𝑗) + 𝜷

𝑗+1

𝑖 , (23)

where 𝜷
𝑗+1

𝑖 ∼ 𝑁(0, �̂�), which in our case is drawn from the

same distribution as 𝜷
𝑗+1

𝑖 , so we assume here that �̂� = Q.

The augmented observation and state vectors Y𝑗 and S𝑗 use

future observations in the time-embedding window, described

in Equations (4) and (3), respectively. Hence,

𝑞(x𝑗+1 ∣ x𝑗
𝑖 ,Y

𝑗) ∼ 𝑁(xsynch,Q), (24)
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where

xsynch = 𝑓 (x𝑗
𝑖 ) + 𝑔 𝑛

(
𝜕S(x𝑗)
𝜕x𝑗

)†
𝑖

(Y𝑗 − S𝑗), (25)

which is the deterministic part of the right-hand side of

Equation (23). The distribution of this proposal density is

calculated as:

𝑞(x𝑗+1 ∣ x𝑗
𝑖 ,Y

𝑗) ∝ exp

[
−1

2

(
x𝑗+1

𝑖 −xsynch

)T

Q−1
(
x𝑗+1

𝑖 −xsynch

)]
,

(26)

which we can relate to the model error added in Equation (23)

as

𝑞(x𝑗+1 ∣ x𝑗
𝑖 ,Y

𝑗) ∝ exp

[
−1

2

(
𝜷
𝑗+1

𝑖

)T

Q−1𝜷
𝑗+1

𝑖

]
. (27)

We avoid computing Q−1 in Equation (27), as in Ades and

van Leeuwen (2015), by noting that the error 𝜷
𝑗+1

𝑖 is sam-

pled from 𝑁(0,Q) through 𝜷
𝑗+1

𝑖 = Q1∕2𝜼
𝑗+1

𝑖 , where 𝜼
𝑗+1

𝑖 ∼
𝑁(0, 𝐼). This leads to

(
𝜷
𝑗+1

𝑖

)T

Q−1𝜷
𝑗+1

𝑖 =
(
𝜼
𝑗+1

𝑖

)T

𝜼
𝑗+1

𝑖 . (28)

This change in model equation is compensated by an extra

weight, as explained in the previous section,

𝑤𝑖 =
𝑝(x𝑗+1

𝑖 ∣ x𝑗
𝑖 )

𝑞(x𝑗+1

𝑖 ∣ x𝑗
𝑖 ,Y

𝑗)
, (29)

which accumulates for all time steps, except the last time step

before the next observation, to

𝑤𝑛−1
𝑖 =

𝑛−1∏
𝑗=1

𝑝(x𝑗+1

𝑖 ∣ x𝑗
𝑖 )

𝑞(x𝑗+1

𝑖 ∣ x𝑗
𝑖 ,Y

𝑗)
. (30)

At the last time step before the next observation, the

IEWPF is applied, to ensure that all of the particles have equal

weights in the posterior pdf.

A brief explanation of the modified IEWPF scheme (Skau-

vold et al., 2019) is as follows. For each particle two samples

are drawn from a Gaussian distributed proposal 𝑞(𝝃, 𝜼) =
𝑞(𝝃|𝜼)𝑞(𝜼), such that 𝝃 is perpendicular to 𝜼. We then form a

new particle as:

x𝑛
𝑖 = xa

𝑖 + 𝛼𝑖P1∕2𝝃𝑛𝑖 + 𝛽P1∕2𝜼𝑛𝑖 . (31)

xa
𝑖 is the mode of 𝑝(x𝑛

𝑖 ∣ x𝑛−1
𝑖 , y𝑛), 𝛼𝑖 and 𝛽 are scalars and

P is an estimate of the covariance of 𝑝(x𝑛
𝑖 ∣ x𝑛−1

𝑖 , y𝑛). One

chooses 𝛽, which is related to the spread of the ensemble, and

is typically a number between 0.3 and 1. An advantage of the

modified scheme is that all parts of state space can be reached,

and the posterior covariance is no longer systematically too

low.

The parameter 𝛼𝑖 is chosen to scale the size of the stochas-

tic forcing, in order to make the particles receive the same

target weight 𝑤target, that is:

𝑤𝑖(𝛼𝑖) = 𝑤target. (32)

Using the general expression for the weights we thus find

𝑤𝑖 =
1

𝑁ens

𝑝(x𝑛
𝑖 ∣ x𝑛−1

𝑖 , y𝑛)𝑝(y𝑛 ∣ x𝑛−1
𝑖 )

𝑝(y𝑛)𝑞(x𝑛
𝑖 ∣ x𝑛−1

𝑖 , y𝑛)
= 𝑤target. (33)

Since we do not draw from 𝑞(x𝑛
𝑖 ∣ x𝑛−1

𝑖 , y𝑛) directly, but

from the Gaussians the expression for the weights becomes

𝑤𝑖 =
𝑝(x𝑛

𝑖 ∣ x𝑛−1
𝑖 , y𝑛)𝑝(y𝑛 ∣ x𝑛−1

𝑖 )
𝑞(𝝃𝑖, 𝜼)

‖‖‖‖dx𝑛

d𝝃

‖‖‖‖𝑤𝑛−1
𝑖 , (34)

where 𝑤𝑛−1
𝑖 is related to the weight from previous time steps,

as in Equation (30). Zhu et al. (2016) give a more detailed

description of the IEWPF, and Skauvold et al. (2019) describe

the modified version used here.

Regarding the implementation of the EnSynch method in a

particle filter, a powerful data assimilation software package

called EMPIRE (Employing MPI for Researching Ensembles)

was used (Browne and Wilson, 2015). In EMPIRE, coupling

between the numerical model and the data assimilation meth-

ods is performed through MPI (Message Passing Interface).

This way, the main programming effort is directed only to

the data assimilation scheme which one wants to test, while

minimal changes in the model are needed.

In the Appendix, a description on how to code the IEWPF

using the ensemble-based synchronization scheme as a pro-

posal density is given. Note that we avoid calculating the full

weights by only calculating the logarithm of these weights.

This is a great advantage of this scheme.

2.4 Computational costs
The computational costs of the scheme can be estimated

as follows. First one needs to integrate the whole ensemble

𝐷d 𝜏 time steps forward. However, this is a one-off cost as

we update this long ensemble forecast only by integrating it

another 𝜏 time steps forward at every observation time.

Hence we need to integrate the ensemble twice between

observation times: once to calculate the forcing term for the

synchronization, and a second time for the actual synchroniza-

tion. This is equivalent to twice the cost of other ensemble

schemes such as an Ensemble Kalman Filter.

The actual calculation of the synchronization term

involves localization and an SVD in the localization domain.

This is similar to the kind and number of operations for a local
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Ensemble Kalman Filter. On top of this the new scheme needs

the IEWPF at observation times. Since that scheme does not

need localization, the main costs are generating random vari-

ables with covariance P, because the inversions needed can

be done offline, its costs are typically negligible compared to

those of, for example, a local Ensemble Kalman Filter update.

To sumarize, the new method is expected to be more

expensive than ensemble methods like Ensemble Kalman

Filters when the model integrations are the dominant com-

putational costs, up to a factor 2. If the update is the most

expensive part the costs should be similar.

3 EXPERIMENTS AND RESULTS

The metric used in all experiments is the root mean square

error (RMSE):

𝑅𝑀𝑆𝐸 =

√√√√ 1

𝐷𝑥

𝐷𝑥∑
𝑘=1

(𝑥𝑡𝑟𝑢𝑒𝑡
𝑘
− 𝑥𝑡

𝑘
)2. (35)

In Equation (35), 𝑥𝑡𝑟𝑢𝑒 is considered, as we performed

twin experiments, where the truth is artificially generated. In a

real experiment, one would count on the observations to know

about the truth. 𝑥𝑡
𝑘

is the best estimate in the pure synchro-

nization experiments, and the ensemble mean for the particle

filter. For the particle filter experiments we also use the

ensemble spread, defined as the square-root of the ensemble

variance averaged over all grid points:

𝐸𝑛𝑠𝑆𝑝𝑟𝑒𝑎𝑑 =

√√√√ 1

𝐷𝑥

𝐷𝑥∑
𝑘=1

𝑁ens∑
𝑖=1

(𝑥𝑡
𝑖,𝑘

− 𝑥𝑡
𝑘
)2 (36)

in which 𝑥𝑡
𝑖,𝑘

is the value at grid point 𝑘 of ensemble member

𝑖. For both metrics we also consider the time average.

3.1 Results for the EnSynch
In this section we show a few results using pure synchroniza-

tion without a particle filter to provide an idea of what can

be achieved this way. Since the emphasis of the paper is on

the coupling with the particle filter, only a few results will be

presented.

Twin experiments were performed using a

𝐷𝑥-dimensional Lorenz96 model,

dx𝑎

d𝑡
= (x𝑎+1 − x𝑎−2)x𝑎−1 − x𝑎 + 𝐹 , (37)

where 𝑎 = 1, ..., 𝐷𝑥 and we are showing results for 𝐷𝑥 =
1, 000. The forcing parameter 𝐹 = 8.17 is set to guarantee a

chaotic behaviour in the model. A fourth-order Runge–Kutta

scheme was used, with Δ𝑡 = 0.01 and observations are used

every 𝜏 = 10 time steps.

F I G U R E 2 Trajectories of five unobserved variables in a

1,000-dimension system. The blue curves are the truth and the green

ones are the estimates. Predictions start at time step 1,000 (after red

lines)

Observation noise is sampled from a normal distribution,

using a standard deviation 𝜎obs = 0.1. Every fourth variable

is measured in the Lorenz ring, that is, 25% of the system is

observed. Aiming to increase the complexity of the problem,

the frequency of observations is decreased, compared to the

first experiments in Pinheiro et al. (2018): instead of having

observations available at every time step, they now occur at

every 10 time steps. Note that, given the chaoticity of the

model, the number of positive Lyapunov exponents is at least

1∕3 of the model dimension (Pazó et al., 2016), therefore

observing just 1∕4 of the system is a challenging problem.

Ensemble members are perturbed with a normal distri-

bution of 𝑁 ∼ (0, 0.01) at 𝑡 = 0. Different ensemble sizes

were tested, but we observed that the best results com-

pared to computational costs were obtained with 𝑁ens =



PINHEIRO ET AL. 2517

30, and lowering this number destroyed the synchronization.

Increasing the ensemble size did not lead to large improve-

ments, related to the use of localization as discussed below.

Regarding the computation of the SVD in Equation (5), the

number of singular values considered is equal to 𝑁ens. Dif-

ferent initial conditions and random number realizations were

tested, showing similar qualitative and quantitative results.

Due to the small ensemble size, we need to reduce the

influence of spurious correlations in the synchronization

term. A domain localization method is applied, in which we

assume that a position in physical space (e.g. a location on the

Lorenz ring) is attributed to each observation. The goal is to

reduce the influence of observations which are far away from

the variables (Houtekamer and Mitchell, 1998). Pinheiro et al.
(2018) give further details on the implementation of localiza-

tion in the ensemble synchronization. In these experiments,

we use a radius of influence 𝑙𝑜𝑐 = 10 as a threshold, so that

any observations located further than this radius are ignored.

The coupling constant 𝑔 is a tuning parameter in the syn-

chronization framework, and in the following example we

use 𝑔 = 21. The behaviour of the system for different val-

ues of 𝑔 is discussed later. The experiment is run for an

estimation period of 1,000 time steps followed by a forecast

period of another 1,000 time steps. The size of the delay

dimension is 𝐷d = 5, as in Pinheiro et al. (2018) and is

an important factor on the system, as it needs to be large

enough to capture additional information from specific obser-

vations, but small enough to avoid numerical instabilities on

the pseudoinverse computation. Pazó et al. (2016) provide an

order-of-magnitude estimate for this optimal delay time as

𝜏opt = (1∕𝑠) exp[(𝜇 − 𝑠)𝜏opt − 1], in which 𝑠 is the synchro-

nization strength and 𝜇 is the maximal Lyapunov exponent.

In our case, for the 1,000-dimensional system, 𝜇 ≈ 2 and

𝑠 ≈ 2, leading to 𝜏opt ≈ 0.2. A 𝐷d = 5 corresponds to

𝜏opt = 𝐷d𝜏Δ𝑡 ≈ 0.5, indeed of similar magnitude to the Pazó

et al. (2016) estimate. This is remarkable, as their equation is

a rough approximation and our synchronization term is much

more complicated than theirs.

After the assimilation period, predictions start and the

system is set to run freely, without the use of the ensemble

synchronization scheme. Figure 2 shows estimations (before

the red lines) and predictions (after the red lines) for five

unobserved variables in the system. During the estimation

stage, the green lines (estimates) perfectly match to the blue

lines (truth), showing how close the estimates are to the true

values. Additionally, during the prediction period, trajectories

keep following the truth for around 200 time steps. After that,

trajectories start to diverge, due to the chaoticity of the model.

The so-called leading finite-time Lyapunov exponent, 𝜆(𝑡),
can be computed for a time 𝑡 as:

𝜆(𝑡) ≃ 1

𝑡
ln

‖𝛿𝑥(𝑡)‖‖𝛿𝑥(0)‖ (38)

F I G U R E 3 Leading Lyapunov exponents over 200 time steps.

Positive exponents: red. Negative exponents: yellow

and it represents the mean growth rate of the distances

𝛿𝑥 between neighbouring trajectories (e.g. Boffetta et al.,
2001). Figure 3 shows these leading finite-time Lyapunov

exponents of the assimilation solution along 200 time steps.

The red crosses show positive values, providing informa-

tion on moments in which perturbations can potentially grow

exponentially, in finite time. After some time steps, negative

leading Lyapunov exponents predominate (shown in yellow

in Figure 3), apart from a short period of desynchroniz-

ing near the end of the experiment (not shown here), which

means that the growth of instabilities are supressed for most

of the time, as can be seen during the assimilation period in

Figure 2.

The behaviour of the system depends on the synchroniza-

tion strength parameter 𝑔. Figure 4 shows an example run

over 2,000 time steps, with long periods of synchronization

interrupted by short burst of desynchronization, using the

RMSE as metric. The figure shows how the RMSEs decay

exponentially until the order of magnitude of the observation

noise added to the system, but also sharp increases of the

RMSE when the system desynchronizes, to synchronize more

slowly afterwards. Considering that in our tests we have less

frequent observations than Pinheiro et al. (2018), we observe

that:

(a) as the job of the coupling term to steer the particles

towards the truth has become more difficult along the

gaps between observations, it takes longer for the system

to reach RMSEs comparable to 𝜎obs, and, in this experi-

ment, desynchronization does occur occasionally,

(b) the proportional reuse of the coupling term in the gaps

between the occurrence of the observations is indeed

useful, and
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F I G U R E 4 Global Synchronization Error (RMSE) for a

1,000-variable system with 250 measured variables sampled

equidistantly on the Lorenz96 ring. Thirty ensemble members are used

and localization is applied (𝐷d = 5)

F I G U R E 5 Synchronization as a function of synchronization

strength 𝑔. Red: percentage of runs with full synchronization. Blue:

Percentage of runs with synchronization, but also with bursts of

desynchronization

(c) more members in the ensemble are needed, compared to

Pinheiro et al. (2018).

To quantify the role of the synchronization strength 𝑔, we

performed ten experiments with different random seeds for

different 𝑔 values. Figure 5 shows the results for the occur-

rence of synchronization, synchronization with occasional

bursts, and the absence of synchronization. For the present

experimental settings, 𝑔 ≈ 20 yields the best results.

These results show that the ensemble-based synchroniza-

tion scheme is a valuable tool to steer model states to the

truth, working very well in a moderately high-dimensional

system, using a desirable small number of ensemble mem-

bers. It proves to be a potential scheme to be inserted as a

proposal density in a particle filter.

3.2 Results for the IEWPF using EnSynch
as a proposal
For these experiments, we keep the same configuration

used for the ensemble synchronization experiment with the

Lorenz96 model. The same proportion of a 1,000-variable

F I G U R E 6 Magnitude of global RMSE (red) and ensemble

spread (blue) as a function of 𝑔 in the particle filter

system is measured (25%) and the same standard deviation

for the observation error is used: 𝜎 = 0.1, with observations

every ten time steps.

One first important point to note is that the main goal of the

stand-alone ensemble-based synchronization scheme shown

in the previous section is to keep its convergence towards

the truth. The ensemble is used only to facilitate the com-

putation of the Jacobian. When we insert this scheme into a

particle filter and its ensemble of trajectories, it means that

the synchronization coupling term now has to synchronize all

trajectories at once, which does not necessarily mean that it

will reach its optimal state as shown previously. Actually, we

observe that although most ensemble members are moving

towards observations between assimilation steps, some do not

feel much positive influence of the synchronization term.

In the experiments shown below we used 𝐷d = 1 with

number of ensemble members 𝑁ens = 20. We found that

extending the synchronization window beyond the next obser-

vation time did not provide better results. This is related to

the fact that the IEWPF will disturb the synchronization of

the ensemble members. The particles were initialized by a

random vector drawn from 𝑁 ∼ (0, 0.5). The model error

covariance is chosen diagonal with variance 0.25. This makes

the problem hard for the IEWPF part of the algorithm, as

information from observations is spread out via Q. Hence

the information flow in the synchronization part is crucial,

demonstrating the intimate connection between the two parts

of the algorithm.

In Figure 6 we show the RMSE and the spread of the

ensemble, defined as the square-root of the ensemble vari-

ance averaged over the whole domain, versus 𝑔. Each point is

the result of running the data assimilation scheme for 4,000

time steps, and the average of 20 of these runs each with a

different random seed. The uncertainty on the RMSE values

is 5% and smaller than 1% on the ensemble spread. As seen

in the figure, the RMSE and the filter estimate of the error

from the ensemble spread are very similar, pointing to filter

consistency.

The ensemble spread is a function of the filter parame-

ter 𝛽, which varied from 0.05 to 0.95, growing with 𝑔. This

parameter is similar to an inflation factor in Ensemble Kalman

Filters. The connection with 𝑔 is understandable: the larger 𝑔
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F I G U R E 7 RMSE (black) and ensemble spread (blue) as a

function of time for the IEWPF experiments with 𝑔 = 1.5. Note the

accurate estimate of the actual RMSE by the ensemble spread

is, the stronger are the ensemble members drawn to the obser-

vations, and hence to each other. The parameter 𝛽 is used to

avoid a too small ensemble spread.

Compared to pure synchronization in Figure 5, the best

values for 𝑔 are smaller when synchronization is embedded

in the particle filter. This is not surprising as the IEWPF step

draws particles together and hence a less strong synchroniza-

tion is needed.

Figure 7 shows the time evolution of the RMSE and the

ensemble spread over 4,000 time steps for one of the experi-

ments for which 𝑔 = 1.5. The estimated error via the ensemble

spread is a good estimate for the actual error. Note that the

actual error fluctuates more as it is based on a single realiza-

tion, while the ensemble spread is a statistical quantity. The

figure shows a fast initial rise over about 100 time steps, fol-

lowed by a stable behaviour after that. The RMSE saturates at

about 0.70, which is larger then the observational error of 0.1

in this case. However, the majority of the state is not observed,

and it is well known that the spatial decorrelation length-scale

of the Lorenz96 model is 1 or 2 grid points. Furthermore, we

employ a model error of size 0.5 which is diagonal. Hence a

RMSE value larger then 0.1 is not unexpected.

We compared this behaviour to a state-of-the-art existing

methodology, a Local Ensemble Transform Kalman Filter.

We tuned the LETKF with a fixed inflation factor and a fixed

localization radius. Figure 8 shows the time evolution of the

RMSE and the ensemble spread for one of the experiments

for which a localization radius of 4 and an inflation factor

of 1.05. These correspond to the best values after tuning the

LETKF. The inflation factor was not chosen to provide the

lowest RMSE, as in many papers, but to provide a consistent

error estimate compared to the true RMSE.

When we compare Figure 8 with the Figure 7, we see

immediately that the new particle filter with a synchronization

proposal outperforms the optimally tuned LETKF, but only

F I G U R E 8 RMSE (black) and ensemble spread (blue) as a

function of time for an LETKS experiment with inflation factor 1.05.

Note the accurate estimate of the actual RMSE by the ensemble spread.

Note that the vertical scale is different from the previous figure

slightly so. The time-averaged RMSE and ensemble spread

for the LETKF are 0.80 and 0.81, respectively, compared to

0.71 and 0.70 for the new particle filter. This is not surpris-

ing as the nonlinear filter is able to extract more information

from the observations then the linearized LETKF. This also

confirms the discussion in the previous paragraph about the

RMSE error versus the observational error.

It is important to realise that the LETKF needs localiza-

tion, while the IEWPF part of the particle filter does not

need localization. Localization is only present in the syn-

chronization proposal, and we do have complete freedom in

the proposal density. Hence the particle filter solves Bayes

Theorem to a high degree of accuracy, apart from the finite

ensemble size.

We also investigated the performance of the new filter as a

function of the observation error magnitude. Figure 9 shows

the RMSE of an optimally tuned IEWPF with synchronization

and an optimally tuned LETKF as function of the standard

deviation of the observation error. Note that optimally tuned

means that the 𝛽 parameter in the new filter and the inflation

factor in the LETKF are chosen such that the ensemble spread

matches the RMSE. As expected, the RMSE grows with the

observational uncertainty. The saturation at low observation

errors is due to the model error size. Reducing the model error

by a factor 2 also reduces the RMSE by a factor 2 (not shown

here).

The standard deviation in each estimate in Figure 9 is 5%,

and hence the new particle filter is systematically better than

the LETKF, but only slightly so.

We also looked at the sensitivity of the new particle fil-

ter to the number of ensemble members. Figure 10 shows

the RMSE and corresponding ensemble spread as function

of the ensemble size, varying as 20, 50, 75 and 100. The

observational error standard deviation was chosen to be 0.5
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F I G U R E 9 RMSE of the new particle filter (red) and the

LETKF (blue) as a function of observation error standard deviation,

with values 0.01, 0.1, 0.2, 0.5, 1.0, and 2.0. The saturation at low

observation errors is due to the model error size. The uncertainty in

each estimate is 5%, showing that the new particle filter slightly and

consistently outperforms the LETKF

F I G U R E 10 RMSE of the new particle filter as a function of

ensemble size. The uncertainty in each estimate is 5%

to avoid the saturation effect mentioned earlier. (Another

way would be to reduce the model error, but we did choose

the more demanding experiments here.) As expected, the

RMSE decreases when the ensemble size increases, close

to a square-root 1∕
√
𝑁ens dependence, as expected from a

Monte-Carlo method.

These experiments (and many others not shown) allow us

to provide some guidance on how to choose the parameters

in the new particle filter. There are three tuning parameters,

the localization radius for the ensemble synchronization, the

synchronization strength parameter, and the 𝛽 factor in the

IEWPF. The localization radius choice is quite similar as for

Ensemble Kalman Filters and Smoothers (the latter for short

time windows): a first guidance comes from physical con-

siderations on characteristic length-scales in the system, and

then one has to make sure that spurious correlations have to

be removed. The synchronization strength is trail and error,

but for all experiments shown here a value between 1.0 and

1.5 seems to work best. However, this is expected to be highly

system-dependent. The factor 𝛽 has to be chosen such that the

ensemble spread is of similar size as the RMSE, similar to the

inflation factor in Ensemble Kalman Filters. The difference is

that theory tells us that 0 < 𝛽 < 1 (Skauvold et al., 2019).

Typical values used here were 0.3–0.5, and values up to 0.9

for an observation noise of 2.0. Again, the best value will be

highly problem-dependent.

4 CONCLUSIONS

In this paper we show results obtained in a nonlinear sys-

tem, using a non-degenerate particle filter, a modified ver-

sion of the Implicit Equal-Weights Particle Filter (IEWPF),

with a proposal density between observations composed of

the ensemble-based synchronization scheme (Pinheiro et al.,
2018). The main idea is to apply the coupling term derived

from the ensemble synchronization to each particle in the fil-

ter, leading the ensemble to follow the true state of the system,

as the local instabilities in the dynamics are controlled by the

time-embedding framework.

We first investigated the behaviour of the synchronization

separately to better understand the behaviour of the system

in a 1,000-dimensional Lorenz1996 model. It was shown that

the synchronization converges, at a very slow rate, if the

synchronization strength parameter is chosen correctly. The

synchronization depends on the length of the time-embedding

used, and the optimal embedding was found to be 50 model

time steps.

When we used the synchronization as proposal density in

the IEWPF, we found that best results were obtained with a

reduction of the time-embedding interval to the time period

between observations. This is related to the fact that the

IEWPF will move the ensemble members in state space at

observation times, and the delicate synchronized configura-

tion is broken.

The results of the resulting particle filter were compared

to a well-tuned state-of-the art LETKF. It was shown that

the new filter consistency outperforms the LETKF, but only

slightly so. We tuned the LETKF not on lowest RMSE only,

but also on consistency of RMSE and ensemble spread. It

should be mentioned that we used the LETKF with a fixed

inflation factor, while an adaptive inflation factor might per-

form better. However, this would be similar to making the

synchronization strength factor 𝑔 adaptive, which we did not

consider here. It is argued that the new particle filter performs

better because it is a nonlinear data assimilation method, and

expected to have a stronger capacity of extracting information

from observations in a nonlinear setting.

The cost of the new particle filter can easily be compared

to that of an Ensemble Kalman Filter. It is argued that the

main difference is that in the particle filter the ensemble has to

be run twice, once to obtain the synchronization term that is

then used in the second integration. If model integrations are

the dominant costs of the data-assimilation exercise, the new

method is up to twice the cost of an Ensemble Kalman Filter.

For the experiments performed here the execution times were

the same order of magnitude.

We understand that this initial implementation, although

successful, still does not use the full potential of the ensem-

ble synchronization scheme in the proposal, as further work
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on understanding the efficiency of the synchronization cou-

pling term in different trajectories of the particles is still

needed. Additionally, we interrupt the synchronization pro-

cess at every 10 time steps to equalize the weights of the

particles through the IEWPF part of the filter. During the

experiments which investigated a larger number of observa-

tions available in the system (not shown here), we observed

interesting relationships between the time delay and the cou-

pling constant 𝑔. As we know that the time delays play an

important role in increasing the observability of the system,

it is interesting to note that this can also be controlled by the

coupling factor 𝑔, consistent with the results of Pazó et al.
(2016). This way, we expect that many improvements can be

made to the system, as these are the first results combining

synchronization and a particle filter to tackle this complex,

nonlinear problem.

An interesting extension would be the implementation of a

backward–forward time-embedding in the ensemble synchro-

nization scheme, such as in Auroux and Blum (2008), as the

disruptions from the IEWPF scheme would be less severe.

Finally, it is worth mentioning that the promise of parti-

cle filters is to provide a set of samples that represent the

posterior pdf. Because the number of samples will be limited

in high-dimensional geoscience applications, this representa-

tion will need to concentrate on the most important features

of this posterior pdf. What these features are will depend on

the application. Here we have concentrated on the first two

moments of the posterior, and their behaviour in the predic-

tion stage. While other methods like an Ensemble Kalman

Filter also concentrate on these two moments, they will be

biased in nonlinear applications due to the Gaussian assump-

tions. In practice, these biases are well mitigated by largely

𝑎𝑑 ℎ𝑜𝑐 adaptations, such as localization and inflation. It

is shown here that the particle filter does not need these

𝑎𝑑 ℎ𝑜𝑐 adjustments. However, it is important to investigate

the behaviour of moments, or the ability to detect and track

multiple modes, using particle filters. This will be investi-

gated in future work, where we note that it is difficult to find

a benchmark solution for a high-dimensional system.
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Algorithm 1 EnSynch (observed time steps)

𝑬𝒏𝒔 ← initial ensemble

𝑬𝑨 ← ensemble mean

𝑨 ← 𝑬𝒏𝒔 − 𝑬𝑨

if 𝑡 = 1 then
Store 𝑬𝑨 and 𝑨

𝑺 ← 𝑯 ∗ 𝑬𝑨

𝒀 ← 𝑦

𝒅𝒔𝒅𝒙 ← 𝑯

for 𝑚 ← 2 to 𝐷d do
for 𝑖 ← 1 to 𝜏 do

Evolve 𝑬𝒏𝒔 using model

end for
𝑬𝑩 ← ensemble mean {Store 𝑬𝑩}

𝑩 ← 𝑬𝒏𝒔 − 𝑬𝑩 {Store 𝑩}

𝑺 ← 𝑯 ∗ 𝑬𝑩 {append to the existing 𝑆}

𝒀 ← 𝑦 {append to the existing 𝒀 }

𝒅𝒔𝒅𝒙 ← 𝑯 ∗ 𝑩 {append to the existing 𝒅𝒔𝒅𝒙}

end for
else
𝛾 ← 𝜎prior(𝑡)∕𝜎new(𝑡)
𝑩 ← 𝛾 ∗ 𝑩
𝒏𝒆𝒘𝑬𝒏𝒔 ← 𝑩 + 𝑬𝑩

for 𝑚 ← 2 to 𝐷d − 1 do
𝐴scale ← 𝜎prior(𝑡 + 𝜏)∕𝜎prior(𝑡)
𝒏𝒆𝒘𝑬𝒏𝒔(𝒕+ 𝝉) ← 𝑬𝑩(𝒕+ 𝝉) + 𝐴scale ∗ {𝑬𝑩(𝒕) −
𝑬𝑩prior(𝒕)} + 𝐵

𝑺 ← 𝑯 ∗ 𝒏𝒆𝒘𝑬𝒏𝒔 {append to the existing 𝑺}

𝒀 ← 𝑦 {append to the existing 𝒀 }

𝒅𝒔𝒅𝒙 ← 𝑯 𝑩 {append to the existing 𝒅𝒔𝒅𝒙}

end for
for 𝑖 ← 1 to 𝜏 do

Evolve 𝒏𝒆𝒘𝑬𝒏𝒔 using model

end for
𝑬𝑩 ← ensemble mean {Store 𝑬𝑩}

𝑩 ← 𝑬𝒏𝒔− 𝑬𝑩 {Store 𝑩}

𝑺 ← 𝑯 ∗ 𝑬𝑩 {append to the existing 𝑺}

𝒀 ← 𝑦 {append to the existing 𝒀 }

𝒅𝒔𝒅𝒙 ← 𝑯 ∗ 𝑩 {append to the existing 𝒅𝒔𝒅𝒙}

end if
𝒅𝒙𝒅𝒔 ← inverse of truncated SVD of dsdx
for 𝑖 ← 1 to 𝑁ens do
𝜼𝒊 ∼ 𝑁(0, 1)
𝜷𝒊 ← 𝑸1∕2𝜼𝒊

end for
Next two steps: evolve 𝑬𝒏𝒔 using model

𝒅𝒆𝒕 ← 𝒇 (𝒙) + 𝜷

𝒔𝒚𝒏𝒄𝒉 ← 𝒇 (𝒙) + 𝑔 ∗ (𝑨 ∗ 𝒅𝒙𝒅𝒔) ∗ (𝒀 − 𝑺) + 𝜷

𝑬𝒏𝒔 ← 𝒔𝒚𝒏𝒄𝒉

For each particle:

𝑤𝑒𝑖𝑔ℎ𝑡1 ← (𝒔𝒚𝒏𝒄𝒉−𝒅𝒆𝒕+𝜷) ∗ 𝑸−1 ∗ (𝒔𝒚𝒏𝒄𝒉−𝒅𝒆𝒕+𝜷)
𝑤𝑒𝑖𝑔ℎ𝑡2 ← 𝜼T𝜼

𝑤 ← 𝑤𝑒𝑖𝑔ℎ𝑡1 −𝑤𝑒𝑖𝑔ℎ𝑡2
𝑤particle ← 𝑤particle + (1∕2) ∗ 𝑤

Algorithm 2 EnSynch (unobserved time steps)

for 𝑖 ← 1 to 𝑁ens do
𝜼𝒊 ∼ 𝑁(0, 𝐼)
𝜷𝒊 ← 𝑸1∕2𝜼𝒊

end for
𝒅𝒆𝒕 ← 𝒇 (𝒙) + 𝜷 {Evolve 𝑬𝒏𝒔 using model}

𝑛 ← 𝑡 − 𝑡obs {𝑡obs is the last obs}

𝑫𝑿 ← 𝑔 ∗ (𝑛 ∗ 𝑔𝑡𝑎𝑢) ∗ (𝑨 ∗ 𝒅𝒙𝒅𝒔) ∗ (𝒀 − 𝑺)
𝒔𝒚𝒏𝒄𝒉 ← 𝒇 (𝒙) +𝑫𝑿 + 𝜷 {Evolve 𝑬𝒏𝒔 using model}

𝑬𝒏𝒔 ← 𝒔𝒚𝒏𝒄𝒉

For each particle:

𝑤𝑒𝑖𝑔ℎ𝑡1 ← (𝒔𝒚𝒏𝒄𝒉 − 𝒅𝒆𝒕 + 𝜷)𝑸−1 ∗ (𝒔𝒚𝒏𝒄𝒉 − 𝒅𝒆𝒕 + 𝜷)
𝑤𝑒𝑖𝑔ℎ𝑡2 ← 𝜼T𝜼

𝑤 ← 𝑤𝑒𝑖𝑔ℎ𝑡1 −𝑤𝑒𝑖𝑔ℎ𝑡2
𝑤particle ← 𝑤particle + (1∕2) ∗ 𝑤

Algorithm 3 IEWPF time steps

𝑤particle ← − log(𝑤particle) {from previous time steps}

(Note that the weights are not the full weights, but− log𝑤𝑛
𝑖 )

for 𝑖 ← 1 to 𝑁ens do
𝒅𝒊 ← 𝒚 −𝑯{𝒇 (𝒙𝒕)}
𝒃𝒊 ← (𝑯𝑸𝑯T +𝑹)−1 𝒅𝒊
𝚽𝒊 ← 𝒅T

𝒊
𝒃𝒊

𝒄𝒊 ← 2 ∗ 𝑤particle +𝚽𝒊

end for
𝑤target ← 𝑚𝑎𝑥(𝒄)
𝑷 = (𝑸−1 +𝑯T𝑹−1𝑯)−1

𝜼𝑖 ∼ 𝑁(0,𝑷 )
𝝃𝑖 ∼ 𝑁(0,𝑷 )
𝝃𝑖⊥𝜼𝑖
for 𝑖 ← 1 to 𝑁ens do
𝑲 𝑖 ← 𝑸𝑯T𝒃𝑖
𝒙𝑎
𝑖 ← 𝒇 (𝒙𝒕) +𝑲 𝑖

Γ𝑖 ← 𝝃T
𝒊
𝝃𝒊

𝒂𝒊 ← 𝚽𝒊 −𝑤particle +𝑤target

Solve (𝛼𝑖 − 1)Γ𝑖 −𝑁𝑥 log(𝛼𝑖) + (𝛽 − 1)𝜼T
𝒊
𝜼𝒊 + 𝒂𝒊 = 0

𝑬𝒏𝒔 ← 𝒙𝑎
𝑖 + 𝛼𝑖𝜂𝑖

end for


